

	
				

Convolutional	Neural	Networks	in	
Python

	
	
				
Master	Data	Science	and	Machine	Learning	with	Modern	

Deep	Learning	in	Python,	Theano,	and	TensorFlow

	
	
				

By:	The	LazyProgrammer	(http://lazyprogrammer.me)

	
	
				
	

	
		

http://lazyprogrammer.me

	
				
Introduction

	
	
				
Chapter	1:	Review	of	Feedforward	Neural	Networks

	
	
				
Chapter	2:	Convolution

	
	
				
Chapter	3:	The	Convolutional	Neural	Network

	
	
				
Chapter	4:	Sample	Code	in	Theano

	
	
				
Chapter	5:	Sample	Code	in	TensorFlow

	
	
				
Conclusion

	

	
	
				
	

	
	
				
	

	
		

	
Introduction
	
	

	
This	 is	 the	3rd	part	 in	my	Data	Science	and	Machine	Learning	series	on	Deep
Learning	in	Python.	At	this	point,	you	already	know	a	lot	about	neural	networks
and	deep	learning,	including	not	just	the	basics	like	backpropagation,	but	how	to
improve	it	using	modern	techniques	like	momentum	and	adaptive	learning	rates.
You've	 already	written	 deep	 neural	 networks	 in	 Theano	 and	 TensorFlow,	 and
you	know	how	to	run	code	using	the	GPU.
	
	
	
This	 book	 is	 all	 about	 how	 to	 use	 deep	 learning	 for	 computer	 vision	 using
convolutional	neural	networks.	These	are	 the	 state	of	 the	 art	when	 it	 comes	 to
image	classification	and	they	beat	vanilla	deep	networks	at	tasks	like	MNIST.
	
	
	
In	 this	 course	we	 are	 going	 to	 up	 the	 ante	 and	 look	 at	 the	 StreetView	House
Number	(SVHN)	dataset	-	which	uses	larger	color	images	at	various	angles	-	so
things	 are	 going	 to	 get	 tougher	 both	 computationally	 and	 in	 terms	 of	 the
difficulty	of	 the	classification	 task.	But	we	will	show	that	convolutional	neural
networks,	or	CNNs,	are	capable	of	handling	the	challenge!
	
	
	
Because	convolution	is	such	a	central	part	of	this	type	of	neural	network,	we	are
going	 to	 go	 in-depth	 on	 this	 topic.	 It	 has	 more	 applications	 than	 you	 might
imagine,	such	as	modeling	artificial	organs	 like	 the	pancreas	and	the	heart.	 I'm
going	 to	 show	 you	 how	 to	 build	 convolutional	 filters	 that	 can	 be	 applied	 to
audio,	 like	 the	echo	effect,	 and	 I'm	going	 to	 show	you	how	 to	build	 filters	 for
image	effects,	like	the	Gaussian	blur	and	edge	detection.

	
	
	
After	 describing	 the	 architecture	 of	 a	 convolutional	 neural	 network,	 we	 will
jump	 straight	 into	 code,	 and	 I	 will	 show	 you	 how	 to	 extend	 the	 deep	 neural
networks	 we	 built	 last	 time	 with	 just	 a	 few	 new	 functions	 to	 turn	 them	 into
CNNs.	We	will	then	test	their	performance	and	show	how	convolutional	neural
networks	written	 in	both	Theano	and	TensorFlow	can	outperform	the	accuracy
of	a	plain	neural	network	on	the	StreetView	House	Number	dataset.
	
	
	
All	 the	 materials	 used	 in	 this	 book	 are	 FREE.	 You	 can	 download	 and	 install
Python,	Numpy,	Scipy,	Theano,	and	TensorFlow	with	pip	or	easy_install.
	
	
	
Lastly,	my	goal	 is	 to	show	you	that	convolutional	networks	aren’t	magical	and
they	don’t	require	expert-level	math	to	figure	out.
	
	
	
It’s	just	the	same	thing	we	had	with	regular	neural	networks:
	
	
	
y	=	softmax(relu(X.dot(W1).dot(W2))
	
	
	
Except	we	replace	the	first	“dot	product”	with	a	convolution:
	

	
	
y	=	softmax(relu(conv(X,	W1)).dot(W2))
	
	
	
The	way	 they	are	 trained	 is	 exactly	 the	 same	as	before,	 so	all	your	 skills	with
backpropagation,	etc.	carry	over.
	
	

	
	

	
	

	
Chapter	1:	Review	of	Feedforward	Neural	Networks
	
	

	
In	this	lecture	we	are	going	to	review	some	important	background	material	that
is	 needed	 in	 order	 to	 understand	 the	material	 in	 this	 course.	 I’m	 not	 going	 to
cover	the	material	in	depth	here	but	rather	just	explain	what	it	is	that	you	need	to
know.
	
	
	
Train	and	Predict
	
	
	
You	should	know	that	the	basic	API	that	we	can	use	for	all	supervised	learning
problems	 is	 fit(X,Y)	 or	 train(X,Y)	 function,	 which	 takes	 in	 some	 data	 X	 and
labels	Y,	and	a	predict(X)	function	which	just	takes	in	some	data	X	and	makes	a
prediction	that	we	will	try	to	make	close	to	the	corresponding	Y.
	
	
	
Predict
	
	
	
We	 know	 that	 for	 neural	 networks	 the	 predict	 function	 is	 also	 called	 the
feedforward	action,	and	this	 is	simply	the	dot	product	and	a	nonlinear	function
on	each	layer	of	the	neural	network.
	
	
	

	
e.g.	z1	=	s(w0x),	z2	=	s(w1z1),	z3	=	s(w2z2),	y	=	s(w3z3)
	
	
	
We	know	that	the	nonlinearities	we	usually	use	in	the	hidden	layers	is	usually	a
relu,	sigmoid,	or	tanh.
	
	
	
We	know	that	 the	output	 is	a	sigmoid	for	binary	classification	and	softmax	for
classification	with	>=	2	classes.
	
	
	
Train
	
	
	
We	 know	 that	 training	 a	 neural	 network	 simply	 is	 the	 application	 of	 gradient
descent,	 which	 is	 the	 same	 thing	 we	 use	 for	 logistic	 regression	 and	 linear
regression	 when	 we	 don’t	 have	 a	 closed-form	 solution.	 We	 know	 that	 linear
regression	has	a	closed	form	solution	but	we	don’t	necessarily	have	to	use	it,	and
that	gradient	descent	is	a	more	general	numerical	optimization	method.
	
	
	
W	←	W	-	learning_rate	*	dJ/dW
	
	
	
We	know	that	 libraries	 like	Theano	and	TensorFlow	will	calculate	 the	gradient
for	 us,	 which	 can	 get	 very	 complicated	 the	 more	 layers	 there	 are.	 You’ll	 be

thankful	 for	 this	 feature	 of	 neural	 networks	 when	 you	 see	 that	 the	 output
function	 becomes	 even	 more	 complex	 when	 we	 incorporate	 convolution
(although	 the	 derivation	 is	 still	 do-able	 and	 I	 would	 recommend	 trying	 for
practice).
	
	
	
At	this	point	you	should	be	familiar	with	how	the	cost	function	J	is	derived	from
the	likelihood	and	how	we	might	not	calculate	J	over	the	entire	training	data	set
but	rather	in	batches	to	improve	training	time.
	
	
	
If	 you	 want	 to	 learn	more	 about	 backpropagation	 and	 gradient	 descent	 you’ll
want	 to	 check	 out	my	 first	 course	 on	 deep	 learning,	Deep	Learning	 in	Python
part	1,	which	you	can	 find	at	https://udemy.com/data-science-deep-learning-in-
python
	
	
	
Data	Preprocessing
	
	
	
When	we	work	with	 images	 you	 know	 that	 an	 image	 is	 really	 a	 2-D	 array	 of
data,	and	that	if	we	have	a	color	image	we	have	a	3-D	array	of	data	where	one
extra	dimension	is	for	the	red,	green,	and	blue	channels.
	
	
	
In	the	past,	we’ve	flattened	this	array	into	a	vector,	which	is	the	usual	input	into
a	neural	network,	so	for	example	a	28	x	28	image	becomes	a	784	vector,	and	a	3
x	32	x	32	image	becomes	a	3072	dimensional	vector.
	

https://udemy.com/data-science-deep-learning-in-python

	
	
	
In	 this	 book,	we	 are	 going	 to	 keep	 the	 dimensions	 of	 the	 original	 image	 for	 a
portion	of	the	processing.
	
	
	
Where	to	get	the	data	used	in	this	book
	
	
	
This	 book	will	 use	 the	MNIST	 dataset	 (handwritten	 digits)	 and	 the	 streetview
house	number	(SVHN)	dataset.
	
	
	
The	 streetview	 house	 number	 dataset	 is	 a	 much	 harder	 problem	 than	MNIST
since	the	images	are	in	color,	the	digits	can	be	at	an	angle	and	in	different	styles
or	fonts,	and	the	dimensionality	is	much	larger.
	
	
	
To	get	the	code	we	use	in	this	book	you’ll	want	to	go	to:
	
	
	
https://github.com/lazyprogrammer/machine_learning_examples
	
	
	
And	look	in	the	folder:	cnn_class
	

https://github.com/lazyprogrammer/machine_learning_examples

	
	
	
If	 you’ve	 already	 checked	 out	 this	 repo	 then	 simply	 do	 a	 “git	 pull”	 since	 this
code	will	be	on	the	master	branch.
	
