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   Introduction 

   During 2014, 2015, and 2016, surveys show that among all software developers, those with higher wages are 
the data engineers, the data scientists, and the data architects. 

 This is because there is a huge demand for technical professionals in data; unfortunately for large 
organizations and fortunately for developers, there is a very low offering. 

 Traditionally, large volumes of information have been handled by specialized scientists and people 
with a PhD from the most prestigious universities. And this is due to the popular belief that not all of us have 
access to large volumes of corporate data or large enterprise production environments. 

 Apache Spark is disrupting the data industry for two reasons. The first is because it is an open source 
project. In the last century, companies like IBM, Microsoft, SAP, and Oracle were the only ones capable of 
handling large volumes of data, and today there is so much competition between them, that disseminating 
designs or platform algorithms is strictly forbidden. Thus, the benefits of open source become stronger 
because the contributions of so many people make free tools more powerful than the proprietary ones. 

 The second reason is that you do not need a production environment with large volumes of data or 
large laboratories to develop in Apache Spark. Apache Spark can be installed on a laptop easily and the 
development made there can be exported easily to enterprise environments with large volumes of data. 
Apache Spark also makes the data development free and accessible to startups and little companies. 

 If you are reading this book, it is for two reasons: either you want to be among the best paid IT 
professionals, or you already are and you want to learn how today’s trends will become requirements in the 
not too distant future. 

 In this book, we explain how dominate the SMACK stack, which is also called the Spark++, because it 
seems to be the open stack that will most likely succeed in the near future.  



   PART I 

   Introduction 
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    CHAPTER 1   

 Big Data, Big Challenges                          

 In this chapter, we expose the modern architecture challenges facing the SMACK stack (Apache Spark, 
Mesos, Akka, Cassandra, and Kafka). Also, we present dynamic processing environment problems to see 
which conditions are suitable and which are not. 

 This chapter covers the following:

•    Why we need a pipeline architecture for big data  

•   The Lambda Architecture concept  

•   ETL and its dark side    

     Big Data Problems 
 We live in the information era, where almost everything is data. In modern organizations, there is a suitable 
difference between data engineers and data architects.  Data engineers   are experts who perfectly know the 
inner workings and handling of the data engines. The data architect well understands all the data sources—
internal and external. Internal sources are usually owned systems. External sources are systems outside the 
organization. The first big data problem is that the number of data sources increases with time. 

 A few years ago, a big company’s IT department could survive without  data architects   or data engineers. 
Today’s challenge is to find good architects. The main purpose of architecture is always resilience. If the data 
architect doesn’t have a data plan, then the data sources and the data size will become unmanageable. 

 The second problem is obtaining a data sample. When you are a data analyst (the person charged 
with the compilation and analysis of numerical information), you need data samples—that is, data from 
production environments. If the size of the data and/or the number of data sources increases, then obtaining 
data samples becomes a herculean task. 

 The third big data problem is that the validity of an analysis becomes obsolete as time progresses. 
Today, we have all the information. The true value of data is related to time. Within minutes, a 
recommendation, an analysis, or a  prediction   can become useless. 

 The fourth problem is related to the return on investment of an analysis. The analysis velocity is directly 
proportional to the return on investment. If the  data analyst   can’t get data in a timely way, then analysis costs 
increase and the earnings decrease.  

Electronic supplementary material The online version of this chapter (doi:  10.1007/978-1-4842-2175-4_1    ) 
contains supplementary material, which is available to authorized users.

http://dx.doi.org/10.1007/978-1-4842-2175-4_1
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     Infrastructure Needs 
 Modern companies require a scalable  infrastructure  . The costs of your data center are always in accordance 
with your business size. There is expensive hardware and costly software. And nowadays, when it comes to 
open source software, people’s first thoughts are the high costs of consulting or the developer’s price tag. But 
there is good news: today, big data solutions are not exclusive to large budgets. 

 Technologies must be distributed. Nowadays, when we talk about  distributed software , we are no longer 
talking about multiple processors; instead, we are talking about multiple data centers. This is the same 
system, geographically dispersed. 

 If your business grows, your data should fit those needs. This is scalability. Most people are afraid of 
the term  big data , and spend valuable economic resources to tackle a problem that they don’t have. In 
a traditional way, your business growth implies your data volumes’ growth. Here, the good news is scale 
linearly with cheap hardware and inexpensive software. 

 Faster processing speed is not related to processor cycles per second, but the speed of all your 
enterprise process. The now is everything, opportunities are unique, and few situations are repeatable. 

 When we talk about complex processing, we are not talking about the “Big O” of an algorithm. This is 
related to the number of actors involved in one process. 

 The data flow is constant. The days when businesses could store everything in warehouses are gone. 
The businesses that deliver responses the next day are dying. The  now  is everything. Data warehouses are 
dying because stored data becomes rotten, and data caducity is shorter every day. The costs associated with 
a warehouse are not affordable today. 

 And finally, there is visible and reproducible analysis. As we have mentioned, data analysts need fresh 
and live data to satisfy their needs. If data becomes opaque, the business experiences a lack of management.  

     ETL 
  ETL stands for  extract, transform,    load      . And it is, even today, a very painful process. The design and 
maintenance of an ETL process is risky and difficult. Contrary to what many enterprises believe, they serve 
the ETL and the ETL doesn’t serve anyone. It is not a requirement; it is a set of unnecessary steps. 

 Each step in ETL has its own risk and introduces errors. Sometimes, the time spent debugging the ETL 
result is longer than the ETL process itself. ETL always introduces errors. Everyone dedicated to ETL knows 
that having no errors is an error. In addition, everyone dedicated to ETL knows that applying ETL onto 
sensitive data is playing with the company’s stability. 

 Everybody knows that when there is a failure in an ETL process, data duplication odds are high. 
Expensive debugging processes (human and technological) should be applied after an ETL failure. This 
means looking for duplicates and restoring information. 

 The tools usually cost millions of dollars. Big companies know that ETL is good business for them, but not 
for the client. The human race has invested a lot of resources (temporal and economic) in making ETL tools. 

 The ETL decreases throughput. The performance of the entire company decreases when the ETL 
process is running, because the ETL process demands resources: network, database, disk space, processors, 
humans, and so forth. 

 The ETL increases complexity. Few computational processes are as common and as complicated. When 
a process requires ETL, the consultants know that the process will be complex, because ETL rarely adds 
value to a business’s “line of sight” and requires multiple actors, steps, and conditions. 

 ETL requires intermediary files writing. Yes, as if computational resources were infinite, costless, and easily 
replaceable. In today’s economy, the concept of big intermediary files is an aberration that should be removed. 

 The ETL involves parsing and reparsing text files. Yes, the lack of appropriate data structures leads to 
unnecessary parsing processes. And when they finish, the result must be reparsed to ensure the consistency 
and integrity of the generated files. 

 Finally, the ETL pattern should be duplicated over all our data centers. The number doesn’t matter; 
the ETL should be replicated in every data center. 
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 The good news is that no ETL pipelines are typically built on the SMACK stack. ETL is the opposite of 
high availability, resiliency, and distribution. As rule of thumb, if you write a lot of intermediary files, you 
suffer ETL; as if your resources—computational and economic—were infinite. 

 The first step is to remove the extract phase. Today we have very powerful tools (for example, Scala) that 
can work with binary data preserved under strongly typed schemas (instead of using big text dumps parsed 
among several heterogeneous systems). Thus, it is an elegant weapon for a more civilized big data age. 

 The second step is to remove the load phase. Today, your data collection can be done with a modern 
distributed messaging system (for example, Kafka) and you can make the distribution to all your clients in 
real time. There is no need to batch “load.”   

     Lambda Architecture 
  Lambda Architecture      is a data processing architecture designed to handle massive quantities of data by 
taking advantage of both batch and stream processing methods. As you saw in previous sections, today’s 
challenge is to have the batch and streaming at the same time. 

 One of the best options is Spark. This wonderful framework allows batch and stream data processing in the 
same application at the same time. Unlike many Lambda solutions, SMACK satisfies these two requirements: it 
can handle a data stream in real time and handle despair data models from multiple data sources. 

 In SMACK, we persist in Cassandra, the analytics data produced by Spark, so we guarantee the access 
to historical data as requested. In case of failure, Cassandra has the resiliency to replay our data before the 
error. Spark is not the only tool that allows both behaviors at the same time, but we believe that Apache 
Spark is the best.  

     Hadoop 
  Apache Hadoop      is an open-source software framework written in Java for distributed storage and the 
distributed processing of very large data sets on computer clusters built from commodity hardware. 

 There are two main components associated with Hadoop: Hadoop MapReduce and Hadoop 
Distributed File System ( HDFS  ). These components were inspired by the Google file system. 

 We could talk more about Hadoop, but there are lots of books specifically written on this topic. Hadoop was 
designed in a context where size, scope, and data completeness are more important than speed of response. 

 And here you face with a crucial decision: if the issue that you need to solve is more like data 
warehousing and batch processing, Apache Hadoop could be your solution. On the other hand, if the issue 
is the speed of response and the amount of information is measured in speed units instead of data size units, 
Apache Spark is your solution.  

     Data Center Operation 
 And we take this space to briefly reflect on how the  data center operation   has changed. 

 Yesterday, everything scaled up; today, everything scales out. A few years ago, the term  data center  
meant proprietary use of specialized and expensive supercomputers. Today’s challenge is to be competitive 
using commodity computers connected with a non-expensive network. 

 The total cost of ownership determines all. Business determines the cost and size of the data center. 
Modern startups always rise from a small data center. Buying or renting an expensive data center just to see 
if your startup is a good idea has no meaning in the modern economy. 

 The M in SMACK is a good solution to all your data center needs. With Apache Mesos, you can 
“abstract” all the resources from all the interconnected small computers to build a supercomputer with the 
linear sum of each machine’s resources: CPU cores, memory, disk, and network. 
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     The Open Source Reign 
 A few years ago, dependency on a vendor was a double-edged sword. On one hand, large companies hired 
proprietary software firms to later blame the manufacturer for any failure in their systems. But, on the other 
hand, this dependence—all the processes, development, and maintenance—became slow and all the issues 
were discussed with a contract in hand. 

 Many large companies don’t implement open source  solutions   for fear that no one else can provide the 
same support as large manufacturers. But weighing both proposals, the vendor lock-in and the external bug 
fixing is typically more expensive than open source solutions. 

 In the past, the big three-letter monopolies dictated the game rules. Today, the rules are made “by and 
for” the developers, the transparency is guaranteed by APIs defined by the same community. Some groups—
like the Apache Software Foundation and the Eclipse Foundation—provide guides, infrastructure, and tools 
for sustainable and fair development of these technologies. 

 Obviously, nothing is free in this life; companies must invest in training their staff on open source 
technologies.  

     The Data Store Diversification 
 Few people see this, but this is the beginning of the decline of the relational databases era. Since 2010, 
and the emergence of NoSQL and NoETL, there has been tough criticism of traditional systems, which is 
redefining the leader board. 

 Due to modern business needs, having everything stored in a relational database will go from being the 
standard way to the old-fashioned and obsolete way. Simple daily problems like recording the data, multiple 
store synchronization, and expensive store size are promoting NoSQL and NoETL solutions. 

 When moving data, gravity and location matter.  Data gravity   is related to the costs associated with 
moving a huge amount of data from one point to another. Sometimes, the simple everyday task of restoring a 
backup can be a daunting task in terms of time and money. 

   Data allocation    is a modern concept related to moving the computation resources where the data is 
located, rather than moving the data to where the computation is. It sounds simple, but due to the hardware 
(re)evolution, the ability to perform complex calculations on new and powerful client machines doesn’t 
impact customer perception on the performance of the entire system. 

 DevOps (development operations)    is a term coined by Andrew Clay Shafer and Patrick Debois at the 
Agile Conference in 2008. 1  Since then, DevOps has become a movement, a culture, and a lifestyle where 
software developers and information technology professionals charged with data center operation can live 
and work in harmony. How is this achieved? Easy: by dissolving the differences between them. 

 Today  DevOps   is one of the most profitable IT specializations. Modern tools like Docker and Spark 
simplify the movement between testing and production environments. The developers can have production 
data easily and the testing environments are almost mirrored with production environments. 

 As you will see in Chapter   7    , today’s tendency is containerize the development pipeline from 
development to production.   

   1     http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4599439       

10.1007/978-1-4842-2175-4_7
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=4599439
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     Is SMACK the Solution? 
 Even today, there are very few companies fully using SMACK. That is, many major companies use a flavor 
of SMACK—just use one, two, or three letters of the  SMACK stack  . As previously mentioned, Spark has 
many advantages over Hadoop. Spark also solves problems that Hadoop cannot. However, there are some 
environments where Hadoop has deep roots and where workflow is completely batch based. In these 
instances, Hadoop is usually a better choice. 

 Several SMACK letters have become a requirement for some companies that are in pilot stages and aim 
to capitalize all the investment in big data tools and training. The purpose of this book is to give you options. 
The goal is not to make a full pipeline architecture installation of all the five technologies. 

 However, there are many alternatives to the SMACK stack technologies. For example, Yarn may be an 
alternative to Mesos. For batch processing, Apache Flink can be an alternative to Spark. The SMACK stack 
axiom is to build an end-to-end pipeline and have the right component in the correct position, so that 
integration can be done quickly and naturally, instead of having expensive tools that require a lot of effort to 
cohabit among them.       



9© Raul Estrada and Isaac Ruiz 2016 
R. Estrada and I. Ruiz, Big Data SMACK, DOI 10.1007/978-1-4842-2175-4_2

    CHAPTER 2   

 Big Data, Big Solutions                          

 In Chapter   1    , we answered the  Why? . In this chapter, we will answer the  How? . When you understand the 
Why, the answer to the How happens in only a matter of time. 

 This chapter covers the following topics:

•    Traditional vs. modern (big) data  

•   SMACK in a nutshell  

•    S park, the engine  

•    M esos, the container  

•    A kka, the model  

•    C assandra, the storage  

•    K afka, the broker    

     Traditional vs. Modern (Big) Data 
 Is time quantized? Is there an indivisible amount of time that cannot be divided? Until now, the correct 
answer to these questions was “Nobody knows.” The only certain thing is that on a human scale, life doesn’t 
happen in batch mode. 

 Many systems are monitoring a continuous stream of events: weather events, GPS signals, vital signs, 
logs, device metrics…. The list is endless. The natural way to collect and analyze this information is as a 
stream of data. 

 Handling data as streams is the correct way to model this behavior, but until recently, this methodology 
was very difficult to do well. The previous rates of messages were in the range of thousands of messages per 
second—the new technologies discussed in this book can deliver rates of millions of messages per second. 

 The point is this: streaming data is not a matter for very specialized computer science projects; stream-
based data is becoming the rule for data-driven companies. 

 Table  2-1  compares the three approaches: traditional data, traditional big data, and modern big data.  

http://dx.doi.org/10.1007/978-1-4842-2175-4_1
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   Table 2-1.    Traditional Data, Traditional Big Data, and Modern Big Data  Approaches           

 CONCEPT  TRADITIONAL DATA  TRADITIONAL BIG DATA  MODERN BIG DATA 

  Person   • IT oriented  • IT oriented  • Business oriented 

  Roles   • Developer  • Data engineer  • Business user 

 • Data architect  • Data scientist 

  Data Sources   • Relational  • Relational  • Relational 

 • Files  • Files  • Files 

 • Message queues  • Message queues  • Message queues 

 • Data service  • Data service 

 • NoSQL 

  Data Processing   • Application server  • Application server  • Application server 

 • ETL  • ETL  • ETL 

 • Hadoop  • Hadoop 

 • Spark 

  Metadata   • Limited by IT  • Limited by model  •  Automatically 
generated 

 • Context enriched 

 • Business oriented 

 • Dictionary based 

  User interface   • Self-made  • Self-made  • Self-made 

 •  Developer skills 
required 

 •  Developer skills 
required 

 • Built by business users 

 • Tools guided 

  Use Cases   • Data migration  • Data lakes  • Self-service 

 • Data movement  • Data hubs  • Internet of Things 

 • Replication  •  Data warehouse 
offloading 

 • Data as a Service 

  Open Source 
Technologies  

 • Fully embraced  • Minimal  • TCO rules 

  Tools Maturity   • High  • Medium  • Low 

 • Enterprise  • Enterprise  • Evolving 

  Business Agility   • Low  • Medium  • Extremely high 

  Automation level   • Low  • Medium  • High 

  Governance   • IT governed  • Business governed  • End-user governed 

  Problem Resolution   • IT personnel solved  • IT personnel solved  • Timely or die 

  Collaboration   • Medium  • Low  • Extremely high 

  Productivity/Time to 
Market  

 • Slower  • Slower  • Highly productive 

(continued)
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 Modern technologies and architectures allow you to build systems more easily and efficiently, and 
to produce a better model of the way business processes take place. We will explain the real value of a 
streaming architecture. The possibilities are vast. 

 Apache Spark is not a replacement for Hadoop. Spark is a computing engine, whereas Hadoop is a 
complete stack for storage, cluster management, and computing tools. Spark runs well over Hadoop. 

 Hadoop is a ten-year-old technology. Today, we see the rising of many deployments that are not on 
Hadoop, including deployments on NoSQL stores (like Cassandra) and deployments directly against cloud 
storage (e.g., Amazon S3). In this aspect, Spark is reaching a broader audience than Hadoop.  

     SMACK in a Nutshell 
 If you poll several IT people, we agree on a few things, including that we are always searching for a new acronym. 

 SMACK, as you already know, stands for Spark, Mesos, Akka, Cassandra, and Kafka. They are all open 
source technologies and all are Apache software projects, except Akka. The SMACK acronym was coined by 
Mesosphere, a company that, in collaboration with Cisco, bundled these technologies together in a product 
called Infinity, which was designed to solve some big data challenges where the streaming is fundamental. 1  

 Big data architecture is required in the daily operation of many companies, but there are a lot of sources 
talking about each technology separately. 

 Let’s discuss the full stack and how to make the integration. 
 This book is a cookbook on how to integrate each technology in the most successful big data stack. We talk 

about the five main concepts of big data architecture and how to integrate/replace/reinforce every technology:

•    Spark: The engine  

•   Mesos: The container  

•   Akka: The model  

•   Cassandra: The storage  

•   Kafka: The message broker    

 Figure  2-1  represents the reference diagram for the whole book.   

Table 2-1. (continued)

 CONCEPT  TRADITIONAL DATA  TRADITIONAL BIG DATA  MODERN BIG DATA 

 • Faster time to market 

  Integration Analysis   • Minimal  • Medium  •  Modeled by analytical 
transformations 

  Real-time   • Minimal real time  • Minimal real time  • In real time or die 

  Data Access   • Primarily batch  • Batch  • Micro batch 

   1     https://mesosphere.com/       

https://mesosphere.com/
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      Apache Spark vs. MapReduce 
  MapReduce   is a programming model for processing large data sets with a parallel and distributed algorithm 
on a cluster. 

 As we will see later, in functional programming, there are two basic methods:  map()    , which is dedicated 
filtering and sorting, and  reduce()    , which is dedicated to doing an operation. As an example, to serve a 
group of people at a service window, you must first queue (map) and then attend them (reduce). 

 The term MapReduce was coined in 1995, when the Message Passing Interface was used to solve 
programming issues, as we will discuss later. Obviously, when Google made the implementation, it had only 
one use case in mind: web search. 

 It is important to note that Hadoop born in 2006 and grew up in an environment where MapReduce 
reigned. MapReduce was born with two characteristics that mark its life: high latency and batch mode; both 
make it incapable to withstand modern challenges. 

 As you can see in Table  2-2 , Spark is different.  

  Figure 2-1.     SMACK   at a glance       

 



CHAPTER 2 ■ BIG DATA, BIG SOLUTIONS

13

   Table 2-2.    Apache Spark /MapReduce Comparison   

 CONCEPT  Apache Spark  MapReduce 

  Written in   Scala/Akka  Java 

  Languages Supported   Java, Scala, Python, and R are first-
class citizens. 

 Everything should be written using Java. 

  Storage Model   Keeps things in memory  Keeps things in disk. Takes a long time 
to write things to disk and read them 
back, making it slow and laborious. 

  I/O Model   Keeps things in memory without I/O. 
Operates on the same data quickly. 

 Requires a lot of I/O activity over disk. 

  Recovery   Runs the same task in seconds or 
minutes. Restart is not a problem. 

 Records everything in disk, allowing 
restart after failure 

  Knowledge   The abstraction is high; codification 
is intuitive. 

 Could write MapReduce jobs 
intelligently, avoiding overusing 
resources, but requires specialized 
knowledge of the platform. 

  Focus   Code describes how to process data. 
Implementation details are hidden. 

 Apache Hive programming goes 
into code to avoid running too many 
MapReduce jobs. 

  Efficiency   Abstracts all the implementation to 
run it as efficiently as possible. 

 Programmers write complex code to 
optimize each MapReduce job. 

  Abstraction   Abstracts things like a good high-
level programming language. 
It is a powerful and expressive 
environment. 

 Code is hard to maintain over time. 

  Libraries   Adds libraries for machine learning, 
streaming, graph manipulation, and 
SQL. 

 Programmers need third-party tools 
and libraries, which makes work 
complex. 

  Streaming   Real-time stream processing out of 
the box. 

 Frameworks like Apache Storm needed; 
increased complexity. 

  Source Code Size   Scala programs have dozens of lines 
of code (LOC). 

 Java programs have hundreds of LOC. 

  Machine Learning   Spark ML  If you want to do machine learning, you 
have to separately integrate Mahout, 
H2O, or Onyx. You have to learn how it 
works, and how to build it on. 

  Graphs   Spark GraphX  If you want to do graph databases, you 
have to select from Giraph, TitanDB, 
Neo4J, or some other technologies. 
Integration is not seamless. 
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 Apache Spark has these advantages:

•    Spark speeds up application development 10 to 100 times faster, making applications 
portable and extensible.  

•   Scala can read Java code. Java code can be rewritten in Scala in a much smaller form 
factor that is much easier to read, repurpose, and maintain.  

•   When the Apache Spark core is improved, all the machine learning and graphs 
libraries are improved too.  

•   Integration is easier: the applications are easier to maintain and costs go down.    

 If an enterprise bets on one foundation, Spark is the best choice today. 
 Databricks (a company founded by the Apache Spark creators) lists the following use cases for Spark:

•    ETL and data integration  

•   Business intelligence and interactive analytics  

•   Advanced analytics and machine learning  

•   Batch computation for high performance  

•   Real-time stream processing    

 Some of the new use cases are just the old use cases done faster; although some use cases are totally 
new. There are some scenarios that just can’t be done with acceptable performance on MapReduce.   

     The Engine 
 It is important to recall that Spark is better at  OLAP      (online analytical processing), which are batch jobs 
and data mining. Spark is not suitable for  OLTP   (online transaction processing), such as numerous atomic 
transactions; for this type of processing, we strongly recommend Erlang (a beautiful language inspired in the 
actor’s model). 

 Apache Spark has five main components:

•    Spark Core  

•   Spark SQL  

•   Spark Streaming  

•   Spark MLib  

•   Spark GraphX    

 Each Spark library typically has an entire book dedicated to it. In this book, we try to simply tackle the 
Apache Spark essentials to meet the SMACK stack. 

 The role of Apache Spark on the SMACK stack is to act as the processor and provide real-time data 
analysis. It addresses the aggregation and analysis layers. 

 There are few open source alternatives to Spark. As we’ve mentioned, Apache Hadoop is the classic 
approach. The strongest modern adversary is the Apache Flink project, which is good to keep in mind.  
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     The Model 
 Akka is a  model  , a toolkit, and a runtime for building distributed, resilient, and highly concurrent 
message-driven applications on the Java virtual machine. In 2009, the Akka toolkit was released as open 
source. Language bindings exist for both Java and Scala. We need to first analyze Akka in order to understand 
the Spark architecture. Akka was designed based on the actor concurrency models:

•    Actors are arranged hierarchically  

•   Asynchronous message (data) passing  

•   Fault tolerant  

•   Customizable failure and detection strategies  

•   Hierarchical supervision  

•   Adaptive, predictive  

•   Parallelized  

•   Load balance    

 There are many Akka competitors; we make a special mention of Reactor. The actor model is the 
foundation of many frameworks and languages. The main languages that are based on the actor model 
(called  functional languages ) are Lisp, Scheme, Erlang, Haskell, and recently, Scala, Clojure, F#, and Elixir 
(a modern implementation of Erlang).  

     The Broker 
 Apache Kafka is a publish/subscribe message broker redesigned as a distributed commit log. In SMACK, 
Kafka is the data ingestion point, mainly on the application layer. Kafka takes data from applications and 
streams and processes them into the stack. Kafka is a distributed messaging system with high throughput. It 
handles massive data load and floods. It is the valve that regulates the pressure. 

  Apache Kafka   inspects incoming data volume, which is fundamental for partitioning and distribution 
among the cluster nodes. Apache Kafka’s features include the following:

•    Automatic broker failover  

•   Very high performance distributed messaging  

•   Partitioning and Distribution across the cluster nodes  

•   Data pipeline decoupling  

•   A massive number of consumers are supported  

•   Massive data load handling    

 Kafka is the champion among a lot of competitors in MOM (message-oriented middleware). In the 
MQ family, this includes ActiveMQ, ZeroMQ, IronMQ, and RabbitMQ. The best of all is RabbitMQ, which is 
made with Erlang. 

 The best alternative to Kafka is Apache Storm, which has a lot of integration with Apache Hadoop. Keep 
it in mind. Apache Kafka is here to stay.  
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     The Storage 
  Apache Cassandra   is a distributed database. It is the perfect choice when you need to escalate and need 
hyper-high availability with no sacrifice in performance. Cassandra was originally used on Facebook in 2008 
to handle large amounts of data. It became a top-level Apache project in 2010. Cassandra handles the stack’s 
operational data. Cassandra can also be used to expose data to the application layer. 

 The following are the main features of Apache Cassandra:

•    Extremely fast and scalable  

•   Multi data center, no single point of failure  

•   Survives when multiple nodes fault  

•   Easy to operate  

•   Flexible data modeling  

•   Automatic and configurable replication  

•   Ideal for real-time ingestion  

•   Has a great Apache based community    

 There are a lot of Cassandra competitors, including DynamoDB (powered by Amazon; it’s contending 
in the NoSQL battlefield), Apache HBase (the best-known database implementation of Hadoop), Riak 
(made by the Basho samurais; it’s a powerful Erlang database), CouchBase, Apache CouchDB, MongoDB, 
Cloudant, and Redis.  

     The Container 
  Apache Mesos   is a distributed systems kernel that is easy to build and effective to run. Mesos is an 
abstraction layer over all computer resources (CPU, memory, storage) on the machines (physical or 
virtual), enabling elastic distributed systems and fault tolerance. Mesos was designed with the Linux kernel 
principles at a higher abstraction level. It was first presented as Nexus in 2009. In 2011, it was relaunched by 
Matei Zaharia under its current name. Mesos is the base of three frameworks:

•    Apache Aurora  

•   Chronos  

•   Marathon    

 In SMACK, Mesos orchestrates components and manages resources. It is the secret for horizontal 
cluster scalation. Usually, Apache Mesos is combined with Kubernetes (the competitor used by the Google 
Cloud Platform) or with Docker (as you will see, more than a competitor, it is a complement to Mesos). The 
equivalent in Hadoop is Apache Yarn.  

     Summary 
 This chapter, like the previous one, was full of theory. We reviewed the fundamental SMACK diagram as 
well as Spark’s advantages over traditional big data technologies such as Hadoop and MapReduce. We also 
visited every technology in the SMACK stack, briefly presented each tool’s potential, and most importantly, 
we discussed the actual alternatives for each technology. The upcoming chapters go into greater depth 
on each of these technologies. We will explore the connectors and the integration practices, and link 
techniques, as well as describe alternatives to every situation.      



   PART II 

   Playing SMACK 
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    CHAPTER 3   

 The Language: Scala                          

 The main part of the SMACK stack is Spark, but sometimes the S is for Scala. You can develop in Spark in 
four languages: Java, Scala, Python, and R. Because Apache Spark is written in Scala, and this book is focused 
on streaming architecture, we are going to show examples in only the Scala language. 

 Other Apache Spark books present their examples in the four languages, but for the  SMACK stack  , 
simply discussing Scala is enough to develop a robust streaming pipeline. It is important to mention that all 
the Java programs run in Scala. 

 If you came here without previous Scala knowledge, welcome to the crash course. It is always good to 
learn a new programming language. We are not going to study Scala as the first programming language, 
however. This chapter is organized as a series of exercises in the language. If you already know Scala, try to 
follow the exercises to improve your knowledge. 

 As said by many, programming is just about algorithms and data structures. This chapter covers all the 
Scala data structures. The next chapter covers the algorithms—that is, the Akka actor model. 

     Functional Programming 
 Our goal in this chapter is not to learn Scala, but to reach the fully functional thinking in all of its pure 
expression. It is an open secret that each SMACK technology is independent and autonomous from the 
others. However, each could be developed (replaced) in Java or Scala. 

 The truth is that each and every one of the SMACK technologies can be developed ad hoc. Yes, the sun 
shines for everyone in the streaming pipeline world. You can develop from scratch any SMACK technology 
or replace one as your project needs. 

 How to write an entire Apache Akka project is beyond this book’s scope, but you should understand 
how it works to make good architectural decisions. 

 You need to be clear on these rules:

•    Scala collections and Java collections are different  

•   Spark collections and Scala collections are different    

 There are three fundamentals (among many others) in  functional programming  :

•    Predicates  

•   Literal functions  

•   Implicit loops    

     Predicate 
 A  predicate      is a multiple parameter function with just one boolean value as a return. 
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 This is an example (with body definition): 

   def isEven (i: Int) = if (i % 2 == 0) true else false 

   Here is another example (without body definition): 

   def isPrime (p: Long) 

   Note that the function has no parameters, but this is weird. If a function doesn’t receive an input, then 
this implies it is obtaining its data from a global variable or a shared context; both are strongly discouraged 
(even prohibited) in functional programming. Yes, we know that it could take a random number or take the 
system time to make its decisions, but these are special cases.  

     Literal Functions 
 In functional programming,  functions      are first-class citizens. In the 21st century it may sound archaic, but 
programming languages that discriminate against functions still exist, usually because they are low-level 
languages. 

 The rule of thumb is to think of it as algebra. In algebra, functions can be composed; you can make 
operations with functions and pass functions as other functions parameters. If you have problems with algebra, 
then sorry, this book (and programming) is not for you.... Just kidding. In this case, you can think of functions 
as traditional object-oriented programming (OOP) objects. So following that idea, you define a higher-order 
function in mathematics and computer science as a function that does at least one of the following:

•    Takes functions as arguments (as parameters)  

•   Returns a function as a result    

 For example, the  isEven  function could be rewritten as this: 

   ( i: Int) => i % 2 == 0  

   In this code, the  =>  symbol should be thought of as a  transformer . 
 This is a high-order function because it returns a function. Simple, isn’t it? 
 Yes, in mathematics, as in life, definitions are difficult but necessary to support and generalize our 

theories. With examples, everything is clear.  

     Implicit Loops 
 As a final step, the  isEven  function could be rewritten as this:    

    _ % 2 == 0  

   The  _  symbol denotes the parameter, or the thing (object, function, entity) to be used as input. 
 Combined with the filter method, over a list, we find expressions like these: 

            scala> val oneToTen = List.range(1, 10 ) 
         oneToTen: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9) 
         scala> val evens = nums.filter(_ % 2 == 0) 
         evens: List[Int] = List(2, 4, 6, 8) 

   The third line contains an implicit loop. Yes, in functional programming we try to avoid loops. If your 
code has a lot of  for s and  while s, it could probably be simplified. 



CHAPTER 3 ■ THE LANGUAGE: SCALA

21

 Functional is elegant and concise, but of course, there are some memory tricks that can be issued 
and solved through structured programming. Throughout history, code readability has proved to be more 
effective in economic terms (time and money) than hardware optimization, which has become cheaper.   

     Collections Hierarchy 
 At the top of the Scala collections  hierarchy   there is the  Traversable  class (as shown in Figure  3-1 ). 
All  Traversable  trait children have the implementation for this method:  

           def foreach[U](f: Elem => U) 

   The  Iterable  trait has implementation in terms of an iterator: 

           def foreach[U](f: Elem => U): Unit = { 
           val ite = iterator 
           while (ite.hasNext) f(ite.next()) 
         } 

   As you can see, the  Iterable  trait has three children:  Seq ,  Set , and  Map . 

     Sequences 
 The  Seq  trait represents  sequences  . 

 As shown in Figure   3-2  ,  Seq  has three children:  IndexedSeq ,  LinearSeq , and  Buffer .  

  Figure 3-1.    The Scala collection’s top hierarchy       
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 A  sequence  is an iterable that has a length and whose elements start from zero and have fixed index 
positions. 

  LinearSeq  and  IndexedSeq  don’t add any new operations, but each has different performance. 
  LinearSeq  is the list. As you know from functional programming, it has  head ,  tail , and  isEmpty  

operations. It is very efficient with apply, length, and update operations. 
  IndexedSeq  is the array. As you know from structured programming, it has the index operations. So, if 

you have an array of rooms, and you write  Room(101) , you access the 101st room. 
  Buffer  is an important mutable sequence. Buffers allow you to update existing elements and to insert, 

remove, and add new elements at the end.  

     Maps 
 A   map    is an iterable consisting of pairs. Each pair consists of a key and a value (also called  mappings  or 
 associations ). The  Map  family is shown in Figure   3-3  .  

 Scala offers an implicit conversion that lets you write  key   ->   value  as an alternate syntax for the (key, value). 
 For example,  Map("uno" -> 1, "dos" -> 2, "tres" -> 3)  is the same as  Map(("uno", 1), ("dos", 2), 

("tres", 3)) , but is easier to read.  

  Figure 3-2.    The Seq children       

  Figure 3-3.    The Map family       
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     Sets 
 A   set    is an iterable that contains no duplicate elements. As you can see in Figure   3-4  , the  Set  hierarchy is 
similar to the  Map  family.    

     Choosing Collections 
 Many programmers argue that the Scala type system is difficult and cumbersome. In fact, as you saw, you 
have to choose only one of these three types:

•    Sequence  

•   Map  

•   Set    

 The actual decision is to choose between the mutable and immutable versions. 

     Sequences 
 There are only two sequences: the  LinearSeq  (list) and the  IndexedSeq  (array). The true effort is to learn the 
names used, not the hierarchy itself (see Table  3-1 ).  

    Immutable Sequences   
     LinearSeq    

•  List : The list as we know from the functional world.  

•    Queue : The FIFO data structure of the traditional computer science books.  

•    Stack : The LIFO data structure of the traditional computer science books.  

•    Stream : Infinite, lazy and persistent; our everyday flow.     

  Figure 3-4.    The Set family       

   Table 3-1.    The Sequence Collections   

 Immutable  Mutable 

 IndexedSeq  Vector  ArrayBuffer 

 LinearSeq  List  ListBuffer 
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   IndexedSeq 

•     Range : A limited list of integers.  

•    String : The well-known and limited char sequence.  

•    Vector : Immutable, indexed, the sedan model of the lists.       

    Mutable Sequences   

     LinearSeq

•      LinkedList : Those traditionally used as an introduction to the C/C++ pointers.  

•    DoubleLinkedList : LinkedList with the “previous” method implemented.  

•    ListBuffer : The List version of the indexed Array.  

•    MutableList : A list for those non-functional rebels.  

•    Queue : The FIFO for non-functional guys.  

•    Stack : The LIFO for non-functional fellas.     

   IndexedSeq 

•     Array : A list which length is constant and every element is not.  

•    ArrayBuffer : An indexed array that always fits memory needs.  

•    ArrayStack : LIFO implementation when performance matters.  

•    StringBuilder : Efficient string manipulation for those with a limited memory budget.          

     Maps 
 You have to choose either a mutable map or a sorted map. 

   Mutable maps   

•     HashMap : A map whose internal implementation is a hash table.  

•    LinkedHashMap : Elements are returned as they were inserted.  

•    ListMap : Elements are returned as the inverse of how they were inserted.  

•    Map : The map as everybody knows it; key-value pairs.    

   Immutable maps   

•     HashMap : A map whose internal implementation is a tree.  

•    ListMap : Elements are returned as the inverse of how they were inserted.  

•    Map : The map as everybody knows it; key-value pairs.  

•    SortedMap : The keys are stored in a sorted order.  

•    TreeMap : A sorted map; the red-black tree of the traditional computer 
science books.     
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     Sets 
 You have to choose either a mutable set or a sorted set. 

   Mutable sets   

•     BitSet : Used to save memory, but only integers are allowed.  

•    HashSet : A set implemented using a hash table.  

•    LinkedHashSet : The elements are returned as they were inserted.  

•    TreeSet : The AVL tree of the traditional computer science books.  

•    Set : The mutable vanilla set.  

•    SortedSet : The mutable TreeSet, but ordered.    

   Immutable sets   

•     BitSet : To save (more) memory, only integers are allowed.  

•    HashSet : A set implemented using a tree.  

•    ListSet : A set for the public; a list for those who knows it.  

•    TreeSet : An immutable set implemented using a tree.  

•    Set : The immutable vanilla set.  

•    SortedSet : The immutable TreeSet but ordered.      

     Traversing 
  foreach  is the standard method for traversing collections in Scala. Its complexity is O(n); that is, the 
computation time has a linear relation with the number of elements in the input. We also have the 
traditional  for  and the iterators, as in Java. 

     foreach 
 In Scala, the   foreach  method   takes a function as argument. This function must have only one parameter and 
it doesn’t return anything (this is called a  procedure ). It operates in every element of the collection, one at a 
time. The parameter type of the function must match the type of every element in the collection. 

    scala> val zahlen = Vector("Eins", "Zwei", "Drei") 
 zahlen: scala.collection.immutable.Vector[String] = Vector(Eins, Zwei, Drei) 

   scala> zahlen.foreach(s => print(s)) 
 EinsZweiDrei 

    This function takes one character and prints it: 

   scala>  def printAChar ( c: Char) { print ( c) }  
 printAChar: (c: Char)Unit 
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   The function is applied to a string (a sequence of chars): 

   scala> "SMACK".foreach( c => printAChar(c) ) 
 SMACK 

   The type inference is a useful tool in these modern times: 

   scala> "SMACK".foreach( printAChar ) 
 SMACK 

   This is same as the preceding example but with a literal function: 

   scala> "SMACK".foreach( (c: Char) => print(c) ) 
 SMACK 

   This is same as the preceding example but uses a type inference and literal functions: 

   scala> "SMACK".foreach( print ) 
 SMACK 

   This example uses an implicit loop: 

   scala> "SMACK: Spark Mesos Akka Cassandra Kafka".split(" ") 
 Array[String] = Array(SMACK:, Spark, Mesos, Akka, Cassandra, Kafka) 

        for 
 As in all modern functional programming languages, we can explore all the elements of a collection with a 
  for  loop  . 

 Remember,  foreach  and  for  are not designed to produce new collections. If you want a new collection, 
use the  for / yield  combo. 

 As we stated earlier, if it’s iterable, then it’s traversable (inheritance 101): 

    scala> val smack = Traversable("Spark", "Mesos", "Akka", "Cassandra", "Kafka") 
 smack: Traversable[String] = List(Spark, Mesos, Akka, Cassandra, Kafka) 

   scala> for (f <- smack) println(f) 
 Spark 
 Mesos 
 Akka 
 Cassandra 
 Kafka 

   scala> for (f <- smack) println( f.toUpperCase ) 
 SPARK 
 MESOS 
 AKKA 
 CASSANDRA 
 KAFKA 

    To build a new collection, use the for/yield construct: 
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    scala> val smack = Array("Spark", "Mesos", "Akka", "Cassandra", "Kafka") 
 smack: Array[java.lang.String] = Array(Spark, Mesos, Akka, Cassandra, Kafka) 

   scala> val upSmack = for (s <- smack) yield s.toUpperCase 
 upSmack: Array[java.lang.String] = Array(SPARK, MESOS, AKKA, CASSANDRA, KAFKA) 

    This for/yield construct is called  for comprehension . 
 Now, let’s iterate a map with a  for  loop: 

    scala> val smack = Map("S" ->"Spark", "M" -> "Mesos", "A" -> "Akka", "C" ->"Cassandra", "K" 
-> "Kafka") 
 smack: scala.collection.immutable.Map[String,String] = Map(A -> Akka, M -> Mesos, C -> 
Cassandra, K -> Kafka, S -> Spark) 

   scala> for ((k,v) <- smack) println(s"letter: $k, means: $v") 
 letter: A, means: Akka 
 letter: M, means: Mesos 
 letter: C, means: Cassandra 
 letter: K, means: Kafka 
 letter: S, means: Spark 

         Iterators 
 To iterate a collection in Java, you use  hasNext()  and  next() . In Scala, however, they don’t exist, because 
there are the  map  and  foreach  methods. 

 You only use  iterators   in Scala when reading very large streams; a file is the most common example. As 
a rule of thumb, you use iterators when it’s not convenient to load all the data structure in memory. 

 Once it has been used, an iterator remains “exhausted,” as shown in the following: 

    scala> val iter = Iterator("S","M","A","C","K") 
 iter: Iterator[String] = non-empty iterator 

   scala> iter.foreach(println) 
 S 
 M 
 A 
 C 
 K 
 scala> iter.foreach(println) 

    As you can see, the last line didn’t produce any output, because the iterator is exhausted.   

     Mapping 
 Another way to transform collections different from the for/yield is by using the map method call with a 
function as argument, as follows:    

    scala> val smack = Vector("spark", "mesos", "akka", "cassandra", "kafka") 

   smack: scala.collection.immutable.Vector[String] = Vector(spark, mesos, akka, cassandra, kafka) 
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   // the long way 
 scala> val cap = smack.map(e => e.capitalize) 
 cap: scala.collection.immutable.Vector[String] = Vector(Spark, Mesos, Akka, Cassandra, 
Kafka) 

   // the short way 
 scala> val cap = smack.map(_.capitalize) 
 cap: scala.collection.immutable.Vector[String] = Vector(Spark, Mesos, Akka, Cassandra, 
Kafka) 

   //producing a Vector of Int 
 scala> val lens = smack.map(_.size) 
 lens: scala.collection.immutable.Vector[Int] = Vector(5, 5, 4, 9, 5) 

   //producing a Vector of XML elements 
 scala> val elem = smack.map(smack => <li>{smack}</li>) 
 elem: scala.collection.immutable.Vector[scala.xml.Elem] = Vector(<li>spark</li>, <li>mesos</
li>, <li>akka</li>, <li>cassandra</li>, <li>kafka</li>) 

    Unfortunately, Scala has type inference; that is, there is no a general rule for the collection type returned 
after a mapping operation. 

 You can say that you are a seasoned Scala functional programmer if you can identify the comprehension 
to be used:  for / yield  or  map . 

    scala> val smack = List("spark", "mesos", "akka", "cassandra", "kafka") 
 smack: List[String] = List(spark, mesos, akka, cassandra, kafka) 

   // capitalize with map 
 scala> val m = smack.map(_.capitalize) 
 m: List[String] = List(Spark, Mesos, Akka, Cassandra, Kafka) 

   // capitalize with for/yield 
 scala> val y = for (s <- smack) yield s.capitalize 
 y: List[String] = List(Spark, Mesos, Akka, Cassandra, Kafka) 

         Flattening 
 In functional programming, the  flattening process  occurs when you convert a list of lists (also called  sequence 
of sequences  or  multilist ) into one list. The following is  an   example: 

    scala> val allies = List(List("Java","Scala"), List("Javascript","PHP")) 
 allies: List[List[String]] = List(List(Java, Scala), List(Javascript, PHP)) 

   scala> val languages = allies.flatten 
 languages: List[String] = List(Java, Scala, Javascript, PHP) 

    The power of (functional) programming is the expressive power and simplicity. Here we capitalize, flat, 
and sort all in one sentence: 

   scala> val jargon = allies.flatten.map(_.toUpperCase).sorted 
 jargon: List[String] = List(JAVA, JAVASCRIPT, PHP, SCALA) 
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   When you work with connected nodes, flattening helps with the network: 

    val webFriends = List("Java", "JS") 
 val javaFriends = List("Scala", "Clojure", "Ceylon") 
 val jsFriends = List("PHP", "Ceylon") 

   val friendsOfFriends = List( javaFriends, jsFriends) 

   scala> val uniqueFriends = friendsOfFriends.flatten.distinct 
 uniqueFriends: List[String] = List(Scala, Clojure, Ceylon, PHP) 

    As you may guess, flattening a string produces a list of its chars: 

    scala> val stuff = List("SMACK", "Scala") 
 stuff: List[String] = List(SMACK, Scala) 

   scala> stuff.flatten 
 List[Char] = List(S, M, A, C, K, s, c, a, l, a) 

    If a collection contains elements of type  None , flattening removes them. 
 If a collection contains elements of type  Some , flattening strips them: 

    scala> val boxes = Vector(Some("Something"), None, Some(3.14), None) 
 boxes: scala.collection.immutable.Vector[Option[Any]] = Vector(Some(Something), None, 
Some(3.14), None) 

   scala> boxes.flatten 
 res1: scala.collection.immutable.Vector[Any] = Vector(Something, 3.14) 

         Filtering 
 In functional programming,  filtering   traverses a collection and builds a new collection with elements that 
match specific criteria. This criteria must be a predicate. You apply the predicate to each collection element, 
for example: 

    scala> val dozen = List.range(1, 13) 
 dozen: List[Int] = List(1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12) 

   scala> val multiplesOf3 = dozen.filter(_ % 3 == 0) 
 multiplesOf3: List[Int] = List(3, 6, 9, 12) 

   scala> val languages = Set("Java", "Scala", "Clojure", "Ceylon") 
 languages: scala.collection.immutable.Set[String] = Set(Java, Scala, Clojure, Ceylon) 

   scala> val c = languages.filter(_.startsWith("C")) 
 c: scala.collection.immutable.Set[String] = Set(Clojure, Ceylon) 

   scala> val s = languages.filter(_.length < 6) 
 s: scala.collection.immutable.Set[String] = Set(Java, Scala) 



CHAPTER 3 ■ THE LANGUAGE: SCALA

30

    Filtering has the following two rules:

    1.    The filter doesn’t modify the collection. You must keep the result in a new one.  

    2.    Only the elements whose predicate returns true are kept.      

     Extracting 
 In this section, we are going to examine the methods to extract subsequences. The following are examples.    

    // We declare an array of Int from 1 to 9 
 scala> val magic = (0 to 9).toArray 
 magic: Array[Int] = Array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) 

   // Without the first N elements 
 scala> val d = magic.drop(3) 
 d: Array[Int] = Array(3, 4, 5, 6, 7, 8, 9) 

   // Without the elements matching a predicate 
 scala> val dw = magic.dropWhile(_ < 4) 
 dw: Array[Int] = Array(4, 5, 6, 7, 8, 9) 

   // Without the last N elements 
 scala> val dr = magic.dropRight(4) 
 dr: Array[Int] = Array(0, 1, 2, 3, 4, 5) 

   // Just the first N elements 
 scala> val t = magic.take(5) 
 t: Array[Int] = Array(0, 1, 2, 3, 4) 

   // Just the first elements matching a predicate (from the left) 
 scala> val tw = magic.takeWhile(_ < 4) 
 tw: Array[Int] = Array(0, 1, 2, 3) 

   // Just the last N elements 
 scala> val tr = magic.takeRight(3) 
 tr: Array[Int] = Array(7, 8, 9) 

   // the subsequence between the index A and B 
 scala> val sl = magic.slice(1,7) 
 sl: Array[Int] = Array(1, 2, 3, 4, 5, 6) 

    The  List  methods are used to achieve functional purity. 

    // head, the first element 
 scala> val h = magic.head 
 h: Int = 0 

   // the head boxed (to prevent errors) 
 scala> val hb = magic.headOption 
 hb: Option[Int] = Some(0) 
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   // the list without the last element 
 scala> val in = magic.init 
 in: Array[Int] = Array(0, 1, 2, 3, 4, 5, 6, 7, 8) 

   // the last element 
 scala> val ta = magic.last 
 ta: Int = 9 

   // the last boxed (to prevent errors) 
 scala> val lo = magic.lastOption 
 lo: Option[Int] = Some(9) 

   // all the list without the first element (known as tail) 
 scala> val t = magic.tail 
 t: Array[Int] = Array(1, 2, 3, 4, 5, 6, 7, 8, 9) 

         Splitting 
 For those fans of the database perspective, there are methods to discriminate lists. We split samples into two 
groups, as follows.    

    // Here, a sample list 
 scala> val sample = List(-12, -9, -3, 12, 18, 15) 
 sample: List[Int] = List(-12, -9, -3, 12, 18, 15) 

   // lets separate our sample in two groups 
 scala> val teens = sample.groupBy(_ > 10) 
 teens: scala.collection.immutable.Map[Boolean,List[Int]] = Map(false -> List(-12, -9, -3), 
true -> List(12, 18, 15)) 

   // to access the generated groups 
 scala> val t = teens(true) 
 t: List[Int] = List(12, 18, 15) 

   scala> val f = teens(false) 
 f: List[Int] = List(-12, -9, -3) 

   // partition does the same as groupBy but it returns a List with two Lists 
 scala> val teens = sample.partition(_ > 10) 
 teens: (List[Int], List[Int]) = (List(12, 18, 15),List(-12, -9, -3)) 

   // span the list, in one list with the longest index who meets the predicate 
 scala> val negs = sample.span(_ < 0) 
 negs: (List[Int], List[Int]) = (List(-12, -9, -3),List(12, 18, 15)) 

   // splitAt generates two lists, one before the index at N, and the rest 
 scala> val splitted = sample.splitAt(2) 
 splitted: (List[Int], List[Int]) = (List(-12, -9),List(-3, 12, 18, 15)) 

   // partition can assign the result to a Tuple 
 scala> val (foo, bar) = sample.partition(_ > 10) 
 foo: List[Int] = List(12, 18, 15) 
 bar: List[Int] = List(-12, -9, -3) 
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         Unicity 
 If you want to remove duplicates in a collection, only use unique elements. The following are some 
examples.    

    scala> val duplicated = List("A", "Y", "Y", "X", "X", "Z") 
 duplicated: List[String] = List(A, Y, Y, X, X, Z) 

   // The first option is using distinct 
 scala> val u = duplicated.distinct 
 u: List[String] = List(A, Y, X, Z) 

   // the second is is converting the Collection to a Set, duplicates not allowed 
 scala> val s = duplicated.toSet 
 s: scala.collection.immutable.Set[String] = Set(A, Y, X, Z) 

         Merging 
 For merging and subtracting  collections  , use  ++  and  -- . The following show some of examples. 

    // The ++= method could be used in any mutable collection 
 scala> val nega = collection.mutable.ListBuffer(-30, -20, -10) 
 nega: scala.collection.mutable.ListBuffer[Int] = ListBuffer(-30, -20, -10) 

   // The result is assigned to the original collection, and it is mutable 
 scala> nega ++= Seq(10, 20, 30) 
 res0: nega.type = ListBuffer(-30, -20, -10, 10, 20, 30) 

   scala> val tech1 = Array("Scala", "Spark", "Mesos") 
 tech1: Array[String] = Array(Scala, Spark, Mesos) 

   scala> val tech2 = Array("Akka", "Cassandra", "Kafka") 
 tech2: Array[String] = Array(Akka, Cassandra, Kafka) 

   // The ++ method merge two collections and return a new variable 
 scala> val smack = tech1 ++ tech2 
 smack: Array[String] = Array(Scala, Spark, Mesos, Akka, Cassandra, Kafka) 

    We have the classic Set operations from Set Theory.

   scala> val lang1 = Array("Java", "Scala", "Ceylon") 
 lang1: Array[String] = Array(Java, Scala, Ceylon) 

   scala> val lang2 = Array("Java", "JavaScript", "PHP") 
 lang2: Array[String] = Array(Java, JavaScript, PHP) 

   // intersection, the elements in both collections 
 scala> val inter = lang1.intersect(lang2) 
 inter: Array[String] = Array(Java) 
 // union, the elements in both collections 
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 scala> val addition = lang1.union(lang2) 
 addition: Array[String] = Array(Java, Scala, Ceylon, Java, JavaScript, PHP) 

   // to discriminate duplicates we use distinct 
 scala> val substraction = lang1.union(lang2).distinct 
 substraction: Array[String] = Array(Java, Scala, Ceylon, JavaScript, PHP) 

    The  diff  method results depend on which sequence it’s called on (in set theory, A-B is different from B-A): 

    // difference, the elements in one set that are not in the other 
 scala> val dif1 = lang1 diff lang2 
 dif1: Array[String] = Array(Scala, Ceylon) 

   scala> val dif2 = lang2 diff lang1 
 dif2: Array[String] = Array(JavaScript, PHP) 

         Lazy Views 
 In functional programming, we call something “lazy” when it doesn’t appear until it is needed. A lazy view is 
a version of a collection computed and returned when it is actually needed.       

 By contrast, in Java, all the memory is allocated immediately when the collection is created. 
 The difference between these two lines could save a lot of memory: 

    scala> 0 to 25 
 res0: scala.collection.immutable.Range.Inclusive = Range(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 
11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25) 

   scala> (0 to 25).view 
 res1: scala.collection.SeqView[Int,scala.collection.immutable.IndexedSeq[Int]] = SeqView(...) 

    To force the memory allocation of a view, use the force instruction: 

    scala> val v = (0 to 25).view 
 v: scala.collection.SeqView[Int,scala.collection.immutable.IndexedSeq[Int]] = SeqView(...) 

   scala> val f = v.force 
 f: scala.collection.immutable.IndexedSeq[Int] = Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 
12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25) 

    Mixing views with the  map  method significantly improves the performance of your programs. In the 
following example, increasing the bounds causes your CPU to struggle. 

    scala> (0 to 100).map { _ * 3 } 
 res0: scala.collection.immutable.IndexedSeq[Int] = Vector(0, 3, 6, 9, 12, 15, 18, 21, 24, 
27, 30, 33, 36, 39, 42, 45, 48, 51, 54, 57, 60, 63, 66, 69, 72... 

   scala> (0 to 100).view.map { _ * 3 } 
 res1: scala.collection.SeqView[Int,Seq[_]] = SeqViewM(...) 
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    Good programmers (functional or SQL) know well the views benefits:

•    Performance (the reason that you’re reading this book)  

•   The data structure is similar to database views    

 Database views were created to allow modifications on big result sets and tables without compromising 
the performance. 

    // lets create an array 
 scala> val bigData = Array("B", "I", "G", "-", "D", "A", "T", "A") 
 bigData: Array[String] = Array(B, I, G, -, D, A, T, A) 

   // and a view over the first elements 
 scala> val view = bigData.view.slice(0, 4) 
 view: scala.collection.mutable.IndexedSeqView[String,Array[String]] = SeqViewS(...) 

   // we modify the VIEW 
 scala> view(0) = "F" 
 scala> view(1) = "A" 
 scala> view(2) = "S" 
 scala> view(3) = "T" 

   // voilá, our original array was modified 
 scala> bigData 
 res0: Array[String] = Array(F, A, S, T, D, A, T, A) 

         Sorting 
 To sort, you use the sorted method with the  < ,  <= ,  > , and  >=  operators. The following are some examples.    

