


Convolutional Neural 
Networks in Visual 

Computing



DATA-ENABLED ENGINEERING

SERIES EDITOR 

Nong Ye 
Arizona State University, Phoenix, USA

PUBLISHED TITLES

Convolutional Neural Networks in Visual Computing: A Concise Guide
Ragav Venkatesan and Baoxin Li



Convolutional Neural 
Networks in Visual 

Computing
A Concise Guide

By

Ragav Venkatesan and Baoxin Li



CRC Press
Taylor & Francis Group
6000 Broken Sound Parkway NW, Suite 300
Boca Raton, FL 33487-2742

© 2018 by Taylor & Francis Group, LLC 
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works

Printed on acid-free paper

International Standard Book Number-13: 978-1-4987-7039-2 (Hardback); 978-1-138-74795-1 (Paperback)

This book contains information obtained from authentic and highly regarded sources. Reasonable efforts 
have been made to publish reliable data and information, but the author and publisher cannot assume 
responsibility for the validity of all materials or the consequences of their use. The authors and publishers 
have attempted to trace the copyright holders of all material reproduced in this publication and apologize 
to copyright holders if permission to publish in this form has not been obtained. If any copyright material 
has not been acknowledged please write and let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, 
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or hereafter 
invented, including photocopying, microfilming, and recording, or in any information storage or retrieval 
system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access www.copyright 
.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood 
Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit organization that provides licenses and 
registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, 
a separate system of payment has been arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks, and are 
used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data 
Names: Venkatesan, Ragav, author. | Li, Baoxin, author.
Title: Convolutional neural networks in visual computing : a concise guide / 
Ragav Venkatesan, Baoxin Li.
Description: Boca Raton ; London : Taylor & Francis, CRC Press, 2017. | 
Includes bibliographical references and index.
Identifiers: LCCN 2017029154| ISBN 9781498770392 (hardback : alk. paper) | 
ISBN 9781315154282 (ebook)
Subjects: LCSH: Computer vision. | Neural networks (Computer science)
Classification: LCC TA1634 .V37 2017 | DDC 006.3/2--dc23
LC record available at https://lccn.loc.gov/2017029154 

Visit the Taylor & Francis Web site at 
http://www.taylorandfrancis.com 

and the CRC Press Web site at 
http://www.crcpress.com

http://www.copyright.com
http://www.copyright.com/
https://lccn.loc.gov/2017029154
http://www.taylorandfrancis.com
http://www.crcpress.com
http://www.copyright.com


To Jaikrishna Mohan, for growing up with me; 
you are a fierce friend, and my brother. 

and to Prof. Ravi Naganathan for helping me grow up; 
my better angels have always been your philosophy and principles. 

—Ragav Venkatesan 

To my wife, Julie, 
for all your unwavering support over the years. 

—Baoxin Li 





vii

Contents

Preface 	 xi
Acknowledgments	 xv
Authors 	 xvii

Chapter 1	 Introduction to Visual Computing 	 1
Image Representation Basics	 3

Transform-Domain Representations	 6
Image Histograms	 7
Image Gradients and Edges	 10
Going beyond Image Gradients	 15

Line Detection Using the Hough Transform	 15
Harris Corners	 16
Scale-Invariant Feature Transform	 17
Histogram of Oriented Gradients	 17

Decision-Making in a Hand-Crafted Feature Space	 19
Bayesian Decision-Making	 21
Decision-Making with Linear Decision Boundaries	 23

A Case Study with Deformable Part Models	 25
Migration toward Neural Computer Vision	 27
Summary	 29
References	 30

Chapter 2	L earning as a Regression Problem 	 33
Supervised Learning	 33
Linear Models	 36
Least Squares	 39



viii Contents

Maximum-Likelihood Interpretation	 41
Extension to Nonlinear Models	 43
Regularization	 45
Cross-Validation	 48
Gradient Descent	 49
Geometry of Regularization	 55
Nonconvex Error Surfaces	 57
Stochastic, Batch, and Online Gradient Descent	 58
Alternative Update Rules Using Adaptive Learning Rates	 59
Momentum	 60
Summary	 62
References	 63

Chapter 3	A rtificial Neural Networks 	 65
The Perceptron	 66
Multilayer Neural Networks	 74
The Back-Propagation Algorithm	 79
Improving BP-Based Learning	 82

Activation Functions	 82
Weight Pruning	 85
Batch Normalization	 85

Summary	 86
References	 87

Chapter 4	C onvolutional Neural Networks 	 89
Convolution and Pooling Layer	 90
Convolutional Neural Networks	 97
Summary	 114
References	 115

Chapter 5	M odern and Novel Usages of CNNs 	 117
Pretrained Networks	 118

Generality and Transferability	 121
Using Pretrained Networks for Model Compression	 126
Mentee Networks and FitNets	 130
Application Using Pretrained Networks: Image 
Aesthetics Using CNNs	 132

Generative Networks	 134
Autoencoders	 134
Generative Adversarial Networks	 137

Summary	 142
References	 143

Appendix A	 Yaan 	 147
Structure of Yann	 148
Quick Start with Yann: Logistic Regression	 149
Multilayer Neural Networks	 152



ixContents

Convolutional Neural Network	 154
Autoencoder	 155

Summary	 157
References	 157

Postscript � 159
References	 162

Index 	 163





xi

Preface

Deep learning architectures have attained incredible popularity in 
recent years due to their phenomenal success in, among other appli-
cations, computer vision tasks. Particularly, convolutional neural 
networks (CNNs) have been a significant force contributing to state-
of-the-art results. The jargon surrounding deep learning and CNNs 
can often lead to the opinion that it is too labyrinthine for a beginner 
to study and master. Having this in mind, this book covers the funda-
mentals of deep learning for computer vision, designing and deploying 
CNNs, and deep computer vision architecture. This concise book was 
intended to serve as a beginner’s guide for engineers, undergraduate 
seniors, and graduate students who seek a quick start on learning and/
or building deep learning systems of their own. Written in an easy-
to-read, mathematically nonabstruse tone, this book aims to provide 
a gentle introduction to deep learning for computer vision, while still 
covering the basics in ample depth.

The core of this book is divided into five chapters. Chapter 1 pro-
vides a succinct introduction to image representations and some com-
puter vision models that are contemporarily referred to as hand-carved. 
The chapter provides the reader with a fundamental understanding of 
image representations and an introduction to some linear and non-
linear feature extractors or representations and to properties of these 
representations. Onwards, this chapter also demonstrates detection 
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of some basic image entities such as edges. It also covers some basic 
machine learning tasks that can be performed using these representa-
tions. The chapter concludes with a study of two popular non-neural 
computer vision modeling techniques.

Chapter 2 introduces the concepts of regression, learning machines, 
and optimization. This chapter begins with an introduction to super-
vised learning. The first learning machine introduced is the linear 
regressor. The first solution covered is the analytical solution for least 
squares. This analytical solution is studied alongside its maximum-
likelihood interpretation. The chapter moves on to nonlinear models 
through basis function expansion. The problem of overfitting and gen-
eralization through cross-validation and regularization is further intro-
duced. The latter part of the chapter introduces optimization through 
gradient descent for both convex and nonconvex error surfaces. Further 
expanding our study with various types of gradient descent methods 
and the study of geometries of various regularizers, some modifications 
to the basic gradient descent method, including second-order loss mini-
mization techniques and learning with momentum, are also presented.

Chapters 3 and 4 are the crux of this book. Chapter 3 builds on 
Chapter 2 by providing an introduction to the Rosenblatt perceptron 
and the perceptron learning algorithm. The chapter then introduces a 
logistic neuron and its activation. The single neuron model is studied 
in both a two-class and a multiclass setting. The advantages and draw-
backs of this neuron are studied, and the XOR problem is introduced. 
The idea of a multilayer neural network is proposed as a solution to 
the XOR problem, and the backpropagation algorithm, introduced 
along with several improvements, provides some pragmatic tips that 
help in engineering a better, more stable implementation. Chapter 4 
introduces the convpool layer and the CNN. It studies various proper-
ties of this layer and analyzes the features that are extracted for a typi-
cal digit recognition dataset. This chapter also introduces four of the 
most popular contemporary CNNs, AlexNet, VGG, GoogLeNet, and 
ResNet, and compares their architecture and philosophy.

Chapter 5 further expands and enriches the discussion of deep 
architectures by studying some modern, novel, and pragmatic uses of 
CNNs. The chapter is broadly divided into two contiguous sections. 
The first part deals with the nifty philosophy of using download-
able, pretrained, and off-the-shelf networks. Pretrained networks are 
essentially trained on a wholesome dataset and made available for the 
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public-at-large to fine-tune for a novel task. These are studied under 
the scope of generality and transferability. Chapter 5 also studies the 
compression of these networks and alternative methods of learning a 
new task given a pretrained network in the form of mentee networks. 
The second part of the chapter deals with the idea of CNNs that are 
not used in supervised learning but as generative networks. The sec-
tion briefly studies autoencoders and the newest novelty in deep com-
puter vision: generative adversarial networks (GANs).

The book comes with a website (convolution.network) which is a 
supplement and contains code and implementations, color illustra-
tions of some figures, errata and additional materials. This book also 
led to a graduate level course that was taught in the Spring of 2017 
at Arizona State University, lectures and materials for which are also 
available at the book website.

Figure 1 in Chapter 1 of the book is an original image (original.jpg), 
that I shot and for which I hold the rights. It is a picture of the monu-
ment valley, which as far as imagery goes is representative of the south-
west, where ASU is. The art in memory.png was painted in the style of 
Salvador Dali, particularly of his painting “the persistence of memory” 
which deals in abstract about the concept of the mind hallucinating and 
picturing and processing objects in shapeless forms, much like what 
some representations of the neural networks we study in the book are. 

The art in memory.png is not painted by a human but by a neural 
network similar to the ones we discuss in the book. Ergo the connec-
tion to the book. Below is the citation reference. 

@article{DBLP:journals/corr/GatysEB15a,
  author    = {Leon A. Gatys and
               Alexander S. Ecker and
               Matthias Bethge},
  title     = {A Neural Algorithm of Artistic Style},
  journal   = {CoRR},
  volume    = {abs/1508.06576},
  year      = {2015},
  url       = {http://arxiv.org/abs/1508.06576},
  timestamp = {Wed, 07 Jun 2017 14:41:58 +0200},
  biburl    = {http://dblp.unitrier.de/rec/bib/		
		   journals/corr/GatysEB15a},
  bibsource = {dblp computer science bibliography,
               http://dblp.org}
}

http://arxiv.org/abs/1508.06576
http://dblp.unitrier.de/rec/bib/journals/corr/GatysEB15a
http://dblp.org
http://dblp.unitrier.de/rec/bib/journals/corr/GatysEB15a
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This book is also accompanied by a CNN toolbox based on Python 
and Theano, which was developed by the authors, and a webpage con-
taining color figures, errata, and other accompaniments. The toolbox, 
named yann for “Yet Another Neural Network” toolbox, is available 
under MIT License at the URL http://www.yann.network. Having 
in mind the intention of making the material in this book easily acces-
sible for a beginner to build upon, the authors have developed a set 
of tutorials using yann. The tutorial and the toolbox cover the differ-
ent architectures and machines discussed in this book with examples 
and sample code and application programming interface (API) docu-
mentation. The yann toolbox is under active development at the time 
of writing this book, and its customer support is provided through 
GitHub. The book’s webpage is hosted at http://guide2cnn.com. 
While most figures in this book were created as grayscale illustra-
tions, there are some figures that were originally created in color and 
converted to grayscale during production. The color versions of these 
figures as well as additional notes, information on related courses, and 
FAQs are also found on the website.

This toolbox and this book are also intended to be reading mate-
rial for a semester-long graduate-level course on Deep Learning for 
Visual Computing offered by the authors at Arizona State University. 
The course, including recorded lectures, course materials and home-
work assignments, are available for the public at large at http://www 
.course.convolution.network. The authors are available via e-mail for 
both queries regarding the material and supporting code, and for 
humbly accepting any criticisms or comments on the content of the 
book. The authors also gladly encourage requests for reproduction of 
figures, results, and materials described in this book, as long as they 
conform to the copyright policies of the publisher. The authors hope 
that readers enjoy this concise guide to convolutional neural networks 
for computer vision and that a beginner will be able to quickly build 
his/her own learning machines with the help of this book and its tool-
box. We encourage readers to use the knowledge they may gain from 
this material for the good of humanity while sincerely discouraging 
them from building “Skynet” or any other apocalyptic artificial intel-
ligence machines.

http://www.yann.network
http://guide2cnn.com
http://www.course.convolution.network
http://www.course.convolution.network
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1
Introduction to 

Visual Computing

The goal of human scientific exploration is to advance human 
capabilities. We invented fire to cook food, therefore outgrowing our 
dependence on the basic food processing capability of our own stom-
ach. This led to increased caloric consumption and perhaps sped up 
the growth of civilization—something that no other known species 
has accomplished. We invented the wheel and vehicles therefore our 
speed of travel does not have to be limited to the ambulatory speed of 
our legs. Indeed, we built airplanes, if for no other reason than to real-
ize our dream of being able to take to the skies. The story of human 
invention and technological growth is a narrative of the human spe-
cies endlessly outgrowing its own capabilities and therefore endlessly 
expanding its horizons and marching further into the future.

Much of these advances are credited to the wiring in the human 
brain. The human neural system and its capabilities are far-reaching 
and complicated. Humans enjoy a very intricate neural system capable 
of thought, emotion, reasoning, imagination, and philosophy. As sci-
entists working on computer vision, perhaps we are a little tenden-
tious when it comes to the significance of human vision, but for us, 
the most fascinating part of human capabilities, intelligence included, 
is the cognitive-visual system. Although human visual system and its 
associated cognitive decision-making processes are one of the fastest 
we know of, humans may not have the most powerful visual system 
among all the species, if, for example, acuity or night vision capa-
bilities are concerned (Thorpe et al., 1996; Watamaniuk and Duchon, 
1992). Also, humans peer through a very narrow range of the electro-
magnetic spectrum. There are many other species that have a wider 
visual sensory range than we do. Humans have also become prone to 
many corneal visual deficiencies such as near-sightedness. Given all 
this, it is only natural that we as humans want to work on improving 
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our visual capabilities, like we did with other deficiencies in human 
capabilities.

We have been developing tools for many centuries trying to see 
further and beyond the eye that nature has bestowed upon us. 
Telescopes, binoculars, microscopes, and magnifiers were invented to 
see much farther and much smaller objects. Radio, infrared, and x-ray 
devices make us see in parts of the electromagnetic spectrum, beyond 
the visible band that we can naturally perceive. Recently, interfer-
ometers were perfected and built, extending human vision to include 
gravity waves, making way for yet another way to look at the world 
through gravitational astronomy. While all these devices extend the 
human visual capability, scholars and philosophers have long since 
realized that we do not see just with our eyes. Eyes are but mere imag-
ing instruments; it is the brain that truly sees.

While many scholars from Plato, Aristotle, Charaka, and Euclid to 
Leonardo da Vinci studied how the eye sees the world, it was Hermann 
von Helmholtz in 1867 in his Treatise on the Physiological Optics who 
first postulated in scientific terms that the eye only captures images 
and it is the brain that truly sees and recognizes the objects in the 
image (Von Helmholtz, 1867). In his book, he presented novel theo-
ries on depth and color perception, motion perception, and also built 
upon da Vinci’s earlier work. While it had been studied in some form 
or the other since ancient times in many civilizations, Helmholtz first 
described the idea of unconscious inference where he postulated that 
not all ideas, thoughts, and decisions that the brain makes are done so 
consciously. Helmholtz noted how susceptible humans are to optical 
illusions, famously quoting the misunderstanding of the sun revolv-
ing around the earth, while in reality it is the horizon that is moving, 
and that humans are drawn to emotions of a staged actor even though 
they are only staged. Using such analogies, Helmholtz proposed that 
the brain understands the images that the eye sees and it is the brain 
that makes inferences and understanding on what objects are being 
seen, without the person consciously noticing them. This was prob-
ably the first insight into neurological vision. Some early-modern sci-
entists such as Campbell and Blakemore started arguing what is now 
an established fact: that there are neurons in the brain responsible for 
estimating object sizes and sensitivity to orientation (Blakemore and 
Campbell, 1969). Later studies during the same era discovered more 
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complex intricacies of the human visual system and how we perceive 
and detect color, shapes, orientation, depth, and even objects (Field 
et al., 1993; McCollough, 1965; Campbell and Kulikowski, 1966; 
Burton, 1973).

The above brief historical accounts serve only to illustrate that the 
field of computer vision has its own place in the rich collection of 
stories of human technological development. This book focuses on a 
concise presentation of modern computer vision techniques, which 
might be stamped as neural computer vision since many of them stem 
from artificial neural networks. To ensure the book is self-contained, 
we start with a few foundational chapters that introduce a reader to 
the general field of visual computing by defining basic concepts, for-
mulations, and methodologies, starting with a brief presentation of 
image representation in the subsequent section.

Image Representation Basics

Any computer vision pipeline begins with an imaging system that 
captures light rays reflected from the scene and converts the optical 
light signals into an image in a format that a computer can read and 
process. During the early years of computational imaging, an image 
was obtained by digitizing a film or a printed picture; contemporarily, 
images are typically acquired directly by digital cameras that capture 
and store an image of a scene in terms of a set of ordered numbers 
called pixels. There are many textbooks covering image acquisition 
and a camera’s inner workings (like its optics, mechanical controls and 
color filtering, etc.) (Jain, 1989; Gonzalez and Woods, 2002), and thus 
we will present only a brief account here. We use the simple illustration 
of Figure 1.1 to highlight the key process of sampling (i.e., discretiza-
tion via the image grid) and quantization (i.e., representing each pixel’s 
color values with only a finite set of integers) of the light ray coming 
from a scene into the camera to form an image of the world.

Practically any image can be viewed as a matrix (or three matrices if 
one prefers to explicitly consider the color planes separately) of quan-
tized numbers of a certain bit length encoding the intensity and color 
information of the optical projection of a scene onto the imaging plane 
of the camera. Consider Figure 1.1. The picture shown was captured by 
a camera as follows: The camera has a sensor array that determines the 
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size and resolution of the image. Let us suppose that the sensor array 
had ×n m sensors, implying that the image it produced was ×n m in its 
size. Each sensor grabbed a sample of light that was incident on that 
area of the sensor after it passed through a lens. The sensor assigned 
that sample a value between 0 and −b(2 1)  for a b-bit image. Assuming 
that the image was 8 bit, the sample will be between 0 and 255, as 
shown in Figure 1.1. This process is called sampling and quantiza-
tion, sampling because we only picked certain points in the continuous 
field of view and quantization, because we limited the values of light 
intensities within a finite number of choices. Sampling, quantization, 
and image formation in camera design and camera models are them-
selves a much broader topic and we recommend that interested readers 
follow up on the relevant literature for a deeper discussion (Gonzalez 
and Woods, 2002). Cameras for color images typically produce three 
images corresponding to the red (R), green (G), and blue (B) spectra, 
respectively. How these R, G, and B images are produced depends on 
the camera, although most consumer-grade cameras employ a color 
filter in front of a single sensor plane to capture a mosaicked image of 
all three color channels and then rely on a “de-mosaicking” process to 
create full-resolution, separate R, G, and B images.

With this apparatus, we are able to represent an image in the com-
puter as stored digital data. This representation of the image is called 
the pixel representation of the image. Each image is a matrix or tensor 
of one (grayscale) or three (colored) or more (depth and other fields) 
channels. The ordering of the pixels is the same as that of the order-
ing of the samples that were collected, which is in turn the order 
of the sensor locations from which they were collected. The higher 
the value of the pixel, the  greater the intensity of color present. This 

190

Figure 1.1  Image sampling and quantization.



5Introduction to Visual Computing

is the most explicit representation of an image that is possible. The 
larger the image, the more pixels we have. The closer the sensors are, 
the higher resolution the produced image will have when capturing 
details of a scene. If we consider two images of different sizes that 
sample the same area and field of view of the real world, the larger 
image has a higher resolution than the smaller one as the larger image 
can resolve more detail. For a grayscale image, we often use a two-
dimensional discrete array I n n( , )1 2  to represent the underlying matrix 
of pixel values, with n1 and n2 indexing the pixel at the n1

th row and 
the n1

th column of the matrix, and the value of I n n( , )1 2  corresponding 
to the pixel’s intensity, respectively.

While each pixel is sampled independently of the others, the 
pixel incenties are in general not independent of each other. This is 
because a typical scene does not change drastically everywhere and 
thus adjacent samples will in general be quite similar, except for pixels 
lying on the border between two visually different entities in the 
world. Therefore, edges in images that are defined by discontinuities 
(or large changes) in pixel values, are a good indicator of entities in the 
image. In general, images capturing a natural scene would be smooth 
(i.e., with no changes or only small changes) everywhere except for 
pixels corresponding to the edges.

The basic way of representing images as matrices of pixels as 
discussed above is often called spatial domain representation since 
the pixels are viewed as measurements, sampling the light intensi-
ties in the space or more precisely on the imaging plane. There 
are other ways of looking at or even acquiring the images using 
the so-called frequency-domain approaches, which decompose an 
image into its frequency components, much like a prism breaking 
down incident sunlight into different color bands. There are also 
approaches, like wavelet transform, that analyze/decompose an 
image using time–frequency transformations, where time actually 
refers to space in the case of images (Meyer, 1995). All of these may 
be called transform-domain representations for images. In general, 
a transform-domain representation of an image is invertible, mean-
ing that it is possible to go back to the original image from its 
transform-domain representation. Practically, which representation 
to use is really an issue of convenience for a particular processing 
task. In addition to representations in the spatial and transform 



6 CONVOLUTIONAL NEURAL NETWORKS

domains, many computer vision tasks actually first compute various 
types of features from an image (either the original image or some 
transform-domain representation), and then perform some analy-
sis/inference tasks based on the computed features. In a sense, such 
computed features serve as a new representation of the underly-
ing image, and hence we will call them feature representations. In 
the following section, we briefly introduce several commonly used 
transform-domain representations and feature representations for 
images.

Transform-Domain Representations

Perhaps the most-studied transform-domain representation for 
images (or in general for any sequential data) is through Fourier anal-
ysis (see Stein and Shakarchi, 2003). Fourier representations use lin-
ear combinations of sinusoids to represent signals. For a given image 
I n n( , )1 2 , we may decompose it using the following expression (which is 
the inverse Fourier transform):

	 ∑∑=
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where, I u vF ( , ) are the Fourier coefficients and can be found by the 
following expression (which is the Fourier transform):
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In this representation, the pixel representation of the image I n n( , )1 2  
is broken down into frequency components. Each frequency compo-
nent has an associated coefficient that describes how much that fre-
quency component is present. Each frequency component becomes the 
basis with which we may now represent the image. One popular use of 
this approach is the variant discrete cosine transform (DCT) for Joint 
Photographic Experts Group (JPEG) image compression. The JPEG 
codec uses only the cosine components of the sinusoid in Equation 1.2 
and is therefore called the discrete cosine basis. The DCT basis func-
tions are picturized in Figure 1.2.
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Any kernel of a transform going from a pixel representation to 
a transform-domain representation and back can be written as 
b n n u v( , , , )1 2  for going forward and ′b n n u v( , , , )1 2  for the inverse. For 
many transforms, often these bases are invertible under closed math-
ematical formulations to obtain one from the other. A projection or 
transformation from an image space to a basis space can be formu-
lated as

	 ∑∑=
=

−

=

−

( , ) ( , ) ( , , , )
0

1

0

1

1 2 1 2

1 2

I u v I n n b n n u vT

n

n

n

m

 	 (1.3)

and its inverse as,

	 ∑∑= ′
=

−

=

−

( , ) ( , ) ( , , , )1 2

0

1

0

1

1 2I n n I u v b n n u v
u

n

v

m

T  	 (1.4)

Equation 1.3 is a generalization of Equation 1.2. Many image rep-
resentations can be modeled by this formalization, with Fourier trans-
form being a special case.

Image Histograms

As the first example of feature representations for images, we dis-
cuss the histogram of an image, which is a global feature of the given 
image. We start the discussion by considering a much simpler feature 
defined by Equation (1.5):

Figure 1.2  JPEG DCT basis functions.
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	 ∑∑=
=

−

=

−1 ( , )
0

1

0

1

1 2

1 2

I
nm

I n nm

n

n

n

m

	 (1.5)

This representation is simply the mean of all the pixel values in an 
image and is a scalar. We can have representations that are common 
for the whole image such as this. This is not very useful in practice 
for elaborate analysis tasks, since many images may have very similar 
(or even exactly the same) means or other image-level features. But a 
representation as simple as the mean of all pixels does provide some 
basic understanding of the image, such as whether the image is dark 
or bright, holistically speaking.

An 8-bit image has pixel values going from 0 to 255. By counting 
how many pixels are taking, respectively, one of the 256 values, we 
can obtain a distribution of pixel intensities defined on the interval 
[0, 255] (considering only integers), with the values of the function 
corresponding to the counts (or counts normalized by the total num-
ber of pixels in the image). Such a representation is called a histo-
gram representation. For a color image, this can be easily extended to 
a three-dimensional histogram. Figure 1.3 shows an image and the 
corresponding histogram.

More formally, if we have a b-bit representation of the image, we 
have b2  quantization levels for the pixel values; therefore the image is 
represented by values in the range −0 to 2 1.b  The (normalized) histo-
gram representation of an image can now be represented by

	 I i
nm

I n n i ih

n

n

n

m
b∑∑= = ∈ … −

=

−

=

−

( ) 1 ( ( , ) ), [0,1,   , 2 1]
0

1

0

1

1 2

1 2

	 (1.6)

In Equation 1.6,  is an indicator function that takes the value 1 
whenever its argument (viewed as a logic expression) is true, and 0 
otherwise. The normalization of the equation with 1

nm  is simply a 
way to help alleviate the dependence of this feature on the actual size 
of the image.

While histograms are certainly more informative than, for 
example, the mean representation defined earlier, they are still very 
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coarse global features: Images with drastically different visual con-
tent might all lead to very similar histograms. For instance, many 
images of different patients whose eyes are retinal-scanned using 
a fundus camera can all have very similar histograms, although 
they can show drastically different pathologies (Chandakkar et al., 
2013).

A histogram also loses all spatial information. For example, given 
one histogram indicating a lot of pixels in some shade of green, one 
cannot infer where those green pixels may occur in the image. But a 
trained person (or machine) might still be able to infer some global 
properties of the image. For instance, if we observe a lot of values on 
one particular shade of green, we might be able to infer that the image 
is outdoors and we expect to see a lot of grass in it. One might also go 
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Figure 1.3  Image and its histogram.
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as far as to infer from the shade of green that the image might have 
been captured at a Scandinavian countryside.

Histogram representations are much more compact than the origi-
nal images: For an 8-bit image, the histogram is effectively an array 
of 256 elements. Note that, one may further reduce the number of 
elements by using only, for example, 32 elements by further quan-
tizing the grayscale levels (this trick is more often used in comput-
ing color histograms to make the number of distinctive color bins 
more manageable). This suggests that we can efficiently compare 
images in applications where the histogram can be a good feature. 
Normalization by the size of an image also makes the comparison 
between images of different sizes possible and meaningful.

Image Gradients and Edges

Many applications demand localized features since global feature rep-
resentations like color histograms will not serve a useful purpose. For 
instance, if we are trying to program a computer to identify manufac-
turing defects in the microscopic image of a liquid-crystal display 
(LCD) (e.g., for automated quality control in LCD production), we 
might need to look for localized edge segments that deviate from the 
edge map of an image from a defect-free chip.

Detecting localized features like edges from an image is typi-
cally achieved by spatial filtering (or simply filtering) the image (Jain 
et al., 1995). If we are looking for a pattern, say a quick transition 
of pixels from a darker to a brighter region going horizontally left 
to right (a vertical rising edge), we may design a filter that, when 
applied to an image, will produce an image of the same size as the 
input but with a higher value for the pixels where this transition 
is present and a lower value for the transition being absent. The 
value of this response indicates the strength of the pattern that we 
are looking for. The implementation of the filtering process may 
be done by convolution of a template/mask (or simply a filter) with 
the underlying image I n n( , )1 2 . The process of convolution will be 
explained in detail later.

In the above example of looking for vertical edges, we may apply 
a simple one-dimensional mask of the form −[ 1,  0,  1] to all the rows 



11Introduction to Visual Computing

of the image. This filter, when convolved with an image, would pro-
duce another image whose pixel values (considering only the mag-
nitude, since the filtering results may contain negative numbers) 
indicate how dramatically the pixels around a given location rise or 
fall from left to right. It is evident that convolution using the above 
filter is equivalent to calculation of the differentiation of I n n( , )1 2  
along the horizontal direction. Hence, the filter is a gradient filter 
since its output is the horizontal gradient of the image I n n( , )1 2 . If 
one is interested in a binary edge map, where only the locations of 
strong transitions are kept, the above response image from the filter 
can be thresholded to produce that. Figure 1.4 demonstrates the use 
of the above simple filter by applying it on a quality control image 
from the LCD industry.