	
	
I	would	highly	recommend	NOT	just	running	this	code	but	using	it	as	a	backup
if	yours	doesn’t	work,	and	try	to	follow	along	with	the	code	examples	by	typing
them	out	yourself	to	build	muscle	memory.
	
	
	
Once	 you	 have	 the	 machine_learning_examples	 repo	 you’ll	 want	 to	 create	 a
folder	adjacent	 to	 the	cnn_class	 folder	called	 large_files	 if	you	haven’t	already
done	that	for	a	previous	class.
	
	
	
That	is	where	we	will	expect	all	the	data	to	reside.
	
	
	
To	 get	 the	MNIST	 data,	 you’ll	 want	 to	 go	 to	 https://www.kaggle.com/c/digit-
recognizer
	
	
	
I	think	it’s	pretty	straightforward	to	download	at	that	point.	We’re	only	going	to
use	the	train.csv	file	since	that’s	the	one	with	labels.	You	are	more	than	welcome
to	attempt	the	challenge	and	submit	a	solution	using	the	techniques	you	learn	in
this	class.
	

https://www.kaggle.com/c/digit-recognizer

	
	
	
You	 can	 get	 the	 streetview	 house	 number	 data	 from
http://ufldl.stanford.edu/housenumbers/
	
	
	
You’ll	want	to	get	the	files	under	“format	2”,	which	are	the	cropped	digits.
	
	
	
Note	 that	 these	are	MATLAB	binary	data	 files,	 so	we’ll	need	 to	use	 the	Scipy
library	 to	 load	 them,	which	I’m	sure	you	have	heard	of	 if	you’re	 familiar	with
the	Numpy	stack.
	
	
	
				
	

	

http://ufldl.stanford.edu/housenumbers/

	
Chapter	2:	Convolution
	
	

	
In	this	chapter	I’m	going	to	give	you	guys	a	crash	course	in	convolution.	If	you
really	 want	 to	 dig	 deep	 on	 this	 topic	 you’ll	 want	 to	 take	 a	 course	 on	 signal
processing	or	linear	systems.
	
	
	
So	what	is	convolution?
	
	
	
Think	 of	 your	 favorite	 audio	 effect	 (suppose	 that’s	 the	 “echo”).	 An	 echo	 is
simply	the	same	sound	bouncing	back	at	you	in	the	future,	but	with	less	volume.
We’ll	see	how	we	can	do	that	mathematically	later.
	
	
	
All	effects	can	be	thought	of	as	filters,	like	the	one	I’ve	shown	here,	and	they	are
often	 drawn	 in	 block	 diagrams.	 In	 machine	 learning	 and	 statistics	 these	 are
sometimes	called	kernels.

x(t)--->|	h(t)	|--->y(t)	--------
	

	
	
	
I’m	representing	our	audio	signal	by	this	triangle.	Remember	that	we	want	to	do
2	things,	we	want	to	hear	this	audio	signal	in	the	future,	which	is	basically	a	shift
in	 to	 the	 right,	 and	 this	 audio	 signal	 should	 be	 lower	 in	 amplitude	 than	 the
original.
	
	
	
The	last	operation	is	to	sum	them	all	together.
	

	
	
	
Notice	that	the	width	of	the	signal	stays	the	same,	because	it	hasn’t	gotten	longer
or	shorter,	which	would	change	the	pitch.
	
	
	
So	how	can	we	do	this	in	math?	Well	we	can	represent	the	amplitude	changes	by
weights	called	w.	And	for	this	particular	echo	filter	we	just	make	sure	that	each

weight	is	less	than	the	last.
	
	
	
e.g.	y(t)	=	x(t)	+	0.5x(t	-	delay)	+	0.2x(t	-	2*delay)	+	0.1x(t	-	3*delay)	+	…
	
	
	
For	 any	 general	 filter,	 there	 wouldn’t	 be	 this	 restriction	 on	 the	 weights.	 The
weights	themselves	would	define	the	filter.
	
	
	
And	we	can	write	the	operation	as	a	summation.
	
	
	
y(n)	=	sum[m=-inf..+inf]{	h(m)x(n	-	m)	}
	
	
	
So	 now	 here	 is	what	we	 consider	 the	 “definition”	 of	 convolution.	We	 usually
represent	it	by	an	asterisk	(e.g.	y(n)	=	x(n)	*	h(n)).	We	can	do	it	for	a	continuous
independent	variable	(where	it	would	involve	an	integral	instead	of	a	sum)	or	a
discrete	independent	variable.
	
	
	
You	can	think	of	it	as	we	are	“sliding”	the	filter	across	the	signal,	by	changing
the	value	of	m.
	
	
	

	
I	want	to	emphasize	that	it	doesn’t	matter	if	we	slide	the	filter	across	the	signal,
or	 if	 we	 slide	 the	 signal	 across	 the	 filter,	 since	 they	 would	 give	 us	 the	 same
result.
	
	
	
There	are	some	very	practical	applications	of	this	signal	processing	technique.
	
	
	
One	of	my	 favorite	 examples	 is	 that	we	can	build	artificial	organs.	Remember
that	the	organ’s	function	is	to	regulate	certain	parameters	in	your	body.
	
	
	
So	 to	 replace	 an	 organ,	we	would	 need	 to	 build	 a	machine	 that	 could	 exactly
match	 the	 response	of	 that	 organ.	 In	other	words,	 for	 all	 the	 input	parameters,
like	blood	glucose	level,	we	need	to	output	 the	same	parameters	 that	 the	organ
does,	like	how	much	insulin	to	produce.
	
	
	
So	for	every	input	X	we	need	to	output	an	accurate	Y.
	
	
	
In	fact,	that	sounds	a	lot	like	machine	learning,	doesn’t	it!
	
	
	
Since	 we’ll	 be	 working	 with	 images,	 we	 need	 to	 talk	 about	 2-dimensional
convolution,	since	images	are	2-dimensional	signals.
	

	
	
	
y(m,n)	=	sum[i=-inf..+inf]{	sum[j=-inf..+inf]{	h(i,j)x(m-i,n-j)	}	}
	
	
	
You	 can	 see	 from	 this	 formula	 that	 this	 just	 does	 both	 convolutions
independently	in	each	direction.	I’ve	got	some	pseudocode	here	to	demonstrate
how	you	might	write	this	in	code,	but	notice	there’s	a	problem.	If	i	>	n	or	j	>	m,
we’ll	go	out	of	bounds.
	
	
	
def	convolve(x,	w):
	
y	=	np.zeros(x.shape)
	
for	n	in	xrange(x.shape[0]):
	
for	m	in	xrange(x.shape[1]):
	
for	i	in	xrange(w.shape[0]):
	
for	j	in	xrange(w.shape[1]):
	
y[n,m]	+=	w[i,j]*x[n-i,m-j]
	
	
	
What	that	tells	us	is	that	the	shape	of	Y	is	actually	BIGGER	than	X.	Sometimes
we	just	ignore	these	extra	parts	and	consider	Y	to	be	the	same	size	as	X.	You’ll

see	when	we	do	this	in	Theano	and	TensorFlow	how	we	can	control	the	method
in	which	the	size	of	the	output	is	determined.
	
	
	
Gaussian	Blur
	
	
	
If	you’ve	ever	done	image	editing	with	applications	like	Photoshop	or	GIMP	you
are	probably	familiar	with	the	blur	filter.	Sometimes	it’s	called	a	Gaussian	blur,
and	you’ll	see	why	in	a	minute.
	
	
	
If	you	 just	want	 to	 see	 the	code	 that’s	 already	been	written,	 check	out	 the	 file
https://github.com/lazyprogrammer/machine_learning_examples/blob/master/cnn_class/blur.py
from	Github.
	
	
	
The	idea	is	the	same	as	we	did	with	the	sound	echo.	We’re	going	to	take	a	signal
and	spread	it	out.
	
	
	
But	this	time	instead	of	having	predefined	delays	we	are	going	to	spread	out	the
signal	in	the	shape	of	a	2-dimensional	Gaussian.
	
	
	
Here	is	the	definition	of	the	filter:
	

https://github.com/lazyprogrammer/machine_learning_examples/blob/master/cnn_class/blur.py

	
W	=	np.zeros((20,	20))
	
for	i	in	xrange(20):
	
for	j	in	xrange(20):
	
dist	=	(i	-	9.5)**2	+	(j	-	9.5)**2
	
W[i,	j]	=	np.exp(-dist	/	50.)
	
	
	
The	filter	itself	looks	like	this:
	

	
	
	
	
	
	
	
And	this	is	the	result	on	the	famous	Lena	image:
	

	

	
	
	
	
	
	
	
The	full	code
	
	
	
import	numpy	as	np
	
from	scipy.signal	import	convolve2d	import	matplotlib.pyplot	as	plt	import
matplotlib.image	as	mpimg
	
#	load	the	famous	Lena	image
	

	
img	=	mpimg.imread('lena.png')
	
#	what	does	it	look	like?
	
plt.imshow(img)
	
plt.show()
	
	
	
#	make	it	B&W
	
bw	=	img.mean(axis=2)
	
plt.imshow(bw,	cmap='gray')
	
plt.show()
	
	
	
#	create	a	Gaussian	filter
	
W	=	np.zeros((20,	20))
	
for	i	in	xrange(20):
	
for	j	in	xrange(20):
	
dist	=	(i	-	9.5)**2	+	(j	-	9.5)**2
	
W[i,	j]	=	np.exp(-dist	/	50.)