    // sorting Strings 
 scala> val foo = List("San Francisco", "London", "New York", "Tokio").sorted 
 foo: List[String] = List(London, New York, San Francisco, Tokio) 

   // sorting numbers 
 scala> val bar = List(10, 1, 8, 3.14, 5).sorted 
 bar: List[Double] = List(1.0, 3.14, 5.0, 8.0, 10.0) 

   // ascending 
 scala> List(10, 1, 8, 3.14, 5).sortWith(_ < _) 
 res0: List[Double] = List(1.0, 3.14, 5.0, 8.0, 10.0) 

   // descending 
 scala> List(10, 1, 8, 3.14, 5).sortWith(_ > _) 
 res0: List[Double] = List(10.0, 8.0, 5.0, 3.14, 1.0) 

   // ascending alphabetically 
 scala> List("San Francisco", "London", "New York", "Tokio").sortWith(_ < _) 
 res0: List[String] = List(London, New York, San Francisco, Tokio) 
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   // descending alphabetically 
 scala> List("San Francisco", "London", "New York", "Tokio").sortWith(_ > _) 
 res0: List[String] = List(Tokio, San Francisco, New York, London) 

   // ascending by length 
 scala> List("San Francisco", "London", "New York", "Tokio").sortWith(_.length < _.length) 
 res0: List[String] = List(Tokio, London, New York, San Francisco) 

   // descending by length 
 scala> List("San Francisco", "London", "New York", "Tokio").sortWith(_.length > _.length) 
 res0: List[String] = List(San Francisco, New York, London, Tokio) 

         Streams 
 Just as views are the lazy version of collections, streams are the lazy version of lists. Here we taste some 
stream power:    

    scala> val torrent = (0 to 900000000).toStream 
 torrent: scala.collection.immutable.Stream[Int] = Stream(0, ?) 

   scala> torrent.head 
 res0: Int = 0 

   scala> torrent.tail 
 res1: scala.collection.immutable.Stream[Int] = Stream(1, ?) 

   scala> torrent.take(3) 
 res2: scala.collection.immutable.Stream[Int] = Stream(0, ?) 

   scala> torrent.filter(_ < 100) 
 res3: scala.collection.immutable.Stream[Int] = Stream(0, ?) 

   scala> torrent.filter(_ > 100) 
 res4: scala.collection.immutable.Stream[Int] = Stream(101, ?) 

   scala> torrent.map{_ * 2} 
 res5: scala.collection.immutable.Stream[Int] = Stream(0, ?) 

   scala> torrent(5) 
 res6: Int = 5 

         Arrays 
 Scala is a strong typed language. It determines the array type if it’s not specified.    

    // in numeric, the biggest data type determines the Collection type 
 scala> Array(6.67e-11,  3.1415,  333F,  666L) 
 res0: Array[Double] = Array(6.67E-11, 3.1415, 333.0, 666.0) 
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   // we can force manually the type 
 scala> Array[Number] (6.67e-11,  3.1415,  333F,  666L) 
 res0: Array[Number] = Array(6.67E-11, 3.1415, 333.0, 666) 

    There are several ways to create and initialize  arrays:   

    // from Range 
 scala> val r = Array.range(0, 16) 
 r: Array[Int] = Array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15) 

   // from Range with step 
 scala> val rs = Array.range(-16, 16, 3) 
 rs: Array[Int] = Array(-16, -13, -10, -7, -4, -1, 2, 5, 8, 11, 14) 

   // with fill 
 scala> val f = Array.fill(3)("ha") 
 f: Array[String] = Array(ha, ha, ha) 

   // with tabulate 
 scala> val t = Array.tabulate(9)(n => n * n) 
 t: Array[Int] = Array(0, 1, 4, 9, 16, 25, 36, 49, 64) 

   // from List 
 scala> val a = List("Spark", "Mesos", "Akka", "Cassandra", "Kafka").toArray 
 a: Array[String] = Array(Spark, Mesos, Akka, Cassandra, Kafka) 

   // from String 
 scala> val s = "ELONGATION".toArray 
 s: Array[Char] = Array(E, L, O, N, G, A, T, I, O, N) 

   // Scala Arrays corresponds to Java Arrays 
 scala> val bigData = Array("B", "I", "G", "-", "D", "A", "T", "A") 
 bigData: Array[String] = Array(B, I, G, -, D, A, T, A) 

   scala> bigData(0) = "F" 
 scala> bigData(1) = "A" 
 scala> bigData(2) = "S" 
 scala> bigData(3) = "T" 
 scala> bigData 
 bigData: Array[String] = Array(F, A, S, T, D, A, T, A) 

         ArrayBuffers 
 An   ArrayBuffer    is an array with dynamic size. The following are some examples. 

    // initialization with some elements 
 val cities = collection.mutable.ArrayBuffer("San Francisco", "New York") 

   // += to add one element 
 cities += "London" 
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   // += to add multiple elements 
 cities += ("Tokio", "Beijing") 

   // ++= to add another collection 
 cities ++= Seq("Paris", "Berlin") 

   // append, to add multiple elements 
 cities.append("Sao Paulo", "Mexico") 

          Queues 
 The queue follows the first-in, first-out (FIFO) data structure. The following are some examples.    

    // to use it we need to import it from collection mutable 
 scala> import scala.collection.mutable.Queue 
 import scala.collection.mutable.Queue 

   // here we create a Queue of Strings 
 scala> var smack = new Queue[String] 
 smack: scala.collection.mutable.Queue[String] = Queue() 

   // += operator, to add an element 
 scala> smack += "Spark" 
 res0: scala.collection.mutable.Queue[String] = Queue(Spark) 

   // += operator, to add multiple elements 
 scala> smack += ("Mesos", "Akka") 
 res1: scala.collection.mutable.Queue[String] = Queue(Spark, Mesos, Akka) 

   // ++= operator, to add a Collection 
 scala> smack ++= List("Cassandra", "Kafka") 
 res2: scala.collection.mutable.Queue[String] = Queue(Spark, Mesos, Akka, Cassandra, Kafka) 

   // the Queue power: enqueue 
 scala> smack.enqueue("Scala") 
 scala> smack 
 res3: scala.collection.mutable.Queue[String] = 
 Queue(Spark, Mesos, Akka, Cassandra, Kafka, Scala) 

   // its counterpart, dequeue 
 scala> smack.dequeue 
 res4: String = Spark 

   // dequeue remove the first element of the queue 
 scala> smack 
 res5: scala.collection.mutable.Queue[String] = Queue(Mesos, Akka, Cassandra, Kafka, Scala) 

   // dequeue, will take the next element 
 scala> val next = smack.dequeue 
 next: String = Mesos 
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   // we verify that everything run as the book says 
 scala> smack 
 res6: scala.collection.mutable.Queue[String] = Queue(Akka, Cassandra, Kafka, Scala) 

    The  dequeueFirst  and  dequeueAll  methods dequeue the elements matching the predicate. 

    scala> val smack = Queue("Spark", "Mesos", "Akka", "Cassandra", "Kafka") 
 smack: scala.collection.mutable.Queue[String] = Queue(Spark, Mesos, Akka, Cassandra, Kafka) 

   // remove the first element containing a k 
 scala> smack.dequeueFirst(_.contains("k")) 
 res0: Option[String] = Some(Spark) 

   scala> smack 
 res1: scala.collection.mutable.Queue[String] = Queue(Mesos, Akka, Cassandra, Kafka) 

   // remove all the elements beginning with A 
 scala> smack.dequeueAll(_.startsWith("A")) 
 res2: scala.collection.mutable.Seq[String] = ArrayBuffer(Akka) 

   scala> smack 
 res3: scala.collection.mutable.Queue[String] = Queue(Mesos, Cassandra, Kafka) 

          Stacks 
 The  stack   follows the last-in, first-out (LIFO) data structure. The following are some examples. 

    // to use it we need to import it from collection mutable 
 scala> import scala.collection.mutable.Stack 
 import scala.collection.mutable.Stack 

   // here we create a Stack of Strings 
 scala> var smack = Stack[String]() 
 smack: scala.collection.mutable.Stack[String] = Stack() 

   // push, to add elements at the top 
 scala> smack.push("Spark") 
 res0: scala.collection.mutable.Stack[String] = Stack(Spark) 
 scala> smack.push("Mesos") 
 res1: scala.collection.mutable.Stack[String] = Stack(Mesos, Spark) 

   // push, to add multiple elements 
 scala> smack.push("Akka", "Cassandra", "Kafka") 
 res2: scala.collection.mutable.Stack[String] = Stack(Kafka, Cassandra, Akka, Mesos, Spark) 

   // pop, to take the last element inserted 
 scala> val top = smack.pop 
 top: String = Kafka 
 scala> smack 
 res3: scala.collection.mutable.Stack[String] = Stack(Cassandra, Akka, Mesos, Spark) 
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   // top, to access the last element without extract it 
 scala> smack.top 
 res4: String = Cassandra 

   // "Cassandra" is still on the top 
 scala> smack 
 res5: scala.collection.mutable.Stack[String] = Stack(Cassandra, Akka, Mesos, Spark) 

   // size, the Seq method to know the number of elements 
 scala> smack.size 
 res6: Int = 4 

   // isEmpty, another Seq method 
 scala> smack.isEmpty 
 res7: Boolean = false 

   // clear, to empty all the stack suddenly 
 scala> smack.clear 
 scala> smack 
 res9: scala.collection.mutable.Stack[String] = Stack() 

         Ranges 
 Ranges are most commonly used with loops, as shown in the following examples.    

    // to, to make a range from a to b (upper limit is included) 
 scala> 0 to 6 
 res0: scala.collection.immutable.Range.Inclusive = Range(0, 1, 2, 3, 4, 5, 6) 

   // until, to make a range from 0 to 7 (upper limit not included) 
 scala> 0 until 6 
 res1: scala.collection.immutable.Range.Inclusive = Range(0, 1, 2, 3, 4, 5) 

   // by, to specify a step (in this case, every 3) 
 scala> 0 to 21 by 3 
 res2 scala.collection.immutable.Range = Range(0, 3, 6, 9, 12, 15, 18, 21) 

   // to, also function with chars 
 scala> 'a' to 'k' 
 res3: scala.collection.immutable.NumericRange.Inclusive[Char] = NumericRange(a, b, c, d, e, 
f, g, h, i, j, k) 

   // a Range toList 
 scala> val l = (0 to 16).toList 
 l: List[Int] = List(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16) 

   // a Range toArray 
 scala> val a = (0 to 16).toArray 
 a: Array[Int] = Array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16) 
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   // a Range toSet 
 scala> val s = (0 to 10).toSet 
 s: scala.collection.immutable.Set[Int] = Set(0, 5, 10, 1, 6, 9, 2, 7, 3, 8, 4) 

   // Array has a range method (upper limit excluded) 
 scala> val a = Array.range(0, 17) 
 a: Array[Int] = Array(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16) 

   // Vector has a range method (upper limit excluded) 
 scala> val v = Vector.range(0, 10) 
 v: collection.immutable.Vector[Int] = Vector(0, 1, 2, 3, 4, 5, 6, 7, 8, 9) 

   // List has a range method (upper limit excluded) 
 scala> val l = List.range(0, 17) 
 l: List[Int] = List(0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16) 

   // A list with numbers in a range with a step of 5 
 scala> val l = List.range(0, 50, 5) 
 l: List[Int] = List(0, 5, 10, 15, 20, 25, 30, 35, 40, 45) 

   // An ArrayBuffer with characters in a range 
 scala> val ab = collection.mutable.ArrayBuffer.range('a', 'f') 
 ab: scala.collection.mutable.ArrayBuffer[Char] = ArrayBuffer(a, b, c, d, e) 

   // An old fashioned for loop using a range 
 scala> for (i <- 1 to 5) println(i) 
 1 
 2 
 3 
 4 
 5 

         Summary 
 Since all the examples in this book are in Scala, we need to reinforce it before beginning our study. This 
chapter provided a review of Scala. We studied the fundamental parts of the language. Programming is about 
data structures and algorithms. In this chapter, we discussed the Scala type system (the data structures) and 
the principal concepts of functional programming. 

 The use of object-oriented programming (OOP) in past decades was an era of reusable software 
components. Things no longer work that way. Now components interoperate by exchanging immutable data 
structures (lists, maps, and sets), which is more like functional programming. 

 In the next chapter, we review an actor model implementation called Akka. To fully understand the 
examples, you need to know the Scala programming language.     
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    CHAPTER 4   

 The Model: Akka                          

 Welcome to the chapter on the  SMACK stack model  . The A stands for Akka. If the previous chapter’s 
objective was to develop functional thinking, this chapter’s objective is to develop actor model thinking. 

 The chapter on Scala was focused on moving your mind from a structured programming paradigm to 
functional programming thinking. This chapter shifts from the object-oriented paradigm to actors-based 
programming. 

 This chapter has three parts:

•    Actor model  

•   Actor communication  

•   Actor lifecycle    

 The actor model is fundamental to understanding the SMACK operation. So, by the end of this chapter, 
we hope that you can model in terms of actors. 

     The Actor Model 
 The Sámi people were the first to inhabit northern Scandinavia. Until the Middle Age, its culture and way of 
life (fishing, hunting, and trading) dominated the north of Sweden, Norway, Finland, and the Kola Peninsula 
in Russia. In Sámi mythology, the goddess Akka represented beauty and goodness in the world. According 
to Sámi people, Akka’s representation on Earth is a beautiful mountain in Laponia, located in northern 
Sweden. 

 In the platform’s context, the letters A and K stand for  actor kernel . It is for this reason that the platform 
is called Akka and its symbol is the Akka mountain (see Figure  4-1 ).  

  Figure 4-1.    The original and modern Akka logos, representing the Akka  mountain         
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 The actor model is a mathematical model developed by Carl Hewitt, Peter Bishop, and Richard Steiger at 
MIT in 1973 and presented in a paper called “A Universal Modular Actor Formalism for Artificial Intelligence”. 1  

 So, you may argue that if the actor model is more than 40 years old, why have we been dealing with 
another paradigm all of this time? The answer is not simple. When the actor model was developed, hardware 
(and memory) was very expensive. Today, it’s just the opposite: hardware is dirt cheap and programmers 
are expensive. 

 To land this idea, consider computer science history. If hardware is very expensive, then to program, 
you have to optimize and deal with low-level concepts and implementations related to the hardware. So you 
have to think in terms of interruptions, assembly language, and pointers to (physical) memory locations. 

 As programming language has a higher level, we can ignore the details related to hardware and start talking 
in terms that have nothing to do with implementation but with abstraction. Think in concepts as a recursive call, 
or function composition, which is hard to do if you have to deal with low-level hardware implementations. 

     Threads and Labyrinths 
 Between 1980 and 2003, we experienced the rise and dominance of object-oriented languages. These years 
were the dark ages of functional programming. Functional languages were spoken only in academic and 
scientific environments, barely related to industry. 

 An interesting problem arose with object-oriented programming: the implementation of concurrency 
and parallelism. These two concepts are the Achilles’ heel of structured and object-oriented programming. 
Imagine an implementation of threads in C ++ or Java; complexity is vast and proneness to error is very large. 

 Concurrency is not easy; making more than one thing with a program is related to dealing with race 
conditions, semaphores, mutexes, locks, shared data, and all the stuff related to multithreading. This 
includes basic issues to determine precisely what a program with several threads is doing, or when a variable 
is being accessed from multiple threads, or what its value is at a given point in time, or how to know if there 
are two threads in standby, and if this condition is going to release them (and when) or if it is a deadlock. 
Unfortunately,  thread-based concurrency   gives more challenges than solutions. 

 Today there is a lot of technical debt in the proprietary thread implementations of concurrency issues. 
No one wants to touch huge systems because the code is complex and the chances of a change breaking 
everything are very high. 

 In this context, functional programming experienced rebirth. With the release of Scala in 2003, F# 
in 2005, Clojure in 2007, and Elixir in 2012, the actor model approach was declared the winner in solving 
concurrency issues.  

     Actors 101 
 Actors are objects. An actor is an object that sends and receives messages. According to the actor 
specification, the order of the received messages is not relevant; but in Akka, there is an implementation 
called a  mailbox , which is a stack where messages are consumed. 

 What the actor does with a received message depends on how you solve a specific problem. The actor 
could handle the message internally, it could send a message to another actor, it could create another actor, 
or it could take an action with the message. An Akka actor is a high-level abstraction. 

 The following are the main comparison points between OOP and actors:   

•      Unit .   In OOP, the smallest processing unit is the object; in the actor model, it is the 
actor. We already know that in Akka, the actors are objects but an actor is a more 
bounded representation of reality than an object.  

   1  Carl Hewitt, Peter Bishop, and Richard Steiger, A Universal Modular Actor Formalism for Artificial Intelligence 
(   http://dl.acm.org/citation.cfm?id=1624804     ,1973).  

http://dl.acm.org/citation.cfm?id=1624804
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•     Encapsulation .   In both models, the smallest processing unit encapsulates state and 
behavior. In OOP, the state is determined by the value of the attributes in a given 
time, and behavior is ruled by the class methods. In the actor model, the state is 
determined by the messages; if there are no messages in the mailbox, the actor will 
wait indefinitely for messages.  

•     Access .   In OOP, executing object methods from outside of the object is allowed 
(but not recommended), as well as access and modify object fields from outside 
of the object. In the actor model, access to the actor's methods or fields is strictly 
prohibited; all the communication must be done through messages.  

•    Globals . In OOP, for example, there is the Singleton pattern, which is a class with a 
single instance. Global variables and class variables exist, but they are discouraged. In 
the actor model, global variables don’t exist. A  shared   global state doesn’t exist either.  

•    Messages . In OOP, the  messages   between Objects could be mutable. In the actor 
model, the messages between actors are strictly immutable.  

•    Exceptions . In OOP exists the traditional and well-known try-catch approach, 
which is the most complex way to handle  exceptions   because you have to manage 
all the possible values of the variables involved. In the actor model, the “let it crash” 
approach exists; if something fails, let it fail. The exception scenario could affect only 
the actor involved, not the complete environment.  

•    Concurrency  and  parallelism . In OPP, the most used approach is the thread model, 
which is a complex solution to the problem. In the actor model, you don’t have to 
worry about  concurrency   and parallelism, because if everything follows the actor 
convention, there is no problem with parallelism.    

 The following are the Lightbend recommendations for the actor model:

•    Think of actors as employees. Think of each actor model as a company.  

•   Think of the actor’s siblings as people in the same hierarchical level.  

•   Think of the actor’s children as the employee's subordinates.  

•   An actor has one (and only one) supervisor—the actor who created it.  

•   Actor model success is the delegation to subordinates.    

 The Akka implementation of the actor model has these peculiarities:

•    When you create an actor, Akka provides an ActorRef.  

•   Actors run in real Java threads. Some actors could share the same thread.  

•   There are three mailbox types: Unbounded, Bounded, and Priority.  

•   Actors can scan their mailboxes to look for specific messages.  

•   There is a “dead letter” mailbox with all the actors’ terminated messages.    

 The Lightbend Reactive Platform (   www.lightbend.com     ) is a family of five members, described as follows:

•     Scala : The programming language. The Reactive Platform fully supports both Java 
and Scala, so you can choose what is best for you.  

•    Akka : Message-driven runtime. At the center of the Reactive Platform is Akka, a 
message-driven middleware or runtime with Scala and Java APIs.  

http://www.lightbend.com/
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•    Spark : Apache Spark, which is written in Scala and Akka, is a fast data engine to fuel 
Reactive applications.  

•    Lagom : Reactive microservices framework. An opinionated framework for building 
web microservices.  

•    Play : Just-hit-reload web framework. The Play Framework is the just-hit-reload web 
development framework with Scala and Java APIs.    

 We have always said that Apache Spark is the Scala “killer app.” 
 In this book, we only cover Scala, Akka, and Spark, but if you are an enthusiastic web service developer 

or web developer, don’t pass on the opportunity to explore Lagom and Play, respectively, more deeply.   

       Installing Akka 
 Well, enough  theory     , let's get our feet wet. 

 The first thing you have to do is go to    http://akka.io/downloads/     , as shown in Figure  4-2 .  

  Figure 4-2.    The Akka download page       

 Then download the Lightbend Activator according to your platform and operating system. Lightbend is 
the company behind Akka; it builds and maintains the Akka message-driven runtime. Follow the installation 
instructions from the web page. 

 

http://akka.io/downloads/
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 After downloading and extracting the package, go to the directory (in this example, we use version 1.3.10): 

   %> cd activator-dist-1.3.10/bin 

   Then, execute the activator shell: 

   %> activator ui 

   Now go to    http://127.0.0.1:8888     . You'll see a web page like the one shown in Figure  4-3 .  

  Figure 4-3.    Lightbend Activator main page       

 Now select the Hello Akka! application and click the “Create app” button, as shown in Figure  4-4 .  

 

http://127.0.0.1:8888/
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  Figure 4-4.    Creating an Akka application from a template       

  Figure 4-5.    IntelliJ IDEA Community Edition       

 Now open your IDE. In this case, we used the IntelliJ IDEA Community Edition, as shown in Figure  4-5 .  
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 Select Open. Enter the directory in which you created the project (see Figure  4-6 ).  

  Figure 4-6.    IntelliJ IDEA open existing project dialog       
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  Figure 4-7.    IntelliJ IDEA import SBT project dialog       

 We select both modules inside our project (see Figure  4-7 ). 
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 Now you have a fully functional Hello World! Akka project (see Figure  4-8 ).  

  Figure 4-8.    Hello World! Akka project on IntelliJ IDEA       
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  Figure 4-9.    Lightbend Activator, the Typesafe web IDE       

 You can build, code, run, and test your Akka applications from your browser. 
 As you can see in Figure  4-10 , there are a lot of project templates to play with. The Akka world is vast, 

and it’s beyond the scope of this book to cover the entire Reactive universe.      

 As you can see in Figure  4-9 , the Lightbend Activator is a full web IDE.  
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     Akka Actors 
 It is essential to recall that before Scala version 2.10, there was a scala.actors package. The Scala actors 
library was deprecated in March 2013 and replaced by Akka. Scala actor models prior to version 2.10 should 
no longer be used. 

     Actors 
 For our first example, we use a multilanguage greeter; that is, we enter a particular language and the 
program responds by replying “Good day,” in the language specified.    

    import akka.actor.Actor 
 import akka.actor.ActorSystem 
 import akka.actor.Props 

   class GreeterActor extends Actor { 
   def receive = { 
     case "en" => println("Good day") 
     case "es" => println("Buen dia") 
     case "fr" => println("Bonjour") 
     case "de" => println("Guten Tag") 
     case "pt" => println("Bom dia") 
     case _ => println(":(") 
   } 
 } 

  Figure 4-10.    Lightbend Reactive Platform       
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   object Main extends App { 

     // build the ActorSystem 
   val actorSystem = ActorSystem("MultilangSystem") 

     // instantiate the actor 
   val greeter = actorSystem.actorOf(Props[GreeterActor], name = "GreeterActor") 

     // send the actor some messages 
   greeter ! "en" 
   greeter ! "es" 
   greeter ! "fr" 
   greeter ! "de" 
   greeter ! "pt" 
   greeter ! "zh-CN" 

     // shut down the actor system 
   actorSystem.shutdown 
 } 

    When we run this program, the output is as follows: 

    $ sbt run 
 [info] Running Main 
 Good day 
 Buen dia 
 Bonjour 
 Guten Tag 
 Bom dia 
 :( 
 Process finished with exit code 0 

    Here is the step-by-step explanation:

•    When using Akka actors, you need to import the akka.actor._ package. You at least 
need these classes:  Actor ,  ActorSystem , and  Props .  

•   You must define a class of type  Actor . In this case, we called it  GreeterActor  . You can 
use any name that you want.  

•   The actor main performance must be defined under the actor   receive()  method.    

•   The structure of the  receive() method is typical in functional programming; it is 
called a   match expression   . The lines should always go from the most specific case to 
the most general case. The most specific case is at the top and the more general case 
is at the bottom.  

•   The last line in the match expression should be (as good practice; not required) the 
default case; it says what to do if the pattern didn’t find a match.  

•   Recall that the underscore operator ( _ ) in Scala means whatever. If the message 
doesn’t find a match, an UnhandledMessage exception is thrown, which represents 
poor programming practices.  
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•   You create a  Main  object that extends a Scala app to give your actor a scenario that 
displays their histrionic abilities.  

•   You first need an actor system. Any name with alphanumeric characters is good; 
hyphens are allowed but not as the first character.  

•   To liven up your actor, invoke the  actorOf  method in the actor system. The actor will 
start asynchronously.  

•   If you want to interact, send messages with the  !  operator.  

•   To finish the play, you must call the  shutdown  method in the actor system.     

     Actor System 
 Imagine the  actor system   as a theater company, an actors union, or a circus:

•    There is a hierarchy; each actor always has a supervisor and an actor can have 
siblings and children.  

•   Actors belonging to the same system of actors share dispatchers, deployments, and 
addresses.  

•   The actor system is the meeting point where the actors are created and searched.  

•   Internally, the actor system is a thread controller; the actor system decides when to 
create threads for an application.  

•   If the system does not turn off the actors (with the  shutdown  method), the application 
will not end. As long as the actor system is running, the application will continue 
running.     

     Actor Reference 
 Imagine the  actor reference   as the actor agent; that is, someone who represents them and receives letters 
from his fans:

•    The actor system’s  actorOf  method has two main tasks: start the actor 
asynchronously and return the ActorRef requested.  

•   The ActorRef is a handler, so you cannot directly access the actor and break the actor 
system encapsulation rules.  

•   The ActorRef follows the facade pattern over the actor; that is, it serves as a way to 
communicate with the actor without directly accessing the actor. Thus, you never 
access actor variables and methods directly, as dictated by the encapsulation 
principles.  

•   The ActorRef is immutable; you cannot change it because it is only a reference.  

•   An actor has one (and only one) ActorRef. An ActorRef refers to one (and only one) 
actor. It is a one-to-one relationship.  

•   To comply with the Akka actor model, the ActorRef is serializable and server 
independent, so you can distribute, copy, and pass references (to the actors’ fans) 
across the network.     
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     Actor Communication 
   Actor communication   is always more easily explained by example. Just remember that to send a message to 
an actor, you use the  !  operator. 

 The  !  operator always works with ActorRefs; never between  Actor  class instances. 
 In Akka, when you send a message to an actor with the  !  operator, the actor that receives the message 

also receives a reference to the actor that sent the message; this reference is accessed by the sender variable. 
And it helps to send the actor invoker response messages. Recall that  sender  is a reserved word; use it wisely. 

    import akka.actor._ 

   case object SendANewCat 
 case object LiveALife 
 case object BackToHeaven 
 case object LifeSpended { 
   var remaining = 0// a default value 
 } 

   class God(indulged: ActorRef) extends Actor { 

     def receive = { 
     case SendANewCat => 
       println("GOD: Go!, you have seven lives") 
       indulged ! LiveALife 
     case LifeSpended => 
       if ( LifeSpended.remaining == 0){ 
         println("GOD: Time to Return!") 
         indulged ! BackToHeaven 
         context.stop(self) 
       } 
       else { 
         println("GOD: one live spent, " + LifeSpended.remaining + " remaining.") 
         indulged ! LiveALife 
       } 
     case _ => println("GOD: Sorry, I don't understand") 
   } 
 } 

   class Cat extends Actor { 
   var lives = 7 // All the cats born with 7 lives 

     def receive = { 
     case LiveALife => 
       println("CAT: Thanks God, I still have " + lives + " lives") 
       lives -= 1 
       LifeSpended.remaining = lives 
       sender ! LifeSpended 
     case BackToHeaven => 
       println("CAT: No more lives, going to Heaven") 
       context.stop(self) 
     case _ => println("CAT: Sorry, I don't understand") 
   } 
 } 
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   object CatLife extends App { 
   val system = ActorSystem("CatLifeSystem") 
   val sylvester = system.actorOf(Props[Cat], name = "Sylvester") 
   val catsGod = system.actorOf(Props(new God(sylvester)), name = "CatsGod") 

     // God sends a Cat 
   catsGod ! SendANewCat 

     system.terminate() 
 } 

    Running our example, we get this output: 

   GOD: Go!, you have seven lives 
 CAT: Thanks God, I still have 7 lives 
 GOD: one live spent, 6 remaining. 
 CAT: Thanks God, I still have 6 lives 
 GOD: one live spent, 5 remaining. 
 CAT: Thanks God, I still have 5 lives 
 GOD: one live spent, 4 remaining. 
 CAT: Thanks God, I still have 4 lives 
 GOD: one live spent, 3 remaining. 
 CAT: Thanks God, I still have 3 lives 
 GOD: one live spent, 2 remaining. 
 CAT: Thanks God, I still have 2 lives 
 GOD: one live spent, 1 remaining. 
 CAT: Thanks God, I still have 1 lives 
 GOD: Time to Return! 
 CAT: No more lives, going to Heaven 
 Process finished with exit code 0 

   Here is an actor communication example analysis:

•    It is always advisable to model messages as classes within your application; in our 
example, we have four objects that we use as a message:

•    SendANewCat case object  

•   LiveALife case object  

•   BackToHeaven case object  

•   LifeSpended case object     

•   CatLife is the application in which we have the main application. The first line 
creates the actor system and calls it CatLifeSystem.  

•   On the next line, we create an ActorRef for the  Cat  class. An ActorRef to a cat actor is 
loaded in the sylvester variable.  

•   We then create the god actor. Note that the constructor receives a reference to his 
indulged cat. This was used to show the relationship between the actors; we could 
have declared a constructor with no arguments, but this was only for demonstration 
purposes.  
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•   Then, we send a message to god requesting a new cat.  

•   When the god actor receives the message, it starts the cat’s life, until we reach the life 
limit, then we stop this actor context.  

•   The context object is available to all actors in the actor system. It is used to stop the 
actors together.  

•   It is important to recall that cat, god, and indulged are ActorRefs and are not 
 Actor  class instances. An actor should never be accessed directly; always 
through messages.  

•   If we access the actors directly, the environment becomes unreliable in making high 
concurrency and parallelism. The message system and encapsulation always ensure 
that we are doing a parallelizable and concurrent environment because there are no 
shared variables or locks. All transactions are ACID.      

     Actor Lifecycle 
 In addition to the constructor, an actor has the following lifecycle methods, which are all described in 
Table  4-1 :

•     receive   

•    preStart   

•    postStop   

•    preRestart   

•    postRestart    

   Table 4-1.     Actor Lifecycle Methods     

 Method  Description 

  constructor   Called when a class is instantiated, as in Java. 

  preStart   Called immediately after the actor started. 

  postStop   Called immediately after the actor stopped. Typically for cleaning work. 

  preRestart   Called immediately after the actor restarted. Usually, a restart causes an exception. 
The  preRestart  receives  Throwable  and the message as parameters; the old object 
receives these parameters. 

  postRestart   Called immediately after the actor restarted. Usually, a restart causes an exception. 
The  postRestart  receives a  Throwable  as parameter; the new object receives this 
parameter. 
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   In the following example code, The Hulk (the green superhero) is used to show the lifecycle methods:    

    import akka.actor._ 
 case object GetAngry 

   class Hulk extends Actor { 
   println("in the Hulk constructor") 

     override def preStart { 
     println("in the Hulk preStart") 
   } 

     override def postStop { 
     println("in the Hulk postStop") 
   } 

     override def preRestart(reason: Throwable, message: Option[Any]) { 
     println("in the Hulk preRestart") 
     println(s" preRestart message: ${message.getOrElse("")}") 
     println(s" preRestart reason: ${reason.getMessage}") 
     super.preRestart(reason, message) 
   } 

     override def postRestart(reason: Throwable) { 
     println("in the Hulk postRestart") 
     println(s" postRestart reason: ${reason.getMessage}") 
     super.postRestart(reason) 
   } 

     def receive = { 
     case GetAngry => throw new Exception("ROAR!") 
     case _ => println("Hulk received a message...") 
   } 
 } 

   object LifecycleTest extends App { 
   val system = ActorSystem("LifeCycleSystem") 
   val hulk = system.actorOf(Props[Hulk], name = "TheHulk") 
   println("sending Hulk a message") 
   hulk ! "hello Hulk" 
   Thread.sleep(5000) 
   println("making Hulk get angry") 
   hulk ! GetAngry 
   Thread.sleep(5000) 
   println("stopping Hulk") 
   system.stop(hulk) 
   println("shutting down Hulk system") 
   system. terminate() 
 } 
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    The following is the output when the program is run: 

   [info] Running LifecycleTest 
 sending Hulk a message 
 in the Hulk constructor 
 in the Hulk preStart 
 Hulk received a message... 
 making Hulk get angry 
 in the Hulk preRestart 
 [ERROR] [01/01/2015 01:01:01.964] [LifeCycleSystem-akka.actor.default-dispatcher-6] 
[akka://LifeCycleSystem/user/TheHulk] ROAR! 
 java.lang.Exception: ROAR! 
         at Hulk$$anonfun$receive$1.applyOrElse(chapter04_03.scala:31) 
         at akka.actor.Actor$class.aroundReceive(Actor.scala:480) 
         at Hulk.aroundReceive(chapter04_03.scala:6) 
         at akka.actor.ActorCell.receiveMessage(ActorCell.scala:525) 
         at akka.actor.ActorCell.invoke(ActorCell.scala:494) 
         at akka.dispatch.Mailbox.processMailbox(Mailbox.scala:257) 
         at akka.dispatch.Mailbox.run(Mailbox.scala:224) 
         at akka.dispatch.Mailbox.exec(Mailbox.scala:234) 
  preRestart message: GetAngry 
  preRestart reason: ROAR! 
 in the Hulk postStop 
 in the Hulk constructor 
 in the Hulk postRestart 
  postRestart reason: ROAR! 
 in the Hulk preStart 

   As an exercise, make the trace source code vs. the program output.  

     Starting Actors 
 You have already seen how to create actors from the  actor system  . To create actors from another actor, you 
must use the following context: 

   class GodWanabe extends Actor { 
         val = context.actorOf creature (Props [Creature] name = "Creature") 
         // Add the code for its creation ... 
 } 

   Let’s look at the  actor lifecycle control   between actors with an example based on characters from  The 
Simpsons . Mr. Burns is the boss and has a nuclear power plant. He hires two employees, Homer Simpson 
and Frank Grimes, but then only fires Frank Grimes. 

    import akka.actor._ 

   case class Hire(name: String) 
 case class Name(name: String) 

   class Boss extends Actor { 
   def receive = { 
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     case Hire(name) => 
       // here the boss hire personnel 
       println(s"$name is about to be hired") 
       val employee = context.actorOf(Props[Employee], name = s"$name") 
       employee ! Name(name) 
     case _ => println(s"The Boss can't handle this message.") 
   } 
 } 

   class Employee extends Actor { 
   var name = "Employee name" 

     override def postStop { 
     println(s"I'm ($name) and Mr. Burns fired me: ${self.path}") 
   } 

     def receive = { 
     case Name(name) => this.name = name 
     case _ => println(s"The Employee $name can't handle this message.") 
   } 
 } 

   object StartingActorsDemo extends App { 
   val actorSystem = ActorSystem("StartingActorsSystem") 
   val mrBurns = actorSystem.actorOf(Props[Boss], name = "MrBurns") 

     // here the boss hires people 
   mrBurns ! Hire("HomerSimpson") 
   mrBurns ! Hire("FrankGrimes") 

     // we wait some office cycles 
   Thread.sleep(4000) 

     // we look for Frank and we fire him 
   println("Firing Frank Grimes ...") 
   val grimes = actorSystem.actorSelection("../user/MrBurns/FrankGrimes") 

     // PoisonPill, an Akka special message 
   grimes ! PoisonPill 
   println("now Frank Grimes is fired") 
 } 

    The following is the output when we run this program: 

   [info] Running StartingActorsDemo 
 HommerSimpson is about to be hired 
 FrankGrimes is about to be hired 
 Firing Frank Grimes ... 
 now Frank Grimes is fired 
 I'm (FrankGrimes) and Mr. Burns fired me: akka://StartingActorsSystem/user/MrBurns/FrankGrimes 
 Process finished with exit code -1 
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   Let’s analyze the starting actors example code:

    1.    Create and use the  Name  and  Hire  utility classes to send messages between 
actors.  

    2.    When the employee actor receives the Name message, assigns it to the name 
variable.  

    3.    When the boss receives a Hire message, it uses the  context.actorOf  method to 
hire new employees.  

    4.    As usual, the main program creates the actor system.  

    5.    The main program then creates the boss actor using the actor system reference.  

    6.    The main program sends the boss two Hire messages, with HomerSimpson and 
FrankGrimes as names.  

    7.    After a pause (4 seconds), look for Frank Grimes in the actor system, then send 
him the PoisonPill message, which is an Akka actor system special message that 
asynchronously sends the stop signal to an actor. Use the  postStop  method to 
print a message after PoisonPill.      

     Stopping Actors 
 As you saw previously, there are four ways to stop an actor:

•    Calling  system.stop(ActorRef)  from the ActorSystem level  

•   Calling  context.stop(ActorRef)  from inside an actor  

•   Sending an actor the PoisonPill message  

•   Programming a gracefulStop    

 Table  4-2  summarizes the ways to stop an actor.  

   Table 4-2.    Ways to Stop an  Actor     

 Message  Characteristics 

 stop  When the  stop  method is received, the actor processes only the current message (if any). 
All the messages are discarded: the queued messages in the actor’s mailbox and the 
newly arriving. 

 PoisonPill  Once the PoisonPill message is received, it is queued in the actor’s mailbox as any 
normal message. Once the PoisonPill message is processed, the actor stops. 

 gracefulStop  This method allows actors to end gracefully, waiting for the timeout signal. If you need 
a specific set of instructions before stopping the actor, this is the right way 
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 Some aspects to consider when  stopping actors:  

•    The stop message is asynchronous. The  stop  method could return  before  the actor is 
actually stopped; use it wisely.  

•   The shutdown process has two subprocesses. First, it suspends the actor’s mailbox. 
Second, it sends the stop message to all the actor children; the father actor has to 
wait for all its children to stop.  

•   When you can’t process any more messages, these messages are sent to the dead 
letters mailbox. You can access them with the  deadLetters  method in the actor 
system.  

•   When an actor is stopped, the  postStop  lifecycle method is invoked. Normally it is 
used to clean up resources.    

 Here is an example of code using  system.stop : 

    import akka.actor._ 

   class Scapegoat extends Actor { 
   def receive = { 
     case s:String => println("Message received: " + s) 
     case _ => println("What?") 
   } 
 } 

   object StopExample extends App { 
   val system = ActorSystem("StopExample") 
   val sg = system.actorOf(Props[Scapegoat], name = "ScapeGoat") 
   sg ! "ready?" 

     // stop our crash dummy 
   system.stop(sg) 
   system.terminate() 
 } 

         Killing Actors 
 The following code shows how to  kill actors  . It is a very violent way; discretion is advised. Normally, if you 
want to stop an actor gracefully, you use the methods described earlier. 

    import akka.actor._ 

   class ScapeGoat extends Actor { 
   def receive = { 
     case s:String => println("Message received: " + s) 
     case _ => println("Uh?") 
   } 

     override def preStart { 
     println("In preStart method") 
   } 
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     override def postStop { 
     println("In postStop method") 
   } 

     override def preRestart(reason: Throwable, message: Option[Any]) { 
     println("In preRestart method") 
   } 

     override def postRestart(reason: Throwable) { 
     println("In postRestart method") 
   } 
 } 

   object Abbatoir extends App { 
   val system = ActorSystem("Abbatoir") 
   val sg = system.actorOf(Props[ScapeGoat], name = "ScapeGoat") 
   sg ! "say goodbye" 

     // finish him! 
   sg ! Kill 
   system. terminate() 
 } 

    This is the code output: 

   In preStart method 
 Message received: say goodbye 
 In postStop method 
 Process finished with exit code 0 

        Shutting down the Actor System 
 As you have already seen in the examples, this is the method to shut  down   the actor system: 

   system.terminate() 

   Because of its importance, we dedicated this section to this method. Remember, if you don’t call the 
 shutdown  method in your application, the program will run indefinitely.  

     Actor Monitoring 
 This code  shows   how an actor asks to be notified when a child actor dies: 

    import akka.actor._ 

   class Child extends Actor { 
   def receive = { 
     case _ => println("Child received a message") 
   } 
 } 
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   class Dad extends Actor { 
   // Dad actor create a child actor 
   val child = context.actorOf(Props[Child], name = "Son") 
   context.watch(child) 

     def receive = { 
     case Terminated(child) => println("This will not end here -_-") 
     case _ => println("Dad received a message") 
   } 
 } 

   object ChildMonitoring extends App { 

     val system = ActorSystem("ChildMonitoring") 

     // we create a Dad (and it will create the Child) 
   val dad = system.actorOf(Props[Dad], name = "Dad") 

     // look for child, then we kill it 
   val child = system.actorSelection("/user/Dad/Son") 

     child ! PoisonPill 
   Thread.sleep(3000) 

     println("Revenge!") 
   system. terminate() 
 } 

    Running this code produces the following result: 

   This will not end here 
 Revenge! 
 Process finished with exit code 0 

   Through the  watch()  method, an actor knows when a subordinate stops. This is very useful because it 
lets the supervisor handle the situation. 

 Note that when an exception occurs within an actor, the actor does not kill himself. In Akka, an 
exception makes an actor restart automatically.  

     Looking up Actors 
 In the previous example, you saw how to find a specific actor: 

   val child = system.actorSelection("/user/Dad/Son") 

   The  actorSelection   method   is available under the actor system and within each actor instance 
through the  context  variable. 

 You can also look for actors with a relative path; for example, from siblings: 

   // From an actor brother 
 val bro = context.actorSelection("../myBrother") 
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   The  actorSelection  method in the actor system can be used to find actors: 

   val child = system.actorSelection("akka://MonitoringTest/user/Dad/Son") 
 val child = system.actorSelection(Sec("user", "Dad", "Son")) 

   With the  actorSelection  method, you can also look for a sibling: 

   val child = system.actorSelection(Sec("..." "Son")) 

        Actor Code of Conduct 
 At this point, you have seen everything that you need to write actors. To achieve concurrent programming, 
it is important to maintain a performance style; that is, a code of ethics among actors. If you keep this code of 
ethics, the source code will be easy to debug and won’t have typical multithreaded programming problems, 
such as deadlocks and race conditions. In this section, we present the fundamental principles for a good 
performance. 

   Actors Do Not Block Each Other 
 A written good actor does not block others while processing a message. When an actor blocks another actor, 
the first actor cannot attend to a request. If the actor is locked while working on the first request, you cannot 
attend to the second request. The worst case scenario is when actors block each other; this is known as 
  deadlock   : the first actor is waiting for the second one to do something and the second one is waiting for the 
first one to do something. 

 Rather than block messages, the code of an actor must prioritize messages as they arrive so that a lock is 
never generated. Normally, when you do not know how to handle a lock, good practices indicate that it is the 
right time to delegate. You always have to delegate; an actor should not block a message on itself. 

 Another good practice is to never use   Thread.sleep   , and to try to avoid the  Thread  class in your 
programs. The actor programming replaces any thread operation. If you need an actor to wait to perform a 
task, ideally the actor should be delegated to another lighter actor the time handling. The use of the  Thread  
class causes more problems than it remedies. 

 When you need an actor to perform an answer waiting operation, the original actor, let's call it Actor A, 
must attend requests—that is its primary function. So if it requires a standby condition, you must generate 
an Actor B to standby for the answer and do nothing more. This way, Actor A is free to meet requests, which 
is its primary function.  

   Communication is only via Messages 
 The key to understanding how the actor model addresses the difficulties of the shared data and lock model is to 
provide a space where operations are safe. This sequential space is within each option in the  receive  method. 
In other words, the actors allow you to program multithreaded programs through single-threaded programs 
that communicate with each other through asynchronous messages. This multithread abstraction model works 
as long as the only form of communication among the stakeholders is through sending messages. 

 For example, let’s say that there are two actors:  GoodPerformer   and  BadPerformer  . Suppose that 
GoodPerformer sends a good and nice message to BadPerformer, and as a courtesy, GoodPerformer sends 
a reference to himself in the message. Well, suppose that BadPerformer misuses this reference and invokes 
methods on GoodPerformer instead of sending messages to GoodPerformer through the  !  operator. This 
is where the drama begins, because the invoked methods may read an instance of GoodPerformer being 
used by another thread. Or worse, the method invoked can modify GoodPerformer’s own variables and 
decompose its state. 
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 If you continued this lack of privacy, BadPerformer would write synchronization methods on 
GoodPerformer’s variables, which would become “shared data,” not only between them, but among all who 
could invoke them. This shared data and locks models have brought ruin to many systems. 

 On the other hand, if for practical purposes you need to share state—for example, maintain code 
clarity with other non-functional programmers, you can achieve this state in Scala. The difference between 
Erlang and Scala is that Erlang  never  lets you communicate in a way different from sending messages 
between actors. Scala designers did this to preserve the hybrid state language. We can pass endless hours in 
discussion on whether this is correct or not. 

 ■   Note   We are not saying that you, the reader, should be involved in one of these discussions (of course 
not, programmers never enter these discussions). Although now you may be vowing to never share status 
or provoke lock conditions. But, we share this example in case you are involved in an argument with purist 
programmers.  

 Imagine that you would need the shared mutable map data structure. That is, it is mutable because you 
need to insert a pair (key, value) on the map to obtain the value of a given key, get a key set having specific 
value, and so forth—common operations on a mutable map. The actor model states that you must build a 
wrapper on the map; that is, an actor contains the map and manages all requests. Only the actor can access 
the map, no one else, and that actor only receives and responds to messages, nothing more. 

 Everything is going well so far, but practical programmers will tell you that for this type of challenge, 
there is the  ConcurrentHashMap  class on Java Concurrency utilities. One of its benefits is that it allows you 
to send status change messages to multiple actors (a broadcast), which greatly simplifies life and makes 
the code more understandable; however, it does not meet the actor model. Another difference is that the 
responses of actors are an asynchronous model; the  ConcurrentHashMap  response model is synchronous, 
simple, and immediate as most understand them.  

   Messages must be Immutable 
 Because the Akka actor model provides a single-threaded model, you never need to worry about whether 
the objects used in the implementation of these methods are  thread-safe  . In the actor model, this is called 
the  share nothing model ; data is confined in a thread instead of being shared by many threads. 

 But there is one exception to “share nothing,” which is when the message that you send is shared data 
among several actors; as a result, you have to worry whether messages are thread-safe. In general, they 
should always be thread-safe. 

 In all good practices you want to avoid unnecessary complexity. The best and simplest way to ensure 
that objects in messages are thread-safe is to ensure the use of immutable objects within messages. 
Instances of any class having only val fields, which themselves only refer to immutable objects, are 
immutable. Besides val, you can use all the immutable classes offered by Scala, such as tuples, strings, lists, 
immutable sets, immutable maps, and so on. 

 Suppose an actor sends a mutable and unsynchronized object as a message (at this point, you could 
say that it’s like cussing). And after that, this object is never read nor written again. It might work, but you 
are invoking misfortune, because in the future, some code maintainer could debug and see that this object 
is shared, and may try to improve scalability, or worse, try to reuse and modify the values for reuse, which 
could lead to a bug, which can lead to concurrency disaster. 

 In general, the best way to arrange your data is to keep all unsynchronized, mutable objects fully 
contained within the actors, and therefore accessed only by the owner actor. Whenever objects are 
transferred between actors (not messages), you must 100% guarantee what those objects are doing at any 
point in time and anywhere in the system. 
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 In the actor model, whenever you want to modify a variable that is not your own, you must at least 
send a message to the variable owner to warn that you are making changes. Moreover, you must wait for 
confirmation that the values can be modified. 

 If you still want to continue sending objects between actors but without messages, a good alternative 
is to send a copy of the object. This at least guarantees that the original object will not be modified by a 
foreign entity. A very good example is when you have arrays indiscriminately sent among objects; two 
array methods are really good:  arr.clone  (to send a copy) and  arr.toList  (to send a copy as a list, which 
is also immutable).  

   Messages must be Self-Contained 
 When you return the value of a method, the caller has the advantage of knowing what it was doing before 
invoking this method, and can take the return value and continue what it was doing. 

 With actors, things are not so simple. When an actor makes a request, the answer may not be 
immediate; it may take a long time. So as conditions are non-blocking, the actor can continue doing other 
work while it waits for the response. The problem is that when the answer arrives, how do you know what 
was the actor doing when it made the invocation? 

 One commonly used method to simplify the logic of the actors in a program includes sending 
redundant information in messages. If the request is an immutable object, you can cheaply include a 
reference to the request in the response. This makes the message larger, but simplifies the actor logic. 

 Another way to increase redundancy in messages is by building a case class for each type of message. 
While such a wrapper is not strictly necessary in many cases, it makes actor programs easier to understand. 
Code with case classes are always easier to understand than code using tuples, for example.    

     Summary 
 You learned how to build scalable, robust, concurrent programs using the Akka actor model, avoiding the 
problems of traditional approaches based on synchronized access and shared and mutable states. 

 You reviewed Akka’s main concepts:

•    Actor model  

•   Actor communication  

•   Actor lifecycle    

 You also explored the actor Code of Conduct. 
 In the following chapters, you will need Scala/Akka power to code SMACK pipeline applications.      
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    CHAPTER 5   

 Storage: Apache Cassandra                          

 Congratulations! You are almost halfway through this journey. You are at the point where it is necessary to 
meet the component responsible for information persistence; the sometimes neglected “data layer” will 
take on a new dimension when you have finished this chapter. It’s time to meet Apache Cassandra, a NoSQL 
database that provides high availability and scalability without compromising performance. 

 ■   Note   We suggest that you have your favorite terminal ready to follow the exercises. This will help you 
become familiar with the tools faster.  

     Once Upon a Time... 
 Before you start, let’s do a little time traveling to ancient Greece to meet  the other  Cassandra. In Greek 
mythology, there was a priestess who was chastised for her treason to the god Apollo. She asked for the 
gift of prophecy in exchange for a carnal encounter; however, she failed to fulfill her part of the deal. For 
this, she received this punishment: she would have the gift of prophecy, but no one would ever believe her 
prophecies.  A real tragedy . This priestess’s name was Cassandra. 

 Perhaps the modern Cassandra, the Apache project, has come to claim the ancient Cassandra. With 
modern Cassandra, it is probably best to believe what she tells you and do not be afraid to ask. 

     Modern Cassandra 
 Modern Cassandra represents the persistence layer in our reference implementation. 

 First, let’s have a short overview of NoSQL, and then continue to the installation and learn how to 
integrate Cassandra on the map.   

     NoSQL Everywhere 
 Fifteen years ago, nobody imagined the amount of information that a modern application would have 
to manage; the  Web  was only beginning to take its shape today. Computer systems were becoming more 
powerful, defying the Moore’s law, 1  not only in large data centers but also in desktop computers, warning us 
that the  free lunch is over.   2  

   1     https://en.wikipedia.org/wiki/Moore%27s_law     .  
   2     http://www.gotw.ca/publications/concurrency-ddj.htm     .  

https://en.wikipedia.org/wiki/Moore's_law
http://www.gotw.ca/publications/concurrency-ddj.htm
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 In this scenario, those who drove the change had to be innovative in the way that they looked for 
alternatives to a relational database management system (RDBMS). Google, Facebook, and Twitter had to 
experiment with creating their own data models—each with different architectures—gradually building 
what is known today as NoSQL. 

 The diversity of NoSQL tools is so broad that it is difficult to make a classification. But there was one 
audacious guy who did, and he proposed that a NoSQL tool must meet the following  characteristics  :

•    Non-relational  

•   Open source  

•   Cluster-friendly  

•   Twenty-first-century web  

•   Schemaless    

 That guy was Martin Fowler and he exposes this in his book with Pramod J. Sadalage,  NoSQL Distilled  
(Addison-Wesley Professional, 2012). 3  

 At the GOTO conference in 2013, 4  Fowler presented the “Introduction to NoSQL,” a very educational 
presentation well worth checking out. 

 But how is that NoSQL improves data access performance over traditional RDBMS? It has much to do 
with the way NoSQL handles and abstracts data; that is, how it has defined the data model. 

 Following Martin Fowler’s comments, if you use this criterion, you can classify NoSQL (as shown in 
Figure  5-1 ) with distinct types according to this data model: document, column-family, graph, key-value.  

  Figure 5-1.    NoSQL classification according to the  data model used         

   3     http://martinfowler.com/books/nosql.html       
   4     https://www.youtube.com/watch?v=qI_g07C_Q5I       

 

http://martinfowler.com/books/nosql.html
https://www.youtube.com/watch?v=qI_g07C_Q5I
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 Another NoSQL-specific feature is that the data model does not require a data schema, which allows a 
greater degree of freedom and faster data access. 

 As seen in Figure  5-2 , the data models can be grouped as aggregated-oriented and schemaless.  

  Figure 5-2.    Another data model  classification         

  Figure 5-3.    A simple way to determine when to use NoSQL       

 The amount of data to be handled and the need of a mechanism to ease the development are indicators 
of when to use NoSQL. Martin Fowler recommends that you use these two major criteria for when to start 
using NoSQL, as shown in Figure  5-3 .  

 Finally, you must remember that there is no silver bullet, and although the rise of SQL is not large, you 
must be cautious in choosing when to use it.  
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     The Memory Value 
 Many of the advantages of NoSQL are based on the fact that a lot of data management is performed in 
memory, which gives excellent performance to data access. 

 ■   Note   The processing performance of main memory is 800 times faster than HDD, 40 times faster than a 
common SSD, and seven times faster than the fastest SSD. 5   

 Surely, you already know that the memory access is greater than disk access, but with this speed, you 
want to do everything in memory. Fortunately, all of these advantages are abstracted by Cassandra and you 
just have to worry about what and how to store. 

     Key-Value and Column 
 There are two particular data models that to discuss: key-value and column-family. It is common practice 
that NoSQL use several data models to increase its performance. Cassandra makes use of key-value and 
column-family data models. 

   Key-Value 
 The simplest data model is  key-value  . You have probably already used this paradigm within a programming 
language. In a nutshell, it is a hash table. 

 Given a key, you can access the content (value), as demonstrated in Figure  5-4 .   

  Figure 5-4.    You can imagine this data model as a big hash. The key allows access to certain <content>. This 
<content> can be different types of data, which makes it a much more flexible structure.       

   5  Ki Sun Song, “Introduction to In-Memory Data Grid; Main Features.”    http://www.cubrid.org/blog/dev-platform/
introduction-to-in-memory-data-grid-main-features/       

 

http://www.cubrid.org/blog/dev-platform/introduction-to-in-memory-data-grid-main-features/
http://www.cubrid.org/blog/dev-platform/introduction-to-in-memory-data-grid-main-features/
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   Column-Family 
 An important part of this data model is that the storage and fetch processes are made from columns and not 
from rows. Also, a lot of the data model is done in memory, and you already know how important that is. 

 What’s a column? It is a tuple containing key-value pairs. In the case of several NoSQL, this tuple is 
formed by three pairs: name/key, value, and one timestamp. 

 In this model, several columns (the family) are grouped by a key called a  row-key . Figure  5-5  shows this 
relationship.  

  Figure 5-5.    A key (row-key) can access the column family. This group exemplifies the data model  column-family         

  Figure 5-6.    When all nodes have the same role, having data redundancy is much easier to maintain a 
replication, which always help maintain the availability of data.       

 The main advantage of this model is that it substantially improves write operations, which improves 
their performance in distributed environments. 6     

     Why Cassandra? 
 Cassandra implements “no single points of failure,” which is achieved with redundant nodes and data. 
Unlike legacy systems based on master-slave architectures, Cassandra implements a masterless “ring” 
architecture (see Figure  5-6 ).  

   6  Comparative study of NoSQL document, column store databases, and evaluation of Cassandra.    http://airccse.org/
journal/ijdms/papers/6414ijdms02.pdf       

 

 

http://airccse.org/journal/ijdms/papers/6414ijdms02.pdf
http://airccse.org/journal/ijdms/papers/6414ijdms02.pdf
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 With this architecture, all nodes have an identical role: there is no master node. All nodes communicate 
with each other using a scalable and distributed protocol called  gossip. 7    

 This architecture, together with the protocol, collectively cannot have a single point of failure. It offers 
true continuous availability. 

     The Data Model 
 At this point, you can say that the Cassandra  data model   is based primarily on managing columns. As 
mentioned earlier, some NoSQL combine multiple data models, as is the case with Cassandra (see Figure  5-7 ).  

  Figure 5-7.    Cassandra uses a model of combined data; key-value uses this to store and retrieve the columns          

   Table 5-1.    Cassandra Data Model and RDBMS Equivalences   

 Definition  RDBMS Equivalent 

 Schema/Keyspace  A collection of column families.  Schema/database 

 Table/Column-Family  A set of rows.  Table 

 Row  An ordered set of columns.  Row 

 Column  A key/value pair and timestamp.  Column (name, value) 

 Cassandra has some similarity to an RDBMS; these similarities facilitate use and adoption, although 
you must remember that they do not work the same way. 

 Table  5-1  provides some comparisons that help us better understand Cassandra’s concepts.  

   7     https://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architectureGossipAbout_c.html       

 

https://docs.datastax.com/en/cassandra/2.1/cassandra/architecture/architectureGossipAbout_c.html
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 Figure  5-8  illustrates the relationships among these concepts.    

  Figure 5-8.    Relationships among column, row, column-family, and keyspace       

     Cassandra 101 
     Installation 
 This section explains how to install Apache Cassandra on a local machine. The following steps were 
performed on a Linux machine. At the time of this writing, the stable version is 3.4, released on March 8, 2016. 