Figure 1.4  In the top row, the left is an image showing details of an LCD quality analysis pho-
tograph sample; on the right is the same image convolved with a [−1 0 1] filter. In the bottom row, 
the left image is the edge map threshold from the previous convolution and the last image is the 
output of a Canny edge detector, with spurious edges detected. Note how the one-dimensional edge 
detector does not detect horizontal edges but Canny detects those edges too.



12 CONVOLUTIONAL NEURAL NETWORKS

The above simple filter may be transposed to detect transitions in 
other directions. Further, typically two-dimensional filters are used 
for images, and the size of the filters may vary too.

Some of the earliest edge detection filters are summarized in Table 
1.1. Although these rudimentary filters may produce image gradi-
ents that can be thresholded to form an edge map, one may get very 
noisy results from such a simplistic approach. For one thing, it is not 
easy to determine a good threshold. Also, the raw gradient values 
from a natural image may remain strong for a small neighborhood (as 
opposed to being large only along a thin line), and thus simple thresh-
olding may lead to many thick edges (if they still give an impression 
of an edge at all). Therefore, some postprocessing steps are typically 
required to produce edge maps that are more localized (thin) and con-
form better to the perceived boundaries of the regions in the original 
image. Perhaps the best-known approach for a very good postprocess-
ing job is the Canny edge detector (Canny, 1986), whose results are 
also included in Figure 1.4.

We now formalize a little bit the filtering or convolution process, 
which we have loosely described above. Consider a two-dimensional 
filter (or mask, or template, or kernel, all used interchangeably in this 
context), F l w( , ), defined on ,   [ , ]a a b b[ ]− × − , we center the filter 
around the origin 0,0 for convenience. Convolving the filter with an 
image ( , )1 2I n n  and producing an output image ( , )1 2Z n n  is repre-
sented in the following:

	 ( , ) ( , ) ( , ) ,1 2 1 2 1 2Z n n F l w I n l n w n n
l a

a

w b

b

∑∑= + + ∀
=− =−

	 (1.7)

Table 1.1  Some Popular Edge Detection Filters

OPERATOR HORIZONTAL VERTICAL DIAGONAL ANTIDIAGONAL

Roberts

Prewitt −1 −1 −1 −1 0 1 0 1 1 −1 −1 0
0 0 0 −1 0 1 −1 0 1 −1 0 1
1 1 1 −1 0 1 −1 −1 0 0 1 1

Sobel −1 −2 −1 −1 0 1 0 1 2 −2 −1 1
0 0 0 −2 0 2 −1 0 1 −1 0 1
1 2 1 −1 0 1 −2 −1 0 0 1 2

−1 0
0 1

0 −1
1 0
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Note that the above convolution is supposed to produce an output of 
the same size as the input. Some care needs to be taken when dealing 
with the pixels on the boundaries of the image so that the convolu-
tion is well supported. Typical ways of doing this include padding as 
many additional rows/columns as necessary along the borders before 
doing the convolution to maintain the size of the image. This type of a 
convolution is called a ‘same’ convolution. If padding were avoided, we 
get a “valid” convolution whose size is smaller than the original image 
by ( 1) ( 1)a b− × −  pixels. The two-dimensional filter F  itself can be 
considered a small image of size + × +a b(2 1) (2 1). Although square 
filters are most common, we intentionally use different sizes (a and b) 
for the horizontal and vertical dimensions to indicate the possibility of 
allowing nonsquare filters.

The gradient filters discussed thus far are based on first-order differ-
entiations of the image I n n( ,  )1 2 . Laplacians are second-order filters, 
which will detect a ramp-like edge as a pair of positive and negative 
peaks in the second-order derivatives and hence help localization of 
the edge as the zero-crossing between the two peaks. Mathematically, a 
Laplacian of a two-dimensional function f x y( , ) is defined by

	 =
∂
∂

+
∂
∂

″
2

2

2

2f f
x

f
yL 	 (1.8)

Masks implementing approximations of the Laplacians are shown 
in Table 1.2. The Laplacian is isotropic. Also, it is susceptible to noise 
due to its second-order nature. Hence, it is often applied on an image 
that has been smoothed by some filtering process for noise reduction. 

Smoothing an image may be achieved by averaging pixels in a small 
neighborhood. A simple averaging filter is more commonly referred to 
as a box filter, which is of the form:

	 [ ]=
×

∀ ∈ … ∈ …( , ) 1 1 1, 2,  , [1, 2, , ]B u v
U V

u U v V 	 (1.9)

Table 1.2  Laplacian Operators

0 −1 0 −1 −1 −1
−1 4 −1 −1 8 −1

0 −1 0 −1 −1 −1
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where ×U V  is the size of the filter. For instance, a ×3 3 averaging 

box filter is of the form 
















1
9

1 1 1
1 1 1
1 1 1

. This filter would average pix-

els from a neighborhood of nine pixels. A Gaussian smoothing filter 
is a weighted average that weighs the pixels proportionally using a 
Gaussian function: The farther the point is from the center, the lower 
it is weighted. Gaussian filters are of the form:

	 =
πσ

− +
σ






G u v e
u v

( , ) 1
2 2

2 2

2
	 (1.10)

Apart from giving us a weighted average useful in noise reduc-
tion, Gaussian smoothing filters are in general preferred over box 
filters since a Gaussian-shaped kernel is often used to model defocus 
and the point spread function of a sensor unit on the imaging plane. 
Gaussians can also be approximated into 2D kernels to be used as 
convolutional masks. A typical approximation of a ×3 3 Gaussian is 

























1
16

1 2 1
2 4 2
1 2 1

. The advantage with Gaussians is that the Fourier 

representation of a Gaussian is another Gaussian. With the use of 
the convolution theorem to great effect, we can create faster and more 
efficient convolutions if we use Gaussians.

The Laplacian of the Gaussian (LoG) is the Laplacian applied to a 
Gaussian-filtered image. The Gaussian filter smooths the image and 
the Laplacian detects the zero-crossings on a smoothed image. The 
points that it detects are usually good key points around which there 
might lurk good attributes. Since the convolution operation is associa-
tive, we can create a LoG filter independent of the image. The LoG 
filter takes the form:

	 = −
πσ

− +
σ











− +
σu v u v e

u v

LoG( , )   1 1  
24

2 2

2
2

2 2

2 ,	 (1.11)

which is essentially a second-order differential of the Gaussian func-
tion itself. The LoG can also be approximated by a convolutional 
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mask. This approximation can then be used as a mask to convolve 
with an image just like a normal convolution. Figure 1.5 is an example 
of a LoG mask.

Going beyond Image Gradients

Image gradients and edges are very rudimentary image feature rep-
resentations. Such features may already support some inference tasks. 
For example, the edge map of a template image of a certain object 
may be compared with the edge map of a given image to detect and 
locate the occurrence of that object in the given image, as done in 
Li et al. (2001b). However, these rudimentary features find more use 
in the construction of more sophisticated features, such as lines from 
the Hough transform (Hough, 1962), Harris corners (Harris and 
Stephens, 1988), the scale-invariant feature transform (SIFT) features 
(Lowe, 1999), and the histogram of oriented gradient (HOG) feature 
(Dalal and Triggs, 2005), which we discuss below only briefly since 
there are abundant references on them in the literature and omitting 
the details of their inner workings will not hinder our subsequent 
discussions on neural computer vision.

Line Detection Using the Hough Transform

Edges detected from a natural image are often fragmented since most 
approaches to edge detection process the pixels by considering only a 
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Figure 1.5  Laplacian of Gaussian.



16 CONVOLUTIONAL NEURAL NETWORKS

local neighborhood. If, for example, there is a building with straight 
lines as its contour in the image, an edge detector may not be able 
to produce a nicely connected contour, but rather some fragmented 
edge segments on the contour. Further, the edge map is nonpara-
metric in the sense that one does not obtain any parametric model 
for the contour in the above example. The basic Hough transform for 
line detection is essentially a voting procedure in the two-dimensional 
parameter space for lines: any point in this space defines an equa-
tion for a line in the image domain, and thus any edge pixel casts a 
vote for any lines passing through that edge pixel. After all the votes 
are counted, local maxima in the parameter space define equations 
for lines that cover many edge pixels. While the basic version of the 
Hough transform is only for line detection, extensions have been 
made for detecting other shapes (Ballard, 1981).

Harris Corners

Sometimes point features are desired. For example, in estimat-
ing global transformation between two images, one might need 
to find a small set of matched points in the given two images. A 
good feature point should have some uniqueness if it is to be use-
ful. Local features like pixels with large spatial gradients may be 
found by gradient filters as discussed above, but in practice, many 
such features may be too similar to each other to be useful for a 
matching task. For example, pixels along the same edge segment 
might all have similar gradients and thus cannot be easily distin-
guished from each other when considered in isolation. Looking at 
the problem from another angle, if we examine a straight line/edge 
through only a small window and if the line/edge is moving along 
its axis, we may not even be able to notice the movement (until per-
haps when the end of the line moves into the visible window). This 
is the so-called aperture problem in motion estimation in computer 
vision. The Harris corners are defined based on a principle derived 
from the above observation: a good point feature should be one 
whose motion, whichever direction it is, would be evident even if 
viewed only through a small window. Visually, such good point 
features typically correspond to some sort of “corners” in the image. 
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In implementation, corners are detected through Eigen analysis of 
the structure tensor, a matrix derived from local image gradients.

Scale-Invariant Feature Transform

For a feature point to be practically useful, it should have some level 
of invariance to typical imaging or other conditions that impact the 
quality or appearance of the acquired images. For example, if we rely 
on some point features to match or track the same object across differ-
ent images captured by different cameras from different viewpoints, 
we require that such features be invariant to changes in scale, rotation, 
and even appearance.

SIFT is an algorithm for detecting feature points (customarily 
called SIFT features) that are supposedly invariant to changes in 
scale and rotation, or have a slight appearance change due to varying 
illumination or local geometric distortion. The algorithm first creates 
a multiscale representation of the original image. Then it finds the 
extrema in the difference of Gaussians in that representation and uses 
them as potential feature points. Some criteria are used to discard 
any potential feature point that is deemed a poor candidate (e.g., low-
contrast points). Finally, a descriptor will be computed for any of the 
remaining points and its neighboring region. This descriptor (and its 
location in an image) is basically what we call a SIFT feature. The full 
algorithm as described in Lowe (1999) also covers other implementa-
tion issues related to fast matching of objects based on SIFT features.

Histogram of Oriented Gradients

So far we have seen both local and global feature representations of an 
image. Local histograms could represent the histogram of a patch of 

× <k k k n m, , . This would describe the color or pixel distribution or 
edge distribution over a small region (Park et al., 2000). One popular 
locally global feature space is the HOGs first proposed by Dalal and 
Triggs (2005). Given an image we can easily obtain gradient magni-
tudes for all pixels in the image. Consider also quantizing the gradi-
ent directions into only j  possibilities/bins. Using a nonoverlapping 
sliding window of ×k k, we can run through the entire image and 
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create patchwise histograms, with the value of the histogram being 
the magnitude of the gradient in the corresponding direction. We 
will have a j-bin histogram for each patch, with each bin (represent-
ing some range of angles) holding the value of the magnitude of that 
direction’s gradient in that block. The HOG feature is a shape repre-
sentation of the image as some structural information is retained in 
the feature. Figure 1.6 shows a visualization of this representation. In 
this representation for each block, the length of the arrow describes 
the magnitude of the gradient bin in the direction that arrow is point-
ing to. Each block has an 8-bin histogram of gradients. As can be 
noticed, this representation shows the direction of edges in a manner 
that is better than trivial edge features. These show the orientation of 
gradients and also the strength of those gradients.

Thus far, we have introduced various types of filters that are 
designed to extract different features. These examples illustrate that 
filters can be designed to be anything that is feasible and that can 
effectively visualize an image in terms of some representation. A fea-
ture is after all a particular attribute with which we want to measure 
the data. All we need to do is to design good filters for computing 
good feature representations. Indeed, until convolutional neural 
networks (CNNs) became popular, a major task in computer vision 
was the designing of efficient and descriptive task-specific feature 
representations. Even today, good features are the main reason for 
the incredible performance of computer vision. Modern neural com-
puter vision relies on neural networks in designing problem-specific 

Figure 1.6  Visualization of HOG features. Figure generated using the Hoggles tool. (From 
Vondrick, Carl et al., Hoggles: Visualizing object detection features. Proceedings of the IEEE 
International Conference on Computer Vision, pp. 1–8, 2013).
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features. Neural networks that design their own image features are 
only recently popular and it is helpful to study and understand how 
feature representations and machine learning worked prior to neu-
ral feature representations, before we proceed to machines that learn 
their own features.

Decision-Making in a Hand-Crafted Feature Space

We have reviewed some of the most common methods for repre-
senting images in spatial, transform, and feature domains. All these 
representations have found use in various computer vision applica-
tions. Even the basic matrix representation in the pixel domain can 
be used in simple tasks like template matching, change detection in 
video, region segmentations, etc. However, more complex tasks often 
demand elaborate processing steps that typically operate in some 
transform domain or some feature space. Consider, for example, 
object recognition in images. In general, we need some feature rep-
resentation for the images to be processed (including feature-based 
models for the objects to be recognized), and then some decision-
making procedures are employed to determine whether a new image 
should be classified as one of the given objects (or declared as not 
belonging to the given set of objects). The decision-making process is 
often based on a learning approach, where the parameters that con-
trol decision-making are figured out by using a training set of data 
samples (typically with known labeling information). Accordingly, 
machine learning approaches have been among the most used tech-
niques in many computer vision tasks. This section will present basic 
approaches to decision-making in general computer vision problems 
where statistical learning approaches are employed to infer informa-
tion from data. We will start with a trivial, but instructive, example of 
determining whether an image was captured during the day or night, 
using only the image (i.e., not relying on metadata that might have 
stored the time of day).

Suppose we have a dataset of both day and nighttime images 
and that we already know which images were captured at night 
or during the day (i.e., the images have been labeled). We further 
assume that these images were captured outdoors (and hence it is 
not the case where artificial lights control the image brightness). 
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Let us extract a very simple feature representation for each image: 
The mean of all the pixel values in the images, such as the one 
described in Equation 1.5. Once all the means from the images are 
extracted, we can make a histogram plot of these mean values. Let 
us also make another assumption that the histogram plots can be 
modeled using Gaussian probability distributions, one for day and 
one for nighttime images. Figure 1.7 illustrates such distributions. 
The horizontal axis is all possible mean values from 0 to 255 and the 
vertical axis shows the relative counts of the number of images hav-
ing a particular mean value. The dotted line is the histogram of the 
images that we know are nighttime images and the solid line is the 
histogram of the images that we know are daytime images. From 
this histogram, we see that nighttime images are generally darker 
than the daytime images, which should be intuitive. Furthermore, 
the histograms effectively give us an estimation of the probability 
of the mean value of the image taking some particular value. For 
example, we may say that the nighttime images are very likely to 
have an image mean around 64 (i.e., around the peak of the dotted 
line distribution), while the daytime images are more likely to have 
a mean around 145.

Now suppose that we are given a new image, whose capture time 
is unknown to us, and we want to estimate that. We compute the 
mean of this image and found it is 121 (shown by the star mark 
in Figure 1.7). Using the knowledge of the distributions that we have 
established from the training set, we can conclude that the new image 
is more likely a bright image taken during daytime than otherwise. 
The reason why we settled on this decision is because, at that mean 
value of 121, we have in our training dataset more than twice as many 
daytime images as nighttime images.

Bayesian Decision-Making

We now expand the above intuition to formalize a decision-making 
procedure: Bayesian classification. Probabilistically, Figure 1.7 is a 
tale of two Gaussian distributions. Let us index the images (repre-
sented by their means) by variable i and thus we can use “image i ” 
or simple i to stand for the ith image in our dataset. Let us have 
a variable ω representing i being a daytime or nighttime image. If 
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ω = 0, the image is a nighttime image and thus ω = 1  means that the 
image was shot during the day. Now the histograms in Figure 1.7 can 
be interpreted as the class-conditional probability density functions 
(PDFs): the dotted line represents the PDF of the image mean for 
nighttime images, that is, ( | 0)p x ω = , and similarly the solid line is 
for ( | 1)p x ω = . We call ( | 0)p x ω =  and ( | 1)p x ω =  class-conditional 
PDFs (or simply class-conditionals in short). We will further assume 
that each image is equally likely to be from daytime or nighttime (also 
called as the uninformative prior assumption). Or, from the given 
training set, if we see an equal number of images from either group, 
we will draw this conclusion. Formally, this is to say the prior prob-
abilities of the two classes are equal: ω = = ω = =P P( 1) ( 0) 0.5. Note 
that, in general, these prior probabilities may not be equal.

Given an image j , its mean X can be computed. The optimal 
(minimum average error) decision is to classify the image (as a day-
time or nighttime image) by comparing the a posteriori probabilities: 

( 0 | )P X xω = =  and ( 1| )P X xω = = . Image j will be given the class 
label (0 or 1) that gives rise to a larger a posteriori probability. Since the 
a posteriori probabilities can be related to the class-conditional PDFs 

ωp x( |  )  and the priors, the above decision rule can also be stated in 
terms of these quantities as

ω = 0  if ( 0) ( | 0) ( 1) ( | 1)P p x P p xω = ω = > ω = ω =  and 

ω = 1 otherwise� (1.12)

The incorporation of priors into this decision is central to Bayesian 
approaches. In the above example, if, say, we know from our dataset 
that, irrespective of the means, there are more images that are natu-
rally taken during daytime than those that are taken during night, 
potentially because more people are awake and clicking during day-
time and therefore are more likely to take images during daytime, 
that information is incorporated in the decision rule of Equation 1.12. 
Note that, when the feature value x is given, the class-conditionals 

( | )p x ω   become a measure of how likely that particular value x comes 
from the underlying classes, and thus the class-conditionals are now 
viewed as the likelihood functions (of the classes, assuming a given x). 
In this view, a prior is the bias (based on prior knowledge we had) that 
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we use to weigh the likelihood (based on what we can learn from the 
current data) in order to strike a balance between prior information 
and the current information.

In the above example, the decision rule will eventually boil down 
to finding some xd , which forms a decision boundary, or simply a 
single point in this one-dimensional feature space. Any image with 
mean <X xd  will be classified as a nighttime image and classified 
as a daytime image otherwise. In Figure 1.7, the decision boundary 
around =xd 109 would be the optimal solution when the priors are 
equal, whereas =xd 95 illustrates the optimal decision for a case where 

ω = >P( 1) 0.5.
The Bayesian decision process is applicable whenever we are able 

to model the data in a feature space and the distributions (the class-
conditionals) of the classes and the priors can somehow be obtained. 
In that case, optimal decision boundaries can be derived as above. 
In practice, both the priors and the class-conditionals need to be esti-
mated from some training data. The priors are scalars and thus may 
be easily estimated by relative frequencies of the samples from each 
class. There are two general types of density estimation techniques: 
parametric and nonparametric. In the earlier example, we essentially 
assumed the PDFs of the image means were Gaussian (i.e., a para-
metric approach). A reader interested in density estimation may refer 
to standard textbooks like Duda et al. (2012).

Decision-Making with Linear Decision Boundaries

While Bayesian decision-making is elegant and optimal (in the sense 
of providing minimum average misclassification error), as long as all 
the necessary probabilities and densities are available, for many real 
applications, we cannot reliably estimate those required quantities. We 
may then set out to find some simple linear hyperplanes that directly  
separate the classes in the feature space. The linearity is introduced 
really only for simplifying the problem and the ideal/optimal class 
boundaries are of course, in general, not linear. In the earlier example, 
the problem becomes one of finding a single point xd  (without relying 
on the densities). If we had a way of finding out that point, we could 
start making decisions. In a linear approach, this point is computed as 
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a linear combination of the features. For example, one might use the 
following linear approach to find a possible xd :

	 ∑ ∑= +





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


= =
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x
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1 1
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1 2

	 (1.13)

where N1 and N2 are the number of samples from class 1 and class 2, 
respectively. Intuitively, this simple linear estimate for the decision 
threshold xd  is just the middle point between the two means com-
puted respectively for each class of images. While there is no reason to 
believe this solution would be optimal (as opposed to the guaranteed 
optimality of the Bayesian decision approach), we enjoy the simplic-
ity arising from the assumption of linearity: We effectively only did 
some simple additions of the samples (along with three divisions) and 
we obtained the solution without worrying about anything related to 
the underlying densities or probabilities. In practice, since we cannot 
guarantee the above solution is optimal, we may define a more general 
linear form of the solution as

	 ∑=
=
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x w xd
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N N

i i

1

1 2

	 (1.14)

and then try to figure out the weights wi , so as to obtain a better solu-
tion. It is obvious that the earlier solution of Equation 1.13 is a special 
case of the solution in Equation 1.14.

The above basic idea can be extended to higher dimensional feature 
space: For two-class classification, we will have a line as the decision 
boundary in a two-dimensional space, a plane in a three-dimensional 
space, and in general a hyperplane in higher dimensional spaces. The 
task is now to estimate the parameters for the hyperplane. There are 
different techniques to do this, and most of them rely on some opti-
mization procedure: An objective function is first defined (which is a 
function of the hyperplane parameters), and then the optimal param-
eters are sought to minimize (or maximize, depending on the for-
mulation) the objective function. There are both iterative approaches 
(e.g., those employing gradient descent) and one-step approaches 
(e.g., pseudoinverse used with minimum mean-squared error as the 
objective function).
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Among all the linear approaches, perhaps the most well known is 
the support vector machine (SVM), where the so-called margin, the 
distance between the decision hyperplane and the closest samples, is 
maximized (Cortes and Vapnik, 1995; Chapelle et al., 1999). Nonlinear 
extensions to the basic linear approaches exist. The idea is to allow the 
original feature space to be (nonlinearly) mapped to a new space and 
then apply the linear approach in the new space, hence effectively 
achieving nonlinear decision boundaries in the original space. A kernel 
SVM attains this goal in a smart way by using the kernel trick and hence 
explicit feature mapping is not necessary (Bishop, 2001).

A Case Study with Deformable Part Models

The various representations and the decision-making techniques we 
have discussed so far seem to have equipped us with necessary gears 
for attacking any computer vision problem. Unfortunately, real appli-
cations may be much more complicated than the illustrative examples 
we have seen so far. Consider, for example, the task of recognizing 
nonrigid objects. Even those advanced features we introduced earlier 
may fall short of providing adequate description of the objects under 
varying structures and poses, let alone supporting the deployment of a 
decision-making algorithm like SVM. We now use this task of recog-
nizing nonrigid objects, such as humans in an image, as a case study 
for illustrating how to develop additional approaches, building on top 
of the basic representations/tools we have introduced thus far.

Consider HOG features as previously discussed. If we want to 
detect pedestrians on roads, for example, we can create a dataset of 
images that have pedestrians with bounding boxes on them, and 
images that either have pedestrians where the bounding boxes are 
not on them or have non-human objects boxed. This accounts for our 
dataset from which we want to learn what a pedestrian on the road is 
and what is not. We then extract HOG features for all the bounding 
boxes such as the one in Figure 1.6. We can use these features to train 
a classifier, using one of the statistical learning techniques described 
earlier or maybe even a simple template matching scheme.

In doing so, we are expecting the system to learn to detect objects 
that are of a certain structure in certain poses and these poses only. 
While this may work in some cases such as upright humans, clearly 
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there are cases where this will be insufficient. Deformable part mod-
els (DPMs) create models for objects with the assumption that mod-
els are made of subparts. These were proposed several times in the 
past with modifications and revisions under the name pictorial struc-
tures (Fischler and Eschlager, 1973; Felzenszwalb and Huttenlocher, 
2000). The subparts are detected as objects as previously and the main 
object is built using the subparts. While we only know from our data-
set a bounding box for where the object is in the given image, we do 
not know what their parts are. These parts and their relative locations 
are learnt as part of the algorithm itself.

DPMs work using two components: the parts and the springs. Parts 
are HOG templates for each of the parts themselves, and springs are a 
geometric prior or a cost of having a part at a certain location relative 
to the other parts. Part models create a matching score for the part 
themselves and the spring ensures that the object as a whole can be 
represented in a meaningful fashion using the parts. This aligns in a 
sense with the so-called Gestalt principles that deal with reasoning 
about the whole from the parts (e.g., see Tuck, 2010). This enables us 
to model a lot of varied poses and perspectives.

There have been several gradual updates to DPMs. The most recent 
incarnation, which uses only modeling and not grammar, was one 

Figure 1.8  Deformable part models. On the left, a person is detected using the root filter and 
the part filter, in the middle is a person’s root filter, and on the right are the part filters. This picture 
was produced using the DPM VOC release 1 code. (From Felzenszwalb, Pedro F. et al., Cascade object 
detection with deformable part models. Computer Vision and Pattern Recognition (CVPR), 2010 IEEE 
Conference on. IEEE. pp. 2241–2248, 2010.)
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of the popular computer vision systems until deep CNNs took over 
(Felzenszwalb et al., 2010). DPM creates a score for each object and 
its location. The score is a combination of the root score, which is 
exactly the same as the Dalal and Triggs method, and the scores of 
all part matches and the scores of all the springs (Dalal and Triggs, 
2005). It can be described using Equation (1.15):

	 ∑ ∑… = −
( )= ∈
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i

n

i i

i j E

ij i j( ,   , , ) ( ) ( , )1 2
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	 (1.15)

The first term is the matching score for the parts and the second 
score is the sum of pairwise spring scores for all parts relative to 
each other. If this score is maximized over all combinations of parts, 

…p p pn,  , ,1 2 , we get a hit in matching. Some implementations of this 
algorithm use dynamic programming to search through all of these 
parts and have been released for public use. Figure 1.8 illustrates an 
example using one such publicly available package. Modeling objects 
like this is more reliable than using only root models and thus has 
led to higher performance in many state-of-the-art object detection 
benchmark datasets.

Migration toward Neural Computer Vision

Thus far, we have studied some basics of what form the fundamental 
building blocks of traditional computer vision. As we see from the 
preceding examples, a traditional computer vision pipeline involves 
defining some feature representation, be it local or global or some 
combined representation of local and global properties, and a pattern 
detector/classifier, be it Bayesian or SVMs or perhaps model-based 
pattern detectors such as deformable part models. Such a system is 
illustrated in Figure 1.9.

Feature extractor Output informationPattern recognizer

Figure 1.9  Traditional computer vision system.
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Obviously, in such a processing pipeline, the innovation opportuni-
ties for performance improvement lie in finding a better feature rep-
resentation, or developing a better classification scheme, or often both 
since a new feature representation often demands some new algo-
rithms for classification. It is often challenging to rely on any explicit 
set of rules for designing perfect features and/or classifiers for a given 
problem, but on the other hand, some sort of training data may be 
available, and many computer vision researchers have been employing 
machine learning approaches to address the need for new methods. 
For example, in Nagesh and Li (2009), a new representation for face 
recognition was proposed, leveraging the compressive sensing theory 
(Candes et al., 2006) in compactly representing a set of images from 
the same subject. In Kulkarni and Li (2011), image features are defined 
as affine sparse codes that are learned from a large collection of image 
patches, and such features are then used for image categorization. An 
example of joint feature and classier learning is Zhang and Li (2010), 
where a dictionary for sparse coding (i.e., a feature representation) as 
well as a classifier using the sparse representation of face images under 
the dictionary is jointly learned from some labeled face images. It is 
worth noting that many manifold learning techniques seek more effi-
cient representations of the data in some subspaces where features for 
classification may be done better, and thus they directly contribute to 
the feature extraction stage of the above processing pipeline (Belkin 
and Niyogi, 2001; Tenenbaum et al., 2000; Roweis and Saul, 2000).

While progress has been made, a pipeline such as that in Figure 1.9 is 
not without issues. One prominent difficulty is that the explicit design of 
a feature extractor is, in most cases, application and data dependent and 
thus a designer would often need to handcraft new features for a new 
application or even a new type of data for the same existing application. 
Also, handcrafting features is, by itself, a task requiring a lot of creativ-
ity,  domain knowledge and experience from trial and error, and thus it 
is unrealistic to expect anyone to just come up with something close to 
an optimal solution (if one exists) (Venkatesan, 2012).

Recent years have witnessed the resurfacing of a class of approaches 
employing CNNs for addressing the above challenge, many under the 
name of deep learning. Artificial deep neural networks refer to a class 
of learning approaches where the weights for an input–output map-
ping are structured according to a network (LeCun, 2015). The key 
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task of learning the weights is in fact quite similar to what we intro-
duced earlier for learning the weights of linear classifiers, although 
neural networks typically learn hierarchical and nonlinear mappings. 
We have intentionally delayed the discussion of this class of learning 
approaches since CNNs and their variants are a focus of this book, 
and we will elaborate further in subsequent chapters.