	
	
	
#	let's	see	what	the	filter	looks	like	plt.imshow(W,	cmap='gray')
	
plt.show()
	
	
	
#	now	the	convolution
	
out	=	convolve2d(bw,	W)
	
plt.imshow(out,	cmap='gray')
	
plt.show()
	
	
	
#	what's	that	weird	black	stuff	on	the	edges?	let's	check	the	size	of	output	print
out.shape
	
#	after	convolution,	the	output	signal	is	N1	+	N2	-	1
	
	
	
	
	
#	we	can	also	just	make	the	output	the	same	size	as	the	input	out	=
convolve2d(bw,	W,	mode='same')	plt.imshow(out,	cmap='gray')
	
plt.show()

plt.show()
	
print	out.shape
	
	
	
	
	
Edge	Detection
	
	
	
Edge	 detection	 is	 another	 important	 operation	 in	 computer	 vision.	 If	 you	 just
want	 to	 see	 the	 code	 that’s	 already	 been	 written,	 check	 out	 the	 file
https://github.com/lazyprogrammer/machine_learning_examples/blob/master/cnn_class/edge.py
from	Github.
	
	
	
Now	I’m	going	 to	 introduce	 the	Sobel	operator.	The	Sobel	operator	 is	defined
for	2	directions,	X	and	Y,	and	they	approximate	the	gradient	at	each	point	of	the
image.	Let’s	call	them	Hx	and	Hy.
	
	
	
Hx	=	np.array([
	
[-1,	0,	1],
	
[-2,	0,	2],
	
[-1,	0,	1],
	
],	dtype=np.float32)

https://github.com/lazyprogrammer/machine_learning_examples/blob/master/cnn_class/edge.py

],	dtype=np.float32)
	
	
	
Hy	=	np.array([
	
[-1,	-2,	-1],
	
[0,	0,	0],
	
[1,	2,	1],
	
],	dtype=np.float32)
	
	
	
Now	let’s	do	convolutions	on	these.	So	Gx	is	the	convolution	between	the	image
and	Hx.	Gy	is	the	convolution	between	the	image	and	Hy.
	

	
	
	
	
	
You	 can	 think	 of	 Gx	 and	Gy	 as	 sort	 of	 like	 vectors,	 so	 we	 can	 calculate	 the
magnitude	 and	 direction.	 So	 G	 =	 sqrt(Gx^2	 +	 Gy^2).	 We	 can	 see	 that	 after
applying	both	operators	what	we	get	out	is	all	the	edges	detected.
	
	
	
The	full	code
	
	
	
import	numpy	as	np
	
from	scipy.signal	import	convolve2d	import	matplotlib.pyplot	as	plt	import
matplotlib.image	as	mpimg

matplotlib.image	as	mpimg
	
#	load	the	famous	Lena	image
	
img	=	mpimg.imread('lena.png')
	
#	make	it	B&W
	
bw	=	img.mean(axis=2)
	
	
	
#	Sobel	operator	-	approximate	gradient	in	X	dir	Hx	=	np.array([
	
[-1,	0,	1],
	
[-2,	0,	2],
	
[-1,	0,	1],
	
],	dtype=np.float32)
	
	
	
#	Sobel	operator	-	approximate	gradient	in	Y	dir	Hy	=	np.array([
	
[-1,	-2,	-1],
	
[0,	0,	0],
	
[1,	2,	1],
	
],	dtype=np.float32)

],	dtype=np.float32)
	
	
	
Gx	=	convolve2d(bw,	Hx)
	
plt.imshow(Gx,	cmap='gray')
	
plt.show()
	
	
	
Gy	=	convolve2d(bw,	Hy)
	
plt.imshow(Gy,	cmap='gray')
	
plt.show()
	
	
	
#	Gradient	magnitude
	
G	=	np.sqrt(Gx*Gx	+	Gy*Gy)
	
plt.imshow(G,	cmap='gray')
	
plt.show()
	
	
	
	
	

	
	
	
The	Takeaway
	
	
	
So	what	is	the	takeaway	from	all	these	examples	of	convolution?	Now	you	know
that	there	are	SOME	filters	that	help	us	detect	features	-	so	perhaps,	it	would	be
possible	to	just	do	a	convolution	in	the	neural	network	and	use	gradient	descent
to	find	the	best	filter.
	
	

	
Chapter	3:	The	Convolutional	Neural	Network
	
	

	
All	of	the	networks	we’ve	seen	so	far	have	one	thing	in	common:	all	the	nodes	in
one	layer	are	connected	to	all	the	nodes	in	the	next	layer.	This	is	the	“standard”
feedforward	 neural	 network.	With	 convolutional	 neural	 networks	 you	will	 see
how	that	changes.
	
	
	
Note	 that	 most	 of	 this	 material	 is	 inspired	 by	 LeCun,	 1998	 (Gradient-based
learning	applied	to	document	recognition),	specifically	the	LeNet	model.
	
	
	
Why	do	convolution?
	
	
	
Remember	that	you	can	think	of	convolution	as	a	“sliding	window”	or	a	“sliding
filter”.	So,	if	we	are	looking	for	a	feature	in	an	image,	let’s	say	for	argument’s
sake,	a	dog,	then	it	doesn’t	matter	if	the	dog	is	in	the	top	right	corner,	or	in	the
bottom	left	corner.
	
	
	
Our	 system	 should	 still	 be	 able	 to	 recognize	 that	 there	 is	 a	 dog	 in	 there
somewhere.
	
	
	

	
We	call	this	“translational	invariance”.
	
	
	
Question	to	think	about:	How	can	we	ensure	the	neural	network	has	“rotational
invariance?”	What	other	kinds	of	invariances	can	you	think	of?
	
	
	
Downsampling
	
	
	
Another	important	operation	we’ll	need	before	we	build	the	convolutional	neural
network	is	downsampling.	So	remember	our	audio	sample	where	we	did	an	echo
-	 that	 was	 a	 16kHz	 sample.	 Why	 16kHz?	 Because	 this	 is	 adequate	 for
representing	voices.
	
	
	
The	 telephone	has	a	 sampling	 rate	of	8kHz	 -	 that’s	why	voices	 sound	muffled
over	the	phone.
	
	
	
For	images,	we	just	want	to	know	if	after	we	did	the	convolution,	was	a	feature
present	 in	 a	 certain	 area	 of	 the	 image.	We	 can	 do	 that	 by	 downsampling	 the
image,	or	in	other	words,	changing	its	resolution.
	
	
	
So	for	example,	we	would	downsample	an	image	by	converting	it	from	32x32	to

16x16,	 and	 that	 would	 mean	 we	 downsampled	 by	 a	 factor	 of	 2	 in	 both	 the
horizontal	and	vertical	direction.
	
	
	
There	are	a	couple	of	ways	of	doing	this:	one	is	called	maxpooling,	which	means
we	 take	 a	 2x2	 or	 3x3	 (or	 any	 other	 size)	 block	 and	 just	 output	 the	maximum
value	in	that	block.
	
	
	
Another	way	is	average	pooling	-	 this	means	taking	the	average	value	over	the
block.	We	will	just	use	maxpooling	in	our	code.
	
	
	
Theano	has	a	function	for	this:	theano.tensor.signal.downsample.max_pool_2d
	
	
	
The	simplest	CNN
	
	
	
The	simplest	convolutional	net	is	just	the	kind	I	showed	you	in	the	introduction
to	this	book.	It	does	not	even	need	to	incorporate	downsampling.
	
	
	
Just	compute	the	hidden	layer	as	follows:
	
	
	

	
Z	=	conv(X,	W1)
	
Y	=	softmax(Z.dot(W2))
	
	
	
As	stated	previously,	you	could	then	train	this	simply	by	doing	gradient	descent.
	
	
	
Exercise:	Try	this	on	MNIST.	How	well	does	it	perform?	Better	or	worse	than	a
fully-connected	MLP?
	
	
	
The	LeNet	architecture
	
	
	
Now	we	 are	 finally	 at	 the	 point	 where	 I	 can	 describe	 the	 layout	 of	 a	 typical
convolutional	neural	network,	specifically	the	LeNet	flavor.
	
	
	
You	will	see	that	it	is	just	a	matter	of	joining	up	the	operations	we	have	already
discussed.
	
	
	
So	in	the	first	layer,	you	take	the	image,	and	keep	all	the	colors	and	the	original
shape,	meaning	you	don’t	flatten	it.	(i.e.	it	remains	(3	x	W	x	H))
	

	
	
	
Then	you	perform	convolution	on	it.
	
	
	
Next	you	do	maxpooling	to	reduce	the	size	of	the	features.
	
	
	
Then	you	do	another	convolution	and	another	maxpooling.
	
	
	
Finally,	you	flatten	these	features	into	a	vector	and	you	put	it	into	a	regular,	fully
connected	neural	network	like	the	ones	we’ve	been	talking	about.
	