   Prerequisites 
  Apache Cassandra requires   Java version 7 or 8, preferably the Oracle/Sun distribution. The documentation 
indicates that it is also compatible with OpenJDK, Zing, and IBM distributions.  

   File Download 
 The first step is to  download   the  .zip  file distribution downloaded from    http://cassandra.apache.org/
download/     . 

 On the Apache Cassandra project home page (see Figure  5-9  and    http://cassandra.apache.org     ), the 
project logo reminds us of the seeing ability of the mythological character.  

 

http://cassandra.apache.org/download/
http://cassandra.apache.org/download/
http://cassandra.apache.org/
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 Locate the following file: 

   apache-cassandra-3.4-bin.tar.gz   

 It’s important to validate file integrity. You do not want it to fail while it’s running. This particular file has 
the following values to validate its integrity: 

 [MD5] e9f490211812b7db782fed09f20c5bb0 
 [SHA1]7d010b8cc92d5354f384b646b302407ab90be1f0   

 It’s easy to make this validation. Any flavor of Linux gives the  md5  and  sha1sum  commands, as shown in 
the following: 

    %> md5sum apache-cassandra-3.4-bin.tar.gz 
 e9f490211812b7db782fed09f20c5bb0  apache-cassandra-3.4-bin.tar.gz 

   %> sha1sum apache-cassandra-3.4-bin.tar.gz 
 7d010b8cc92d5354f384b646b302407ab90be1f0  apache-cassandra-3.4-bin.tar.gz 

   %> ls -lrt apache-cassandra-3.4-bin.tar.gz 
 -rw-r--r--. 1 rugi rugi 34083682 Mar  7 22:06 apache-cassandra-3.4-bin.tar.gz 

    Once you have validated the file’s integrity, you can unzip it and continue.  

  Figure 5-9.    Cassandra project home page       
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   Start 
 Starting Apache Cassandra is easy; you only  execute   the following: 

   ./cassandra -f 
 INFO  18:06:58 Starting listening for CQL clients on localhost/127.0.0.1:9042 (unencrypted)... 
 INFO  18:06:58 Not starting RPC server as requested. Use JMX (StorageService->startRPCServer()) 
or nodetool (enablethrift) to start it 
 INFO  18:07:07 Scheduling approximate time-check task with a precision of 10 milliseconds 
 INFO  18:07:07 Created default superuser role 'cassandra' 

   With this command, your server Apache Cassandra is ready to receive requests. You must always keep 
in mind that Apache Cassandra runs with a client-server approach. You have launched the server; the server 
is responsible for receiving requests from clients and then giving them answers. So now you need to validate 
that clients can send requests. 

 The next step is to use the CLI validation tool, an Apache Cassandra client.  

    Validation 
 Now, let’s  execute   the CLI tool.    

   %> ./cqlsh 
 Connected to Test Cluster at 127.0.0.1:9042. 
 [cqlsh 5.0.1 | Cassandra 3.4 | CQL spec 3.4.0 | Native protocol v4] 
 Use HELP for help. 
 cqlsh> 

   The first step is to create a keyspace, an analogy with relational databases in which you define the 
database, per se. 

   %>CREATE KEYSPACE mykeyspace WITH REPLICATION = { 'class' : 'SimpleStrategy', 'replication_factor' : 1 }; 

   Once the keyspace is defined, indicate that you will use it. 

   USE mykeyspace; 

   This is a familiar sentence, isn’t? 
 Apache Cassandra, like other NoSQL frameworks, tries to use analogies with the SQL statements that 

you already know. 
 And if you have already defined the database, do you remember what is next? Now you create a test table. 

   %> CREATE TABLE users (  user_id int PRIMARY KEY,  fname text,  lname text); 

   And, having the table, inserting records is simple, as you can see in the following: 

   %>INSERT INTO users (user_id,  fname, lname)  VALUES (1745, 'john', 'smith'); 
 %>INSERT INTO users (user_id,  fname, lname)  VALUES (1744, 'john', 'doe'); 
 %>INSERT INTO users (user_id,  fname, lname)  VALUES (1746, 'john', 'smith'); 
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   You make a simple query, like this: 

   %>SELECT * FROM users; 

   And, you should have the following results (or similar, if you already modified the data with the inserts): 

    user_id | fname | lname 
 ---------+-------+------- 
     1745 |  john | smith 
     1744 |  john |   doe 
     1746 |  john | smith 

   With Apache Cassandra, you can create indexes on the fly: 

   CREATE INDEX ON users (lname); 

   To facilitate searches on specific fields, do this: 

   SELECT * FROM users WHERE lname = 'smith'; 

   This is the result: 

    user_id | fname | lname 
 ---------+-------+------- 
     1745 |  john | smith 
     1746 |  john | smith 

   And that’s it. This is enough to validate that communication between your CLI and your Cassandra 
server is working properly. 

 Here is the complete output from the previous commands: 

    {16-03-21 14:05}localhost:~/ opt/apache/cassandra/apache-cassandra-3.4/bin rugi% cd /home/
rugi/opt/apache/cassandra/apache-cassandra-3.4/bin 

 {16-03-21 14:05}localhost:~/opt/apache/cassandra/apache-cassandra-3.4/bin rugi% ./cqlsh 
 Connected to Test Cluster at 127.0.0.1:9042. 
 [cqlsh 5.0.1 | Cassandra 3.4 | CQL spec 3.4.0 | Native protocol v4] 
 Use HELP for help. 
 cqlsh> CREATE KEYSPACE mykeyspace WITH REPLICATION =  { 'class' : 'SimpleStrategy', 

'replication_factor' : 1 }; 
 cqlsh> USE mykeyspace; 
 cqlsh:mykeyspace> CREATE TABLE users (  user_id int PRIMARY KEY,  fname text,  lname text); 
 cqlsh:mykeyspace> INSERT INTO users  (user_id,  fname, lname)  VALUES (1745, 'john', 'smith'); 
 cqlsh:mykeyspace> INSERT INTO users  (user_id,  fname, lname)  VALUES (1744, 'john', 'doe'); 
 cqlsh:mykeyspace> INSERT INTO users  (user_id,  fname, lname)  VALUES (1746, 'john', 'smith'); 

   cqlsh:mykeyspace> SELECT * FROM users; 
 user_id | fname | lname 
 ---------+-------+------- 
     1745 |  john | smith 
     1744 |  john |   doe 
     1746 |  john | smith 
 (3 rows) 



CHAPTER 5 ■ STORAGE: APACHE CASSANDRA

77

   cqlsh:mykeyspace> CREATE INDEX ON users (lname); 
 cqlsh:mykeyspace> SELECT * FROM users WHERE lname = 'smith'; 
 user_id | fname | lname 
 ---------+-------+------- 
     1745 |  john | smith 
     1746 |  john | smith 
 (2 rows) 

   cqlsh:mykeyspace> exit 
 {16-03-21 15:24}localhost:~/opt/apache/cassandra/apache-cassandra-3.4/bin rugi% 

    You should have two terminals open: one with the server running and the other one with CLI 
running. If you check the first one, you will see how CLI is processing the requests. Figure  5-10  shows the 
server running.  

  Figure 5-10.    Cassandra server running       
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   CQL 
 CQL (Cassandra Query Language)    is a language similar to SQL. The queries on a keyspace are 
made in CQL. 

   CQL Shell 

 There are several ways to interact with a  keyspace  ; in the previous section, you saw how to do it using a shell 
called   CQL shell  (CQLs)  . Later you will see other ways to interact with the keyspace. 

 CQL shell is the primary way to interact with Cassandra; Table  5-2  lists the main commands.  

  Figure 5-11.    CQL running on CQLs       

 Figure  5-11  is a screenshot of running the test commands described earlier.    
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   Table 5-2.    Shell Command  Summary     

 Command  Description 

  cqlsh   Starts the CQL interactive terminal. 

  CAPTURE   Captures the command output and appends it to a file. 

  CONSISTENCY   Shows the current consistency level; or given a level, sets it. 

  COPY   Imports and exports CSV (comma-separated values) data to and from Cassandra. 

  DESCRIBE   Provides information about the connected Cassandra cluster or about the data 
objects stored in the cluster. 

  EXPAND   Formats the output of a query vertically. 

  EXIT   Terminates cqlsh. 

  PAGING   Enables or disables query paging. 

  SHOW   Shows the Cassandra version, host, or tracing information for the current cqlsh 
client session. 

  SOURCE   Executes a file containing CQL statements. 

  TRACING   Enables or disables request tracing. 

 For more detailed information on shell commands, you should visit the following web page: 

   http://docs.datastax.com/en/cql/3.1/cql/cql_reference/cqlshCommandsTOC.html 

   Let’s try some of these commands. First, activate the shell, as follows; 

   {16-04-15 23:54}localhost:~/opt/apache/cassandra/apache-cassandra-3.4/bin rugi% ./cqlsh          
 Connected to Test Cluster at 127.0.0.1:9042. 
 [cqlsh 5.0.1 | Cassandra 3.4 | CQL spec 3.4.0 | Native protocol v4] 
 Use HELP for help. 

   The  describe  command can work in specific tables, in all the keyspaces, or in one specific keyspace: 

    cqlsh> describe keyspaces 

   system_schema  system      system_distributed 
 system_auth    mykeyspace  system_traces      

   cqlsh> describe mykeyspace 

   CREATE KEYSPACE mykeyspace WITH replication = {'class': 'SimpleStrategy', 'replication_
factor': '1'}  AND durable_writes = true; 

   CREATE TABLE mykeyspace.users ( 
     user_id int PRIMARY KEY, 
     fname text, 
     lname text 
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 ) WITH bloom_filter_fp_chance = 0.01 
     AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'} 
     AND comment = '' 
     AND compaction = {'class':  'org.apache.cassandra.db.compaction.SizeTieredCompactionStrategy', 

'max_threshold': '32', 'min_threshold': '4'} 
     AND compression =  {'chunk_length_in_kb': '64',

 'class': 'org.apache.cassandra.io.compress.  LZ4Compressor'} 
     AND crc_check_chance = 1.0 
     AND dclocal_read_repair_chance = 0.1 
     AND default_time_to_live = 0 
     AND gc_grace_seconds = 864000 
     AND max_index_interval = 2048 
     AND memtable_flush_period_in_ms = 0 
     AND min_index_interval = 128 
     AND read_repair_chance = 0.0 
     AND speculative_retry = '99PERCENTILE'; 
 CREATE INDEX users_lname_idx ON mykeyspace.users (lname); 

    The  show  command is also simple to test to see the version number: 

   cqlsh> show version 
 [cqlsh 5.0.1 | Cassandra 3.4 | CQL spec 3.4.0 | Native protocol v4] 
 cqlsh> 

   As you can see, these commands are very easy to use.  

   CQL Commands 

 CQL is very  similar   to SQL, as you have already seen in the first part of this chapter. You have created a 
keyspace, made inserts, and created a filter. 

 CQL, like SQL, is based on sentences/statements. These sentences are for data manipulation and work 
with their logical container, the keyspace. As in SQL statements, they must end with a semicolon (;). 

 Table  5-3  lists all the language commands.  
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   Table 5-3.    CQL Command  Summary     

 Command  Description 

  ALTER KEYSPACE   Changes the property values of a keyspace. 

  ALTER TABLE   Modifies the column metadata of a table. 

  ALTER TYPE   Modifies a user-defined type. Cassandra 2.1 and later. 

  ALTER USER   Alters existing user options. 

  BATCH   Writes multiple DML statements. 

  CREATE INDEX   Defines a new index on a single column of a table. 

  CREATE KEYSPACE   Defines a new keyspace and its replica placement strategy. 

  CREATE TABLE   Defines a new table. 

  CREATE TRIGGER   Registers a trigger on a table. 

  CREATE TYPE   Creates a user-defined type. Cassandra 2.1 and later. 

  CREATE USER   Creates a new user. 

  DELETE   Removes entire rows or one or more columns from one or more rows. 

  DESCRIBE   Provides information about the connected Cassandra cluster or about the data 
objects stored in the cluster. 

  DROP INDEX   Drops the named index. 

  DROP KEYSPACE   Removes the keyspace. 

  DROP TABLE   Removes the named table. 

  DROP TRIGGER   Removes registration of a trigger. 

  DROP TYPE   Drops a user-defined type. Cassandra 2.1 and later. 

  DROP USER   Removes a user. 

  GRANT   Provides access to database objects. 

  INSERT   Adds or updates columns. 

  LIST PERMISSIONS   Lists permissions granted to a user. 

  LIST USERS   Lists existing users and their superuser status. 

  REVOKE   Revokes user permissions. 

  SELECT   Retrieves data from a Cassandra table. 

  TRUNCATE   Removes all data from a table. 

  UPDATE   Updates columns in a row. 

  USE   Connects the client session to a keyspace. 

 For more detailed information of CQL commands, you can visit the following web page: 

   http://docs.datastax.com/en/cql/3.1/cql/cql_reference/cqlCommandsTOC.html 

   Let’s play with some of these commands. 

   {16-04-16 6:19}localhost:~/opt/apache/cassandra/apache-cassandra-3.4/bin rugi% ./cqlsh 
 Connected to Test Cluster at 127.0.0.1:9042. 
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 [cqlsh 5.0.1 | Cassandra 3.4 | CQL spec 3.4.0 | Native protocol v4] 
 Use HELP for help. 

   Use the keyspace created at beginning, as follows: 

   cqlsh> use mykeyspace; 

   The  DESCRIBE  command can be applied to almost any object to discover the keyspace tables.    

   cqlsh:mykeyspace> describe tables users 

   Or in a specific table. 

    cqlsh:mykeyspace> describe users 

   CREATE TABLE mykeyspace.users ( 
     user_id int PRIMARY KEY, 
     fname text, 
     lname text 
 ) WITH bloom_filter_fp_chance = 0.01 
     AND caching = {'keys': 'ALL', 'rows_per_partition': 'NONE'} 
     AND comment = '' 
     AND compaction = {'class':  'org.apache.cassandra.db.compaction.SizeTieredCompactionStrategy', 

'max_threshold': '32', 'min_threshold': '4'} 
     AND compression = { 'chunk_length_in_kb': '64', 

'class': 'org.apache.cassandra.io.compress.LZ4Compressor'} 
     AND crc_check_chance = 1.0 
     AND dclocal_read_repair_chance = 0.1 
     AND default_time_to_live = 0 
     AND gc_grace_seconds = 864000 
     AND max_index_interval = 2048 
     AND memtable_flush_period_in_ms = 0 
     AND min_index_interval = 128 
     AND read_repair_chance = 0.0 
     AND speculative_retry = '99PERCENTILE'; 
 CREATE INDEX users_lname_idx ON mykeyspace.users (lname); 
 cqlsh:mykeyspace> exit 

            Beyond the Basics 
 You already know that Apache Cassandra runs on a  client-server architecture  . The client-server architecture 
is used by nearly everyone every day; it is the base of what you know as the Internet. 

     Client-Server 
 By definition, the client-server architecture allows distributed applications, since the tasks are divided into 
two main parts:

•    The  service providers:   the servers  

•   The  service petitioners  : the clients    
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 In this architecture, several clients are allowed to access the server. The server is responsible for 
meeting requests and it handles each one according its own rules. So far, you have only used one client, 
managed from the same machine—that is, from the same data network. 

 Figure  5-12  shows our current client-server architecture in Cassandra.  

  Figure 5-12.    The native way to connect to a Cassandra server is  via CQLs.         

  Figure 5-13.    To access a Cassandra server, a driver is required       

 CQL shell allows you to connect to Cassandra, access a keyspace, and send CQL statements to the 
Cassandra server. This is the most immediate method, but in daily practice, it is common to access the 
keyspaces from different execution contexts (other systems and other programming languages).  

     Other Clients 
 You require other clients, different from CQLs, to do it in the Apache Cassandra context. You require 
connection  drivers . 

   Drivers 
  A   driver    is a software component that allows access to a keyspace to run CQL statements. 

 Figure  5-13  illustrates accessing clients through the use of a driver. A driver can access a keyspace and 
also allows the execution of CQL sentences.  

 Fortunately, there are a lot of these drivers for Cassandra in almost any modern programming language. 
You can see an extensive list at    http://wiki.apache.org/cassandra/ClientOptions     . 

 Currently, there are different drivers to access a keyspace in almost all modern programming 
languages. Typically, in a client-server architecture, there are clients accessing the server from different 
clients, which are distributed in different networks, therefore, Figure  5-13  may now look like what’s shown 
in Figure  5-14 .  

 

 

http://wiki.apache.org/cassandra/ClientOptions
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 The Figure  5-14  illustrates that given the distributed characteristics that modern systems require, the 
clients actually are in different points and access the Cassandra server through public and private networks. 

 Your implementation needs will dictate the required clients. 
 All languages offer a similar API through the driver. Consider the following code snippets in Java, Ruby, 

and Node. 

   Java 

 The following snippet was tested with JDK 1.8.x. 

   Get Dependence 
 With java, it is easiest is to use Maven. You can get the driver using the following Maven artifact: 

    <dependency> 
     <groupId>com.datastax.cassandra</groupId> 
     <artifactId>cassandra-driver-core</artifactId> 
     <version>3.0.2</version> 
 </dependency> 

  Figure 5-14.    Different clients connecting to a Cassandra server through the cloud       
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       Snippet 
 The following is the Java snippet: 

    import com.datastax.driver.core.Cluster; 
 import com.datastax.driver.core.ResultSet; 
 import com.datastax.driver.core.Row; 
 import com.datastax.driver.core.Session; 
 import java.util.Iterator; 

   ... 

       public static void main(String[] args) { 
         Cluster cluster = Cluster.builder().addContactPoint("127.0.0.1").build(); 
         Session session = cluster.connect("mykeyspace"); 
         ResultSet results = session.execute("SELECT * FROM users"); 
         StringBuilder line = new StringBuilder(); 

           for (Iterator<Row> iterator = results.iterator(); iterator.hasNext();) { 
             Row row = iterator.next(); 
             line.delete(0, line.length()); 
             line.append("FirstName = ").                    
                     append(row.getString("fname")). 
                     append(",").append(" "). 
                     append("LastName = "). 
                     append(row.getString("lname")); 
             System.out.println(line.toString()); 
         } 
     } 

        Ruby 

 The snippet was tested with Ruby 2.0.x. 

   Get Dependence 
 In Ruby, obtaining the driver is as simple as installing a gem. 

   %>gem install cassandra-driver 

      Snippet 
 The following is the Ruby snippet: 

    require 'cassandra' 

   node = '127.0.0.1' 
 cluster = Cassandra.cluster(hosts: node) 
 keyspace = 'mykeyspace' 
 session  = cluster.connect(keyspace) 
 session.execute("SELECT fname, lname FROM users").each do |row| 
             p "FirstName = #{row['fname']}, LastName = #{row['lname']}" 
 end 
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        Node 

 The snippet was tested with Node v5.0.0. 

   Get Dependence 
 With Node, it could not be otherwise; the driver is obtained with npm. 

    %>npm install cassandra-driver 
 %>npm install async 

       Snippet 
 The following is the Node snippet: 

    var cassandra = require('cassandra-driver'); 
 var async = require('async'); 

   var client = new cassandra.Client({contactPoints: ['127.0.0.1'], keyspace: 'mykeyspace'}); 
 client.stream('SELECT fname, lname FROM users', []) 
   .on('readable', function () { 
                var row; 
                    while (row = this.read()) { 
                                   console.log('FirstName =  %s , LastName= %s', row.fname, 

row.lname); 
                                      } 
                      }) 
   .on('end', function () { 
              //todo 
              }) 
   .on('error', function (err) { 
                 // todo 
              }); 
 </code> 

    These three snippets did the same thing: made a connection to the Cassandra server, got a reference 
to the keyspace, made a single query, and displayed the results. In conclusion, the three snippets generated 
the same result: 

   "FirstName = john, LastName = smith" 
 "FirstName = john, LastName = doe" 
 "FirstName = john, LastName = smith" 

   You can see more examples that use other languages on the following web page: 

    http://www.planetcassandra.org/apache-cassandra-client-drivers/ 
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  Figure 5-15.    The Spark-Cassandra Connector is a special type of client that allows access to keyspaces from a 
Spark context       

            Apache Spark-Cassandra Connector 
 Now that you have a clear understanding on how connecting to a Cassandra server is done, let’s talk about 
a very special client. Everything that you have seen previously has been done to get to this point. You can 
now see what Spark can do since you know Cassandra and you know that you can use it as a storage layer to 
improve the Spark performance. 

 What do you need to achieve this connection? A client. This client is special because it is designed 
specifically for Spark, not for a specific language. This special client is called the Spark-Cassandra  Connector   
(see Figure  5-15 ).   

     Installing the Connector 
 The Spark-Cassandra connector has its own GitHub repository. The latest stable version is the master, but 
you can access a special version through a particular  branch . 

 Figure  5-16  shows the Spark-Cassandra Connector project home page, which is located at 
   https://github.com/datastax/spark-cassandra-connector     .  

 

https://github.com/datastax/spark-cassandra-connector
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 At the time of this writing, the most stable connector version is 1.6.0. The connector is basically a . jar  
file loaded when Spark starts. If you prefer to directly access the  .jar  file and avoid the build process, 
you can do it by downloading the official maven repository. A widely used repository is located at 
   http://mvnrepository.com/artifact/com.datastax.spark/spark-cassandra-connector_       .10/1.6.0-M2 . 

 Generating the  .jar  file directly from the Git repository has one main advantage: all the necessary 
dependencies of the connector are generated. If you choose to download the jar from the official repository, 
you must also download all of these dependencies. 

 Fortunately, there is a third way to run the connector, which is by telling the spark-shell that you require 
certain packages for the session to start. This is done by adding the following flag: 

   ./spark-shell --packages datastax:spark-cassandra-connector:1.6.0-M2-s_2.10 

   The nomenclature of the package is the same used with Gradle, Buildr, or SBT: 

   GroupID: datastax 
 ArtifactID: spark-cassandra-connector 
 Version: 1.6.0-M2-s_2.10 

   In the preceding lines of code, you are telling the shell that you require that artifact, and the shell will 
handle all the units. Now let’s see how it works.  

  Figure 5-16.    The Spark-Cassandra Connector on  GitHub         

 

http://mvnrepository.com/artifact/com.datastax.spark/spark-cassandra-connector_
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      Establishing the Connection 
 The  connector   version used in this section is 1.6.0 because it is the latest stable version of Apache Spark as of 
this writing. 

 First, validate that the versions are compatible. Access the Spark shell to see if you have the correct 
version. 

    {16-04-18 1:10}localhost:~/opt/apache/spark/spark-1.6.0-bin-hadoop2.6/bin rugi% ./spark-shell 
 log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.
MutableMetricsFactory). 
 log4j:WARN Please initialize the log4j system properly. 
 log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info. 
 Using Spark’s repl log4j profile: org/apache/spark/log4j-defaults-repl.properties 
 To adjust logging level use sc.setLogLevel(“INFO”) 
 Welcome to 
       ____              __ 
      / __/__  ___ _____/ /__ 
     _\ \/ _ \/ _ `/ __/  ‘_/ 
    /___/ .__/\_,_/_/ /_/\_\   version 1.6.0 
       /_/ 

   Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_60) 
 Type in expressions to have them evaluated. 
 Type :help for more information. 
 .... 
 scala> 

    Next, try a simple task: 

   scala> sc.parallelize( 1 to 50 ).sum() 
 res0: Double = 1275.0 
 scala> 

   Stop the shell ( exit  command). Now at start time, indicate the package that you require (the 
connector). The first time, the shell makes downloading dependencies: 

    {16-06-08 23:18}localhost:~/opt/apache/spark/spark-1.6.0-bin-hadoop2.6/bin rugi% >./spark-
shell --packages datastax:spark-cassandra-connector:1.6.0-M2-s_2.10 
 Ivy Default Cache set to: /home/rugi/.ivy2/cache 
 The jars for the packages stored in: /home/rugi/.ivy2/jars 
 :: loading settings :: url = jar:file:/home/rugi/opt/apache/spark/spark-1.6.0-bin-hadoop2.6/
lib/spark-assembly-1.6.0-hadoop2.6.0.jar!/org/apache/ivy/core/settings/ivysettings.xml 
 datastax#spark-cassandra-connector added as a dependency 
 :: resolving dependencies :: org.apache.spark#spark-submit-parent;1.0 
         confs: [default] 
         found datastax#spark-cassandra-connector;1.6.0-M2-s_2.10 in spark-packages 
         found joda-time#joda-time;2.3 in local-m2-cache 
         found com.twitter#jsr166e;1.1.0 in central 
         found org.scala-lang#scala-reflect;2.10.5 in central 
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         --------------------------------------------------------------------- 
         |                  |            modules            ||   artifacts   | 
         |       conf       | number| search|dwnlded|evicted|| number|dwnlded| 
         --------------------------------------------------------------------- 
         |      default     |   16  |   2   |   2   |   0   ||   16  |   2   | 
         --------------------------------------------------------------------- 
 :: retrieving :: org.apache.spark#spark-submit-parent 
         confs: [default] 
         2 artifacts copied, 14 already retrieved (5621kB/32ms) 
 log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.
MutableMetricsFactory). 
 log4j:WARN Please initialize the log4j system properly. 
 log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info. 
 Using Spark’s repl log4j profile: org/apache/spark/log4j-defaults-repl.properties 
 To adjust logging level use sc.setLogLevel(“INFO”) 
 Welcome to 
       ____              __ 
      / __/__  ___ _____/ /__ 
     _\ \/ _ \/ _ `/ __/  ‘_/ 
    /___/ .__/\_,_/_/ /_/\_\   version 1.6.0 
       /_/ 

   Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_60) 
 Type in expressions to have them evaluated. 
 Type :help for more information. 
 16/06/08 23:18:59 WARN Utils: Your hostname, localhost.localdomain resolves to a loopback 
address: 127.0.0.1; using 192.168.1.6 instead (on interface wlp7s0) 
 16/06/08 23:18:59 WARN Utils: Set SPARK_LOCAL_IP if you need to bind to another address 
 Spark context available as sc. 
 16/06/08 23:19:07 WARN ObjectStore: Version information not found in metastore. hive.
metastore.schema.verification is not enabled so recording the schema version 1.2.0 
 16/06/08 23:19:07 WARN ObjectStore: Failed to get database default, returning 
NoSuchObjectException 
 SQL context available as sqlContext. 

   scala> 

    The connector is loaded and ready for use. 
 First, stop the Scala executor from the shell: 

   sc.stop 

   Next, import the required classes for communication: 

   import com.datastax.spark.connector._, org.apache.spark.SparkContext, org.apache.spark.
SparkContext._, org.apache.spark.SparkConf 

   Then, set a variable with the required configuration to connect: 

   val conf = new SparkConf(true).set(“spark.cassandra.connection.host”, “localhost”) 
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   Finally, connect to the well-known keyspace and table that were created at the beginning of this chapter: 

    val sc = new SparkContext(conf) 
 val test_spark_rdd = sc.cassandraTable("mykeyspace", "users") 

    Given the context and keyspace, it is possible to consult the values with the following statement: 

    test_spark_rdd.foreach(println) 

    Here is the complete sequence of the five lines of code: 

    scala> sc.stop 

   scala> import com.datastax.spark.connector._, org.apache.spark.SparkContext, org.apache.
spark.SparkContext._, org.apache.spark.SparkConf 
 import com.datastax.spark.connector._ 
 import org.apache.spark.SparkContext 
 import org.apache.spark.SparkContext._ 
 import org.apache.spark.SparkConf 

   scala> val conf = new SparkConf(true).set("spark.cassandra.connection.host", "localhost") 
 conf: org.apache.spark.SparkConf = org.apache.spark.SparkConf@68b5a37d 

   scala> val sc = new SparkContext(conf) 
 sc: org.apache.spark.SparkContext = org.apache.spark.SparkContext@3d872a12 

   scala> val test_spark_rdd = sc.cassandraTable("mykeyspace", "users") 

    The connection is established and is already accessible through  test_spark_rdd  to make operations in 
our table within our keyspace; for example, to show values. 

    scala> test_spark_rdd.foreach(println) 
 CassandraRow{user_id: 1745, fname: john, lname: smith} 
 CassandraRow{user_id: 1744, fname: john, lname: doe} 
 CassandraRow{user_id: 1746, fname: john, lname: smith} 

           More Than One Is Better 
 Up to this moment, unknowingly, you have been working with a cluster of Cassandra. A cluster with a single 
node, but a cluster. Let’s check it. ;) 

 To check, use the nodetool utility, which is administered as a cluster of the Cassandra nodetool via CLI. 
 You can run the following to see the full list of commands: 

   CASSANDRA_HOME/bin>./nodetool 

   Among the list, you see the  status  command. 

   status         Print cluster information (state, load, IDs, ...) 
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   8     http://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/configCassandra_yaml.html       

   You can run nodetool with the  status  command. 

   CASSANDRA_HOME/bin>./nodetool  status 
 Datacenter: datacenter1 
 ======================= 
 Status=Up/Down 
 |/ State=Normal/Leaving/Joining/Moving 
 --  Address    Load       Tokens       Owns (effective)  Host 
ID                               Rack 
 UN  127.0.0.1  122.62 KiB  256      100.0%        3e7ccbd4-8ffb-4b77-bd06-110d27536cb2  rack1 

   You can see that you run a cluster with a single node. 

     cassandra.yaml 
 When you have a  cluster      of more than one node, you modify the  cassandra.yaml  file. In this file, the 
necessary settings of each node within a cluster are made. When you have only one node, there’s nothing to 
change. The file is located in the  CASSANDRA HOME/conf  folder. 

 The file has several options; you can see each option in detail in the documentation. 8  For a basic 
configuration, however, there are few options that are required. 

 Table  5-4  describes the fields to create our cluster. The descriptions were taken from the afore 
mentioned documentation.   

   Table 5-4.    Minimum Configuration Options for Each Node in the Cluster   

 Option  Description 

 cluster_name  The name of the cluster. 

 seed_provider  The addresses of the hosts deemed as contact points. Cassandra 
nodes use the  -seeds  list to find each provider and learn the 
topology of the ring. 

 seed_provider - class_name  The class within Cassandra that handles the seed logic. It can be 
customized, but this is typically not required. 

 seed_provider- parameters - seeds  A comma-delimited list of IP addresses used by gossip for 
bootstrapping new nodes joining a cluster. 

 listen_address  The IP address or hostname that Cassandra binds to in order to 
connect to other Cassandra nodes. 

 rpc_address  The listen address for client connections (Thrift RPC service and 
native transport). 

 broadcast_rpc_address  The RPC address to broadcast to drivers and other Cassandra nodes. 

 endpoint_snitch  Set to a class that implements the IEndpointSnitch interface. 

http://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/configCassandra_yaml.html
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   9     http://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/secureFireWall.html       

     Setting the Cluster 
 In this  example  , assume that Cassandra is installed on the following machines: 

   107.170.38.238 (seed) 
 107.170.112.81 
 107.170.115.161 

   The documentation recommends having more than one seed, but because you have only three nodes in 
this exercise, leave only a single seed. All machines have Ubuntu 14.04 and JDK 1.8 (HotSpot) ready. 

 The following steps assume that you are starting a clean installation in each machine, so, if a machine is 
running Cassandra, you must stop and delete all data. We recommend that you start with clean installations. 
If there is a firewall between the machines, it is important to open specific ports. 9  

    Machine01   
 Our first machine has the address 107.170.38.238 and it is the seed. It starts first when you finish setting up 
the three machines. 

 Locate the  CASSANDRA HOME/conf/cassandra.yaml  file and make the following modifications. All nodes 
in the cluster must have the same  cluster_name . 

   cluster_name: 'BedxheCluster' 
 num_tokens: 256 
 seed_provider: 
     - class_name: org.apache.cassandra.locator.SimpleSeedProvider 
       parameters: 
           - seeds: “107.170.38.238” 
 listen_address: 107.170.38.238 
 rpc_address: 0.0.0.0 
 broadcast_rpc_address: 1.2.3.4 
 endpoint_snitch: RackInferringSnitch 

       Machine02   
 Our second machine has the address 107.170.112.81. Its setting only changes the value of  listen_address . 

   cluster_name: 'BedxheCluster' 
 num_tokens: 256 
 seed_provider: 
     - class_name: org.apache.cassandra.locator.SimpleSeedProvider 
       parameters: 
           - seeds: "107.170.38.238" 
 listen_address: 107.170.112.81 
 rpc_address: 0.0.0.0 
 broadcast_rpc_address: 1.2.3.4 
 endpoint_snitch: RackInferringSnitch 

http://docs.datastax.com/en/cassandra/3.0/cassandra/configuration/secureFireWall.html
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       Machine03   
 Our third machine has the address 107.170.115.161. Its setting also only changes the value of  listen_address . 

   cluster_name: 'BedxheCluster' 
 num_tokens: 256 
 seed_provider: 
     - class_name: org.apache.cassandra.locator.SimpleSeedProvider 
       parameters: 
           - seeds: "107.170.38.238" 
 listen_address: 107.170.115.161 
 rpc_address: 0.0.0.0 
 broadcast_rpc_address: 1.2.3.4 
 endpoint_snitch: RackInferringSnitch 

   You have now finished the configuration of the nodes. 

 ■   Note   This configuration was simple. It was used for illustrative purposes. Configuring a cluster to a 
production environment requires studyng several factors and experimenting a lot. Therefore, we recommend 
using this setting because it is a simple exercise to begin learning the options.   

   Booting the Cluster 
 You first started  Cassandra   in the seed node (removing the  -f  flag, Cassandra starts the process and passes 
the background). 

   MACHINE01/CASSANDRA_HOME/bin%>./cassandra 
 After you started cassandra in the other two nodes. 
 MACHINE02/CASSANDRA_HOME/bin%>./cassandra 
 MACHINE03/CASSANDRA_HOME/bin%>./cassandra 

   Now, if you execute nodetool in any of the machines, you see something like the following. 

   CASSANDRA_HOME/bin>./nodetool status 
 Datacenter: 170 
 =============== 
 Status=Up/Down 
 |/ State=Normal/Leaving/Joining/Moving 
 --  Address         Load        Tokens  Owns        Host ID                              Rack
                                       (effective)                      
 UN  107.170.38.238    107.95 KiB   256     68.4%       23e16126-8c7f-4eb8-9ea0-40ae488127e8  38 
 UN  107.170.115.161   15.3 KiB     256     63.7%       b3a9970a-ff77-43b2-ad4e-594deb04e7f7  115 
 UN  107.170.112.81    102.49 KiB   256     67.9%       ece8b83f-d51d-43ce-b9f2-89b79a0a2097  112 

   Now, if you repeat the creation of the keyspace example in the seed node, you will see how the keyspace 
is available in the other nodes. And conversely, if you apply a change to the keyspace in any node, it is 
immediately reflected in the others. 
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   10  How SoundCloud Uses Cassandra.    https://www.infoq.com/presentations/soundcloud-cassandra       
   11  Spotify: How to Use Apache Cassandra.    https://www.youtube.com/watch?v=JWaECFyhvxI       
   12  Netflix: A State of Xen Chaos Monkey & Cassandra.    https://www.youtube.com/watch?v=Mu01DmxQjWA       

 Execute the following in machine01 (the seed machine): 

    MACHINE01_CASSANDRA_HOME/bin%> ./cqlsh 

   cqlsh>CREATE KEYSPACE mykeyspace WITH REPLICATION = { ‘class’ :  ‘SimpleStrategy’, 
‘replication_factor’ : 1 }; 

 cqlsh>USE mykeyspace; 
 cqlsh>CREATE TABLE users (user_id int PRIMARY KEY,  fname text,  lname text); 
 cqlsh>INSERT INTO users (user_id,  fname, lname)  VALUES (1745, ‘john’, ‘smith’); 
 cqlsh>INSERT INTO users (user_id,  fname, lname)  VALUES (1744, ‘john’, ‘doe’); 
 cqlsh>INSERT INTO users (user_id,  fname, lname)  VALUES (1746, ‘john’, ‘smith’); 

    Execute the following in machine02 or machine03: 

    CASSANDRA_HOME/bin%>./cqlsh 
 cqlsh> use mykeyspace; 
 cqlsh:mykeyspace> select * from users; 

    user_id | fname | lname 
 ---------+-------+------- 
     1745 |  john | smith 
     1744 |  john |   doe 
     1746 |  john | smith 

   (3 rows) 

    That’s it. You have a cluster of three nodes working properly.    

     Putting It All Together 
 The best way to assimilate all of these concepts is through examples, so in later chapters, we show concrete 
examples of the use of this architecture. 

 As you can see, beginning to use Cassandra is very simple; the similarity to SQL in making queries helps 
to manipulate data from the start. Perhaps now that you know the advantages of Cassandra, you want to 
know who is using it. There are three companies in particular that have helped increase the popularity of 
Cassandra: SoundCloud, 10  Spotify, 11  and Netflix. 12  

 A lot of the stuff that exists online about Cassandra makes references to these companies, but they are 
not the only ones. The following two web pages offer more extensive lists of companies that are committed 
to Cassandra, and using some part of their data management in interesting use cases.

•       http://www.planetcassandra.org/companies/       

•      http://www.planetcassandra.org/apache-cassandra-use-cases/         

 Beyond the advantages Cassandra, as the ring model and distributed data management within 
the cluster, its main advantage is the level of integration with Spark, and in general, with the rest of the 
technologies in this book. 

 Surely, you’ll use Cassandra in an upcoming project.      

https://www.infoq.com/presentations/soundcloud-cassandra
https://www.youtube.com/watch?v=JWaECFyhvxI
https://www.youtube.com/watch?v=Mu01DmxQjWA
http://www.planetcassandra.org/companies/#_blank
http://www.planetcassandra.org/apache-cassandra-use-cases/#_blank
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    CHAPTER 6   

 The Engine: Apache Spark                          

 If our stack were a vehicle, now we have reached the engine. As an engine, we will disarm it, analyze it, 
master it, improve it, and run it to the limit. 

 In this chapter, we walk hand in hand with you. First, we look at the Spark download and installation, 
and then we test it in Standalone mode. Next, we discuss the theory around Apache Spark to understand 
the fundamental concepts. Then, we go over selected topics, such as running in high availability (cluster). 
Finally, we discuss Spark Streaming as the entrance to the data science pipeline. 

 This chapter is written for people who have never touched Apache Spark before. But as you can 
imagine, due to space, we will not delve into many specific issues. 

 The following topics are covered in this chapter:

•    Introducing Spark  

•   Spark concepts  

•   Working with RDD  

•   Running in cluster  

•   Spark Streaming    

     Introducing Spark 
 Perhaps Apache Spark is the most important technology in the stack. It is divided into five modules:  Core  , 
 SQL  ,  MLIB  ,  Streaming  , and  GraphX  . Simply put, each module deserves a book the same size of the book that 
you are now reading. Spark has captured the imagination of developers and analysts, simply because it takes 
data manipulation from large laboratories to laptops, from large interdisciplinary teams to lone enthusiasts 
who want to make data analysis, and from large corporate clusters to a cheap infrastructure accessible to all. 

 Spark is both infrastructure software and data science laboratory. Spark as an infrastructure engine can 
be attached to powerful tools like Apache Kafka to produce  data science pipelines . Simultaneously, it is a data 
science laboratory because it represents an engine for machine learning in both a laptop and a productive 
cluster, from a few data kilobytes up to what the hardware capacity allows. Likewise, you can build models 
based on sample data and then apply them in larger datasets. 

 In times not so distant, installing the infrastructure for data analysis was an interdisciplinary task among 
database specialists, operating system and network analysts, and application engineers and architects. 

 What makes Apache Spark so attractive is its ability to download and run it on a small and inexpensive 
laptop. 

 Apache Spark (like all the technologies covered in this book) is an open source tool. It only requires Java 
version 6 or higher. All the Scala and Akka dependencies are packaged within the distribution. 
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     Apache Spark Download 
 Regardless of whether you use the development or production version, you must download the latest build 
from    https://spark.apache.org/downloads.html      (version 1.6.1 as of this writing). 

 As shown in Figure  6-1 , select  Pre-built for Hadoop and later .  

  Figure 6-1.    Apache Spark  download page         

 Spark has a new release every 90 days. For hard-core coders who like to work with the latest builds, try 
to clone the repository at    https://github.com/apache/spark     . The instructions for generating the build are 
available at    https://spark.apache.org/docs/latest/building-spark.html     . Both the source code and the 
binary prebuilds are available at this link. 

 To compile the Spark sources, we need the appropriate versions of Scala and the corresponding SDK. 
Spark source tar includes the Scala components required. 

 The Spark development group has done a good job keeping the dependencies. On    https://spark.
apache.org/docs/latest/building-spark.html     , you can see the latest information about it. According to 
the site, to build Spark with Maven, Java version 6 or higher and Maven 3.0.4 are required. 

 To uncompress the package, execute the following command: 

   tar xvf spark-1.6.1-bin-hadoop2.4.tgz 

 

https://spark.apache.org/downloads.html
https://github.com/apache/spark
https://spark.apache.org/docs/latest/building-spark.html
https://spark.apache.org/docs/latest/building-spark.html
https://spark.apache.org/docs/latest/building-spark.html
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        Let’s Kick the Tires 
 To test the installation, run the following command: 

   /opt/spark-1.6.1-bin-hadoop2.6/bin/run-example SparkPi 10 

   You should see an output like the one shown in Figure  6-2 , with the line  Pi is roughly .  

  Figure 6-2.    Testing  Apache Spark         

 To open a Spark interactive shell, go to the  bin  directory and run the spark-shell: 

   $> /bin/spark-shell 

   You should see output similar to Figure  6-3  (which shows Windows 64-bit so that no one feels left out of 
this party):  

  Figure 6-3.    The Apache Spark shell       

 Like all  modern shells  , the Spark shell includes history. You can access it with the up and down arrows. 
There are also autocomplete options that you can access by pressing the Tab key. 

 As you can see, Spark runs in Scala; the Spark shell is a Scala terminal with more features. This chapter’s 
Scala examples run without problems. You can test, as follows: 

   scala> val num = 1 to 400000 
 num: scala.collection.immutable.Range.Inclusive = Range (... 
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 To convert our Range to a RDD (now we see it is that), do the following: 
 scala> val myRDD = sc.parallelize(num) 
 myRDD: org.apache.spark.rdd.RDD [Int] = ParallelCollectionRDD [0] at parallelize at <console> 

   In this case, there is a numeric RDD. Then, as you may guess, you can do all the math operations with 
Scala data types. Let’s use only the odd numbers: 

   scala> myRDD.filter (_% 2 != 0) .collect () 
 res1: Array [Int] = Array (1, 3, 5, 7, 9 ...) 

   Spark returns an int array with odd numbers from 1 to 400,000. With this array, you can make all the 
math operations used with Scala int arrays. 

 Now, you are inside Spark, where things can be achieved in a big corporate cluster. 
 Basically, Spark is a framework for processing large volumes of data— in gigabytes, terabytes, or even 

petabytes. When you work with small data volumes, however, there are many solutions that are more 
appropriate than Spark. 

 The two main concepts are the calculations and scale. The effectiveness of the Spark solution lies in 
making complex calculations over large amounts of data, in an expeditious manner.  

     Loading a Data File 
 Upload a text  file   in Spark within the Spark shell: 

   scala> val bigfile = sc.textFile ("./big/tooBigFile.txt") 

   This magically loads the  tooBigFile.txt  file to Spark, with each line a different entry of the RDD 
(explained shortly). The RDDs are very versatile in terms of scaling. 

 If you connect to the Spark master node, you may try to load the file in any of the different machines 
in the cluster, so you have to ensure that it can be accessed from all worker nodes in the cluster. In general, 
you always put your files in file systems like HDFS or S3. In local mode, you can add the file directly (e.g.,  sc.
textFile ([path_to_file) ). You can use the  addFile() SparkContext function to make a file available to all 
machines in this way: 

   scala> import org.apache.spark.SparkFiles 
 scala> val myFile = sc.addFile( "/opt/big/data/path/bigFile.dat" ) 
 scala> val txtFile = sc.textFile (SparkFiles.get("bigFile.txt")) 

   For example, if you load a (big) input file where each line has a lot of numbers, the first RDD file whose 
elements are strings (text lines) is not very helpful. To transform the string elements to an array of doubles, 
use your knowledge of the Scala language: 

   scala> val myArrays = textFile.map (line => line.split('').map(_. toDouble)) 

   To verify that this is what you wanted, you can use the  first()  operator on both  txtFile  and  myArrays  
to see that the first element in the  txtFile  is a string and in  myArrays  is an Array[Double].  

     Loading Data from S3 
 As part of Amazon support, you have access to a file system called  Amazon S3  . To access it, you need the 
AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY variables (to configure them, see the “Running 
Spark on EC2” section in this chapter). 
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 For instance, you can use the Amazon examples on a data file from Wikipedia: 

   scala> val myWiki = sc.textFile ("S3N://bigdatademo/sample/wiki/") 

   We don’t need to set our AWS credentials as parameters for the Spark shell; this is the general path form 
for access the S3 file system: 

   S3N://<AWS ACCESS ID>:<AWS SECRET>@bucket/path 

   As another example, you can get Wikipedia’s traffic statistics from over the last 16 months at    https://
aws.amazon.com/datasets/wikipedia-traffic-statistics-v2/     .   

     Spark Architecture 
 Now is a good time to discuss the Spark mechanism. Let’s first talk about the architecture and then about the 
programming. 

   Parallelism    is computational term used when we talk about performing operations in parallel; 
that is, if we have a process that works on a portion of data, we can “make copies” of that process to act 
simultaneously on the same portion of data. Not all processes are parallelizable. Spark’s power is in its ability 
to do parallel computing in a simple way; this is just one of its main advantages. 

 When you program on your machines or laptops, the Spark shell is run locally. The work is performed in 
a single node. When you are working on a cluster, all you have to do is connect the same shell to the cluster 
to run it in parallel. Figure  6-4  explains how Spark runs on a cluster.  

  Figure 6-4.    Spark cluster with three executor nodes       

 

https://aws.amazon.com/datasets/wikipedia-traffic-statistics-v2/
https://aws.amazon.com/datasets/wikipedia-traffic-statistics-v2/
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 The two main concepts of Spark are the  resilient distributed dataset  (RDD) and the cluster manager. In a 
nutshell, the RDD is a parallelized computational abstraction of a collection. The cluster manager distributes 
the code and manages the data represented in the RDDs. The cluster manager has three responsibilities: 
controls the distribution and interaction with RDDs, distributes code, and manages the fault-tolerant 
execution. 

 Spark can work over several types of cluster managers; in this chapter, we talk about the standalone 
manager, and in a subsequent chapter, we talk about Apache Mesos. Hadoop Yarn is not covered in this book 
because we focus only on pipeline architectures, not Hadoop. 

 If you have Hadoop 2.0 installed, we recommend that you install Spark on Hadoop Yarn. If you have 
Hadoop 1.0 installed, we recommend that you use Spark Standalone. It is not suitable to install Apache 
Mesos and Hadoop Yarn at the same time. 

 The Spark driver program distributes the program classes in the cluster. The cluster manager starts the 
executors, one on each node, and assigns them a tasks set. When you run a program, all of this enginery 
runs transparently in your machines. For example, when you run on a cluster, the entire administration is 
transparent to you. That is Spark’s power. 

      SparkContext   
 Now that you have Spark running on your laptop, let’s start programming in more detail. The driver 
programs access the Spark core through the SparkContext object, which represents the connection between 
the cluster and the nodes. In the shell, Spark is always accessed through the sc variable; if you want to learn 
more about the sc variable, type this: 

   scala> sc 
 res0: org.apache.spark.SparkContext = org.apache.spark.SparkContext@4152bd0f 

        Creating a  SparkContext   
 In a program, you can create a SparkContext object with the following code: 

   val sparkContext = new SparkContext( masterPath, "applicationName", ["SparkPath 
(optional)"],["JarsList (optional)"]) 

   It is always possible to hard-code the value of the parameters; however, it is best read from the 
environment with suitable defaults. This allows you to run the code when you change the host 
without recompiling it. Using local as the default for the master makes it easy to launch the application 
in a local testing environment. You must be careful when selecting the defaults. Here’s an example 
snippet: 

    import spark.sparkContext._ 
 import scala.util.Properties 

   val masterPath = Properties.envOrElse("MASTER","local") 
 val sparkHome = Properties.get("SPARK_HOME") 
 val jarFiles = Seq(System.get("JARS")) 
 val sparkContext = new SparkContext(masterPath, "MyAppName", sparkHome, jarFiles) 
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         SparkContext  Metadata   
 The SparkContext object has useful metadata (see Table  6-1 ); for example, the version number, the 
application name, and the available memory. If you recall, information about the version is displayed when 
you start the Spark shell.  

   Table 6-1.    Some Useful SparkContext  Metadata     

 Value  Type  Use 

  appName   String  The application name. If you followed the convention, this 
value is useful at runtime. 

  getConf   SparkConf  Return a copy of this SparkContext’s configuration. 

  getExecutorMemoryStatus   Map[String, 
(Long, Long)] 

 Return a map from the slave to the maximum memory 
available for caching and the remaining memory available 
for caching. As it is distributed, it does not prevent OOM 
exceptions. 

  isLocal   Boolean  Are we running in local? 

  isStopped   Boolean  Are we running? 

  master   String  Master node name. 

  sparkUser   String  Spark OS username. 

  startTime   Long  Node start time. 

  version   String  Useful when testing several Spark versions. 

 Here are some examples of SparkContext metadata to print the Spark version, the application name, the 
master node’s name and the memory: 

    $ bin/spark-shell 

   scala> sc.version 
 res0: String = 1.6.1 

   scala> sc.appName 
 res1: String = Spark shell 

   scala> sc.master 
 res2: String = local[*] 

   scala> sc.getExecutorMemoryStatus 
 res3: scala.collection.Map[String,(Long, Long)] = Map(localhost:52962 -> 
(535953408,535953408)) 

         SparkContext Methods 
 The SparkContext object is the main entry point for your application and your cluster. It is also used for 
loading and saving data. You can use it to launch additional Spark jobs and remove dependencies. 
Table  6-2  shows some SparkContext methods, but you can see all the SparkContext attributes and methods 
at    https://spark.apache.org/docs/latest/api/scala/#org.apache.spark.SparkContext      $ .    

https://spark.apache.org/docs/latest/api/scala/#org.apache.spark.SparkContext
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     Working with RDDs 
 The resilient distributed  dataset   is Apache Spark’s core concept. Spark has four design  goals  :

•     In-memory data storage . This is where Apache Hadoop is defeated, because 
Hadoop is primarily disk storage.  

•    Fault tolerant . Achieved with two features: cluster operations and the application of 
linear operations on small data chucks.  

•    Efficiency . Achieved with operation parallelization between cluster parts.  

•    Fast . Achieved by minimizing data replication between cluster members.    

 The main idea is that with RDD, you only can perform two types of operations:   

•     Transformations . When a transformation is applied on an RDD, a new RDD is 
created. For example, the set operations (union, intersection, and join) or as you 
learned in Chapter   3    , mapping, filtering, sort, and coalesce.  

•    Actions . When we apply an action over an RDD, the original RDD does not change. 
For example: count, collect, and first.    

 Computer science has a solid foundation in mathematics; all computer models have a solid 
mathematical model behind them. In functional programming, functions are first-class citizens; that is, 
functions are not modeled as objects, but are simply functions. When you apply a function to another 
function, the result is another function. In algebra this is known as  function composition . If function  f  is 
applied to the function  g , the operation is denoted as  f o g , which is equivalent to  f(g()) . 

 In linear algebra, there are operations between vectors. There are vector operations whose input is 
various vectors and the result is a new vector (for example, vector addition). In Spark, vectors would be 
RDDs and operations whose return value is an RDD are equivalent to transformations. 

   Table 6-2.    Some Useful SparkContext  Methods     

 Method  Parameter  Return  Use 

  addJar()   path:String  Unit  Adds jar files for all tasks to be executed 
on the SparkContext in the future. 

  addFile()   path:String  Unit  Distribute a file to all nodes on a cluster. 

  accumulator()   value: T 
 name: String 

 Accumulator  Creates an accumulator (a distributed 
variable among the cluster). 

  cancelAllJobs()   ---  Unit  Cancel all jobs (scheduled and 
running). 

  clearJobGroup()   ---  Unit  Clear the current thread’s job. 

  killExecutor()   id:String  Boolean  Request to cluster manager to kill the 
specified executors. 

  setJobDescription()   value:String  Unit  Set a human-readable description of 
the current job. 

  textFile()   path:String 
 minPartitions: int 

 String  Read a text file and return it as an RDD 
of strings. 

  stop()   ---  Unit  Shut down the SparkContext. 

http://dx.doi.org/10.1007/978-1-4842-2175-4_3
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 On the other hand, there are functions whose input is several vectors and the output is a scalar value; 
for example, the inner product. In Spark, actions are the equivalent of these operations. 

 As with functional programming, there are also  rules for RDDs:  

•     Immutability . In both actions and transformations, the original RDD is not 
modified. Yes, the concept of a “variable” value in functional programming is an 
aberration: it does not exist; all the things (functions, values, objects) must be 
immutable.  

•    Resilient . In Spark, the chain of transformations from the first RDD to the last RDD 
is always logged; that is, if a failure occurs (the power goes out or someone trips over 
the power cord), the process can be reproduced again from the beginning or from 
the point of failure.  

•    Lazy evaluation . Since we live in a functional context, the transformations on 
RDDs are always lazy. They are not executed until (and only until) the end result is 
required. As you saw in Chapter   3    , this exists to improve performance, because it 
avoids unnecessary data processing and the waste of resources (usually caused by 
the developer).  

•    Process aware . As you saw in Chapter   4    , lazy evaluation prevents deadlocks and 
bottlenecks, because it prevents the indefinite process of waiting for other processes’ 
output. Recall that the lazy evaluation emulates all the operations already made and 
uses a “result avatar” to estimate the final result.  

•    Memory storage . By default, RDDs are born, and live and die in memory. The 
RDDs are stored on disk only if explicitly requested. This increases the performance 
terrifically, because you don’t fetch them from the file system or database.    

 In addition, we now have the DataFrames API (since 2015). This API offers the following:   

•     Scalability . You can test kilobyte-sized data samples on your laptop, and then run 
the same programs on a production cluster with several terabytes of data.  

•    Optimization . The powerful Spark SQL Catalyst optimizer offers two advantages: 
SQL beautification and SQL optimization. It also provides source code generation 
from actual SQL.  

•    Integration . Smooth integration with the other members of the Spark family (Core, 
SQL, Streaming, MLlib, GraphX).  

•    Multiformat . Supports several data formats and storage systems.    

 Before continuing, we must take the time to learn about what RDDs are and what they are not. 
It is crucial to understand that when an RDD is defined, it actually contains no data. You only create 
a container for it. RDDs follow the lazy evaluation principle; an expression is not evaluated until it is 
necessary (i.e., when an action is requested). This means that when you try to access the data in an RDD, 
you could fail. The data operation to create an RDD is only performed when the data is referenced to store 
or catch the RDD. 

 This also means that when you concatenate a large number of operations, you don’t have to worry 
about the excessive operations locking a thread. It is important to keep this in mind during application 
development—when you write and compile code, and even when you run the job. 

http://dx.doi.org/10.1007/978-1-4842-2175-4_3
http://dx.doi.org/10.1007/978-1-4842-2175-4_4
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     Standalone Apps 
 You can run Spark applications in two ways: from the pretty Spark shell or from a program written in Java, 
Scala, Python, or R. The difference between the two modes is that when you run  standalone applications  , 
you must initialize the SparkContext, as you saw in previous sections. 

 To run a program in Scala or Java, it is best to use Maven (or Gradle or SBT, whichever you want). You 
must import the dependency to your project. At the time of this writing, the Spark version is 1.6.1 (version 2 
exists, but it’s very new). 

 The following are the Maven coordinates for version 1.6.1: 

   groupId = org.apache.spark 
 artifactId = spark-core_2.10 
 version = 1.6.1 

     Initializing the SparkContext 
 Once you have Spark dependencies installed in your project, the first thing that you have to do is create a 
SparkContext. 

 As you saw earlier, you must first create an object of type SparkConf to configure your application, and 
then build a SparkContext object from it. 

    // All the necessary imports 
 import org.apache.spark.SparkConf 
 import org.apache.spark.SparkContext 
 import org.apache.spark.SparkContext._ 
 // Create the SparkConf object 
 val conf = new SparkConf().setMaster("local").setAppName("mySparkApp") 

   // Create the SparkContext from SparkConf 
 val sc = new SparkContext(conf) 

    The SparkConf constructor receives two parameters:    

•     Cluster URL . This is  "local"  when you want to run the program on one thread on 
the local machine, (i.e., without a cluster).  