Earlier in this chapter we saw examples of a kernel/mask being 
used to convolve with an image for gradient computation. CNNs have 
classification layers and convolutional layers, and the latter employs 
convolutional kernels whose weights are learned from the data, thus 
effectively achieving feature learning and classifier learning within 
the same framework. Using a CNN of many layers was already found 
long ago to be able to deliver the best performance for a challenging 
automatic target recognition task (Li et al., 1998, 2001a), and using 
learned kernels as general features was also attempted before (Li and 
Li, 1999). But nowadays the availability of massive datasets as well as 
a phenomenal increase of computing power (compared with 15–20 
years back) have enabled the training of much deeper networks for 
much more challenging problems. It appears that neural computer 
vision has now arrived in an era in favor of a data-driven approach 
to learning not only classifier but also feature representations, and 
indeed some CNN models have been used as off-the-shelf feature 
detectors (Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; 
Szegedy et al., 2015; Soekhoe et al., 2016; LeCun, 2015). This concise 
book will walk the reader through an exploration of modern neural 
computer vision approaches employing deep networks. We will start 
by presenting the necessary primaries in next couple of chapters.

Summary

The history of humanity is measured by the constant increase of 
human capabilities by the development of technology. In this quest, 
computer vision has been at the forefront to help us see better in 
all contexts. While handcrafted features have been popular, recent 
advances and the popularity of deep neural network-based learning 
have shown much promise and potential. The book will discuss the 
new class of approaches built with CNNs that has greatly contributed 
to many recent breakthroughs in computer vision.
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2
Learning as a  

Regression Problem

In Chapter 1, we saw some basic representations of the images and a few 
techniques of inference (mostly classification) based on those represen-
tations. It is evident from the discussion therein that machine learning 
has been a key to many computer vision tasks. Many of the machine 
learning tasks in computer vision may eventually be viewed as a general 
regression problem where the goal is to figure out a mapping from some 
input data to some output data. In the case of object/image classifica-
tion, we are effectively finding a regression model from some feature 
vectors to some labels. A regression model may even be used to depict 
the mapping from some basic image representations, for instance, the 
raw pixel values, to some other abstract representations such as a com-
pact real-valued feature vector. While Chapter 1 serves to only illustrate 
these particular examples, this chapter conducts a thorough and formal 
exploration of regression as a mathematical tool.

To facilitate the discussion of the key ideas without being burdened 
by the complexity of often high-dimensional image features, we pull 
back a little and create a more primitive feature space. We first present 
linear regression models for this illustrative feature space. Analytical 
solutions are developed, including ideas of introducing regulariza-
tion to the basic formulation. Extension to the basic linear models is 
then discussed. The latter part of this chapter is devoted to iterative 
approaches to finding a solution, which is useful for real problems 
where finding analytical solutions is too difficult or not possible at all.

Supervised Learning

The visual features we studied in Chapter 1, though intuitive, are a 
bit too sophisticated for a basic understanding of some of the funda-
mentals of machine learning. Let us create a more relatable and lower 
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dimensional dataset for a more intuitive study of some fundamentals 
of machine learning. Assume that you are a human resource manager 
at a top data science firm and that you are planning to make strategic 
human resource expansions in your department. While interview-
ing candidates, you would like to know antecedently how much that 
candidate’s pay scale is likely to be. In today’s market where data 
scientists are in strong demand, most candidates have a free-market 
value they are predisposed to expect. As a data scientist yourself, you 
could model a future candidate’s potential compensation and use this 
knowledge to negotiate during an interview.

A straightforward way to approach this problem is to use the 
compensation of all those who are already employed by your firm 
in estimating a future employee’s pay. Say your company has n m+  
employees. If you assemble a dataset of your current employees, you 
may come up with Equation 2.1 (considering for now only the first n 
employees as the training data):
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where xi d∈  is a d-dimensional sample with each dimension cor-
responding to a particular value of an attribute of the employee and 



1yi ∈  is the salary of the employee. An attribute of the employee 
could be his or her years of experience in the field, or his or her rank 
at stackoverflow.com, or the compensation of his or her previous posi-
tion, and so forth. The rest of the m samples that also have similar form 
are reserved for later use. xi ’s are often interchangeably referred to as 
features, representations, samples, data, predictors, covariates, properties, 
or attributes. They are called representations because xi represents the 
person. The representational space or the feature space, which in this 
case is d , is a vector space that is closed with all possible candidates, 
each represented as a vector in this space. Each sample is a vector or a 
point in such a space. Similar to the image features that we discussed 
in Chapter 1, the features here describe the samples using attributes 
that relate to what we are trying to learn.
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We use the terms variates, targets, or labels when referring to each yi .  
These are what we are trying to learn. To learn is to establish a map-
ping between the features and the labels. To model the compensation 
of the employees, consider that   ,1xi ∈  a one-dimensional feature, 
perhaps the number of years of experience a candidate has in the field. 
The data might look something like that shown in Figure 2.1.

Supervised learning is the process of establishing a relationship or map-
ping through a model between ( , )yx  using ( , )     [1, ] y D i ni ∈ ∀ ∈xi  
such that given a new sample Dxn j ∉+  and j m< , the model esti-
mates yn j+ . In other words, we want to learn a model using a part of 
the dataset that we collected such that given a sample from the other 
part, we should be able to predict the associated label.

We call the dataset D the training dataset and the set of samples 
,  ( , ]i n n m∈ +xi  the generalization dataset. The generalization dataset 

is typically the real world. If we have the knowledge of the actual tar-
gets of the samples in the generalization set, we call it the testing set, 
as we can use it to evaluate the quality of our model before deploying 
it in the real world. A model is a functional transformation with a well-
defined architecture that maps samples from the space of the features 
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Figure 2.1  Employee compensation dataset.
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to the space of the labels. Models are of the form ˆ ( , )g=y X w  where 
w are the parameters or weights that transform X  to ŷ. Notationally, 
X  refers to rows of data vectors (columns) in matrix form and ŷ refers 
to a list of predictions, one for each row in X . We use these nota-
tional systems, with slight abuse, to represent matrices and vectors. 
Note that we use ŷ instead of y here to distinguish between the pre-
dicted outputs and the ground truth labels from the dataset. In short, 
a model is a functional form that was predetermined that depends 
on some to be determined parameters whose values are to be learned 
using the data. Sometimes, this functional form is also referred to as 
a hypothesis.

The rationale for training from and testing on datasets is that we 
cannot, pragmatically, train from and test on the real world dynami-
cally. The most important criterion of training and testing datasets is 
that they must be static, but as similar to the real world as possible. 
The formal way to define such a similarity is by using distributions. 
Suppose that the real world obeys a probability distribution for the 
data we observe. In our case, the salaries from the list of potential can-
didates requesting a particular salary and the list of extant candidates 
earning a salary follow some probability distribution. We assume that 
the distribution of the data we possess is similar if not the same. This 
is easy to realize in this example because our dataset itself is sampled 
from such a real world. A dataset that is sufficiently densely sampled 
will mimic the real world sufficiently accurately with few surprises. If 
we have infinite samples in a dataset, we can guarantee that the dataset 
mimics the real world. The more samples we draw supervision from, 
the more reliable our dataset, and ergo, the more reliable the models 
we learn from it (Button et al., 2013). It is to be noted, however, that 
in machine learning, we are only trying to learn a fit to the dataset 
with the hope and understanding that such a fit is the best we could 
do to fit the real world. In this perspective, supervised machine learn-
ing models mostly the distribution of the real world by obtaining an 
approximation using the given training dataset that we have sampled.

Linear Models

Let us now make an assumption that simplifies the problem: Let us 
posit that the experience of the candidates and their compensation are 
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linearly related. What this means is that the relationship between the 
candidates’ experience and the salaries is captured by a straight line. 
With this assumption, we have converted this problem into a lin-
ear regression problem. Linear regression and its variants are some of 
the most commonly used models in data analysis (Neter et al., 1996; 
Seber and Lee, 2012; Galton, 1894). With the assumption that our 
data and the labels are linearly dependent, let us create g  as a linear 
model: If 

1∈x  then

	 = = +wˆ ( , ) 1y g x w x b  	 (2.2)

If 

d∈x  then

	 ˆ
1

y w x b
i

d

i
i∑= +

=

 	 (2.3)

wi are the parameters of the linear model g  and they represent the 
norm of the underlying hyperplane fitting the data. Customarily, b is 
considered a part of w, such that 0b w=  and 10x = . With these con-
ditions, we can write Equation 2.3 in matrix form as

	 = w xŷ T  	 (2.4)

It appears from Figure 2.1 that the base salary with 0 years of expe-
rience was about $100,000 and for every year there seems to be an 
additional $10,000. With this knowledge, we can now make a model 
with 10,0001w =  and 100,0000w = . Figure 2.2 shows a linear model 
that fits the data with these parameters.

It is one thing to look at a line or curve in a two-dimensional 
dataset and estimate the model parameters (simply the slope of the 
line and its intercept with vertical axis in this case), but it is another 
task entirely to look at a multidimensional dataset and estimate 
the general weight vector of Equation 2.4. To be able to fit linear 
models to larger and high-dimensional datasets, we would like to 
have a formal way to estimate these parameters. The process of esti-
mating these parameters such that we get a good fit to a dataset is 
called training.

Initially, given just the dataset and armed with the knowledge that 
we are dealing with a linear model, we do not know what the model 
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parameters ought to be. In simplistic cases, one might be able to write 
down a system of linear equations and solve for a unique solution. 
However, for most real datasets, a solution is typically obtained by an 
iterative process: We start with some initial guess for a solution and 
then iteratively improve upon the solution. We could initialize the 
model with some random numbers. Unless we are extremely lucky, 
the randomly created model is sure to produce some, if not a lot of, 
wrong predictions for the target. We can then adjust the parame-
ters of the model after observing the wrong predictions such that we 
get better and more informed predictions the next time around. We 
should repeat this process until such a time that no matter how we 
tune, we do not improve on our predictions on the targets. This pro-
cess is illustrated in Figure 2.3. Once we have the model trained, we 
can continue on to the prediction of the labels (Figure 2.4).

We are still not much further along if we have to tweak the param-
eters randomly until we make good predictions. Ideally, we would like 
to make a decision about which direction to tune our parameters so 
that every time we make an adjustment, we improve upon our previ-
ous predictions. While we elaborate more on this tuning-based system 
later in this chapter, we explore some straightforward ways of estimat-
ing the model parameters in the next section.
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Figure 2.2  Linear fit for the employee compensation dataset.
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Least Squares

Let us look at the training protocol in Figure 2.3. Since we began 
with randomly initialized weights w, our predictions ŷ  would also 
have been random. Let us create a measure of how wrong our initial 
blind predictions were. An error function ei of the form

	 ( )   ˆ
2

e y yi i i= −w 	 (2.5)

will tell us how far away our prediction ŷi  is from the actual value 
,  [0, ]y i ni ∀ ∈  in the Euclidean sense. This implies that given some 

set of parameters w, the error as described in Equation 2.5 gives us a 
measure of how wrong we were with our predictions. The functional 
form of the error ensures the error is positive, because we take the 
square of the difference.

In Figure 2.5, the solid line is a better model than any of the broken 
lines. The better quality can be described in the following manner: 
Equation 2.6 describes the error for each point as the distance from 
the point to the line. This is also the error that the model is off by in its 
prediction of that point. This is a Euclidean measure of how far away 
the model’s predictions are from the true samples. The solid line is a 

Feature feeder
[x]

w0, w1, ...wn

Target feeder
[y]

Model
w

Parameter tuner Prediction
[y]

Figure 2.3  An illustration of training a model.

Feature feeder
[x]

Prediction
[y]

Model
w

Figure 2.4  An illustration of predicting a label given a model.
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better model than the broken line because the solid line has a smaller 
accumulated error than the broken lines.

Cumulatively, the solid line makes better predictions than the bro-
ken lines even though the solid line passed through none of the sam-
ples directly. The broken lines may pass through at least one sample, 
but overall they still have more accumulated error. The cumulative 
error on the entire training dataset can be formally defined as

	 ∑= −
=

w( ) || ˆ ||
1

2e y y
i

n

i i 	  (2.6)

The cumulative error is often referred to as objective, error, loss, cost, 
or energy interchangeably. Our learning goal is now to find that model 
that gives the least possible error e, that is, the least squares solution 
(Lawson and Hanson, 1995). More formally, we want the parameters 

=w w  such that

	 w wargmin ( )ew= 	 (2.7)

Following our earlier matrix notation, Equation 2.7 can be written as

Best Fit: y = 7160.5x + 111408, MSE = 0.80959
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Figure 2.5  It can be seen that the solid line produces the best fit with the least MSE even though 
there are other lines that pass through more than one data sample.
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	 = − −w y w X y w X( ) ( ) ( )e T T T  	 (2.8)

Fortunately for us, there exists an analytical solution for Equation 
2.7. The derivation of this analytical solution takes a little linear alge-
bra and is left to the reader. The analytical solution for the optimal 
parameter set is

	  ( ) 1T T= −w X X X y 	 (2.9)

where w are the best set of weights that minimizes Equation 2.9. This 
solution, of course, assumes that the matrix inversion in Equation 2.9 
is possible.

Although for this simple linear model an analytical solution does 
exist, we find that for more complex problem structures we have to 
rely on some optimization procedures that are described in the later 
sections. For the moment we shall stick with this analytical solution 
and study linear regression in these settings. Once we have the model 
solution, we can make predictions using this model for any sample 

n j+x  as yn j
T

n j=+ +w x . The task of making these predictions is called 
testing and is shown in Figure 2.4.

Maximum-Likelihood Interpretation

Let us rethink the idea of distances. Consider a 1D Gaussian dis-
tribution at each point on the line with a variance 2σ . If the model 
is well-trained (i.e., producing a prediction very close to the ground 
truth), the value of the Gaussian at a certain distance from the line 
describes the probability that a point shall be found at that distance. 
We can also observe that the farther away we move from the line, the 
less probable that we might find a sample. The Gaussian describes this 
probability of finding an actual sample as we go farther away from the 
model. Hence, solving least squares is the equivalent of maximizing 
the likelihood of the model given the training samples.

Figure 2.6 shows this interpretation. In this figure, the dotted lines 
that connect each point to the Gaussian give the probability of find-
ing that point there. Note that none of the Gaussians go below the 
0 plane. The farther away the sample is, the less probable it is that it 
would exist. In this interpretation, we can see that the learning task 
now is to create a line segment such that all the heights (dotted lines) 
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that show the probability that the points are on the line are cumula-
tively maximized. In other words, we want to choose that model that 
gives us the maximum likelihood of finding the given samples.

Let us formalize this viewpoint further. Consider Equation 2.10:

	 = σX w w X( , ) ( , )2P TN 	 (2.10)

Equation 2.10 is the probabilistic model of linear regression as 
shown in Figure 2.6. The mean of the Gaussian is simply the points 
on the line Tw X , which is our model. Assuming that all the samples 
are identical and independently distributed (i.i.d.), we can rewrite 
Equation 2.10 as

	 ( , )   ( , )
1

2P
i

n
T∏= σ

=

X w w xi  	 (2.11)

Let us now create a log-likelihood: the log of the likelihood of the 
existence of a data point given the line itself is.

	 log ( | )   log ( | , )
1

P P y
i

n

iX w x wi∑=
=

. 	 (2.12)
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Figure 2.6  The probability of observing a sample is modeled by a Gaussian function of the 
distance to the true model line.
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Maximizing a log-likelihood is an often-used function or tool in 
machine learning (Nadaraya, 1964). Likelihood is often the prop-
erty that we seek or desire: in our case, the cumulative probability of 
finding samples closer to our model. The logarithm is a monotonous 
function, which implies that maximizing the likelihood is the same as 
maximizing the log of the likelihood. Instead of wanting to find a line 
that best fits the model, in maximum likelihood estimation (MLE), 
we want to find a model that best realizes the likelihood of the dataset 
existing in its configuration possible.

Since our model is a Gaussian, we have

	 ∑=
πσ





 −

σ
−















=

w w x( )   log 1
2

exp 1
2

( )
1

2

2

2 iil y
i

n

i
T  	 (2.13)

Fortunately for us, it turns out that maximizing Equation 2.13 is 
equivalent to minimizing Equation 2.14, which is exactly the same as 
minimizing Equation 2.7:

	   ( )
1

2e y x
i

n

i
T

i∑= −
=

w . 	 (2.14)

If prediction using the linear regressor is the evaluation of the 
line at the point, prediction using the MLE is the evaluation of the 
Gaussian at that point. The advantage of using MLE is that, along 
with a prediction, we also get a confidence of prediction (height of the 
Gaussian) for any guess we make.

Extension to Nonlinear Models

Thus far, we have only seen cases where the models are a simple 
straight line. In this section, we deal with the case where the linearity 
assumption that we made might not hold true. Since we are comfort-
able with linear models, when a dataset is not well-modeled by a lin-
ear model, we attempt to convert it into one for which a linear model 
might just work. These and other kernel methods are among the most 
popular methods outside of neural networks in the field of computer 
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vision (Shawe-Taylor and Cristianini, 2004; Ramsay and Silverman, 

2006; Vapnik et al., 1997; Gunn, 1998).

Expanding a linear model to a nonlinear one may be done concep-

tually by simply replacing Tw X  by ( )T Φw X  where Φ is a nonlinear 

mapping of .X  For instance, by performing the regression

 = + +ˆ 1
2

2y w x w x b   (2.15)

we are effectively performing a linear regression with ( ) ,2x x xΦ = ⎡⎣ ⎤⎦ . 

Note that the relation between x and y is no longer linear, although we 

may still perform linear regression through the introduction of ( )xΦ . 

This transformation is called the basis function expansion.

With the use of basis functions, we are projecting the data onto a 

new space upon which we expect linear models to make better predic-

tions. Once we move on to neural networks in later chapters, we study 

automated ways of learning the functional form of such a  projection  .Φ  

But at this moment, we consider making predictions using explicit 

higher order models. The capability to perform regression on arbitrary 

model complexities comes with its own basket of problems.

The first of those problems is the phenomenon that we notice in 

Figure 2.7. The problem arises from the fact that the higher the order 

of the model, the more complex our fit is and the more points through 

which we can pass. Although it sounds like a good idea to have more 

points to pass through, this is not often the best minimizer of the 

cumulative error as we have already noticed in Figure 2.5.

All these curves that twist and turn means that for some test cases, 

we may predict wildly different values. Consider, for instance, the data 

point marked ★ in Figure 2.7. This employee’s compensation would 

have been predicted right on the money if we used a linear model rather 

than a model that is a sixth-order polynomial. In the sixth-order 

polynomial fit, we have grossly underappreciated our interviewee, 

who would be wise to reject our offer. This problem is called over-
fitting. Overfitting is one of the most common causes of deployment 

failures of many learning systems. Overfitting will produce tremen-

dous performance on predicting results from our training set itself but 

will grossly underperform in our testing set. Overfitting is also easy 

to spot. We are with all probability overfitting if we make extremely 
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accurate predictions for a few samples and extremely poor predictions 
for others. We are almost certainly overfitting if we are producing an 
extraordinary performance on our training set and an indifferent per-
formance on our testing set. One simple way to avoid overfitting is by 
regularization.

Regularization

For a curve that has to twist and turn a lot, the coefficients (weights) 
of that curve have to also wildly swing between a large negative value 
and a large positive value. To avoid such high twists in curves, and 
therefore prevent overfitting, we can introduce additional penalties to 
the loss function. There are different ways of regularizing the learning 

Order 6 polynomial Order 5 polynomial 

Order 4 polynomial Order 3 polynomial 

Order 2 polynomial Linear 

Figure 2.7  Regression with polynomial basis functions of various orders. Note that the models 
shown here are on the original vector space and therefore the nonlinearity. These are learned on 
a transformed feature space, where the positions of the features would be different for different 
orders while the models would all have been linear. An illustration on this transformed space is not 
useful to study though as we cannot make meaningful comparisons. Therefore, the linear model that 
we learned on the transformed space is projected onto the original space using the inverse mapping 
that gives us these nonlinear curved models.
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with additional penalty terms in the error function. Let us first explore 
the idea of a penalty. Whenever there is a function that we are trying 
to minimize (or maximize), we can make it obey certain self-imposed 
constraints and traits that we want by adding a weighted measure of 
what we want to constrain onto the loss function. Let us now use this 
intuition to constrain the weights from not taking larger values. Let 
us rewrite Equation 2.15 as

	 e y Tw x= −   	 (2.16)

the error function that we are trying to minimize. To ensure that the 
weights do not explode, we could apply a regularizer that penalizes 
Equation 2.17 for having larger weight values:

	     2e y T Tw x w w= − + α   	 (2.17)

w wT  is the length of the weight vector. The ultimate objective of 
learning is to reduce e. Whatever we add on to e is also something 
that we are consciously trying to minimize. If what we add is either a 
constant or is something that is not related to the prediction of labels 
given the dataset, it will not affect the way we learn. In Equation 
2.17, for instance, we have added a function of the weights itself to 
the loss. This enables us to keep a check on the values of the weights 
from exploding.

In this case, the second term should not contain 0w , as we do not 
worry about the intercept of the function being large. 2α  is a factor 
that balances the numerical values of the loss and the penalty so that 
one does not get lost by the magnitude of the other. Having a large 2α  
would force the weights to be small but not care about the errors much; 
having a small 2α  will do the opposite. 2α  is essentially the trade-off 
for what we want the learner to focus on. This penalty ensures that the 
weights remain small while the error is also minimized. The minimi-
zation function is a trade-off between wanting a better fit (first term) 
and wanting a smaller set of weights (second term).

It turns out that even for this problem setup, we still have an ana-
lytic solution:

	 w X X I X yd( )2
1T T= + α −  	 (2.18)
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where Id  is the identity matrix of the required size. This solution also 
has the nice property that the matrix inverse term is much more stable 
during inversion than the one from Equation 2.9 and this more often 
than not leads to a better solution than a simple linear regression.

This process is called regularization because it regulates the func-
tion from undesirable weight explosions. This particular type of 
regularization is called 2L  regularization as we penalize the loss 
function with the 2L  norm of the weight vectors. This type of 
regression is also often referred to as ridge regression (Hoerl and 
Kennard, 1970; Le Cessie and Van Houwelingen, 1992; Marquardt 
and Snee, 1975).

We could also, for instance, consider reducing the complexity of 
the model itself as another form of regularization. Consider that we 
are trying to fit a sixth-order polynomial as before, but if we could 
afford it, we would much rather prefer a smaller model. We could 
enforce this by penalizing the number of nonzero weights instead of 
the magnitude of the weights as in the case of 2L  regularization. The 
more nonzero coefficients we have, the higher the order of our model. 
We can accomplish this by using the  1L norm instead of the 2L  norm 
as follows:

	 = − + αw x w| |11 11e y T
    	 (2.19)

This regularizer is often called the 1L  regularizer. This ensures that 
we have a sparse set of weights. To minimize Equation 2.19, we need 
as low a second term as possible. The only way to lower the second 
term is by having the weights go to zero. By making a weight go to 
zero, we are enforcing sparsity among the weights. Having a sparse 
set of weights implies that if all the weights were assembled as vectors, 
most of the weights will be absolute zeros. This is a very aggressive 
regularizer.

By having a sparse set of weights, we are also choosing which attri-
butes are needed and which are not needed for our curve-fitting. By 
applying sparsity therefore, we are also performing feature selection. 
An 1L  regularizer helps us in being able to always start off with an 
extremely complex model and then simply regularize until we can 
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throw away as many features as we can afford to and still acquire good 
generalization performance.

Why does regularization work? Shouldn’t it be the case that 
having more complex and more sophisticated solutions to a problem 
must be helpful? The answer to that question is succinctly answered 
by the lex parsimoniae philosophy of Ockham’s razor (Jefferys and 
Burger, 1992). It claims that the simplest of solutions is often the most 
accurate. More precisely, the statement of Ockham’s razor is among 
competing hypotheses, the one with the fewest assumptions should be selected. 
Regularization extrinsically discourages very complicated models and 
eliminates as many variables as possible in our predictions. Extreme 
explanations of the world even if they fit the data we observe are not 
always the correct explanations. Extreme explanations and complex 
models do not usually generalize well to future testing data. They 
may work on a few samples well, but this may just be because of the 
idiosyncrasies of those particular samples we trained on. We should 
choose to have a slightly less desirable fit for an entire dataset than a 
perfect fit for the idiosyncrasies of a few samples.

Cross-Validation

We have far outgrown what started out as a tuner to tune coefficients 
of a linear model into a system in which we also need to choose a lot 
of other hyperparameters including model size, weights for regulariz-
ers, and type of regularizer. While the weights are often learned from 
dataset, other model parameters, such as regularizer weighting, which 
are not related directly to predictors, have to be chosen manually. In 
order to accurately choose these hyperparameters, we can make use of 
our original training dataset itself in a smart manner.

Let us divide our original training dataset into two parts: a valida-
tion dataset and a reduced training dataset. Suppose we are picking 
one of these hyperparameters (say 1α ). We can fix a certain value for 

1α  and proceed to train on the reduced training set. We can evaluate 
the performance of our model on the validation set. The best param-
eter setting is the setting that provided the best performance on the 
validation set. Note that in this case, the validation set must be disjoint 
from the reduced training set and usually should remain consistent. 
The validation set is usually smaller than the training set and of the 
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same distribution as the testing set. The validation set is also expected 
to have the same distribution as the training and testing sets.

We could also create many models with various parts of the train-
ing set playing the role of a validation set for each model. Our final 
prediction is now the average of all the predictions of all the models. 
These kinds of cross-validations are called k-fold cross-validations 
(Kohavi, 1995; Efron and Gong, 1983). The technique of cross-
validation was particularly influential in the development of ridge 
regression in fixing the hyperparameter of the norm weights and 
later utilized on other linear methods and model selection in general 
(Golub et al., 1979; Shao, 1993; Kohavi, 1995).

Figure 2.8 shows a setup for a threefold cross-validation. Once we 
divide the dataset into three disjoint parts, we start off with the first set 
playing validation and the others the training; we can then rotate this 
policy until all parts of the dataset have played the role of validation 
once. This gives us 3k =  models and our final prediction is the average 
prediction of the three models thus created. An extreme version of 
this cross-validation is the leave-one-out cross-validation (LOOCV) 
(Zhang, 1993). If the training set has n samples, we make 1n −  sam-
ples as training data and the remaining sample is the validation data.

Gradient Descent

In the previous section, we studied the building of the linear regres-
sion model. In doing so, we focused on analytical solutions and 
consciously left undiscussed an alternate method of arriving at the 
solution: how to iteratively tune the weights so as to get the least error. 
The mathematical processes in such training that involves twiddling 
the weights in just the right way to achieve the goal of minimizing 
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Figure 2.8  Cross-validation.
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the error dependent on the weights being twiddled with are often 
gradient-based optimization techniques.

We discussed an analytical solution for the linear regression problem 
earlier, but before we wrote down the analytical solution and with-
out it, we were forced to randomly twiddle with the weights until we 
achieved some satisfactory performance on some test dataset (Boyd and 
Vandenberghe, 2004). The analytical solution may not be feasible for 
many instances of the linear regression problem. To be able to perform 
the inverse or the pseudoinverse, we require a large amount of mem-
ory and computation. We also require a guarantee that the inversion 
is stable and nonsingular. Also, as we shall see in future chapters, the 
analytical solution holds only for the linear regression model. If we were 
to do anything sophisticated like adding a few more layers of nonlinear 
mapping, we are out of luck.

Data as described in Chapter 1 are static. While this was true for 
the case of employee compensation in a company, it is rarely true in 
the real world. Data from the real world are typically dynamic and 
are often streaming. Even if the data were not streaming by nature, 
due to insufficiency of digital computing memory, data can at best be 
processed in batches. To use the analytical solution, we cannot have 
streaming or batch data and need all of it at once. Also, for our previ-
ous analytical solution, if the data changes we need to solve anew for 
the weights, since our solution might no longer remain optimal.

With the problems discussed above, in this section, we shall seek a 
practical solution for obtaining w. In doing so, we will also find some 
unique and serendipitous capabilities of the parameters at which we 
arrive.

Let us look back at the error function that we forged in the previ-
ous section:

	 = − −w y w X y w X( ) ( ) ( )e T T T  	 (2.20)

This error that we created is a bowl-shaped function in the param-
eter space. Let us visualize this and have a closer look. Figure 2.9 
shows such a visualization for 2D data. In the figure, the axes 0w  and 

1w  represent the parameters of the model. Any point on this plane is a 
particular configuration of the machine itself. A configuration of the 
machine is a state of existence of the regressor having already assigned 
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a particular set of values for the weights. The value of the weights is 
itself a configuration.