	
	
Schematically	it	would	look	like	this:
	
	
	

	
	
	

	
	
The	basic	pattern	is:
	
convolution	 pool	 convolution	 pool	 fully	 connected	 hidden	 layer	 /	 logistic
regression
	
	
	
Note	 that	 you	 can	 have	 arbitrarily	many	 convolution	 +	 pool	 layers,	 and	more
fully	connected	layers.
	
	
	
Some	networks	have	only	convolution.	The	design	is	up	to	you.
	
	
	
Technicalities
	
	
	
4-D	 tensor	 inputs:	The	dimension	of	 the	 inputs	 is	 a	4-D	 tensor,	 and	 it’s	pretty
easy	to	see	why.	The	image	already	takes	up	3	dimensions,	since	we	have	height,
width,	and	color.	The	4th	dimension	is	just	the	number	of	samples	(i.e.	for	batch
training).
	
	
	
4-D	tensor	filters	/	kernels:	You	might	be	surprised	to	learn	that	the	kernels	are
ALSO	 4-D	 tensors.	 Now	 why	 is	 this?	 Well	 in	 the	 LeNet	 model,	 you	 have
multiple	kernels	per	image	and	a	different	set	of	kernels	for	each	color	channel.
The	next	layer	after	the	convolution	is	called	a	feature	map.	This	feature	map	is

the	 same	 size	 as	 the	 number	 of	 kernels.	 So	 basically	 you	 can	 think	 of	 this	 as,
each	 kernel	will	 extract	 a	 different	 feature,	 and	 place	 it	 onto	 the	 feature	map.
Example:
	
	
	
Input	image	size:	(3,	32,	32)
	
First	kernel	size:	(3,	M1,	5,	5)
	
	
	
Note	 that	 the	order	 in	which	 the	dimensions	appear	 is	 somewhat	arbitrary.	For
example,	the	data	from	the	MATLAB	files	has	N	as	the	last	dimension,	whereas
Theano	expects	it	to	be	in	the	first	dimension.
	
	
	
We’ll	 see	 that	 in	 TensorFlow	 the	 dimensions	 of	 the	 kernels	 are	 going	 to	 be
different	from	Theano.
	
	
	
Another	thing	to	note	is	that	the	shapes	of	our	filters	are	usually	MUCH	smaller
than	 the	 image	 itself.	What	 this	means	 is	 that	 the	 same	 tiny	 filter	 gets	 applied
across	the	entire	image.	This	is	the	idea	of	weight	sharing.
	
	
	
By	sharing	this	weight	we’re	introducing	less	parameters	into	the	model,	and	this
is	 going	 to	 help	 us	 generalize	 better,	 since	 as	 you	 know	 from	 my	 previous
courses,	when	you	have	TOO	many	parameters,	you’ll	end	up	overfitting.
	

	
	
You	can	think	of	this	as	a	method	of	generalization.
	
	
	
In	 the	 schematic	above,	we	assume	a	pooling	 size	of	 (2,	2),	which	 is	what	we
will	also	use	in	the	code.	This	fits	our	data	nicely	because	both	28	(MNIST)	and
32	(SVHN)	can	be	divided	by	2	twice	evenly.
	
	
	
Training	a	CNN
	
	
	
Now	this	is	the	cool	part.
	
	
	
It’s	 ridiculous	 how	 many	 people	 take	 my	 courses	 or	 read	 my	 books	 and	 ask
things	like,	“But,	but,	…	what	about	X	modern	technique?”
	
	
	
Well,	here’s	how	you	train	a	CNN:
	
	
	
W	<—	W	-	learning_rate	*	dJ/dW
	
	
	

	
Look	familiar?
	
	
	
That’s	because	it’s	the	same	“backpropagation”	(gradient	descent)	equation	from
plain	neural	networks!
	
	
	
People	think	there	is	some	kind	of	sorcery	or	well-kept	secret	behind	all	of	this
that	is	going	to	take	years	and	years	of	effort	for	them	to	figure	out.
	
	
	
People	have	been	using	convolution	since	 the	1700s.	LeCun	himself	published
his	paper	in	1998.
	
	
	
Researchers	 conjure	 up	 new	ways	 to	 hack	 together	 neural	 networks	 everyday.
The	ones	that	become	popular	are	the	ones	that	perform	well.
	
	
	
You	can	imagine,	however,	with	so	many	researchers	researching	there	is	bound
to	be	someone	who	does	better	than	the	others.
	
	
	
You	too,	can	be	a	deep	learning	researcher.	Just	try	different	things.	Be	creative.
Use	backprop.	Easy,	right?
	

	
	
	
Remember,	in	Theano,	it’s	just:
	
	
	
param	=	param	-	learning_rate	*	T.grad(cost,	param)
	
	

	
		

	
	
	
				
	

	

	
Chapter	4:	Sample	Code	in	Theano
	
	

	
In	 this	 chapter	 we	 are	 going	 to	 look	 at	 the	 components	 of	 the	 Theano
convolutional	 neural	 network.	 This	 code	 can	 also	 be	 found	 at
https://github.com/lazyprogrammer/machine_learning_examples/blob/master/cnn_class/cnn_theano.py
	
	
	
So	the	first	thing	you	might	be	wondering	after	learning	about	convolution	and
downsampling	 is	 -	 does	 Theano	 have	 functions	 for	 these?	 And	 of	 course	 the
answer	is	yes.
	
	
	
In	the	LeNet	we	always	do	the	convolution	followed	by	pooling,	so	we	just	call
it	convpool.
	
	
	
def	convpool(X,	W,	b,	poolsize=(2,	2)):	conv_out	=	conv2d(input=X,	filters=W)
pooled_out	=	downsample.max_pool_2d(
	
input=conv_out,
	
ds=poolsize,
	
ignore_border=True
	
)
	

https://github.com/lazyprogrammer/machine_learning_examples/blob/master/cnn_class/cnn_theano.py

	
return	relu(pooled_out	+	b.dimshuffle('x',	0,	'x',	'x'))
	
Notice	that	max	pool	requires	some	additional	parameters.
	
	
	
The	 last	 step	 where	 we	 call	 the	 function	 dimshuffle()	 on	 the	 bias	 does	 a
broadcasting	since	b	is	a	1-D	vector	and	after	the	conv_pool	operation	you	get	a
4-D	tensor.	You’ll	see	that	TensorFlow	has	a	function	that	encapsulates	this	for
us.
	
	
	
The	next	component	 is	 the	rearranging	of	 the	 input.	Remember	 that	MATLAB
does	 things	 a	 bit	 weirdly	 and	 puts	 the	 index	 to	 each	 sample	 in	 the	 LAST
dimension,	but	Theano	expects	it	to	be	in	the	FIRST	dimension.	It	also	happens
to	 expect	 the	 color	 dimension	 to	 come	 next.	 So	 that	 is	what	 this	 code	 here	 is
doing.
	
	
	
def	rearrange(X):
	
#	input	is	(32,	32,	3,	N)
	
#	output	is	(N,	3,	32,	32)
	
N	=	X.shape[-1]
	
out	=	np.zeros((N,	3,	32,	32),	dtype=np.float32)	for	i	in	xrange(N):
	
for	j	in	xrange(3):
	

	
out[i,	j,	:,	:]	=	X[:,	:,	j,	i]
	
return	out	/	255
	
	
	
Also,	 as	 you	 know	 with	 neural	 networks	 we	 like	 our	 data	 to	 stay	 in	 a	 small
range,	so	we	divide	by	the	maximum	value	at	the	end	which	is	255.
	
	
	
It’s	also	good	to	keep	track	of	the	size	of	each	matrix	as	each	operation	is	done.
You’ll	see	that	with	TensorFlow,	by	default	each	library	treats	the	edges	of	the
result	of	 the	convolution	a	 little	differently,	and	the	order	of	each	dimension	is
also	different.
	
	
	
So	 in	 Theano,	 our	 first	 filter	 has	 the	 dimensions	 “num_feature_maps”,	 which
you	can	think	of	as	the	number	of	kernels	or	filters	we	are	going	to	create,	then	it
has	 “num_color_channels”,	 which	 is	 3	 for	 a	 color	 image,	 and	 then	 the	 filter
width	and	height.	I’ve	chosen	to	use	5	since	that’s	what	I	usually	see	in	existing
code,	but	of	course	this	is	a	hyperparameter	that	you	can	optimize.
	
	
	
#	(num_feature_maps,	num_color_channels,	filter_width,	filter_height)
W1_shape	=	(20,	3,	5,	5)
	
W1	=	np.random.randn(W1_shape)	b1_init	=	np.zeros(W1_shape[0])
	
#	(num_feature_maps,	old_num_feature_maps,	filter_width,	filter_height)
W2_shape	=	(50,	20,	5,	5)

W2_shape	=	(50,	20,	5,	5)
	
W2	=	np.random.randn(W2_shape)	b2_init	=	np.zeros(W2_shape[0])
	
W3_init	=	np.random.randn(W2_shape[0]*5*5,	M)	b3_init	=	np.zeros(M)
	
	
	
W4_init	=	np.random.randn(M,	K)	b4_init	=	np.zeros(K)
	
	
	
Note	that	the	bias	is	the	same	size	as	the	number	of	feature	maps.
	