•    Application name . This name is used to identify your application in the cluster 
manager UI (running in cluster mode). Here we called it mySparkApp.     

   Standalone Programs 
 We already have the necessary imports: the SparkConf object and the SparkContext object. Now let’s give 
our program a body. It is important to note that all the stuff that runs on the Spark shell should run on Spark 
 Standalone programs.   

 In all the “big data” books there is a word-count example; this book could not be the exception. Our 
program input is a file (yes, we already know how to load files) of the Franz Kafka novel  The Process , in 
English. 

 The exercise objective is to see the number of times a word occurs and to see the most repeated words. 

   // We create a RDD with the the-process.txt file contents 
 val myfile = sc.textFile("the-process.txt") 
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 // Then, we convert the each line text to lowercase 
 val lowerCase = myFile.map( line => line.toLowerCase) 
 // We split every line in words (strings separated by spaces) 
 // As we already know, the split command flattens arrays 
 val words = lowerCase.flatMap(line => line.split("\\s+")) 
 // Create the tuple (word, frequency), initial frequency is 1 
 val counts = words.map(word => (word, 1)) 
 // Let’s group the sum of frequencies by word, (easy isn’t?) 
 val frequency = counts.reduceByKey(_ + _) 
 // Reverse the tuple to (frequency, word) 
 val invFrequency = frequency.map(_.swap) 
 // Take the 20 more frequent and prints it 
 invFrequency.top(20).foreach(println) 

   It is fundamental to note that everything doesn’t run until the last  println  invocation. Yes, all the 
previous words are transformations, and the last line is the action. We will clear this up later. 

 Hold on, the most frequent types of words (in all human languages) are conjunctions and prepositions, 
so before separating each sentence into words in the third step, we filter the “stop words” in English 
(obviously there are better lists on Internet, this is just an example). 

    val tinytStopWords = Set("what", "of", "and", "the", "to", "it", "in", "or", "no", "that", 
"is", "with", "by", "those", "which", "its", "his", "her", "me", "him", "on", "an", "if", 
"more", "I", "you", "my", "your", "for" ) 

   val words = lowerCase 
 .flatMap(line => line.split("\\s+")) 
 .filter(! tinyStopWords.contains(_)) 

       Run the Program 
 When your program is complete, use the script located on  /bin/spark-submit  to run it. Modern Java/Scala 
IDEs have embedded the Spark integration to run it smoothly. 

 But this book is mostly read by command-line fellas and old-school soldiers. Here we show how to run 
it from a command line with SBT and with Maven:    

    // To run it with sbt 
 sbt clean package 
 $SPARK_HOME/bin/spark-submit \ 
 --class com.apress.smack.WordFreq \ 
 ./target/...(as above) \ 
 ./README.md ./wordfreq 

   // To run it with Maven 
 mvn clean && mvn compile && mvn package 
 $SPARK_HOME/bin/spark-submit \ 
 --class com.apress.smack.WordFreq \ 
 ./target/WordFreq-0.0.1.jar \ 
 ./README.md ./wordfreq 

    If nothing works, you can always refer to the official Spark guide at    http://spark.apache.org/docs/
latest/quick-start.html     .   

http://spark.apache.org/docs/latest/quick-start.html
http://spark.apache.org/docs/latest/quick-start.html
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     RDD Operations 
 RDDs have two types of operations: transformations and  actions  . Transformations are operations that 
receive one or more RDD as input and return a new RDD. Actions return a result to the driver program and/
or store it, and/or trigger a new operation. 

 If you still get confused and don’t know how to distinguish them, this is the rule:  transformations return 
RDDs; actions don’t . 

   Transformations 
  Transformations   are operations with these characteristics:

•     Lazy evaluation . Transformations are lazy operations; they aren’t calculated until 
you perform an action or explicitly invoke the collect method. This behavior is 
inherited from the actor model and functional programming.  

•    Element-wise . Transformations work on each individual element of a collection; 
one at a time.  

•    Immutable . RDDs are immutable, thus transformations are immutable too (i.e., they can’t 
modify the value of the RDD received as a parameter. There are no global variables).  

•    Lineage graph . Let’s suppose you have a transformations sequence. We have RDDs as 
result of transformations in other RDDs. Spark keeps a track of each operation and of 
the dependencies among all the RDDs. This record, known as a  lineage graph , is kept 
to recover the system from a failure. Spark always builds a lineage graph when running 
distributed applications on a cluster.    

 Table  6-3  enumerates the main transformations.  

   Table 6-3.    Spark Main  Transformations     

 Transformation  Purpose  Example 

  filter( function)   Builds a new RDD by 
selecting the elements 
on which the function 
returns true. 

 > val rdd = sc.parallelize(List(“Spark”, “Mesos”, 
“Akka”, “Cassandra”, “Kafka”)) 
 > val k = rdd.filter(_.contains(“k”)) 
 > k.collect() 
 Result: 
 Array[String] = Array(Spark, Akka, Kafka) 

  map( function)   Builds a new RDD by 
applying the function on 
each element. 

 > val rdd = sc.parallelize(List(1, 2, 3, 4)) 
 > val t = rdd.map(_*5) 
 > t.collect() 
 Result: 
 Array[Int] = Array(5, 10, 15, 20) 

  flatMap( function )   The same as map() but 
it returns a sequence 
instead of a value. 

 > val rdd = sc.parallelize(List(“Big Data are 
Buzzwords”, “Make Fast Data”)) 
 > val fm = rdd.flatMap( s => s.split(“ ”) ) 
 > fm.collect() 
 Result: 
 Array[String] = Array(Big, Data, are, Buzzwords, 
Make, Fast, Data) 

(continued)
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 Table  6-4  lists the main transformations on sets.   

 Transformation  Purpose  Example 

  reduceByKey( function, 
[number] )  

 Aggregates the values of a 
key using the function. 

 > val words = fm.map( w => (w, 1) ) 
 > val wordCount = words.reduceByKey( _+_ ) 
 > wordCount.collect() 
 Result: 
 Array[(String, Int)] = Array((are,1), (Big,1), (Fast,1), 
(Make,1), (Buzzwords,1), (Data,2)) 

  groupByKey([numTasks])   Converts (K, V) to (K, 
Iterable<V>). 

 > val wc = wordCount.map{case(w,c) => (c,w)} 
 > wc.groupByKey().collect() 
 Result: 
 Array[(Int, Iterable[String])] = 
Array((1,CompactBuffer(are, Big, Fast, Make, 
Buzzwords)), (2,CompactBuffer(Data))) 

  distinct([numTasks])   Eliminates duplicates.  > fm.distinct().collect() 
 Result: 
 Array[String] = Array(are, Big, Fast, Make, 
Buzzwords, Data) 

Table 6-3. (continued) 

   Table 6-4.    Main  Transformations on Sets     

 Transformation  Purpose  Example 

  union()   Builds a new RDD containing all 
elements from the source and the 
argument. 

 > val foo = sc.parallelize(List(“Big”, “Data”)) 
 > val bar = sc.parallelize(List(“Fast”, “Data”)) 
 > foo.union(bar).collect() 
 Result: 
 Array[String] = Array(Big, Data, Fast, Data) 

  intersection()   Builds a new RDD containing only 
common elements between the 
source and argument. 

 > foo.intersection(bar).collect() 
 Result: 
 Array[String] = Array(Data) 

  cartesian()   Builds an RDD with cross product 
of all elements from the source and 
the argument. 

 > foo.cartesian(bar).collect() 
 Result: 
 Array[(String, String)] = Array((Big,Fast), 
(Big,Data), (Data,Fast), (Data,Data)) 

  subtract()   Builds a new RDD by removing 
common data elements between 
source and argument. 

 > foo.subtract(bar).collect() 
 Result: 
 Array[String] = Array(Big) 

(continued)
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   Actions 
 Although actions return scalar (simple) values, you must never underestimate them, since the internal 
process can become really complex. Actions return the result to the driver program and/or write in and store 
the result. 

 Pipeline of operations are advanced sequentially, operation by operation; however, remember that 
everything is lazy evaluation. Flow can advance, and when it finds an action, everything is evaluated to that 
point. Actions trigger the evaluation of all previous transformations. 

 Actions always trigger an evaluation because they must always return a value; if they don’t return a 
value or store something, they can’t continue. Table  6-5  enumerates the main Spark actions.   

   Table 6-5.     Main Spark Actions     

 Action  Purpose  Example 

  count()   Obtains the number of 
RDD elements. 

 > val smack = sc.parallelize( List(‘s', 'M', 'A', 'C', 'K') ) 
 > smack.count() 
 Result: 
 long = 5 

  collect()   Returns all the RDD 
elements as an array. 

 > val smack = sc.parallelize( List(“S”, “M”, “A”, “C”, 
“K”) ) 
 > smack.collect() 
 Result: 
 Array[String] = Array(S, M, A, C, K) 

  reduce( function)   Aggregates the RDD 
elements using the 
function. 

 > val smack = sc.parallelize( List(1, 5, 2, 4, 3) ) 
 > smack.reduce(_+_) // the sum of all 
 Result: 
 Int = 15 

 Transformation  Purpose  Example 

  join( RDD, 
[number] )  

 When invoked on (K,V) and (K,W), 
creates a new RDD with (K, (V,W)) 

 > val foo = sc.parallelize( Seq((1, “S”), (2, “M”), 
(3, “A”), (1, “C”), (4, “K”))) 
 > val bar = sc.parallelize( Seq((1, “W”), (2, “X”), 
(3, “Y”), (2, “Z”))) 
 > foo.join( bar ).collect() 
 Result: 
 Array[(Int, (String, String))] = Array((1,(S,W)), 
(1,(C,W)), (2,(M,X)), (2,(M,Z)), (3,(A,Y))) 

  cogroup( RDD, 
[number] )  

 Converts (K, V) to (K, Iterable<V>).  > foo.cogroup(bar).collect() 
 Result: 
 Array[(Int, (Iterable[String], Iterable[String]))] = 
Array((4,(CompactBuffer(K),CompactBuffer())), 
(1,(CompactBuffer(S, C),CompactBuffer(W))), 
(2,(CompactBuffer(M),CompactBuffer(X, Z))), 
(3,(CompactBuffer(A),CompactBuffer(Y)))) 

Table 6-4. (continued) 

(continued)
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   RDD Persistence (Caching) 
 Now you know that RDDs support lazy evaluation. But what if you want to use the same RDD several 
times? If you don’t do this work conscientiously, by default, Spark will recalculate the RDD and all of its 
dependencies each time that you apply an action on it. If not done carefully, this can be very expensive. 

 You can tell Spark to persist the RDD to avoid recalculating them all the time. When you persist an RDD, 
the nodes working with it store the RDD partitions assigned to them. If a node fails, Spark recalculates lost 
partitions as needed (yes, it’s powerful). 

 You can also replicate your RDD among several nodes if you want to handle a node failure without 
performance implications. As shown in Table  6-6 , Spark offers several levels of persistence to suit all of our 
scenarios and needs. Note that when writing data to disk the data is always serialized.  

 Action  Purpose  Example 

  take( n )   Fetches the first n 
elements of the RDD. 

 > val smack = sc.parallelize( List(‘s', 'M', 'A', 'C', 'K') ) 
 > smack.take(4) 
 Result: 
 Array[Char] = Array(S, M, A, C) 

  foreach( function)   Executes the function in 
each RDD element. 

 > val s = sc.parallelize(List(1, 4, 2, 3)) 
 > s.foreach(n => 
 print( “%s*7=%s ”.format(n, n*7) )) 
 Result: 
 1*7=7 4*7=28 2*7=14 3*7=21 

  first()   Fetches the RDD first 
element, the same as 
take(1). 

 > val rdd = sc.parallelize(List(4, 3, 2, 1)) 
 > rdd.first() 
 Result: 
 Int = 4 

  saveAsTextFile(path)   Writes the RDD content 
to the text file on local file 
system/HDFS. 

 > val myLogs = sc.textFile(“/users/smack/
evidence.log”) 
 > myLogs.filter(_.contains(“Fatal”)). 
 myLogs.saveAsTextFile(“/users/smack/fact.txt”) 
 Result: 
 smack@localhost~/smack$ ls _SUCCESS part-
00000 part-00001 

Table 6-5. (continued) 

   Table 6-6.    RDD  Persistence Levels      

 Persistence Level  CPU Used  Space Used  On Disk  In Memory 

 MEMORY_ONLY  Low  High  No  Yes 

 MEMORY_AND_DISK(*)  Medium  High  Some  Some 

 MEMORY_ONLY_SER  High  Low  No  Yes 

 MEMORY_AND_DISK_SER(*)  High  Low  Some  Some 

 DISK_ONLY  High  Low  Yes  No 

 OFF_HEAP (experimental)  Low  Low  Some  Some 

   *Write to disk if there is much data stored in memory. (Note that SER means serializable)   
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 An important caching scheme is off-heap, a mixed scheme. It was previously called Tachyon, but now 
it’s called Alluxio (   http://alluxio.org/     ). Note that the off-heap catching doesn’t guarantee recovery after 
failure. 

 This is a code example: 

   import org.apache.spark.storage.StorageLevel 
 val rdd = input.map( foo ) 
 rdd.persist( StorageLevel.DISK_ONLY ) 
 rdd.reduce( bar ) 
 rdd.collect() 

   Here are some points to consider:

•    You must call the  persist()  method in the code before the first action.  

•   The  persist()  function doesn’t force the evaluation.  

•   Spark automatically evicts old partitions using an LRU (least recently used) cache 
policy.  

•   The  persist()  method counterpart is the  unpersist()  method to manually remove 
RDDs from the cache.       

     Spark in Cluster Mode 
 In this chapter, we have focused on running Spark in local mode. As we mentioned, horizontal scaling is 
what makes Spark so powerful. To run Apache Spark on a cluster, you do not need specialized software-
hardware integration engineers. To escalate, you don’t need to make great efforts and stop the entire 
production to add more machines to your cluster. 

 The good news is that the same scripts that you are building on your laptop with examples that are only 
a few kilobytes can run on business clusters running terabytes of data. There is no need to change your code, 
nor invoke another API. All you have to do is test your model several times to know if it runs correctly, and 
then you can deploy it. 

 In this section, you analyze the runtime architecture of a distributed Spark application. Then you see 
the options to run Spark on a cluster. 

 Apache Spark has its own built-in standalone cluster manager. But you can run it on multiple cluster 
managers, including Hadoop YARN, Amazon EC2, and Apache Mesos. This topic is so large that it has its 
own chapter in this book. 

     Runtime  Architecture   
 Before running Spark on a cluster, it’s important to understand the distributed Spark architecture. 

 As shown in Figure  6-5 , Spark uses a master/slave architecture. The master is called the  driver  and the 
slaves are called  executors . When running on a single machine, there is a distributed architecture: a driver 
with several executors. The driver runs in its own Java process, and each executor runs in a separate Java 
process. This architecture is made on the actor model.  

http://alluxio.org/
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 The driver and executors set is known as a Spark application. If you have more than one machine, the 
Spark application must be launched using the cluster manager service. The Spark application architecture is 
always the same; it does not matter if it’s clustered or not. 

 In a typical Spark clustered application architecture, each physical machine has its own executor. You 
will see several strategies to know when an executor dies or goes offline.  

     Driver 
 The  driver      is the process where the SparkContext runs. It is in charge of creating and executing 
transformations and actions on RDDs. When you run the Spark shell command on your laptop, you are 
actually creating a driver program. Its first task is to create the SparkContext, called sc. When the driver 
program dies, the entire application dies. 

 The following sections explain the two responsibilities in the life of a driver program: dividing a 
program into tasks and scheduling tasks on executors. 

   Divide a Program into Tasks 
 The Spark driver is responsible for splitting the  user program , which could be programmed in an inefficient 
way in execution units called  tasks . 

 A user program basically applies transformations and actions into one or more RDDs to generate new 
RDDs and calculate and/or store data. 

 Another task of the Spark driver is to generate an operation’s   directed acyclic graph  (DAG)     . With this 
graph, the driver knows which tasks are assigned to which node; so if you lost a node, the driver knows at 
which point it was at and how to assign the lost node’s tasks to the remaining nodes. 

 The driver also does pipeline optimizations; it splits the DAG into stages. Each stage has multiple tasks. 
In Spark, the task is the smallest work unit; a normal program can launch thousands of tasks.  

  Figure 6-5.    Distributed Spark application       

 



CHAPTER 6 ■ THE ENGINE: APACHE SPARK

114

   Scheduling Tasks on Executors 
 Given a physical execution plan, the Spark driver coordinates which tasks are performed by each  executor 
node  . When an executor starts operating, it registers itself in the driver, so the driver always has an entire 
view of all the executor nodes. Each executor is a standalone Java process that can run tasks and store RDDs. 

 When a program runs, the driver subdivides the program into tasks, sees all the available executor 
nodes, and tries to balance the workload among them. The driver also knows which part of the data that 
each node has, in order to rebuild everything at the end. 

 The driver displays its information on the Web, so that the user can always see what is happening; by 
default, it runs on port 4040. When you run locally, it can be accessed at  http://localhost:4040 , as you can 
see in Figure  6-6  (let’s run the Spark shell and browse it).    

  Figure 6-6.    Spark shell application web  UI         

     Executor 
 Executors are responsible for running the individual tasks of a given Spark job. Executors are launched when 
you start the Spark application; they live while the Spark application lives. 
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 Executors have two roles:    

•    Run the assigned tasks and deliver results to the driver.  

•   Provide in-memory storage for RDDs. A program called Block Manager runs on each 
executor and manages memory and RDDs.    

 When running Spark in local mode, the driver and executors run in the same process. This is for 
development purposes; it is not recommended in a production environment.  

     Cluster Manager 
 Spark depends on a cluster manager to coordinate and launch the executors. The cluster manager that 
ships with the Spark distribution is called the  standalone manager , but it is a pluggable component. You can 
change it and use a custom cluster manager like Hadoop Yarn, Amazon EC2, or Apache Mesos. 

 It is important to note that the terms  driver  and  executor  are used when talking about the Spark 
application. When we talk about the cluster manager, we use the terms  master  and  worker . It is important 
not confuse the terms or to exchange them, because they are different concepts. 

 Regardless of the cluster manager that you use, Spark provides a single script, called spark-submit, to 
launch the program. The  spark-submit script   can connect to different managers through various options and 
manage the cluster resources that the application needs.  

     Program Execution 
 When you run a  Spark   application on a cluster, these are the steps followed by the program:

    1.    The user runs the spark-submit shell.  

    2.    The spark-submit shell launches the driver program, and calls the user program’s 
 main()  method.  

    3.    The driver program establishes the connection to the cluster manager, which has 
the slave machines list. Then, the necessary resources are requested to launch 
the executors.  

    4.    The cluster manager launches executors in each slave node.  

    5.    The driver program analyzes, divides, and distributes the user application, 
sending each executor its tasks.  

    6.    The tasks run in the executors, calculating and storing the results.  

    7.    The user program ends when the  exit()  method in the  main() method is 
invoked, or when the SparkContext  stop()  method is called.  

    8.    The driver program ends the executors and frees the cluster manager’s resources.      

     Application Deployment 
 Spark uses the spark-submit tool to send jobs to the cluster manager. 

 When you run a program in local mode, you only invoke spark-submit passing your script name or jar 
file as a parameter. 

 When you run a program in cluster mode, you have to pass additional parameters—for example, the 
size of each executor process. 
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 The  --master  flag specifies the cluster URL to which you want to connect. In this case,  spark://  means 
that we are using Spark in stand-alone mode. 

 For example: 

   bin/spark-submit --master spark://skynet:7077 --executor-memory 10g Terminator.jar 

   Here we indicate that we will run our Terminator program in stand-alone cluster mode in the master 
node called SkyNet and each executor node will have 10 gigabytes of memory. 

 In addition to the cluster URL, spark-submit has several options to specify how you want to run your 
application. These options are in of two categories:

•      Scheduling data    .  The amount of resources that each job will have.  

•     Dependencies   . The files and libraries available in the slaves.    

 Table  6-7  lists and describes some of the spark-submit flags.  

   Table 6-7.     spark-submit Flags     

 Flag  Purpose 

  --master   The cluster manager to connect to (sample values explained in Table  6-8 ). 

  --deploy-mode   Indicates if the program is launched in local mode (client) or cluster mode. In 
local mode, the driver is launched where spark-submit is launched. The default 
value is client mode. 

  --class   The main application class is Java/Scala. 

  --name   Human-readable name for your application, as displayed in Spark web UI. 

  --jars   List of jar files to upload on application classpath. 

  --files   List of files uploaded on the application’s working directory on each node. 

  --executor-memory   Memory for executors: k for kilobytes, m for megabytes, g for gigabytes. 

  --driver-memory   Memory for the driver process: k for kilobytes, m for megabytes, g for gigabytes. 

  --conf prop=value   A single configuration property value in key-value form. 

  --properties-file   A configuration file with properties in key-value form. 

    Table 6-8.    Master Flag Sample  Values     

 Value  Meaning 

  spark://host:port   Connect to a cluster in stand-alone mode at specified host and port. 7077 is the 
default port for a stand-alone master. 

  mesos://host:port   Connect to a Mesos cluster at the specified host and port. 5050 is the default port for 
the Mesos master. 

  local   Local mode master with a single core. 

  local[N]   Local mode master with N cores. 

  local[*]   Local mode master using as many cores as the machine has. 

 Table  6-8  lists a few example values that the  --master  flag could have.  
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 Now you are able to read this: 

   $ ./bin/spark-submit \ 
 --master spark://skynet:7077 \ 
 --deploy-mode cluster \ 
 --class com.cyberdyne.Terminator \ 
 --name "T1000 model" \ 
 --jars neuralNetwork.jar,geneticAlgorithm.jar \ 
 --total-executor-cores 300 \ 
 --executor-memory 10g \ 
 terminator.jar 

   Here we indicate that we will run our terminator.jar program:

•    In stand-alone cluster mode in the SkyNet master node on port 7077  

•   The driver program is launched in cluster mode  

•   The main class is  com.cyberdyne.Terminator   

•   The application display name is  T1000 model   

•   The  neuralNetwork.jar  and  geneticAlgorithm.jar  files are used  

•   Each executor node uses 300 cores and has 10 gigabytes of memory     

     Running in Cluster Mode 
 This section discusses some of the most common methods to install Spark in  cluster mode  . On a single 
laptop, Spark is excellent for developing and testing; but in practice, it is necessary to know how to install 
Spark with built-in scripts on a dedicated cluster via SSH (Secure Shell). This section covers how to deploy 
on a cluster in Spark Standalone and with Mesos. This section also covers how to deploy Spark in the cloud 
with Amazon EC2.  

     Spark Standalone Mode 
 When you run  bin/start-master.sh , you start an individual master. When you run  sbin/start-slaves.sh , 
you start a worker. The default port of the Spark master is always 8080. Because no one wants to go to each 
machine and run scripts by hand in each, there is a set of useful scripts in the  /bin  directory that can help 
you run your servers. 

 A prerequisite to use any of the scripts is to have passwordless SSH access from the master to all worker 
machines. It is always advisable to create a special user to run Spark on all machines. In this book, the 
examples use the name  sparkuser . From the master, you can run the  ssh-keygen  command to generate the 
SSH keys. When an RSA key is generated, by default, it is stored in  ~/.ssh/id_rsa.pub . You have to add it to 
each host in  ~/.ssh/authorized_keys . 

 The Spark administration scripts require that user names match. If this is not the case, you can 
configure alternative user names in  ~/.ssh/config . 

 Now that you have SSH access to the machines, it’s time to configure Spark. There is a template in the 
 conf/spark-env.sh.template  directory, which should be copied to  conf/spark-env.sh . Table  6-9  lists 
some of the environment variables.  
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   Table 6-9.    Spark  Environment Variables     

 Name  Purpose  Default value 

  MESOS_NATIVE_LIBRARY   Points to Mesos installation directory.  --- 

 S CALA_HOME   Points to Scala installation directory.  --- 

  SPARK_MASTER_IP   The IP address where the Spark master 
listens and where the workers connect 
to; for example, a public one. 

 hostname command 
output 

  SPARK_MASTER_PORT   The port number where the Spark master 
listens. 

 7077 

  SPARK_MASTER_WEBUI_PORT   The port number for the master web user 
interface. 

 8080 

  SPARK_MASTER_OPTS   Configuration properties that apply only 
to the master in the form of  "-Dx=y ". 

 --- 

  SPARK_WORKER_CORES   Number of cores to be used by the 
worker. 

 Total number of cores 

  SPARK_WORKER_MEMORY   Amount of memory to be used by the 
worker. 

 Total system memory 
minus 1GB; if you have 
less than 1GB, it’s 512MB. 

  SPARK_WORKER_PORT   The port number on which the worker 
runs on. 

 Random 

  SPARK_WORKER_WEBUI_PORT   The port number of the worker web user 
interface. 

 8081 

  SPARK_WORKER_DIR   Directory on which files from the worker 
are stored. 

 SPARK_HOME/work 

  SPARK_WORKER_OPTS   Configuration properties that apply only 
to the worker in the form of  "-Dx=y" . 

 --- 

  SPARK_DAEMON_MEMORY   Memory to allocate to the Spark master 
and worker daemons. 

 1GB 

  SPARK_DAEMON_JAVA_OPTS   JVM options for the Spark master and 
worker daemons in the form of  "-Dx=y" . 

 --- 

 Once the configuration is made, you must start the cluster. We highly recommend that you install the 
pssh tool, which is a set of tools that includes pscp SSH. The  pscp  command makes it easy to secure copying 
between hosts (although it takes a little while); for example: 

   pscp -v -r -h conf/slaves -l sparkuser ../spark-1.6.1 ~/ 

   When you have finished changing the settings, you need to distribute the configuration to workers, as 
shown here: 

   pscp -v -r -h conf/slaves -l sparkuser conf/spark-env.sh ~/spark-1.6.1/conf/spark-env.sh 

   After you have copied the files, you are ready to start the cluster. Use these scripts:  sbin/start-all.sh , 
 sbin/start-master.sh , and  sbin/start-slaves.sh . 
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 It is important to note that  start-all.sh  and  start-master.sh  are assumed to be running on the 
master node in the cluster. All scripts start demonizing, so there is no problem running them on the screen: 

   ssh master bin/start-all.sh 

   In the event that you get a java.lang.NoClassDefFoundError: scala/ScalaObject error, check that you 
have Scala installed on the host and that the SCALA_HOME environment variable is set properly. 

 Spark scripts assume that the master has Spark installed in the same directory as your workers. If this is 
not the case, you must edit  bin/spark-config.sh  to point to the correct directories. 

 Table  6-10  shows the commands provided by Spark to manage the cluster. If you want more 
information, go to    http://spark.apache.org/docs/latest/spark-standalone.html#cluster-launch-
scripts     .  

   Table 6-10.    Spark Cluster  Administration Commands     

 Command  Purpose 

  bin/slaves.sh <command>   Runs the provided command on all of the worker hosts. For example, to 
show how long each hosts worker has been up:  bin/slave.sh uptime  

  bin/start-all.sh   Starts the master and all the worker hosts. Must be run on the master. 

  bin/start-master.sh   Starts the master host. Must be run on the master. 

  bin/start-slaves.sh   Starts all the worker hosts. 

  bin/start-slave.sh   Starts a specific worker host. 

  bin/stop-all.sh   Stops all master and workers hosts. 

  bin/stop-master.sh   Stops the master host. 

  bin/stop-slaves.sh   Stops all the worker hosts. 

 Now the Spark cluster is running. As shown in Figure  6-7 , there is a useful web UI running in the master 
on port 8080, and in workers running on port 8081. The web UI contains important information about the 
workers’ current and past jobs.  

  Figure 6-7.     Spark Master UI         

 

http://spark.apache.org/docs/latest/spark-standalone.html#cluster-launch-scripts
http://spark.apache.org/docs/latest/spark-standalone.html#cluster-launch-scripts
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 Now that you have a cluster up and running, you can do several things with it. As with single host 
examples, you have the same scripts to run Spark examples on a cluster. 

 All the example programs are in the  examples/src/main/scala/spark/examples/  directory and take 
the master parameter, which points them to the master IP host. If you are running on the master host, you 
can run the example: 

   ./run spark.examples.GroupByTest spark://'hostname':7077 

   If you get a java.lang.UnsupportedClassVersionError error, it is because you need to update the JDK. Always 
use the supported versions. To check which version compiled your Spark distribution, use the command: 

   java -verbose -classpath ./core/target/scala-2.11.8/classes/ spark.SparkFiles | head -n 20 

   Version 49 is JDK 1.5, version 50 is JDK 1.6, and version 60 is JDK 1.7 
 If you cannot connect to the host, make sure that you have configured your master to listen to all IP 

addresses.  

     Running Spark on EC2 
 The ec2 directory contains the scripts to run a Spark cluster in  Amazon EC 2   . These scripts can be used to run 
Spark in single or cluster mode. Spark can also run on Elastic MapReduce, which is the Amazon solution for 
MapReduce cluster management. 

 The final configuration to run Spark in EC2 is at    http://spark.apache.org/docs/latest/ec2-
scripts.html     . 

 To begin, you must have EC2 enabled in your Amazon account. It should generate a key pair for the 
Spark cluster. This can be done at    https://portal.aws.amazon.com/gp/aws/securityCredentials     . 
Remember that the key pairs are generated by region. You must make sure to generate them in the same 
region where you run your hosts. You can also choose to upload a SSH public key instead of generating 
a new one. They are sensible, so you have to be sure to keep them in a safe place. In our environments, 
we need two environment variables, AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY, which are 
available from our EC2 scripts: 

   export AWS_ACCESS_KEY_ID = {our} AWS access key 
 export AWS_SECRET_ACCESS_KEY = {our} AWS secret key 

   There are some scripts provided by Amazon at    http://aws.amazon.com/developertools/Amazon-EC2     . 
 To check that everything is running correctly, type this command: 

   $ Ec2-describe-regions 

   That should result in the following output: 

   REGION  ap-northeast-1  ec2.ap-northeast-1.amazonaws.com 
 REGION  ap-southeast-1  ec2.ap-southeast-1.amazonaws.com 
 REGION  ap-southeast-2  ec2.ap-southeast-2.amazonaws.com 
 REGION  eu-central-1    ec2.eu-central-1.amazonaws.com 
 REGION  eu-west-1       ec2.eu-west-1.amazonaws.com 
 REGION  us-east-1       ec2.us-east-1.amazonaws.com 
 REGION  us-west-1       ec2.us-west-1.amazonaws.com 
 REGION  us-west-2       ec2.us-west-2.amazonaws.com 
 REGION  sa-east-1       ec2.sa-east-1.amazonaws.com 

http://spark.apache.org/docs/latest/ec2-scripts.html
http://spark.apache.org/docs/latest/ec2-scripts.html
https://portal.aws.amazon.com/gp/aws/securityCredentials
http://aws.amazon.com/developertools/Amazon-EC2
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   The Spark EC2 script automatically generates a group of different security and firewall rules to run the 
Spark cluster. By default, our Spark cluster is accessible on port 8080. For security, we strongly recommend 
changing the 0.0.0.0/0 address in the spark_ec2.py script with our public IP address. 

 To start the cluster, use this command: 

   ./ec2/spark-ec2 -k spark-keypair -i pk-{....}.pem -s 1 launch lePetitCluster 

   Where  {....}.pem  indicates the path to our private key. 
 If you get a “not being reliable to SSH to the master” error, it is because the key can be accessed by 

others users. Try changing the access permissions to the key so that only one user can read it. If more users 
can read it, the SSH will refuse it. 

 If you get the “cannot yet SSH script to the master” error, it is because we are having a race condition; 
the hosts are reporting them as alive. Try changing the  -w  in setup_cluster by using a sleep of 120 seconds. 

 If you get a “transient error while launching a cluster” error, try to run the script with the  --resume  
option. 

 This makes the scaffolding to make a cluster with a master and a worker node with all default values. 
The next task is to verify that the firewall rules work. Access the master on port 8080. 

 The JPS command gives the following information about our cluster: 

   root @ ip-172-31-45-56 ~] $ jps 
 1904 NameNode 
 2856 Jps 
 2426 MasterNameNode 
 2078 SecondaryNodeName 

   This information is about the name of Spark master, the Hadoop node, and slave nodes. 
 You can take the example of Pi that you ran on your machine at the beginning of this chapter: 

   cd spark 
 bin/run-example SparkPi 10 

   To terminate the instances, use this command: 

   ec2/spark-ec2 destroy <cluster name> 

   To learn all the options that the spark-ec2 command has, run this: 

   ec2/spark-ec2 -help 

   There are many types of EC2 instances available; the type has an important impact on the cluster 
performance. The type can be specified with --instance-type = [typeName]. If you need a lot of memory, you 
can specify it here. 

 By default, the same instance type is used for masters and workers. To specify a different type of master 
you use --master-instance-type = [typeName]. 

 EC2 has also instances of the type GPU, which are very powerful if you run on Envidia graphic cards 
because they usually have hundreds of GPUs at a very low cost. The GPU instance type is useful when you 
run a worker, if the master is not used. It is important to note that EC2 performance on the GPU may be 
lower than when testing locally, because you have more I/O imposed by the hypervisor. 

 EC2 scripts use the Amazon Machine Images (AMI) provided by the Spark development team; they are 
enough for most applications.  
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     Running Spark on Mesos 
 This book devotes an entire chapter on Mesos (Chapter   7    ), but we must include a special mention in this 
Spark chapter. 

  Mesos   is a cluster management platform to run multiple distributed applications (or frameworks) on a 
cluster. Mesos intelligently manages and runs clusters of Spark, Hadoop, Cassandra, Akka, and Kafka. Mesos 
can run Spark as separate Mesos tasks or run all in a single Mesos task. Mesos quickly scales horizontally to 
manage clusters beyond the size that individual Python scripts allow. 

 Mesos has a large number of configuration scripts that you can use. For Ubuntu installations, use 
configure.ubuntu-lucid-64. In addition to the Spark requirements, you need to ensure that you have the 
Python C header files installed. Since Mesos must be installed on all of your machines, you can use Mesos to 
configure other machines: 

    ./configure --prefix=/home/sparkuser/mesos  &&  make  &&  make check  &&  make install  

   As with the Spark Standalone mode configuration, you must ensure that Mesos nodes can find each 
other. 

 Let’s begin by adding the master hostname to  mesossprefix/var/mesos/deploy/masters  and all the 
worker hostnames to  mesossprefix/var/mesos/deploy/slaves . Then point the workers to the master in 
 mesossprefix/var/mesos/conf/mesos.conf . 

 Once Mesos is configured on your machines, you need to configure Spark to run on Mesos. This is as 
simple as copying the  conf/spark-env.sh.template  file to  conf/spark-env.sh  and updating the MESOS_
NATIVE_LIBRARY variable to point to the path where Mesos is installed. 

 Then copy the build to all machines using this secure shell copy command: 

   pscp -v -r -h  -l sparkuser ./mesos /home/sparkuser/mesos 

   To start Mesos clusters, use  mesosprefix/sbin/mesos-start-cluster.sh . Use  mesos://[host]:5050  
as the master. 

 Well, that’s roughly what you have to do to run an Apache Spark cluster on Apache Mesos.  

     Submitting Our Application 
 To submit our application to a standalone cluster manager, type this: 

   spark-submit --master spark://masterNodeHost:masterNodePort appName 

   Previously, you saw the spark-submit command syntax. Now just change the master node address, and 
that’s it. 

 The cluster URL is also displayed in the cluster administrator web UI at  http://[masternode]:8080 . 
The host name and port should exactly match the URL present in the web UI. As administrators, we can 
configure ports other than 7077. 

 The standalone cluster manager has a -- deploy-mode option  :

•     Client mode  (local, default). The driver runs in the same process as spark-submit. If 
you shut down the spark-submit, your cluster goes down.  

•    Cluster mode . The driver is launched as a different process on a worker node. You 
can shut down the machine on which spark-submit is running and everything will 
continue running.    

http://dx.doi.org/10.1007/978-1-4842-2175-4_7
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 For each executor node, the  --total-executor-cores  and  --executor-memory  parameters specify 
the number of cores and the available memory. A common error is to ask for more resources than can be 
assigned. In this case, the cluster manager can’t start the executor nodes. Always check that your cluster has 
the resources that you state in the parameters.  

     Configuring Resources 
 In the standalone cluster manager, the resources are controlled by two  variables  :

•     --executor-memory  argument of the spark-submit command 

•  The total memory on each executor. By default, this value is set to 1GB; 
unfortunately, in production environments, one gigabyte of memory assigned to 
each executor won’t be enough.  

•    --total-executor-cores  argument of the spark-submit command 

•  The total number of cores used on each executor. The default value is unlimited (i.e., 
the application starts an executor on each available node in the cluster).    

 To check your current parameters, you can browse the standalone cluster manager’s web UI at 
 http://[masterNode]:8080 . 

 By default, the standalone cluster manager disperses the executors onto the largest number of 
machines available. For example, suppose you have an eight-node cluster and each machine has four cores. 
You launch the application with -- total-executor-cores 6 . Spark will raise only six executors, and tends to 
use the largest number of machines possible (i.e., an executor on each machine, leaves two nodes without 
an executor). 

 If you want to use the fewest number of nodes possible, change the spark.deploy.spreadOut 
configuration property to false in the  conf/spark-defaults.conf  configuration file. If we turn off this flag in 
our example, we will use only two machines: one with four executors and the other with two executors. The 
other six machines won’t run executors. 

 These settings affect all the applications on the cluster, so use it with caution.  

     High Availability 
 You saw how to specify the cluster mode in the Standalone cluster manager deploy mode, so if the spark-
submit process dies, the manager doesn’t also die. This is because the driver runs on one member of the 
cluster. 

 You want to keep your manager running while the last node is still standing. To increase manager life, 
there is a top-notch tool called Apache ZooKeeper, which is discussed in Chapter   7    .   

     Spark Streaming 
 Life is a continuous process, it is not discrete. Life is a continuous flow. 

 As we mentioned in earlier chapters, the benefits of the data are greater when the information is fresher. 
Many machine learning computations should be calculated in real time from streaming data. 

 Spark Streaming is the Apache Spark module for managing data flows. Most of Spark is built over the 
RDD concept. Spark Streaming introduces a new concept: discretized streams, known as DStreams. A 
DStream is an information sequence related to time. Note that a DStream is internally a sequence of RDDs, 
thus the name  discretized . 

http://dx.doi.org/10.1007/978-1-4842-2175-4_7
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 Just as RDDs has two operations, DStreams also have two types of operations:  transformations  (results 
in another DStream) and  output operations , which are designed to store information on external systems. 
DStreams have many of same the operations available to RDDs, plus time-related operations, such as sliding 
windows. 

 Unlike batch operations, Spark Streaming applications require additional configurations to provide 
24/7 services. Let’s talk about resetting applications in the event of a failure and discuss how to configure 
automatic restarts. 

     Spark Streaming Architecture 
 Spark Streaming uses the microbatch  architecture  , in which streaming is considered a continuous series 
of small batches of data (see Figure  6-8 ). The magic of Spark Streaming is receiving a continuous flow and 
splitting it into small data chunks.  

  Figure 6-8.    A DStream is an RDD sequence       

  Figure 6-9.    Spark Streaming  operation         

 Batches are generated at regular time intervals; if two data chunks come in the same time window, they 
are included in the same data batch. The batch size is determined by the parameter  batch interval , which 
usually has a value between 500 milliseconds and several seconds. The developer specifies this value. 

 As you can see in Figure  6-9 , the primary Spark Streaming task is to receive a data stream from multiple 
sources, and then build a DStream, which is a sequence of RDDs. Each RDD corresponds to a time slice of 
the original flow.  
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 We can create DStreams from input sources or through applying transformations to other DStreams. 
The DStreams support most of the operations that RDDs support. Additionally, DStreams have “stateful” 
operations to aggregate data across time. 

 In addition to transformations, DStreams support output operations, which are similar to actions in the 
aspect that RDDs write to external systems; but Spark Streaming batches run periodically, producing the 
output batch. 

 For each input source, Spark launches streaming receivers, which are tasks that run on executors, gather 
data from information sources, and store it in RDDs. The receivers are also responsible for replicating data 
among other executors to support fault tolerance. This data is stored in the memory of executors in the same 
way as the RDDs. As shown in Figure  6-10 , the StreamingContext in the driver program periodically runs 
Spark jobs to process this data and combine them with the new RDDs.  

  Figure 6-10.    Spark Streaming execution with Spark components       

 The same fault tolerance properties offered by RDDs are also offered with DStreams. In the event of a 
failure, Spark can recalculate the DStreams at any point in time. However, the recalculation can take time, 
especially if the rebuild goes back to the beginning of the execution. 

 Spark Streaming provides a mechanism called   checkpointing    that periodically saves the state to a 
reliable file system. Typically, a checkpoint occurs every five to ten data batches. When a failure occurs, 
Spark restores from the last checkpoint.  

     Transformations 
  Transformations      on DStreams can be grouped into stateless or stateful.

•     Stateless . The data of each processing batch doesn’t depend on the data from 
previous batches. These include the RDD transformations such as  map() ,  reduce() , 
and  filter() .  
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•    Stateful.  The data or intermediate results from previous batches are used to 
calculate the current batch’s results. These include transformations based on sliding 
windows and tracking status over time.    

   Stateless Transformations 
 Stateless transformations are common RDD transformations applied to each RDD on the DStream. Table  6-11  
enumerates the main stateless transformations:  

   Table 6-11.    Main  Stateless Transformations     

 Transformation  Purpose  Example 

  map(function)   Applies a function to each RDD in the 
DStream, returning one DStream as a result. 

  ds.map(_*3)  

  flatMap(function)   Applies a function to each RDD in the 
DStream, returning one DStream with the 
content of the returned iterators. 

  ds.flatMap( str => str.
split(“ ”) )  

  filter(function)   Builds a DStream with only the RDDs 
evaluated with true on the function. 

  ds.filter(_.contains(“k”))  

  repartition(number)   Changes the number of DStream partitions.   ds.repartition(9)  

  reduceByKey(function, 
[number] )  

 Combines the values with the same key in 
each batch. 

  ds.reduceByKey(_+_)  

  groupByKey()   Groups the values with the same key in each 
batch. 

  ds.groupByKey()  

 Bullet points about stateless transformations:

•     Individual.  Although it seems as if the transformation is applied to the whole 
DStream, it is not. Actually, it is applied individually to each batch element (RDD) 
of the DStream. For example, with  reduceByKey() , the function is applied on each 
individual RDD, not on the whole DStream.  

•    Join.  Stateless transformations can also combine data from multiple DStreams. 
For example, DStreams have the same join transformations than RDDs, these are 
 cogroup() ,  join() , and  leftOuterJoin() . You can use these operations to perform 
a join in each DStream batch.  

•    Merge.  You can merge the contents of two different DStreams by using the  union()  
operation, or by using  StreamingContext.union()  to merge several DStreams.  

•    Reuse.  DStreams provide the powerful operator called transform() and can operate 
directly on the RDDs within a DStream. This operation is called on each element of 
the DStream, producing a new DStream. If you have written code for some RDDs and 
you want to reuse in Spark Streaming, the  transform()  method is a good option.  

•    Transform . In addition to StreamingContext.transform(), you can combine several 
DStreams using DStream.transformWith (anotherDStream, function).     
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   Stateful Transformations 
 Stateful transformations are DStream operations that track data across time; data from old batches are used 
to generate new batches. 

 There are two types of stateful transformations:

•     Windowed transformations : Operates on data over a window duration.  

•    Update state by key : Tracks the status between the same key events; for example, a 
user session.    

 Stateful transformations require checkpointing to enable fault tolerance. 

   Windowed Operations 

 Windowed operations calculate results in a period longer than the StreamingContext batch interval time, 
which allows it to combine the results of several batches. 

  Windowed operations   require two parameters: the window duration and the slide duration. Both must 
be multiples of the StreamingContext batch interval.

•    The window duration states the number of previous batches that will be considered; 
this is the formula: 

•   Batches considered = Window duration/Batch interval  

•  Using Figure  6-11  as an example, a DStream with an interval of 2 seconds and a 
window duration of 6 seconds considers only the last six batches.   

  Figure 6-11.    Windowed operations example       
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•   The slide duration indicates how often you want to calculate the results; the default 
value is the duration of batch interval. 

•  For example, if you have a batch interval of 10 seconds and you calculate our window 
every 2 seconds, you must change your slide duration to 20 seconds.    

 The simplest operation that can be performed on a DStream is  window() ; it returns information about 
the current window to the DStream. 

   window(windowLength, slideInterval) 

   Purpose: Returns a new DStream computed from windowed batches of the source DStream. 
 Example: 

   val wind = lines.window(Seconds(30),Seconds(10)); 
 wind.foreachRDD( rdd => { rdd.foreach( x => println(x+ " ")) }) 

   Output: 

   10 10 20 20 10 30 20 30 40 // drops 10 

   Spark Streaming provides other windowed operations to improve efficiency. For example, 
 reduceByWindow()  and  reduceByKeyAndWindow()  allow you to make reductions to each window in a very 
efficient way. They have a special form that calculates the reduction incrementally and considers only the 
input and output data. 

 Finally, to count data, DStream offers the following:

•     countByWindow()  returns a DStream with the number of elements in each window.  

•    countByValueAndWindow()  returns a DStream with the counts of each value.    

   countByWindow( windowLength, slideInterval ) 

   Purpose: Returns a new sliding window count of the elements in a stream. 
 Example: 

   lines.countByWindow( Seconds(30), Seconds(10) ).print() 

   Output: 

   1 2 3 3 

      Update State by Key 

 Sometimes you need to maintain a state between batches in a DStream. 
 The   updateStateByKey() method   provides access to DStream state variables by taking a function that 

specifies how to update each key status given new events. 
 Using the  updateStateByKey()  method with an update function(event, oldState) takes the past event 

(with some key) and its previous state, and returns a new state to make the update. 
 The following are the parameters of this function:

•     events . Lists events in the current batch (can be empty)  

•    newState . (Optional) If you want to delete the previous state.    

 The result of  updateStateByKey()  is a new DStream with RDD in pairs (key, state) at each time frame.   
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   Output Operations 
  Output operations   specify what to do with the data transformed into a stream. It could be printed on the 
screen or stored in a database, for example. 

 As with the RDD lazy operations, if there is no output operation applied to a DStream or any of its 
dependents, the DStream won’t be evaluated. In the same way, if there is no output operations on a 
StreamingContext, it won’t start. 

 Usually, an output operation used for debugging is a simple  print()  method. Printing the results on 
screen counts as an output operation. When going into production, it is vital to consider this. If you remove 
all the  print() , you may be leaving your program without output operations, and it won’t run. 

 Once our program is debugged, we can use output operations to store our results. Spark Streaming has 
the RDD  save()  operation for DStreams. Like the RDD operation, it takes the directory on the file system 
where you want to store results. Each batch’s results are stored in subdirectories of the specified directory, 
with the time and the specified suffix as the file name. 

 Finally,  foreachRDD()  is a generic output operation used to make computations on each RDD of the 
DStream. It is similar to  transform() . It gives also the time of each batch, which saves each time period in a 
different location.   

      24/7 Spark Streaming   
 Spark Streaming provides a mechanism to ensure fault tolerance. If the input data is stored reliably, Spark 
Streaming always calculates the result from it, providing the correct semantics (i.e., as if the data had been 
processed without failing nodes). 

 Spark Streaming applications that run 24/7 need special installation. The first step is to enable 
checkpointing on a reliable storage system: HDFS or Amazon S3. Also, note that you must deal with the 
driver program fault tolerance, changing some portion of the code.  

     Checkpointing 
  Checkpointing   is the primary mechanism to enable fault tolerance in Spark Streaming. Spark Streaming 
allows you to periodically save the application data in a reliable file system, such as HDFS, or Amazon S3. 
Checkpointing has two purposes:

•     Limits  the state to be recomputed when a fault occurs. Spark Streaming recalculates 
the state using a lineage graph of transformations; checkpointing tells you how far 
back you should go.  

•    Driver program  fault tolerance. If the driver program of a streaming application 
crashes, you can start it again and recover from the last checkpoint. Spark Streaming 
reads how much had processed and will resume from that point.    

 For these reasons checkpointing is important when you run production Spark Streaming applications. 
 Note that when running in local mode, Spark Streaming won’t run a stateful operation if you don’t 

have checkpointing enabled. In this case, you can use a local file system. In a production environment, you 
should use a replicated file system, such as HDFS, Amazon S3, or NFS.  

     Spark Streaming Performance 
 Spark Streaming has specific considerations in addition to Spark performance considerations. 
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    Parallelism Techniques   
 A common way to reduce batch processing time is by increasing the parallelism. There are three ways to 
increase it.

•     Increasing parallelism . For operations such as  reduceByKey() , you can specify 
parallelism as an operation parameter.  

•    Adding receptors . Receptors can be a bottleneck if there are many records to 
read and distribute for a single machine. You can add more recipients by creating 
multiple input DStreams, which creates multiple receivers, and then apply a  union()  
operation to merge into a single stream.  

•    Repartitioning data . If you can’t increase the receivers number, you can redistribute 
the input data by explicitly repartitioning it using the  repartition()  method.     

   Window Size and Batch Size 
 A perfect batch size is a common quest. For most applications, 500 milliseconds is a good number for 
the minimum  batch size  . The best method is to start the minimum size batch at a large number, about 10 
seconds, and decrease it until reaching the optimal size. If the processing times remain consistent, you can 
continue decreasing the batch size, but if the time increases, you have found your number. 

 Similarly, with windowed operations, the interval to calculate a result has great performance impact. 
If it’s a bottleneck, consider increasing this interval for expensive calculations.  

   Garbage Collector 
 Garbage  collection   is problem associated with JVM. You can minimize garbage collection pauses by 
enabling the concurrent Mark-and-Sweep garbage collector. Generally, this consumes more resources but 
has fewer pauses. 

 If you do not know how to enable it, use -XX: +UseConcMarkSweepGC in spark.executor.
extraJavaOptions when launching spark-submit. To use the garbage collector less, you can decrease the GC 
pressure; for example, by caching RDDs in serialized form.    

     Summary 
 This chapter took a very quick look at the engine. You learned how to download, install, and test Apache 
Spark. You learned about Spark’s main concepts: RDD, run applications, and the RDD operations: 
transformations and actions. You also saw how to run Apache Spark in cluster mode, how to run the driver 
program, and how to achieve high availability. Finally, you took a look at Spark Streaming, stateless and 
stateful transformations, output operations, how to enable 24/7, and how to improve Spark Streaming 
performance. 

 In the following chapters, you will see how Apache Spark is the engine of the stack. All the other SMACK 
technologies are related to Spark.     
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    CHAPTER 7   

 The Manager: Apache Mesos                          

 We are reaching the end of this trip. In this chapter, you will learn how to create your own cluster in a simple way. 
 The M in SMACK gives us the guidelines to reuse physical or virtual resources, so that you have nothing 

to envy to a big data center. 

     Divide et Impera (Divide and Rule) 
 While writing this chapter, we participated in several meetups related to topics discussed here, to don’t miss 
anything current. 

 These topics have generated much expectation and interest and it is becoming common to reach 
newbies more than those who already know about the subject. 

 During these talks, several participants asked about  distributed systems  and  distributed processes . These 
dynamics 1  were a quick way to understand  distributed computing . The group activity seemed simple: Find 
the rock-paper-scissors champion among the nearly 40 attendees. 

 The initial  rule:   choose someone near, play one match, and the winner finds another winning 
contender. The losers serve as “spokespersons” repeating the name of winner; if a new champion beats your 
leader, the entire group becomes followers of the new champion. 

 Simple, right? Well, not so much. 
 As the time passed and the first winners emerged, the shouting and disorder increased, because it was 

not easy to locate new challengers. The dynamics took a few minutes until finally emerged the “furious” 
champion (there was a lot of testosterone in the event). 

 In Figure  7-1 , the circles represent each person and the diamond symbolizes a match. The line coming 
out of each diamond represents the winner of the match, and so on, until it reaches the winner.  

   1     https://twitter.com/isragaytan/status/736376936562233344       

https://twitter.com/isragaytan/status/736376936562233344#_blank
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 After the activity, the question was if it is possible to find the champion in less time. It was definitely 
possible, but the question was designed to define a strategy. The discussed proposal to remove noise and 
disorder concluded that there should be people whose function was locate and “match” winners, which 
should expedite the activity. 

 To give order, these people should also be organized between them to perform their task more 
efficiently. These people could also be called   coordinators .   

 Each match requires two participants and generates a winner. You can see that to reach the final match, 
the finalists had to win more games than others. 

 In Figure  7-2 , you can see the first variant to the solution to make our championship more agile. You 
might call this dynamic a  process .     

  Figure 7-1.    Sequence to find the rock-paper-scissors champion       
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 Our process has something different in this first variant: it uses coordinators. 
 Now, what happens if you want to more strictly validate each match? 
 While the coordinators are in communication, the participants may not properly perform a match, 

so you must rely on coordinators not for only gain speed but also to ensure that the process is successfully 
completed. 

 A second approach is to generate two large groups (with few coordinators), and in each of these groups, 
the coordinator is responsible for validating each match. The winner is sent to a pool of partial winners (that 
have won at least one time, but they are not still champions). Two participants are taken from this pool and 
the match is made (with supervision of a third coordinator), the winner returns to the pool and the loser is 
eliminated from the game. 

 This pool coordinator is in constant communication with the other two to speed up (or pause) the 
participants’ flow. At the end, there is only one winner. 

 Figure  7-3  shows the implementation of the second variant.     

  Figure 7-2.    Sequence to find the rock-paper-scissors champion using just one main coordinator       
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  Figure 7-3.    Sequence to find the rock-paper-scissors champion using a main coordinator and ordering the 
execution       

 At this point, you are probably already considering a better strategy to achieve the successful 
completion of these tasks. And if theory is correct, the solution should have something to help coordinate 
and something to help distribute, so  distributes et impera  is the modern “divide and conquer.” 

 Surely, you’re thinking that this exercise is used to illustrate only the concurrency, and that is true. It 
is also true that distributed systems make use of  concurrency   to achieve their goals. If you are particularly 
interested in the concurrency topics, you can see another example that clearly and in a fun way shows the 
importance of having a coordinator agent in problem resolution. 

 In the presentation “Concurrency Is Not Parallelism,” 2  Rob Pike, the GO language creator, shows an 
interesting example where communication works as “coordinator.” In any case, we decided to tackle the 
example from the audience perspective, as we experienced on the meetup. 

 With this little anecdote, you begin to see what the distribution task involves.  

      Distributed Systems 
 To talk about  distributed systems   today is to talk about how the Internet works. 

 The Internet is a huge system that shares hardware and software for different purposes; one of them is 
to enjoy the Web (http). Today, saying that a system shares hardware and software seems very simple, but it 
is still complex. 

 Distributed systems are not new; they have emerged as computing capacity has increased and data 
manipulation has grown. Over the years, research focused on how to share resources in order to optimize tasks. 

 These resources could be a data repository, RAM, or a printer if you are looking at sharing both physical 
and logical resources. But what happens if two people try to access the same resource at the same time? 

   2     https://blog.golang.org/concurrency-is-not-parallelism       

 

https://blog.golang.org/concurrency-is-not-parallelism
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 In earlier days, new requirements encouraged the creation of models that allowed concurrency. Once 
concurrency and resource sharing were satisfied, new needs appeared. How to add a new resource to the 
system? How to make the entire system scalable? 

 In these past few paragraphs, we touched on the key points that evolved so that we could have today’s 
distributed systems. 

 It is still difficult to implement a distributed system and thus new tools emerge; one of them is Apache 
Mesos, which is what this chapter is about. 

 Figure  7-4  shows the importance of a distributed systems coordinator.   

  Figure 7-4.    Distributed system anatomy       

     Why Are They Important? 
 Reliability and availability (also called  high availability ) are the two basic  characteristics   in today’s systems. 
Having information always available and having access to a vital process in economic, healthcare, and 
government scopes are requirements that we assume already done. If you also add the growth of users to 
a critical system (or a popular system, in the case of the Internet) is almost geometric in some cases, which 
requires these systems to be scalable and flexible. 

 All of these features were achieved years ago, but now they can be achieved at low cost. With few 
resources carrying the ease-of-use to other systems, we can take the distributed systems benefits available at 
new levels.   