Within the space of 0w  and 1w  there exists one configura-
tion of the machine that gives the least error, which in this case is 
   [ , ] [3,3]0 1w w= =w . The solution is [3,3] because that is the configu-
ration at which the machine reaches the lowest possible error value. 
The machine is a two-parameter linear regressor. It is to be noted, 
though, that we hypothesized that the features and the output we 
are trying to learn are linearly dependent. As long as this linearity 
hypothesis holds, the solution is a configuration somewhere in this 
space. The solution found may not be perfect over the training or 
the testing datasets, but there is at least one solution that is optimal. 
The term hypothesis is often used in machine learning and computer 
vision literature in reference to the type or the functional form of the 
model. Given a different hypothesis, say, a quadratic feature thrown 
in through a basis function expansion, we might or might not be able 
to get a better error than the one we got from our linear hypothesis.

Suppose that the model we are making is a two-parameter linear 
system with parameters 0w  and 1w . In Figure 2.9, the optimal solution 
we seek is    [ , ] [3,3]0 1w w= =w . An optimal solution is one that, given 
the hypothesis, produces the least error among all possible configura-
tions of the hypothesis.

Top view of the error function 
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Figure 2.9  The bowl shape of the error function. On the left is a 3D visualization with its contours 
projected on the floor. The right is a top view of the same function. In both figures, the circumference 
of the contour is a locus of points with the same loss value. Moving along the circumference does 
not affect the loss; moving in a direction that is perpendicular to the tangent, inward is the direction 
of the steepest descent.
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In the training protocol we discussed in the previous sections prior 
to settling on the analytical solution, we started with a random set 
of initial parameters and twiddled with them until such a time we 
reached the optimal solution. In the subsequent sections, we will 
establish a formal procedure and specific techniques for doing the 
weight-seeking iteratively.

The gradient of a function with respect to one of its components 
is the rate at which the function changes with a small change of that 
component. It indicates the direction of greatest change. The quan-
tized version of the gradient that we should suppose contextually here 
is the Newtonian difference. For a function ( ) e w , the gradient can 

be defined by its first principle, ′ = + ε −
ε

e e ew w w( ) (   )   ( ) , where ε is 
a small change in the parameters w. Note that this gradient is esti-
mated for some location w by perturbing it slightly by ε and observing 
the change.

Typically, we do not have to depend upon this first principle per-
turbation action to obtain a gradient. Most regression and neural 
architectures have a closed form for their gradients. The gradient of 
Equation 2.8, for instance, is

	 ′ = − +w X X Xw( )   2 2e YT T  	 (2.21)

Note that this gradient is a component-wise vector. Each compo-
nent of this gradient vector literally measures how much the error is 
affected by a small change in that weight component.

Now suppose the function were one of our error functions: a bowl 
such as the one shown in Figure 2.9. Any point in this surface that is not 
at the bottom of the valley will have a gradient that is pointing outward 
and away from the bottom of the valley. That is the direction in which 
the function is rising maximally. Since our aim is to minimize the error, 
we do not want to change the weights in this direction. In fact, we 
want to change the weights in the exact opposite direction. Note that at 
the lowest point of the error function, the desirable configuration that 
we seek, the gradient is always zero. If we find ourselves in a weight 
configuration where no matter which direction we look the gradient is 
pointing outwards and rising, we have reached the minimum location. 
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In other words, gradient measures the curvature or the slope of the 
function at a point and the minimum is at the point of zero slope.

Consider this scenario now developing as follows: We start by ini-
tializing our machine with some random configuration. This random 
configuration corresponds to some point in the space of w ’s. Unless 
we are extremely lucky and pick the configuration at the center of the 
bowl, we will always be able to do better. Once present at some loca-
tion in the space of w ’s, we look around the space and find the direc-
tion of the steepest descent, which is the direction opposite to that of 
the gradient at that location.

We take a step in that direction by subtracting, from the weights, a 
scaled version of the gradient due to that weight component. We look 
around again and measure the gradient at the point. Unless we are at 
a point where the curvature is no longer decreasing, we keep repeat-
ing this process. If we find ourselves at a point with the curvature no 
longer decreasing in any direction, we have arrived at the valley of the 
bowl.

Thus, we have developed an iterative learning algorithm: the gradi-
ent descent. More formally, if at some iteration τ we are at some loca-
tion τw , we can now update the weights as

	 = − η ′τ+ τ τ τw w w  ( )1 e  	 (2.22)

The true nature of the objective function e is unknown. Had we 
known it, we could quite simply have picked the minimum value. 
Instead, given the data ( , )X Y , we can only make an approximation to 
the error at some location τw  at some iteration τ. The gradient of the 
accumulated error given all the data samples is also therefore a close 
approximation to the gradient of the actual error function and not its 
actual gradient.

Naturally, the more data we have the better our approximations will 
be. If we have infinite data, we might be able to generate the true 
gradient. Alternatively, the less data we have the noisier our gradi-
ent approximations are. Figure 2.10 shows the typical path taken by a 
typical gradient descent algorithm. It is easy to note that the general 
direction of motion is pointed toward the center of the bowl, which is 
the point we seek.
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The parameter η is often referred to as the learning rate. The choice 
of η plays a major role in the learning algorithm. If η were too small, 
we traverse the space at a leisurely pace; if η were too large, we take 
larger steps. Both strategies have their own pros and cons. Taking 
larger steps is suitable when we are certain about our approximation 
of the gradient. We do not want to take larger steps when we are not 
certain of the direction in which we are taking that step. The approxi-
mated gradients are noisy when we use data in smaller batches or if we 
do not have a large dataset. With a large η, we also run into the prob-
lem of bouncing around a local minimum without actually converging 
at it. As can be seen in Figure 2.10, if the minima is within the size 
of our step, we would overshoot around it. This creates the effect of 
ricocheting around the local minima without actually reaching it. If 

Gradient descent 

w
1

w0

Figure 2.10  Path taken to the center by the gradient descent algorithm. The rings are contours of 
equal error and we are looking from atop the parameters plane into the error function. The black line 
is a step for each iteration and the squares are the configuration at each iteration.
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η were too small, we would take a lot of iterations to reach the mini-
mum if we were able to reach it at all.

Ideally, we would want a dynamically changing η, hence we have 
ητ dependent on τ in Equation 2.22. A commonly used strategy for 
choosing η is to pick one that is sufficiently large at an early stage so 
that we can proceed faster, but as we go through a few iterations, we 
make it smaller so that we can converge. Usually, this reduction is 
chosen to be a function of the iteration itself. More often than not, ητ 
is piecewise linear or exponential in τ.

The second-order derivative or the Hessian of the error function, if it 
exists, is an indicator of the curvature of the error manifold. Using the 
inverse of the Hessian or the Taylor approximation of one is a popular 
way to avoid choosing the learning rate in this fashion. The curvier the 
space is, the larger a step we should take. The function gets flatter as 
we approach the minimum and is perfectly flat at the minima. Putting 
together, these techniques were popularized for machine learning, and 
gradient descent has been among the most preferred algorithms for 
learning neural networks (Rumelhart et al., 1986).

Geometry of Regularization

In the previous section, we noticed that allowing the weights to be 
arbitrarily large introduces structure in regression that is undesirable 
and leads to overfitting. To avoid such problems, we briefly discussed 
the concept of regularization. In this section, we shall revisit regular-
ization and its geometry in the context of optimization using gradient 
descent.

Consider 2L  regularization first. 2L  regularization is performed 
by adding 2

Tα w w to the right-hand side of Equation 2.8. By per-
forming 2L  regularization, we are limiting the weights to be con-
strained within a circle with its center at the origin. Tw w is a circle 
(hypersphere). This additional term in the loss function is going to 
increase if the radius of the circle grows larger. In a feature space 
(two-dimensional as shown in Figure 2.11), this would make the loss 
function larger if the weights were outside of the circle, whose radius 
is what is being carefully limited. In a high-dimensional feature space 
this extends to a hypersphere with the same philosophy. This limits 
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the weights from growing larger overall. The idea of this constraint is 
visualized in Figure 2.11.

The optimal solution, given this constraint, is always going to be on 
the circumference of the circle. Any point inside it is going to have a 
higher error since any point in the interior of the circle is moving away 
from the center of the error function’s valley. There is a balancing act 
between two needs in play here. The regularizer is going to push the 
weights to be as close to the origin as possible, and the loss function 
will push the weights to be as close to the error’s valley as possible. 
Therefore, the optimal solution has to be at the extreme edge of the 
shape of the regularizer, which in this case is the circumference of 
the circle.

This property is illustrated in Figure 2.11, where clearly the only 
best solution given the circle constraint is the point where its circum-
ference meets one of the error contours. There is simply one point at 
which the error function meets the regularizer in this case. No error 
contour that has a lower error than that contact point would ever be 
inside the circle. This limits our search space to the points on the cir-
cumference of the circle. 2L  regularization imposes that cross terms 
in a polynomial combination of weights do not exist with a high prob-
ability. Since in our search for the optimal parameters we constrain 

o

Figure 2.11  Geometry of regularization. The concentric ellipses are contours of the error function 
from atop. Each contour is the locus of points that has the same error value. The square with dashed 
lines is the L1  constraint and the circle in dotted lines is the 2L  constraint. The axes in this figure are 
the parametersw 0 and 1w . The point ‘o’ is the origin of the space.
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ourselves to the circumference of a hypersphere, we are reducing the 
sizes of the models we are considering.

1L  regularization, on the other hand, as we saw in the previous 
sections, is a much stronger imposer of sparsity of weights. We noticed 
that the 1L  regularizer imposes a much higher penalty for even hav-
ing nonzero weights than 2L , which simply limits the weights from 
exceeding a certain value. The geometry of the 1L  regularizer is a 
square with its center of gravity at the origin and is also shown in 
Figure 2.11. Although we do not prove it mathematically here, the 
lasso (L1) has a much higher probability that the error function and 
the constraint square interact most often at the vertices of the square. 
The vertices of the square always lie on the axes, implying that at least 
some, if not most, of the weights will be forced to go to zero. This 
is because the vertices lie on the axes. On the axes, the weight that 
corresponds to the axes is zero, hence we are able to impose sparsity. 
These are often called as weight decay techniques.

Nonconvex Error Surfaces

So far, we have studied gradient descent in the context of a convex 
bowl error surface. A convex bowl error surface implies that we have 
one optimal solution that exists globally in the feature space. In gen-
eral, the error surfaces of complex systems like neural networks have 
more than one peak and valley. A typical error surface with several 
peaks and valleys is shown in Figure 2.12.

We can still continue to use our old gradient descent technique to 
find a good bottom of the valley point. We should be aware though 

A nonconvex error surface View from above

Figure 2.12  A more complex, traditional, and typical peaks and valleys nonconvex error function.
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that there are many such valleys that are available for us to reach to 
the bottom of. We could end up in any one of them. We might want 
to run gradient descent a few times and cross-validate to find a good 
enough valley. Where we end up depends on our initialization as can 
be observed in Figure 2.12.

Since in these nonconvex surfaces initial conditions matter a lot, 
several recent methods have been proposed to smartly initialize large 
systems. We shall see some of them in upcoming chapters. Recent 
studies have also shown anticlimactically that in large and deep neu-
ral and convolutional neural networks (CNNs), often all valleys are 
of similar depth. This means that using any one of those valleys as a 
solution is the same as using any other (Choromanska et al., 2015).

Stochastic, Batch, and Online Gradient Descent

So far we have used all the samples in our data X y( , ) in Equation 
2.21 to calculate the error gradient approximation and therefore to 
update the weights in Equation 2.22. As we have seen before, it is 
not always feasible that we will have the entire dataset on demand. 
We should be satisfied by processing them in batches. One simple 
and possibly the most extreme version of this technique is what is 
referred to as the stochastic gradient descent. Recollect that our train-
ing dataset had n samples. We can make our gradient estimate sample 
by sample. Feed one sample through the neuron, check its output, 
measure its error, and produce the gradient approximation. Let us 
rewrite our learning equation for this setup:

	 = − η ′τ+ τ+ − τ+ − τ+ −w w w( ), 1 1 1en i n i n i n i  	 (2.23)

where

	 ′ = − +τ+ − τ+ −w x x x w( )   2 21 1e yn i
i
T

i i
T

i
n i  	 (2.24)

Here, the nτ iterations count to what is often referred to as an epoch. 
One epoch is all the set of iterations that goes through the entire 
dataset once. In our previous setting (Equation 2.22), each iteration is 
an epoch. We call this old process batch gradient descent because we 
process them all in one batch. 

The error so calculated by Equation 2.24 is going to be extremely 
noisy and extremely unreliable. To compensate for this effect, we 
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reduce the learning rate drastically and move much slower through 
the space. This is preferable and still works fast enough because we 
take one step per sample rather than one step per epoch. While in 
batch gradient descent we make one confident large step per epoch, in 
stochastic gradient descent we make n small and dubious steps.

There exists an obvious middle ground: Divide the dataset into 
mini-batches and estimate a better-than-stochastic but still diffident 
gradient and learn by a process similar to the one described above. 
In modern-day CNNs and deep learning systems, it is preferable to 
work in mini-batches due to architecture, memory, and system design 
factors. With mini-batches, we can have a reasonably high learning 
rate and still take a lot of steps. Modern-day GPUs are designed in 
such a way that for CNNs, mini-batches are more productive than any 
other technique.

Alternative Update Rules Using Adaptive Learning Rates

It was briefly mentioned earlier that one way to avoid picking a learn-
ing rate and quicken moving through the error manifold was to use 
the inverse of the Hessian as the learning rate. This is often referred to 
as Newton’s method. Consider the following update rule:

	 = − ′τ+ τ − τw w H w( )1 1ei i i  	 (2.25)

Here 1
i
−H  stands for the Hessian of the ith weight vector. Using 

the Hessian is much faster and, although we do not show it explicitly 
here, requires only one iteration if we were in a convex bowl error 
function. Despite its nice properties, Newton’s method is often not 
preferred because the Hessian is a large matrix, oftentimes larger than 
what most memory systems allow. The Hessian has exponentially 
more terms than the number of parameters and is not suitable for 
deep learning systems where there are a lot of parameters.

Some alternative second-order update methods do exist with linear-
in-parameter-count memory requirements. One such popular method 
is Adagrad and its update rule is shown in Equation 2.26:

	

∑
= − η

′ +
′τ+ τ

τ

=

τ
τw w

w
w

( )
( )1

1

22 e
ei i

t
i
t

i



 	 (2.26)
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One can view the entire term ( )
1

22 e
t

i
tw ∑

η

′ +

τ

=

τ  as a learning rate 

that is dependent on previous gradients. Using the summation on t , 
we are collecting and accumulating the second-order gradients over 
previous iterations. This accumulated gradient contains knowledge 
about the average direction in which the gradient has been mov-
ing up and until the current iteration. This way Adagrad reduces the 
burden on the choice of the learning rate (Duchi et al., 2011).  is 
added largely as a fudge factor to avoid division by zero in case the 
gradients are flawed or zero. The step size is largely controlled by the 
size of the gradients produced in the previous iterations. This method 
also essentially has an independent learning rate per parameter that 
helps in faster convergence. The size of the step we take in each inde-
pendent dimension is not the same but is determined by the gradient 
accumulated in that dimension from the previous iterations. Note 
that the denominator is a vector, with one value for each dimension 
of the gradient.

Root-mean-squared propagation (RMSPROP) is an adaptation on 
Adagrad that maintains a moving average of the gradients (Hinton, 
n.d.). The RMSPROP update rule is

	 = − η
+

′τ+ τ
τ

τ

τw w w
 

( )1
2 m

ei i i i


 	 (2.27)

where

	 = ρ + − ρ ′τ τ−
τ(1 ) ( )1m m e wi i
i  	 (2.28)

and ρ must be between 0 and 1. This works in a fashion that is simi-
lar to Adagrad. This was further built upon by Adam (Kingma and 
Ba, 2014).

Momentum

If we trust our gradient approximations, there is no reason for us 
to believe that the gradients move in a direction that is too dras-
tic. We might want to smooth out our route through the space. The 
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gradient that was evaluated from the previous mini-batch might not 
be completely useless in the current phase and considering a momen-
tum in that direction is useful (Polyak, 1964). This avoids unwanted 
sharp motion in wrong directions due to wrong gradient approxi-
mations because of a noisy mini-batch. If the direction of motion is 
continuous, momentum encourages it, and if the direction of motion 
changes drastically, momentum will discourage that change. If prop-
erly used, this may even accelerate the learning in the generalized 
direction that carries the most momentum, which generally builds up 
over a few iterations in the common direction.

Consider building up the change in velocity of motion through the 
space in one direction by subtracting from a decaying version of an old 
averaged velocity v, a weighted version of the new gradient:

	 = α − η ′τ τ τ− τ τ  ( )1v v e wi i i  	 (2.29)

Now that we have updated the velocity with the current weight of 
the gradient, we can indirectly update the weights using this velocity:

	    1w w vi i i= +τ+ τ τ 	 (2.30)

Here, α is kept reasonably close to 1 as we trust the velocity as it 
builds up over the epochs, but we shall start with a sturdy 0.5  allow-
ing for less impact on the earlier iterations where learning is generally 
tumultuous. α is basically the trust that we have over the velocity.

Another commonly used momentum technique is Nesterov’s accel-
erated gradient (NAG) method that updates the weights with the 
velocity first and then accumulates the velocity later on (Nesterov, 
1983). The update step for NAG is

	   ( )1w w v e wi i i i= + α − η ′τ+ τ τ τ τ τ  	 (2.31)

Momentum and second-order updates have drastically changed the 
speed and stability with which learning takes place in deep neural 
networks and CNNs. The importance of momentum is discussed in 
the cited article and will prove to be an interesting read for a curious 
reader (Sutskever et al., 2013).
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Summary

In this chapter, we studied linear regression and the modeling of 
continuous valued labels. We started with the basics of supervised 
machine learning and created a simple supervised learning data-
set. We made an assumption of linearity with our dataset. With the 
assumption of linearity, we were able to make our problem simple. We 
used the linearity assumption to create a linear model and parameter-
ized it. We arrived at an analytic solution for our parameters using the 
least squares method. We also arrived at an MLE interpretation for 
our least squares solution.

We applied various constraints on the parameters of our model and 
studied regularized and ridge linear regression. Regularization makes 
our learning stable and avoids explosion of weights. The additional 
constraint terms got added on to our already existing analytical solu-
tion and serendipitously, we found that a regularized regression might 
be easier to solve.

We also studied some potential problems that might arise with these 
linear models. If the dataset is not linear and our assumption will not 
hold, we seek a solution that is nonlinear. Basis function expansion 
helped us in projecting the features onto a nonlinear space and solves a 
linear regressor on that nonlinear space. This enabled us to solve non-
linear regression using the techniques we learned in applying linear 
regression. We also studied the problems of overfitting and introduced 
regularization as one way of alleviating overfitting. We studied 1L  and 2L  
norms and their effect on the smoothness of the learned models. We also 
studied better evaluation and model averaging using cross-validation.

Not all regression problems have an analytic solution. Large 
amounts of data and noninvertible matrices in the analytical solution 
means that the analytical solution, even if it exists, is not practical to 
use. In this chapter, we also expanded upon our earlier understanding 
of linear and nonlinear regression by solving the problem without an 
analytic solution. We used the techniques of optimization, in par-
ticular the gradient descent, to solve the problem and find optimal 
weights. To use our data in smaller batches, we studied the use of 
stochastic gradient descent.

We studied the effects of varying learning rates during optimiza-
tion. Using adaptive learning rates that change depending on which 
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stage of the optimization task provided a more stable way to arrive at 
the local minima. We then moved on to study Adagrad, Newton’s 
method, and other second-order learning techniques. We also stud-
ied the geometry of regularization and how different regularizers 
affected the region in which we let our weights move while optimiz-
ing. Another way to control and move weights in a structured fashion 
were the use of momentum and we studied various forms and types 
of momentum including the Polyak’s and Nesterov’s momentum 
techniques.
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3
Artificial Neural 

Networks

The previous chapters have introduced several types of methods for 
classifying and regressing, given some datasets, often in terms of mul-
tidimensional feature vectors. In this chapter, we turn to a different 
approach: artificial neural networks (ANNs). ANNs are at the root 
of many state-of-the-art deep learning algorithms. Although a few of 
the ANNs in the literature were fundamentally motivated by biologi-
cal systems and some even came with hardware implementations, such 
as the original McCulloch–Pitts neuron (McCulloch et al., 1943), the 
vast majority were designed as simple computational procedures with 
little direct biological relevance. For the sake of practicality, the pre-
sentation of this chapter will mostly concern mostly the algorithmic 
aspects of ANNs.

Consider again the regression problem from Chapter 2, for the dataset 
D of size n, d-dimensional ix , and their corresponding one-dimensional  
label/target value yi , that is, {( , ),  [1, 2, , ]}D y i ni ixx= ∈ … . This lin-
ear regression problem can also be schematically illustrated as a feed-
forward network as shown in Figure 3.1. This is a simple linear neuron. 
In the figure, each circle represents a processing unit, and in the case of 
linear regression as presented in Chapter 2, all the processing units are 
linear. Each unit on the first layer (all the processing units connected 
to the data xi) is simply an identity function. The output is a single unit 
connected to yi  (with its input being a simple summation of all those 
passed in by the incoming edges). The directed edges are annotated by 
the corresponding weights to be applied (multiplied) to the data pass-
ing through the edges. While this is simply another way of presenting 
the same solution as we have seen before, it is instructive to use this 
functional structure as it will handily lead to more complex processing 
paradigms we present later in this chapter.
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In Figure 3.1, we used the term feed-forward linear neuron since the 
processing units are connected in such a way that their connections go 
only one way from the input to the output. This will be primarily the 
type of network we are concerned with in this chapter, although it is 
worth noting that there are networks that involve feedback paths in 
the data processing flow and are thus not merely feed-forward.

The Perceptron

Chapter 2, on regression and optimization, discussed how to model 
an input–output relation and solve for the optimal model parameters. 
In a majority of visual computing applications, the task is to perform 
supervised classification, such as through support vector machines 
(Gunn, 1998; Vapnik et al., 1997). Interestingly, all these may be 
viewed as some variant of the simple illustration of Figure 3.1. Let us 
first consider a binary classification problem, where the label yi   takes 
only one of two distinctive values, 0 or 1. That is, the dataset D to be 
learned from has ∈[0,1]yi . We use 0 or 1  here as the actual values 
for the binary yi , although it is possible to use other binary values. 
Note that while we may still force a linear regression model onto the 
data without considering the binary nature of the labels, it is unlikely 
to produce a useful or strong model for future predictions. A natural 
modification one would like to introduce to the model is to make the 
output go through a thresholding function. To be precise, we want to 
model the output as

Inputsxi
(1)

w0

ŷi = gl (xi, w) = wTxi

w1 w2 wd

xi
(2) xi

(d)

Processing units

Prediction

Weights on the connections
multiply with the data �owing

through the connection.

Connections meeting at a “dot”
implies that all those inputs

are summed.

Squares signify data value.

Circles are processing units

Figure 3.1  Illustrating linear regression as a feed-forward linear neuron.
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	 ( , ) 1,    if     0
  0,            otherwise

gP x w w x
i

T
i=

>




	 (3.1)

where, for convenience, we have assumed a cutoff to occur at =w xT
i 0.  

As will become clear later, there are different ways of defining such 
a cutoff for a processing unit. This thresholding function is some-
times called the activation function as its output signifies whether the 
node, with its given inputs, is activated (emitting 1). In our earlier 
case, we had no activation function or rather the activation func-
tion was identity. Note that the activation function performs only 
thresholding; w xT

i is created by the summing node. The activation 
function can be independently defined as

	 =
>





a t

t
P ( )

1,             if     0
0,            otherwise

.	 (3.2)

In this case, t  is the linear regression output on top of which we 
build an activation (thresholding) function.

The resultant neuron essentially illustrates the perceptron or a 
linear threshold neuron. This model is similar to the one first proposed 
by Rosenblatt, as an alternative and improvement to the simpler 
McCulloch–Pitts neuron model and as a means to use the linear neu-
ron to perform classification (Rosenblatt, 1958) as shown in Figure 3.2. 
This and several other variants of the perceptron along with their geom-
etry in the feature spaces were studied thoroughly in 1960s, leading to 
the first wave of ANNs and their becoming relatively dormant soon 
after their limitations were identified (Minski et al., 1969).

The original algorithm that was used to train this network was 
often referred to as the perceptron algorithm. The perceptron algo-
rithm is a useful algorithm that ensures that one can learn the weights 
of the perceptron so as to get a good decision boundary. It is also an 
online learning algorithm, meaning it can learn sample by sample. 
We present the Rosenblatt version of the online perceptron algorithm 
in Figure 3.3.

There have been several proofs and studies regarding the 
convergence/performance of this seemingly simple-looking algo-
rithm, especially when the input samples are linearly separable, 
from as early as 1960s (Novikoff, 1962) to recent years (Mohri and 
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Rostamizadeh, 2013). An interested reader may refer to such litera-
ture for more elaborate discussion.

It is interesting to note that, at about the same time when the origi-
nal perceptron was introduced, a regression model, the logistic regres-
sion, was developed by David Cox in 1958 (Cox, 1958). In the basic 
logistic regression, the key task is to estimate the probabilities of the 

xi
(1)

w0

ŷi = gP (xi, w)

w1 w2 wd

xi
(2) xi

(d) Inputs

Processing units

Prediction

Activation

Figure 3.2  Illustration of a Rosenblatt perceptron.
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Step 1: Compute the output ŷi of the network.
Step 2: Estimate the error of the network yi – ŷi.
Step 3: Update the weight w(t + 1) = w(t) + e(w)xi. 

Initialize the weights and threshold for the network.
Weights may be set to 0 or small random values.

Training set D = { (xi, yi), i ∈ [1,2,...n]}, yi = [0,1]. 

Initialization

Iterate
for t → convergence
{

for each sample xi with label yi:
{

{
{

Step 1:
Step 2:

Figure 3.3  The perceptron algorithm.
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dependent variable y  taking one of the binary values 0 or 1, using the 
logistic function. That is, we model = = σ {( 1| )   , }P y gx x w  with the 
function σg  defined as

	 = = =
+

σ −
x x w

ww xx
P y g

e
T( 1| ) { , } 1

1
	 (3.3)

The activation function here is

	 =
+σ −a t

e t( ) 1
1

	 (3.4)

The task is to find the maximum-likelihood solution for w, given the 
training data.

In general, the maximum-likelihood estimation cannot be solved 
in a closed form and some optimization methods like those discussed 
in Chapter 2 should be employed to develop an iterative procedure by 
updating some initial guess for w, with the objective function of the opti-
mization naturally being the log-likelihood (or negative log-likelihood,  
for minimization). We will omit the discussion of such procedures as 
they can be viewed as generalizations from the discussion on gradient 
descent from Chapter 2. An interested reader may also check the rel-
evant literature, for example, Hosmer Jr et al. (2004), for more informa-
tion since they are not the focus of this discussion.

Note the similarity between the functions σg (.) and gP (.); they 
are both some thresholding functions. σg (.) may be viewed as a 
soft-thresholding function, as evident from a plot of the function in 
Figure 3.4. We may use it to replace the hard threshold unit in the 

 

1

t

1 + e–t  

Figure 3.4  Illustration of the standard logistic function.
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perceptron of Figure 3.2, resulting in the illustration of Figure 3.5. 
The benefit in doing so is that the logistic function is continuous and 
differentiable in its entire support. Differentiability is an important 
property that lends us now the means to establish an error gradient 
such as what we did for linear regression in Chapter 2. We may use 
all the tools and techniques of the gradient descent method and other 
optimization methods that we studied in Chapter 2 to iteratively 
search for a solution for w.

Similar to our linear regression problem, we can define a loss func-
tion e w( ) and update the weights using gradient descent as

	 ηη= −τ+ τ τ τ'( )1 ew w w 	 (3.5)

where ητ is a scalar controlling how much adjustment we make to 
the weight vector during each iteration and, as was the case with the 
previous problem, is the learning rate.

While the above introduction of the logistic function into the 
neuron has not fundamentally changed the basic idea of the per-
ceptron algorithm as we only slightly modified the procedure for 
updating the weights, moving from the perceptron to gradient 
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possible predictions 

Activation 

P(y = 1|x) = gσ (xi, w)

w0 w1 w2 wd

xi
(1) xi

(2) xi
(d)

Figure 3.5  Illustration of a logistic neuron.
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descent is a major improvement computationally. The benefit of 
using the logistic function or other similar continuous and differen-
tiable functions for activation is that they enable a more principled 
way of updating the weights when we extend the learning to mul-
tilayer networks. This leads to the backpropagation (BP) algorithm 
(Bryson, 1961; Kelley, 1960), which we shall build upon and study 
through the rest of this book. The importance of the BP algorithm 
cannot be understated in any study involving deep learning and 
neural networks.

Also, in general, since we may now define some loss functions that 
are not necessarily directly based on binary classification, the goal 
of learning should be ideologically considered as finding a solution 
that minimizes the defined loss. This is more flexible in many real 
applications, as will be demonstrated by more recent deep learning-
based applications with various loss functions that will be introduced 
in subsequent chapters.