	
	
Also	note	 that	 this	 filter	 is	 a	4-D	 tensor,	which	 is	different	 from	 the	 filters	we
were	working	with	previously,	which	were	1-D	and	2-D	filters.
	
	
	
So	the	OUTPUT	of	that	first	conv_pool	operation	will	also	be	a	4-D	tensor.	The
first	 dimension	 of	 course	will	 be	 the	 batch	 size.	The	 second	 is	 now	no	 longer
color,	but	 the	number	of	feature	maps,	which	after	 the	first	stage	would	be	20.
The	next	2	are	the	dimensions	of	the	new	image	after	conv_pooling,	which	is	32
-	5	+	1,	which	is	28,	and	then	divided	by	2	which	is	14.
	
	
	
In	the	next	stage,	we’ll	use	a	filter	of	size	50	x	20	x	5	x	5.	This	means	that	we
now	have	50	feature	maps.	So	the	output	of	this	will	have	the	first	2	dimensions
as	batch_size	and	50.	And	 then	next	2	dimensions	will	be	 the	new	image	after
conv_pooling,	 which	 will	 be	 14	 -	 5	 +	 1,	 which	 is	 10,	 and	 then	 divided	 by	 2

which	is	5.
	
	
	
In	the	next	stage	we	pass	everything	into	a	vanilla,	fully-connected	ANN,	which
we’ve	used	before.	Of	course	this	means	we	have	to	flatten	our	output	from	the
previous	layer	from	4-dimensions	to	2-dimensions.
	
	
	
Since	that	image	was	5x5	and	had	50	feature	maps,	the	new	flattened	dimension
will	be	50x5x5.
	
	
	
Now	 that	 we	 have	 all	 the	 initial	 weights	 and	 operations	 we	 need,	 we	 can
compute	 the	 output	 of	 the	 neural	 network.	 So	we	 do	 the	 convpool	 twice,	 and
then	notice	 this	 flatten()	 operation	before	 I	 do	 the	dot	 product.	That’s	 because
Z2,	after	convpooling,	will	still	be	an	image.
	
	
	
#	forward	pass
	
Z1	=	convpool(X,	W1,	b1)
	
Z2	=	convpool(Z1,	W2,	b2)
	
Z3	=	relu(Z2.flatten(ndim=2).dot(W3)	+	b3)	pY	=	T.nnet.softmax(Z3.dot(W4)	+
b4)
	
But	if	you	call	flatten()	by	itself	it’ll	turn	into	a	1-D	array,	which	we	don’t	want,
and	luckily	Theano	provides	us	with	a	parameter	 that	allows	us	to	control	how

much	 to	 flatten	 the	array.	ndim=2	means	 to	 flatten	all	 the	dimensions	after	 the
2nd	dimension.
	
	
	
The	full	code	is	as	follows:
	
	
	
import	numpy	as	np
	
import	theano
	
import	theano.tensor	as	T
	
import	matplotlib.pyplot	as	plt
	
from	theano.tensor.nnet	import	conv2d	from	theano.tensor.signal	import
downsample
	
from	scipy.io	import	loadmat	from	sklearn.utils	import	shuffle
	
from	datetime	import	datetime
	
	
	
def	error_rate(p,	t):
	
return	np.mean(p	!=	t)
	
	
	

	
	
	
def	relu(a):
	
return	a	*	(a	>	0)
	
	
	
	
	
def	y2indicator(y):
	
N	=	len(y)
	
ind	=	np.zeros((N,	10))
	
for	i	in	xrange(N):
	
ind[i,	y[i]]	=	1
	
return	ind
	
	
	
	
	
def	convpool(X,	W,	b,	poolsize=(2,	2)):	conv_out	=	conv2d(input=X,	filters=W)
	
#	downsample	each	feature	map	individually,	using	maxpooling	pooled_out	=
downsample.max_pool_2d(
	
input=conv_out,

input=conv_out,
	
ds=poolsize,
	
ignore_border=True
	
)
	
return	relu(pooled_out	+	b.dimshuffle('x',	0,	'x',	'x'))
	
	
	
def	init_filter(shape,	poolsz):	w	=	np.random.randn(*shape)	/
np.sqrt(np.prod(shape[1:])	+	shape[0]*np.prod(shape[2:]	/	np.prod(poolsz)))
return	w.astype(np.float32)
	
	
	
	
	
def	rearrange(X):
	
#	input	is	(32,	32,	3,	N)
	
#	output	is	(N,	3,	32,	32)
	
N	=	X.shape[-1]
	
out	=	np.zeros((N,	3,	32,	32),	dtype=np.float32)	for	i	in	xrange(N):
	
for	j	in	xrange(3):
	
out[i,	j,	:,	:]	=	X[:,	:,	j,	i]

out[i,	j,	:,	:]	=	X[:,	:,	j,	i]
	
return	out	/	255
	
	
	
	
	
def	main():
	
#	step	1:	load	the	data,	transform	as	needed	train	=
loadmat('../large_files/train_32x32.mat')	test	=
loadmat('../large_files/test_32x32.mat')
	
#	Need	to	scale!	don't	leave	as	0..255
	
#	Y	is	a	N	x	1	matrix	with	values	1..10	(MATLAB	indexes	by	1)	#	So	flatten	it
and	make	it	0..9
	
#	Also	need	indicator	matrix	for	cost	calculation	Xtrain	=	rearrange(train['X'])
Ytrain	=	train['y'].flatten()	-	1
	
del	train
	
Xtrain,	Ytrain	=	shuffle(Xtrain,	Ytrain)	Ytrain_ind	=	y2indicator(Ytrain)
	
Xtest	=	rearrange(test['X'])	Ytest	=	test['y'].flatten()	-	1
	
del	test
	
Ytest_ind	=	y2indicator(Ytest)
	

	
	
max_iter	=	8
	
print_period	=	10
	
	
	
lr	=	np.float32(0.00001)
	
reg	=	np.float32(0.01)
	
mu	=	np.float32(0.99)
	
	
	
N	=	Xtrain.shape[0]
	
batch_sz	=	500
	
n_batches	=	N	/	batch_sz
	
	
	
M	=	500
	
K	=	10
	
poolsz	=	(2,	2)
	
	
	

	
#	after	conv	will	be	of	dimension	32	-	5	+	1	=	28
	
#	after	downsample	28	/	2	=	14
	
W1_shape	=	(20,	3,	5,	5)	#	(num_feature_maps,	num_color_channels,
filter_width,	filter_height)	W1_init	=	init_filter(W1_shape,	poolsz)	b1_init	=
np.zeros(W1_shape[0],	dtype=np.float32)	#	one	bias	per	output	feature	map
	
#	after	conv	will	be	of	dimension	14	-	5	+	1	=	10
	
#	after	downsample	10	/	2	=	5
	
W2_shape	=	(50,	20,	5,	5)	#	(num_feature_maps,	old_num_feature_maps,
filter_width,	filter_height)	W2_init	=	init_filter(W2_shape,	poolsz)	b2_init	=
np.zeros(W2_shape[0],	dtype=np.float32)
	
#	vanilla	ANN	weights
	
W3_init	=	np.random.randn(W2_shape[0]*5*5,	M)	/	np.sqrt(W2_shape[0]*5*5
+	M)	b3_init	=	np.zeros(M,	dtype=np.float32)	W4_init	=	np.random.randn(M,
K)	/	np.sqrt(M	+	K)	b4_init	=	np.zeros(K,	dtype=np.float32)
	
	
	
#	step	2:	define	theano	variables	and	expressions	X	=	T.tensor4('X',
dtype='float32')	Y	=	T.matrix('T')
	
W1	=	theano.shared(W1_init,	'W1')	b1	=	theano.shared(b1_init,	'b1')	W2	=
theano.shared(W2_init,	'W2')	b2	=	theano.shared(b2_init,	'b2')	W3	=
theano.shared(W3_init.astype(np.float32),	'W3')	b3	=	theano.shared(b3_init,
'b3')	W4	=	theano.shared(W4_init.astype(np.float32),	'W4')	b4	=
theano.shared(b4_init,	'b4')
	

	
#	momentum	changes
	
dW1	=	theano.shared(np.zeros(W1_init.shape,	dtype=np.float32),	'dW1')	db1	=
theano.shared(np.zeros(b1_init.shape,	dtype=np.float32),	'db1')	dW2	=
theano.shared(np.zeros(W2_init.shape,	dtype=np.float32),	'dW2')	db2	=
theano.shared(np.zeros(b2_init.shape,	dtype=np.float32),	'db2')	dW3	=
theano.shared(np.zeros(W3_init.shape,	dtype=np.float32),	'dW3')	db3	=
theano.shared(np.zeros(b3_init.shape,	dtype=np.float32),	'db3')	dW4	=
theano.shared(np.zeros(W4_init.shape,	dtype=np.float32),	'dW4')	db4	=
theano.shared(np.zeros(b4_init.shape,	dtype=np.float32),	'db4')
	
#	forward	pass
	
Z1	=	convpool(X,	W1,	b1)
	
Z2	=	convpool(Z1,	W2,	b2)
	
Z3	=	relu(Z2.flatten(ndim=2).dot(W3)	+	b3)	pY	=	T.nnet.softmax(Z3.dot(W4)
+	b4)
	