     It Is Difficult to Have a Distributed System 
 There are several tasks that must be inherently performed when having a distributed system. This includes 
not only monitoring what is happening, but also making a deployment in a whole cluster. It is a task that 
must not jeopardize the current version but must reach all the nodes. Each deploy implies a process to 
ensure that all nodes are ready to accept it. 

 And finally, we need to know which resources are available within the entire cluster, which are down 
(a node could go down for any reason), and which were recently added (when a new node is added to the 
cluster). 

 All of this results in high-cost data centers, where every hour of wasted time can lead to unnecessary but 
costly businesses expenses. 

 In summary, it’s not easy to implement and maintain a distributed system. Figure  7-5  shows some of the 
main problems of working with distributed environments when increasing the number of nodes.  
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 Part of the  complexity   of a distributed system is due to its foundation and the way it is implemented, 
 In the presentation “What You Talk About When You Talk About Distributed Systems,” 3  is discussed 

the importance of the fundamentals of distributed systems and reminds us of some of the models that are 
currently used to implement them. 

 Figure  7-6  summarizes some of these  models  .  

  Figure 7-5.    Typical distributed system tasks that increase the complexity regardless the number of nodes       

  Figure 7-6.    The main distributed models and their implementations       

   3     https://www.infoq.com/presentations/topics-distributed-systems       
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   4     http://videlalvaro.github.io/2015/12/learning-about-distributed-systems.html       
   5  “Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center” by Benjamin Hindman, Andy Konwinski, 
Matei Zaharia, Ali Ghodsi, Anthony D. Joseph, Randy Katz, Scott Shenker, Ion Stoica,    http://people.csail.mit.
edu/matei/papers/2011/nsdi_mesos.pdf       

 Each of these models has its own implications, so it is possible that a feasible model for one scenario 
is not feasible for another scenario. Delving into the world of distributed systems requires a lot of theory. 
There is so much material on the subject that there is a post to complement this presentation. If you find this 
particular topic interesting, you can find more about it here. 4  

 In short, it is not easy to implement and maintain a distributed system.  

     Ta-dah!! Apache Mesos 
 And it is in this context that Apache Mesos appeared on the scene in 2010. 5  Discussion of distributed systems 
a few years ago was about data centers. Having different machines (physical or virtual) connected together, 
and making them “seen” as a single large machine is something that data centers already do well, or at least 
somewhat good. The objective is to abstract Mesos as many layers that make up a distributed system; in this 
case, a data center system. 

 A Mesos goal is to program and deploy an application in a data center in the same way that it is done on a 
PC or a mobile device. Achieving this goal and having it supported on different frameworks is discussed later. 

 Although tools such as Ansible or Puppet can handle a certain number of nodes, performing the 
packaging and deployment tasks usually generate some interesting challenges. The use of resources of a 
large machine represents another challenge for data centers, it is common to run into some scenarios where 
once added more nodes to the cluster, the CPU usage is uneven, thus wasting much of that large machine 
computation power. Usually, this large machine is actually a cluster with several nodes. 

 The tricky part comes when we have several clusters. 
 And it is here that Mesos comes in. Mesos is essentially a “general purpose cluster manager,” or a 

mechanism to administer several large machines used to drive a data center. This “general purpose” 
administration means that Mesos not only manages and schedules batch processes but also other processes. 

 Figure  7-7  shows the different  types   of processes that can be scheduled in Apache Mesos.  

  Figure 7-7.    Mesos is a general-purpose cluster manager, not only focused on batch scheduling       

 

http://videlalvaro.github.io/2015/12/learning-about-distributed-systems.html
http://people.csail.mit.edu/matei/papers/2011/nsdi_mesos.pdf
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 Apache Mesos tries to solve problems inherent to distributed systems. It tries not only to be a manager 
but a whole cluster execution platform powered by the (Mesos) frameworks.  

     Mesos Framework 
 One way to better understand the Mesos architecture is with Figure  7-8 . Mesos requires a layer on which 
provisioning functions, and then a top layer to expose applications.  

  Figure 7-8.    Level of abstraction in  Mesos         

 In each of these layers, Mesos requires components that allow the service deployment, service finding, 
and keep running those services. The frameworks we discuss in this chapter cover some of these tasks. 

 ZooKeeper discovers services. Chronos is responsible for scheduling the services. Marathon and Aurora 
are responsible for executing the services. These are not the only frameworks to perform the tasks, but they 
are the most commonly used. 

      Architecture 
 The Apache Mesos official documentation begins with a chart that shows its powerful  architecture  . 6  

 Mesos consists of master servers, which can handle as many slaves as they receive (up to 10,000 
according to the documentation). These slaves manage software components called Mesos frameworks, 
which are responsible for task execution. 

 With this scheme, we can see the importance of the frameworks. 
 Every framework has two parts: a scheduler that records the services offered by the master and slave 

nodes or servers that process the tasks to be executed. 
 You can read more about architecture in an MIT paper “Mesos: A Platform for Fine-Grained Resource 

Sharing in the Data Center” by Benjamin Hindman, Andy Konwinski, Matei Zaharia, Ali Ghodsi, Anthony D. 
Joseph, Randy Katz, Scott Shenker, and Ion Stoica. 7  

 Figures  7-9  and  7-10  are adapted from the official Mesos web site at    http://mesos.apache.org     . They 
show an overview of the Mesos architecture and the major frameworks with which it interacts.   

   6     http://mesos.apache.org/documentation/latest/architecture/       
   7     http://people.csail.mit.edu/matei/papers/2011/nsdi_mesos.pdf       
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  Figure 7-9.    Mesos architecture: master servers (only one at a time) interact with various slave servers       

  Figure 7-10.    A framework obtains a scheduler and performs a task       
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   8  Developing Frameworks for Apache Mesos.    https://www.youtube.com/watch?v=ZYoXodSlycA       

 In the first figure we can see that the center of all is the Mesos master, basically a daemon process that 
coordinates certain number of agents (Mesos prefers to call them   agents    rather than servers that are part of 
the cluster). These agents live in each node in a cluster. You also see an important component in the Mesos 
ecosystem: ZooKeeper. Later you will learn about the importance of this component. 

 The second figure describes the two components that all the frameworks need to run a task: a scheduler 
and an executor. While there are already a lot of Mesos frameworks ready to run, knowing the parts of 
a framework is attractive not only to better understand their execution, but also to know what involves 
creating your own framework. 8     

     Mesos 101 
 Now that you have an overview of the Mesos ecosystem, let’s look at Apache Mesos in action. 

 The Mesos ecosystem tries to work as an operating system in the data centers world; therefore, most 
documentation mentions that Mesos is the kernel of the operating system. In the following pages, you will 
learn the steps to install this kernel. Then you will learn how to install ZooKeeper, which is the responsible for 
maintaining information synchronized across all nodes. We continue with Chronos, who keeps running all the 
defined services. Finally, Marathon and Aurora are responsible for maintaining the services running, each one in 
their own way. 

 Here we go. 

     Installation 
 You are now ready to install Mesos. The installation has three steps: get the binary, get the dependencies, 
and start Mesos. Something very important to keep in mind is that there is no installer to perform all the 
steps. Mesos takes advantage of the capabilities of each operating system and therefore must make a 
compilation of components to leverage the capabilities of the native environment. 

 Generating native libraries by platform optimizes the performance. 
 If you’re not going to compile with the make command, do not worry, the script is very complete and 

does almost all the work for you. As you shall see, the installation only requires to meet the dependencies to 
compile correctly. 

    Get the Installer 
 When this book was written, the stable version of Apache Mesos was 0.28.1. 

 For a step-by-step  installation  , follow the guide provided at this web page: 

   http://mesos.apache.org/gettingstarted/ 

   This guide recommends downloading the latest stable distributable, as follows: 

   wget http://www.apache.org/dist/mesos/0.28.1/mesos-0.28.1.tar.gz 

   The following is the downloaded file size: 

   -rw-r--r--. 1 rugi rugi 29108023 Apr 13 15:07 mesos-0.28.1.tar.gz 

   Unpack it with this: 

   %>tar -zxf mesos-0.28.1.tar.gz 

https://www.youtube.com/watch?v=ZYoXodSlycA
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   A folder called  mesos-0.28-1  should be created with this content: 

   -rw-r--r--   1 isaacruiz  staff     414 Apr  5 20:25 mesos.pc.in 
 -rw-r--r--   1 isaacruiz  staff   60424 Apr  5 20:25 configure.ac 
 -rwxr-xr-x   1 isaacruiz  staff    3647 Apr  5 20:25 bootstrap 
 -rw-r--r--   1 isaacruiz  staff    1111 Apr  5 20:25 README.md 
 -rw-r--r--   1 isaacruiz  staff     162 Apr  5 20:25 NOTICE 
 -rw-r--r--   1 isaacruiz  staff    3612 Apr  5 20:25 Makefile.am 
 -rw-r--r--   1 isaacruiz  staff   28129 Apr  5 20:25 LICENSE 
 -rw-r--r--   1 isaacruiz  staff  324089 Apr  5 20:25 ltmain.sh 
 -rw-r--r--   1 isaacruiz  staff   46230 Apr  5 20:25 aclocal.m4 
 -rwxr-xr-x   1 isaacruiz  staff  860600 Apr  5 20:25 configure 
 -rwxr-xr-x   1 isaacruiz  staff    6872 Apr  5 20:25 missing 
 -rwxr-xr-x   1 isaacruiz  staff   14675 Apr  5 20:25 install-sh 
 -rwxr-xr-x   1 isaacruiz  staff   23566 Apr  5 20:25 depcomp 
 -rwxr-xr-x   1 isaacruiz  staff   35987 Apr  5 20:25 config.sub 
 -rwxr-xr-x   1 isaacruiz  staff   42938 Apr  5 20:25 config.guess 
 -rwxr-xr-x   1 isaacruiz  staff    7333 Apr  5 20:25 compile 
 -rwxr-xr-x   1 isaacruiz  staff    5826 Apr  5 20:25 ar-lib 
 -rw-r--r--   1 isaacruiz  staff   45159 Apr  5 20:25 Makefile.in 
 drwxr-xr-x   4 isaacruiz  staff     136 Apr  5 20:28 support 
 drwxr-xr-x   5 isaacruiz  staff     170 Apr  5 20:28 mpi 
 drwxr-xr-x   3 isaacruiz  staff     102 Apr  5 20:28 include 
 drwxr-xr-x  23 isaacruiz  staff     782 Apr  5 20:28 bin 
 drwxr-xr-x  13 isaacruiz  staff     442 Apr  5 20:28 3rdparty 
 drwxr-xr-x  43 isaacruiz  staff    1462 Apr  5 20:28 src 
 drwxr-xr-x  15 isaacruiz  staff     510 May  8 18:40 m4 

   Once unzipped, go to the  mesos-0.28-1  directory, as follows: 

   %>cd mesos-0.28-1 

   Make a directory called  build  and then go to this directory: 

   %>mkdir build 
 %>cd build 

   Inside this folder, start generating the binaries for your machine: 

   %>../configure 
 %>make 

   The  make  operation can take a lot of time because in addition to dependency compilation, your 
machine configuration may be responsible for downloading and configuring the scripts to run Mesos. 

 If you have a modern computer, you probably have more than one processor. You can speed up the 
process by using the  make  command to indicate the number of processors that you have and by suppressing 
the console outputs (without verbose mode), as shown in the following: 

   %>make -j 2 V=0 

   This command indicates that you have a machine with two processors and you don’t want verbosity. 
 In Unix/Linux operating systems, we can see the status with the  %>nproc  or  %>lscpu  commands.   
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   Missing Dependencies 
 The installation process is still in improvement, particularly because the compilation relies heavily on the 
computer characteristics in which we want to install Apache Mesos. 

 The compilation process assumes that we have all the required libraries for compiling; therefore, at 
   http://mesos.apache.org/gettingstarted/      are listed the required  libraries   for the following operating 
systems:

•    Ubuntu 14.04  

•   Mac OS: Yosemite and El Capitan  

•   CentOS 6.6  

•   CentOS 7.2    

 We strongly suggest to investigate before making an installation; also, install the following libraries on 
your computer according to your operating system and version: 

   libcurl 
 libapr-1 

   These are typically two missing  dependencies  . 
 If you use  yum  or  apt-get , lean on the search options offered by each tool. If you are trying to install on 

a Mac, before anything, run the following command to ensure that you have the developer tools updated in 
the command line. 

   xcode-select --install 

 ■     Note    Ensure the libraries’ compatibility. The  make  command execution is a task that could exceed the 20 
minutes. Be patient; it is always difficult to use something earlier than version 1.0.   

   Start Mesos 
 Once past the dependencies and  make  construction stages, starting Mesos is very simple, just need to run 
two lines. 

   Master Server 

 The first line starts the  master server  . Since the working directory points to a system directory, be sure to run 
the command as a privileged user: 

   %>cd build 
 %>./bin/mesos-master.sh --ip=127.0.0.1 --work_dir=/var/lib/mesos 

http://mesos.apache.org/gettingstarted/
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   This is the typical console output: 

   %>./bin/mesos-master.sh --ip=127.0.0.1 --work_dir=/var/lib/mesos 
 I0508 16:48:54.315554 2016645120 main.cpp:237] Build: 2016-05-08 16:20:08 by isaacruiz 
 I0508 16:48:54.315907 2016645120 main.cpp:239] Version: 0.28.1 
 I0508 16:48:54.315989 2016645120 main.cpp:260] Using 'HierarchicalDRF' allocator 
 I0508 16:48:54.320935 2016645120 leveldb.cpp:174] Opened db in 4589us 
 I0508 16:48:54.323814 2016645120 leveldb.cpp:181] Compacted db in 2845us 
 I0508 16:48:54.323899 2016645120 leveldb.cpp:196] Created db iterator in 32us 
 I0508 16:48:54.323932 2016645120 leveldb.cpp:202] Seeked to beginning of db in 18us 
 I0508 16:48:54.323961 2016645120 leveldb.cpp:271] Iterated through 0 keys in the db in 20us 
 I0508 16:48:54.325166 2016645120 replica.cpp:779] Replica recovered with log positions 0 -> 
0 with 1 holes and 0 unlearned 
 I0508 16:48:54.336277 528384 recover.cpp:447] Starting replica recovery 
 I0508 16:48:54.338512 2016645120 main.cpp:471] Starting Mesos master 
 I0508 16:48:54.357270 528384 recover.cpp:473] Replica is in EMPTY status 
 I0508 16:48:54.368338 2016645120 master.cpp:375] Master 7f7d9b4b-c5e4-48be-bbb7-78e6fac701ea 
(localhost) started on 127.0.0.1:5050 
 I0508 16:48:54.368404 2016645120 master.cpp:377] Flags at startup: --allocation_
interval="1secs" --allocator="HierarchicalDRF" --authenticate="false" --authenticate_
http="false" --authenticate_slaves="false" --authenticators="crammd5" --authorizers="local" 
--framework_sorter="drf" --help="false" --hostname_lookup="true" --http_
authenticators="basic" --initialize_driver_logging="true" --ip="127.0.0.1" --log_auto_
initialize="true" --logbufsecs="0" --logging_level="INFO" --max_completed_frameworks="50" 
--max_completed_tasks_per_framework="1000" --max_slave_ping_timeouts="5" --port="5050" 
--quiet="false" --recovery_slave_removal_limit="100%" --registry="replicated_log" 
--registry_fetch_timeout="1mins" --registry_store_timeout="20secs" --registry_strict="false" 
--root_submissions="true" --slave_ping_timeout="15secs" --slave_reregister_timeout="10mins" 
--user_sorter="drf" --version="false" --webui_dir="/Users/isaacruiz/Downloads/mesos/
mesos-0.28.1/build/../src/webui" --work_dir="/var/lib/mesos" --zk_session_timeout="10secs" 
 W0508 16:48:54.378363 2016645120 master.cpp:380] 
 ************************************************** 
 Master bound to loopback interface! Cannot communicate with remote schedulers or slaves. You 
might want to set '--ip' flag to a routable IP address. 
 ************************************************** 

       Slave Server 

 The second line is responsible for starting the first Mesos  slave server  : 

   %>cd build 
 %> ./bin/mesos-slave.sh --master=127.0.0.1:5050 

   This is the typical console output: 

   %>./bin/mesos-slave.sh --master=127.0.0.1:5050 
 I0508 16:49:09.586303 2016645120 main.cpp:223] Build: 2016-05-08 16:20:08 by isaacruiz 
 I0508 16:49:09.587652 2016645120 main.cpp:225] Version: 0.28.1 
 I0508 16:49:09.588884 2016645120 containerizer.cpp:149] Using isolation: posix/cpu,posix/
mem,filesystem/posix 
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 I0508 16:49:09.627917 2016645120 main.cpp:328] Starting Mesos slave 
 I0508 16:49:09.630908 3747840 slave.cpp:193] Slave started on 1)@192.168.1.5:5051 
 I0508 16:49:09.630956 3747840 slave.cpp:194] Flags at startup: --appc_simple_discovery_
uri_prefix="http://" --appc_store_dir="/tmp/mesos/store/appc" --authenticatee="crammd5" 
--container_disk_watch_interval="15secs" --containerizers="mesos" --default_role="*" 
--disk_watch_interval="1mins" --docker="docker" --docker_kill_orphans="true" --docker_
registry="https://registry-1.docker.io" --docker_remove_delay="6hrs" --docker_socket="/
var/run/docker.sock" --docker_stop_timeout="0ns" --docker_store_dir="/tmp/mesos/store/
docker" --enforce_container_disk_quota="false" --executor_registration_timeout="1mins" 
--executor_shutdown_grace_period="5secs" --fetcher_cache_dir="/tmp/mesos/fetch" --fetcher_
cache_size="2GB" --frameworks_home="" --gc_delay="1weeks" --gc_disk_headroom="0.1" 
--hadoop_home="" --help="false" --hostname_lookup="true" --image_provisioner_backend="copy" 
--initialize_driver_logging="true" --isolation="posix/cpu,posix/mem" --launcher_dir="/Users/
isaacruiz/Downloads/mesos/mesos-0.28.1/build/src" --logbufsecs="0" --logging_level="INFO" 
--master="127.0.0.1:5050" --oversubscribed_resources_interval="15secs" --port="5051" 
--qos_correction_interval_min="0ns" --quiet="false" --recover="reconnect" --recovery_
timeout="15mins" --registration_backoff_factor="1secs" --sandbox_directory="/mnt/mesos/
sandbox" --strict="true" --switch_user="true" --version="false" --work_dir="/tmp/mesos" 
 I0508 16:49:39.704506 3747840 slave.cpp:464] Slave resources: cpus(*):2; mem(*):7168; 
disk(*):482446; ports(*):[31000-32000] 
 I0508 16:49:39.704661 3747840 slave.cpp:472] Slave attributes: [  ] 
 I0508 16:49:39.704684 3747840 slave.cpp:477] Slave hostname: 192.168.1.5 
 I0508 16:49:39.719388 1064960 state.cpp:58] Recovering state from '/tmp/mesos/meta' 
 I0508 16:49:39.720755 4284416 status_update_manager.cpp:200] Recovering status update 
manager 
 I0508 16:49:39.721927 4284416 containerizer.cpp:407] Recovering containerizer 
 I0508 16:49:39.728039 2674688 provisioner.cpp:245] Provisioner recovery complete 
 I0508 16:49:39.728682 3211264 slave.cpp:4565] Finished recovery 
 I0508 16:49:39.732142 2138112 status_update_manager.cpp:174] Pausing sending status updates 
 I0508 16:49:39.732161 3211264 slave.cpp:796] New master detected at master@127.0.0.1:5050 
 I0508 16:49:39.733449 3211264 slave.cpp:821] No credentials provided. Attempting to register 
without authentication 
 I0508 16:49:39.733577 3211264 slave.cpp:832] Detecting new master 
 I0508 16:49:40.588644 2138112 slave.cpp:971] Registered with master master@127.0.0.1:5050; 
given slave ID 7f7d9b4b-c5e4-48be-bbb7-78e6fac701ea-S0 
 I0508 16:49:40.589226 528384 status_update_manager.cpp:181] Resuming sending status updates 
 I0508 16:49:40.589984 2138112 slave.cpp:1030] Forwarding total oversubscribed resources 

   Like the other frameworks covered in this book, keep running the both commands to run successfully; 
first the master server and then the slave server. 

 In Figure  7-11 , we can see the both windows running simultaneously.  
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  Figure 7-11.    Two consoles showing the execution, in front the master server, and in back a slave server       

 At this point, with the master and slave started, it’s already possible to access the Mesos web console. 
The console listens on port 5050. Thus, open your favorite browser and go to    http://127.0.0.1:5050     . See 
the Apache Mesos main screen running with one slave server. In Figure  7-12 , you see the main screen of the 
Mesos console.   

  Figure 7-12.    Mesos server main screen running       

 

 

http://127.0.0.1:5050/
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  Figure 7-13.    The Apache ZooKeeper  home page         

 ■   Note    Before continuing, have at hand the location of the  libmesos.so  file (or the  libmesos.dylib  file if 
compiling on a Mac with OS X). This file is required to integrate with frameworks, as discussed next. Use the 
 find -name * libmesos..  command to locate it.     

     Teaming 
 Although Mesos has still not reached version 1.0, there are already several frameworks that contribute to a 
robust ecosystem and perfectly complement the Mesos objectives. In particular, there are four frameworks 
to know: ZooKeeper, Chronos, Marathon, and Aurora. 

   ZooKeeper 
 The official site of the  ZooKeeper framework   tells us that it is a centralized naming service, which 
simultaneously allows to maintain configuration information in a distributed way. 

 Figure  7-13  shows the Apache ZooKeeper  home page  .  
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 Do you remember the diagram showing the Mesos architecture? ZooKeeper’s strength is to keep 
distributed processes through service replication; customers connect to multiple servers (there is one main 
server) and from there, they get the information they need. 

 To manage the information, ZooKeeper creates a distributed  namespace   (see Figure  7-14 ) across all 
nodes; this namespace is similar to a standard file system.  

  Figure 7-14.    ZooKeeper namespace       

 ZooKeeper was designed to be simple to use. The API only has seven messages, as shown in Table  7-1 .  

   Table 7-1.    Messages in the ZooKeeper API   

 Message  Definition 

  create   Creates a node at a location in the three. 

  delete   Deletes a node. 

  exist   Tests if a node exists at a location. 

  get data   Reads the data from the node. 

  set data   Writes data to a node. 

  get children   Retrieves a list of a node’s children. 

  sync   Waits for data to be propagated. 
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 Figure  7-15  shows how ZooKeeper maintains high availability with the services scheduled. There is 
a main server (leader). All servers know each other and they all keep their status in memory. While more 
servers are active, the availability of services is assured.  

  Figure 7-15.    ZooKeeper  service         

 Clients, meanwhile, connect to a single server. A TCP connection maintains communication with this 
server (sending heartbeats). If something happens to the server, the client only connects to another server. 

   Installation 

 At the time of this writing, the stable version of ZooKeeper was 3.4.6. The  installation process   is simple. 
Download the binary file of the latest stable version from this web page: 

   http://zookeeper.apache.org/releases.html 

   The  tar.gz  file for this version has the following size: 

   Mode                LastWriteTime         Length Name 
 ----                -------------         ------ ---- 
 -a----    15/05/2016  08:17 a. m.       17699306 zookeeper-3.4.6.tar.gz 

   Once unzipped, the first is to create a configuration file; the configuration file must be named  zoo.cfg  
and it must be located in the  conf/  directory. 

 By default, the  conf/  directory has as an example file where the parameters to set are described in detail. 
 In short, a  zoo.cfg  file must have at least the following values: 

    /opt/apache/zookeeper/zookeeper-3.4.6/conf%> vi zoo.cfg 
 tickTime=2000 
 initLimit=10 
 syncLimit=5 
 dataDir=/tmp/zookeeper 
 clientPort=2181 

 



CHAPTER 7 ■ THE MANAGER: APACHE MESOS

149

    The same directory has a sample file; we can copy its contents to our  zoo.cfg  file. 
 Once the  zoo.cfg  file is configured, to check the status to validate the ZooKeeper configuration file 

location and execution mode run this command. 

    ~/opt/apache/zookeeper/zookeeper-3.4.6/bin%>./zkServer.sh status 
 JMX enabled by default 
 Using config: /Users/isaacruiz/opt/apache/zookeeper/zookeeper-3.4.6/bin/../conf/zoo.cfg 
 Mode: standalone 

    If we run only the  zKServer.sh  file, we can see the list of tasks that can be used with the ZooKeeper 
binary (be sure to execute instructions with a user that has enough privileges): 

   ~/opt/apache/zookeeper/zookeeper-3.4.6/bin%>./zkServer.sh        
 Password: 
 JMX enabled by default 
 Using config: /users/isaacruiz/opt/apache/zookeeper/zookeeper-3.4.6/bin/../conf/zoo.cfg 
 Usage: ./zkServer.sh {start|start-foreground|stop|restart|status|upgrade|print-cmd} 
 {16-05-10 21:24}:~/opt/apache/zookeeper/zookeeper-3.4.6/bin isaacruiz%   

 As you can see, we have the following tasks: 

   start, start-foreground, stop, restart, status, upgrade, print-cmd 

   Now, to start ZooKeeper. 

   ~/opt/apache/zookeeper/zookeeper-3.4.6/bin%>./zkServer.sh start 
 JMX enabled by default 
 Using config: /users/isaacruiz/opt/apache/zookeeper/zookeeper-3.4.6/bin/../conf/zoo.cfg 
 Starting zookeeper ... STARTED 
 {16-05-10 21:24} opt/apache/zookeeper/zookeeper-3.4.6/bin isaacruiz% 

       Chronos 
 The second component is  Chronos  , the substitute for the cron sentence in the Mesos context. The home 
page of this project is at    https://mesos.github.io/chronos/     . 

 If you’ve used a Unix-based operating system, have probably performed the repetitive execution of 
a process using this operating system utility. Chronos does the same; it is a task scheduler. Only in the 
Chronos context, it is a distributed task scheduler, and in addition to isolating tasks, it can orchestrate them. 

 Another advantage of Chronos is to schedule tasks using the ISO 8601 8; the notation offered by this 
standard is much friendlier in specifying the time intervals to execute tasks. Chronos runs directly on Mesos. 
It is the first line of interaction with the outside world. Its integration is in both the master and the slave 
servers, and through this communication manages the records of the jobs to be done. 

 The Chronos architecture is shown in Figure  7-16 .  

https://mesos.github.io/chronos/
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   Installation 

 At the time of this writing, the stable Chronos version was 2.4.0. Having a mature version,  the   installation 
process is simple, but it is a little slow for the binary generation of the platform where it is used. 

 The installation process assumes that you have already installed a version of Mesos (0.20.x) and 
ZooKeeper. And have also installed Apache Maven 3.x and JDK 1.6 or higher. 

 The installation process begins by downloading the binary from the home page: 9  

   curl -0 https://github.com/mesos/chronos/archive/2.3.4.tar.gz 
 tar xvf 2.3.4.tar.gz 

   Once the file is decompressed, note that the main folder contains the POM files required by Maven to 
perform their tasks. 

 The directory contents should be similar to the following: 

   ~/opt/apache/chronos/chronos-2.4.0%> ls -lrt 
 total 104 
 drwxr-xr-x@  4 isaacruiz  staff    136 Aug 28  2015 src 
 -rw-r--r--@  1 isaacruiz  staff  17191 Aug 28  2015 pom.xml 
 drwxr-xr-x@ 14 isaacruiz  staff    476 Aug 28  2015 docs 
 -rw-r--r--@  1 isaacruiz  staff   2521 Aug 28  2015 changelog.md 

  Figure 7-16.    Chronos  architecture         

   9     https://mesos.github.io/chronos/docs/       

 

https://mesos.github.io/chronos/docs/
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 -rw-r--r--@  1 isaacruiz  staff   1165 Aug 28  2015 build.xml 
 drwxr-xr-x@ 13 isaacruiz  staff    442 Aug 28  2015 bin 
 -rw-r--r--@  1 isaacruiz  staff   3087 Aug 28  2015 README.md 
 -rw-r--r--@  1 isaacruiz  staff    837 Aug 28  2015 NOTICE 
 -rw-r--r--@  1 isaacruiz  staff  11003 Aug 28  2015 LICENSE 
 -rw-r--r--@  1 isaacruiz  staff    470 Aug 28  2015 Dockerfile 

   The only thing remaining is to run the mvn package to generate the  .jar  file used to start Chronos. 

   ~/opt/apache/chronos/chronos-2.4.0%> mvn package 
 [INFO] Scanning for projects... 
 [INFO]                                                                          
 [INFO] ------------------------------------------------------------------------ 
 [INFO] Building chronos 2.4.0 
 [INFO] ------------------------------------------------------------------------ 
 Downloading: https://repo1.maven.org/maven2/org/apache/maven/plugins/maven-antrun-
plugin/1.7/maven-antrun-plugin-1.7.pom 
 Downloaded: https://repo1.maven.org/maven2/org/apache/maven/plugins/maven-antrun-plugin/1.7/
maven-antrun-plugin-1.7.pom (5 KB at 0.5 KB/sec) 
 Downloading: https://repo1.maven.org/maven2/org/apache/maven/plugins/maven-antrun-
plugin/1.7/maven 
 ... 
 ... 
 ... 
 Downloaded: https://repo.maven.apache.org/maven2/org/slf4j/slf4j-api/1.6.1/slf4j-api-
1.6.1.jar (25 KB at 5.9 KB/sec) 
 [INFO] Dependency-reduced POM written at: /Users/isaacruiz/opt/apache/chronos/chronos-2.4.0/
dependency-reduced-pom.xml 
 [INFO] Dependency-reduced POM written at: /Users/isaacruiz/opt/apache/chronos/chronos-2.4.0/
dependency-reduced-pom.xml 
 [INFO] ------------------------------------------------------------------------ 
 [INFO] BUILD SUCCESS 
 [INFO] ------------------------------------------------------------------------ 
 [INFO] Total time: 03:55 min 
 [INFO] Finished at: 2016-05-19T01:45:13-05:00 
 [INFO] Final Memory: 68M/668M 
 [INFO] ------------------------------------------------------------------------ 

   This step can take time, depending on your Internet connection and your machine’s characteristics.  

   Run 

 Having the   .jar  file   (found in the target directory), it is possible start Chronos with the following line: 

    ~/opt/apache/chronos/chronos-2.4.0%> java -cp target/chronos*.jar org.apache.mesos.chronos.
scheduler.Main --master zk://localhost:2181/mesos --zk_hosts localhost:2181 

   [2016-05-19 01:45:56,621] INFO --------------------- ( org.apache.mesos.chronos.scheduler.
Main$:26) 
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 [2016-05-19 01:45:56,624] INFO Initializing chronos. (org.apache.mesos.chronos.scheduler.Main$:27) 
 [2016-05-19 01:45:56,627] INFO --------------------- (org.apache.mesos.chronos.scheduler.Main$:28) 
 [2016-05-19 01:45:59,109] INFO Wiring up the application (org.apache.mesos.chronos.
scheduler.config.MainModule:39) 
 ... 
 ... 
 2016-05-19 01:46:01,446:3328(0x700002495000):ZOO_INFO@check_events@1703: initiated 
connection to server [::1:2181] 
 2016-05-19 01:46:01,449:3328(0x700002495000):ZOO_INFO@check_events@1750: session 
establishment complete on server [::1:2181], sessionId=0x154c75bb0940008, negotiated 
timeout=10000 
 I0519 01:46:01.451170 16019456 group.cpp:349] Group process (group(1)@192.168.1.5:53043) 
connected to ZooKeeper 
 I0519 01:46:01.452013 16019456 group.cpp:831] Syncing group operations: queue size (joins, 
cancels, datas) = (0, 0, 0) 

    Now Apache Chronos is running. 
 One Chronos advantage is that is already in an advanced version; it has a web interface that allows to 

manage scheduled jobs. This web interface is available in the following port: 

   http://localhost:8080/ 

   Figure  7-17  shows this screen.  

  Figure 7-17.    Chronos  web interface         

 Part of the Chronos power lies in its API, 10  from which you can better interact from other integration 
points. You can easily try  curl , as follows: 

    ~/opt/apache/chronos/chronos-2.4.0%> curl -L -X GET http://localhost:8080/scheduler/jobs 

   []%   

    Right now, there are no scheduled jobs, so both the web interface and the API report the same thing: no 
scheduled tasks.   

   10     https://mesos.github.io/chronos/docs/api.html       

 

https://mesos.github.io/chronos/docs/api.html


CHAPTER 7 ■ THE MANAGER: APACHE MESOS

153

   Marathon 
  Marathon   is another tool that fits very well with Mesos; although it can be used independently, with Mesos it 
is even more powerful, and given the integration, it is a lot easier to use. 

 The Marathon home page is at    https://mesosphere.github.io/marathon/     . From this page we can 
download the latest stable version; at the time of this writing, the version was 1.1.1. 

 Figure  7-18  shows the Marathon  home page  .  

  Figure 7-18.    Marathon home page       

 A quick way to understand Marathon is with this phrase: “A self-serve interface to your cluster. 
Distributed init for long-running services.” 11  

 Probably you have used the  init  command on any Unix-based operating system that helps us to start 
tasks and/or processes already defined and configured on the operating system’s host. 

 Marathon has a particular way to manage the tasks execution. 12  Marathon intends to help keep each 
task executed by Mesos 100% available. 

   11  Simplifying with Mesos and Marathon.   h ttps://www.youtube.com/watch?v=OgVaQPYEsVo       
   12     https://mesosphere.github.io/marathon/docs/       

 

https://mesosphere.github.io/marathon/
https://www.youtube.com/watch?v=OgVaQPYEsVo
https://mesosphere.github.io/marathon/docs/
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 Figure  7-19  shows the Marathon architecture. It is based on official documentation at 
   https://mesosphere.github.io/marathon/     .  

  Figure 7-19.    Marathon  architecture         

   13     https://github.com/mesos/chronos       

 In our chart, we can add the Chronos framework. 13  
 When Marathon starts, it launches two Chronos instances: one operates Marathon and the other exists 

because Chronos is a framework that can work with Mesos. This also ensures that there will always be two 
Chronos instances running and ready to receive tasks. 

   Installation 

 The main  binary   is downloaded directly from the Marathon home page. Once the file is decompressed, we 
can start it (Marathon assumes that Mesos and ZooKeeper are already running). 

 Before running it, be sure to export the  MESOS_NATIVE_JAVA_LIBRARY  variable pointing to the route 
already detected (the Marathon start file will look in  /usr/lib ). When running it, check if the current os user 
has read permission on system directories. 

    opt/apache/marathon/marathon-1.1.1/bin%>./start --master local 
 MESOS_NATIVE_JAVA_LIBRARY is not set. Searching in /usr/lib /usr/local/lib. 
 MESOS_NATIVE_LIBRARY, MESOS_NATIVE_JAVA_LIBRARY set to '/usr/local/lib/libmesos.dylib' 
 [2016-05-15 15:23:22,391] INFO Starting Marathon 1.1.1 with --master local 
(mesosphere.marathon.Main$:main) 
 [2016-05-15 15:23:26,322] INFO Connecting to ZooKeeper... (mesosphere.marathon.Main$:main) 
 [2016-05-15 15:23:26,346] INFO Client environment:zookeeper.version=3.4.6-1569965, built on 
02/20/2014 09:09 GMT (org.apache.zookeeper.ZooKeeper:main) 

 

https://mesosphere.github.io/marathon/
https://github.com/mesos/chronos
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 [2016-05-15 15:23:26,347] INFO Client environment:host.name=192.168.1.5 
(org.apache.zookeeper.ZooKeeper:main) 
 [2016-05-15 15:23:26,348] INFO Client environment:java.version=1.8.0_51 
(org.apache.zookeeper.ZooKeeper:main) 
 [2016-05-15 15:23:26,349] INFO Client environment:java.vendor=Oracle Corporation 
(org.apache.zookeeper.ZooKeeper:main) 
 [2016-05-15 15:23:26,349] INFO Client environment:java.home=/Library/Java/
JavaVirtualMachines/jdk1.8.0_51.jdk/Contents/Home/jre (org.apache.zookeeper.ZooKeeper:main) 

        Aurora 
  Aurora   is one of the Mesos frameworks. (Do you remember the diagram?) Mesos requires frameworks to 
retrieve a scheduler and run a task from it. 

 Aurora allows to run applications and services through a set of machines. Its primary responsibility is to 
maintain this state of execution as long as possible; the ideal is “always.” 

 Figure  7-20  shows the Aurora project  home page  .  

  Figure 7-20.    Aurora home page    http://aurora.apache.org/               

 

http://aurora.apache.org/#_blank
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 If a machine fails, Aurora is responsible for rescheduling the execution of a task in service if one of the 
remaining machines is available. 

 The use of Aurora 14  on Twitter is the most widespread use case. It is used as a reference on the Aurora 
main page; the introduction 15  is provided by the Twitter senior staff engineer. 

   Overview 

 Figure  7-21  shows the components of Aurora; this is based on the official documentation (   http://aurora.
apache.org/     ).  

  Figure 7-21.    Aurora  components         

 Aurora is currently at version 0.30.0.     

     Let’s Talk About Clusters 
 Apache Mesos was designed to work in clusters. These Mesos clusters require a main server named  MASTER   
and several secondary servers called  SLAVES  . Original, isn’t it? 

 Figure  7-22  shows the relationship between the coordinator and master-slave servers. It is based on 
official Mesos documentation.  

   14  Introduction to Apache Aurora.    https://www.youtube.com/watch?v=asd_h6VzaJc       
   15  Operating Aurora and Mesos at Twitter.    https://www.youtube.com/watch?v=E4lxX6epM_U       

 

http://aurora.apache.org/
http://aurora.apache.org/
https://www.youtube.com/watch?v=asd_h6VzaJc
https://www.youtube.com/watch?v=E4lxX6epM_U
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  Figure 7-22.    Master and slaves server distribution       

 There are already several frameworks available for use by Mesos. The true potential is the ability to 
create special Mesos frameworks using any of the supported languages: Java, Scala, Python, and C ++. 

 One of these ready-to-use frameworks is the Apache Kafka framework. 

     Apache Mesos and Apache Kafka 
  Apache Kafka   is one of the frameworks ready to be used with Mesos. There is a GitHub repository in charge 
of this project. Figure  7-23  shows the main screen of the project on  GitHub  .  

  Figure 7-23.    Mesos/Kafka GitHub project       
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 Like any Mesos framework, Kafka requires schedulers to run tasks. In Figure  7-24 , we can see the 
relationship between the  scheduler and executor  , the basic components of any framework in Mesos. The 
figure shows an already known scheme but particularly applied to Apache Kafka; it is based on official 
documentation. 16   

  Figure 7-24.    The Apache Kafka framework and its interaction with Apache Mesos       

 Before building the binaries, check if you have already installed Java and Gradle (the automated 
building tool for Java projects). 

   JDK Validation 
  JDK validation   is easy; you just need to ask for the active version. 

   /opt/apache/kafka> java -version 
 java version "1.8.0_51" 
 Java(TM) SE Runtime Environment (build 1.8.0_51-b16) 
 Java HotSpot(TM) 64-Bit Server VM (build 25.51-b03, mixed mode) 

      Gradle Validation 
  Gradle validation   is easy. In this example is installed the Gradle version 2.9: 

    ~/opt/apache/kafka%> gradle -version 

   ------------------------------------------------------------ 
 Gradle 2.9 
 ------------------------------------------------------------ 

   16     https://mesosphere.com/blog/2015/07/16/making-apache-kafka-elastic-with-apache-mesos/       

 

https://mesosphere.com/blog/2015/07/16/making-apache-kafka-elastic-with-apache-mesos/
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   Build time:   2015-11-17 07:02:17 UTC 
 Build number: none 
 Revision:     b463d7980c40d44c4657dc80025275b84a29e31f 

   Groovy:       2.4.4 
 Ant:          Apache Ant(TM) version 1.9.3 compiled on December 23 2013 
 JVM:          1.8.0_51 (Oracle Corporation 25.51-b03) 

   {16-05-10 17:55}Isaacs-MacBook-Pro-2:~/opt/apache/kafka isaacruiz% 

       Export libmesos Location 
 Follow the instructions provided in the guide. When compiling Mesos, several native libraries are 
generated. Find the file called   libmesos    .so  (or  libmesos.dylib  if you’re on a Mac with OS X) and export 
it or declare it in the file: kafka-mesos.sh 

   # export MESOS_NATIVE_JAVA_LIBRARY=/usr/local/lib/libmesos.so 

   Now start cloning the repository. The console output will be similar to this: 

   ~/opt/apache/kafka%> git clone https://github.com/mesos/kafka 
 Cloning into 'kafka'... 
 remote: Counting objects: 4343, done. 
 remote: Total 4343 (delta 0), reused 0 (delta 0), pack-reused 4343 
 Receiving objects: 100% (4343/4343), 959.33 KiB | 44.00 KiB/s, done. 
 Resolving deltas: 100% (1881/1881), done. 
 Checking connectivity... done.   

 Once the repository is cloned, proceed to build the Kafka-Mesos binaries with the command: 

   gradle jar   

 Gradle is characterized by place the artifacts required for compilation in the directories according to the 
invocation structure, this task may take a while depending on the script dependencies. 

    ~/opt/apache/kafka/kafka@master%> ./gradlew jar 
 Downloading https://services.gradle.org/distributions/gradle-2.8-all.zip 
 ........................................................................ 
 Unzipping /Users/isaacruiz/.gradle/wrapper/dists/gradle-2.8-all/ah86jmo43de9lfa8xg9ux3c4h/
gradle-2.8-all.zip to /Users/isaacruiz/.gradle/wrapper/dists/gradle-2.8-all/
ah86jmo43de9lfa8xg9ux3c4h 
 Set executable permissions for: /Users/isaacruiz/.gradle/wrapper/dists/gradle-2.8-all/
ah86jmo43de9lfa8xg9ux3c4h/gradle-2.8/bin/gradle 
 :compileJava UP-TO-DATE 
 :compileScala 
 Download https://repo1.maven.org/maven2/org/scala-lang/scala-library/2.10.6/scala-library-
2.10.6.pom 
 Download https://repo1.maven.org/maven2/org/apache/mesos/mesos/0.25.0/mesos-0.25.0.pom 
 ... 
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 Download https://repo1.maven.org/maven2/org/scala-lang/scala-reflect/2.10.6/
scala-reflect-2.10.6.jar 
 :processResources UP-TO-DATE 
 :classes 
 :compileTestJava UP-TO-DATE 
 :compileTestScala 
 [ant:scalac] Element '/Users/isaacruiz/opt/apache/kafka/kafka/out/gradle/resources/main' 
does not exist. 
 :processTestResources UP-TO-DATE 
 :testClasses 
 :test 
 :jar 

   BUILD SUCCESSFUL 

   Total time: 29 mins 54.98 secs 

   This build could be faster, please consider using the Gradle Daemon: https://docs.gradle.
org/2.8/userguide/gradle_daemon.html 
 {16-05-10 18:33}Isaacs-MacBook-Pro-2:~/opt/apache/kafka/kafka@master isaacruiz% 

    After the  Gradle compilation  , you should have a structure similar to the following: 

   ~/opt/apache/kafka/kafka@master%> ls -lrt 
 total 34360 
 drwxr-xr-x  6 isaacruiz  staff       204 May 10 18:02 src 
 -rwxr-xr-x  1 isaacruiz  staff      1634 May 10 18:02 quickstart.sh 
 drwxr-xr-x  3 isaacruiz  staff       102 May 10 18:02 lib 
 -rwxr-xr-x  1 isaacruiz  staff       307 May 10 18:02 kafka-mesos.sh 
 -rw-r--r--  1 isaacruiz  staff       422 May 10 18:02 kafka-mesos.properties 
 -rwxr-xr-x  1 isaacruiz  staff      4971 May 10 18:02 gradlew 
 drwxr-xr-x  3 isaacruiz  staff       102 May 10 18:02 gradle 
 -rw-r--r--  1 isaacruiz  staff      1769 May 10 18:02 build.gradle 
 -rw-r--r--  1 isaacruiz  staff     29334 May 10 18:02 README.md 
 -rw-r--r--  1 isaacruiz  staff     11325 May 10 18:02 LICENSE 
 drwxr-xr-x  3 isaacruiz  staff       102 May 10 18:25 out 
 -rw-r--r--  1 isaacruiz  staff  17522191 May 10 18:33 kafka-mesos-0.9.5.0.jar 

   Now you can use the main shell, use the  help  command to learn about valid sentences. 

    {16-05-10 19:05}Isaacs-MacBook-Pro-2:~/opt/apache/kafka/kafka> ./kafka-mesos.sh help      
 Usage: <command> 

   Commands: 
   help [cmd [cmd]] - print general or command-specific help 
   scheduler        - start scheduler 
   broker           - broker management commands 
   topic            - topic management commands 

   Run `help <command>` to see details of specific command 
 {16-05-10 21:25}Isaacs-MacBook-Pro-2:~/opt/apache/kafka/kafka%> 
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    Or you can start the scheduler directly: 

   {16-05-10 21:25}Isaacs-MacBook-Pro-2:~/opt/apache/kafka/kafka%> ./kafka-mesos.sh scheduler 
 Loading config defaults from kafka-mesos.properties 
 2016-05-10 21:25:33,573 [main] INFO  ly.stealth.mesos.kafka.Scheduler$  - Starting 
Scheduler$: 
 debug: true, storage: zk:/mesos-kafka-scheduler 
 mesos: master=master:5050, user=vagrant, principal=<none>, secret=<none> 
 framework: name=kafka, role=*, timeout=30d 
 api: http://192.168.3.5:7000, bind-address: <all>, zk: master:2181, jre: <none> 

          Mesos and Apache Spark 
 Since its earliest releases,  Spark   was ready for Mesos. The web page that explains how to perform the 
integration is    http://spark.apache.org/docs/latest/running-on-mesos.html     . 

 It’s easy to start Spark to work with Mesos. Just be careful when establishing the  libmesos  file location 
(the native library compiled earlier). 

 First, validate that Mesos is running by opening a browser and validating that your host is active as 
follows: 

    http://MESOS_HOST:5050/ 

    The next step is to locate the file called  libmesos.so  (or  libmesos.dylib  if you’re on a Mac with OS X) 
and make it available as an environment variable: 

    export MESOS_NATIVE_JAVA_LIBRARY=<path to libmesos.so> 

    Once this is done, try running this line: 

    ~/opt/apache/spark/spark-1.6.1-bin-hadoop2.6/bin%> ./spark-shell --master mesos://MESOS_
HOST:5050   

    If you receive this error: 

    Failed to load native library from Mesos 
 Failed to load native Mesos library from 
 /Users/your_user/Library/Java/Extensions: 
 /Users/your_user/Library/Java/Extensions/Library/Java/Extensions: 
 /Network/Library/Java/Extensions: 
 /System/Library/Java/Extensions: 
 /usr/lib/java:. 

    Copy the  libmesos.so  file to any of these routes, preferably one within your user directory to avoid 
conflicts with another version after you compile. If the path does not exist, you must create it. 

 The following is the successful output. The prompt appears available, and more importantly, Mesos 
recognizes an active framework. 

    16-05-15 12:47}Isaacs-MacBook-Pro-2:~/opt/apache/spark/spark-1.6.1-bin-hadoop2.6/bin 
isaacruiz% ./spark-shell --master mesos://localhost:5050   
 log4j:WARN No appenders could be found for logger (org.apache.hadoop.metrics2.lib.
MutableMetricsFactory). 

http://spark.apache.org/docs/latest/running-on-mesos.html
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 log4j:WARN Please initialize the log4j system properly. 
 log4j:WARN See http://logging.apache.org/log4j/1.2/faq.html#noconfig for more info. 
 Using Spark's repl log4j profile: org/apache/spark/log4j-defaults-repl.properties 
 To adjust logging level use sc.setLogLevel("INFO") 
 Welcome to 
       ____              __ 
      / __/__  ___ _____/ /__ 
     _\ \/ _ \/ _ `/ __/  ’_/ 
    /___/ .__/\_,_/_/ /_/\_\   version 1.6.1 
       /_/ 
 Using Scala version 2.10.5 (Java HotSpot(TM) 64-Bit Server VM, Java 1.8.0_51) 
 Type in expressions to have them evaluated. 
 Type :help for more information. 
 I0515 12:48:34.810873 62210048 sched.cpp:222] Version: 0.28.1 
 I0515 12:48:34.842321 57393152 sched.cpp:326] New master detected at master@127.0.0.1:5050 
 I0515 12:48:34.843389 57393152 sched.cpp:336] No credentials provided. Attempting to 
register without authentication 
 I0515 12:48:34.876587 60612608 sched.cpp:703] Framework registered with 7f7d9b4b-c5e4-48be-
bbb7-78e6fac701ea-0000 
 Spark context available as sc. 
 SQL context available as sqlContext. 
 scala> 

    From the web console, we can see the running frameworks as shown in Figure  7-25 .   

  Figure 7-25.    Apache Spark already appears in the list of active frameworks        
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     The Best Is Yet to Come 
 At the beginning of this chapter, we mentioned that Mesos is still in pre-1.0 versions. All of Mesos’s versatility 
and usefulness work and can be achieved in version 0.28.0. (Imagine when we get to version 1.0!) The 
expectation level is high, and no wonder: on April 2016,  Wired  magazine published an article titled “You 
want to build an empire like Google’s? This is your OS.” 17  Among other things, the article mentions that 
Google runs on architectures similar to Apache Mesos. It also mentions Mesos’s history and its creator, Ben 
Hindman; part of the original design includes creating data centers in the same way that software runs on a 
mobile device or a laptop. 

 Through Mesosphere, 18  the company launched by Hindman, any company (and any of us) can build an 
infrastructure similar to Google’s. 

 If anything is missing to give new impetus to startups, Mesos probably covers it. 
 At MesosConf-Europe in 2015, Hindman presented the “State of Apache Mesos” 19  and a brief summary 

with three main indicators of the growing Mesos community:

•    New users: Cisco, Apple, Yelp, Ericsson  

•   New frameworks: Elastic, Kibana, MySQL, rial, CRATE, and Logstash  

•   New books: This book is among the proof.    

 Every month and a half, a smaller version (now in 0.28) is released; by the end of 2016, it will likely be at 
version 0.40 or 0.50. Mesos surely has many surprises ahead—as we say, the best is yet to come. 

 And if that is not enough, as shown in Figure  7-26 , Mesos is designed to run in the cloud as physical 
 machines  , so the hardware layer is transparent.  

 In 2016, presentations at #MesosConf North America 20  highlighted growing interest in Mesos.     

     Summary 
 In this chapter, you learned a little more about distributed systems. Now you know how difficult it is to try 
to build one. You learned that Mesos is a general-purpose cluster manager. You know its architecture and 
part of its ecosystem. Within this ecosystem, you know about the main frameworks that Mesos interacts 
with to increase its potential. The chapter also overviewed why Mesos is considered a SDK for distributed 
environments.       

   17     http://www.wired.com/2016/04/want-build-empire-like-googles-os/       
   18     https://mesosphere.com/       
   19     https://www.youtube.com/watch?v=K-x7yOy8Ymk&list=PLGeM09tlguZS6MhlSZDbf-gANWdKgje0I       
   20     https://www.linux.com/news/mesoscon-north-america-2016-video-sessions       

  Figure 7-26.    Mesos can run both physical machines and cloud       

 

http://www.wired.com/2016/04/want-build-empire-like-googles-os/
https://mesosphere.com/
https://www.youtube.com/watch?v=K-x7yOy8Ymk&list=PLGeM09tlguZS6MhlSZDbf-gANWdKgje0I
https://www.linux.com/news/mesoscon-north-america-2016-video-sessions
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    CHAPTER 8   

 The Broker: Apache Kafka                          

 The goal of this chapter is to get you familiar with Apache Kafka and show you how to solve the consumption 
of millions of messages in a pipeline architecture. Here we show some Scala examples to give you a solid 
foundation for the different types of implementations and integrations for Kafka producers and consumers. 

 In addition to the explanation of the Apache Kafka architecture and principles, we explore Kafka 
integration with the rest of the SMACK stack, specifically with Spark and Mesos. At the end of the chapter, we 
show how to administer Apache Kafka. 

 This chapter covers the following topics:

•    Kafka introduction  

•   Kafka installation  

•   Kafka in cluster  

•   Kafka architecture  

•   Kafka producers  

•   Kafka consumers  

•   Kafka integration  

•   Kafka administration    

     Kafka Introduction 
 The Apache Kafka author, Jay Kreps, who took a lot of literature courses in the college, if the project is mainly 
optimized for writing (in this book when we say “optimized” we mean 2 million writes per second on three 
commodity machines) when he open sourced it, he thought it should have a cool name: Kafka, in honor of 
Franz Kafka, who was a very prolific author despite dying at 40 age. 

 Nowadays, real-time information is continuously generated. This data needs  easy  ways to be delivered 
to multiple types of receivers. Most of the time the information generators and the information consumers 
are inaccessible to each other; this is when integration tools enter the scene. 

 In the 1980s, 1990s and 2000s, the large software vendors whose names have three letters (IBM, SAP, 
BEA, etc.) and more (Oracle, Microsoft, Google) have found a very well-paid market in the integration layer, 
the layer where live: enterprise service bus, SOA architectures, integrators, and other panaceas that cost 
several millions of dollars. 

 Now, all traditional applications tend to have a point of integration between them, therefore, creating 
the need for a mechanism for seamless integration between data consumers and data producers to avoid 
any kind of application rewriting at either end. 



CHAPTER 8 ■ THE BROKER: APACHE KAFKA

166

 As we mentioned in earlier chapters, in the big data era, the first challenge was the data collection and 
the second challenge was to analyze that huge amount of data. 

 Message publishing is the mechanism for connecting heterogeneous applications through sending 
messages among them. The message router is known as message broker. Apache Kafka is a software solution 
to  quickly  route real-time information to consumers. 

 The message broker provides seamless integration, but there are two collateral objectives: the first is to 
not block the producers and the second is to not let the producers know who the final consumers are. 

 Apache Kafka is a real-time publish-subscribe solution messaging system: open source, 
distributed, partitioned, replicated, commit-log based with a publish-subscribe schema. Its main 
characteristics are as follows:

•     Distributed  .  Cluster-centric design that supports the  distribution   of the messages 
over the cluster members, maintaining the semantics. So you can grow the cluster 
horizontally without downtime.  

•    Multiclient . Easy integration with different  clients   from different platforms: Java, 
.NET, PHP, Ruby, Python, etc.  

•    Persistent . You cannot afford any data lost. Kafka is  designed   with efficient O(1), so 
data structures provide constant time performance no matter the data size.  

•    Real time . The messages produced are immediately seen by consumer threads; 
these are the basis of the systems  called     complex event processing  (CEP)  .  

•    Very high throughput . As we mentioned, all the technologies in the stack are 
designed to work in commodity hardware. Kafka can handle hundreds of read and 
write operations per second from a large number of clients.    

 Figure  8-1  shows an Apache Kafka messaging system typical scenario.  

  Figure 8-1.    Apache Kafka typical  scenario         
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 On the producers’ side, you can find several types of  actors  , for example:

•     Adapters . Generate transformation information; for example, a database listener or 
a file system listener.  

•    Logs . The log files of application servers and other systems, for example.  

•    Proxies . Generate web analytics information.  

•    Web pages  .  Front-end applications generating information.  

•    Web services . The service layer; generate invocation traces.    

 You could group the clients on the customer side as three types:

•     Offline . The information is stored for posterior analysis; for example, Hadoop and 
data warehouses.  

•    Near real time . The information is stored but it is not requested at the same time; for 
example, Apache Cassandra, and NoSQL databases.  

•    Real time . The information is analyzed as it is generated; for example, an engine like 
Apache Spark or Apache Storm (used to make analysis over HDFS).    

     Born in the Fast Data Era 
 As we have mentioned, data is the new ingredient of Internet-based systems. Simply, a web page needs to 
know user activity, logins, page visits, clicks, scrolls, comments, heat zone analysis, shares, and so forth. 

 Traditionally, the data was handled and stored with traditional aggregation solutions. Due to the high 
throughput, the analysis could not be done until the next day. Today, yesterday’s information often useless. 
Offline analysis such as Hadoop is being left out of the new economy. 

 There are several examples of Apache Kafka use cases:   

•    Web searches based on relevance  

•   Application security: login analysis, brute force attack detection, systemic denial of 
service attack detection  

•   Recommendations based on popularity, correlation  

•   Sentiment analysis, tendencies, segmentation  

•   Collecting data from device sensors or sophisticated sensors like surveillance 
cameras to GPS cell phone sensors; passing through sensors: light, temperature, 
pressure, humidity  

•   Real-time merchandising to a huge population  

•   Collecting logs from business systems such as application server logs, CRM, ERP, and 
so forth.    