Let us further extend the basic single neuron model of Figure 3.5 
into one with more than one output node. This extension is illus-
trated in Figure 3.6. Besides helping to set up the notation properly 
for later discussion, the extension is necessary if we wish to handle 
more than two classes. In general, if we have c  classes to process, we 
would employ c  output nodes, as illustrated in the figure.

The output of this network is not directly a prediction of the 
labels but a probability distribution over the classes. The prediction 
ŷ   is simply the class that gives the maximum of such probabilities. 
Considering there are c  classes, we have c  outputs that give us a vec-
tor of outputs at the top of the dot-product step before the softmax 
layer:

	 = ⋅1l W xT
i 	 (3.6)

where W  is a matrix of size ×d c such as

	 = …

…





















0
(1)

0
(2)

0
( )

1
(1)

1
(2)

1
( )

(1) (2) ( )

w w w
w w w

w w w

c

c

d d d
c

�

� � � �
W 	 (3.7)



72 CONVOLUTIONAL NEURAL NETWORKS

Taking the dot product such as the one shown in Equation 3.6 will 
yield us a vector of l1 such as [ , , ,  ]1 1

(1)
1
(2)

1
( )l l l cl = … , where c  is the 

number of classes. The subscript 1 represents the output for the first 
layer. Here we only have one layer. These are not normalized vectors, 
therefore they are not probabilities. To produce a probability distribu-
tion over all classes, we need to normalize these. We can make use of 
the softmax function to do this normalization. The softmax-activated 
output of the softmax layer is

	

∑
= = σ = ∈ …( )

=

( )

( )
P y j x l e

e
j ci i

j
l

k

c
l

j

k
( | ) ( ) ,  [1, 2, , ]   1

1

1

1

	 (3.8)

The predicted class is the class that maximizes this probability:

	 = =ˆ argmax ( | ).y P y j xi j i i 	 (3.9)

Thus, we have a network that predicts the class for a multiclass 
classification problem as illustrated in Figure 3.6. Let us create a 
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Processing units

Softmax layer

Softmax

Prediction is the class
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Dot product

w0
(1) w0

(c)

w1
(1)

w1
(c)

w2
(1)

w2
(c)

wd
(1)
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(c)

ŷi = argmaxj P ( yi = j | x)

P ( yi = 0 | x) P ( yi = c | x)

xi
(1) xi

(2) xi
(d)

Figure 3.6  A network with more than one output node and the notations.
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log-likelihood for this network like what we created for linear regres-
sion. Considering we have the probabilities =P y j xi( | ) for all classes 

∈ …j c[1, 2, , ]:

	 ∑∑= =
==

( ) 1 ( )log( ( | ))
11

l
n

y P y j xj i i i

j
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n

W 	 (3.10)
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
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is an indicator function that indicates the class. The indicator function 
is 1 only for one of the classes and is 0 for the others. This means that in 
maximizing the log-likelihood, what we are doing in essence is maxi-
mizing the probability of the correct class. We can now perform gradi-
ent descent on the negative of l W( ), which is the negative log-likelihood 
of the logistic regressor. The gradients involved and the procedure to 
perform gradient descent on this gradient are a slight extension from 
Chapter 2 and are thus left to the reader. We will go into more detail 
later in the chapter when we study the backpropagation algorithm. Note 
that Equation 3.10 is the average likelihood of the entire dataset. This 
averaging enables us to use mini-batches that can have similar learning 
procedures regardless of the amount of data used. This also enables us in 
using similar learning rates regardless of the data batch size. Even if we 
were to perform gradient descent using stochastic gradient descent, our 
learning rates do not have to depend on batch size as the likelihood itself 
is normalized by the number of samples in the batch n.

So far we have studied various types of neurons including the percep-
tron, linear regressor neuron, and the softmax perceptron. Various types of 
problems could be forced onto these neurons. For instance, a max-margin 
neuron to produce a max-margin or a support vector machine (SVM)-
type classifier could be produced by using the following likelihood:

	 = − ⋅( ) max(0,1 ˆ )l y yW 	 (3.12)

To use this likelihood, we need to convert the labels from [0,1] to 
−[ 1,1]. If our prediction matches the true value (or is close to the true 

value), we get the likelihood as 0; if our prediction was wrong, we 
get a likelihood that is large (with a worst case of 2). Note that many 



74 CONVOLUTIONAL NEURAL NETWORKS

types of neurons exist and we have deliberately limited ourselves in 
this book to studying those that are popular and relevant for computer 
vision. There is a plethora of research papers available in the literature 
that could quench the reader’s thirst for material on this.

Multilayer Neural Networks

The perceptron algorithm and logistic regression produce linear deci-
sion boundaries and thus if the two classes are linearly separable, the 
algorithms may be used to find a solution. However, a single-layer 
perceptron cannot deal with cases that are not linearly separable. 
A simple example of this is the XOR problem, which is illustrated in 
Figure 3.7. There is no linear solution to solve this problem. We may 
employ basis function expansions as we saw in the previous chapter 
and may be able to solve the problem using a higher order transfor-
mation of the data (Powell, 1977). This further raises the question of 
what basis functional space to choose to project the features onto so 
that we can obtain good linear separation in that space.

One way to solve this problem is by using a multilayer neural 
network (MLNN). Using MLNNs, we will be able to learn such 
a functional transformation. Often in computer vision, scientists 
talk of feature extraction. We introduced feature extraction briefly in 

Figure 3.7  Illustrating the XOR problem in the two-dimensional feature space. Triangles and 
circles represent two different classes in the feature space.
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Chapter 1 and discussed a few handcrafted features that are popular 
in computer vision. In a sense, these features are nonlinear transfor-
mations of the original pixels. Typically, such features are designed 
and tuned by domain experts. The hope is that, after mapping the 
raw images into the feature domain, analysis tasks such as linear 
classification can be done more effectively. In practice, since these 
transformations are fixed procedures that are designed by hand, they 
are in general not adaptable to different problems that may utilize 
different loss functions.

Using MLNNs, we will be able to learn such transformations. We 
will see that with deeper networks, we can learn much more sophis-
ticated feature spaces where indeed we will be able to perform linear 
classification.

In the basic perceptron, the processing unit is linear. This appears 
to suggest that one may be able to gain the capability of producing 
nonlinear decision boundaries if the units can perform nonlinear pro-
cessing. There are different possibilities for bringing nonlinearity into 
the processing units. For example, the radial basis function network 
achieves this by introducing some nonlinear radial basis functions 
(Lowe and Broomhead, 1988). Another approach would be to simply 
introduce at least one layer of nonlinear units with adjustable weights 
into the basic perceptron. This results in an MLNN, and owing to its 
traditional fraternity to the perceptron, such a network is also often 
referred as a multilayer perceptron (MLP). In the context of this book 
and in most literature, with some abuse of terminology, we often 
use these two terms interchangeably. The middle layer of the simple 
MLNN shown in Figure 3.8 is hidden from both the input x  and the 
output y , and thus it is referred to as a hidden layer. The hidden layer 
has d2 nodes as opposed to d  from the input layer that gets its dimen-
sionality from the number of dimensions of the input itself.

It is pleasantly surprising how this simple trick of stacking the single-
layer perceptron could lead us to a solution to the XOR problem shown 
in Figure 3.7 and how it could learn an effective feature mapping. Even 
without going into detail, one can notice in Figure 3.8 that the classifier 
g  works on a transformed version of the inputs that is defined by l .1  It 
is also clear that this transformation to l1 is dependent on the learnable 
parameters w2. This thus gives us an intuitive picture of how a network 
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with a single hidden layer could learn its own internal mapping to a new 
feature space. Each node on the hidden layer can also be thought of as 
a logistic regression neuron since it adds up the signals and performs a 
nonlinear activation on it. Thus, we have stacked an entire layer of neu-
rons on the hidden layer before it is fed to the regressor.

Before we discuss how to learn the parameters of this new multi-
layer network, we demonstrate the existence of a solution to the XOR 
problem in Figure 3.9, for a network with two nodes and a bias in the 
hidden layer. In the hidden layer, the node on the left with ∧ by its side 
will not activate unless both the inputs are 1. This acts as an AND gate 
by itself. The node on the right with ∨ by its side activates even if one 
of the signals is 1. This acts as an OR gate by itself. The second layer 
builds up the XOR. The feature space and classification regions are 
also shown in Figure 3.9. Thus, we are able to demonstrate that the 
XOR solution indeed exists with a neural network with one hidden 
layer. A solution close to this could be learned using a simple algorithm 
called backpropagation that we discuss in the next section. Given this 
solution for this architecture, one node in the hidden layer will always 
act as an AND and the other will always act as an OR in order to 
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Figure 3.8  Illustration of a simple multilayer neural network.
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produce XOR properties. The reader is encouraged to try the same 
problem with more than two nodes in the hidden layer, find other 
solutions, and observe the effects. Similar to what we have seen earlier, 
in general, we may have more than one output node when dealing with 
a multiclass problem. Further, we may have multiple hidden layers too, 
and it is worth noting at this moment that many recent deep learning 
architectures employ more than a few hidden layers.

In the literature, there are different ways of counting the num-
ber of layers in an MLP. Consider the XOR network in Figure 3.9. 
Sometimes, the network is said to have three layers (corresponding 
to the layers of processing units), while sometimes it said to have two 
layers as the input layer is trivial. We will use the first way of counting 
the layers and will use the notation of an “ → →n n nI H C MLP” to 
denote a three-layer network with nI input nodes, nH hidden nodes in 
the first hidden layer, and nC output nodes.

Using the above three-layer MLP as an example, we are now ready 
to define mathematically the general input–output relation for an 
arbitrary → →n n n  I H C  feed-forward network:
	 = x w wy a a ˆ a ( ( ( ), ), )C H I H C 	 (3.13)
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Figure 3.9  An MLNN that solves the XOR problem in the two-dimensional space.
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Note that we have intentionally used different activation functions, 
a a, C H, and aI for the output, hidden, and input layers, respectively, 
just to illustrate the possibility that we can allow different activation 
functions across layers and that even the input layer can have an acti-
vation. In fact, it is even possible to allow each of the hidden or out-
put nodes to assume their own distinctive activation functions too, 
although in practice it is more customary to use the same function for 
all the nodes in the same layer (and sometimes for all the nonlinear 
layers) for convenience of implementation.

Despite the simplicity in its form, the above equation of the input–
output relation for a three-layer network turned out to be very general: 
so general that in theory it may be used to approximate any continuous 
function from the input to the output, provided we have a sufficient 
number of hidden units n ,H  proper nonlinearities, and that proper 
weights could be defined. This is deemed by some as proven largely 
due to a theorem by Kolmogorov (1956), although the relevance of 
the Kolmogorov theorem to the multilayer network has also been dis-
puted largely for reasons of practicality (Girosi and Poggio, 1989).

Rigorous theoretical proof aside, we may still be able to appreciate 
why a three-layer network would work so well for mapping any input–
output relation, using some intuitive interpretations. For example, from 
a Fourier analysis perspective as discussed in Chapter 1, any continu-
ous function can be approximated to arbitrary accuracy by a possibly 
infinite number of harmonic functions (or the Fourier bases), and one 
may imagine the hidden nodes may be tuned to simulate the harmonic 
functions so that the output layer can draw upon the hidden nodes to 
form a desired approximation to a function. By invoking the simple 
relation between regression and the perceptron illustrated in Figures 
3.1 through 3.4, we may relate the MLP to projection pursuit regression 
since the hidden layer can act as a projection of the input to a typically 
much lower dimensional space where the classification (or regression) 
is done (Friedman and Stuetzle, 1981; Lingjaerde and Liestol, 1998). It 
is interesting to note that, in both these arguments, it is assumed that 
the learning of the network is to figure out some good “representations” 
for the input so as to facilitate the later decision-making, much like the 
ideas we have been trying to accomplish through neural networks.

We now turn to the problem of training the network parameters 
with a given dataset. It is not difficult to realize that we could simply 
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handle the output layer weights by following the same principle in 
training the single-layer perceptron. Based on any predefined loss 
function, we first compute the loss for the current input or input batch 
under the current network’s feed-forward mode. Then the weights of 
the output nodes can be adjusted using any of the optimization meth-
ods we studied in the previous chapter. Let us consider the gradi-
ent decent method. We notice that in gradient descent the loss was 
directly a function of these weights. The same cannot be said for the 
hidden layer nodes in these networks, since a given training set would 
not contain any “target labels” for a hidden node. The training data 
do give target labels for the output nodes but that does not give us a 
target for the hidden nodes. Since the hidden nodes are connected to 
the output layer that is supervised, with proper target labels and thus 
computable loss, the key task then would be to properly relay the loss 
computed in the output layer back to each of the hidden nodes.

The Back-Propagation Algorithm

The back-propagation (BP) algorithm has been the primary method 
for achieving the learning of the parameters of an MLP. The devel-
opment of the BP algorithm in the literature was quite gradual and 
the invention of this method is not attributed to any single article 
or group of authors. It appears though that one article in the late 
1980s brought to attention the importance and significance of this 
algorithm (Rumelhart 1988). The core idea of the BP algorithm for 
gradient-decent-based weight learning is quite simple. It basically 
relies on the chain rule of differentiation for making a connection 
between the loss computed at the output layer and any hidden nodes. 
This connection helps to relay the final loss of the network back to any 
earlier layers/nodes in the network so that the weights of those layers/
nodes may be proportionally adjusted (to the direction that reduces 
the loss). Formally, we now present the BP algorithm, using the net-
work of Figure 3.10 for illustration.

To use this idea of gradient descent for any network parameter w, 
we need to first find the gradients of the error e, with respect to that 
parameter. Essentially, we need to be able to calculate ∂

∂
∀
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,
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( )e
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w
i j

k i j
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in the network architecture for the i th layer, j th neuron and its kth 
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dimension. Ignoring the −i layer sub-script as we only consider one 
parametrized layer, we will show how to derive this derivative across one 
layer using the chain rule. This may be extended beyond one layer by 
simple extension. The term l F standing for the final layer’s outputs and 
is defined in Equation (3.10). Terms l j

S are defined in Equation (3.8), 
which are the softmax outputs. The terms +1l j

L  are the outputs of a 
dot-product defined by ∑= ( ) ( )+ . ,1l w lj

L

i
i

j
i

L  ignoring the layer id on 

the weight notations. Terms l j
L are simply the incoming layer inputs 

coming from a previous layer. What we seek here are the terms ∂
∂  

e
w j

. 

Once we derive this for some j, we can follow the same procedure for 
all j. Once we can do this for this cut-away picture, we can simply 
extend it for all layers.
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Figure 3.10  A feed-forward network used for illustrating the back-propagation algorithm. In this 
cut-away diagram we show the last layer in action along with the softmax layer and the error layer 
for the ith sample.
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Consider again the error function using this notational setup,

{ }
{ }

{ }
{ }

( )
( )

( )
( )

( ) =
… … …

… … … …



















( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

+ +

+ +
 

, , ,   ,   , , ,   , 

, , ,   ,   , , ,  
. 

1 1
1

1 1
1 1 1

1 1

1
1

1 1
1 1 1

1 1

e l
l l l w l w l l w l w

l l l w l w l l w l w

F

S L L
d

L
d c

L L c
d

L
d
c

c
S L L

d
L

d c
L L c

d
L

d
c

w 	 (3.14)

The nested nature of this error depicts the modular nature of the 
layers used. In this setup, for any weight vector wk, the partial deriva-
tive ∂

∂  
e

wk
 can be derived as,
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Consider this summation expanded for the simple case of = 2,c  we 
get the following,
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We can already notice terms that are repeating in this summa-
tion and would not require to be calculated several times over. This 
provides us an optimal way to calculate gradients efficiently. Let us 
re-write Equation (3.16) as,
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or further as,
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The vector ∆( )S  containing the terms, ∆( )1S  and ∆( )2S  are not depen-
dent on the layer + 1L  and can be marginalized out. These are calculated 
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at the layer S using the outputs of layer + 1L  only and therefore could be 
abstracted away and provided as inputs from the top to the layer + 1.L

To implement, consider a layer q with parameters wq as a block of 
operations, which accepts incoming input vector −1ql  and outputs vec-
tor ql . It also internally computes a gradient which could store a ver-

sion of it as, ∂
∂

.e
wq

 To do this, all it would need is the gradient vector 

∆∆ ( )q  from the previous layer. After computing its gradient, it could 
propagate the gradient ( )∆ − 1q  to the layer below. 

This is the BP algorithm. The inputs are fed forward from bottom to 
top, where the error is calculated. Layer by layer, from top to bottom, 
gradients are then propagated until all layers have the error with respect 
to the gradient calculated. Once we know the gradients of the error with 
respect to all the weights in the network, we can use the weight update 
equation of a chosen optimization technique, such as those from the pre-
vious chapter, to modify the weights iteratively, hence achieving learning.

Improving BP-Based Learning

Over many years of development, various “tricks” have been pro-
posed to improve the above basic learning protocol for the multilayer 
network with some more theoretically motivated and some others 
inspired by pragmatisms. We have already studied some of these such 
as momentum, modified learning rates, and second-order methods in 
the context of optimization in Chapter 2. In the following, we high-
light some more of those developments that have been widely used, 
and many of them that have influenced various recent techniques 
reported in the current deep learning literature, as will be elaborated 
in the subsequent chapters.

Activation Functions

While we have only discussed the thresholding, identity, and softmax 
activation functions, there are several other activation functions that are 
more relevant in the recent literature; we shall study some of them here.

Some other well-studied activations include the squared function 
and the tanh functions. These have not proved helpful due to practical 
learning and stability-related issues. One of the most commonly used 
modern activation functions is the rectifier or the rectified linear unit 
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(ReLU). The rectifier was first introduced in the early 2000s and was 
later reintroduced in 2010 to great success (Hahnloser et al., 2000; 
Nair and Hinton, 2010). The rectifier is of the following form:

	 =a t( ) max(0, t)ReLU 	 (3.19)

This is not a smooth function. The analytical form of an actual imple-
mentation of the rectifier is

	 ′ = +a t ex( ) ln(1 )ReLU 	 (3.20)

which is a smooth approximation to the rectifier and is often called 
softplus.

The plots of these activations are shown in Figure 3.11. As can be 
observed in Figure 3.11, ReLU has a much steeper profile lending to 
faster and better learnability (He et al., 2015; Nair and Hinton, 2010).

An extension to the rectifier is the noisy ReLU defined by

	 = + ϕ ϕ σa t t t( ) max(0,   ),   with  ~ (0, ( ))ReLU 	 (3.21)

Noisy ReLUs create these random errors in the activation that allow 
for the activations to be minutely wrong. This allows the network to 
wander off a little bit while learning. Consider the case where the 
error surface is full of peaks and valleys. Allowing the parameters 
to wander around in a restricted fashion helps in probing parts of 
the space that might not have been accessible using strict gradient 

t

ln ( 1 + e x )

max(0, t)

Figure 3.11  The ReLU activation function and its analytical approximation.
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descent. In practice, this may also help us alleviate the problems of 
overfitting. Noisy ReLUs work particularly well in some computer 
vision tasks.

A further addendum to ReLUs is the leaky ReLU (Maas et al., 
2013). Leaky ReLUs are of the form:

	 ( )
,               if 0
,            otherwise

,ReLUa t
t t
t

=
>

δ






	 (3.22)

where the parameter δ is a small constant. This allows the neuron to 
be active very mildly and produces a small gradient no matter whether 
the neuron was intended to be active or not. A further development 
on this is the parametric leaky ReLU, where δ is considered another 
parameter of the neuron and is learned along with the BP of the 
weights themselves. If δ < 0, we obtain an interesting activation func-
tion shown in Figure 3.12. In this case, the neuron quite literally pro-
duces a negative signal. This makes the gradients move much faster 
even when the neuron is not contributing to the class predictions.

Another recent activation function is the maxout (Goodfellow 
et al., 2013). The maxout is an activation function that is quite general 
so that it can learn its form. It can simulate any activation function 
from a linear rectifier to a quadratic. Maxout is of the following form:

	 ( ) max  .maxout
[1, ]

,a t ti
j k

i j=
∈

	 (3.23)

Maxout considers the neighboring k nodes’ outputs and produces 
the maximum of those outputs as the activation. Maxout reduces the 
number of features that are produced by dropping those features that 
are not maximum enough. In a manner of speaking, maxout assumes 
(forces) that nearby nodes represent similar concepts and picks only 

δt, δ < 0
t

t

Figure 3.12  Leaky ReLU.
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one of them, which is the most active. Maxout appears to be an inter-
esting activation function whose performance and value is neither fully 
understood nor fully experimented upon yet. More research would 
yield increased understanding of maxout and the reader is encouraged 
to follow up on this topic.

Weight Pruning

Depending on the number of layers of a network and how many 
nodes each hidden layer will have, a typical MLNN may have a lot 
of weights, or equivalently a large degree of freedom, resulting in a 
potentially overcomplicated system. A system that is too complicated 
suffers from two obvious disadvantages: high computational complex-
ity (and thus difficult to train) and tendency to overfitting (and thus 
poor generalization performance after training). On the other hand, 
given a difficult learning task, it is also challenging to precisely deter-
mine in advance what would be the optimal size for a low-complexity 
network that still does an adequate job for the given task. A com-
mon approach to alleviating this dilemma is to start with an obviously 
larger-than-necessary network and then prune the network by delet-
ing the weights and/or nodes to obtain a simpler network.

Generally speaking, the above weight-pruning task may be achieved 
by two types of approach or their variants. The first type of approach 
employs some heuristics in selectively removing the weights if they 
are deemed as having little impact on the final error/cost function. 
The second type is somewhat subtler in that it relies on introducing 
additional regularization such as L1 terms in the error function so that 
smaller weights will be favored (essentially pushing some weights to 
zero). Over the years, many specific techniques have been developed, 
employing either or both of the above approaches (Castellano et al., 
1997; Lecun et al. 1990; Reed, 1993; Suzuki et al., 2001). It is worth 
noting that a more recent work also considered how to deal with the 
potential irregularity of a network that has gone through a weight-
pruning process (Anwar et al., 2015).

Batch Normalization

Throughout the course of this book, we will study some additional 
tricks in learning deep networks. Some of these are regularizers such 
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as dropouts, while others are techniques of initialization such as pre-
trained networks and mentoring. One of the most powerful and most 
common among these is batch normalization.

Typically, it is quite common to normalize the images before 
we feed them forward through a network. Normalization typically 
involves ranging the image values to [−0.5, 0.5], typically with a mean 
of 0. In a deep network, the input distribution of each layer keeps 
varying per batch and per sample. This is because the parameters of 
the previous layers change during every update. This makes training 
very difficult particularly with activation functions that saturate.

Although we have assumed thus far in our discussions that all samples 
from the same class are sampled independently and identically, this is not 
always true. Samples differ in their statistical properties across batches 
of data even among the same class. This phenomenon is called covari-
ate shift. To fix this problem of covariate shift, we should normalize the 
activations coming off every layer. The right variance to normalize with 
and the mean to mean-subtract the data are often unknown and can be 
estimated from the dataset itself. Batch normalization is one such way to 
do it. If z were the activations of one layer, we compute

	   (   ) ,*z z
bn

z z

z
= − µ α

σ
	 (3.24)

where µzand σ z are the mean and the variance of that activation batch, 
respectively. α is now one of the learnable parameters of the network 
and can be thought of as learning the stretch of the normalization 
applied. α is also learned during the same optimization along with the 
weights. α can be learned for multiple layers using BP. Batch normal-
ization is a powerful tool and helps the network to learn much faster 
even with nonsaturating activation functions. Batch normalization is 
particularly popular in visual computing contexts with image data.

Summary

The discussion in this chapter was intended to introduce feed-
forward MLNNs by reviewing key historical developments as well 
as illustrating the basic models and their notational conventions. 
We also reviewed some “tricks” that were commonly used during the 
“second wave” of ANNs that started roughly in the mid-1980s. As 
such, the presentation was largely focused on the literature during and 
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before that period, although we did cover a few more recent activation 
functions. It is interesting to note that some of the most recent deep 
learning techniques, while seemingly emerging only fairly recently in 
the “third wave” of neural networks, may have deep roots in those 
earlier developments.

Even if our presentation of the development of MLP in this chapter 
is brief, it should be evident from the discussion that two key problems 
are of primary concern in a neural network approach: designing the 
network architecture (e.g., number of layers, connectivity between lay-
ers, choice of activation functions, and number of hidden nodes, etc.) 
and designing a learning algorithm (possibly employing many of the 
“tricks” we have illustrated). As will be shown in subsequent chapters, 
many new efforts in the recent literature report mostly new solutions/
designs for these two problems in some specific problem domains.
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4
Convolutional  

Neural Networks

In the previous chapters, we studied fully connected multilayer neural 
networks (MLNNs) and their training using backpropagation. In a 
typical MLNN layer, with n input nodes and m neurons, we need to 
learn n m×  parameters or weights. While an MLNN may perform 
well in some cases, in particular, for those where the features of differ-
ent dimensions are independent, there are some additional properties 
in the connection architecture that we might desire. For example, if it 
is known that the dimensions of the input data are strongly correlated 
or that the the size of the MLNN (both the number of the layers 
and the number of neurons in each layer) must be limited for com-
putational considerations, should there be any architectural changes 
introduced to a standard MLNN to accommodate this additional 
constraint about the data or the network complexity?

Despite the general expressive power of MLNNs, we might want 
to make explicit use of local dependencies and invariances among 
the features themselves. Feature dimensions might have some spe-
cial ordering of significance, and some change in properties exhibited 
by neighboring feature dimensions may provide valuable informa-
tion. In one-dimensional (1D) feature spaces like digital audio signals 
for voice recognition, or two-dimensional (2D) feature spaces like 
images, or three-dimensional (3D) feature spaces like videos, and so 
on, we often need to identify patterns that might occur anywhere in 
the signal. These patterns may be represented by a template, which 
may be a short/small-sized signal itself. In all the preceding examples, 
the data in which we search for the occurrences of a template exhibit 
strong correlation among nearby samples. Also, from the examples 
discussed in Chapter 1, many feature representations in images are 
obtained by convolution with some kernels. These have been among 
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the motivations behind the introduction of convolutional layers to the 
MLNN (Fukushima, 2003; Fukushima et al., 1983; LeCun et al., 
1989). In this chapter, we shall study MLNNs that employ convo-
lutional and pooling layers and their combinations for constructing 
different deep networks that have been used to produce good per-
formance on many long-standing computer vision problems in recent 
years.

Convolution and Pooling Layer

We have already studied sparsity in the context of linear regression 
before. Sparsity may be defined as the fraction of the zeros in weight 
matrices or arrays. Having a zero weight or a zero response from a 
neuron is equivalent to having an incoming or outgoing connection, 
respectively, removed from the network architecture.

Suppose that the weights were forcibly made sparse for a neuron. 
The sparsity that is so imposed is random (which is often referred 
to as dropout and will be discussed later) and the imposition has a 
structure. This sparsity can be imposed in such a manner that every 
neuron has incoming weights from only k adjacent inputs, adjacency 
being the important criterion. In this sparse connectivity, we drop out 
all outputs of a fully connected neuron and only make a few adjacent 
connections active, making the connectivity sparse and local. For the 
sake of descriptions, let us consider the adjacency of k 3= .

Figure 4.1 depicts such a connection. In this connection setup, 
each neuron attempts to learn a local property of the inputs as it only 
takes as input three adjacent features. The property that it tries to 
learn is perhaps the manner in which the features change across the 
locality and so forth. Locality can be defined in terms of adjacency 
of dimensionality of signals under a special ordering. A set of con-
nections are local if they are connected to adjacent dimensions in 
the ordering of the signal. In the case of images, this corresponds to 
neighboring pixels. One of our aims in looking at locality for images 
is that we have pixels that are ordered in a sequence and we want 
to exploit the relationship between pixels in this ordering. There are 
cases, other than images, where this is also used. For instance, in the 
case of audio signals the ordering is by time. In the case of images, the 
ordering is naturally the ordering of pixels in the image itself.
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The connectivity is therefore local and sparse at the same time. 
Each neuron learns a feature that is local to those it connects to and 
learns a template that can be used only at those locations. In cases of 
audio or image signals, this allows us to study features that combine 
only adjacent local values, such as a word or tone. In images, this 
allows us to study local features such as gradients, edges, or blobs.

If each neuron has its own local connection and the weights are 
deemed as some kernel for feature detection, then local connectivity 
may imply that all features are only local and do not occur elsewhere. 
This is not true in the case of audio or images. If we are looking for a 
pattern, say an edge, at some location, we might as well look for the 
same pattern all throughout the signal. If a neuron is connected to one 
location in an image where it learns to detect a particular edge pat-
tern, we also want the learned detector to be useful at all possible loca-
tions in the image to see if the said edge pattern exists anywhere else. 
In other words, we want the neuron shown in the left side in Figure 
4.1 to not just be connected to those k adjacent input feature locations 
but slide and circularly shift its connections to other k adjacent input 
locations as well. In doing so, we do not require new weights for every 
new connection made, but rather use the same weights at all loca-
tions. This effectively allows us to move the neuron around and collect 
the neuron’s response at different locations of the signal. One neuron 
could go through the entire signal and still only require k weights. 
Therefore, by doing this, we only increase the number of outputs but 
not the number of weights.