#	define	the	cost	function	and	prediction	params	=	(W1,	b1,	W2,	b2,	W3,	b3,
W4,	b4)	reg_cost	=	reg*np.sum((param*param).sum()	for	param	in	params)	cost
=	-(Y	*	T.log(pY)).sum()	+	reg_cost	prediction	=	T.argmax(pY,	axis=1)
	
#	step	3:	training	expressions	and	functions	#	you	could	of	course	store	these	in	a
list	=)	update_W1	=	W1	+	mu*dW1	-	lr*T.grad(cost,	W1)	update_b1	=	b1	+
mu*db1	-	lr*T.grad(cost,	b1)	update_W2	=	W2	+	mu*dW2	-	lr*T.grad(cost,
W2)	update_b2	=	b2	+	mu*db2	-	lr*T.grad(cost,	b2)	update_W3	=	W3	+
mu*dW3	-	lr*T.grad(cost,	W3)	update_b3	=	b3	+	mu*db3	-	lr*T.grad(cost,	b3)
update_W4	=	W4	+	mu*dW4	-	lr*T.grad(cost,	W4)	update_b4	=	b4	+	mu*db4	-
lr*T.grad(cost,	b4)
	
#	update	weight	changes
	

update_dW1	=	mu*dW1	-	lr*T.grad(cost,	W1)	update_db1	=	mu*db1	-
lr*T.grad(cost,	b1)	update_dW2	=	mu*dW2	-	lr*T.grad(cost,	W2)	update_db2	=
mu*db2	-	lr*T.grad(cost,	b2)	update_dW3	=	mu*dW3	-	lr*T.grad(cost,	W3)
update_db3	=	mu*db3	-	lr*T.grad(cost,	b3)	update_dW4	=	mu*dW4	-
lr*T.grad(cost,	W4)	update_db4	=	mu*db4	-	lr*T.grad(cost,	b4)
	
train	=	theano.function(
	
inputs=[X,	Y],
	
updates=[
	
(W1,	update_W1),
	
(b1,	update_b1),
	
(W2,	update_W2),
	
(b2,	update_b2),
	
(W3,	update_W3),
	
(b3,	update_b3),
	
(W4,	update_W4),
	
(b4,	update_b4),
	
(dW1,	update_dW1),
	
(db1,	update_db1),
	
(dW2,	update_dW2),

(dW2,	update_dW2),
	
(db2,	update_db2),
	
(dW3,	update_dW3),
	
(db3,	update_db3),
	
(dW4,	update_dW4),
	
(db4,	update_db4),
	
],
	
)
	
	
	
#	create	another	function	for	this	because	we	want	it	over	the	whole	dataset
get_prediction	=	theano.function(
	
inputs=[X,	Y],
	
outputs=[cost,	prediction],
	
)
	
	
	
t0	=	datetime.now()
	
LL	=	[]
	

	
for	i	in	xrange(max_iter):
	
for	j	in	xrange(n_batches):
	
Xbatch	=	Xtrain[j*batch_sz:(j*batch_sz	+	batch_sz),]
	
Ybatch	=	Ytrain_ind[j*batch_sz:(j*batch_sz	+	batch_sz),]
	
	
	
train(Xbatch,	Ybatch)
	
if	j	%	print_period	==	0:
	
cost_val,	prediction_val	=	get_prediction(Xtest,	Ytest_ind)	err	=	
error_rate(prediction_val,	Ytest)	print	"Cost		err	at	iteration	i=%d,	j=%d:	%.3f		
%.3f"	%	(i,	j,	cost_val,	err)	LL.append(cost_val)
	
print	"Elapsed	time:",	(datetime.now()	-	t0)	plt.plot(LL)
	
plt.show()
	
	
	
	
	
if	__name__	==	'__main__':
	
main()
	
		

	

	
	
	
				
	

	

	
Chapter	5:	Sample	Code	in	TensorFlow
	
	

	
In	 this	 chapter	 we	 are	 going	 to	 examine	 the	 code	 at:
https://github.com/lazyprogrammer/machine_learning_examples/blob/master/cnn_class/cnn_tf.py
	
	
	
We	are	going	to	do	a	similar	 thing	that	we	did	with	Theano,	which	is	examine
each	part	of	the	code	more	in	depth	before	putting	it	all	together.
	
	
	
Hopefully	it	helps	you	guys	isolate	each	of	the	parts	and	gain	an	understanding
of	how	they	work.
	
	
	
This	is	 the	ConvPool	in	TensorFlow.	It’s	almost	the	same	as	what	we	did	with
Theano	except	that	the	conv2d()	function	takes	in	a	new	parameter	called	strides.
	
	
	
	
	
def	convpool(X,	W,	b):
	
#	just	assume	pool	size	is	(2,2)	because	we	need	to	augment	it	with	1s	conv_out
=	tf.nn.conv2d(X,	W,	strides=[1,	1,	1,	1],	padding='SAME')	conv_out	=
tf.nn.bias_add(conv_out,	b)	pool_out	=	tf.nn.max_pool(conv_out,	ksize=[1,	2,	2,
1],	strides=[1,	2,	2,	1],	padding='SAME')	return	pool_out

https://github.com/lazyprogrammer/machine_learning_examples/blob/master/cnn_class/cnn_tf.py

1],	strides=[1,	2,	2,	1],	padding='SAME')	return	pool_out
	
	
	
In	the	past	we	just	assumed	that	we	had	to	drag	the	filter	along	every	point	of	the
signal,	 but	 in	 fact	 we	 can	move	with	 any	 size	 step	 we	want,	 and	 that’s	 what
stride	is.	We’re	also	going	to	use	the	padding	parameter	to	control	the	size	of	the
output.
	
	
	
Remember	that	the	bias	is	a	1-D	vector,	and	we	used	the	dimshuffle	function	in
Theano	to	add	it	to	the	convolution	output.	Here	we	can	just	use	a	function	that
TensorFlow	built	called	bias_add().
	
	
	
Next	we	call	the	max_pool()	function.	Notice	that	the	ksize	parameter	is	kind	of
like	the	poolsize	parameter	we	had	with	Theano,	but	it’s	now	4-D	instead	of	2-D.
We	just	add	ones	at	the	ends.	Notice	that	this	function	ALSO	takes	in	a	strides
parameter,	meaning	we	can	max_pool	 at	EVERY	step,	but	we’ll	 just	use	non-
overlapping	sub-images	like	we	did	previously.
	
	
	
The	next	step	is	to	rearrange	the	inputs.	Remember	that	convolution	in	Theano	is
not	 the	same	as	convolution	 in	TensorFlow.	That	means	we	have	 to	adjust	not
only	 the	 input	 dimensions	 but	 the	 filter	 dimensions	 as	 well.	 The	 only	 change
with	the	inputs	is	that	the	color	now	comes	last.
	
	
	
def	rearrange(X):
	

	
#	input	is	(32,	32,	3,	N)
	
#	output	is	(N,	32,	32,	3)
	
N	=	X.shape[-1]
	
out	=	np.zeros((N,	32,	32,	3),	dtype=np.float32)	for	i	in	xrange(N):
	
for	j	in	xrange(3):
	
out[i,	:,	:,	j]	=	X[:,	:,	j,	i]
	
return	out	/	255
	
	
	
The	 next	 step	 is	 unique	 to	 the	 TensorFlow	 implementation.	 If	 you	 recall,
TensorFlow	allows	us	 to	 not	 have	 to	 specify	 the	 size	of	 each	dimension	 in	 its
input.
	
	
	
This	 is	 great	 and	 allows	 for	 a	 lot	 of	 flexibility,	 but	 I	 hit	 a	 snag	 during
development,	which	is	my	RAM	started	swapping	when	I	did	this.	If	you	haven’t
noticed	yet	the	size	of	the	SVHN	data	is	pretty	big,	about	73k	samples.
	
	
	
So	one	way	around	 this	 is	 to	make	 the	shapes	constant,	which	you’ll	 see	 later.
That	means	we’ll	always	have	to	pass	in	batch_sz	number	of	samples	each	time,
which	means	the	total	number	of	samples	we	use	has	to	be	a	multiple	of	it.	In	the
code	I	used	exact	numbers	but	you	can	also	calculate	it	using	the	data.
	

	
	
	
X	=	tf.placeholder(tf.float32,	shape=(batch_sz,	32,	32,	3),	name='X')	T	=
tf.placeholder(tf.float32,	shape=(batch_sz,	K),	name='T')
	
Just	to	reinforce	this	idea,	the	filter	is	going	to	be	in	a	different	order	than	before.
So	now	the	dimensions	of	the	image	filter	come	first,	then	the	number	of	color
channels,	then	the	number	of	feature	maps.
	
	
	
#	(filter_width,	filter_height,	num_color_channels,	num_feature_maps)
W1_shape	=	(5,	5,	3,	20)
	
W1_init	=	init_filter(W1_shape,	poolsz)	b1_init	=	np.zeros(W1_shape[-1],
dtype=np.float32)	#	one	bias	per	output	feature	map
	
#	(filter_width,	filter_height,	old_num_feature_maps,	num_feature_maps)
W2_shape	=	(5,	5,	20,	50)
	
W2_init	=	init_filter(W2_shape,	poolsz)	b2_init	=	np.zeros(W2_shape[-1],
dtype=np.float32)
	
#	vanilla	ANN	weights
	
W3_init	=	np.random.randn(W2_shape[-1]*8*8,	M)	/
np.sqrt(W2_shape[-1]*8*8	+	M)	b3_init	=	np.zeros(M,	dtype=np.float32)
W4_init	=	np.random.randn(M,	K)	/	np.sqrt(M	+	K)	b4_init	=	np.zeros(K,
dtype=np.float32)
	
For	the	vanilla	ANN	portion,	also	notice	that	the	outputs	of	the	convolution	are
now	a	different	size.	So	now	it’s	8	instead	of	5.
	