 In all of these cases, the analysis is done in real time or it is never done, without middle points. 
 Apache Kafka usually is compared to traditional messaging systems such as ActiveMQ or RabitMQ. 

The difference is the data volume that Kafka can handle in real time.  
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     Use Cases 
 Well, you have seen some business scenarios that are solved with Apache Kafka. In which layer in the 
architecture should you put Kafka? Here are some popular (real examples with real enterprises) use cases:

•      Commit logs   . What happens when your system does not have a log system? In these 
cases, you can use Kafka. Many times systems do not have logs, simply because (so 
far) it’s not possible to handle such a large data volume. The stories of application 
servers falling simply because they could not write their logs correctly with the 
verbosity needed by the business are more common than it seems. Kafka can also 
help to start and restart fallen log servers.  

•     Log aggregation .   Contrary to what people believe, much of the work of the 
onsite support team is on log analysis. Kafka not only provides a system for log 
management, but it can also handle heterogeneous aggregation of several logs. Kafka 
can physically collect the logs and remove cumbersome details such as file location 
or format. In addition, it provides low latency and supports multiple data sources 
while making distributed consumption.  

•     Messaging . Systems   are often heterogeneous, and instead of rewriting them, you 
have to translate between them. Often the manufacturer’s adapters are unaffordable 
to a company; for such cases, Kafka is the solution because it is open source and can 
handle more volume than many traditional commercial brokers.  

•    Stream processing .    We could write an entire book on this topic. In some business 
cases, the process of collecting information consists of several stages. A clear 
example is when a broker is used not only to gather information but also to 
transform it. This is the real meaning and success of the Enterprise Service Bus (ESB) 
architectures. With Kafka, the information can be collected and further enriched; 
this (very well paid) enrichment process is known as  stream processing .  

•    Record user activity .    Many marketing and advertising companies are interested in 
recording all the customer activity on a web page. This seems a luxury, but until recently, 
it was very difficult to keep track of the clicks that a user makes on a site. For those tasks 
where the data volume is huge, you can use Kafka for real-time process and monitoring.    

 All of this seems good, but who is using Kafka today? Here are some examples:

•     LinkedIn . 1  Used for activity stream and operational metrics. We cannot imagine the 
 today’s   LinkedIn newsfeed without Kafka.  

•    Uber . 2  Relied on Kafka data feeds to bulk-load log data into Amazon S3 to stream 
change-data logs from the local data  centers  .  

•    Twitter . 3  Handling  five   billion sessions a day in real time requires Kafka to handle 
their stream processing infrastructure.  

•    Netflix . 4  Kafka is  the   backbone of Netflix’s data pipeline for real-time monitoring and 
event processing.  

   1     https://engineering.linkedin.com/blog/2016/04/kafka-ecosystem-at-linkedin       
   2     http://www.datanami.com/2015/10/05/how-uber-uses-spark-and-hadoop       
   3     https://blog.twitter.com/2015/handling-five-billion-sessions-a-day-in-real-time       
   4     http://techblog.netflix.com/2013/12/announcing-suro-backbone-of-netflixs.html       

https://engineering.linkedin.com/blog/2016/04/kafka-ecosystem-at-linkedin
http://www.datanami.com/2015/10/05/how-uber-uses-spark-and-hadoop
https://blog.twitter.com/2015/handling-five-billion-sessions-a-day-in-real-time
http://techblog.netflix.com/2013/12/announcing-suro-backbone-of-netflixs.html
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•    Spotify . 5  Kafka is  used   as part of their log delivery system.  

•    Yahoo . Used by the  media   analytics team as a real-time analytics pipeline. Their 
cluster handles 20Gbps of compressed data.      

     Kafka Installation 
 Go to the Apache Kafka home page at    http://kafka.apache.org/downloads     , as shown in Figure  8-2 .  

  Figure 8-2.    Apache Kafka download page       

 The Apache Kafka current version available as a stable release is 0.10.0.0. The major limitation with Kafka 
since 0.8.x is that it is not backward-compatible. So, you cannot replace this version for one prior to 0.8. 

 Once you download the available release, let’s proceed with the installation. 

     Installing Java 
 You need to  install Java 1.7   or later. Download the latest JDK from Oracle’s web site at    http://www.oracle.
com/technetwork/java/javase/downloads/index.html     . 

 For example, to install in Linux:

    1.    Change the file mode: 

   [restrada@localhost opt]# chmod +x jdk-8u91-linux-x64.rpm 

   5     http://www.meetup.com/stockholm-hug/events/121628932/       

 

http://kafka.apache.org/downloads
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://www.meetup.com/stockholm-hug/events/121628932/
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       2.    Change the directory in which you want to perform the installation: 

   [restrada@localhost opt]# cd <directory path name> 

       3.    To install the software in the  /usr/java/  directory, type the following command: 

   [restrada@localhost opt]# cd /usr/java 

       4.    Run the installer using this command: 

   [restrada@localhost java]# rpm -ivh jdk-8u91-linux-x64.rpm 

       5.    Finally, add the JAVA_HOME environment variable. This command will write the 
JAVA_HOME environment variable to the  /etc/profile  file: 

   [restrada@localhost opt]# echo "export JAVA_HOME=/usr/java/jdk1.8.0_91" >> 
/etc/profile 

            Installing Kafka 
 To install in  Linux  , take the following steps.

    1.    Extract the downloaded  kafka_2.10-0.10.0.0.tgz  file: 

   [restrada@localhost opt]# tar xzf kafka_2.10-0.10.0.0.tgz 

       2.    Add the Kafka bin directory to PATH as follows: 

    [restrada@localhost opt]# export KAFKA_HOME=/opt/kafka_2.10-0.10.0.0 

   [restrada@localhost opt]# export PATH=$PATH:$KAFKA_HOME/bin 

             Importing Kafka 
 To include  Kafka   in our programming projects, we include the dependencies. 

 With SBT: 

   // https://mvnrepository.com/artifact/org.apache.kafka/kafka_2.10 
 libraryDependencies += "org.apache.kafka" % "kafka_2.10" % "0.10.0.0" 

   With Maven: 

   <!-- https://mvnrepository.com/artifact/org.apache.kafka/kafka_2.10 --> 
 <dependency> 
     <groupId>org.apache.kafka</groupId> 
     <artifactId>kafka_2.10</artifactId> 
     <version>0.10.0.0</version> 
 </dependency> 

   With Gradle: 

   // https://mvnrepository.com/artifact/org.apache.kafka/kafka_2.10 
 compile group: 'org.apache.kafka', name: 'kafka_2.10', version: '0.10.0.0' 
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         Kafka in Cluster 
 We are ready to program with the Apache Kafka publisher-subscriber messaging system. In Kafka, there are 
three types of clusters:

•    Single node–single broker  

•   Single node–multiple broker  

•   Multiple node–multiple broker    

 A Kafka cluster has five main  components:  

•     Topic . A category or  feed name  in which messages are published by the message 
producers. Topics are partitioned; each partition is represented by an ordered 
immutable messages sequence. The cluster has a partitioned log for each topic. Each 
message in the partition has a unique sequential id called an offset.  

•    Broker . A Kafka cluster has one or more physical servers in which each one may 
have one or more server processes running. Each server process is called a  broker . 
The topics live in the broker processes.  

•    Producer . Publishes data to topics by choosing the appropriate partition in the 
topic. For load balancing, the messages allocation to the topic partition can be done 
in a round-robin mode or by defining a custom function.  

•    Consumer . Applications or processes subscribed to topics and process the feed of 
published messages.  

•    ZooKeeper . ZooKeeper is the coordinator between the broker and the consumers. 
ZooKeeper coordinates the distributed processes through a shared hierarchical 
name space of data registers; these registers are called  znodes . 

 There are two differences between ZooKeeper and a file system:

•    Every znode has data associated and is designed to store coordination data.  

•   Znodes are limited on the amount of data that they can have.       

     Single Node–Single Broker Cluster 
 An example diagram of a single node– single broker   cluster is shown in Figure  8-3 .  
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 First, start the ZooKeeper server. Kafka provides a simple ZooKeeper configuration file to launch a 
single ZooKeeper instance. To install the ZooKeeper instance, use the following command: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/zookeeper-server-start.sh config/zookeeper.
properties 

   The following are the main properties defined in zookeeper.properties:

•     dataDir . The data directory where ZooKeeper is stored: 

   dataDir=/tmp/zookeeper 

•       clientPort . The listening port for client requests. By default, ZooKeeper listens in the 
2181 TCP port: 

   clientPort=2181 

•       maxClientCnxns . The limit per IP for the number of connections (0 = unbounded): 

   maxClientCnxns=0 

      For more information about Apache ZooKeeper, visit the project page at    http://zookeeper.apache.org/      .  

   Starting the Broker 
 After  start ZooKeeper  , start the Kafka broker with the following command: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-server-start.sh config/server.
properties 

  Figure 8-3.    Single node–single broker Kafka cluster example       

 

http://zookeeper.apache.org/
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   The following are the main properties defined in server.properties:

•     Broker id . The unique positive integer id for each broker. 

   Broker.id=0 

•       Port . The port where the socket server listens on: 

   port=9092 

•       Log dir . The directory to store log files: 

   log.dir=/tmp/kafka10-logs 

•       Num partitions . The number of log partitions per topic: 

   num.partitions=2 

•       ZooKeeper connect . The ZooKeeper connection URL: 

   zookeeper.connect=localhost:2181 

         Creating a Topic 
 Kafka has a command to create topics. Let’s create a topic called   amazingTopic    with one partition and one replica: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]#bin/kafka-topics.sh --create --zookeeper 
localhost:2181 --replication-factor 1 --partitions 1 --topic  amazingTopic  

   Obtain the output, as follows: 

   Created topic "amazingTopic". 

   These are the parameters:

•     --replication-factor 1  indicates one replica  

•    --partition 1  indicates one partition  

•    --zookeeper localhost:2181  indicates the ZooKeeper URL    

 To obtain the list of topics on any Kafka server, use the following command: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-topics.sh --list 
 --zookeeper localhost:2181 

   Obtain the output: 

   amazingTopic 

      Starting a Producer 
 Kafka has a command line to  start producers  . It accepts input from the command line and publishes them as 
messages. By default, each new line is considered a message. 

   [restrada@localhost kafka_2.10.0-0.0.0.']# bin/kafka-console-producer.sh --broker-list 
localhost:9092 --topic amazingTopic 
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   Two parameters are required:

•     broker-list . The URL of the brokers to be connected.  

•    topic . The name of the topic used to send a message to its subscribers.    

 Now type the following: 

   Valar morghulis [Enter] 
 Valar dohaeris [Enter] 

   You get this output: 

   Valar morghulis 
 Valar dohaeris 

   The following are the main properties defined in  producer.properties  :

•     Metadata broker list . A list of brokers used for bootstrapping knowledge about the 
rest of the cluster. 

 Format: host1:port1, host2:port2 

   metadata.broker.list=localhost:9092 

•       Compression codec . The compression codec for data generated. 

 Example: none, gzip, snappy 

   compression.codec=none 

      Later on this chapter, you see how to write producers.  

   Starting a Consumer 
 Kafka has a command line to start a message  consumer client  . It shows the output at the command line as 
soon as it subscribes to the topic in the broker: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-console-consumer.sh --zookeeper 
localhost:2181 --topic amazingTopic --from-beginning 

   As you request from-beginning, you see the following output: 

   Valar morghulis 
 Valar dohaeris 

   The following is the main property defined in consumer.properties:

•     Group id . A string that identifies a set of consumers in the same group: 

   group.id=test-consumer-group 

      Later on this chapter, you will learn how to write consumers. 
 Now let’s play with the new toy architecture. Open each technology in a different console: ZooKeeper, broker, 

producer, and consumer. Type the commands in the producer and watch them displayed in the consumer. 
 If you don’t recall how to run producers or consumers, running the command with no arguments will 

show the possible parameters.   



CHAPTER 8 ■ THE BROKER: APACHE KAFKA

175

     Single Node–Multiple Broker Cluster 
 An example diagram of a single node– multiple broker   cluster is shown in Figure  8-4 .  

  Figure 8-4.    Single node–multiple broker Kafka cluster example       

 As usual, start the ZooKeeper server: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/zookeeper-server-start.sh config/zookeeper.
properties 

   You need a different  server.properties   file for every broker. Let’s call them: server-1.properties, server-2.
properties, server-3.properties, and so forth. 

 In server-1.properties, specify the following:

•     broker.id=1   

•    port=9093   

•    log.dir=/tmp/kafka-logs-1     

 Similarly, on server-2.properties, specify the following:

•     broker.id=2   

•    port=9094   

•    log.dir=/tmp/kafka-logs-2     

 Follow the same procedure for server-3.properties:

•     broker.id=3   

•    port=9095   

•    log.dir=/tmp/kafka-logs-3     
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   Starting the Brokers 
 With  ZooKeeper running  , start the Kafka brokers with the following commands: 

    [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-server-start.sh config/server-1.
properties 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-server-start.sh config/server-2.
properties 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-server-start.sh config/server-3.
properties 

       Creating a Topic 
 Using the command to create topics, create a topic called   reAmazingTopic    ( re  stands for  replicated ). It has 
two partitions and two replicas: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]#bin/kafka-topics.sh --create --zookeeper 
localhost:2181 --replication-factor 2 --partitions 2 --topic  reAmazingTopic  

   Obtain the output, as follows: 

   Created topic "reAmazingTopic". 

      Starting a Producer 
 Now that you know the command to  start producers  , indicating more brokers in the broker-list is a trivial 
task: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-console-producer.sh --broker-list 
localhost:9093, localhost:9094, localhost:9095 --topic reAmazingTopic 

   Yes, our architects always have weird requirements; if we need to run multiple producers connecting to 
different broker combinations, we need to specify a different broker-list for each producer.  

   Starting a Consumer 
 To start a  consumer  , use the same Kafka command that you already know: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-console-consumer.sh --zookeeper 
localhost:2181 --from-beginning --topic reAmazingTopic 

         Multiple Node–Multiple Broker Cluster 
 An example of a multiple node–multiple broker cluster is shown in Figure  8-5 .  
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 Here you are in front of the real power of the cluster. Kafka should be installed in every machine in 
the cluster. Every physical server could have one or many Kafka brokers. All the nodes on the same cluster 
should connect to the same ZooKeeper. 

 But don’t worry, all the previous commands remain equal. The commands for ZooKeeper, broker, 
producer, and consumer don’t change.  

     Broker Properties 
 To recapitulate the section, Table  8-1  lists the most popular broker properties. 6     

  Figure 8-5.    Multiple node–multiple broker Kafka cluster       

   Table 8-1.    Kafka Broker Most Important  Properties     

 Name  Default value  Description 

 broker.id  0  Each broker is identified with a positive integer id. This id 
is the broker’s name and allows the broker to be moved to a 
different host or port without losing consumers. 

 log.dirs  /tmp/kafka-logs  The directory where the log data is stored. Each new partition 
created will be placed in the directory with the fewest partitions. 

 zookeper.connect  localhost:2181  The ZooKeeper’s connection string in the hostname:port/
chroot form. Here, chroot is the base directory for the path 
operations (namespace for sharing with other applications on 
the same ZooKeeper cluster). 

(continued)

   6  The complete list is in    http://kafka.apache.org/documentation.html#brokerconfigs       

 

http://kafka.apache.org/documentation.html#brokerconfigs
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     Kafka Architecture 
 In its beginning, LinkedIn used  Java Message Service (JMS)  . But when more power was needed (i.e., a 
scalable architecture), the LinkedIn development team decided to build the project that we know today 
as Kafka. In 2011, Kafka was an open source Apache project. In this chapter, section we give you some 
reflections on why things are designed in the way they are. 

 The following are Kafka’s project  goals:  

•     An API . Supports custom implementation of producers and consumers.  

•    Low overhead . Low network latency and low storage overhead with message 
persistence on disk.  

•    High throughput . Publishes and subscribes millions of messages; supports data 
feeds and real time.  

•    Distributed . Highly scalable architecture to handle low-latency delivery.  

•    High availability . Autobalances consumers in case of failure.  

•    Fault tolerant . Guarantees data integrity in case of failure.    

 Kafka is more than a queuing platform; the messages are received and enqueued to be delivered to a 
consumer pool. 

 Kafka is more than a published-subscriber platform; the messages are not published to all customers. 
 The following describes Kafka’s operation in a nutshell:

•    Messages are published to a Kafka topic, which is a message queue or a message 
category.  

•   The Kafka topic runs in the Kafka broker, which is a server. Kafka brokers do not just 
run the topics, but also store the messages when required.  

•   The consumers use the ZooKeeper service to get the information to track the 
messages (the data about a message state).    

 Figure  8-6  shows a topic with three partitions. You can see the five Kafka components: ZooKeeper, 
broker, topic, producer, and consumer.  

 Name  Default value  Description 

 host.name  null  The broker’s hostname. If this is set, it will only bind to this 
address. If this is not set, it will bind to all interfaces and 
publish one to ZooKeeper. 

 num.partitions  1  The number of partitions per topic if a partition count isn’t 
given at topic creation. 

 auto.create.topics.
enable 

 true  Enables the autocreation of the topic on the server. If this is 
set to true, the attempts to produce, consume, or fetch data 
for a non-existent topic will automatically create a new one 
with the default replication factor and the default number of 
partitions. 

 default.replication.
factor 

 1  The default replication factor for automatically created topics. 

Table 8-1. (continued) 
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 The following describes parts of the partition. 

•      Segment files   . Internally, every partition is a logical log file, represented as a set of 
segment files with the same size. The partition is a sequence of ordered messages. 
When a message is published, the broker appends the message to the last segment of 
the file. When a certain number of messages is reached, the segment file is flushed to 
the disk. Once the file is flushed, the messages are available for consumption by the 
consumers.  

•     Offset   . The partitions are assigned to a unique sequential number called an  offset . 
The offset is used to identify messages inside the partition. The partitions are 
replicated between the servers for fault tolerance.  

•     Leaders   . Inside Kafka, each partition has one Kafka server as it  leader . The other 
servers are  followers . The leader of a partition coordinates the read and write 
requests for that partition. The followers asynchronously replicate the data from the 
leader. If the leader fails, another server becomes the new leader. In a cluster, every 
server has two roles: the leader on some partitions and a follower on other partitions.  

•     Groups   . The consumers are organized into groups. Each consumer is represented as 
a process; one process belongs to only one group.    

 In Kafka, there are three ways to deliver messages (as a reflection exercise, think about why there are 
only three):

•    Messages are never redelivered but may be lost.  

•   Messages may be redelivered but never lost.  

•   Messages are delivered once and only once.    

  Figure 8-6.    A topic with three partitions       
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     Log Compaction 
 There are two types of retention: finer-grained (per message) and coarser-grained (time based).  Log 
compaction   is the process to pass from time-based to per-message retention. 

 In Kafka, the retention policy can be set to per-topic (time based), size-based, and log compaction–
based. Log compaction ensures the following:

•    Reads begin at offset 0; if the consumer begins at the start of the log, the messages 
are in the order that they were written.  

•   Messages have sequential offsets that never change.  

•   Message order is always preserved.  

•   A group of background threads recopy log segment files; the records whose keys 
appear in the log head are removed.    

 As another reflection exercise, can you deduce why the log compaction ensures these four points?  

     Kafka Design 
 The following are Kafka  design   bullet points:

•     Storage . The purpose of Kafka is to provide message processing. The main functions 
are caching and storing messages on a file system. The caching and flushing to disk 
are configurable.  

•    Retention . If a message is consumed, the message is not wasted; it is retained, 
allowing message reconsumption.  

•    Metadata . In many messaging systems, the message metadata is kept at the server 
level. In Kafka, the message state is maintained at the consumer level. This prevents 
the following:

•    Multiple deliveries of the same message  

•   Losing messages due to failures     

•    OLTP . Consumers store the state in ZooKeeper, but Kafka also allows the storage in 
OLTP external systems (online transaction processing).  

•    Push and pull . Producers push the message to the broker and consumers pull the 
message from the broker.  

•    Masterless . Like Apache Cassandra, Apache Kafka is masterless; you can remove any 
broker at any time. The metadata is maintained by ZooKeeper and shared with the 
customers.  

•    Synchronous . Producers have the option to be asynchronous or synchronous when 
sending messages to the broker.     

     Message Compression 
 There are cases where the network bandwidth is the bottleneck. This usually does not happen, but it could. 
In Kafka, there is a mechanism to compress groups of messages. Note that without being  compression   
experts, we can deduce that it is better to compress a group of messages than compress every message 
individually. 
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 When a group of messages is compressed, the network overhead is reduced. Before Kafka 0.8.0, 
groups of messages were compressed and presented to the consumer as a single message; the consumer 
decompressed it later. But there were issues with decompression that made overhead. 

 Since Kafka 0.8.0, some changes were introduced to the broker to handle offsets; so the problem was 
moved to the broker, but the overall performance improved. The lead broker is responsible for compressing 
messages, which lowers the network overhead but could also increase the load in the broker’s CPU. 

 As you saw, Kafka handles Gzip and Snappy compression protocols. You need to specify this 
configuration in the producer to use compression.

•     compression.codec . This parameter indicates the codec for all data generated on 
the producer. The default value is none. The valid values are none, gzip, and snappy.  

•    compressed.topics . This parameter turns on the compression on particular 
topics. Note that if the list of compressed topics is empty, then you are enabling the 
compression for all the topics. If the compression codec is none, the compression is 
disabled for all the topics.    

 If there is a mission in your work that does not let you sleep, and it is related to mirror data across 
data centers, consider using Kafka. Kafka is a good option when you have to transfer huge amounts 
of data between active and passive data centers in a compressed format with low network bandwidth 
overhead.  

     Replication 
 When you have message partitioning in Kafka, the partitioning strategy decision is made on the broker 
side. The decision on how the message is partitioned is made at the producer end. The broker stores the 
messages as they arrive. If you recall, the number of partitions configured for each topic is done in the 
Kafka broker. 

 Replication is one of the best features introduced in Kafka 0.8.0. Replication ensures that messages 
will be published and consumed in the event of broker failure. Both producers and consumers are 
replication-aware. 

 In replication, each partition has  n  replicas of a message (to handle  n –1 failures). One replica acts as 
the leader. ZooKeeper knows who the replica leader is. The lead replica has a list of its follower replicas. The 
replicas store their part of the message in local logs. 

 Kafka has two  replication modes  : the  synchronous replication process   and the  asynchronous 
replication process  . 

 This is the synchronous replication process:

    1.    The producer identifies the lead replica from ZooKeeper.  

    2.    The producer publishes the message.  

    3.    When the message is published, it is written to the lead replica’s log.  

    4.    The followers pull the message.  

    5.    The leader waits for all the followers to acknowledge that the replica was written.  

    6.    Once replications are complete, the leader sends the acknowledgment to the 
producer.     

 This is the asynchronous replication process:

    1.    The producer identifies the lead replica from ZooKeeper.  

    2.    The producer publishes the message.  
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    3.    When the message is published, it is written to the lead replica’s log.  

    4.    The followers pull the message.  

    5.    Once the message is written on the lead replica, the leader sends the 
acknowledgment to the consumer.     

 As you can see, asynchronous mode is faster, but it is not fault tolerant. 
 Replication ensures strong durability and high availability. It guarantees that any successfully published 

message will not be lost and will be consumed, even in the event of broker failures.   

     Kafka Producers 
 As you saw, producers are applications that create messages and publish them to the broker. Normally, 
producers are front-end applications, web pages, web services, back-end services, proxies, and adapters to 
legacy systems. You can write Kafka producers in Java, Scala, C, and Python. 

 The process begins when the producer connects to any live node and requests metadata about the 
partitions’ leaders on a topic so as to put the message directly to the partition’s lead broker. 

     Producer API 
 First, you need to understand the required classes to write a producer:

•     Producer . The class is KafkaProducer <K, V> in org.apache.kafka.clients.producer.
KafkaProducer 

 KafkaProducer is a type of Java generic written in Scala. K specifies the partition key 
type and V specifies the message value.  

•    ProducerRecord . The class is ProducerRecord <K, V> in org.apache.kafka.clients.
producer.ProducerRecord 

 This class encapsulates the data required for establishing the connection with the 
brokers (broker list, partition, message serializer, and partition key). 

 ProducerRecord is a type of Java generic written in Scala. K specifies the partition key 
type and V specifies the message value.    

 The  Producer API   encapsulates all the low-level producer implementations. The default mode is 
asynchronous, but you can specify in producer.type in the producer configuration.  

     Scala Producers 
 Now let’s write a simple  Scala Kafka producer   to send messages to the broker. The SimpleProducer class 
is used to create a message for a specific topic and to send it using message partitioning. This chapter’s 
examples were tested with Scala version 2.10. 

   Step 1. Import Classes 
  Import   two classes: 

   import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord} 
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      Step 2. Define Properties 
 Define the following  properties  : 

    val props = new Properties() 
 props.put("metadata.broker.list", 
   "192.168.146.132:9093, 192.168.146.132:9094, 192.168.146.132:9095") 

   props.put("serializer.class", "kafka.serializer.StringEncoder") 

   props.put("request.required.acks", "1")   

   producer = new KafkaProducer(props) 

    As you can see, the properties are as follows:

•     metadata.broker.list  

  Specifies   the list of brokers that connect to the producer in the format  [node:port, 
node:port] . As you know, Kafka determines the lead broker of the topic.  

•    serializer.class  

 Specifies the  serializer   used while preparing the message for transmission from the 
producer to the broker. 

 In this example, we use the string encoder provided by Kafka. By default, the 
serializer for the key and message is the same, but you can also implement the 
custom serializer class by extending kafka.serializer.Encoder.  

•    request.required.acks  

 Indicates to the  broker   to send an acknowledgment to the producer when a message 
is received. 

 1 means that the producer receives an acknowledgment once the lead replica has 
received the message. The default mode is “fire and forget,” so that it is not informed 
in the event of message loss.     

   Step 3. Build and Send the Message 
  The following code should be self-explanatory: 

   val runtime = new Date().toString 
 val msg = "Message Publishing Time - " + runtime 
 val data = new ProducerRecord[String, String](topic, msg) 
 producer.send(data) 

   Listing  8-1  shows the complete SimpleProducer. 
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     Listing 8-1.     SimpleProducer.scala     

  package apress.ch08 

   import java.util.{Date, Properties} 

   import apress.ch08.SimpleProducer._ 
 import org.apache.kafka.clients.producer.{KafkaProducer, ProducerRecord} 

   object SimpleProducer { 

     private var producer: KafkaProducer[String, String] = _ 

     def main(args: Array[String]) { 
     val argsCount = args.length 
     if (argsCount == 0 || argsCount == 1) 
       throw new IllegalArgumentException( 
         "Provide topic name and Message count as arguments") 

       // Topic name and the message count to be published is passed from the 
     // command line 
     val topic = args(0) 
     val count = args(1) 

       val messageCount = java.lang.Integer.parseInt(count) 
     println("Topic Name - " + topic) 
     println("Message Count - " + messageCount) 
     val simpleProducer = new SimpleProducer() 
     simpleProducer.publishMessage(topic, messageCount) 
   } 
 } 

   class SimpleProducer { 

     val props = new Properties() 

     // Set the broker list for requesting metadata to find the lead broker 
   props.put("bootstrap.servers", 
     "192.168.146.132:9093, 192.168.146.132:9094, 192.168 146.132:9095") 

     //This specifies the serializer class for keys 
   props.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer") 
   props.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer") 

     // 1 means the producer receives an acknowledgment once the lead replica 
   // has received the data. This option provides better durability as the 
   // client waits until the server acknowledges the request as successful. 
   props.put("request.required.acks", "1") 

     producer = new KafkaProducer(props) 
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     private def publishMessage(topic: String, messageCount: Int) { 
     for (mCount <- 0 until messageCount) { 
       val runtime = new Date().toString 
       val msg = "Message Publishing Time - " + runtime 
       println(msg) 

         // Create a message 
       val data = new ProducerRecord[String, String](topic, msg) 

         // Publish the message 
       producer.send(data) 
     } 

       // Close producer connection with broker. 
     producer.close() 
   } 
 } 

        Step 4. Create the Topic 
 Before running the program, you must create the  topic  . You can create it using the API (amazing, isn’t it?) or 
from the command line: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]#bin/kafka-topics.sh --create --zookeeper 
localhost:2181 --replication-factor 1 --partitions 3 --topic amazingTopic 

      Step 5. Compile the Producer 
  Compile   the program with this command: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# scalac . apress/ch08/SimpleProducer.scala 

      Step 6. Run the Producer 
  Run   the SimpleProducer with the following command: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# scala apress.ch08.SimpleProducer amazingTopic 10 

   This program takes two arguments: the topic name and the number of messages to publish.  

   Step 7. Run a Consumer 
 As you already saw, you can run the  consumer program   with the following command: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-console-consumer.sh --zookeeper 
localhost:2181 --from-beginning --topic amazingTopic 
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         Producers with Custom Partitioning 
 Let’s jump to the next level by writing another program that implements customized message  partitioning  . 
The example consists of recollecting the IPs visiting a web site, which are recorded and published. The 
message has three parts: timestamp, web site name, and IP address. 

   Step 1. Import Classes 
  Import   these classes: 

   import java.util.Date 
 import java.util.Properties 
 import java.util.Random 
 import org.apache.kafka.clients.producer.KafkaProducer 
 import org.apache.kafka.clients.producer.ProducerRecord 

      Step 2. Define Properties 
 Define the following  properties  : 

    val props = new Properties() 

   props.put("metadata.broker.list", 
   "192.168.146.132:9092, 192.168.146.132:9093, 192.168.146.132:9094") 

   props.put("serializer.class", "kafka.serializer.StringEncoder") 

   // Defines the class to be used for determining the partition 
 // in the topic where the message needs to be sent. 
 props.put("partitioner.class", "apress.ch08.SimplePartitioner") 

   props.put("request.required.acks", "1") 

   producer = new KafkaProducer(props) 

       Step 3. Implement the Partitioner class 
 Write the  SimplePartitioner class   that extends the Partitioner abstract class. The class takes the key, in this 
case the IP address, and makes a modulo operation with the number of partitions. Listing  8-2  shows the 
SimplePartitioner code. 

     Listing 8-2.    SimplePartitioner.scala   

  package apress.ch08 

   import java.util 

   import kafka.utils.VerifiableProperties 
 import org.apache.kafka.clients.producer.KafkaProducer 
 import org.apache.kafka.clients.producer.Partitioner 
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 import org.apache.kafka.common.Cluster 

   object SimplePartitioner { 

     private var producer: KafkaProducer[String, String] = _ 
 } 

   class SimplePartitioner extends Partitioner { 

     def partition(key: AnyRef, a_numPartitions: Int): Int = { 
     var partition = 0 
     val partitionKey = key.asInstanceOf[String] 
     val offset = partitionKey.lastIndexOf('.') 
     if (offset > 0) { 
       partition = java.lang.Integer.parseInt(partitionKey.substring(offset + 1)) % 
         a_numPartitions 
     } 
     Partition 
   } 

     override def partition(topic: String, 
                          key: AnyRef, 
                          keyBytes: Array[Byte], 
                          value: AnyRef, 
                          valueBytes: Array[Byte], 
                          cluster: Cluster): Int = partition(key, 10) 

     override def close() { 
   } 

     override def configure(configs: util.Map[String, _]) { 
   } 
 } 

       Step 4. Build and Send the Message 
 Listing  8-3  presents the complete CustomPartitionProducer.scala. 

      Listing 8-3.     CustomPartitionProducer.scala     

  package apress.ch08 

   import java.util.Date 
 import java.util.Properties 
 import java.util.Random 
 import org.apache.kafka.clients.producer.KafkaProducer 
 import org.apache.kafka.clients.producer.ProducerRecord 
 import CustomPartitionProducer._ 

   object CustomPartitionProducer { 

     var producer: KafkaProducer[String, String] = _ 
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     def main(args: Array[String]) { 
     val argsCount = args.length 
     if (argsCount == 0 || argsCount == 1) 
       throw new IllegalArgumentException( 
         "Please provide topic name and Message count as arguments") 

       // Topic name and the message count to be published is passed from the 
     // command line 
     val topic = args(0) 
     val count = args(1) 
     val messageCount = java.lang.Integer.parseInt(count) 
     println("Topic Name - " + topic) 
     println("Message Count - " + messageCount) 
     val simpleProducer = new CustomPartitionProducer() 
     simpleProducer.publishMessage(topic, messageCount) 
   } 
 } 

   class CustomPartitionProducer { 

     val props = new Properties() 

     // Set the broker list for requesting metadata to find the lead broker 
   props.put("metadata.broker.list", 
     "192.168.146.132:9092, 192.168.146.132:9093, 192.168.146.132:9094") 

     // This specifies the serializer class for keys 
   props.put("serializer.class", "kafka.serializer.StringEncoder") 

     // Defines the class to be used for determining the partition 
   // in the topic where the message needs to be sent. 
   props.put("partitioner.class", "apress.ch08.SimplePartitioner") 

     // 1 means the producer receives an acknowledgment once the lead replica 
   // has received the data. This option provides better durability as the 
   // client waits until the server acknowledges the request as successful. 
   props.put("request.required.acks", "1") 

     producer = new KafkaProducer(props) 

     private def publishMessage(topic: String, messageCount: Int) { 
     val random = new Random() 
     for (mCount <- 0 until messageCount) { 
       val clientIP = "192.168.14." + random.nextInt(255) 
       val accessTime = new Date().toString 
       val msg = accessTime + ",kafka.apache.org," + clientIP 
       println(msg) 
       // Create a ProducerRecord instance 
       val data = new ProducerRecord[String, String](topic, clientIP, msg) 
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         // Publish the message 
       producer.send(data) 
     } 
     producer.close() 
   } 
 } 

        Step 5. Create the Topic 
 Before running the program, you must create the pageHits  topic   from the command line: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]#bin/kafka-topics.sh --create --zookeeper 
localhost:2181 --replication-factor 3 --partitions 5 --topic pageHits 

      Step 6. Compile the Programs 
  Compile   the programs with the following commands: 

    [restrada@localhost kafka_2.10.0-0.0.0.0]# scalac . apress/ch08/SimplePartitioner.scala 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# scalac . apress/ch08/CustomPartitionProducer.
scala 

       Step 7. Run the Producer 
  Run   CustomPartitionProducer with the following command: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# scala apress.ch08.CustomPartitionProducer 
pageHits 100 

   The program takes two arguments: the topic name and the number of messages to publish.  

   Step 8. Run a Consumer 
 As you already saw, you can run the  consumer program   with the following command: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-console-consumer.sh --zookeeper 
localhost:2181 --from-beginning --topic pageHits 

         Producer Properties 
 To recapitulate the section, Table  8-2  lists the most popular producer properties. 7     

   7  The complete list is in    http://kafka.apache.org/documentation.html#producerconfigs       

http://kafka.apache.org/documentation.html#producerconfigs
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   Table 8-2.    Kafka Producer Most Important  Properties     

 Name  Type  Default  Description 

 bootstrap.servers  list  The producer uses this property to get metadata 
about topics, partitions, and replicas. The format is 
host1:port1,host2:port2. 

 key.serializer  class  Specifies the serializer class for the messages. The default 
encoder accepts and returns the same byte. 

 value.serializer  class  Specifies the serializer value for the messages. 

 acks  string  1  Controls when the producer request is considered 
complete and when the producer receives an 
acknowledgment from the broker: 

 0 = producer will never wait for an acknowledgment from 
the broker; lowest latency, but with weakest durability. 

 1 = producer receives an acknowledgment once the lead 
replica has received the data; better durability as the client 
waits until the server acknowledges a successful request. 

 –1 = producer will receive an acknowledgment once 
all the in-sync replicas have received the data; the best 
durability. 

 buffer.memory  long  33554432  The total bytes of memory that the producer can use to 
buffer records waiting to be sent to the server. 

 compression.type  string  none  Specifies the compression codec for all data generated 
by this producer. The values accepted are none, gzip, and 
snappy. 

 retries  int  0  Setting a value greater than zero will cause the client to 
resend any record whose send fails with a potentially 
transient error. 

     Kafka Consumers 
 As you saw, consumers are applications that consume the messages published by the broker. Normally, 
producers are real-time analysis applications, near real-time analysis applications, NoSQL solutions, data 
warehouses, back-end services, and subscriber-based solutions. You can write Kafka producers in Java, 
Scala, C, and Python. 

 The consumer subscribes for the message consumption on a specific topic on the Kafka broker. The 
consumer then makes a fetch request to the lead broker to consume the message partition by specifying 
the message offset. The consumer works in the pull model and always pulls all available messages after its 
current position. 

     Consumer API 
 In the Kafka 0.8.0 version, there were two  API   types for consumers: the high-level API and the low-level API. 
In version 0.10.0, they are unified. 
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 To use the consumer API with Maven, you should import the following dependency: 

   <dependency> 
     <groupId>org.apache.kafka</groupId> 
     <artifactId>kafka-clients</artifactId> 
     <version>0.10.0.0</version> 
 </dependency> 

   The consumer API classes with SBT are imported, as follows: 

   // https://mvnrepository.com/artifact/org.apache.kafka/kafka-clients 
 libraryDependencies += "org.apache.kafka" % "kafka-clients" % "0.10.0.0" 

   The consumer API classes with Gradle are imported: 

   // https://mvnrepository.com/artifact/org.apache.kafka/kafka-clients 
 compile group: 'org.apache.kafka', name: 'kafka-clients', version: '0.10.0.0' 

        Simple Scala Consumers 
 Let’s write a single threaded  Scala consumer   using the Consumer API for consuming the messages from 
a topic. This SimpleConsumer is used to fetch messages from a topic and consume them. We assume that 
there is a single partition in the topic. 

   Step 1. Import Classes 
  Import   these classes: 

   import java.util 
 import java.util.Properties 
 import kafka.consumer.ConsumerConfig 

      Step 2. Define Properties 
 Define the following  properties  : 

   val props = new Properties() 
 props.put("zookeeper.connect", zookeeper) 
 props.put("group.id", groupId) 
 props.put("zookeeper.session.timeout.ms", "500") 
 props.put("zookeeper.sync.time.ms", "250") 
 props.put("auto.commit.interval.ms", "1000") 
 new ConsumerConfig(props) 

   Now let’s go over the major properties mentioned in the code:

•     zookeeper.connect.  Specifies the ZooKeeper <node:port> connection used to find 
the ZooKeeper running instance in the cluster. ZooKeeper is used to store offsets of 
messages consumed for a specific topic and partition by this consumer group.  
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•    group.id . Specifies the consumer group name (shared by all the consumers in the 
group). This is the process name used by ZooKeeper to store offsets.  

•    zookeeper.session.timeout.ms . Specifies the ZooKeeper session timeout in 
milliseconds. Represents the amount of time Kafka will wait for a ZooKeeper 
response to a request before giving up and continuing with consuming messages.  

•    zookeeper.sync.time.ms . Specifies the ZooKeeper sync time (in milliseconds) 
between the leader and the followers.  

•    auto.commit.interval.ms . Defines the frequency (in milliseconds) at which 
consumer offsets get committed.     

   Step 3. Code the SimpleConsumer 
 Write the  SimpleConsumer class  , as shown in Listing  8-4 . 

     Listing 8-4.    SimpleConsumer.scala   

  package apress.ch08 

   import java.util 
 import java.util.Properties 

   import kafka.consumer.ConsumerConfig 
 import SimpleConsumer._ 

   import scala.collection.JavaConversions._ 

   object SimpleConsumer { 

     private def createConsumerConfig(zookeeper: String, groupId: String): ConsumerConfig = { 
     val props = new Properties() 
     props.put("zookeeper.connect", zookeeper) 
     props.put("group.id", groupId) 
     props.put("zookeeper.session.timeout.ms", "500") 
     props.put("zookeeper.sync.time.ms", "250") 
     props.put("auto.commit.interval.ms", "1000") 
     new ConsumerConfig(props) 
   } 

     def main(args: Array[String]) { 
     val zooKeeper = args(0) 
     val groupId = args(1) 
     val topic = args(2) 
     val simpleHLConsumer = new SimpleConsumer(zooKeeper, groupId, topic) 
     simpleHLConsumer.testConsumer() 
   } 
 } 
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   class SimpleConsumer(zookeeper: String, groupId: String, private val topic: String) { 

     private val consumer = 
      kafka.consumer.Consumer.createJavaConsumerConnector(createConsumerConfig(zookeeper, 

groupId)) 

     def testConsumer() { 
     val topicMap = new util.HashMap[String, Integer]() 
     topicMap.put(topic, 1) 
     val consumerStreamsMap = consumer.createMessageStreams(topicMap) 
     val streamList = consumerStreamsMap.get(topic) 
     for (stream <- streamList; aStream <- stream) 
       println("Message from Single Topic :: " + new String(aStream.message())) 
     if (consumer != null) { 
       consumer.shutdown() 
     } 
   } 
 } 

       Step 4. Create the Topic 
 Before running the program, you must create the  amazingTopic   topic from the command line: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]#bin/kafka-topics.sh --create --zookeeper 
localhost:2181 --replication-factor 1 --partitions 3 --topic amazingTopic 

      Step 5. Compile the Program 
  Compile   the program with the following command: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# scalac . apress/ch08/SimpleConsumer.scala 

      Step 6. Run the Producer 
  Run   the SimpleProducer with the following command: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# scala apress.ch08.SimpleProducer amazingTopic 100 

      Step 7. Run the Consumer 
  Run SimpleConsumer   with the following command: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# scala apress.ch08.SimpleConsumer localhost:2181 
testGroup amazingTopic 

   The SimpleConsumer class takes three arguments: the ZooKeeper connection string in <host:port> 
form, the unique group id, and the Kafka topic name.   
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     Multithread Scala Consumers 
 A  multithreaded consumer   API design is based on the number of partitions in the topic and has a one-to-
one mapping approach between the thread and the partitions in the topic. 

 If you don’t have the one-to-one relation, conflicts may occur, such as a thread that never receives a 
message or a thread that receives messages from multiple partitions. Let’s program MultiThreadConsumer. 

   Step 1. Import Classes 
  Import   these classes: 

   import java.util 
 import java.util.Properties 
 import java.util.concurrent.ExecutorService 
 import java.util.concurrent.Executors 
 import kafka.consumer.ConsumerConfig 

      Step 2. Define Properties 
 Define the following  properties  : 

   val props = new Properties() 
 props.put("zookeeper.connect", zookeeper) 
 props.put("group.id", groupId) 
 props.put("zookeeper.session.timeout.ms", "500") 
 props.put("zookeeper.sync.time.ms", "250") 
 props.put("auto.commit.interval.ms", "1000") 
 new ConsumerConfig(props) 

      Step 3. Code the MultiThreadConsumer 
 Write the  MultiThreadConsumer class  , as shown in Listing  8-5 . 

     Listing 8-5.    MultiThreadConsumer.scala   

  package apress.ch08 

   import java.util 
 import java.util.Properties 
 import java.util.concurrent.ExecutorService 
 import java.util.concurrent.Executors 

   import kafka.consumer.ConsumerConfig 
 import MultiThreadConsumer._ 

   import scala.collection.JavaConversions._ 

   object MultiThreadConsumer { 
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     private def createConsumerConfig(zookeeper: String, groupId: String): ConsumerConfig = { 
     val props = new Properties() 
     props.put("zookeeper.connect", zookeeper) 
     props.put("group.id", groupId) 
     props.put("zookeeper.session.timeout.ms", "500") 
     props.put("zookeeper.sync.time.ms", "250") 
     props.put("auto.commit.interval.ms", "1000") 
     new ConsumerConfig(props) 
   } 

     def main(args: Array[String]) { 
     val zooKeeper = args(0) 
     val groupId = args(1) 
     val topic = args(2) 
     val threadCount = java.lang.Integer.parseInt(args(3)) 
     val multiThreadHLConsumer = new MultiThreadConsumer(zooKeeper, groupId, topic) 
     multiThreadHLConsumer.testMultiThreadConsumer(threadCount) 
     try { 
       Thread.sleep(10000) 
     } catch { 
       case ie: InterruptedException => 
     } 
     multiThreadHLConsumer.shutdown() 
   } 
 } 

   class MultiThreadConsumer(zookeeper: String, groupId: String, topic: String) { 

     private var executor: ExecutorService = _ 

      private val consumer = kafka.consumer.Consumer.createJavaConsumerConnector(createConsumer
Config(zookeeper, 

     groupId)) 

     def shutdown() { 
     if (consumer != null) consumer.shutdown() 
     if (executor != null) executor.shutdown() 
   } 

     def testMultiThreadConsumer(threadCount: Int) { 
     val topicMap = new util.HashMap[String, Integer]() 

       // Define thread count for each topic 
     topicMap.put(topic, threadCount) 

       // Here we have used a single topic but we can also add 
     // multiple topics to topicCount MAP 
     val consumerStreamsMap = consumer.createMessageStreams(topicMap) 
     val streamList = consumerStreamsMap.get(topic) 
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       // Launching the thread pool 
     executor = Executors.newFixedThreadPool(threadCount) 

       // Creating an object messages consumption 
     var count = 0 
     for (stream <- streamList) { 
       val threadNumber = count 
       executor.submit(new Runnable() { 

           def run() { 
           val consumerIte = stream.iterator() 
           while (consumerIte.hasNext) 
              println("Thread Number " + threadNumber + ": " + new String(consumerIte.next().

message())) 
           println("Shutting down Thread Number: " + threadNumber) 
         } 
       }) 
       count += 1 
     } 
     if (consumer != null) consumer.shutdown() 
     if (executor != null) executor.shutdown() 
   } 
 } 

       Step 4. Create the Topic 
 Before running the program, you must create the  amazingTopic   topic from the command line: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]#bin/kafka-topics.sh --create --zookeeper 
localhost:2181 --replication-factor 2 --partitions 4 --topic amazingTopic 

      Step 5. Compile the Program 
  Compile   the program with the following command: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# scalac . apress/ch08/MultiThreadConsumer.scala 

      Step 6. Run the Producer 
  Run SimpleProducer   with the following command: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# scala apress.ch08.SimpleProducer amazingTopic 100 

      Step 7. Run the Consumer 
  Run MultiThreadConsumer   with the following command: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# scala apress.ch08.MultiThreadConsumer 
localhost:2181 testGroup amazingTopic 4 



CHAPTER 8 ■ THE BROKER: APACHE KAFKA

197

   MultiThreadConsumer takes four arguments:

•    ZooKeeper connection string in <host:port> form  

•   An unique group id  

•   Kafka topic name  

•   Thread count    

 This program prints all partitions of messages associated with each thread.   

     Consumer Properties 
 To recapitulate the section, Table  8-3  lists the most popular consumer properties. 8     

   Table 8-3.    Kafka Consumer Most Important  Properties     

 Name  Default  Type  Description 

 bootstrap.servers  list  A list of pairs host/port to establishing the initial 
connection to the cluster. Should be in the form 
host1:port1,host2:port2, and so forth. 

 fetch.min.bytes  1  int  The minimum amount of data the server should return 
for a fetch request. Setting this to something greater 
than 1 causes the server to wait to accumulate larger 
data amounts, which improves server throughput a bit 
at the cost of additional latency. 

 group.id  “”  string  A unique string that identifies the consumer group that 
this consumer belongs to. 

 heartbeat.interval.ms  3000  int  The expected time between heartbeats to the 
consumer coordinator when using Kafka’s group 
management facilities. 

 key.deserializer  class  A deserializer class for key that implements the 
Deserializer interface. 

 max.partition.fetch.bytes  1048576  int  The maximum amount of data per partition that the 
server will return. The maximum total memory used 
for a request is #partitions * max.partition.fetch.bytes. 

 session.timeout.ms  30000  int  Timeout used to detect failures when using Kafka’s 
group management facilities. When a consumer’s 
heartbeat is not received within the session timeout, 
the broker will mark the consumer as failed and 
rebalance the group. 

 value.deserializer  class  Deserializer class for value that implements the 
Deserializer interface. 

   8  The complete list is in    http://kafka.apache.org/documentation.html#consumerconfigs       

http://kafka.apache.org/documentation.html#consumerconfigs
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     Kafka Integration 
 When processing small amounts of data in real time, it is not a challenge when using Java Messaging Service 
(JMS); but learning from LinkedIn’s experience, you see that this processing system has serious performance 
limitations when dealing with large data volumes. Moreover, this system is a nightmare when trying to scale 
horizontally, because it can’t. 

     Integration with Apache Spark 
 In the next example, you need a Kafka cluster up and running. Also, you need Spark installed on your 
machine, ready to be deployed. 

  Apache Spark   has a utility class to create the data stream to be read from Kafka. But, as with any Spark 
project, you first need to create SparkConf and the Spark StreamingContext. 

   val sparkConf = new SparkConf().setAppName("SparkKafkaTest") 
 val jssc = new JavaStreamingContext(sparkConf, Durations.seconds(10)) 

   Create the hash set for the topic and Kafka  consumer parameters:    

    val topicsSet = new HashSet[String]() 
 topicsSet.add("mytesttopic") 

   val kafkaParams = new HashMap[String, String]() 
 kafkaParams.put("metadata.broker.list", "localhost:9092") 

    You can create a direct Kafka stream with brokers and topics: 

   val messages = KafkaUtils.createDirectStream( 
         jssc, 
         classOf[String], 
         classOf[String], 
         classOf[StringDecoder], 
         classOf[StringDecoder], 
         kafkaParams, 
         topicsSet) 

   With this stream, you can run the regular  data processing algorithms  .

    1.    Create a Spark StreamingContext that sets up the entry point for all stream 
functionality. Then set up the stream processing batch interval at 10 seconds.  

    2.    Create the hash set for the topics to read from.  

    3.    Set the parameters for the Kafka producer using a hash map. This map must have 
a value for metadata.broker.list, which is the comma-separated list of host and 
port numbers.  

    4.    Create the input DStream using the KafkaUtils class.     

 Once you have the DStream ready, you can apply your algorithms to it. Explaining how to do that is 
beyond the scope of this book. 

 Spark Streaming is explained in detail in Chapter   6    .   

http://dx.doi.org/10.1007/978-1-4842-2175-4_6
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     Kafka Administration 
 There are numerous tools provided by Kafka to administrate features such as cluster management, topic 
tools, and cluster mirroring. Let’s look at these tools in detail. 

     Cluster Tools 
 As you already know, when replicating multiple partitions, you can have replicated data. Among replicas, 
one acts as leader and the rest as followers. When there is no leader, a follower takes leadership. 

 When the broker has to be shut down for maintenance activities, the new leader is elected 
sequentially. This means significant I/O operations on ZooKeeper. With a big cluster, this means a delay in 
availability. 

 To reach high availability, Kafka provides tools for shutting down brokers. This tool transfers the 
leadership among the replicas or to another broker. If you don’t have an in-sync replica available, the tool 
fails to shut down the broker to ensure data integrity. 

 This  tool   is used through the following command: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-run-class.sh kafka.admin. 
ShutdownBroker --zookeeper <zookeeper_host:port/namespace> --broker <brokerID> --num.retries 
3 --retry.interval.ms 100 

   The ZooKeeper URL and the broker id are mandatory parameters. There are other optional parameters; 
for example, num.retries (the default value is 0) and retry.interval.ms (the default value is 1000). 

 When the server is stopped gracefully, it syncs all of its logs to disk to avoid any log recovery when it 
is restarted again, because log recovery is a time-consuming task. Before shutdown, it migrates the leader 
partitions to other replicas; so it ensures low downtime for each partition. 

 Controlled shutdown is enabled in this way: 

   controlled.shutdown.enable=true 

   When there is a big cluster, Kafka ensures that the lead replicas are equally distributed among the 
broker. If a broker fails in shutdown, this distribution cannot be balanced. 

 To maintain a balanced distribution, Kafka has a tool to distribute lead replicas across the brokers in the 
cluster. This tool’s syntax is as follows: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-preferred-replica-election.sh 
--zookeeper <zookeeper_host:port/namespace> 

   This tool updates the ZooKeeper path with a list of topic partitions whose lead replica needs to be 
moved. If the controller finds that the preferred replica is not the leader, it sends a request to the broker to 
make the preferred replica the partition leader. If the preferred replica is not in the ISR list, the controller fails 
the operation to avoid data loss. 

 You can specify a JSON list for this tool in this format: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-preferred-replicaelection. 
 sh --zookeeper <zookeeper_host:port/namespace> --path-to-jsonfile 
 topicPartitionList.json 
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   The following is the  topicPartitionList.json  file format: 

    {"partitions": 
         [ 
                 {"topic": "AmazingTopic", "partition": "0"}, 
                 {"topic": "AmazingTopic", "partition": "1"}, 
                 {"topic": "AmazingTopic", "partition": "2"}, 

                   {"topic": "reAmazingTopic", "partition": "0"}, 
                 {"topic": "reAmazingTopic", "partition": "1"}, 
                 {"topic": "reAmazingTopic", "partition": "2"}, 
         ] 
 } 

         Adding Servers 
 When you  add servers   to the cluster, a unique broker id needs to be assigned to the new server. This way, 
adding a server doesn’t assign data partitions. So, a new server won’t perform any work until new partitions 
are migrated to it or new topics are created. 

 Let’s discuss moving partitions between brokers. There is a tool that reassigns partitions in bin/kafka-
reassign-partitions.sh. This tool takes care of everything. When migrating, Kafka makes the new server a 
follower of the migrating partition. This enables the new server to fully replicate the existing data in the 
partition. 

 The  reassign-partition tool   runs in three different modes:

•     --generate . Moves the partitions based on the topics and the brokers list shared with 
the tool.  

•    --execute . Moves the partitions based on the user plan specified in --reassignment-
json-file.  

•    --verify . Moves the partitions based on the status (successful/failed/in progress) of 
the last --execute.    

 The partition reassignment tool could be used to move selected topics form current brokers to new 
brokers. The administrator provides a list of topics and a target list of new broker ids. This tool distributes the 
partitions of a given topic among the new brokers. For example: 

    [restrada@localhost kafka_2.10.0-0.0.0.0]# cat topics-for-new-server.json 
 {"partitions": 
         [{"topic": "amazingTopic", 
         {"topic": "reAmazingTopic"}], 
         "version":1 
 } 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-reassign-partitions.sh --zookeeper 
localhost:2181 --topics-to-move-json-file topics-for-new-server.json --broker-list 
"4,5" -–generate new-topic-reassignment.json 

    This command generates the assignment (new-topic-reassignment.json) plan to move all partitions 
for topics  amazingTopic   and  reAmazingTopic   to the new set of brokers having ids 4 and 5. At the end of this 
move, all partitions will only exist on brokers 5 and 6. To initiate the assignment with the kafka-reassign-
partitions.sh tool, use this: 
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   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-reassign-partitions. sh --zookeeper 
localhost:2181 --reassignment-json-file new-topic-reassignment.json --execute 

   You could use this tool to selectively move the partitions from the existing broker to the new broker: 

    [restrada@localhost kafka_2.10.0-0.0.0.0]# cat partitions-reassignment.json 
 {"partitions": 
         [{"topic": "amazingTopic", 
                 "partition": 1, 
                 "replicas": [1,2,4] }], 
         }], 
         "version":1 
 } 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-reassign-partitions.sh --zookeeper 
localhost:2181 --reassignment-json-file partitions-reassignment.json --execute 

    This command moves some replicas for certain partitions to the new server. Once the reassignment is 
done, the operation can be verified: 

    [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-reassign-partitions. sh --zookeeper 
localhost:2181 --reassignment-json-file new-topic-reassignment.json --verify 

   Status of partition reassignment: 
 Reassignment of partition [amazingTopic,0] completed successfully 
 Reassignment of partition [amazingTopic,1] is in progress 
 Reassignment of partition [amazingTopic,2] completed successfully 
 Reassignment of partition [reAmazingTopic,0] completed successfully 
 Reassignment of partition [reAmazingTopic,1] completed successfully 
 Reassignment of partition [reAmazingTopic,2] is in progress 

    To separate a server from the Kafka cluster, you have to move the replica for all partitions hosted on the 
server to be detached from the remaining brokers. You can also use the kafka-reassign-partitions.sh tool to 
increase the partition’s replication factor, as follows: 

    [restrada@localhost kafka_2.10.0-0.0.0.0]# cat increase-replication-factor.json {"partitions
":[{"topic":"amazingTopic","partition":0,"replicas":[2,3]}], 
 "version":1 } 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-reassign-partitions.sh --zookeeper 
localhost:2181 --reassignment-json-file increase-replication-factor.json --execute 

    This command assumes that partition 0 of the amazingTopic has a  replication factor   of 1 (the replica 
is on broker 2); and now it increases the replication factor to 2 and also creates the new replica on the next 
server, which is broker 3. 