Note that the outputs are also ordered if arranged properly. If a neu-
ron was an edge detector, it slides around an image trying to find that 
edge at all locations of the image. The neuron outputs another image 
that will be approximately the same size of the original input image itself. 

Figure 4.1  Sparse and local connectivity.



92 CONVOLUTIONAL NEURAL NETWORKS

The output is a locational representation of where the edge is present 
and where it is absent. This is similar to the edge detector we studied 
in Chapter 1. In practice, we do not make a neuron move around the 
signal. Instead, we will have many neurons that share the same weights. 
While both these are equivalently the same way of thinking about this 
connection setup, we only consider the second interpretation. By using 
the second interpretation of weights being shared by neurons at differ-
ent locations, we are able to retain the original idea of a neuron and its 
sparse connectivity without thinking about the additional implementa-
tion complexity of moving the neurons around.

Let us have a closer look at what this series of operations  are  
accomplishing. Consider that we have a d-dimensional feature 
x x x x d, , ,  (1) (2) ( )= …  as inputs to some layer, which performs this oper-
ation. By having a set of weights in some fixed order w w w wk, , ,  1 2[ ]= …
and starting from the beginning of the signal and sliding this to the end 
with a stride of one feature dimension per slide, we are collecting the 
response of the neuron over each location of the signal given its ordered 
surroundings. More formally, the operation can be defined as

	 ,   [1, 2, , 1]( ) ( 1)

1

z x w j d kj j i

i

k

k∑= ∀ = … − ++ −

=

	 (4.1)

This operation is often referred to as convolution. To be more accu-
rate, this process is called cross-correlation and not convolution. In 
the strictest signal processing sense of convolution, the weights w get 
flipped around its center index. For the sake of convenience and with 
a slight abuse of notation, we are going to represent both operations 
using * and refer to both operations interchangeably. While read-
ing the literature though, the reader is well advised to pay attention 
to this. This is a 1D convolution as opposed to the 2D convolution 
that was introduced in Chapter 1. The outputs z j( ) are the output 
responses of the neurons that share the same weight. The outputs are 
ordered responses of the neurons at different locations of the signal. 
The outputs will be of length n k 1− +  as there are that many neurons 
that share the weights.

These neural responses might also be passed through an element-
wise activation function such as a tanh or a rectified linear unit. We 
call these activated outputs feature maps or activations interchangeably. 
The number of feature maps we output is the same as the number of 
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sets of shared-weight neurons or filters (Gardner, 1988). These neu-
rons that share a set of weights are often interchangeably referred to 
as filters or kernels. The term filter is borrowed from traditional signal 
processing literature. Figure 4.2 describes this architecture with two 
filters. Each filter has a set of k 3=  weights. Since the filter collects 
signals from k adjacent input locations at each stride, we say that the 
filter’s receptive field is k. A collection of multiple such filters or essen-
tially a layer is called a filter bank. The area these filters cover with 
respect to the original image is often referred to as receptive fields.

In Figure 4.2, k  is the receptive field, as the neuron receives the signal 
from the original source. The sizes of receptive fields are often debated 
upon. One school of thought is that filter sizes should be as small as 
possible, typically on the order of 3 pixels irrespective of the size of the 
images or signals. This provides an opportunity to learn small-scale 
features at each layer and build meaningful representations deeper in 
the network. On the other hand, another school of thought is to learn 
slightly larger receptive filters at the earlier stages and go smaller at 
the deeper layers. This debate is not settled, and one needs to design 
receptive fields suitable to the demands of the application. We will see 

Figure 4.2  Two sets of shared-weight sparse neurons exhibiting stride 1 convolutional connec-
tions. The filter size is 3 and the feature map size (number of neurons sharing the same weights) is 7. 
The intensity of the lines describes the parameter weights: the darker the color, the lower the weight. 
Similarly, differently shaded circles represent unique weight sharing between neurons. The signal 
length is 9 and the filter size is 3, therefore each neural response length is 9 − 3 + 1 = 7.
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this debate over the size of receptive fields develop more quantitatively 
as we study some case studies later in this chapter.

There are two ways of referring to receptive fields. One way is to 
think of reception from the previous layer only. In this case, a recep-
tive field of size 3 for any layer is just simply that. Another way to 
think of receptive fields is to think of them as receiving signals from 
the input layer. This implies that the receptive field of a second layer of 
a size 3 filter bank receiving a signal from a first layer of a size 3 filter 
bank is a size 9. We will follow the former notation here for the sake 
of convenience, but it is to be noted that deeper layers correspond to a 
much larger area of reception from the original signal.

A 2D convolutional layer is like a 1D convolutional layer except 
that the filter weights are also ordered in two dimensions. The first 
part of Figure 4.3 shows a typical 2D convolutional layer. Each neu-
ron may start from some corner (say, top-left) of the 2D signal (most 
often images) and stride through them in one direction and end at 
the opposite corner (say bottom-right). Each input itself might be a 
collection of feature maps or channels of images. In such a case, we 
convolve each neuron with every feature map or every channel of the 
inputs. The outputs of each channel may be added together in a loca-
tion-wise addition so that each neuron will have one averaged output 
response. This reduces the number of activations at the output of the 
layer. Consider that the input to the layer a  has I  channels (could also 
be feature maps or activations if coming from another layer), and the 

Figure 4.3  Convpool layer with three neurons.
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layer has L  kernels k and λ  representing the element-wise activation 
function. The output activations of the layer are

	 z a k j Lj i
j

i

I

*     [1, 2,  , ]( )

1
∑= λ











 ∀ = …

=

	 (4.2)

The * represents the convolution operation that we discussed in 
Chapter 1. The difference being that instead of handcrafting the fil-
ters as we did in Chapter 1, here the filters are learned by the network 
itself. The filters learned by convolutional layers that directly work on 
the input images are often similar to edge or blob detectors. These 
represent some properties or types of changes locally in the input 
image. Figure 4.4 shows some examples of filters that were learned 
from the CIFAR-10 dataset. It also shows the output activations of 
one of the filters (Krizhevsky and Hinton, 2009).

Neural networks are not mere learning systems that learn concepts 
but also systems that break down data and represent (explain) data 
using smaller pieces of information. Using these representations, the 
neural network maps data to the label space. Convolutional neural net-
works (CNNs), for instance, break the image into small basic compo-
nents of images. These are typically edges and blobs, which we would 
find as local properties commonly among images in a dataset. By 
using these edges and blobs in the right manner at the right locations 
and adding shifted versions, we may sometimes be able to recreate the 
original image itself. We shall study this in detail as an autoencoder in 

Figure 4.4  From left to right are some images from the CIFAR-10 dataset, some ×5 5 2-D con-
volutional filters that were learned from it, and the activations that the top-left filter produced. The 
code that is used to learn this network is available in the Yann toolbox (refer to Appendix A).
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Chapter 5. Others use these techniques to map the images onto more 
complex spaces than the simple label space that we have been study-
ing thus far. Consider semantic segmentation, object localization, or 
generating images of a higher resolution. In these cases, on top of the 
network predictions (which are already images), we may add other 
structured models such as Markovian Random Fields and produce 
structured predictions. In this chapter, we continue using only simple 
label spaces. After successive transformations and retransformations 
with projections on better feature spaces, the network maps the image 
onto a discriminative label space.

In identifying what kind of an object is present in the image, the 
CNN will break the image into a representation on what edge or blob 
is present at which location. This effect is easily observable in the first 
layer. Second-layer weights are trying to find representations on the 
locations of first layers’ blob and edge activations. Deeper layers have 
more complicated representations, which often do not have a human-
interpretable meaning.

In a convolutional layer, the neuron activations of nearby locations 
often represent similar features. Consider a filter that is a pattern detec-
tor for a particular edge, a filter perhaps of the form [ 1, 0, 1]− . As we 
already saw in Chapter 1, this filter produces an output for every point 
where there is a horizontal gradient. We may use the activation function 
as a thresholding function perhaps, but we might still end up with more 
than one-pixel-thick edge segments that do not define the edge nicely.

The activations change smoothly since the convolutional filter is 
small and the range or pixels looked at is large. Sharper transition-
ing activations make for better learning. To achieve this, a pooling or 
a subsampling layer typically follows the convolution layer although 
this need not always be true. This can be achieved also by using a 
strided convolution layer or by using a combination of strided con-
volutions and pooling. Pooling is generally considered one way of 
achieving this, although recent studies use strided convolutions to 
replace pooling altogether (Radford et al., 2015; Visin et al., 2015). 
A strided convolution is a convolution when instead of moving the 
mask by one step at a time, we stride by a larger step.

By pooling, we are in general reducing the data entropy by 
reducing the size of the activations. Reduction of size is often good 
because, while we lose some spatial information and spatial fre-
quency in an activation itself, we gain a lot more activation responses 
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through a layer’s filter bank. More importantly, pooling allows us to 
impose and accommodate for some invariances among features spa-
tially. The deeper we go in a neural network, the more activations 
we will get the and larger will be the sizes of these activations. This 
will soon become computationally intractable. Pooling helps us in 
maintaining tractability.

The norm in subsampling from a signal processing perspective is to 
pool by average, but maximum pooling or maxpool is generally pre-
ferred in CNNs. To perform a maxpool by p, we choose a sliding 
window of p p× . Similar to convolution, this sliding window can be 
strided or of stride 1. Typically, pooling is performed with a stride the 
same as the size of the pooling widow itself p p×( ) . Once within a 
window, we select the maximum (or the type of pooling) and rep-
resent the entirety of that window by that value. Maxpool is more 
popular than others as it represents the strongest response. In image 
processing contexts, the strongest response corresponds to the best 
match of the template the filter is looking for and is therefore a good 
option. There are some concerns about pooling as it loses information 
and some attempts have been made to solve it, which we shall see in 
Chapter 5.

Figure 4.3 shows a typical stacked convolution pooling or convpool 
layer. In a convpool layer, the weights are few and there are a lot of 
feature maps each representing its own feature. Typically, the filter 
sizes are small but are still larger than the strides. Pooling window 
size is typically smaller or the same as the convolutional filter size. 
Convpool layers are typically implemented as one layer, although they 
may be refered to in literature as different layers as well.

Convolutional Neural Networks

A CNN is a neural network where a signal feeds into a set of stacked 
convolutional pooling layer pairs (convpool layers), and the output of 
the last layer feeds into a set of stacked fully connected layers that feed 
into a softmax layer (Figure 4.5).

A similar setup can be created for autoencoders and other neu-
ral networks but as we have done in the chapters before, we shall 
stick to only classification networks and revisit other architectures in 
Chapter 5. A fully connected neural network as seen in the previous 
chapters might or might not follow the convolutional layers before 
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we go into a typical softmax layer for classification purposes. Since 
the convpool layer is differentiable, learning in a CNN is the same as 
learning in an MLNN, which we saw in Chapter 3. Other optimiza-
tion procedures we studied work for CNNs as well.

While the basic idea of building a CNN is clear from the above 
presentation, in practice, a designer may choose to configure the net-
work in different ways, resulting in different architectures that are 
often motivated by problem-specific considerations. In the follow-
ing, we examine several architectures that have been relatively well 
known, and in doing so, we hope to illustrate some typical ways of 
building a CNN of a particular philosophy.

CASE STUDIES

Now that we have constructed a CNN, let us study some popu-
lar CNN architectures and CNN-based applications.

CASE STUDY 0: THE MNIST DATASET
Before we get into our first network architecture, let us study one 
of the most commonly used toy datasets for computer vision: the 
MNIST dataset of handwritten characters, more commonly just 
MNIST. Knowing this dataset will give us some context with 
which to study our first CNN architecture case because it was 
designed for this very application using this dataset.

MNIST is a grayscale image dataset that was created as a 
replacement for the NIST dataset, which was black and white. 
MNIST contains tightly cropped images of handwritten numeri-
cal characters. Each image contains 28 28×  pixels with one char-
acter in its center. The dataset has 70,000 images roughly evenly 
distributed among all the classes. A total of 50,000 of these images 
are used for training, 10,000 for testing, and 10,000 for valida-
tion. These splits are premade and are constantly maintained. 
Figure 4.6 shows some sample images from this dataset.

The constancy of the image sizes, scales, and writing makes 
this dataset an excellent tool to study and test machine learning 
algorithms at a preliminary stage. Since the dataset was also well 
arranged, while working with CNNs we can notice the actions 



100 CONVOLUTIONAL NEURAL NETWORKS

of each filter that we learn, making this a perfect toy dataset to 
study CNNs with. As is tradition with CNNs, we shall begin 
the study of CNNs with the MNIST dataset.

CASE STUDY 1: LENET
One of the earliest and one of the most popular CNNs is Prof. Yann 
LeCun’s CNN for digit recognition (LeCun et al., 1998). This net-
work is now often referred to as LeNet5, or simply LeNet. LeNet5 is 
a CNN with two convolutional layers and one fully connected layer, 
whose detailed network architecture is shown in Table 4.1.

The LeNet5 for MNIST takes in the 28 28×  single-chan-
nel grayscale images as input to the first layer. The first layer 
has a receptive field of 5 5× . Originally, it only had six feature 
maps for computational reasons, but the widely used modern 
incarnation of this network has 20 feature maps in the first 

Figure 4.6  Sample images from the MNIST dataset.
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convolutional layer. The output of this layer has 20 activations 
of size − + = ×28 5 1 24 ( 24). This gets pooled down by a factor 
of 2, making an input to the next convpool layer of 12   12. × The 
next layer learns 50 feature maps, producing 50 activations of 
8 8×  each. This gets downsampled to 4 4.×  Before going into the 
fully connected layers, we flatten these activations into 1 800× , 
which feed into a typical dot-product hidden layer of 500 neu-
rons. This then goes to a softmax layer of 10 nodes, one for each 
character in the MNIST dataset. In today’s LeNet5, all activa-
tions are ReLU units providing for faster learning. Figure 4.7 
shows some the filters learned and the activations of some of 
the learned filters for the convolutional layers of LeNet5. This is 
after training the network for 75 epochs with a learning rate of 
0.01. The CNN of this nature, trained so, produces an accuracy 
of 99.38% on the MNIST dataset. The code for producing these 

Table 4.1  A Modern-Day Reincarnation of LeNet for MNIST Classification

LAYER 
NUMBER INPUT SHAPE

RECEPTIVE 
FIELD

NUMBER OF 
FEATURE MAPS TYPE OF NEURON

1 28 × 28 × 1 5 × 5 20 Convolutional
2 24 × 24 × 20 2 × 2 – Pooling
3 12 × 12 × 20 5 × 5 50 Convolutional
4 8 × 8 × 50 2 × 2 – Pooling
5 800 – 500 Fully connected
6 500 – 10 Softmax

Figure 4.7  Filters and activations of the LeNet5 convpool layers on MNIST images.
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results and figures are available at the yann toolbox’s tutorial, 
refer to Appendix A for more details.

Now that we have seen the MNIST dataset and the LeNet5, 
which is a prototypical CNN, we will proceed to a few modern-
day CNNs that were influential in the resurgence of CNN-based 
techniques for computer vision problems. This resurgence was due 
to a variety of factors including advancement in computing tech-
nologies (powerful CPUs but more importantly the availability 
of GPUs supporting parallel computing), larger and better image 
datasets, open visual object categorization (VOC), ImageNet com-
petitions, and others (Russakovsky et al., 2015). Each of the net-
works studied here represents some significant progresses made at 
the time and hence they serve very well to illustrate how new ideas 
may be incorporated to improve upon the basic CNN architecture.

CASE STUDY 2: ALEXNET
Krizhevsky et al. introduced their CNN at the Neural Informa-
tion Processing Systems (NIPS) 2012 conference (Krizhevsky 
et al., 2012), which is often referred to as AlexNet. This net-
work was the winner of the ImageNet challenge of 2012 (Rus-
sakovsky et al., 2015).

Similar to the MNIST being influential in making the LeNet5 
widely known and used, ImageNet is one large-scale dataset that was 
heavily relied upon by many researchers in the third wave of neural 
networks. At the time of AlexNet, ImageNet was a dataset that had 
over 15 million images in over 22,000 categories. The ImageNet 
competition, ImageNet large-scale visual recognition challenge 
(ILSVRC), used about 1000 of these categories. ImageNet cat-
egories are much more complicated than other datasets and are 
often difficult even for humans to categorize perfectly. The average 
human-level performance is about 96% on this dataset. Recognition 
systems using conventional techniques, such as those discussed in 
Chapter 1, may achieve at best a performance with only around 75% 
accuracy, and in 2012 AlexNet was the first system to break the 80% 
mark (Russakovsky et al., 2015).
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AlexNet at its core is just simply a deeper LeNet. The top 
network in Figure 4.8 shows the entire architecture of AlexNet. 
It has five convpool layers followed by two fully connected layers 
and a 1000-node softmax layer, one for each category. Although 
at first glance this network looks like a straightforward extension 
and deepening of LeNet in terms of its architectural philosophy, 
the sheer number of parameters and therefore the complexity 
of the model leads to drastic amounts of overfitting. This net-
work by itself could never be trained in a stable manner with the 
ImageNet dataset even though there are over 15 million images. 
Computationally, training such a large network is also a major 
concern. At the time of its implementation, AlexNet was one of 
the largest and deepest neural networks. Besides the basic train-
ing algorithm for this CNN using stochastic gradient descent, 
Krizhevsky et al. had to use several new techniques in combina-
tion to get this network to train without overfitting and in a fast-
enough manner. We will study these techniques in detail below.

One significant novelty of AlexNet was the choice to use the 
ReLU activation instead of the then more traditional tanh or 
sigmoidal activations (Nair and Hinton, 2010). Tanh and sig-
moid activations, as we discussed in the previous chapters, are 
saturating activations. ReLUs do not saturate near 1 like other 
activation functions and therefore still have a larger gradient as 
we approach unity. This helps to increase the speed of learning.

Another important contribution of AlexNet is in its use of 
multiple GPUs for learning. The original implementation is still 
available as cuda-convnet, although advanced versions have been 
implemented since then in the form of many toolboxes. The bot-
tom image in Figure 4.8 shows the network being split into two. 
This is because one part of the network runs on one GPU while 
the other runs on another. Krizhevsky et al. originally trained the 
networks on two Nvidia GTX 580 GPUs with 3 GB worth of 
memory and were not able to fit the entire network in one GPU. 
This split makes the network learn very specialized features.

Figure 4.9 (top) shows filters learned in the training pro-
cess. The top three rows are typically color-agnostic features that 
are learned on one of the GPUs and the last three rows are 
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color-sensitive features learned on the other GPU. Such a behav-
ior was seen to exhibit over many repetitions. Even though it was 
trained in two parallel GPUs, they do communicate and are not 
completely independent multicolumn networks.

Yet another significant advancement in AlexNet was the use of 
dropouts. AlexNet is a network with a large number of parame-
ters and training a network of this size without proper regulariza-
tion will lead to severe overfitting. Dropout is a method to avoid 
coadaptation of feature maps (Srivastava et al., 2014). Ideally, to 
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Figure 4.9  AlexNet filters learned at the first layer and sample results and predictions. 
(Courtesy of Alex Kirzhevsky.) The production of this figure is in grayscale. Color productions 
of this image could be found in the original article (Krizhevsky et. al., 2012).
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improve performance, we would like to train many models and 
combine their decisions by taking a poll average of all the mod-
els we have trained. This technique is called ensemble learning 
and is typically used in random forests and decision trees. When 
it comes to neural networks, ensemble learning poses a compu-
tational problem. Training one AlexNet was already difficult on 
two GPUs; to train tens or even hundreds of them would be a 
logistical impossibility. Dropout is one method that addresses 
these problems. Dropout is a technique where the output of a 
neuron is forced to zero with a random probability. This random 
probability is typically 0.5 Bernoulli. This means that for every 
neuron, we associate a random variable from which we draw a 
state from a Bernoulli distribution with a probability of 0.5. If 
the sample drawn was 1, we allow the signal to go through the 
neuron; if it was 0, we drop the output of the neuron to 0, irre-
spective of whether the neuron was active or not. This implies that 
approximately half the neurons in the network typically turn off 
randomly while learning. This creates many advantageous effects.

Since the network is now running with only half the represen-
tations, each neuron is now under twice the stress to learn mean-
ingful features. This enables faster learning without overfitting. 
Since neurons turn OFF and ON at random, neurons can no 
longer coadapt and must learn features that are independent of 
other neurons. More importantly, during each backpropagation 
effectively a new architecture is created by using dropouts. Each 
forward propagation is a whole new network model that we are 
learning in our ensemble. The one difference is that these models 
now share parameters. Dropouts are not typically used in a con-
volutional layer in the traditional context as they would remove 
an entire feature map. Dropouts are applied to individual feature 
responses dropping out only a few locations in the feature maps 
randomly, which in itself isn’t ideal.

Table 4.2 shows the complete AlexNet architecture in detail. 
The results produced by AlexNet were extraordinary for the 
time and yet this architecture was limited only by computational 
and memory capacities. The authors predicted better accuracies 
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were to come with deeper and more complicated models. This 
prophecy has come true many times over and led to some other 
more recent networks that we shall see in the rest of this chapter 
and in Chapter 5.

Beyond the objective results in terms of winning the compe-
tition and producing a significant improvement in accuracy on 
the ImageNet dataset, AlexNet also demonstrated some inter-
esting subjective results, as illustrated in Figure 4.9. Notice that, 
for instance, not only are the first choices of labels good, but 
even the other labels predicted by the system were mostly quite 
semantically related (and in some cases corrected the labeling 
error of the dataset itself). For instance, the additional guesses 
for leopard are snow leopard and jaguar, which are not such bad 
alternative options. Such subjective results appear to demon-
strate that AlexNet may have learned to represent the underly-
ing objects in a more semantic manner that groups semantically 
related objects together. We will further investigate this result 
in Chapter 5.

CASE STUDY 3:  GOOGLENET AND 
THE INCEPTION MODULE
In 2015, Google came up with a special convolutional layer called 
the inception layer (Szegedy et al., 2015). There is a fundamental 

Table 4.2  AlexNet Architecture

LAYER 
NUMBER INPUT SHAPE RECEPTIVE FIELD

NUMBER OF 
KERNELS TYPE OF NEURONS

1 224 × 224 × 3 11 × 11, stride 4 96 Convolutional
2 – 3 × 3, stride 2 – Pooling
3 55 × 55 × 96 5 × 5 256 Convolutional
4 – 3 × 3, stride 2 – Pooling
5 13 × 13 × 256 3 × 3, padded 384 Convolutional
6 13 × 13 × 384 3 × 3, padded 384 Convolutional
7 13 × 13 × 384 3 × 3 256 Convolutional
8 30,976 – 4096 Fully connected
9 4096 – 4096 Fully connected
10 4096 – 1000 Softmax
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shortcoming with an AlexNet type of network: large computa-
tional cost while at the same time providing depth. The inception 
module tries to make a network with fewer parameters and at 
the same time go deeper. The inception module is a network-in-
network system. Figure 4.10 shows an inception module. Each 
inception module contains a few convolution layers in parallel 
that go through a dimensionality reduction step through 1 × 1 
convolutional layers. There is one maxpooling layer. These layers 
get concatenated before being passed on to another inception or 
a regular module. The 1 × 1 convolutions reduce the dimension-
ality similar to a technique called embedding. This gets passed 
on to the more expensive 5 × 5 and 3 × 3 layers. The embedding 
layers perform a version of clustering before being passed on the 
next layer. Capsules are a similar and related idea, which takes 

3 × convolutional layer  

Incoming
activations

3 × maxpooling layer

1 × convolutional layer

1 × convolutional layer

1 × convolutional layer  

5 × convolutional layer

1 × convolutional layer  

Filter concatenation 

Figure 4.10  GoogLeNet’s inception module.
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this further in doing an actual Hough transform like voting to 
do clustering (Hinton et al., 2011).

GoogLeNet is one particular network that uses the inception 
module. Not including pooling layers, this network contains 
22 layers. With such a deep network, there arises a problem of 
vanishing gradients. Vanishing gradient is a problem of depth 
wherein the errors are not strong enough to produce gradients 
that are strong enough to move the weights in any direction. To 
avoid this, in between, layers are branched off into one fully con-
nected softmax layer. The point of these classifier layers is not to 
perform better in label accuracies but to add more errors so that 
there are some gradients that produce additional discriminative 
features. These act as a regularizer. By adding additional soft-
max layers in between the network, we can create errors at those 
points that help in producing more supervision, thereby stron-
ger gradients. Effectively, we are regularizing the network to be 
always discriminative at all layers.

One quirk of GoogLeNet is having traditional convolution 
layers at the beginning followed by inception modules. The tra-
ditional convolution layers produce activations that can be easily 
clustered upon using the 1 × 1 layers. The fully connected layers 
were trained with a 0.7 dropout unlike the 0.5 of AlexNet and a 
0.9 momentum. The results of this network are not reported here 
and are left for the interested reader to look up from the original 
reference. GoogLeNet was able to significantly increase the state 
of the art in several datasets including ImageNet.

CASE STUDY 4: VGG-19
The VGG network is a popular benchmark network that beats the 
GoogLeNet postcompetition on the ImageNet 2014 (Simonyan 
and Zisserman, 2014). The VGG network works on a filter size 
philosophy different from the ones we discussed in the previous 
networks. In all the previous networks, we considered filters that 
are larger in size at the earlier layers and smaller in size at the 
deeper layers. VGG follows the same idea but starts with a recep-
tive field that is as small as 3 × 3 and grows at a constant pace of 
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3 × 3. The VGG network considers only 3 × 3 convolutional filters 
with a 2 × 2 maxpooling layer and stacks them to create a convo-
lutional network. This network is very close to the LeNet in all its 
architectural paradigms, with no inception modules or the like. 
The original VGG paper enlists five different architectures, but 
we are interested in only the fifth (E) as it is the most commonly 
used one. The architecture of interest is shown in Table 4.3. The 
E network is a simple convolutional network that is 24 layers deep 
and is commonly referred to as the VGGNet or VGG-19.

The strategy to build up a large network layerwise using same-
sized smaller filters was originally to analyze the effect of depth 

Table 4.3  VGG Network

  LAYER NUMBER RECEPTIVE FIELD
NUMBER OF 

KERNELS TYPE OF NEURONS

  1 3 × 3, stride 1 64 Convolutional
  2 3 × 3, stride 1 64 Convolutional
  3 2 × 2, stride 1 – Pooling
  4 3 × 3, stride 1 128 Convolutional
  5 3 × 3, stride 1 128 Convolutional
  6 2 × 2, stride 1 – Pooling
  7 3 × 3, stride 1 256 Convolutional
  8 3 × 3, stride 1 256 Convolutional
  9 3 × 3, stride 1 256 Convolutional
10 3 × 3, stride 1 256 Convolutional
11 2 × 2 stride 1 – Pooling
12 3 × 3, stride 1 512 Convolutional
13 3 × 3, stride 1 512 Convolutional
14 3 × 3, stride 1 512 Convolutional
15 3 × 3, stride 1 512 Convolutional
16 2 × 2, stride 1 – Pooling
17 3 × 3, stride 1 512 Convolutional
18 3 × 3, stride 1 512 Convolutional
19 3 × 3, stride 1 512 Convolutional
20 3 × 3, stride 1 512 Convolutional
21 2 × 2, stride 1 – Pooling
22 – 4096 Fully connected
23 – 4096 Fully connected
24 – 1000 Softmax
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in performance and as was expected the study finds that the 
deeper the network, the better the performance. The claim of 
deeper being better has been challenged by some recent results 
and is therefore not a settled conclusion, although the results 
reported by VGG work for layers of the sizes studied. Being a 
3 × 3 filter on the first layer, it is interesting to see the kind of 
templates the network is learning to detect. Figure 4.11 shows 
all the first-layer filters of the VGG19 network. Notice that 
the filters are predominantly corner detectors, edge detectors, 
and color blobs. These are the fundamental building blocks to 
build higher order features as we discussed in previous chapters. 
VGG19 has become a prototypical network and its first-layer 
features appear to be further evidence that CNNs can be used to 
learn feature detectors, similar to those we studied in Chapter 1.

In the original work, to train the VGG network, a simple 0.9 
momentum was used with a change in learning rate once the 
performance saturated. The training was completed in 74 epochs 
with a batch size of 256. With this network, VGG could just beat 

Figure 4.11  First-layer features of the VGG-19 network. Refer to the book website (con-
volution.network) for a color rendering of this image.
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GoogLeNet. Note that VGG is shallower than the GoogLeNet, 
leading many to stipulate that smaller and consistent filter sizes 
is a good if not a better technique, although the debate is still 
open on this question as well.