	
	
	
For	the	forward	pass,	the	first	2	parts	are	the	same	as	Theano.
	
	
	
One	thing	that’s	different	is	TensorFlow	objects	don’t	have	a	flatten	method,	so
we	have	to	use	reshape.
	
	
	
Z1	=	convpool(X,	W1,	b1)
	
Z2	=	convpool(Z1,	W2,	b2)
	
Z2_shape	=	Z2.get_shape().as_list()	Z2r	=	tf.reshape(Z2,	[Z2_shape[0],
np.prod(Z2_shape[1:])])	Z3	=	tf.nn.relu(tf.matmul(Z2r,	W3)	+	b3)	Yish	=
tf.matmul(Z3,	W4)	+	b4
	
	
	
Luckily	this	is	pretty	straightforward	EVEN	when	you	pass	in	None	for	the	input
shape	parameter.	You	can	just	pass	in	-1	in	reshape	and	it	will	be	automatically
be	 calculated.	 But	 as	 you	 can	 imagine	 this	 will	 make	 your	 computation	 take
longer.
	
	
	
The	 last	 step	 is	 to	calculate	 the	output	 just	before	 the	softmax.	Remember	 that
with	TensorFlow	the	cost	function	requires	the	logits	without	softmaxing,	so	we
won’t	do	the	softmax	at	this	point.
	

	
	
The	full	code	is	as	follows:
	
	
	
import	numpy	as	np
	
import	tensorflow	as	tf
	
import	matplotlib.pyplot	as	plt
	
from	datetime	import	datetime
	
from	scipy.signal	import	convolve2d	from	scipy.io	import	loadmat
	
from	sklearn.utils	import	shuffle
	
	
	
def	y2indicator(y):
	
N	=	len(y)
	
ind	=	np.zeros((N,	10))
	
for	i	in	xrange(N):
	
ind[i,	y[i]]	=	1
	
return	ind
	

	
	
	
	
	
def	error_rate(p,	t):
	
return	np.mean(p	!=	t)
	
	
	
	
	
def	convpool(X,	W,	b):
	
#	just	assume	pool	size	is	(2,2)	because	we	need	to	augment	it	with	1s	conv_out
=	tf.nn.conv2d(X,	W,	strides=[1,	1,	1,	1],	padding='SAME')	conv_out	=
tf.nn.bias_add(conv_out,	b)	pool_out	=	tf.nn.max_pool(conv_out,	ksize=[1,	2,	2,
1],	strides=[1,	2,	2,	1],	padding='SAME')	return	pool_out
	
	
	
	
	
def	init_filter(shape,	poolsz):	w	=	np.random.randn(*shape)	/
np.sqrt(np.prod(shape[:-1])	+	shape[-1]*np.prod(shape[:-2]	/	np.prod(poolsz)))
return	w.astype(np.float32)
	
	
	
	
	
def	rearrange(X):
	

	
#	input	is	(32,	32,	3,	N)
	
#	output	is	(N,	32,	32,	3)
	
N	=	X.shape[-1]
	
out	=	np.zeros((N,	32,	32,	3),	dtype=np.float32)	for	i	in	xrange(N):
	
for	j	in	xrange(3):
	
out[i,	:,	:,	j]	=	X[:,	:,	j,	i]
	
return	out	/	255
	
	
	
	
	
def	main():
	
train	=	loadmat('../large_files/train_32x32.mat')	#	N	=	73257
	
test	=	loadmat('../large_files/test_32x32.mat')	#	N	=	26032
	
	
	
#	Need	to	scale!	don't	leave	as	0..255
	
#	Y	is	a	N	x	1	matrix	with	values	1..10	(MATLAB	indexes	by	1)	#	So	flatten	it
and	make	it	0..9
	

	
#	Also	need	indicator	matrix	for	cost	calculation	Xtrain	=	rearrange(train['X'])
Ytrain	=	train['y'].flatten()	-	1
	
print	len(Ytrain)
	
del	train
	
Xtrain,	Ytrain	=	shuffle(Xtrain,	Ytrain)	Ytrain_ind	=	y2indicator(Ytrain)
	
Xtest	=	rearrange(test['X'])
	
Ytest	=	test['y'].flatten()	-	1
	
del	test
	
Ytest_ind	=	y2indicator(Ytest)
	
#	gradient	descent	params
	
max_iter	=	20
	
print_period	=	10
	
N	=	Xtrain.shape[0]
	
batch_sz	=	500
	
n_batches	=	N	/	batch_sz
	
	
	
#	limit	samples	since	input	will	always	have	to	be	same	size	#	you	could	also

#	limit	samples	since	input	will	always	have	to	be	same	size	#	you	could	also
just	do	N	=	N	/	batch_sz	*	batch_sz	Xtrain	=	Xtrain[:73000,]
	
Ytrain	=	Ytrain[:73000]
	
Xtest	=	Xtest[:26000,]
	
Ytest	=	Ytest[:26000]
	
Ytest_ind	=	Ytest_ind[:26000,]
	
	
	
#	initialize	weights
	
M	=	500
	
K	=	10
	
poolsz	=	(2,	2)
	
	
	
W1_shape	=	(5,	5,	3,	20)	#	(filter_width,	filter_height,	num_color_channels,
num_feature_maps)	W1_init	=	init_filter(W1_shape,	poolsz)	b1_init	=
np.zeros(W1_shape[-1],	dtype=np.float32)	#	one	bias	per	output	feature	map
	
W2_shape	=	(5,	5,	20,	50)	#	(filter_width,	filter_height,	old_num_feature_maps,
num_feature_maps)	W2_init	=	init_filter(W2_shape,	poolsz)	b2_init	=
np.zeros(W2_shape[-1],	dtype=np.float32)
	
#	vanilla	ANN	weights
	

	
W3_init	=	np.random.randn(W2_shape[-1]*8*8,	M)	/
np.sqrt(W2_shape[-1]*8*8	+	M)	b3_init	=	np.zeros(M,	dtype=np.float32)
W4_init	=	np.random.randn(M,	K)	/	np.sqrt(M	+	K)	b4_init	=	np.zeros(K,
dtype=np.float32)
	
	
	
#	define	variables	and	expressions	#	using	None	as	the	first	shape	element	takes
up	too	much	RAM	unfortunately	X	=	tf.placeholder(tf.float32,	shape=(batch_sz,
32,	32,	3),	name='X')	T	=	tf.placeholder(tf.float32,	shape=(batch_sz,	K),
name='T')	W1	=	tf.Variable(W1_init.astype(np.float32))	b1	=
tf.Variable(b1_init.astype(np.float32))	W2	=
tf.Variable(W2_init.astype(np.float32))	b2	=
tf.Variable(b2_init.astype(np.float32))	W3	=
tf.Variable(W3_init.astype(np.float32))	b3	=
tf.Variable(b3_init.astype(np.float32))	W4	=
tf.Variable(W4_init.astype(np.float32))	b4	=
tf.Variable(b4_init.astype(np.float32))
	
Z1	=	convpool(X,	W1,	b1)
	
Z2	=	convpool(Z1,	W2,	b2)
	
Z2_shape	=	Z2.get_shape().as_list()	Z2r	=	tf.reshape(Z2,	[Z2_shape[0],
np.prod(Z2_shape[1:])])	Z3	=	tf.nn.relu(tf.matmul(Z2r,	W3)	+	b3)	Yish	=
tf.matmul(Z3,	W4)	+	b4
	
	
	
cost	=	tf.reduce_sum(tf.nn.softmax_cross_entropy_with_logits(Yish,	T))
	
train_op	=	tf.train.RMSPropOptimizer(0.0001,	decay=0.99,
momentum=0.9).minimize(cost)
	

	
#	we'll	use	this	to	calculate	the	error	rate	predict_op	=	tf.argmax(Yish,	1)
	
t0	=	datetime.now()
	
LL	=	[]
	
init	=	tf.initialize_all_variables()	with	tf.Session()	as	session:
	
session.run(init)
	
	
	
for	i	in	xrange(max_iter):
	
for	j	in	xrange(n_batches):
	
Xbatch	=	Xtrain[j*batch_sz:(j*batch_sz	+	batch_sz),]
	
Ybatch	=	Ytrain_ind[j*batch_sz:(j*batch_sz	+	batch_sz),]
	
	
	
if	len(Xbatch)	==	batch_sz:
	
session.run(train_op,	feed_dict={X:	Xbatch,	T:	Ybatch})	if	j	%	print_period	==
0:
	
#	due	to	RAM	limitations	we	need	to	have	a	fixed	size	input	#	so	as	a	result,	we
have	this	ugly	total	cost	and	prediction	computation	test_cost	=	0
	
prediction	=	np.zeros(len(Xtest))	for	k	in	xrange(len(Xtest)	/	batch_sz):
Xtestbatch	=	Xtest[k*batch_sz:(k*batch_sz	+	batch_sz),]
	

	
Ytestbatch	=	Ytest_ind[k*batch_sz:(k*batch_sz	+	batch_sz),]
	
test_cost	+=	session.run(cost,	feed_dict={X:	Xtestbatch,	T:	Ytestbatch})
prediction[k*batch_sz:(k*batch_sz	+	batch_sz)]	=	session.run(
	
predict_op,	feed_dict={X:	Xtestbatch})	err	=	error_rate(prediction,	Ytest)	print	
"Cost		err	at	iteration	i=%d,	j=%d:	%.3f		%.3f"	%	(i,	j,	test_cost,	err)	
LL.append(test_cost)
	
print	"Elapsed	time:",	(datetime.now()	-	t0)	plt.plot(LL)
	
plt.show()
	
	
	
	
	
if	__name__	==	'__main__':
	
main()
	
		

	
	
	
				
	

	

	
Conclusion
	
	

	
I	really	hope	you	had	as	much	fun	reading	this	book	as	I	did	making	it.
	