   Kafka Topic Tools 
 When Kafka creates topics, it uses the default number of partitions (1) and the default replication factor (1). 
In real life, you need to specify these parameters. 
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   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-topics.sh --create --zookeeper 
localhost:2181/chroot --replication-factor 3 --partitions 10 --topic amazingTopic 

   You can interpret this command as follows: replication factor 3 means that up to two servers can fail 
before data access is lost. Ten partitions are defined for a topic, which means that the full data set will be 
handled by no more than ten brokers, excluding replicas. 

 To alter existent  Kafka topics  , use this command: 

   [restrada@localhost kafka_2.10.0-0.0.0.0] # bin/kafka-topics.sh --alter --zookeeper 
localhost:2181/chroot --partitions 20 --topic amazingTopic  

   With this command, we are adding ten more partitions to the topic created in the previous example. 
 To delete a topic, use the following command: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-topics.sh --delete --zookeeper 
localhost:2181/chroot --topic amazingTopic 

   Using the kafka-topics.sh utility, the configuration can also be added to the Kafka topic, as follows: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-topics.sh --alter --zookeeper 
localhost:2181/chroot --topic amazingTopic --config <key>=<value> 

   To remove a  configuration   from the topic, use the following command: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-topics.sh --alter --zookeeper 
localhost:2181/chroot --topic amazingTopic --deleteconfig <key>=<value> 

   There is a utility to search for the list of topics on the server. The list tool provides a listing of topics and 
information about partitions, replicas, and leaders by querying ZooKeeper. 

 The following command obtains a list of topics: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-topics.sh --list --zookeeper 
localhost:2181 

   The table obtained with this command has the following  headers  :

•     leader : A randomly selected node for a specific portion of the partitions; responsible 
for the reads and writes on this partition.  

•    replicas : The list of nodes that holds the log for a specified partition.  

•    isr : The subset of the in-sync list of replicas that is currently alive and in-sync with 
the leader.     

   Cluster Mirroring 
  Mirroring   is used to create a replication of an existing cluster; for example, replicating an active data center 
into a passive data center. The mirror-maker tool mirrors the source cluster into a target cluster. 

 To mirror the source cluster, bring up the target cluster and start the mirror-maker processes, as follows: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]# bin/kafka-run-class.sh kafka.tools. MirrorMaker 
--consumer.config sourceClusterConsumer.config --num.streams 2 --producer.config 
targetClusterProducer.config --whitelist=".*" 
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   There are also tools to check the position of the consumer while mirroring or in general. The tool shows 
the position of all the consumers in a consumer group and how far they are to the log’s end; it also indicates 
how well cluster mirroring is performing. This tool is used as follows: 

   [restrada@localhost kafka_2.10.0-0.0.0.0]#bin/kafka-run-class.sh kafka.tools. 
ConsumerOffsetChecker --group MirrorGroup --zkconnect localhost:2181 --topic kafkatopic 

          Summary 
 During this complete journey through Apache Kafka, we touched upon many important facts. You learned 
how to install Kafka, how to set up a Kafka cluster with single and multiple brokers on a single node, how 
to run command-line producers and consumers, and how to exchange some messages. You discovered 
important Kafka broker settings. You also learned the reason why Kafka was developed, its installation 
procedures, and its support for different types of clusters. 

 We explored the Kafka’s design approach and wrote a few basic producers and consumers. Finally, 
we discussed Kafka’s integration with technologies, such as Spark. In the next chapter, we review all the 
enterprise integration patterns.      



   PART III 

   Improving SMACK 
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    CHAPTER 9   

 Fast Data Patterns                          

 In this chapter, we examine well-known patterns in developing fast data applications. As you know, there 
are two approaches: (1) the batch, on disk, traditional approach and (2) the streaming, on memory, modern 
approach. The patterns in this chapter apply to both approaches. 

 The chapter has three main sections. In the first, we discuss the concept of  fast data  to differentiate 
it from big data. In the second section, we discuss the differences between ACID and CAP in order to 
understand the capabilities and limitations of both in fast data. The third section features recipes with 
design patterns to write certain types of streaming applications. 

 The chapter’s goal is to make a cookbook with a recipe collection for fast data application development. 
Of course, there are many more recipes and patterns than revealed here, but recall that the fast data 
approach is relatively new. 

 This chapter covers the following:

•    Fast data  

•   ACID vs. CAP  

•   Integrating streaming and transactions  

•   Streaming transformations  

•   Fault recovery strategies  

•   Tag data identifiers    

     Fast Data 
 Lately, some marketing and IT companies have abused some important terms to create great illusions, 
which only resulted in frustration when it was discovered that these buzzwords were not the panacea that 
everyone expected; two of these terms were  big data  and  the cloud . 

 If you are perceptive, you may have noticed that in this book we try to avoid the term “big data” because 
although many organizations require data analysis, they do not have large volumes of data. Businesses do 
not really want big data, they need fast data. 

 At this moment, we are living in the fast data explosion, driven by mobile-devices proliferation, the 
Internet of Things (IoT), and machine-to-machine (M2M) communication. In regards to business needs, it 
is due to close interaction with customers, personalized offers, and reaction recording. 

 One characteristic of fast data applications is the ingestion of vast amounts of data streams. Note the  big  
difference between ingestion and storage. Businesses require real-time analysis and the need to combine 
transactions on live data with real-time analytics. 
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 Fast data applications solve three challenges:

•     Data streams analysis    

•    Data pipelines    

•    Real-time user interaction      

 We are too close to this change, so we cannot accurately distinguish the border between big data and 
fast data. Nor can we precisely identify which one has the greater value for business. All we know so far is 
that each one brings different values. 

 Another distinguishing phenomenon is that we have reached the boundaries of traditional models. For 
example, we consider the model of relational databases a pillar of all modern technological knowledge. We 
have reached the level where questioning relational model transitions is no longer a far-fetched proposal but 
a viable recurring option. 

 NoSQL solutions offer speed and scale in exchange for a lack on transactionality and query capabilities. 
Today, developers do not use a single technology; they have to use several (a clear example is the SMACK 
stack) because one technology is no longer enough. The problem with this approach is that it has a steep 
learning curve, often adds unnecessary complexity, causes duplication of effort, and often sacrifices 
performance to increase speed. 

 The question to answer in this chapter (and in the book) is this: How do we combine real-time data 
stream analysis with a reliable, scalable, and simple architecture? 

 Many companies have opted for the traditional batch approach, but history has shown that it requires 
too much infrastructure and both human and computational efforts. Or we can opt for a modern approach, 
which often involves the challenge of traditional paradigms, such as Batch, SQL, and ACID processing. 
Although there are many skeptics, this approach simplifies development and increases the performance by 
reducing infrastructure costs. 

     Fast Data at a Glance 
 Today’s world is interactive. Information delivery should go to the right person at the right device in the right 
place at the right moment; or using the correct terms—personalized, ubiquitous, geolocalized, and in real 
time. That is what you call fast data. 

 However, building fast data applications requires a tremendous skill set. This chapter is a 
compendium of some patterns to handle analysis of data streams with operational workloads. A pattern 
is a recipe; this chapter is a cookbook to overcome the well-known challenges with new and more 
predictable applications. 

 Fast data  applications   must scale across multiple machines and multiple coordinate systems, and above 
all, reduce the complexity of the issue. Recall that an application must be simple, reliable, and extensible. 
In order to quickly implement data, you need to understand the structure, the data flow, and the implicit 
requirements of data management. 

 Right now fast data styles are being created for developers who are having problems with current 
development scalability. Many fast data issues far exceed the capabilities of traditional tools and techniques, 
creating new challenges still unresolved by systems that are slow and don’t scale. 

 Modern problems cannot be solved by traditional approaches. The new tools must be created 
from thinking differently and using approaches that challenge traditional paradigms. That’s how 
LinkedIn generated Kafka, Facebook generated Cassandra, and the AMPLab generated Spark and 
Mesos. And in turn, this generated new companies, such as Confluent, DataStax, Databricks, and 
Mesosphere. 

 If anything is certain it is that when each technology in the SMACK stack was coded, the thinking and 
skills of the people involved were vastly different from what they gained from past experiences.  
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     Beyond Big Data 
 In a world with abundant and mundane discussions on big data, where marketing makes more noise than 
technology, fast data was born in a work context, midnight calls, and aggressive and excessive competition 
between companies looking to provide the best service at the lowest cost. Fast data is the agent of change; 
the engine that defines a new economy. 

 In a nutshell, you can say that fast data is data on the move. It is the streaming of hundreds of millions 
of endpoints to applications and servers. Imagine if you can mobile devices, sensors, financial transactions, 
logs, retail systems, telecommunication routers, authorization systems, and so forth. Everything changes 
for developers; you can only say that the increase in data is constant. There is Moore’s law, which states 
that each year the amount of data is doubled. As mentioned in earlier chapters, the world was a quiet and 
peaceful place when data was stored for eternal rest; that’s what you call  big data  , which is stored in Hadoop, 
in data warehouses, and in  data lakes . 

 Fast data, on the other hand, is data arising from turmoil, data in motion, data streaming. An intrinsic 
feature of fast data is that data streams have to be treated in real time. The big data era is based on the 
analysis of structured and non-structured data stored in Hadoop and data warehouses through batch 
processes. 

 The SMACK stack emerges across verticals to help developers build applications to process fast data 
streams (note that here you also use the term  fast data stream  instead of  big data stream ). The sole purpose 
of the SMACK stack is processing data in real time and outputting data analysis in the shortest possible 
time, which is usually in milliseconds. For example, bank authorizations on credit cards can’t delay too long 
before the client application times out. Although, some applications tolerate responses on minutes, the 
scenario where the big data analysis is delivered tomorrow is no longer viable.  

     Fast Data Characteristics 
 Fast data applications meet several characteristics. As we will discuss later, they influence architecture 
decisions. There are three main characteristics:

•    Fast ingestion  

•   Analysis streaming  

•   Per event transactions    

   Fast Ingestion 
 The first stage in the data streaming process is data ingestion. The purpose of ingestion is to have a direct 
interface with data sources in order to make changes and the normalization of input data. Ingestion presents 
the challenge of extracting value from data and labeling it by assigning key-value pairs. 

 There are two types of ingestion:

•      Direct ingestion     . Here a system module hooks directly with the API generation. 
System speed depends on the speed of the API and the network. The analysis 
engines have a direct adapter. One advantage is that it can be very simple; a 
disadvantage is that it is not flexible—making changes that don’t affect the 
performance can be a complex process.  

•     Message queue   . When you do not have access to the data generation API, you can 
use a broker such as Apache Kafka. In this case, the data is managed in the form of 
queues. The advantage, as you know, is that you can partition, replicate, sort, and 
manage the pipeline in proportion to the pressure over the slower component.     
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   Analysis Streaming 
 As the data is created, it reaches the analysis engine. Data can come in multiple types and formats. Often 
the data is enriched with metadata about the transformation process. This information may come through 
messages or events. Examples include sensor data of all types, user interaction with a web site, transaction 
data, and so forth. 

 The increase in the amount of fast data has made analysis move from the backend layer to the 
 streaming   layer. Every day there is less analysis in data warehouses. The ability to analyze data streams and 
make decisions with live transaction is most wanted today.  

   Per Event Transactions 
 As analysis platforms have to produce real-time analysis over incoming data, analysis speed far exceeds 
human speed. Hence, machine learning tools on streaming data are recent trending. 

 To generate value on streaming data, you must take action in real time. This has two reasons. The first 
is a technical reason related to the fact that real-time data chunks are “stored” in memory, and you cannot 
store them on a disk or another storage medium, because you quickly flood large amounts of space and 
because you likely don’t have the money and hardware of Facebook or Twitter to indefinitely store the 
data. The second is a business reason that has to do with decision making in real time; for example, online 
authorization charges, real-time user interaction with web site recording, real-time multiplayer game 
engines, and so forth. 

 The ability to extract information as it arrives and to combine it with business logic in real time makes 
possible modern fraud detection systems, trading shares on the stock market, or the Uber operation. 

 On the data management layer, all the actions must be able to read and write many pieces of data, 
storing only results, inferences, and recommendations. It is worth noting that online input data is not stored, 
because there is no space or budget to store this amount of data. 

 All of this can be summarized as the interaction of the event when it arrives. The streams of high-speed 
data required to have high-availability schemas are discussed later in a section on the at-least-one schema 
on event delivery. 

 The modern challenge for data engineers is the extraction and capture of the value on  per-event 
transactions  .   

     Fast Data and Hadoop 
 And what if you already have our big data model mounted on Apache Hadoop? Well, the important thing 
here is to build a front end. The front end of a big data system  must  have every one of the following functions: 
filter, de-dupe, aggregate, enrich, and denormalize. 

 If you already have a model like  Hadoop  , it is important to change the whole paradigm. You can 
continue using Hadoop, but instead of storing all the information in Hadoop as it arrives, you use an engine 
like Spark to move all Lambda Architecture to a streaming architecture, and from a batch processing model 
to an online pipeline processing model. 

 The associated costs and the time to do common operations, as filter, de-dupe, aggregate, and so forth, 
in a model such as the Spark is drastically reduced compared if you made it over Apache Hadoop with a 
next-day batch model. Moreover, a batch model usually has no redundancy and high availability schemas, 
and if so, they are very expensive. 

 The batch processing schemas always require the process of cleaning data before storing it. In a 
pipelined architecture, the cleaning process is part of the ingestion process. 

 Another modern alternative is to dump the Hadoop Distributed File System (HDFS). An advantage of the 
pipeline model is that very old and obsolete data can be eliminated as new data arrives. In the pipeline model, 
no garbage is stored because the data stored is not input data, but those produced by the same engine. 
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 A Hadoop developer’s recurring complaint is the difficulty of analysis to scale. With a pipeline model, 
counting and aggregation reduces the problem by several orders of magnitude. By reducing the size of stored 
data, you reduce the time to analyze it. 

 Hadoop developers also complain when they have to send aggregates to HDFS; with a fast data front 
end, this doesn’t happen because the aggregates are sent as they arrive—no batch process and everything is 
microbatching in Spark.  

     Data Enrichment 
  Data enrichment   is another advantage of fast data over traditional models. The data always has to be filtered, 
correlated, and enriched before being stored in the database. Performing the enrichment process at the 
streaming stage provides the following  advantages  :

•    NoETL process. As you saw, unnecessary latency created by ETL processes is avoided 
in a streaming model.  

•   Unnecessary disk I/O is removed. As you saw, as Hadoop solutions are based on 
disk, everything in fast data is based on memory. Everything is in real time because 
there is no time for batch processes.  

•   The use of hardware is reduced. Because you don’t have to store everything and 
you don’t have to do very complex analysis over data lakes, the cost of hardware is 
dramatically reduced; resources (processor, memory, network, and disk) are used 
more efficiently.    

 Since fast data entry feeds are information streams, maintaining the semantics between streams is 
simpler because it creates a consistent and clean system. This can only be achieved if you act in each event 
individually; here there are no big data windows or handling large data chunks susceptible to errors. 

 These per event transactions need three  capacities  :

•     Stream connection oriented . You need clusters of Kafka, Cassandra, Spark, and 
Hadoop/HDFS.  

•    Fast searches . To enrich each event with metadata.  

•    Contextual filtering . Reassembles discrete input events in logical events that add 
more meaning to the business.    

 In short, transactions per event require the entire system to be stateful; that is, everything is in memory 
and has to store the minimum in disk.  

     Queries 
 Take the example of advertising based on user clicks on a given web page. How do you know which ad 
the user clicked? How do you know that it wasn’t a robot? How do you know the amount to charge the 
advertising agency at the end of month? 

 Another example is when you have a security system attack. How do you know when you are being 
attacked by a denial of service? How do you know that an operation is fraudulent? To find out if another 
machine is attacking, should you consider only the information from the last hour? 

 Today all contracts are based on a  service-level agreement  (SLA). In order to verify at the end of the 
month that you meet those contracts, you need to make  queries  , sometimes very sophisticated, of the data 
within your system. 

 Not meeting an SLA could lead to multimillion-dollar sanctions. Knowing that you met the SLA requires 
the ability to make queries in your system. This fast data feature allows the user to query at any time and over 
any time frame.   
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     ACID vs. CAP 
 Fast data is a transformation process. There are two key concepts in modern data management: the ACID 
properties and CAP theorem. In both acronyms, the C stands for  consistency , but it means something 
different to each. We will discuss the differences between the Cs later. 

 Let’s now delve into transactions. The core concepts of a transaction are semantics and guarantees. The 
more data a computer handles, more important its function, but also more complex and prone to errors. 

 At the beginning of the computer age, when two computers had to write the same data at the same time, 
the academia noted that the process should be regulated to ensure that data was not corrupted or written 
incorrectly. When computers were exposed to human interaction, the risk of human error in the middle of a 
calculation became a major concern. 

 The rules were defined by Jim Gray 1  and published by the Association for Computing Machinery 
(ACM) in 1976. In the 1980s, IBM and other companies were responsible for popularizing ACID. 
It was like everything in computer science: on paper things worked perfectly, but in practice 
strong performance discussions are untied. Today, ACID transactions are a mainstay in any 
database course. 

 A transaction consists of one or more operations in a linear sequence on the database state. All modern 
database engines should start, stop, and cancel (or roll back) a set of operations (reads and writes) as a 
metadata operation. 

 Transactional semantics alone do not make the transaction. You have to add ACID properties to prevent 
developers from being lost when they have concurrent access on the same record. 

     ACID  Properties   
 ACID means Atomic, Consistent, Isolated, and Durable.

•     Atomic . All the transaction parts should be treated as a single action. This is the 
mantra: All parts are completed or none is completed. In a nutshell, if part of the 
transaction fails, the state of the database remains unchanged.  

•    Consistent . Transactions must follow the rules and restrictions defined by the 
database (e.g. constraints, cascades, triggers). All data that is written to the database 
must be valid. No transaction must invalidate the database state. (Note that this is 
different from the C in the CAP theorem.)  

•    Isolated . To achieve concurrency control, transactions isolation must be the same 
as if you were running the transactions in serial, sequentially. No transaction should 
affect another transaction. In turn, any incomplete transaction should not affect 
another transaction.  

•    Durable . Once the transaction is committed, the change must be persisted and 
should not change anymore. Likewise, it should not cause conflicts with other 
operations. Note that this has nothing to do with writing to disk and recent 
controversies, because many modern databases live on memory or are distributed 
on the users’ mobile devices.     

   1     http://dl.acm.org/citation.cfm?doid=360363.360369       

http://dl.acm.org/citation.cfm?doid=360363.360369
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     CAP Theorem 
 The CAP  theorem   is a tool to explain the problems of a distributed system. It was presented by Eric Brewer 
at the 2000 Symposium on Principles of Distributed Computing, and formalized and demonstrated (as good 
theorem) by Gilbert and Lynch 2  in 2002. 

 CAP means Consistent, Available, and Partition Tolerant.

•     Consistent . All replicas of the same data must have the same value across the 
distributed system.  

•    Available . Each living node in a distributed system must be able to process 
transactions and respond to queries.  

•    Partition Tolerant . The system will continue to operate even if it has network 
partitioning.    

 These are the original sad words of the CAP theorem: “In the face of network partitions, you can’t have 
both perfect consistency and 100% availability. Plan accordingly.” 

 It is a very sad theorem because it does not mention what is possible, but the impossibility of 
something. The CAP theorem is known as the “You-Pick-Two” theorem; however, you should avoid this 
conception, because choosing AP does not mean that you will not be consistent, and choosing CP does not 
mean that you will not be available. In fact, most systems are not any of the three. It means that designing a 
system is to give preference to two of the three characteristics. 

 Furthermore, it is not possible to choose CA. There cannot be a distributed system in which the 
partitions are ignored. By definition, a non-partitioned network means not having a distributed system. And 
if you don’t have a distributed system, the CAP theorem is irrelevant. Thus, you can never exclude the P.  

     Consistency 
 The ACID  consistency   was formulated in terms of databases. Consistency in the CAP theorem is formulated 
in terms of distributed systems. 

 In ACID, if a scheme states that a value must be unique, then a consistent system reinforces the 
uniqueness of that value across all operations. A clear example is when you want to delete a primary key 
when you have references to other tables using constraints; the database engine will indicate that there are 
children records and you cannot erase the key. 

 The CAP consistency indicates that each replica of the original value—spread across the nodes of a 
distributed system—will always have the same value. Note that this warranty is logical, not physical. Due 
to network latency (even running over optic fiber at the speed of light), it is physically impossible for a 
replication of all nodes to take zero seconds. However, the cluster can present a logical view to customers to 
ensure that everyone sees the same value. 

 The two concepts reach their splendor when systems offer more than a simple key-value store. When 
systems offer all ACID properties across the cluster, the CAP theorem makes its appearance, restricting the 
CAP consistency. 

 On the other hand, when you have CAP consistency, through repeated readings and full transactions, 
the ACID consistency should be offered in every node. Thus, the systems that prefer CAP availability over 
CAP consistency rarely ensure ACID consistency.  

   2     http://dl.acm.org/citation.cfm?id=564601     :  

http://dl.acm.org/citation.cfm?id=564601
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     CRDT 
 To  explain    eventual consistency , consider the example of a cluster with two machines. When the cluster 
works, the writings are spread equally to both machines and everything works fine. Now suppose that 
communication between the two machines fails but the service is still active. At the end of the day, you will 
have two machines with different information. 

 To rectify this fault, traditional approaches offer very complex rectification processes to examine both 
servers and try to resynchronize the state. 

  Eventual consistency (EC)   is a process that facilitates the data administrator’s life. The original white 
paper on Dynamo (the Amazon database) 3  formally defined eventual consistency as the method by which 
several replicas may become temporarily different, but eventually converge to the same value. Dynamo 
guarantees that the fix process is not complex. 

 It is worth noting that eventual consistency is not immediate; so two queries may yield different results until 
synchronization is complete. The problem is that EC does not guarantee that the data converges to the latest 
information, but to the more correct value. This is where the correctness definition becomes complicated. 

 Many techniques have been developed to offer an easier solution under these conditions. It’s important to 
mention   conflict-free replicated data types  (CRDTs)  . The problem with these methods is that in practice, they offer 
fewer guarantees on the final status of the system than those offered by the CAP theorem. The benefit of CRDT is 
that under certain partitioning conditions, the high availability offer leaves nodes operating. 

 The EC Dynamo-style is very different from the log-based rectification methods offered by the bank 
industry to move money between bank accounts. Both systems can diverge for a period of time, but banks 
usually take longer and reach a more precise agreement.   

       Integrating Streaming and Transactions 
 Imagine the operation of these high- speed      transactional applications: real-time payments, real-time 
authorization, anti-fraud systems, and intelligent alerting. These applications would not be conceived today 
if there weren’t a mix of real-time analysis and transaction processing. 

 Transactions in these applications require real-time analysis as input. Since it is impossible in real time 
to redo the analysis based on data derived from a traditional data store, to scale, you must keep streaming 
aggregation within the transaction. Unlike regular batch operations, aggregation streams maintain the 
consistency, up-to-dateness, and accuracy of the analysis, which is necessary for the transaction. 

 In this pattern, you sacrifice the ability to make ad-hoc analyses in exchange for high-speed access to 
the analysis, which is necessary for the application. 

     Pattern 1: Reject Requests Beyond a Threshold 
 Consider a high-volume-requests web page that implements sophisticated usage metrics for groups and 
individual users as a function of each operation. 

 The metrics are used for two main purposes:

•    Billing charges based on use  

•   To force the same contracted service quality level (expressed as the number of 
requests per second, per user, and per group).    

 In this case, the platform implementation of the policy verification should have counters for every 
user and group of users. These counters must be accurate (because they are inputs for billing and 
implementation of service quality policies), and they must be accessible in real time to evaluate and 
authorize (or deny) new accesses. 

   3     http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf       

http://www.allthingsdistributed.com/files/amazon-dynamo-sosp2007.pdf
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 It is necessary to maintain a balance in real time for each user. To accurately maintain a balance, you 
need an ACID OLTP system. The same system requires the ability to maintain high-speed aggregations. 
The scalability of the solution is achieved by combining aggregation transactions with real-time high-
speed transmission. Examples of these systems include new credits granting systems and used credit 
deductions).  

     Pattern 2: Alerting on Predicted Trends Variation 
 Imagine an operational monitoring platform where you need to issue warnings or alarms when a threshold 
predicate is exceeded at a statistically significant level. This system combines two capabilities:

•    It keeps the analysis on real time (counters, streaming add-ons, and status summary 
of current use)  

•   It compares the analysis with the predicted trend. If the trend is exceeded, the system 
should raise an alert.    

 The system records this alarm to suppress other alerts (limiting the intermittency of an alarm for 
a single event). This is another system that requires the combination of analytical and transactional 
capabilities. 

 Analyzed separately, this system needs three independent systems working simultaneously:

•    An analysis system that is microdosing real-time analysis  

•   An application reading these analyses and the trend line predicted to generate alerts 
on the application  

•   A transactional system that stores the generated alerts data and that implements 
suppression logic    

 The execution of three tightly coupled systems like this (our solution requires the three systems 
running) reduces the reliability and complicates the operation. 

 To achieve real time analysis you need to combine the request-response system with event processing 
streaming applications.  

     When Not to Integrate Streaming and Transactions 
 OLAP (online analytical processing) systems offer the benefit of rapid analytical queries without pre-
aggregation. These systems can execute complex queries over huge data, but within the threshold, they work 
in batch, reporting to human analysts in the data workflow. These systems are not compatible with high-
speed transactional workloads because they are optimized to batch reporting, not OLTP (online transaction 
processing) applications.  

     Aggregation Techniques 
 Pre-aggregation is a technique with many algorithms and features developed. The following are common 
techniques for implementing real-time aggregation:

•      Windowed events    .  Used to express moving averages or a timeframe summary of a 
continuous event. These techniques are found in CEP (complex event processing) or 
microbatching systems like Apache Spark.  
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•    Probabilistic data structures . Data is added within a certain margin of error 
bounded by probability. These algorithms typically exchange precision for space, 
allowing estimation in a smaller storage space. Examples of  probabilistic data 
structures   and algorithms include Bloom filters, as in Apache Cassandra.  

•     Materialized views . A view   could define aggregation, partition, filter, or join. 
Materialized views group the base data and keep a physical copy of the resulting 
data. Materialized views allow declarative aggregations, which eliminate coding and 
offer easy, concise, and accurate aggregation. You find examples of this in Oracle DB, 
Postgres, SQL Server, and MySQL.        

       Streaming  Transformations      
 Effectively processing big data often requires multiple database engines, each with a special purpose. 
Usually, systems good at online CEP (complex event  processing  ) are not good at batch processing against 
large data volumes. Some systems are good for high-velocity problems; others are good for large volume 
problems. In most cases, you need to integrate these systems to run meaningful applications. 

 Usually, the data arrives at high-velocity ingest-oriented systems and is processed into the volume-
oriented systems. In more advanced cases, predictive models, analysis, and reports are generated on 
the volume-oriented systems and sent as feedback to the velocity-oriented systems to support real-time 
applications. The real-time analysis from the fast systems is integrated into downstream applications and 
operational dashboards that process real-time alerts, alarms, insights, and trends. 

 In a nutshell, many fast data applications run on top of a set of tools. Usually, the platform components 
include the following:

•    At least one large shared storage pool (e.g., HDFS, Apache Cassandra)  

•   A high performance BI analytics query tool (e.g., a columnar SQL system, Apache 
Spark)  

•   A batch processing system (e.g., Map Reduce, Apache Spark)  

•   A streaming system (e.g. Apache Kafka)    

 The input data and processing output move across these systems. The key to solve many big data 
challenges is the design of this dataflow as a processing pipeline that coordinates these different systems. 

     Pattern 3: Use Streaming Transformations to Avoid ETL 
 The new events captured into a long-term repository often require transformation, filtering, or processing 
before being available for exploitation. For example, an application that captures user sessions consisting of 
several discrete events, enriching those events with static data to avoid expensive repeated joins in the batch 
layer, and/or filtering redundant events storing only unique values. 

 There are (at least) two approaches to run this process:

    1.    The data can be stored in a long-term repository and then ETLed (extracted, 
transformed, and loaded) to its final form. This approach trades I/O, storage, and 
time (results are delayed until the entire ETL process is completed) for a slightly 
simpler architecture (e.g., move data directly from a queue to HDFS).  

    2.    This approach is referred as  schema on read . It reduces the choice of back-end 
systems to those of schema-free systems, removing the non-optimal, depending 
on your specific reporting requirements.  
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    3.    Execute the transformations in a streaming way before the data arrives at the 
long-term repository. This approach adds a streaming component (Apache 
Spark) between the source queue (Apache Kafka) and the final repository 
(Apache Cassandra), creating a continuous processing pipeline.  

    4.    Moving the entire process to a real-time processing pipeline has several 
advantages. Writing I/O to the back-end system is drastically reduced (in the first 
model, raw data input is written, and then the ETLed data is written; with this 
approach only ETLed data is written).  

    5.    You have this comparison between the two approaches:

•    The second model leaves more I/O available for the primary purpose of the 
back-end repository: data analysis and reporting activities.  

•   In the second approach, the operational errors are noticeable nearly in real time. 
When using ETL, the raw data is not inspected until the entire ETL process runs. 
This delays operational notifications of corrupt inputs or missing data.  

•   In the second model, the time to insight is reduced. For example, when 
managing data of sessions, a session can participate in batch reporting before 
being closed. With ETL, you must wait approximately half of the ETL period 
before the data is available for processing.         

     Pattern 4: Connect Big Data Analytics to Real-Time Stream Processing 
 The incoming events from real-time processing applications require back-end systems analysis. The 
following are some examples:

•    On an alerting system that notifies when an interval exceeds historical patterns, the 
data describing the historical pattern needs to be available.  

•   Applications managing real-time customer experiences or personalization often use 
customer segmentation reports generated by statistical analysis running on a batch 
analytics system.  

•   Hosting OLAP outputs in a fast, scalable query cache to support operators and 
applications that need high-speed and highly concurrent access to data.    

 In all of these cases, the reports, analysis, and models from big data analytics need to be made available 
to real-time applications. In this case, information flows from the big data–oriented system (batch) to the 
high velocity system (streaming). 

 This brings important requirements:

•    The fast data, speed-oriented application requires a data management system 
capable of holding the state generated by the batch system.  

•   This state needs to be regularly updated or fully replaced. There are a few common ways 
to manage the refresh cycle. The best trade-off depends on the specific application.    

 Some applications (e.g., applications based on user segmentation) require per record consistency but 
can tolerate eventual consistency across records. In these cases, updating state in the velocity-oriented 
database on a per-record base is sufficient. 
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 Updates will need to do the following:

•    Communicate new records (in our example, new customers)  

•   Update existing records (customers that have been recategorized)  

•   Delete outdated records (ex-customers)    

 The records in the velocity system should be timestamped for operational monitoring and alerts 
generated if stale records persist beyond an expected refresh cycle. 

 Other applications require the analysis to be strictly consistent. If it is not sufficient for each record to be 
internally consistent, the records set as a whole requires guaranteed consistency. These cases are often seen 
in analytic query caches. Often these caches are queried for additional levels of aggregation; aggregations 
that span multiple records. Producing a correct result therefore requires that the full data set be consistent. 

 A reasonable approach to transferring this report data from the batch analytics system to the real-
time system is to write the data into a shadow table. Once the shadow table is completely written, it can be 
atomically swapped, with the main table addressed by the application. The application will either see only 
data from the previous version of the report or only data from the new version of the report, but it will never 
see a mix of data from both reports in a single query.  

     Pattern 5: Use Loose Coupling to Improve Reliability 
 When connecting multiple systems, it is imperative that all systems have an independent administration. 
Any part of the pipeline could fail, although the other systems remain available and functional. If the (batch) 
back end is offline, the (high velocity) front end should still operate, and vice versa. 

 This requires thinking through several design constraints:

•    The location of data that cannot be pushed (or pulled) through the pipeline. The 
components responsible for the durability of stalled data.  

•   The failure and availability model of each component in the pipeline.  

•   The system recovery process. The list of the components that have record meaning 
or can have recovery sources for lost data or interrupted processing.  

•   When a component fails, the list of the components become unavailable. The time 
upstream components maintain functionality.    

 These constraints form the   recovery time objective  (RTO)  . 
 In every pipeline, there is a slowest component, the  bottleneck . When designing a system, you must 

explicitly choose a component that will be the bottleneck. Having many systems, each with identical 
performance, a minor degradation on any system will create an overall bottleneck. Operationally, this is a 
pain. It is better to choose the most reliable component as the bottleneck or the most expensive resource as 
the bottleneck so that you can achieve a more predictable reliability level.  

     Points to Consider 
 Connecting multiple systems is always a complex task. This complexity is not linear with the number of 
systems. Generally, complexity increases in the function of connections (in the worst-case scenario, you 
have N*N connections between N systems). 

 This problem cannot be solved with a single stand-alone monolithic system. However, high velocity 
and large volume data management scenarios typically require a combination of specialized systems. When 
combining these systems, you must carefully design dataflow and connections between them. 

 Make a couple of designs, so each system operates independently of the failure of the others. Use 
multiple systems to simplify; for example, replace batch ETL processes with continuous processes.     
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       Fault Recovery Strategies 
 Most streaming applications move  data      across multiple processing stages. 

 Often, the events land in a queue and are then read by downstream components. Those components 
might write new data back to a queue as they process, or might directly stream data to their downstream 
components. Building a reliable data pipeline always implies designing fault recovery strategies. 

 When multiple processing components are connected, statistically, one component will fail, or become 
unreachable or unavailable. When this occurs, the other components should continue receiving data. When 
the failed component comes back online, it must recover its previous state and then continue processing 
new events. Here we discuss how to resume processing. 

 Idempotency is a specific technique to achieve exactly-once semantics. 
 Additionally, when processing horizontally scaled pipelines, each stage has multiple servers or 

processes running in parallel. A subset of servers within the cluster can always fail. In this case, the failed 
servers need to be recovered and their work needs to be reassigned. 

 There are a few factors that complicate these situations and lead to different trade-offs:

•    Usually, it is uncertain to determine what the last processed event was. Typically, 
it is not feasible to two-phase commit the event processing across all pipeline 
components.  

•   Event streams are often partitioned across several processors. Processors and 
upstream sources can fail in arbitrary combinations. Picturing everything as a single, 
unified event flow is not recommendable.    

 Here we discuss three options for resuming processing distinguished by how events near the failure 
time are handled. The approaches to solving the problem are explained as follows. 

     Pattern 6: At-Most-Once Delivery 
 At-most-once delivery allows dropping some events. In this case, the events not processed by an interruption 
are simply dropped and they don’t become part of the input of the downstream system. Note that, this 
pattern is only accepted when the data itself is low value or loses value if it is not immediately processed. 

 The following are points to evaluate an at-most-once delivery:

•    The historical analytics should show which data is unavailable.  

•   If the event stream will be eventually stored into an OLAP or data lake, you need 
reports and data algorithms that detect and manage the missing values.  

•   It should be clear which data is lost.    

 Lost data generally is not aligned exactly with session boundaries, time windows, or even data sources. 
It is also probable that only partial data was dropped during the outage period, so some values are present. 

 Additional points to be considered include the maximum outage period and the size of largest dropped gap. 
 If your pipeline is designed to ignore events during outages, you should determine each pipeline 

component mean recovery time to understand the data volume that will be lost during a typical failure. The 
maximum allowable data loss is a fundamental consideration when designing an at-most-once delivery 
pipeline. 

 Most of the pipelines are shared infrastructure. The pipeline is a platform supporting many 
applications. You should consider whether all current and expected future applications can detect and 
support data loss due to at-most-once delivery. 

 You should not assume that during an outage data is always discarded by upstream systems. When 
recovering from a failure, many systems (especially queues and checkpoint subscribers) read points and 
resume event transmission from that checkpoint; this is at-least-once delivery. 
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 It is not correct to assume that at-most-once delivery is the default strategy if another is not explicitly 
chosen. Designing at-most-once delivery requires explicit choices and implementation.  

     Pattern 7: At-Least-Once Delivery 
 At-least-once delivery replays recent events starting from an acknowledged (known processed) event. 
This approach presents some data more than once to the processing pipeline. The typical implementation 
returns at-least-once delivery checkpoints to a safe point (so you know that they have been processed). 

 After a failure, the processing is resumed from the checkpoint. As it is possible that events were 
successfully processed after the checkpoint, these events will be replayed during recovery. This replay 
means that downstream components will see each event at least once. 

 There are a number of considerations when using at-least-once delivery:

•    This delivery can lead to an unordered event delivery. Note that regardless of 
the failure model chosen, you should assume that some events will arrive late, 
unordered, or not arrive.  

•   Data sources are not well coordinated and rarely are events from sources delivered 
end to end over a single TCP/IP connection or some other order guaranteeing 
protocol.  

•   If the processing operations are not idempotent, replaying events could corrupt and 
change the output. When designing at-least-once delivery, you must identify and 
classify processes as idempotent or not.  

•   If processing operations are not deterministic, replaying events will produce different 
outputs. Common examples of nondeterministic operations include querying the 
current clock time or invoking a remote service that could be unavailable.  

•   This delivery requires a durability contract with upstream components. In the case 
of failure, some upstream component must have a durable record of the event 
from which to replay. You should clearly identify durability responsibility through 
the pipeline, and manage and monitor durable components appropriately. Test 
operational behavior when the disks fail or are full.     

     Pattern 8: Exactly-Once Delivery 
 This type of processing is the ideal because each event is processed exactly once. It avoids the difficult side 
effects and considerations raised by the other two deliveries. You have exposed the strategies to achieve 
exactly-once semantics using idempotency in combination with at-least-once delivery. 

 The following are the fundamental aspects of designing distributed recovery schemas:

•    Input streams are usually partitioned across multiple processors  

•   Inputs can fail on a per partition basis  

•   Events can be recovered using different strategies        

     Tag Data Identifiers 
 When dealing with data streams facing a possible failure, processing each datum exactly once is extremely 
difficult. If the processing system fails, it may not be easy to determine which data was successfully 
processed and which was not. 
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 The traditional approaches to this problem are complex, because they require strongly consistent processing 
systems and smart clients to determine thorough introspection of which data was processed and which was not. 

 The strongly consistent systems have become scarcer and throughput needs have skyrocketed. This 
approach has become hard and impractical. Many have failed on precise answers and opted for answers that 
are as correct as possible under certain circumstances. 

 As you saw, the Lambda Architecture proposes doing all calculations twice, in two different ways, to 
provide cross-checks. CRDTs have been proposed as a way to add data structures that can be reasoned when 
using eventually consistent data stores. 

 These are not the best options, but idempotency offers another path. 
 By definition, an   idempotent  operation   is an operation that has the same effect no matter how many 

times it is applied. The simplest example is setting a value. If you set  x  = 3.1416, and then you set  x  = 3.1416 
again, the second action doesn’t have any effect. 

 The relation with exactly-once processing is as follows: for idempotent operations, there is no effective 
difference between at-least-once processing and exactly-once processing. And you know that at-least-once 
processing is easier to achieve. 

 One of the core tools used to build robust applications on these platforms is leveraging the idempotent 
setting of values in eventually consistent systems. Setting individual values is a weaker tool than the twentieth-
century ACID transactional model. CRDTs offer more, but come with rigid constraints and restrictions. It is 
very dangerous to build something without a deep understanding of the offer and how it works. 

 The advent of consistent systems that truly scale gives a broader set of supported idempotent processing, 
which can improve and simplify past approaches dramatically. ACID transactions can be built to read and 
write multiple values based on business logic, while offering the same effects if repeatedly executed. 

     Pattern 9: Use Upserts over Inserts 
 An  upsert   is shorthand for describing a conditional insert. In a nutshell, if the row exists, don’t insert it. If the 
row doesn’t exist, insert it. 

 Some SQL systems have specific syntax for upserts, an ON CONFLICT clause, a MERGE statement, or 
even a straightforward UPSERT statement. Some NoSQL systems have ways to express the same thing. For 
key-value stores, the default PUT behavior is an upsert. 

 When dealing with rows that can be uniquely identified, through a unique key or a unique value, upsert 
is an idempotent operation. 

 When the status of an upsert is unclear, often due to the client server or network failure, you can see that 
it’s safe to send it repeatedly until its success can be verified. Note that this type of retry often takes a lot of 
time to reverse.  

     Pattern 10: Tag Data with Unique Identifiers 
 The idempotent  operations   are difficult when data is not uniquely identifiable. For example, imagine a 
digital ad application that tracks clicks on a web page. Let’s say that an event arrives as a three-value tuple 
that says user U clicked on spot S at time T with a resolution in seconds. The upsert pattern simply can’t be 
used because it would be possible to record multiple clicks by the same user in the same spot in the same 
second. This leads to the first subpattern. 

   Subpattern: Fine-Grained Timestamps 
 One solution to this click problem is to increase the  timestamp resolution   to a point at which clicks are 
unique. If the timestamp allows milliseconds, it is reasonable to assume that the user couldn’t click faster 
than once per millisecond. This enables upsert and idempotency. 
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 It is always critical to verify on the client side that generated events are in fact unique. Trusting a 
computer’s time API to reflect real-world time is a common dangerous mistake. There is a lot of hardware 
and software that offer milliseconds values, but just on 100ms resolutions. Moreover, the NTP (network 
time protocol) is able to move clocks backward in many default configurations. Virtualization software is a 
common example for messing with guest operating system clocks. 

 To implement it well, you must always check the client side to make sure that the last event and new 
event have different timestamps before sending them to the server.  

   Subpattern: Unique IDs at the Event Source 
 If you can generate a  unique id   at the client, send that value with the event to ensure that it is unique. If 
events are generated in one place, it is possible that a simple incrementing counter can uniquely identify 
events. The trick with a counter is to ensure that you do not use values again after restarting some service. 

 The following are unique ids  approaches  :

•    Use a central server distributing block of unique ids. A database with strong 
consistency (e.g., Apache Cassandra) or an agreement system such as ZooKeeper (as 
you saw on Apache Kafka) can be used to assign blocks. If the event producer fails, 
then some ids are wasted; 64 bits are enough ids to cover any loss.  

•   Combine timestamps with ids for uniqueness. If you use millisecond timestamps 
but want to ensure uniqueness, you start an every-millisecond counter. If two events 
share a millisecond, give one counter the value 0 and another counter the value 1. 
This ensures uniqueness.  

•   Combine timestamps and counters in a 64-bit number. Some databases generate 
unique ids, dividing 64-bit integers into sections, using 41 bits to identify a 
millisecond timestamp, 10 bits as a millisecond counter, and 10 bits as an event 
source id. This leaves one bit for the sign, avoiding issues mixing signed and 
unsigned integers. Note that 41 bits of milliseconds is about 70 years. Obviously, you 
can play with the bit sizes for each field, but be careful to anticipate the case where 
time moves backward.    

 In case you need something simpler than getting incrementing ids correct, try a universally unique 
identifier (UUID) library to generate universally unique ids. These work in different ways, but often combine 
machine information, such as a MAC address, with random values and timestamp values, similar to what 
was described earlier. The upside is that you can safely assume that UUIDs are unique; the downside is that 
they often require 16 or more bytes to store.   

     Pattern 11: Use Kafka Offsets as Unique Identifiers 
 As you already saw, Apache Kafka has built-in unique identifiers. Combining the topic id with the  offset   in 
the log can uniquely identify the event. This sounds like a panacea, but there are reasons to be careful:

•    Inserting items into Kafka has the same problems as any other distributed system. 
Managing exactly-once insertion into Apache Kafka is not easy and it doesn’t offer 
the right tools (at the time of this writing) to manage idempotency when writing to a 
topic.  

•   If the Kafka cluster is restarted, topic offsets may no longer be unique. It may be 
possible to use a third value (e.g., a Kafka cluster id) to make the event unique.     
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     When to Avoid Idempotency 
  Idempotency   can add storage overhead as it stores extra ids for uniqueness. It can add complexity, 
depending on many factors, such as whether your event processor has certain features or whether your app 
requires complex operations to be idempotent. 

 You must evaluate the effort to build an idempotent application against the cost of having imperfect 
data once in a while. Keep in mind that some data has less value than other data, and spending developer 
time ensuring that it is perfectly processed may be poor project management. 

 Another reason to avoid idempotent operations is that the event processor or data store makes it very 
hard to achieve.  

     Example: Switch Processing 
 Consider a phone switch support calls with two events:

    1.    A request is put on hold (or starts a request).  

    2.    A request is attended.     

 The system must ingest these events and compute the average hold time. 

   Case 1:  Ordered Requests    
 In this case, events for a given customer always arrive in the order in which they are generated. Event 
processing in this example is idempotent, so a request may arrive multiple times, but you can always assume 
that events arrive in the order they happened. 

 State schema contains a single tuple containing the total hold time and the total number of hold 
occurrences. It also contains a set of ongoing holds. 

 When a request is put on hold (or a request is started), upsert a record into the set of ongoing holds. You 
use one of the methods described earlier to assign a unique id. Using an upsert instead of an insert makes 
this operation idempotent. 

 When a request is attended, you look up the corresponding ongoing hold in the state table. If the 
ongoing hold is found, you remove it, calculate the duration based on the two correlated events, and update 
the global hold time and global hold counts accordingly. If this message is seen repeatedly, the ongoing hold 
record will not be found; the second time it will be processed and can be ignored at that point. 

 This works quite well, is simple to understand, and is efficient. Guaranteeing order is certainly possible, 
but it is backstage work. Often it’s easier to break the assumption on the processing end, where you may have 
an ACID consistent processor that makes dealing with complexity easier.  

   Case 2:  Unordered Requests    
 In this case, requests may arrive in any order. The problem with unordered requests is that you cannot delete 
from the outstanding holds table when you get a match. What you can do, in a strongly consistent system, is 
keep one row per hold and mark it as matched when its duration is added to the global duration sum. The 
row must be kept around to catch repeated messages. 

 You must hold the events until you are sure that another event for a particular hold could not arrive. 
This may be minutes, hours, or days, depending on the situation. 

 This approach is also simple, but requires an additional state. The cost of maintaining an additional 
state should be weighed against the value of perfectly correct data. It is also possible to drop event records 
early and allow data to be slightly wrong, but only when events are delayed abnormally. This is a decent 
compromise between space and correctness in some scenarios.    
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     Summary 
 In this chapter …

•    You read a fast data cookbook.  

•   You reviewed the fast data concept and compared it with big data and traditional 
data models.  

•   You also saw the differences between ACID properties and the CAP theorem. You 
saw the differences in the term  consistency  in both concepts.  

•   You reviewed how to integrate modern streaming analytics techniques with 
transactions.  

•   You saw how to make streaming transformations to achieve data pipelines 
processing.  

•   You learned about fault recovery strategies: at-most-once, at-least-once and 
exactly-once.  

•   You learned how to use tag data identifiers.    

 In the next chapter, you apply these concepts to data pipeline patterns.      
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    CHAPTER 10   

 Data Pipelines                          

 Well, we have reached the chapter where we have to connect everything, especially theory and practice. This 
chapter has two parts: the first part is an enumeration of the data pipeline strategies and the second part is 
how to connect the technologies:

•    Spark and Cassandra  

•   Akka and Kafka  

•   Akka and Cassandra  

•   Akka and Spark  

•   Kafka and Cassandra    

     Data Pipeline Strategies and Principles 
 The following are data pipeline strategies and principles:

•    Asynchronous message passing  

•   Consensus and gossip  

•   Data locality  

•   Failure detection  

•   Fault tolerance / no single point of failure  

•   Isolation  

•   Location transparency  

•   Parallelism  

•   Partition for scale  

•   Replay for any point of failure  

•   Replicate for resiliency  

•   Scalable infrastructure  

•   Share nothing  

•   Dynamo systems principles    
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 It is important to mention that not all technologies implement SMACK stack strategies; this is because 
some technologies are not designed to take this strategy into consideration or the strategy is doesn’t fit its 
design. In this section, we try to define concepts and explain how technologies meet. Note that we don’t 
cover Apache Mesos, because it is more implicit to the infrastructure than the pipeline architecture. 

      Asynchronous Message Passing   
 Technologies: Akka, Kafka, Spark 

 An actor sends a message to a process (another actor) and relies on the process and the supporting 
system to select and invoke the actual code to run. Asynchronous message passing is implemented, so 
all the complexities that naturally occur when trying to synchronize actors and data are handled by an 
intermediary level of software, called  middleware . The most common middleware to support asynchronous 
message passing is called  message-oriented middleware  (MOM).  

     Consensus and Gossip 
 Technologies: Akka, Cassandra 

 The Paxos protocol is a family of protocols for solving  consensus  . In Paxos, followers send commands to a 
leader. During normal operation, the leader receives a client’s command, assigns it a new command number ( n ), 
and then begins the  n th instance of the consensus algorithm by sending messages to a set of acceptor processes. 

 A  gossip protocol   occurs when one node transmits information about the new instances to only some 
of their known colleagues, and if one of them already knows from other sources about the new node, the first 
node’s propagation is stopped. Thus, the information about the node is propagated in an efficient and rapid 
way through the network.  

      Data Locality   
 Technologies: Cassandra, Kafka 

 Related storage locations are frequently accessed, depending on the memory access pattern. There 
are two types of locality: temporal and spatial. Temporal locality refers to the reuse of specific data and/
or resources within a short duration of time. Spatial locality refers to the use of data within relatively close 
storage locations. In practice,   latency     and throughput are affected by the efficiency of the   cache    , which is 
improved by increasing the locality of reference.  

     Failure Detection 
 Technologies: Cassandra, Spark, Akka, Kafka 

 In Kafka, upon successfully registering a consumer, the coordinator adds the consumer to the ping 
request scheduler’s queue, which then tries to keep track of whether the consumer is still alive. 

 In Cassandra,   failure detection    is a method for locally determining (from the gossip state and the 
history) if another node in the system is up or down. Cassandra uses this information to avoid routing client 
requests to unreachable nodes whenever possible. 

 In Akka and Spark, you use three Spark properties related to network variables: spark.akka.heartbeat.
pauses, spark.akka.failure-detector.threshold, and spark.akka.heartbeat.interval.  

     Fault Tolerance/No Single Point of Failure 
 Technologies: Spark, Cassandra, Kafka 

 A  single point of failure (SPOF)      is the part of a system that, if it fails, stops the entire system from 
working. SPOFs are not desirable in any system using high availability or reliability.  

https://en.wikipedia.org/wiki/Latency_(engineering)#Latency (engineering)
https://en.wikipedia.org/wiki/Cache_(computing)#Cache (computing)
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      Isolation   
 Technologies: Spark, Cassandra, Kafka 

 Cassandra is at the opposite end of the ACID properties used in most relational databases, because it 
uses BASE (Basically Available Soft-state Eventual consistency). Cassandra’s weak consistency comes in the 
form of  eventual consistency , which means that the database eventually reaches a consistent state. As the 
data is replicated, the latest version is sitting on a particular node, but older versions are still out there on 
other nodes; yet eventually all nodes will see the latest version. 

 In Spark, each application gets its own executor processes, which stays up for the duration of the entire 
application and runs tasks in multiple threads. This has the benefit of isolating applications from each other.  

     Location Transparency 
 Technologies: Akka, Spark, Cassandra, Kafka 

 In Spark, Cassandra, and Kafka, location transparency allows reading and writing to any node in a 
cluster, and the system replicates the information to the entire cluster. 

 One of Akka’s key contributions to the actor model is the concept of  location transparency  . An actor’s 
mailing address can actually be a remote location but the location is “transparent” to the developer. Akka 
abstracts away the transmission of the message over the network; the actor’s mailing address is always 
accessed the same way.  

     Parallelism 
 Technologies: Spark, Cassandra, Kafka, Akka 

 In Kafka, there is parallelism of the partition within the topic. Kafka is able to provide ordering, which 
guarantees load balancing over a pool of consumer processes. 

 In Cassandra and Spark, there is   data parallelism   , a form of distributing data across multiple   processors     
in   a     cluster environment and different parallel computing nodes. It contrasts    task parallelism     , another form 
of parallelism. 

 In Spark and Akka, task parallelism focuses on distributing   tasks     (performed by individual   processes     or 
  threads    ) across different processors.  

     Partition for Scale 
 Technologies: Cassandra, Spark, Kafka, Akka 

 A   network partition    refers to the failure of a network device that causes a network to split. If you recall 
the   CAP theorem    , the partition tolerance in this context means a data processing system’s ability to continue 
processing data even if a network partition causes communication errors between subsystems. All the 
SMACK technologies are  network topology aware .  

     Replay for Any Point of Failure 
 Technologies: Spark, Cassandra, Kafka, Akka 

 In Spark there is   checkpointing   , the computation to recover, the streaming computation (i.e., the 
DStreams set up with the streaming context) periodically checkpoints to another set of files in the same 
fault-tolerant file system. 

 For Kafka and Cassandra, there is the ZooKeeper operation (see Chapters   5     and   8    , respectively). 
 For Akka, there is the Akka persistence (see Chapter   4    ).  

https://en.wikipedia.org/wiki/Central_processing_unit#Central processing unit
https://en.wikipedia.org/wiki/Parallel_computing#Parallel computing
https://en.wikipedia.org/wiki/Task_parallelism#Task parallelism
https://en.wikipedia.org/wiki/Task_(computing)#Task (computing)
https://en.wikipedia.org/wiki/Process_(computing)#Process (computing)
https://en.wikipedia.org/wiki/Thread_(computing)#Thread (computing)
https://en.wikipedia.org/wiki/CAP_Theorem#CAP Theorem
http://dx.doi.org/10.1007/978-1-4842-2175-4_5
http://dx.doi.org/10.1007/978-1-4842-2175-4_8
http://dx.doi.org/10.1007/978-1-4842-2175-4_4
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     Replicate for Resiliency 
 Technologies: Spark, Cassandra, Kafka 

 Kafka  replicates   the log for each topic’s partitions across a configurable number of servers. This allows 
automatic failover to these replicas when a server in the cluster fails, so messages remain available in the 
presence of failures. 

 Cassandra stores replicas on multiple nodes to ensure reliability and fault tolerance. A replication 
strategy determines the nodes where replicas are placed. The total number of replicas across the cluster is 
referred to as the  replication factor . All replicas are equally important; there is no primary or master replica. 

 If you recall, Spark does not implement replication. Spark uses  HDFS implementations  , which 
implement replication. Spark can recompute chunks of data as a function of input data in HDFS, so if a node 
crashes, the results for those input shards are computed again in the cluster. Spark can checkpoint computed 
data back to HDFS, so it saves the results of expensive computations. Spark also makes checkpoints on 
streams (DStream instances).  

      Scalable Infrastructure   
 Technologies: Spark, Cassandra, and Kafka 

 For Spark, recall that you can use either the   stand-alone deploy mode    , which only needs Java installed 
on each node, or the Mesos and Yarn cluster managers. 

 In Kafka, adding servers to a cluster is done simply by assigning them unique broker ids and then 
starting Kafka on the new servers. However, these new servers are not automatically assigned any data 
partitions, so unless partitions are moved to them, they won’t do any work until new topics are created. 
Usually when you add machines to your cluster, you need to move some existing data to these machines. 

 Cassandra allows you to add capacity to a cluster by introducing new nodes to the cluster in stages or by 
adding an entire data center.  

     Share Nothing/Masterless 
 Technologies: Cassandra, Akka 

 In  shared nothing architecture  , each node is independent and self-sufficient, and there is no single 
point of contention across the system. More specifically, none of the nodes shares memory or disk storage. 

 The architecture of Cassandra is   masterless   , meaning all nodes are the same. Cassandra provides 
automatic data distribution across all nodes that participate in a ring or database cluster. Since Cassandra 
is masterless, a client can connect with any node in a cluster. Clients can interface with a Cassandra node 
using CQL on any node.  

     Dynamo Systems Principles 
  Dynamo   is a set of techniques that when applied together make a   highly available     key-value   distributed data 
store     or   structured storage     system. Its principles are as follows:

•     Incremental scalability : Dynamo should be able to scale out one storage host 
(referred to as a  node ) with minimal impact on both the system’s operators and the 
system itself.  