CASE STUDY 5: RESIDUAL NET
In GoogLeNet, we found an architecture for a layer, where the layer 
itself separates into a few branches and produces a summed or con-
catenated output. A layer that ends up in a summation or concat-
enation splits the gradient into equal parts and passes the gradient 
through during backpropagation. Proposed by He et al., residual 
networks or ResNets are a novel architecture, which uses the idea 
of splitting a layer into two branches, where one branch does noth-
ing to the signal and the other processes it as would a typical layer 
(He et al., 2015). The unprocessed data or the residual is added to 
the original signal going through the network unaltered. This cre-
ates a split in the network, where one branch quite simply propa-
gates the gradient through without altering it. This lets a deeper 
network learn with strong gradients passing through. While in 
both GoogLeNet and in ResNet the data (and therefore the gradi-
ent) passes through, the inception module still had a pooling layer, 
which is avoided completely by the ResNet module. Figure 4.12 
illustrates this idea. Note that there are some articles that demon-
strate that a very deep ResNet is equivalent to a shallow recurrent 
neural network (where a layer feeds on its temporally past self, with 
or without a store memory sate) (Liao and Poggio, 2016) and a simi-
lar architecture called highway nets was also proposed, which was 
inspired from recurrent neural networks (Srivastava et al., 2015).

Several modifications have been proposed to this original 
ResNet architecture. One idea is to create an architecture where 
some layers might be turned off randomly during training time 
and compensated for during the test time quite akin to dropouts 
(Huang et al., 2016). This network architecture will replace the 
dropped module using an identity (implying that the processed 
part of the residual simply produces a zero). While it is counter-
intuitive to drop layers at training time, one must note that the 
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Summary

In this chapter, we studied sparse and local connections instead of 
the complete mesh connection from Chapter 3. We also introduced 
weight sharing as a method to reduce the number of parameters in a 
network. Not only was it a way to reduce the number of parameters 
but it was also a way to detect the same feature across the façade 
of the image. Sharing weights helps us identify similar and recur-
ring patterns throughout the image. Convolution layers are one way 
to achieve both weight sharing and local and sparse connectivity. We 
also identified pooling as a way to reduce the size of the activations 
produced by convolution. This is important as convolution layers pro-
duce activations that are memory inefficient. Pooling also helps us in 
using features that are spatially invariant.

We made use of convolutional and pooling layers to create the con-
vpool layers. The convpool layers are the workhorse of modern-day 
CNNs for neural computer vision. We also studied various properties 
of the convpool layer. We noticed that the early layers of the CNN 
using convpool layers learn filters that resemble edge detectors or blob 
detectors. We also studied several popular CNNs such as LeNet, 
AlexNet, GoogLeNet (InceptionNet), and VGG-19. Along the way, 
we studied some special layers or techniques that these networks 
employ including dropouts, the question of filter sizes, and the incep-
tion module. We also studied the ResNet architecture and noticed 

network at test time is still a deep network and at training time 
has stochastic depth (the depth is random). One result of the 
ResNet architecture is that, while traditionally arbitrarily deep 
networks tend to overfit and sometimes even produce poorer 
performance than a network with fewer layers, ResNets seem to 
hold true to the idea that increased depth of the network implies 
increased performance. ResNets beat the performance records 
set by all the previously discussed networks and one of its vari-
ants holds the record on the ImageNet challenge at the time of 
writing this book. The ResNet that won the ImageNet competi-
tion has up to 152 layers and also has an implementation at the 
time of 1,000 layers for the CIFAR-10 dataset.
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that free-flowing gradients provided for stable learning of deeper 
networks.

It is interesting to note that there have been studies that seem to 
suggest that there may be a process in the primate visual cortex similar 
to the convolutional processing in a CNN (Hubel and Wiesel, 1968), 
especially as far as the concept of receptive field goes, although we cau-
tion a reader about such interpretations since there are many “tricks” 
(such as training with dropout) in a CNN that probably have only com-
putational meanings, but not necessarily any biological correspondence.
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5
Modern and Novel 

Usages of CNNs

In Chapter 4, we studied some traditional and some modern convo-
lutional neural networks (CNNs) for image categorization. These are 
often referred to as vanilla CNNs as they are the most straightforward 
implementations of these networks. The convpool layer and the neural 
architecture are versatile and can be used for much more than simple 
image categorization problems. Thus far, we have predominantly studied 
only supervised learning. CNNs are also good at solving various other 
problems and have been an active area of research. CNNs, including 
many of their variants, with additional components of other types of 
network architectures, are being used in many novel ways for a plethora 
of applications including, object localization, scene detection, segmen-
tation among others. While these are important applications, in this 
chapter, we restrict ourselves to some interesting applications of the con-
vpool layer and the CNN architecture for computer vision applications.

In Chapter 4, we built several classifier networks and noticed that 
the earlier layers of CNNs extract representations that were detec-
tors for basic building blocks of images, such as edges and blobs. We 
also noticed that several datasets could lead to similar kinds of fea-
tures on these layers. The similarity in these representations begs the 
question, Could we learn a network from one dataset and use the learned 
representation to classify another dataset? The simple answer is that we 
could. Several networks that we saw in Chapter 4 such as ResNet, 
VGG-19, GoogLenet, and AlexNet all have their weights and archi-
tecture in the public domain making them pretrained, downloadable, 
and off-the-shelf. Training large networks is a sophisticated and often 
a difficult engineering task. Networks crash due to weight explosion, 
vanishing gradients, improper regularizations, and lack of memory or 
compute power. Choosing hyperparameters such as learning rates is 
also notoriously difficult. The deep learning community itself is very 
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helpful in publishing these pretrained networks and allowing others 
to borrow and use them. This implies that anyone building a deep 
network intending to train on a small dataset can instead use these 
pretrained networks as initializations and fine-tune them for his or 
her task. Fine-tuning a pretrained network has been a common prac-
tice in the neural computer vision community. Mostly, these networks 
were pretrained using the ImageNet dataset. Will it matter therefore 
if we were to use the representations from these off-the-shelf networks 
as initializations to fine-tune on a different dataset even if the new 
dataset potentially has statistics in contrast to the ImageNet dataset? 
The following section will survey this very problem.

Pretrained Networks

Image datasets have constantly grown in sophistication. The MNIST-
like datasets of the previous decade were structured and controlled to 
such a degree that they were not natural. Contemporary datasets such 
as ImageNet, PASCAL, or Caltech-101/256 contain images like what 
one might click on one’s personal camera (Everingham, n.d.; Fei-Fei 
et al., 2006; Russakovsky et al., 2015). These visual object classifica-
tion (VOC) datasets are what we now refer to as naturalized image 
datasets—images that are not from a heavily controlled setting but are 
direct photographs sampled from the real world. Since all these data-
sets contain natural images, the images in them ought to have similar 
statistical properties and therefore might lead to comparable feature 
representations on a CNN trained using them.

Some datasets have more images and/or number of classes than 
others. Therefore, some datasets provide more diversity of images to 
learn features than others. Since the images across these datasets also 
appear similar, an argument could be made that a network trained on 
one dataset could be used as a feature extractor for another without 
explicitly being learned or simply fine-tuned from the latter. Suppose 
that we have in our possession two datasets, A  and B , where A  has 
considerably more images and object classes than B . If we were to 
build a CNN to learn to categorize only B , and we use the training set 
of B  alone, there is a chance that we might overfit. Also, with fewer 
images, it is difficult to train deeper and larger CNNs. If we were to 
train a network on A  first and destroy the softmax layer, we could 
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now rebuild another softmax layer for the categorization of B . All the 
layers but the last softmax layer are carried over in the hope that two 
datasets share the same features.

To understand how this trick works, let us consider only the first 
layer of a CNN. In Chapter 4, we noticed that the first layer learns 
edge detectors and blob detectors. In Chapter 1, we also saw how 
some detectors such as the histogram of oriented gradients (HOG) 
could be used as feature detectors for most datasets if we are interested 
in using shape for categorization. Once we have a CNN trained on a 
dataset, we can think of the network as containing two distinct com-
ponents: a feature extractor and a classifier.

Figure 5.1 shows a fully trained CNN. The CNN until its last layer 
can be considered as a feature extractor. The output activation of the last 
layer is the feature vector and the softmax layer is the classifier that we 
learn for categorization. In this perspective, we can now think of the 
entire network but the last layer as one feature extractor quite akin to the 
HOG. The only difference is that instead of handcrafting features, we 
have learned what is supposedly a good feature for that dataset using the 
images in the dataset itself, or using another (larger) dataset. The feature 
vector from the last-but-classifier layer is a representation of the image, 
just as how we created representations of employees in Chapter 2.

The last layer is now nothing but a simple logistic regression as 
seen in Chapter 3. In actuality, this is not the case because we can-
not separate the network from the classifier completely. Coadaptation 
plays a significant role in these networks being learned, so learning 
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Figure 5.1  A CNN as a feature detector followed by a classifier.
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the weights along with the classifier is just as important. For the sake 
of this analysis, this view of the network works in our favor.

In this perspective, one can easily argue that features learned from 
one dataset could be carried over to another if the images in the data-
sets appear similar and hold similar properties (e.g., local image prop-
erties and structures). A more fundamental argument is that most of 
the fundamental building blocks for many image datasets are nearly 
the same. The intuition behind this perspective of the network being a 
universal feature extractor is that the discriminative characteristics that 
are learned from one dataset are more or less what we expect in other 
datasets as well. In reality, this argument gets weaker and weaker, the 
deeper we go into a network as deeper layers are usually more object 
and dataset specific. This is similar to the argument for creating gener-
alized features such as HOG in the first place. HOGs were expected 
to produce feature spaces that were discriminative of the shape of the 
entities in the images, irrespective of what the image dataset was and 
what the categorization task was. If HOG which was handmade and 
was general enough to work with many datasets and performed well 
on ImageNet, a network trained on ImageNet that performs well on it 
should arguably be general enough to work on other datasets too.

To further ensure that the features are indeed well suited, we need 
not directly use these as standard feature extractors. We can simply ini-
tialize a new network with the feature extractor part of another network 
trained on a larger dataset and retrain or fine-tune the new dataset start-
ing from the weights as they were after being trained on the old dataset. 
This idea of using pretrained networks to learn categorization on more 
specialized dataset, trained from networks learned from a general dataset 
is a very strong approach to avoid overfitting and faster training. It could 
help to avoid overfitting if the initializing network was well trained on 
a previous (large) dataset, trained and it provides faster training because 
we are expected to already be close to some good local minima at the 
beginning. This is akin to a one-time regularization step.

The purpose of the feature extractor is to map the images to a 
space that is discriminative. Many such networks have been trained 
using large datasets such as ImageNet and have been made publicly 
downloadable for fine-tuning on a specialized dataset (Russakovsky 
et al., 2015). The networks that we discussed in previous chapters—
AlexNet, GoogLeNet, and VGG-19—are a few examples of such 
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networks that are off-the-shelf, downloadable, and pretrained networks 
(Krizhevsky et al., 2012; Simonyan and Zisserman, 2014; Soekhoe 
et al., 2016; Szegedy et al., 2015).

Two important questions naturally arise out of using pretrained 
networks:

1.	If we were to build a pretrained network, which dataset would 
we choose to learn the pretrained network’s features from?

2.	Do these features transfer from one dataset to another well 
and if so, how well?

The answer to the first question is the neural generality of the data-
set (Venkatesan et al., 2015, 2016). The answer to the second is the 
transferability of neural features (Yosinski et al., 2014).

Generality and Transferability

Different datasets make a network learn different sets of filters. 
Consider Figure 5.2. The figure shows some handwritten character 
recognition datasets. Among these datasets, it is only natural for us 

Figure 5.2  Handwritten character datasets: From top to bottom: MNIST (LeCun et al., 1998), MNIST-
rotated (Larochelle et al., 2007), MNIST-random-background, MNIST-rotated-background, Google Street 
View house numbers (Netzer et al., 2011), Char74K English (de Campos et al., 2009), Char74K Kannada. 
Some of the images are RGB. To view the RGB image go the book’s webpage at convolution.network.
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to expect that MNIST-rotated contains more general features than 
MNIST. Due to the transformations, MNIST-rotated contains many 
additional structures as compared to MNIST. Hence, MNIST-
rotated would require the learning of more complicated filters. For 
example, a network trained using MNIST-rotated will be expected to 
additionally have more general filters for detecting more oriented and 
directional edges than that using MNIST.

The filters learned from different datasets would be similar if the datas-
ets themselves were similar. The filters we observe in the (early) layers of a 
network trained using a dataset represent the detectors for some common 
atomic structures in the dataset. Atomic structures are the forms that CNN 
filters take to accommodate for the entropy of the dataset it is learning 
on. MNIST-rotated has more entropy, therefore more atomic structures. 
High-entropy datasets have more varied and more complex atomic struc-
tures. In Chapter 4, we saw how MNIST leads to some simple edge detec-
tors in the first layer. MNIST-rotated leads to more complex features and 
VGG has detectors for complex corners, edges, blobs, and so on, since 
VGG was trained on a much bigger and more complex dataset. In gen-
eral, the VGG network has more atomic structures than LeNet trained 
on MNIST. It is fair to note that while LeNet does not have as many 
atomic structures as VGG, it does not need as many atomic structures as 
well. LeNet works with the MNIST data, which require far less atomic 
structures to distractively represent the data, whereas VGG works with 
the ImageNet data, which are notably much more complex (Figure 5.3). 
Even though we refer to the networks LeNet and VGG, what we imply 
is that these networks are trained on MNIST and ImageNet respectively. 
The atomic structures are emergent properties, due to the dataset the net-
works are trained on and not the architecture itself.

Let us perform the following thought experiment: Let us posit that all 
possible atomic structures constitute some space S. Suppose that we have 
a set containing the atomic structures of three datasets = { ,  , }1 2 3D D D D  
and ∈D S. Assume that the dataset’s atomic structures occupy mani-
folds as shown in Figure 5.4. It is easy to argue that 1D  is a more general 
dataset with respect to 2D  and 3D . While 1D  includes most of the atomic 
structures of 2D  and 3D , the latter are not as inclusive to accommodate as 
many atomic structures of 1D . Note that this thought experiment is for 
illustration only and does not work in a real-world setting as data mani-
folds are usually not clustered as described.
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To answer our first question of which dataset we should choose 
for pretraining, we need to train a pretrained network with a general 
enough dataset for the one we are fine-tuning with. To measure this 
generality in a formal manner, we need a generality metric. The gen-
erality metric should be one that allows us to compare two datasets 
such that we can determine which one is more general than the other, 
for any network architecture. A straightforward way to do that is to 
train a network with the base dataset, freeze the feature detector part 
of the network, and retrain the classifier layer alone on the new data-
set. This, when compared with the performance of a randomly initial-
ized unfrozen network on the original dataset of the same size, would 
give an idea as to how general the base dataset is. This was proposed 
in Venkatesan et al. (2015, 2016).

Figure 5.3  On the left are filters learned from Caltech 101 and on the right are VGG’s first-layer 
filters. These filters although produced for print in Grayscale are actually in RGB. Please visit the 
book’s webpage at convolution.network for a color rendering of the image.

D1

S

D2

D3
D5

D4

Figure 5.4  Thought experiment to describe the dataset generality. S is the space of all possible 
atomic structures; D1–D5 are the space of atomic structures present in respective datasets.
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The basic experiment of this article is as follows: A randomly ini-
tialized network is first pretrained with a dataset. Let us call this 
network state ( | )n D ri , where Di represents the dataset we are initial-
izing with and r  denotes the network’s original configuration being 
random. We then proceed to retrain ( | )n D ri  in accordance with any 
of the setups shown in Figure 5.5.

We obtain the following network states: ( | )n D Dk j i , which would 
imply that there are k layers that are learned by dataset D j  and were 
prejudiced (pretrained) by the filters of ( | )n D ri . ( | )n D Dk j i  has −N k 
obstinate (not allowed to learn) layers that retain and hold the preju-
dice of dataset Di, where N  is the total number of layers. Obstinate 
layers refer to those that are frozen and ergo do not change during 
learning. Note that the more layers we allow to learn, imply that the 
network is less obstinate to learn. Also, note that these layers can be 
both convolutional and fully connected neural layers.

Layers learn in two facets. They learn some components that are 
purely their own and some that are coadapted from previous layers, 
which are not obstinate jointly. By making some layers obstinate, we 
basically fix those layers to predetermined transformations. Note that 
the performance gain from ( | )n D Dk j i , and + ( | )1n D Dk j i  is not just 
because of the new layer +1k  being allowed to learn, but due to the 
combination of all +1 k layers being allowed to learn.

Figure 5.5 shows the setup of these experiments. Note that in all the 
various obstinateness configurations, the softmax layer remains nonob-
stinate. The softmax layer must always be randomly reinitialized. This 
is because not all dataset pairs have the same number of labels or even 
the same label space. The unfreezing of layers happens from the rear. 
An unfrozen layer should not feed into a frozen layer. This is because, 
while the unfrozen layer learns a new filter and therefore obtains a new 
feature representation for the image, the latter obstinate layer is not 
adapting to such a transformation. When there are two layers unfrozen, 
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Figure 5.5  Freezing and unfreezing of layers during a generality metric prediction.
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the two layers should be able to coadapt together and must finally feed 
into an unfrozen classifier layer through unfrozen pathways only.

If the generalization performance of ( | )n D rj  is Ψ( | )D rj  and that 
of ( | )n D Dk j i  is | ,D Dk j i( )Ψ  then the dataset generality of Di with 
respect to D j  at the layer k is given by

	 =
Ψ

Ψ
( , ) ( | )

( | )
g D D D D

D rk i j
k j i

j
 	 (5.1)

where, ( , ) g D Dk i j is the generalization performance achieved by  D j  
using −  N k layers worth of obstinateness from Di and k layers worth 
of old features from  Di  that are combined with  k  layers of novel knowl-
edge from  D j together. Using such a generality measure, we can now 
clearly make claims on which dataset is more general to pretrain a 
network with, while having a clear goal of our target dataset in mind. 
This research also showed that only some classes in a dataset alone are 
general enough and thus we do not have to use an entire dataset for 
pretraining. When we have datasets with only a few samples for some 
classes and a lot of samples for the others, such intraclass generality 
helps us train our model with only one part of the dataset first and 
then proceed to retrain with the whole dataset later.

To answer the second question of transferability, a study was conducted 
by Yosinski et al. (2014). The experiment setup was similar to that of the 
previous discussion but this experiment was performed using two parts of 
the same dataset. Instead of freezing and unfreezing the layers completely, 
Yosinski et al. always kept all layers unfrozen and reinitialized new layers. 
This experiment used one large dataset, the ImageNet, by splitting the 
dataset in two. The two parts of the same dataset are used to train and 
retrain a network like the generality experiments. They studied how trans-
ferable each layer is and how much coadaptation plays a role in learning. 
In their experiments, they would learn the entire network from one part 
of the ImageNet dataset, reinitialize part of the network again but retain 
the other parts, and retrain the network on the other part of the dataset. 
Far more interesting is the analysis of memorability. Once they retrain 
on the second part of the dataset, they go back and test on the first data-
set again to see how much of the feature space the network remembers. 
To do this, they use the old classifier from the initial training on the new 
feature space. This gives an idea about the quality of features that cross 
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parts of datasets. More results and interesting analysis can be found in the 
original paper (Yosinski et al., 2014). This article proposed a metric for 
transferability and showed some issues that affect negatively the transfer-
ring of features across networks trained on two parts of the same dataset. 
The article also studies coadaptation of layers and its role in transferability. 
Surprisingly, they observed that initializing a network from even a distinct 
task is better than initializing randomly. The article on generality was a 
follow-up on this work on transferability, which confirms the conclusions 
of the transferability paper and demonstrated further properties.

Using Pretrained Networks for Model Compression

In the previous section, we studied that networks that were trained 
on some general enough dataset could be reused as initializations for 
a specialized dataset and fine-tuned. In doing so, we retained the net-
work’s architecture and optimizers. The fine-tuning therefore requires 
computational resources similar to that of the machine in which the 
network was originally trained. With the reach and omnipresence of 
deep learning in day-to-day consumer products, it is reasonable to hope 
for a solution where we could expect representations capable of produc-
ing similar classification performances while needing lesser resources.

While large and deep networks can be trained reasonably efficiently on 
GPUs and clusters of GPUs, they have too large a memory footprint to fit 
in mobile phones and other consumer devices with smaller form factors. It 
had already been shown that in large networks, most neurons are not that 
useful (HasanPour et al., 2016; Li et al., 2016a,b; Nguyen et al., 2015; 
Wang and Liang, 2016). Most neurons are either very similar to others 
in their functions or do not contribute to the entropy of representation. 
We can therefore compress a network model so that we could make these 
networks portable (Bucilǔa et al., 2006). There are several other reasons 
why one might favor a smaller or a midsized network even though there 
might be a better solution available using these large pretrained networks. 
Large pretrained networks are computationally intensive and often have 
a depth in excess of 20 layers with no end in sight for deepening. A way 
to train larger networks faster is perhaps to learn a small network and use 
a technique such as Net2Net transfer learning to build networks up into 
bigger ones (Chen et al., 2015). Net2Net uses deterministic methods to 
grow networks from small to larger but the transformation is done in a 
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function preserving manner so that by widening or by deepening the net-
work, the functional mapping from one layer to another is preserved. This 
way once a new network is built, we can retrain it to achieve better perfor-
mance. Given that the optimization and the backpropagation techniques 
are well defined, the worst that can happen in this situation is that the 
performance will not rise and remain stable. Even with these techniques, 
the computational requirement of these networks does not make them 
easily portable. Most of these networks require state-of-the-art GPUs 
to work even in simple feed-forward modes. This impracticality of using 
pretrained networks on smaller computational form factors necessitates 
the need to learn smaller network architectures (Srivastava et al., 2015). 
The quandary now is that smaller network architectures cannot produce 
powerful enough representations.

One method to do such compression and still retain the representa-
tions was proposed by Hinton et al. (2015). While the philosophy of 
using pruning and brain damage to achieve compression is a prominent 
research area and is showing tremendous progress, in this chapter, we 
will only focus on the Hintonian compression techniques (Han et al., 
2015; LeCun et al., 1989; Ullrich et al. 2017). In this paper, Hinton 
et al. observed that the labels we backpropagate and make a network 
learn on is a mere fraction of what the network is actually learning. 
Strange as it may appear, the network seems to also be learning rela-
tionships between the classes. Hinton et al. further demonstrate that 
the network though trained on a specific target, has the tendency to 
learn knowledge that is not supervised by this target. Using the idea 
that networks learn interclass relationships in their representations, 
they were able to create richer targets (with these interclass relations) 
for a much smaller network to learn on. Since the supervision has much 
more entropy, the networks need a smaller number of neurons to gener-
alize. We shall study model compression using this idea in this section.

Even though we have assumed that the classes are independent from 
each other and each class produces its own loss, this is not strictly true. 
In MNIST, for instance, some twos look like sevens and some nines 
look like sixes and so on. Although not explicitly supervised, the net-
work itself can form these relationships and comparisons between the 
classes. Consider for instance the case shown in Figure 5.6. The original 
hard targets are the labels. In this case, we are learning a Dog, so the 
label bit representing dog is 1 and for the others is 0. This is what we 
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would expect out of a softmax, a probability close to 1 for dog and close 
to 0 for the rest. Assume that there is a large network or an ensemble of 
networks that already learned on this dataset and once we feed-forward 
the dog image through it, it produces the output shown in the geometric 
ensemble of Figure 5.6. In this ensemble softmax outputs, what is obvi-
ously noticeable is that the probability for dog is very high, the prob-
ability for cat is the next highest although it is only 10% of a dog, and 
the probability of other labels are subsequently lower, although perhaps 
well within the precision of the floating point. What is noticeable is 
that the second maximal probability is not such a bad option after all. 
Among the other choices, cat looks the closest to a dog. Similar effects 
were also seen in the AlexNet outputs from Chapter 4.

Hinton et al. formed a new perspective of these softmaxes in that the 
network learns implicitly that some classes are like others, even though 
such class–class similarities were never provided as supervision. In this 
instance, even though we have not created any special labeling for the 
fact, the network learns that there is a small chance that a cat may look 
like a dog. From the perspectives of distributions of data spread on the 
feature space as discussed in Chapter 1, we can imagine this as follows. 
A network learning discriminative representations of classes does in a 
manner such that classes that are related to each other, are closer to each 
other (even overlapping slightly). This information that we did not specif-
ically label but the network learns by itself is referred to as dark knowledge.

In this paper, a temperature softmax was used instead of the regular 
softmax. A temperature softmax is defined for class i as
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where T  is the temperature. This transformation smoothes out the ensem-
ble predictions and makes the differences more prominent. = 1T  will be 

Cow  Dog Cat … Type of labels 
0 1 0 … Hard labels 

0.000006 .9 0.99991 … Ensemble 
0.05 0.3 0.2 … Soft labels 

Figure 5.6  Softening the output probabilities.
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the normal softmax and a higher temperature would spread the probabili-
ties out. The higher the temperature, the lower the difference between 
the two classes in terms of their softmax. By using this, we can see clearly 
what the network is guessing as its second and later options. Figure 5.6 
shows this softening of labels through a temperature-raised softmax.

This temperature softmax output provides insights as to what 
kind of connections exists between classes. Consider now the idea 
of fine-tuning from the previous section. We want to do this more 
efficiently or with lesser number of neurons or layers while still having 
the ability to produce the same representations. To achieve this, we 
need additional supervision than what is available from our dataset 
itself. We can use the temperature-raised softmax outputs of the first 
pretrained network as additional supervision to guide the smaller net-
work along with the dataset’s own loss.

For typical fine-tuning (to be precise training as this will be a new 
randomly initialized network) on a smaller network, we use backprop-
agation of the errors on the hard labels. In this case, we can provide the 
network additional supervision if we backpropagate the error to these 
temperature-raised soft labels from another network along with the 
usual backpropagation of the hard labels. Training with soft targets 
alone is not enough to produce a strong gradient, so in practicality 
we would create an error function that is a weighted combination of 
the soft and hard targets. One may think of this as dark knowledge 
transfer. Suppose ( )p iT  is the temperature softmax outputs of the i th 
batch of inputs to the parent network p, ( )y i  is the true label, and 
( )c i  is the softmax and ( )c iT  the temperature-raised softmax of the 

child network that is currently learning. Let the loss be −( ) ( )c i y i  
and the difference between the networks’ temperature softmax outputs 

−( ) ( )c i p iT T  is for the batch. The new loss that is backpropagated is

	 = − + α −( )   ( ) ( ) ( ) ( )e w c i y i c i p iT T 	  (5.3)

In their research with only a loss of 0.02%, the authors could trans-
fer dark knowledge from a 1200-1200-10 network to an 800-800-10 
network for the MNIST dataset. More surprising is the result of a 
follow-up experiment where they withheld the entire sample space 
of a particular class and were still able to learn it by merely using the 
dark knowledge transfer. For instance, if all the samples with original 
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labels 3 were withheld from training the child network and only soft 
targets were propagated for the class of 3, the network was still able to 
perform well for the class of 3. 

This technique is also often referred to as model compression or, 
as noted above, it is colloquially referred to as dark knowledge trans-
fer. Dark knowledge transfer is also a type of a strong regularizer. 
Unlike 1L  and 2L  regularizers that directly penalize the weights 
for being too large or too nonsparse, dark knowledge from another 
network penalizes the network for not producing outputs that are 
similar in pattern to the previous network. This is also looked at 
as modeling the distribution of outputs of the parent network by 
the child network. Using this technique, it was shown that smaller 
networks could potentially be trained that can map an image to the 
same label space just as effectively as a larger network.

Nowadays, many computer vision architects prefer to not train a 
new architecture from scratch and instead prefer to fine-tune a pre-
trained network whenever computational resources are a constraint. 
However, training even a midsized network with a small dataset is a 
notoriously difficult task. Training a deep network, even those with 
midlevel depth, requires a lot of supervision in order to avoid weight 
explosion. In these cases, dark knowledge transfer helps in providing 
some additional supervision and regularization.

Mentee Networks and FitNets

Taking the dark knowledge idea further, Romero et al. also tried to 
backpropagate some intermediate layers’ activations along with the 
soft labels (Romero et al., 2014). This provides an even more appeal-
ing prospect of adding additional supervision. The networks that 
receive such supervision are often referred to as mentee networks and 
the networks that provide the supervision, the mentor networks. The 
authors in this paper originally used this idea to produce a thinner and 
deeper version of the parent network. A deeper network is more pro-
ductive than a wider network when it comes to CNNs and other neu-
ral networks. Evidence for this claim has been building since before 
AlexNet (LeCun et al., 2015). If we were to have two networks of 
different configurations, we learn the same label mapping using dark 



131MODERN AND NOVEL USAGES OF CNNs

knowledge transfer; the next step is to transfer not just the softmax 
layers but also the intermediate layers. 