	
	
Did	you	find	anything	confusing?	Do	you	have	any	questions?
	
	
	
I	am	always	available	to	help.	Just	email	me	at:	info@lazyprogrammer.me
	
	
	
Do	 you	 want	 to	 learn	 more	 about	 deep	 learning?	 Perhaps	 online	 courses	 are
more	your	style.	I	happen	to	have	a	few	of	them	on	Udemy.
	
	
	
A	lot	of	the	material	in	this	book	is	covered	in	this	course,	but	you	get	to	see	me
derive	the	formulas	and	write	the	code	live:
	
	
	
Deep	Learning:	Convolutional	Neural	Networks	in	Python
	
	
	

mailto:info@lazyprogrammer.me
https://www.udemy.com/deep-learning-convolutional-neural-networks-theano-tensorflow

https://www.udemy.com/deep-learning-convolutional-neural-networks-theano-
tensorflow
	
	
	
The	 background	 and	 prerequisite	 knowledge	 for	 deep	 learning	 and	 neural
networks	 can	 be	 found	 in	my	 class	 “Data	 Science:	Deep	Learning	 in	 Python”
(officially	 known	 as	 “part	 1”	 of	 the	 series).	 In	 this	 course	 I	 teach	 you	 the
feedforward	mechanism	of	a	neural	network	(which	I	assumed	you	already	knew
for	this	book),	and	how	to	derive	the	training	algorithm	called	backpropagation
(which	I	also	assumed	you	knew	for	this	book):
	
	
	
Data	Science:	Deep	Learning	in	Python
	
	
	
https://udemy.com/data-science-deep-learning-in-python
	
	
	
The	corresponding	book	on	Kindle	is:
	
	
	
https://kdp.amazon.com/amazon-dp-
action/us/bookshelf.marketplacelink/B01CVJ19E8
	
	
	
Are	you	comfortable	with	this	material,	and	you	want	to	take	your	deep	learning
skillset	to	the	next	level?	Then	my	follow-up	Udemy	course	on	deep	learning	is

https://www.udemy.com/deep-learning-convolutional-neural-networks-theano-tensorflow
https://udemy.com/data-science-deep-learning-in-python
https://udemy.com/data-science-deep-learning-in-python
https://kdp.amazon.com/amazon-dp-action/us/bookshelf.marketplacelink/B01CVJ19E8

for	you.	Similar	to	previous	book,	I	take	you	through	the	basics	of	Theano	and
TensorFlow	-	creating	functions,	variables,	and	expressions,	and	build	up	neural
networks	from	scratch.	I	teach	you	about	ways	to	accelerate	the	learning	process,
including	batch	gradient	descent,	momentum,	and	adaptive	learning	rates.	I	also
show	you	live	how	to	create	a	GPU	instance	on	Amazon	AWS	EC2,	and	prove
to	 you	 that	 training	 a	 neural	 network	with	GPU	optimization	 can	be	 orders	 of
magnitude	faster	than	on	your	CPU.
	
	
	
Data	Science:	Practical	Deep	Learning	in	Theano	and	TensorFlow
	
	
	
https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow
	
	
	
In	 part	 4	 of	 my	 deep	 learning	 series,	 I	 take	 you	 through	 unsupervised	 deep
learning	 methods.	 We	 study	 principal	 components	 analysis	 (PCA),	 t-SNE
(jointly	 developed	 by	 the	 godfather	 of	 deep	 learning,	 Geoffrey	 Hinton),	 deep
autoencoders,	 and	 restricted	Boltzmann	machines	 (RBMs).	 I	 demonstrate	 how
unsupervised	pretraining	on	 a	 deep	network	with	 autoencoders	 and	RBMs	can
improve	supervised	learning	performance.
	
	
	
Unsupervised	Deep	Learning	in	Python
	
	
	
https://www.udemy.com/unsupervised-deep-learning-in-python
	

https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow/
https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow
https://www.udemy.com/unsupervised-deep-learning-in-python
https://www.udemy.com/unsupervised-deep-learning-in-python

	
	
Would	you	like	an	introduction	to	the	basic	building	block	of	neural	networks	-
logistic	 regression?	 In	 this	course	 I	 teach	 the	 theory	of	 logistic	 regression	 (our
computational	model	 of	 the	 neuron),	 and	 give	 you	 an	 in-depth	 look	 at	 binary
classification,	manually	creating	features,	and	gradient	descent.	You	might	want
to	check	this	course	out	if	you	found	the	material	in	this	book	too	challenging.
	
	
	
Data	Science:	Logistic	Regression	in	Python
	
	
	
https://udemy.com/data-science-logistic-regression-in-python
	
	
	
The	corresponding	book	for	Deep	Learning	Prerequisites	is:
	
	
	
https://kdp.amazon.com/amazon-dp-
action/us/bookshelf.marketplacelink/B01D7GDRQ2
	
	
	
To	get	an	even	simpler	picture	of	machine	learning	in	general,	where	we	don’t
even	need	gradient	descent	and	can	just	solve	for	the	optimal	model	parameters
directly	in	“closed-form”,	you’ll	want	to	check	out	my	first	Udemy	course	on	the
classical	statistical	method	-	linear	regression:
	
	

https://udemy.com/data-science-logistic-regression-in-python
https://udemy.com/data-science-logistic-regression-in-python
https://kdp.amazon.com/amazon-dp-action/us/bookshelf.marketplacelink/B01D7GDRQ2

	
Data	Science:	Linear	Regression	in	Python
	
	
	
https://www.udemy.com/data-science-linear-regression-in-python
	
	
	
If	you	are	 interested	 in	 learning	about	how	machine	 learning	can	be	applied	 to
language,	 text,	 and	 speech,	 you’ll	 want	 to	 check	 out	 my	 course	 on	 Natural
Language	Processing,	or	NLP:
	
	
	
Data	Science:	Natural	Language	Processing	in	Python
	
	
	
https://www.udemy.com/data-science-natural-language-processing-in-python
	
	
	
If	you	are	 interested	 in	 learning	SQL	-	 structured	query	 language	 -	a	 language
that	can	be	applied	to	databases	as	small	as	 the	ones	sitting	on	your	iPhone,	 to
databases	as	large	as	the	ones	that	span	multiple	continents	-	and	not	only	learn
the	 mechanics	 of	 the	 language	 but	 know	 how	 to	 apply	 it	 to	 real-world	 data
analytics	and	marketing	problems?	Check	out	my	course	here:
	
	
	
SQL	for	Marketers:	Dominate	data	analytics,	data	science,	and	big	data
	

https://www.udemy.com/data-science-linear-regression-in-python
https://www.udemy.com/data-science-linear-regression-in-python
https://www.udemy.com/data-science-natural-language-processing-in-python
https://www.udemy.com/data-science-natural-language-processing-in-python
https://www.udemy.com/sql-for-marketers-data-analytics-data-science-big-data

	
	
	
https://www.udemy.com/sql-for-marketers-data-analytics-data-science-big-data
	
	
	
Finally,	I	am	always	giving	out	coupons	and	letting	you	know	when	you	can	get
my	stuff	for	free.	But	you	can	only	do	this	if	you	are	a	current	student	of	mine!
Here	are	some	ways	I	notify	my	students	about	coupons	and	free	giveaways:
	
	
	
My	newsletter,	which	you	can	sign	up	for	at	http://lazyprogrammer.me	(it	comes
with	a	free	6-week	intro	to	machine	learning	course)
	
	
	
My	Twitter,	https://twitter.com/lazy_scientist
	
	
	
My	 Facebook	 page,	 https://facebook.com/lazyprogrammer.me	 (don’t	 forget	 to
hit	“like”!)
	

https://www.udemy.com/sql-for-marketers-data-analytics-data-science-big-data
http://lazyprogrammer.me
https://twitter.com/lazy_scientist
https://facebook.com/lazyprogrammer.me

	Introduction
	Chapter 1: Review of Feedforward Neural Networks
	Chapter 2: Convolution
	Chapter 3: The Convolutional Neural Network
	Chapter 4: Sample Code in Theano
	Chapter 5: Sample Code in TensorFlow
	Conclusion