•    Symmetry : Every node in Dynamo has the same set of responsibilities as its 
peers; there is no distinguished node that takes a special role or an extra set of 
responsibilities.  

http://spark.apache.org/docs/latest/spark-standalone.html
https://en.wikipedia.org/wiki/High_availability#High availability
https://en.wikipedia.org/wiki/Distributed_data_store#Distributed data store
https://en.wikipedia.org/wiki/Distributed_data_store#Distributed data store
https://en.wikipedia.org/wiki/Structured_storage#Structured storage
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•    Decentralization : The Dynamo design favors decentralized peer-to-peer techniques 
over centralized control.  

•    Heterogeneity : The Dynamo system is able to exploit heterogeneity in the 
infrastructure it runs on. For example, the work distribution must be proportional to 
each individual server’s capabilities. This is fundamental and powerful when adding 
new nodes with higher capacity and it doesn’t have to upgrade all hosts at once.      

     Spark and Cassandra 
 To work with Apache Spark and Apache Cassandra together, you need to work with the  Spark-Cassandra 
connector  . If you recall the history, Cassandra was created on Facebook, but as it became a bigger project, 
it needed one enterprise to support it. Although Apache Cassandra is an open source project, the company 
responsible for making decisions with Cassandra is DataStax. 

 DataStax developed the Spark-Cassandra connector, which is a wonderful library that lets you do three 
fundamental but powerful tasks:

•    Expose Cassandra tables as Spark RDDs  

•   Write Spark RDDs to Cassandra  

•   Execute CQL queries in your Spark applications    

 The following are some Apache-Cassandra connector features:

•    Compatible with Apache Cassandra version 2.0 or higher  

•   Compatible with Apache Spark versions 1.0 through 1.5  

•   Compatible with Scala versions 2.10 and 2.11  

•   Exposes Cassandra tables as Spark RDDs  

•   Maps table rows to  CassandraRow  objects or tuples  

•   Maps rows to objects of user-defined classes  

•   Saves RDDs back to Cassandra by an implicit  saveToCassandra  call (nice, with one 
instruction)  

•   Makes joins with a Cassandra data subset using  joinWithCassandraTable  call  

•   Allows RDDs partition according to Cassandra replication using 
 repartitionByCassandraReplica  call  

•   Converts data types between Cassandra and Scala  

•   Supports all the Cassandra data types, including collections  

•   Filters rows on server side via the CQL  WHERE  clause  

•   Allows the  for  execution on arbitrary CQL statements  

•   Plays with Cassandra virtual nodes  

•   Works with PySpark DataFrames    

 It is very important to emphasize that the development of the connector is performed after versions of 
Apache Spark, Apache Cassandra, and Scala are released; typically, the most current versions are not supported. 

 Connector version compatibility is shown in Table  10-1 .  
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   Table 10-1.    Spark Cassandra Connector Version  Compatibility     

 Connector  Spark  Cassandra  Cassandra Java Driver 

 1.6  1.6  2.1.5, 2.2, 3.0  3.0 

 1.5  1.5, 1.6  2.1.5, 2.2, 3.0  3.0 

 1.4  1.4  2.1.5  2.1 

 1.3  1.3  2.1.5  2.1 

 1.2  1.2  2.1, 2.0  2.1 

 1.1  1.1, 1.0  2.1, 2.0  2.1 

 1.0  1.0, 0.9  2.0  2.0 

     Spark Streaming with Cassandra 
 As you know, Spark Streaming extends the core API to allow high throughput and fault-tolerant processing 
of live data streams. Data can be ingested from many sources, such as Akka, Apache Kafka, Apache Flume, 
ZeroMQ, TCP sockets, and so forth. The results are stored in Cassandra. 

 If you didn’t know, there is support for Akka within Spark streaming. Chapter   8     has an example of how 
to use Apache Kafka with Spark Streaming, for which we also show an embedded Kafka and ZooKeeper 
server for quick user prototyping. 

    Setting up Spark Streaming   
 Let’s revisit the classic example of word count with Spark Streaming, which writes to the console with 
 wordCounts.print() .

    1.    Create a StreamingContext with a SparkConf configuration. 

   val ssc = new StreamingContext(sparkConf, Seconds(1)) 

       2.    Create a DStream that connects to the server at IP and port. 

   val lines = ssc.socketTextStream(serverIP, serverPort) 

       3.    Count each word in each batch. 

   val words = lines.flatMap(_.split(" ")) 
 val pairs = words.map( word => (word, 1) ) 
 val wordCounts = pairs.reduceByKey(_ + _) 

       4.    Print a few of the counts to the console (don’t forget the  start()  method). 

   wordCounts.print() 
 ssc.start()   

          Setting up Cassandra 
 Let’s add the Cassandra-specific  functions   on the StreamingContext and RDD into scope. To do this, you 
simply replace the print to console with pipe the output to Cassandra (the Spark-Cassandra connector does 
all the magic): 

   import com.datastax.spark.connector.streaming._ 
 wordCounts.saveToCassandra("streaming_test", "words") 

http://dx.doi.org/10.1007/978-1-4842-2175-4_8
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      Setting up SparkContext 
 The following explains how to set up the  SparkContext  .

    1.    As usual, start by importing Spark: 

   import org.apache.spark._ 

       2.    Before creating the SparkContext, set the  spark.cassandra.connection.host  
property to the address of one of the Cassandra nodes: 

   val conf = new SparkConf(true).set("spark.cassandra.connection.host", 
"127.0.0.1") 

       3.    Create a SparkContext. Substitute 127.0.0.1 with the actual address of your Spark 
master (or use  "local"  to run in local mode): 

   val sc = new SparkContext("spark://127.0.0.1:7077", "test", conf) 

       4.    Enable Cassandra-specific functions on the SparkContext, RDD, and DataFrame: 

   import com.datastax.spark.connector._ 

          Create a Streaming Context 
 The second parameter in the streaming  context   is the  batchDuration , which sets the interval that 
streaming data will be divided into batches. Note that the Spark API supports milliseconds, seconds, 
and minutes, all accepted as duration. Try not to confuse this duration with  scala.concurrent.
duration.Duration . 

   val ssc = new StreamingContext(conf, Seconds(n)) 

      Creating a Stream 
 We can create a stream with any  stream   type available or with a custom Spark stream. The Spark-Cassandra 
connector supports Akka actor streams, subsequently it will support many more stream types. We can also 
extend the types already provided. 

   import com.datastax.spark.connector.streaming.TypedStreamingActor 

     Kafka Stream 

 The  Kafka stream   creates an input stream that pulls messages from a Kafka broker: 

   val stream = KafkaUtils.createStream[String, String, StringDecoder, StringDecoder]( ssc, 
kafka.kafkaParams, Map(topic -> 1), StorageLevel.MEMORY_ONLY) 

       Actor Stream   

 The following is an actor stream: 

   val stream = ssc.actorStream[String](Props[TypedStreamingActor[String]], "stream", 
StorageLevel.MEMORY_AND_DISK) 
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       Enable Spark Streaming with Cassandra 
 Do the following to enable Cassandra-specific functions on the StreamingContext, DStream, and RDD:    

   import com.datastax.spark.connector.streaming._ 

   In our example,  streaming_test  is the keyspace name and  words  is the table name.   

     Saving Data 
 This shows how to save data:    

   val wc = stream.flatMap(_.split("\\s+")) 
         .map(x => (x, 1)) 
         .reduceByKey(_ + _) 
         .saveToCassandra("streaming_test", "words", SomeColumns("word", "count")) 

   This starts the computation:

  sc.start() 

     Reading the StreamingContext from Cassandra 
 To read the StreamingContext from Cassandra, we use something like this: 

   val rdd = ssc.cassandraTable("streaming_test", "key_value") 
         .select("key", "value").where("foo = ?", 3) 

      Loading and Analyzing Data from Cassandra 
 Use the  sc.cassandraTable  method to view this table as a Spark RDD: 

   val rdd = sc.cassandraTable("test", "kv") 
 println(rdd.count) 
 println(rdd.first) 
 println(rdd.map(_.getInt("value")).sum)         

      Saving data from a RDD to Cassandra 
 The following shows how to add two more rows to the table: 

   val collection = sc.parallelize(Seq(("key3", 3), ("key4", 4))) 
 collection.saveToCassandra("test", "kv", SomeColumns("key", "value"))       

         Saving Datasets to Cassandra 
 It’s possible to save any RDD to  Cassandra  , not just a CassandraRDD. The requisite is that the object class of 
RDD is a tuple and has property names corresponding to Cassandra column names. 
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 It’s also possible to save an RDD to an existing Cassandra table, as well as to let the connector create the 
appropriate table automatically, based on the definition of the RDD item class. 

 To save an RDD to an existing table, you need to import  com.datastax.spark.connector._  and 
call the  saveToCassandra  method with the keyspace name, the table name, and the list of columns. It is 
important to include at least all the primary key columns. To save an RDD into a new table, instead of calling 
 saveToCassandra , you have to call  saveAsCassandraTable  or  saveAsCassandraTableEx  with the name of the 
table you want to create.  

     Saving a Collection of  Tuples   
 Assume the following table definition: 

   CREATE TABLE ks.words (word text PRIMARY KEY, count int); 
 save( "bar", 20); 
 save("foo",10); 

   You have the following Spark code: 

    val collection = sc.parallelize(Seq(("cat", 30), ("dog", 40))) 
 collection.saveToCassandra("ks", "words", SomeColumns("word", "count")) 

   cqlsh:test> select * from words; 

    word | count 
 ------+------- 
   bar |    20 
   foo |    10 
   cat |    30 
   dog |    40 

   (4 rows) 

    With tuples, the use of a custom mapper is also supported, as shown here: 

    val collection = sc.parallelize(Seq((30, "cat"), (40, "dog"))) 
 collection.saveToCassandra("ks", "words", SomeColumns("word" as "_2", "count" as "_1")) 

   cqlsh:test> select * from words; 

    word | count 
 ------+------- 
   bar |    20 
   foo |    10 
   cat |    30 
   dog |    40 

   (4 rows) 
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         Saving a Collection of  Objects   
 When saving a collection of objects of a class defined by the user, the items to be saved must provide 
appropriately named public property accessors to get every column to be saved. This example provides 
more information on property column naming conventions. 

    case class WordCount(word: String, count: Long) 
 val collection = sc.parallelize(Seq(WordCount("fox", 50), WordCount("cow", 60))) 
 collection.saveToCassandra("ks", "words", SomeColumns("word", "count")) 

   cqlsh:test> select * from words; 

    word | count 
 ------+------- 
   bar |    20 
   foo |    10 
   cat |    30 
   dog |    40 
   fox |    50 
   cow |    60 

    You can specify custom columns to property mapping with  SomeColumns . If the property names in the 
objects to be saved don’t correspond to the column names in the destination table, use the “as” keyword on 
the column names that you want to override. The parameter order uses the table column name first, and 
then the object property name. 

 For example, let’s say that you want to save  WordCount  objects to a table that has  word  (TEXT) and  num  
(INT) columns. This is the table definition in Cassandra: 

   CREATE TABLE ks.words (word text PRIMARY KEY, count int); 

   This is the Spark code: 

   case class WordCount(word: String, count: Long) 
 val collection = sc.parallelize(Seq(WordCount("fox", 50), WordCount("cow", 60))) 
 collection.saveToCassandra("ks", "words2", SomeColumns("word", "num" as "count")) 

        Modifying CQL Collections 
 The default  behavior   of the Spark-Cassandra connector is to overwrite collections when inserted into a 
Cassandra table. To override this behavior, you can specify a custom mapper with instructions on how to 
treat the collection. 

 The following are the operations supported:

•    append/add (lists, sets, maps)  

•   prepend (lists)  

•   remove (lists, sets) not supported for maps  

•   overwrite (lists, sets, maps): default    
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 Let’s take the elements from  rddSetField  and remove them from the corresponding  "a_set"  C* 
column, and then take elements from  rddMapField  and add them to the  "a_map"  C* column, where the  key 
== key  C* column is in the RDD elements. 

   ("key", "a_set" as "rddSetField" remove , "a_map" as "rddMapField" append) 

   The following is an example schema: 

   CREATE TABLE ks.collections_mod ( 
       key int PRIMARY KEY, 
       list_col list<text>, 
       map_col map<text, text>, 
       set_col set<text> 
   ) 

   The following are appending and prepending lists: 

    val listElements = sc.parallelize(Seq( 
   (1,Vector("One")), 
   (1,Vector("Two")), 
   (1,Vector("Three")))) 

   val preElements = sc.parallelize(Seq( 
   (1,Vector("PreOne")), 
   (1,Vector("PreTwo")), 
   (1,Vector("PreThree")))) 

   listElements.saveToCassandra("ks", "collections_mod", SomeColumns("key", "list_col" append)) 
 preElements.saveToCassandra("ks", "collections_mod", SomeColumns("key", "list_col" prepend)) 

   cqlsh> select * from ks.collections_mod where key = 1; 

   key   | list_col                                |map_col | set_col 
 ------+-----------------------------------------+--------+---------- 
    1  | ['PreThree', 'PreTwo', 'PreOne', 'One', | null   | null 
          'Two', 'Three'] 
 (1 rows) 

         Saving Objects of Cassandra  User-Defined Types   
 To save structures consisting of many fields, use a  case  class or a  com.datastax.spark.connector.UDTValue  
class. An instance of this class can be easily obtained from a Scala map by calling the  fromMap  method. 

 Take the following table definition as an example: 

   CREATE TYPE ks.address (city text, street text, number int); 
 CREATE TABLE ks.companies (name text PRIMARY KEY, address FROZEN<address>); 
 CREATE TABLE ks.udts (key text PRIMARY KEY, name text, addr FROZEN<address>); 



CHAPTER 10 ■ DATA PIPELINES

236

   You can use a  case  class to insert into the UDT: 

   case class Address(street: String, city: String, zip: Int) 
 val address = Address(city = "San Jose", zip = 95126, street = "Santa Clara") 
 val col = Seq((1, "Raul", address)) 
 sc.parallelize(col).saveToCassandra(ks, "udts", SomeColumns("key", "name", "addr")) 

   Or use the  fromMap  of  UDTValue  to create the UDT: 

   import com.datastax.spark.connector.UDTValue 
 case class Company(name: String, address: UDTValue) 
 val address = UDTValue.fromMap(Map("city" -> "Palo Alto", "street" -> "Infinite Loop", 
"number" -> 1)) 
 val company = Company("Apple", address) 
 sc.parallelize(Seq(company)).saveToCassandra("ks", "companies") 

        Converting Scala Options to Cassandra Options 
 To convert Cassandra options to Scala options, you use an implemented implicit. This means that Cassandra 
options can be dealt with as if they were normal Scala options. For the reverse transformation (from a Scala 
option into a Cassandra option), you need to define the  None  behavior. This is done via   CassandraOption.
deleteIfNone    and   CassandraOption.unsetIfNone   . 

    import com.datastax.spark.connector.types.CassandraOption 

   //Setup original data (1, 1, 1) ... (6, 6, 6) 
 sc.parallelize(1 to 6).map(x => (x,x,x)).saveToCassandra(ks, "tab1") 

   //Setup options Rdd (1, None, None) (2, None, None) ... (6, None, None) 
 val optRdd = sc.parallelize(1 to 6).map(x => (x, None, None)) 

   //Deleting second column, but ignore the third column 
 optRdd.map{ case (x: Int, y: Option[Int], z: Option[Int]) => 
     (x, CassandraOption.deleteIfNone(y), CassandraOption.unsetIfNone(z)) 
   }.saveToCassandra(ks, "tab1") 

   val results = sc.cassandraTable[(Int, Option[Int], Option[Int])](ks, "tab1").collect 

    The following shows the results: 

   (1, None, Some(1)), 
 (2, None, Some(2)), 
 (3, None, Some(3)), 
 (4, None, Some(4)), 
 (5, None, Some(5)), 
 (6, None, Some(6)) 
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        Saving RDDs as New Tables 
 As mentioned, you use the  saveAsCassandraTable  method to automatically create a new table with the 
given name and save the  RDD   into it. The keyspace that you are saving to must exist. The following code 
creates a new  words_new  table in the  test  keyspace with  word  and  count  columns, where  word  becomes a 
primary key: 

   case class WordCount(word: String, count: Long) 
 val collection = sc.parallelize(Seq(WordCount("dog", 50), WordCount("cow", 60))) 
 collection.saveAsCassandraTable("test", "words_new", SomeColumns("word", "count")) 

   To customize the table definition, call  saveAsCassandraTableEx . The following code demonstrates how 
to add another column of int type to the table definition, creating a new  words_new_2  table: 

    import com.datastax.spark.connector.cql.{ColumnDef, RegularColumn, TableDef} 
 import com.datastax.spark.connector.types.IntType 

   case class WordCount(word: String, count: Long) 
 val table1 = TableDef.fromType[WordCount]("test", "words_new") 
 val table2 = TableDef("test", "words_new_2", table1.partitionKey, table1.clusteringColumns, 
 table1.regularColumns :+ ColumnDef("additional_column", RegularColumn, IntType)) 
 val collection = sc.parallelize(Seq(WordCount("dog", 50), WordCount("cow", 60))) 
 collection.saveAsCassandraTableEx(table2, SomeColumns("word", "count")) 

    The following is example code to create a table with a custom definition. It defines which columns are 
partition and clustering column keys: 

    import com.datastax.spark.connector.cql.{ColumnDef, RegularColumn, TableDef, 
ClusteringColumn, PartitionKeyColumn} 
 import com.datastax.spark.connector.types._ 

   // 1. Define the RDD structure 
 case class outData(col1:UUID, col2:UUID, col3: Double, col4:Int) 

   // 2. Define columns 
 val p1Col = new ColumnDef("col1",PartitionKeyColumn,UUIDType) 
 val c1Col = new ColumnDef("col2",ClusteringColumn(0),UUIDType) 
 val c2Col = new ColumnDef("col3",ClusteringColumn(1),DoubleType) 
 val rCol = new ColumnDef("col4",RegularColumn,IntType) 

   // 3. Create table definition 
 val table = TableDef("test","words",Seq(p1Col),Seq(c1Col, c2Col),Seq(rCol)) 

   // 4. Map RDD into custom data structure and create the table 
 val rddOut = rdd.map(s => outData(s._1, s._2(0), s._2(1), s._3)) 
 rddOut.saveAsCassandraTableEx(table, SomeColumns("col1", "col2", "col3", "col4")) 
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            Akka and Kafka 
 A  connector      is available for Scala 2.11 at Maven Central in the following coordinates: 

   libraryDependencies += "com.typesafe.akka" %% "akka-stream-kafka" % "0.11-M4" 

   This is a producer settings example: 

   import akka.kafka._ 
 import akka.kafka.scaladsl._ 
 import org.apache.kafka.common.serialization.StringSerializer 
 import org.apache.kafka.common.serialization.ByteArraySerializer 
 val producerSettings = ProducerSettings(system, new ByteArraySerializer, new 
StringSerializer).withBootstrapServers("localhost:9092") 

   The following is a produce messages example: 

   Source(1 to 10000) 
   .map(_.toString) 
   .map(elem => new ProducerRecord[Array[Byte], String]("topic1", elem)) 
   .to(Producer.plainSink(producerSettings)) 

   This is an example of produce messages in a flow: 

   Source(1 to 10000).map(elem => ProducerMessage.Message(new ProducerRecord[Array[Byte], 
String]("topic1", elem.toString), elem)) 
     .via(Producer.flow(producerSettings)) 
     .map { result => 
       val record = result.message.record 
       println(s"${record.topic}/${record.partition} ${result.offset}: ${record.value} 
(${result.message.passThrough}") 
       result 
     } 

   This is a consumer settings example: 

    import akka.kafka._ 
 import akka.kafka.scaladsl._ 
 import org.apache.kafka.common.serialization.StringDeserializer 
 import org.apache.kafka.common.serialization.ByteArrayDeserializer 
 import org.apache.kafka.clients.consumer.ConsumerConfig 

   val consumerSettings = ConsumerSettings(system, new ByteArrayDeserializer, new 
StringDeserializer) 
   .withBootstrapServers("localhost:9092") 
   .withGroupId("group1") 
   .withProperty(ConsumerConfig.AUTO_OFFSET_RESET_CONFIG, "earliest") 
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    The following database example shows consumer messages and stores a representation, including offset: 

   db.loadOffset().foreach { fromOffset => 
          val subscription = Subscriptions.assignmentWithOffset(new TopicPartition("topic1", 1) 

-> fromOffset) 
     Consumer.plainSource(consumerSettings, subscription) 
       .mapAsync(1)(db.save)} 

   This is a consume messages at-most-once example: 

   Consumer.atMostOnceSource(consumerSettings.withClientId("client1"), Subscriptions.
topics("topic1")) 
     .mapAsync(1) { record => 
       rocket.launch(record.value) 
     } 

   This is a consume messages at-least-once example: 

   Consumer.committableSource(consumerSettings.withClientId("client1"), Subscriptions.
topics("topic1")) 
     .mapAsync(1) { msg => 
       db.update(msg.value).flatMap(_ => msg.committableOffset.commitScaladsl()) 
     } 

   This is a connect a consumer to a producer example: 

   Consumer.committableSource(consumerSettings.withClientId("client1")) 
     .map(msg => 
       ProducerMessage.Message(new ProducerRecord[Array[Byte], String]("topic2", msg.value), 
msg.committableOffset)) 
     .to(Producer.commitableSink(producerSettings)) 

   This is a consume messages at-least-once and commit in batches example: 

   Consumer.committableSource(consumerSettings.withClientId("client1"), Subscriptions.
topics("topic1")) 
     .mapAsync(1) { msg => 
       db.update(msg.value).map(_ => msg.committableOffset) 
     } 
     .batch(max = 10, first => CommittableOffsetBatch.empty.updated(first)) { (batch, elem) 
=> 
       batch.updated(elem) 
     } 
     .mapAsync(1)(_.commitScaladsl()) 

   Here is a reusable Kafka consumer example: 

    //Consumer is represented by actor 
 //Create new consumer 
 val consumer: ActorRef = system.actorOf(KafkaConsumerActor.props(consumerSettings)) 
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   //Manually assign topic partition to it 
 val stream1 = Consumer 
     .plainExternalSource[Array[Byte], String](consumer, Subscriptions.assignment(new 
TopicPartition("topic1", 1))) 
     .via(business) 
     .to(Sink.ignore) 

   //Manually assign another topic partition 
 val stream2 = Consumer 
     .plainExternalSource[Array[Byte], String](consumer, Subscriptions.assignment(new 
TopicPartition("topic1", 2))) 
     .via(business) 
     .to(Sink.ignore) 

    This is a consumer group example: 

   //Consumer group represented as Source[(TopicPartition, Source[Messages])] 
 val consumerGroup = Consumer.committablePartitionedSource(consumerSettings.
withClientId("client1"), Subscriptions.topics("topic1")) 
   //Process each assigned partition separately 
   consumerGroup.map { 
     case (topicPartition, source) => 
       source 
         .via(business) 
         .toMat(Sink.ignore)(Keep.both) 
         .run() 
   }.mapAsyncUnordered(maxPartitions)(_._2) 

   Here is a use case: 

    import akka.actor.ActorSystem 
 import akka.stream.ActorMaterializer 
 import akka.stream.scaladsl.{Sink, Source} 
 import com.softwaremill.react.kafka.KafkaMessages._ 
 import org.apache.kafka.common.serialization.{StringSerializer, StringDeserializer} 
 import com.softwaremill.react.kafka.{ProducerMessage, ConsumerProperties, 
ProducerProperties, ReactiveKafka} 
 import org.reactivestreams.{ Publisher, Subscriber } 

   implicit val actorSystem = ActorSystem("ReactiveKafka") 
 implicit val materializer = ActorMaterializer() 

   val kafka = new ReactiveKafka() 
 val publisher: Publisher[StringConsumerRecord] = kafka.consume(ConsumerProperties( 
  bootstrapServers = "localhost:9092", 
  topic = "lowercaseStrings", 
  groupId = "groupName", 
  valueDeserializer = new StringDeserializer() 
 )) 
 val subscriber: Subscriber[StringProducerMessage] = kafka.publish(ProducerProperties( 
   bootstrapServers = "localhost:9092", 
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   topic = "uppercaseStrings", 
   valueSerializer = new StringSerializer() 
 )) 

   Source.fromPublisher(publisher).map(m => ProducerMessage(m.value().toUpperCase)) 
   .to(Sink.fromSubscriber(subscriber)).run() 

           Akka and Cassandra 
 Let’s use the DataStacks Cassandra driver and Akka to build an application that downloads tweets and 
then stores their id, text, name, and date in a Cassandra table. This shows you how to build a simple Akka 
application with just a few actors, how to use Akka I/O to make HTTP requests, and how to store the data in 
Cassandra. 

 Let’s begin by constructing the core of our system. It contains three actors: two that interact with the 
database and one that downloads the tweets.  TwitterReadActor reads   from the cluster,  TweetWriteActor 
writes   into the cluster, and  TweetScanActor downloads   the tweets and passes them to TweetWriteActor to be 
written. 

    class TweetReadActor(cluster: Cluster) extends Actor {   ... } 

   class TweetWriterActor(cluster: Cluster) extends Actor {   ... } 

   class TweetScanActor(tweetWrite: ActorRef, queryUrl: String => String) extends Actor { ... } 

    The constructor parameter of the read and write actors is Cassandra’s  Cluster  instance. The scan actor takes 
an ActorRef of the write actor and a function that, given a String query, can construct the query URL to download 
the tweets. To construct our application, we have to instantiate the actors in the right sequence, as follows: 

   val system = ActorSystem() 
 def queryUrl(query: String): String = ??? 
 val cluster: Cluster = ??? 
 val reader  = system.actorOf(Props(new TweetReaderActor(cluster))) 
 val writer  = system.actorOf(Props(new TweetWriterActor(cluster))) 
 val scanner = system.actorOf(Props(new TweetScannerActor(writer, queryUrl))) 

       Writing to Cassandra 
 Now that we have the structure, we can take a look at TwitterWriterActor. It receives instances of Tweet and 
writes to the tweets keyspace in Cassandra.    

    class TweetWriterActor(cluster: Cluster) extends Actor { 
   val session = cluster.connect(Keyspaces.akkaCassandra) 
   val preparedStatement = session.prepare("INSERT INTO tweets(key, user_user, text, 
createdat) VALUES (?, ?, ?, ?);") 

     def receive: Receive = { 
     case tweets: List[Tweet] => 
     case tweet: Tweet        => 
   } 
 } 
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    To store the tweets, we need to connect to the correct keyspace, which gives us the Cassandra session. 
Trying to be as efficient as possible, we will take advantage of Cassandra’s PreparedStatements and 
BoundStatements. The PreparedStatement is a pre-chewed CQL statement, a BoundStatement is a prepared 
statement whose parameter values are set. 

    class TweetWriterActor(cluster: Cluster) extends Actor { 
   val session = cluster.connect(Keyspaces.akkaCassandra) 
   val preparedStatement = session.prepare("INSERT INTO tweets(key, user_user, text, 
createdat) VALUES (?, ?, ?, ?);") 

     def saveTweet(tweet: Tweet): Unit = 
     session.executeAsync(preparedStatement.bind(tweet.id.id, tweet.user.user, tweet.text.
text, tweet.createdAt)) 

     def receive: Receive = { 
     case tweets: List[Tweet] => 
     case tweet: Tweet        => 
   } 
 } 

    The only thing that remains to be done is to use it in the  receive  function. 

    class TweetWriterActor(cluster: Cluster) extends Actor { 
   val session = cluster.connect(Keyspaces.akkaCassandra) 
   val preparedStatement = session.prepare("INSERT INTO tweets(key, user_user, text, 
createdat) VALUES (?, ?, ?, ?);") 

     def saveTweet(tweet: Tweet): Unit = 
     session.executeAsync(preparedStatement.bind(tweet.id.id, tweet.user.user, tweet.text.
text, tweet.createdAt)) 

     def receive: Receive = { 
     case tweets: List[Tweet] => tweets foreach saveTweet 
     case tweet: Tweet        => saveTweet(tweet) 
   } 
 } 

    We now have the code that saves instances of Tweet to the keyspace in our Cassandra cluster.  

     Reading from Cassandra 
 Reading the data is ever so slightly more complex. We need to be able to construct Cassandra queries; then, 
given a Cassandra row, we need to be able to turn it into our Tweet object. We want to take advantage of the 
asynchronous nature of the Cassandra driver.     

    object TweetReaderActor { 
   case class FindAll(maximum: Int = 100) 
   case object CountAll 
 } 
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   class TweetReaderActor(cluster: Cluster) extends Actor { 
   val session = cluster.connect(Keyspaces.akkaCassandra) 
   val countAll  = new BoundStatement(session.prepare("select count(*) from tweets;")) 

     def receive: Receive = { 
     case FindAll(maximum)  => 
       // reply with List[Tweet] 
     case CountAll => 
       // reply with Long 
   } 
 } 

    We have defined the FindAll and CountAll messages that our actor will react to. We have also left in the 
code that gives us the session and then used the session to construct a BoundStatement that counts all rows. 
Next up, we need to be able to construct an instance of Tweet given a row. 

   class TweetReaderActor(cluster: Cluster) extends Actor { 
   ... 
   def buildTweet(r: Row): Tweet = { 
     val id = r.getString("key") 
     val user = r.getString("user_user") 
     val text = r.getString("text") 
     val createdAt = r.getDate("createdat") 
     Tweet(id, user, text, createdAt) 
   } 
   ... 
 } 

   We simply pick the values of the columns in the row and use them to make an instance of Tweet. We 
would like to asynchronously execute some query, map the rows returned from that query execution to turn 
them into the tweets, and then pipe the result to the sender. 

    class TweetReaderActor(cluster: Cluster) extends Actor { 
   val session = cluster.connect(Keyspaces.akkaCassandra) 
   val countAll  = new BoundStatement(session.prepare("select count(*) from tweets;")) 

     import scala.collection.JavaConversions._ 
   import cassandra.resultset._ 
   import context.dispatcher 
   import akka.pattern.pipe 

     def buildTweet(r: Row): Tweet = {...} 

     def receive: Receive = { 
     case FindAll(maximum)  => 
       val query = QueryBuilder.select().all().from(Keyspaces.akkaCassandra, "tweets").
limit(maximum) 
       session.executeAsync(query) map(_.all().map(buildTweet).toList) pipeTo sender 
     case CountAll => 
       session.executeAsync(countAll) map(_.one.getLong(0)) pipeTo sender 
   } 
 } 
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    We construct the query using Cassandra’s QueryBuilder. We call the  executeAsync  method on the 
session, which returns ResultSetFuture. Using implicit conversion in  cassandra.resultset._ , we turn the 
ResultSetFuture into Scala’s Future[ResultSet]. This allows us to use the  Future.map  method to turn the 
ResultSet into List[Tweet]. 

 Calling the  session.executeAsync(query)  map expects as its parameter a function from ResultSet to 
some type B. In our case, B is List[Tweet]. The ResultSet contains the  all()  method, which returns java.util.
List[Row]. To be able to map over java.util.List[Row], we need to turn it into the Scala List[Row]. To do so, we 
bring in the implicit conversions in  scala.collection.JavaConversions . And now, we can complete the 
parameter of the  Future.map  function. 

  session.executeAsync  gives us Future[List[Tweet]], which is tantalizingly close to what we need. We 
do not want to block for the result, and we don’t use the  onSuccess  function, because all that it would do is 
pass on the result to the sender. So, instead, we pipe the success of the future to the sender. That completes 
the picture, explaining the entire  session.executeAsync(query) map(_.all().map(buildTweet).toList) 
pipeTo sender  line.  

     Connecting to Cassandra 
 We need to explain where the cluster value comes from. Thinking about the system you are writing, you 
may need to have different values of cluster for tests and for the main system. Moreover, the test cluster will 
most likely need some special setup. You simply define that there is a CassandraCluster trait that returns 
the cluster and to give implementations that do the right thing: one that loads the configuration from the 
ActorSystem’s configuration and one that is hard-coded to be used in tests.    

   trait CassandraCluster { 
   def cluster: Cluster 
 } 

   The configuration-based implementation and the test configuration differ only in the values they use to 
make the  Cluster  instance. 

    // in src/scala/main 
 trait ConfigCassandraCluster extends CassandraCluster { 
   def system: ActorSystem 

     private def config = system.settings.config 

     import scala.collection.JavaConversions._ 
   private val cassandraConfig = config.getConfig("akka-cassandra.main.db.cassandra") 
   private val port = cassandraConfig.getInt("port") 
   private val hosts = cassandraConfig.getStringList("hosts").toList 

     lazy val cluster: Cluster = 
     Cluster.builder(). 
       addContactPoints(hosts: _*). 
       withCompression(ProtocolOptions.Compression.SNAPPY). 
       withPort(port). 
       build() 
 } 

   // in src/scala/test 
 trait TestCassandraCluster extends CassandraCluster { 
   def system: ActorSystem 
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     private def config = system.settings.config 

     import scala.collection.JavaConversions._ 
   private val cassandraConfig = config.getConfig("akka-cassandra.test.db.cassandra") 
   private val port = cassandraConfig.getInt("port") 
   private val hosts = cassandraConfig.getStringList("hosts").toList 

     lazy val cluster: Cluster = 
     Cluster.builder(). 
       addContactPoints(hosts: _*). 
       withPort(port). 
       withCompression(ProtocolOptions.Compression.SNAPPY). 
       build() 

   } 

    This allows you to mix in the appropriate trait and get the properly configured cluster. You want to have 
the cluster in a well-known state, so you create the CleanCassandra trait that resets the cluster given by a 
CassandraCluster.cluster. 

    trait CleanCassandra extends SpecificationStructure { 
   this: CassandraCluster => 

     private def runClq(session: Session, file: File): Unit = { 
     val query = Source.fromFile(file).mkString 
     query.split(";").foreach(session.execute) 
   } 

     private def runAllClqs(): Unit = { 
     val session = cluster.connect(Keyspaces.akkaCassandra) 
     val uri = getClass.getResource("/").toURI 
     new File(uri).listFiles().foreach { file => 
       if (file.getName.endsWith(".cql")) runClq(session, file) 
     } 
     session.shutdown() 
   } 

     override def map(fs: => Fragments) = super.map(fs) insert Step(runAllClqs()) 
 } 

    When you mix in this trait into your test, it registers the  runAllClqs()  steps to be executed before all 
other steps in the test.  

     Scanning Tweets 
 Now that you know that you can safely store and retrieve the tweets from Cassandra, you need to write the 
component that is going to download them. In our system, this is the TweetScannerActor that receives a 
message of type String, and it performs the HTTP request to download the tweets.     
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    class TweetScannerActor(tweetWrite: ActorRef, queryUrl: String => String) 
   extends Actor with TweetMarshaller { 

     import context.dispatcher 
   import akka.pattern.pipe 

     private val pipeline = sendReceive ~> unmarshal[List[Tweet]] 

     def receive: Receive = { 
     case query: String => pipeline(Get(queryUrl(query))) pipeTo tweetWrite 
   } 
 } 
 trait TweetMarshaller { 
   type Tweets = List[Tweet] 

     implicit object TweetUnmarshaller extends Unmarshaller[Tweets] { 

       val dateFormat = new SimpleDateFormat("EEE MMM d HH:mm:ss Z yyyy") 

       def mkTweet(status: JsValue): Deserialized[Tweet] = { 
       val json = status.asJsObject 
       ... 
     } 

       def apply(entity: HttpEntity): Deserialized[Tweets] = { 
       val json = JsonParser(entity.asString).asJsObject 
       ... 
     } 
   } 
 } 

    The typeclass instance is the TweetUnmarshaller singleton, which extends Unmarshaller[Tweets]. 
Notice that we have also defined a type alias, Tweets = List[Tweet], by extending Unmarshaller[Tweets]. We 
must implement the  apply  method, which is applied to HttpEntity. It should return deserialized tweets or 
indicate an error.  

     Testing TweetScannerActor 
 To test the scanner fully, we would like to use a well-known service. But where do we get it? We can’t really 
use the live service, because the tweets keep changing. It seems that the only way is to implement a mock 
service and use it in our tests.    

    class TweetScanActorSpec extends TestKit(ActorSystem()) 
   with SpecificationLike with ImplicitSender { 

     sequential 

     val port = 12345 
   def testQueryUrl(query: String) = s"http://localhost:$port/q=$query" 

     val tweetScan = TestActorRef(new TweetScannerActor(testActor, testQueryUrl)) 
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     "Getting all ‘typesafe’ tweets" >> { 

       "should return more than 10 last entries" in { 
       val twitterApi = TwitterApi(port) 
       tweetScan ! "typesafe" 
       Thread.sleep(1000) 
       val tweets = expectMsgType[List[Tweet]] 
       tweets.size mustEqual 4 
       twitterApi.stop() 
       success 
     } 
   } 
 } 

    When constructing TweetScannerActor, we give it the testActor and a function that returns URLs on 
localhost on some port. In the body of the example, we start the mock TwitterApi on the given port, and use 
TweetScannerActor to make the HTTP request. Because we gave the testActor the writer ActorRef, we should 
now be able to see the List[Tweet] that would have been sent to TweetWriterActor. 

 Because our mock tweet set contains four tweets, we can make the assertion that the list indeed 
contains four tweets. 

 Since the components in the system work as expected, we can therefore assemble the  App  object, which 
brings everything together in a command-line interface.     

    object Main extends App with ConfigCassandraCluster { 
   import Commands._ 
   import akka.actor.ActorDSL._ 

     def twitterSearchProxy(query: String) = s"http://twitter-search-proxy.herokuapp.com/
search/tweets?q=$query" 

     implicit lazy val system = ActorSystem() 
   val write = system.actorOf(Props(new TweetWriterActor(cluster))) 
   val read = system.actorOf(Props(new TweetReaderActor(cluster))) 
   val scan = system.actorOf(Props(new TweetScannerActor(write, twitterSearchProxy))) 

     // we don't want to bother with the ``ask`` pattern, so 
   // we set up sender that only prints out the responses to 
   // be implicitly available for ``tell`` to pick up. 
   implicit val _ = actor(new Act { 
     become { 
       case x => println(">>> " + x) 
     } 
   }) 

     @tailrec 
   private def commandLoop(): Unit = { 
     Console.readLine() match { 
       case QuitCommand                => return 
       case ScanCommand(query)         => scan ! query.toString 
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         case ListCommand(count)         => read ! FindAll(count.toInt) 
       case CountCommand               => read ! CountAll 

         case _                          => return 
     } 

       commandLoop() 
   } 

     // start processing the commands 
   commandLoop() 

     // when done, stop the ActorSystem 
   system.shutdown() 

   } 

    We have the main  commandLoop()  function, which reads the line from standard input, matches it 
against the commands, and sends the appropriate messages to the right actors. It also mixes in the “real” 
source of the Cassandra cluster values and specifies the live function that constructs the URL to retrieve 
the tweets.   

     Akka and Spark 
 We start developing Spark Streaming application by creating a SparkConf that’s followed by a 
 StreamingContext.   

   val conf = new SparkConf(false) // skip loading external settings 
   .setMaster("local[*]") // run locally with enough threads 
   .setAppName("Spark Streaming with Scala and Akka") // name in Spark web UI 
   .set("spark.logConf", "true") 
   .set("spark.driver.port", s"$driverPort") 
   .set("spark.driver.host", s"$driverHost") 
   .set("spark.akka.logLifecycleEvents", "true") 
 val ssc = new StreamingContext(conf, Seconds(1)) 

   This gives a context to access the actor system that is of type   ReceiverInputDStream .   

   val actorName = "helloer" 
 val actorStream: ReceiverInputDStream[String] = ssc.actorStream[String](Props[Helloer], 
actorName) 

   DStream lets you define a high-level processing pipeline in Spark Streaming. 

   actorStream.print() 

   In the preceding case, the  print()  method is going to print the first ten elements of each RDD 
generated in this DStream. Nothing happens until  start()  is executed.    

   ssc.start() 
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   With the context up and running, the code connects to an Akka  remote actor system   in Spark Streaming 
that hosts the helloer actor and sends messages that, as the preceding code shows, display them all to 
standard output. 

   import scala.concurrent.duration._ 
 val actorSystem = SparkEnv.get.actorSystem 
 val url = s"akka.tcp://spark@$driverHost:$driverPort/user/Supervisor0/$actorName" 
 val timeout = 100 seconds 
 val helloer = Await.result(actorSystem.actorSelection(url).resolveOne(timeout), timeout) 
 helloer ! "Hello" 
 helloer ! "from" 
 helloer ! "Apache Spark (Streaming)" 
 helloer ! "and" 
 helloer ! "Akka" 
 helloer ! "and" 
 helloer ! "Scala" 

        Kafka and Cassandra 
 We need to use  kafka-connect-cassandra  , which is published by Tuplejump on Maven Central. It is defined 
as a dependency in the  build  file. Let’s looking at the following example, with SBT: 

   libraryDependencies += "com.tuplejump" %% "kafka-connect-cassandra" % "0.0.7" 

   This code polls Cassandra with a specific query. Using this, data can be fetched from Cassandra in 
two modes:

•     bulk    

•   timestamp  based      

 The modes change automatically based on the query, for example: 

    SELECT * FROM userlog ; //bulk 

   SELECT * FROM userlog WHERE ts > previousTime() ; //timestamp based 

   SELECT * FROM userlog WHERE ts = currentTime() ; //timestamp based 

   SELECT * FROM userlog WHERE ts >= previousTime() AND  ts <= currentTime() ; //timestamp 
based 

    Here,  previousTime()  and  currentTime()  are replaced before fetching the data.    
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     CQL Types Supported 

 CQL Type  Schema Type 

 ASCII  STRING 

 VARCHAR  STRING 

 TEXT  STRING 

 BIGINT  INT64 

 COUNTER  INT64 

 BOOLEAN  BOOLEAN 

 DECIMAL  FLOAT64 

 DOUBLE  FLOAT64 

 FLOAT  FLOAT32 

 TIMESTAMP  TIMESTAMP 

   The following types are not currently supported: BLOB, INET, UUID, TIMEUUID, LIST, SET, MAP, 
CUSTOM, UDT, TUPLE, SMALLINT, TINYINT, DATE, and TIME.  

     Cassandra Sink 
 Cassandra Sink stores Kafka SinkRecord in Cassandra tables. Currently, only the STRUCT type is supported 
in the SinkRecord. The STRUCT can have multiple fields with primitive field types. We assume one-to-one 
mapping between the column names in the Cassandra sink table and the field names. 

 The SinkRecords has this STRUCT value:    

   { 
     'id': 1, 
     'username': 'user1', 
     'text': 'This is my first tweet' 
 } 

   The library doesn’t create the Cassandra tables; users are expected to create them before starting the sink.   

     Summary 
 This chapter reviewed the connectors among all the SMACK stack technologies. The Spark and Kafka 
connection was explained in the Chapter   8    . Apache Mesos integration was explained in Chapter   7    . We end 
this book with a brief fast data glossary for you to consult if you need the definition of a specific term.     

http://dx.doi.org/10.1007/978-1-4842-2175-4_8
http://dx.doi.org/10.1007/978-1-4842-2175-4_7
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    CHAPTER 11   

 Glossary                          

 This glossary of terms and concepts aids in understanding the SMACK stack. 

      ACID   
 The acronym for Atomic, Consistent, Isolated, and Durable. (See Chapter   9    .)  

      agent   
 A software component that resides within another, much larger, software component. An agent can access 
the context of the component and execute tasks. It works automatically and is typically used to execute tasks 
remotely. It is an extension of a software program customized to perform tasks.  

      API   
 The acronym for  application programming    interface   . A set of instructions, statements, or commands that 
allow certain software components to interact or integrate with one another.  

     BI 
 The acronym for  business    intelligence   . In general, the set of techniques that allow software components to 
group, filter, debug, and transform large amounts of data with the aim of improving a business processes.  

     big data 
 The volume and variety of information collected.   Big data    is an evolving term that describes any large amount 
of structured, semi-structured, and unstructured data that has the potential to be mined for information. 
Although big data doesn’t refer to any specific quantity, the term is often used when speaking about petabytes 
and exabytes of data. Big data sy stems facilitate the exploration and analysis of large data sets.  

      CAP   
 The acronym for Consistent, Available, and Partition  Tolerant  . (See Chapter   9    .)  

http://dx.doi.org/10.1007/978-1-4842-2175-4_9
http://dx.doi.org/10.1007/978-1-4842-2175-4_9


CHAPTER 11 ■ GLOSSARY

252

      CEP   
 The acronym for  complex event    processing   . A technique used to analyze data streams steadily. Each flow of 
information is analyzed and generates events; in turn, these events are used to initiate other processes at 
higher levels of abstraction within a workflow/service.  

      client-server   
 An application execution paradigm formed by two components that allows distributed environments. 
This consists of a component called the  server , which is responsible for first receiving the requests of the 
 clients  (the second component). After receiving requests, they are processed by the server. For each request 
received, the server is committed to returning an answer.  

      cloud   
 Systems that are accessed remotely; mainly hosted on the Internet. They are generally administrated by third 
parties.  

      cluster   
 A set of computers working together through a software component. Computers that are part of the 
cluster are referred to as  nodes . Clusters are a fundamental part of a distributed system; they maintain the 
availability of data.  

     column family 
 In the NoSQL world, this is a paradigm for managing data using tuples—a key is linked to a value and a 
timestamp. It handles larger units of information than a key-value paradigm.  

     coordinator 
 In scenarios where there is competition, the coordinator is a cornerstone. The  coordinator   is tasked with the 
distribution of operations to be performed and to ensure the execution thereof. It also manages any errors 
that may exist in the process.  

     CQL 
 The acronym for  Cassandra Query    Language   . A statements-based language very similar to SQL in that it uses 
SELECT, INSERT, UPDATE, and DELETE statements. This similarity allows quick adoption of the language 
and increases productivity.  

     CQLS 
 A Cassandra-owned CLI tool to run CQL statements.  



CHAPTER 11 ■ GLOSSARY

253

      concurrency   
 In general, the ability to run multiple tasks. In the world of computer science, it refers to the ability to 
decompose a task into smaller units so that you can run them separately while waiting for the union of these 
isolated tasks that represent the execution the total task.  

      commutative operations   
 A set of operations are said to be  commutative  if they can be applied in any order without affecting the 
ending state. For example, a list of account credits and debits is considered commutative because any 
ordering leads to the same account balance. If there is an operation in the set that checks for a negative 
balance and charges a fee, however, then the order in which the operations are applied does matter, so it is 
not commutative.  

      CRDTs   
 The acronym for  conflict-free replicated data types . A collection data structures designed to run on 
systems with weak CAP consistency, often across multiple data centers. They leverage commutativity and 
monotonicity to achieve strong eventual guarantees in a replicated state. Compared to strongly consistent 
structures, CRDTs offer weaker guarantees, additional complexity, and can require additional space. 
However, they remain available for writes during network partitions that would cause strongly consistent 
systems to stop processing.  

      dashboard   
 A graphical way for indicators to report certain processes or services. Mainly used for monitoring critical 
activities.  

      data feed   
 An automated mechanism used to retrieve updates from a source of information. The data source must be 
structured to read data in a generic way.  

      DBMS   
 The acronym for  database management system . A software system used to create and manage databases. It 
provides mechanisms to create, modify, retrieve, and manage databases.  

      determinism   
 In data management, a deterministic operation always has the same result given a particular input and state. 
Determinism is important in replication. A deterministic operation can be applied to two replicas, assuming 
the results will match. Determinism is also useful in log replay. Performing the same set of deterministic 
operations a second time will give the same result.  
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     dimension data 
 Infrequently changing data that expands upon data in fact tables or event records. For example, dimension 
data may include products for sale, current customers, and current salespeople. The record of a particular 
order might reference rows from these tables so as not to duplicate data.  Dimension data   not only saves 
space, but it also allows a product to be renamed and have that new name instantly reflected in all 
open orders. Dimensional schemas also allow the easy filtering, grouping, and labeling of data. In data 
warehousing, a single fact table, a table storing a record of facts or events, combined with many dimension 
tables full of dimension data, is referred to as a  star schema .  

      distributed computing  . 
 A physical and logical model that allows communication between computers distributed across a network. 
Its goal is to keep the computers together as a single computer, thus achieving resource utilization. 
This is a complex issue in the world of computer science.  

     driver 
 In a general sense, a  driver   is a connection between two heterogeneous pieces of hardware or software. 
A driver connects the software of two separate systems and provides an interface that allows 
interaction between them.  

      ETL   
 An acronym for  extract ,  transform ,  load . The traditional sequence by which data is loaded into a database. 
Fast data pipelines may either compress this sequence, or perform analysis on or in response to 
incoming data before it is loaded into the long-term data store.  

     exabyte 
 (EB) Equivalent to 1024^6 bytes.  

      exponential backoff   
 A way to manage contention during failure. During failure, many clients try to reconnect at the same time, 
overloading the recovering system. Exponential backoff is a strategy of exponentially increasing the timeouts 
between retries on failure. If an operation fails, wait one second to retry. If that retry fails, wait two seconds, 
then four seconds, and so forth. This allows simple one-off failures to recover quickly, but for more complex 
failures, there will eventually be a load low enough to successfully recover. Often the growing timeouts are 
capped at some large number to bound recovery times, such as 16 seconds or 32 seconds.  

      failover   
 Also known as  fault tolerance , this is the mechanism by which a system is still operating despite failure.  
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      fast data   
 The processing of streaming data at real-time velocity, enabling instant analysis, awareness, and action. 
Fast data is data in motion, streaming into applications and computing environments from hundreds of 
thousands to millions of endpoints—mobile devices, sensor networks, financial transactions, stock tick 
feeds, logs, retail systems, telco call routing and authorization systems, and more. Systems and applications 
designed to take advantage of fast data enable companies to make real-time, per-event decisions that have 
direct, real-time impact on business interactions and observations. Fast data operationalizes the knowledge 
and insights derived from “big data” and enables developers to design fast data applications that make real-
time, per-event decisions. These decisions may have direct impact on business results through streaming 
analysis of interactions and observations, which enables in-transaction decisions to be made.  

      gossip   
 (Protocol) The protocol that Cassandra uses to maintain communication between nodes that form a cluster. 
Gossip is designed to quickly spread information between nodes and thereby quickly overcome the failures 
that occur, thus achieving the reliability of the data.  

      graph database   
 In the NoSQL world, a type of data storage based on graph theory to manage it. This basically means that 
nodes maintain their relationships through edges; each node has properties and the relationship between 
properties that can work with them.  

      HDSF   
 The acronym for Hadoop Distributed File System. A distributed file system that is scalable and portable. 
Designed to handle large files and used in conjunction TCP/IP and RPC protocols. Originally designed for 
the Hadoop framework, today it is used by a variety of frameworks.  

      HTAP   
 The acronym for Hybrid Transaction Analytical Processing architectures. Enables applications to analyze 
live data as it is created and updated by transaction processing functions. According to the Gartner 2014 
Magic Quadrant, HTAP is described as follows: “…they must use the data from transactions, observations, 
and interactions in real time for decision processing as part of, not separately from, the transactions.” 1   

      IaaS   
 The acronym for  Infrastructure as a Service . Provides the infrastructure of a data center on demand. This 
includes (but not limited to) computing, storage, networking services, etc. The IaaS user is responsible for 
maintaining all software installed.  

   1  Gartner, Inc., “Hybrid Transaction/Analytical Processing Will Foster Opportunities for Dramatic Business Innovation,” 
January 2014,    https://www.gartner.com/doc/2657815/hybrid-transactionanalytical-processing-foster-
opportunities     .  

https://www.gartner.com/doc/2657815/hybrid-transactionanalytical-processing-foster-opportunities
https://www.gartner.com/doc/2657815/hybrid-transactionanalytical-processing-foster-opportunities
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     idempotence 
 An idempotent operation is an operation that has the same effect no matter how many times it is applied. 
See Chapter   9     for a detailed discussion on idempotence, including an example of idempotent processing.  

      IMDG   
 The acronym for  in-memory data grid . A data structure that resides entirely in RAM and is distributed across 
multiple servers. It is designed to store large amounts of data.  

      IoT   
 The acronym for the  Internet of Things . The ability to connect everyday objects with the Internet. These 
objects generally get real-world information through sensors, which take the information to the Internet 
domain.  

      key-value   
 In the NoSQL world, a paradigm for managing data using associative arrays; certain data related to a key. 
The key is the medium of access to the value to update or delete it.  

      keyspace   
 In Apache Cassandra, a keyspace is a logical grouping of column families. Given the similarities between 
Cassandra and an RDBMS, think of a keyspace as a database.  

      latency   
 (Net) The time interval that occurs between the source (send) and the destination (receive). Communication 
networks require physical devices, which generate the physical reasons for this “delay.”  

      master-slave   
 A communication model that allows multiple nodes (slaves) to maintain the data dependency or processes 
of a master node (master). Usually, this communication requires that slaves have a driver installed to 
communicate with the master.  

      metadata   
 Data that describes other data. Metadata summarizes basic information about data, which make finding and 
working with particular instances of data easier.  
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      NoSQL   
 Data management systems that (unlike RDBMS systems) do not use scheme, have non-relational data, and 
are "cluster friendly," and therefore are not as strict when managing data. This allows better performance.  

      operational analytics   
 (Another term for operational BI). The process of developing optimal or realistic recommendations for 
real-time, operational decisions based on insights derived through the application of statistical models and 
analysis against existing and/or simulated future data, and applying these recommendations to real-time 
interactions. Operational database management systems (also referred to as OLTP, or  online transaction 
processing  databases) are used to manage dynamic data in real time. These types of databases allow you to 
do more than simply view archived data; they allow you to modify that data (add, change, or delete) in real 
time.  

      RDBMS   
 The acronym for  relational database management system . A particular type of DBMS that is based on the 
relational model. It is currently the most widely used model in production environments.  

      real-time analytics   
 An overloaded term. Depending on context, “real time” means different things. For example, in many 
OLAP use cases, “real time” can mean minutes or hours; in fast data use cases, it may mean milliseconds. 
In one sense, “real time” implies that analytics can be computed while a human waits. That is, answers 
can be computed while a human waits for a web dashboard or a report to compute and redraw. “Real 
time” also may imply that analytics can be done in time to take some immediate action. For example, 
when someone uses too much of their mobile data plan allowance, a real-time analytics system notices 
this and triggers a text message to be sent to that user. Finally, “real time” may imply that analytics can 
be computed in time for a machine to take action. This kind of real time is popular in fraud detection 
or policy enforcement. The analysis is done between the time a credit or debit card is swiped and the 
transaction is approved.  

      replication   
 (Data) The mechanism for sharing information with the aim of creating redundancy between different 
components. In a cluster, data replication is used to maintain consistent information.  

      PaaS   
 The acronym for  Platform as a Service . Offers integration with other systems or development platforms, 
which provides a reduction in development time.  
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      probabilistic data structures   
 Probabilistic data structures are data structures that have a probabilistic component. In other words, there is 
a statistically bounded probability for correctness (as in Bloom filters). In many probabilistic data structures, 
the access time or storage can be an order of magnitude smaller than an equivalent non-probabilistic data 
structure. The price for this savings is the chance that a given value may be incorrect, or it may be impossible 
to determine the exact shape or size of a given data structure. However, in many cases, these inconsistencies 
are either allowable or can trigger a broader, slower search on a complete data structure. This hybrid 
approach allows many of the benefits of using probability, and also can ensure correctness of values.  

      SaaS   
 The acronym for Software as a Service. Allows the use of hosted cloud applications. These applications 
are typically accessed through a web browser. Its main advantages are to reduce initial cost and to reduce 
maintenance costs. It allows a company to focus on their business and not on hardware and software issues.  

      scalability   
 A system property to stably adapt to continued growth; that is, without interfering with the availability and 
quality of the services or tasks offered.  

      shared nothing   
 A distributed computing architecture in which each node is independent and self-sufficient. There is no single 
point of contention across the system. More specifically, none of the nodes share memory or disk storage.  

      Spark-Cassandra Connector   
 A connector that allows an execution context Spark and to access an existing keyspace on a Cassandra 
server.  

      streaming analytics   
 Streaming analytics platforms can filter, aggregate, enrich, and analyze high-throughput data from multiple 
disparate live data sources and in any data format to identify simple and complex patterns to visualize 
business in real time, detect urgent situations, and automate immediate actions. Streaming operators 
include Filter, Aggregate, Geo, Time windows, temporal patterns, and Enrich.  

      synchronization   
 Data synchronization. In a cluster that consists of multiple nodes, you must keep data synchronized to 
achieve availability and reliability.  

      unstructured data   
 Any information that is not generated from a model or scheme or is not organized in a predefined manner.      
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