Mentee nets were first proposed as fitNets to learn thinner but 
deeper networks by Romero et al. (2014). Several works generalized 
this idea (Chan et al., 2015; Gupta et al., 2015; Venkatesan et al., 2015, 
2016). A recent paper also used this as a good initializer (Tang et al., 
2015). Another used this technique to transfer knowledge between 
two different types of networks, in this case a recurrent neural network 
(RNN) and a CNN (Geras et al., 2015; Shin et al., 2016). The prin-
ciple idea of mentor nets is to propagate activations and make another 
network learn a feature space of the same or a similar capability. 
Therefore, smaller networks now will be capable of representing the 
feature spaces and intermediate representations of a larger network.

Figure 5.7 describes the connections required to learn such a sys-
tem. The top network is a pretrained off-the-shelf network and the 
bottom one is a randomly created and initialized network of a dif-
ferent configuration. They both feed-forward the same data and it 
is expected that they produce the same softmax output (using dark 
knowledge transfer). In doing so, we also want to produce similar 
activations across some layers deep in the network. Note that this 
connection is required only during the training process. Once trained, 
the smaller mentee network is capable of working on its own accord. 

Mentor

Mentee

Figure 5.7  Mentor–mentee connections.
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Also, no backpropagation is done on the larger mentor network, but 
only a forward propagation. Backpropagation is performed only on 
the smaller mentee networks.

A typical weight update for this setup would look like the following:
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where n and m are the number of layers (including softmax layers in 
the network) and B  includes the pairs of layers from mentor to men-
tee to be supervised. The first term inside the square brackets is the 
typical update of the error in a normal stochastic gradient descent, 
the second term is the weight update for the mentorship, and the last 
term is the weight update for the dark knowledge transfer. Various 
configurations of α β,  , and γ control how learning happens. It was 
shown that using various learning rates, several different character-
istics of these mentee networks shall be produced and one can even 
learn the exact feature space of the mentor network directly (Romero 
et al., 2014; Venkatesan et al., 2015, 2016).

In the experiments performed with the Caltech101 and 256 datas-
ets, it was found that the mentee networks performed better than the 
vanilla network. The mentee network was also able to perform signifi-
cantly better than the independent network when only the classifier/
multilayer perceptron (MLP) sections were allowed to learn on the 
Caltech-256 dataset with representation learned from Caltech101. 
This proves the generality of the feature space learned.

Application Using Pretrained Networks: Image Aesthetics Using CNNs

Let us posit a network pretrained on some image categorization task 
and study its application on a different task. The task we are consider-
ing now is that of comparing the aesthetics of images, which is drasti-
cally different from that of categorization (Chandakkar et al., 2017).

CNNs have achieved success in tasks where objective evaluation 
is possible. However, there are tasks that are inherently subjective, 
for example, estimation of image aesthetics. CNNs have also shown 
impressive results in such tasks, outperforming approaches based on 
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handcrafted features that were inspired from facts derived from the 
photography literature. It is possible that CNNs have discovered some 
yet undefined attributes essential to the appearance of the images (Lu, 
2014, 2015).

Automated assessment of image aesthetics using pretrained AlexNet 
CNNs was first proposed in Lu (2014). RAPID contains a two- 
channel CNN, which essentially is two AlexNets bundled into one. 
One CNN takes the entire image as input whereas the other one takes 
a randomly cropped region as input. Finally, feature vectors of these 
two inputs (the representation of the last layer) are combined and then 
a new regressor is initialized at the end to produce an aesthetics score 
for an image.

Given the subjectivity of this task, one could argue that assigning 
an absolute score to each image is difficult and hence is prone to errors. 
On the other hand, comparing aesthetic qualities of two images may 
be more reliable. This too has practical applications. Often it happens 
that a user has a collection of photos and the user is only interested 
in ranking them instead of getting the scores for individual photos. 
In other applications, such as image retrieval based on aesthetics and 
image enhancement, this ranking-based approach is necessary. This 
was the motivation behind the approach proposed in Chandakkar 
et al. (2017).

The architecture behind the key idea of the work in Chandakkar 
et al. (2017) is shown in Figure 5.8. It takes a pair of images as input. 
Each image is processed using an architecture similar to the RAPID 
method. The feature vectors of both images are called 1C  and 2C , 
respectively, and are also shown in Figure 5.8. 1C  and 2C  are pro-
cessed accordingly to produce a score denoting the aesthetics ranking 
between two images. The loss function takes the form of max(0, ). It 
will produce a loss only if the ranking of two images is different from 
the ground truth. Otherwise, the loss produced is zero. Thus, without 
much training on the representation learning system of AlexNet, we 
could apply it to a completely different task of aesthetics.

Applications like these demonstrate that even though the AlexNet is 
trained on some image categorization task, the learning process might 
have allowed the network to figure out features that are general enough 
so that they could be used in other types of tasks that may appear to be 
completely different. We mention in passing that another good example 
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of this sort is the video2vec framework proposed in Hu et al. (2016), where 
the pretrained CNNs were used in conjunction with RNNs to learn a 
semantic spatial-temporal embedding space for videos so that typical 
video analysis tasks like action recognition can be better supported.

Generative Networks

The networks that we studied thus far all try to minimize a loss in pre-
dicting a distribution over categorization labels. These are commonly 
referred to as discriminator networks. These networks sample data 
from a distribution in a high-dimensional space such as images and 
map it to a label space or some space of feature representations. There 
is another class of networks that are a corollary to these networks 
called generative networks. Generative networks sample data from a 
distribution on a latent space, which is typically much smaller than 
the space of the data, and generate samples that mimic samples drawn 
from the distributions of a high-dimensional space. In the interest of 
computer vision, these networks sample from a distribution of latent 
space and generate images back. In this section, we study two of the 
most popular models of generative networks.
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f() denotes a ReLU nonlinearity. Please refer to the text for further details. (Courtesy of Parag 
Chandakkar.)
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Autoencoders
Autoencoders are perhaps the most prominent case study for CNN 
networks not being used for categorization. Autoencoders as shown 
in Figure 5.9 are mirrored symmetric networks that learn to regener-
ate the image themselves. The autoencoder consists of two parts: the 
encoder and the decoder. The encoder creates a succinct and compact 
representation of the image, often referred to as the codeword or the 
latent space representation. The decoder reconstructs the image back 
from these latent space representations. Autoencoders are comparable 
to dictionary learning or to principal component analysis (PCAs) in 
the sense that they create a representation that is closer to the true 
underlying structure of the data independent of the categorization 
labels and in a lower (most common) dimensional space. Typically, 
the decoder is not decoupled from the encoder. Often the decoder 
weights are just a transpose of the encoder weights, therefore decod-
ers and encoders are symmetric and share weights. If the layers were 
convolutional on the encoder, we may use a transposed convolution or 
fractionally strided convolutions. These are also (with some abuse of 
terminology) referred to as deconvolutions. These are quite simply the 
gradients of some convolution operation, which is a convolution with 
the transposed filters. For maxpooling, we can use strided convolu-
tions to unpool or store the locations of the maxpool to unpool. These 
are referred to as fractionally strided convolutions and they upsample 
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Figure 5.9  Autoencoder.
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the signal before convolving. One may think of this as akin to learning 
a custom upsampling operation that mimics the unpooling operation 
(Zeiler et al., 2010).

An auto encoder has two parts, the encoder =x cE( ) , which takes 
and input x and produces a codeword representation of the image c 
and the decoder =c x( ) ˆ,D  which takes in as input the codeword c and 
produces a reconstruction of the image x̂. Since the weights are usu-
ally tied between the encoder and the decoder, we need to learn the 
weights of either E or D. We do it by minimizing the reconstruction 
error between x̂ and x. We may choose to use any of the previous error 
to accomplish this, but RMSE errors are typically preferred. Figure 
5.10 shows the typical input-codeword-reconstructions of a simple 
one-layer autoencoder. The code for this autoencoder from which the 
figures were created is also available at the Yann tutorials (refer to  
Appendix A). 

Autoencoders come in many forms and traits. Autoencoders that 
use neural networks are either overcomplete or undercomplete. If 
the dimensionality of the codeword is less than that of the input, it 
is an undercomplete autoencoder; if otherwise, it is overcomplete. 
Overcomplete autoencoders often need strong regularization and spar-
sity imposed on them to be able to learn. Since the image is reconstructed 
from an embedded subspace, the reconstruction is not expected to be 
perfect. While this may appear to be a drawback initially, the autoen-
coder could be used to generate images where we deliberately require 
a nonperfect reconstruction. Learning overcomplete autoencoders is 
very difficult. Adding noise to the input and expecting to reconstruct a 
noise-free image is a strong way of regularizing these networks so that 
we can easily learn larger and deeper networks.

Input 

Codeword 

Recosntruction 

Figure 5.10  Encoding and decoding MNIST using a one hidden-layer autoencoder.
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Consider for instance the problem of denoising. In denoising, we 
want to remove the noise from an image. While autoencoders learn 
to reconstruct an image using some structures from the images, these 
structures are often not found in noisy images. Encoders encode only 
the statistically common features among the images. Noise is a sto-
chastic process and therefore is not a common structure among the 
datasets. The latent space for a noisy image and one without noise will 
be close to being the same (if not the same). Therefore, regenerating 
a noisy image that is feed-forward through an autoencoder will lead 
to the generation of potentially clean images. Denoising autoencoders 
is among the most popular implementations of autoencoders (Vincent 
et al., 2008, 2010). It turns out that learning an autoencoder with a 
corrupted set of inputs is better than learning with a clean set of inputs 
as well. This is because learning features form a corrupted set of fea-
tures that help the encoder learning better and more robust represen-
tations than simply learning an identity. Corrupting the input to the 
autoencoder is very similar to the dropout regularizer that we previ-
ously studied. In fact, one of the noises that was added to the input was 
making random bits zero. One might as well claim that Vincent et al. 
proposed the first dropout algorithm.

The encoders of autoencoders are also used as initialization for dis-
criminative networks. Autoencoders are generative methods, therefore 
they learn fundamental features pure and untouched by the entropy of 
class labels. Therefore, the features learned from them deal only with 
the structure in the image. Networks learned thus, as either mentor-
ing or as fully pretrained network initializations, help in establishing a 
strong initialization for discriminative networks. Autoencoders in their 
various manifestations are referred to as unsupervised learning and are 
an active area of study and research (Bengio, 2012; Bengio et al., 2012; 
Erhan et al., 2010; Goodfellow et al., 2014; Radford et al., 2015).

Generative Adversarial Networks

Autoencoders generate samples that tend to be close to the mean of 
the samples that are represented by the latent representations. To 
be able to better sample at high dimensionality, Goodfellow et al. 
devised a new class of generative networks called adversarial net-
works (Goodfellow et al., 2014). Unlike the previous networks, these 
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networks do not have an external objective, but the objective itself is 
internal to the machine. Adversarial generative learning involves two 
networks. One of the networks is a generator that is a typical decoder 
of the type discussed in the previous section. The generator samples 
from a random latent distribution and generates an image. The second 
network is a discriminator that tries to predict if an input image was 
generated by the generator network or was sampled from a dataset. 
In case the data were sampled from the real world, we may also train 
a softmax layer with the final layer of the discriminator’s representa-
tions to learn the features in a discriminative way.

The GAN works in the following manner. Consider that the data is 
distributed along pdata, whose form we do not know. Consider though 
that we assume that pdata is a parameterized distribution of some form 

.pmodel  In a maximum likelihood setting, we would want to find a 
good set of parameters so that we cannot differentiate between sam-
ples generated from pmodel and pdata. We can do this by doing the fol-
lowing maximum likelihood estimate of the parameters w.

	 = →argmax   log (  | )ẅ p x ww x modelpdata .� (5.5)
In GANs, we have two networks, the generator ( )G z  that takes as 

input a random vector z  and transforms it into an image, and the dis-
criminator ( )D x , which takes an input image x and produces a prob-
ability that x  is real as against produced by G. The GAN system is 
essence a game played by G and D. D adjusts its weights with the goal 
of trying to differentiate between x from the real-world data and ( )G z .  
G adjusts its weight so as to produce ( )G z  so realistic that D claims 

1( )( ) =D G z  (the generated sample is real). We abuse the notation a 
little here by referring to the probability produced by D as ( )D x  or 

( )( )D G z . The GAN game is the following two steps. For D,

( )( ) ( )( ) ( )−   − −



→ → min log   log 1  ( ) ( )D x D G zD x x z p zpdata z 	 (5.6)

where D tries to minimize ( )( )D G z  and maximize ( )D x , implying 
that it is learning to differentiate between fake and real images. For ,G

	 ( )( )( )− 



→min log  ( ) D G zG z p zz � (5.7)

where G learns to produce   ( )G z  that would have made D predict 
a high value for ( )( )D G z . It is to be noted that while optimizing 
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Equation (5.6), only the weights of D  are updated and while optimiz-
ing Equation (5.7), only the weights of G  are updated. This implies 
that G  never observes any image and still learns to generate images. 
Figure 5.11 shows some of the generated images.

These networks are trained simultaneously in this minimax game 
sort of a way and there is some theoretical evidence to suggest that 
an equilibrium state could be reached where the discriminator will 
no longer be able to predict whether the data originated from the 
real world or from the generator (Goodfellow et al., 2014). This 
converges the learning. At convergence, {D}  always produces the 
value 0.5 irrespective of where the input is sampled from. Figure 
5.12 shows the architecture for a typical generative adversarial net-
work (GAN).

The training of GANs typically begins with the discriminator. The 
discriminator may even first be preliminarily trained to recognize the 
samples from the dataset using the softmax layer. Once the discrimi-
nator is in place, we start feeding it the samples generated by the thus 
far untrained generator. The discriminator produces an error at the 
classifier for predicting if the image came from the dataset or from 
the generator. As the learning proceeds, the generator network learns 
to produce samples that are closer and closer to the original data up 
to a point where the generation is indistinguishable (at least for the 
discriminator network) from the data. For producing better images, 
we may use the transposed convolutions and the extension made using 
deconvolutional GANs (Radford et al., 2015).

Figure 5.11  Some sample images generated from MNIST, CIFAR10 and SVHN images using 
classes 0–5 of the three datasets using very simple LeNet-sized G and D. These images are produced 
in grayscale and color versions of these images are available at the book’s webpage at convolution.
network. Furthermore, the code that generated these images are also available at yann tutorials. 
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A problem with GANs is that the generator network has the ten-
dency to get stuck in the same mode. This implies that the generator 
does not capture the diversity of the entire dataset but locks on to 
only one type of data. In Figure 5.11 we can already notice that some 
classes are produced more often than others. For instance, consider 
the situation in Figure 5.13. The circles with the dots are the original 
dataset’s distribution. The task of the GAN is to produce data that 
appear to be sampled from this original dataset. A well-trained GAN 
would appear to sample data from the distribution that is represented 
by the square-filled area. This GAN would be able to produce samples 
of all modes or types. A GAN that is stuck in one mode would pro-
duce samples from a distribution that is unimodal (or a few modes). 
This will lead to producing the same or at least similar data again and 
again. One way to solve this problem is by using mode-regularized 
GAN (MRGAN) (Che et al., 2016). In the MRGAN, the authors 
introduce new ways of regularizing the objective that stabilize the 
training of GAN models. They demonstrate that such regularizers 
help distribute the probability mass across many modes of the distri-
butions that generate the data.

Figure 5.12  Generative adversarial networks.
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One recent addition to GANs is to make these generator repre-
sentations interpretable. This was accomplished by using disentangled 
representations and InfoGAN (Chen et al., 2016). InfoGAN tried to 
maximize the mutual information between a small subset of the latent 
variables and the generation. The generator samples from not only a ran-
dom distribution but also from a controlled latent space that describes 
some properties about the sample that is being learned. This architec-
ture is described in Figure 5.14. This allows the network gradients to 
maximize the information provided by these variables with generation. 
In the simplest possible form, the generation is the reverse of classifica-
tion and that it generates samples of a class that was requested implies 
that the generator is trained discriminatively. Several proof-of-concept 
experiments were performed to demonstrate this effect that could be 
found in the article (Chen et al., 2016). There are several iterations of 
GANs that have been discovered since its original formulation. Least 
squares GAN and Wasserstein GANs are some popular modifications 
(Arjovsky et al., 2017; Mao et al., 2016).

Figure 5.13  A GAN gets stuck in one mode. The five circles that are filled with dots are the 
original distribution of the dataset. The ellipses with the same filling represent the distribution of 
one generator. The generator with the slanted line filling is stuck in one mode and the one filled with 
squares is a well learned, albeit not perfect generator.
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A particularly smart thing about GANs is that they do not 
directly encode or compress data in the literal sense, but rather sam-
ple from a model of a distribution that it has learned. This implies 
that the generator of a GAN is a source of a datastream. This is par-
ticularly useful for many applications including incremental learning 
(Venkatesan et al. 2017).  GANs are a new leap in neural networks 
in what is seemingly a treasure trove of potential.

Summary

In this chapter, we looked at several modern and novel usages of CNNs, 
each giving us a novel perspective on how deep networks could be used. 
Deep learning is being used on a multitude of problems in more cre-
ative ways every day. Products developed using deep learning technol-
ogy span a large spectrum. Starting from consumer products such as 
image searching and voice recognition to more somber medical appli-
cations, deep learning has become a ubiquitous and integral part of 
modern technology. While there exists a wide swath of applications, in 
this chapter we chose to study briefly those that lend the reader a new 
perspective on the use and application of these networks.
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We noticed that most of these could be accomplished by using the 
loss functions and activations differently. We discussed how datasets of 
images might hold some similar and general properties that might be 
useful in deciding which dataset to use when training. We studied the 
transferability of deep learning where we noticed that some networks 
learned on one dataset could be used to learn from another dataset. We 
observed that the networks learn much more than what they were explic-
itly made to learn. We used this to our advantage and tried to learn a class 
distribution with very samples of that class. We extended this beyond 
simple dark knowledge transfer and made one network teach another.

We also discussed generative learning where we recreate the image 
back from some middle layer, which we called a codeword layer. We 
noticed that this imperfect recreation is useful in cases such as denois-
ing. CNNs are full of potential and newer and novel usages of these 
networks are being discovered every day and applied to a variety of 
problems helping humanity.
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A
Yann

Along with this book, we are delighted to note that we are launching 
a toolbox to build and learn convolutional neural networks and other 
networks that were studied in this book. The toolbox is called the yet 
another neural network (yann) toolbox and is hosted at http://www .yann.
network. The yann toolbox is built on Python 2.7 and on top of the 
Theano framework with future plans to be able to use both the Theano 
and TensorFlow frameworks (Bergstra et al., 2010; Abadi et al., 2016). 
Yann is very simple to install and setup. All one needs to do is run the 
following command on Linux for a simple version of the installer:

>> pip install git+git://github.com/ragavvenkatesan/
  yann.git

Yann is in its early phases and is presently undergoing massive devel-
opment. Although some changes are expected to be made, this chapter 
presents only the core of the toolbox, which should remain valid even if 
the actual toolbox may keep evolving. If there are indeed changes, the 
release notes of each version and its API documentation would reflect 
it. This appendix corresponds to version 1.0rc1, which is the release 
candidate for Yann version 1. There will always be an up-to-date tuto-
rial version of this chapter available with the toolbox documentation. 
While there are more formal and wholesome toolboxes that have a 
much larger userbase such as ConvNet, Lasagne, Keras, Blocks, and 
Caffe (Lasagne, n.d.; Chollet, 2015; Vedaldi and Lenc, 2015; Jia et al., 
2014), this toolbox is much simpler and versatile for a beginner to learn 
quickly. Hence, yann is the perfect supplement to this book. It is also 
a good choice for a toolbox for running pretrained models and builds 
complicated, nonvanilla architecture that is not easy to build with the 
other toolboxes. Yann was also used in the deep learning for computer 
vision course (available at course.convolution.network) that was devel-
oped from this book and taught at ASU in the Spring of 2017.

http://www .yann.network
http://www .yann.network
git://github.com/ragavvenkatesan/yann.git
git://github.com/ragavvenkatesan/yann.git
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Structure of  Yann

The core of the yann toolbox and its operations are built around the 
yann.network.network class, which is present in the file yann/
network.py. Figure A.1 shows the organization of the yann.network 
.network class. The add_ methods add either a layer or module as 
nomenclature. The network class can hold many layers and modules 
in the various connections and architectures that are added using the 
add_ methods. While prepping the network for learning, we may 
need only certain modules and layers. The process of preparing the 
network by selecting and building the training, testing, and validation 
parts of the network is called cooking.

Once cooked, the network is ready for training and testing all by 
using other methods within the network. The network class also has 
several properties such as layers, which is a dictionary of the lay-
ers that are added to it and params, which is a dictionary of all the 
parameters. All layers and modules contain a property called id 
through which they are referred (Figure A.2).

Yann network object 

Methods 
1. add_module
2. add_layer
3. cook 
4. test 
5. train 
6. validate 
7. …

Properties 
1. layers 
2. params
3. optimizer 
4. datastream
5. graph 
6. …

Will add a new module to the network 

Will add a new layer to the network 

Will cook the network with a particular set of layers and modules 

Performs network tasks 

A dictionary containing all the layers 

A dictionary containing all the parameters of all layers 

Dictionaries of network modules 

A network DiGraph module containing graph details of the network

Figure A.1  The structure of the network object.
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Quick Start with Yann: Logistic Regression

Let us jump into an example right away and build a logistic regres-
sion with yann. The start and the end of the yann toolbox is the 
yann.network.network class. The yann.network.network object 
is where all the modeling happens. Start by importing the  yann.
network.network class and creating a yann.network.network 
class object:

>> from yann.network import network
>> net = network()

We have thus created a new network. The network does not have 
any layers or modules in it. This can be seen by verifying the net 
.layers property. This will produce an output that is essentially an 
empty dictionary {}. Let us now add some layers. The toolbox comes 
with a skdata port to the MNIST dataset of handwritten charac-
ters prepackaged for this toolbox. The dataset is typically located at 
_datasets/_dataset_xxxxx. Refer to the online tutorials on how to 
convert your own dataset for yann. The first layer that we need to add 
is an input layer. Every input layer requires a dataset to be associated 
with it. Let us create this dataset and the layer like so:

>> from yann.utils.dataset import cook_mnist
>> cook_mnist()

Yann network class 

Layers Modules 

id: a 

id: b 

id: c 

id: d id: e 

id: d id: e 

Datastream, id: a

Optimizer, id: b 

Datastream, id: d 

Optimizer, id: c 

Visualizer, id: e 

id: d 

Figure A.2  A cooked network. The objects that are in gray and shaded are uncooked parts of 
the network.
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which cooks the dataset. Running this code will print a statement to 
the following effect:

>> Dataset xxxxx is created.

The five digits marked xxxxx in the statement are the codeword 
for the dataset. The actual dataset is located now at _datasets/ 
_dataset_xxxxx/ from where this code was called. The MNIST 
dataset is created and stored at this dataset in a format that is 
configured for yann to work with. Refer to the Tutorials on how 
to convert your own dataset for yann. The first layer that we need 
to add is an input layer. Every input layer requires a dataset to be 
associated with it. Let us create this layer like so:

>> dataset_params= { "dataset": "_datasets/_
  dataset_71367", "n_classes" : 10 }
>> net.add_layer(type = "input", dataset_init_args =
  dataset_params)

This piece of code creates and adds a new datastream module to the 
net and wires up the newly added input layer with this datastream. 
Let us add a logistic regression layer. The default classifier that Yann 
is setup with is the logistic regression classifier. Refer to the Toolbox 
documentation or tutorials for other types of layers. Let us create this 
classifier layer for now:

>> net.add_layer(type = "classifier", num_classes = 10)
>> net.add_layer(type = "objective")

The layer objective creates the loss function from the classi-
fier layer that can be used as a learning metric. It also provides a 
scope for other modules such as the optimizer module. Now that our 
network is created and constructed, we can see that the net objects 
have layers populated:

>> net.layers
>> {'1': <yann.network.layers.classifier_layer object at 
0x7eff9a7d0050>, '0': <yann.network.layers.input_ 
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layer object at 0x7effa410d6d0>, '2': <yann.network.
layers.objective_layer object at 0x7eff9a71b210>}

The keys of the dictionary such as “1,” “0,” and “2” represent the id of 
the layer. We could have created a layer with a custom id by supplying 
an id argument to the add_layer method. Now our network is finally 
ready to be trained. Before training, we need to build the optimizer 
and other tools, but for now let us use the default ones. Once all of this 
is done, before training, yann requires that the network be “cooked”:

>> net.cook()

Depending on the computer, cooking may take a few seconds and 
might print what it is doing along the way. Once cooked, we may 
notice for instance that the network has an optimizer module:

>> net.optimizer
>> {'main': <yann.network.modules.optimizer object at 
  0x7eff9a7c1b10>}

To train the model that we have just cooked, we can use the train 
function that becomes available to us once the network is cooked:

>> net.train()

This will print the progress for each epoch and will show valida-
tion accuracy after each epoch on a validation set that is independent 
of the training set. By default, the training will run for 40 epochs: 20 
on a higher learning rate and 20 more on a fine-tuning learning rate.

Every layer also has an layer.output object. The output can be 
probed by using the layer.activity method as long as it is directly 
or indirectly associated with a datastream module through an input 
layer and the network was cooked. Let us observe the activity of the 
input layer for a trial. Once trained, we can observe this output. The 
layer activity will just be a numpy array of numbers, so let us print its 
shape instead:

>> net.layer_activity(id = '0').shape
>> net.layers['0'].output_shape
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The second line of code will verify the output we produced in the 
first line. An interesting layer output is the output of the objective 
layer, which will give us the current negative log-likelihood of the 
network, the one that we are trying to minimize:

net.layer_activity(id = '2')
>> array(2.1561384201049805,dtype=float32)

Once we are done training, we can run the network feed-forward 
on the testing set to produce a generalization performance result:

>> net.test()

We have now successfully used the yann toolbox and implemented 
logistic regression. Full-fledged code for the logistic regression that we 
implemented here can be found in pantry/tutorials/log_reg.py. 
That piece of code also has in the commentary other options that could 
be supplied to some of the function calls we made here that explain the 
processes better.

Multilayer Neural Networks

Extending a logistic regression to an MLNN using yann is a simple 
addition of some hidden layers. Let us add a couple of them. Instead 
of connecting an input to a classifier as we saw in the regression exam-
ple, let us add a couple of fully connected hidden layers. Hidden layers 
can be created using layer type = ‘dot_product’:

>> net.add_layer (type = "dot_product",
origin ="input",
id = "dot_product_1",
num_neurons = 800,
activation ='relu')

>> net.add_layer (type = "dot_product",
origin ="dot_product_1",
id = "dot_product_2",
num_neurons = 800,
activation ='relu')
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Notice the parameters passed. num_neurons is the number of 
nodes in the layer. Notice also how we modularized the layers by using 
the id parameter. origin represents which layer will be the input to 
the new layer. By default, yann assumes all layers are input serially 
and chooses the last added layer to be the input. Using origin, one 
can create various types of architectures. In fact, any directed acyclic 
graphs (DAGs) that could be hand drawn could be implemented. Let 
us now add a classifier and an objective layer to this:

>> net.add_layer (type = "classifier",
id = "softmax",
origin = "dot_product_2",
num_classes = 10,
activation = 'softmax',
)

>> net.add_layer (type = "objective",
id = "nll",
origin = "softmax",
)

Let us create our own optimizer module this time instead of using 
the yann default. For any module in yann, the initialization can be 
done using the add_module method. The add_module method typi-
cally takes an input type that in this case is optimizer and a set of 
initialization parameters that in our case is params=optimizer_params.  
Any module parameters, which in this case is optimizer_params 
is a dictionary of relevant options. A typical optimizer setup is:

>> optimizer_params = {
“momentum_type”       : 'polyak',
“momentum_params”     : (0.9,0.95,30),
“regularization”      : (0.0001,0.0002),
“optimizer_type”      : 'rmsprop',
“id”                  : 'polyak-rms'
}

>> net.add_module (type = 'optimizer',params = 
  optimizer_params)
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We have now successfully added Polyak momentum with RmsProp 
backpropagation with some L1  and L2  norms. Once the optimizer is 
added, we can cook and learn:

>> learning_rates = (0.05,0.01,0.001)
>> net.cook( optimizer = 'main',

objective_layer = 'nll',
datastream = 'mnist',
classifier = 'softmax',
)

>> net.train(epochs = (20, 20),
validate_after_epochs = 2,
training_accuracy = True,
learning_rates = learning_rates,
show_progress = True,
early_terminate = True)

Once done, let us run net.test(). Some new arguments are intro-
duced here and they are for the most part easy to understand in con-
text. epoch represents a tuple that is the number of epochs of training 
and number of epochs of fine-tuning after that. There could be several 
of these stages of fine-tuning. Yann uses the term era to represent 
each set of epochs running with one learning rate. learning_rates 
indicates the learning rates. The first element of this learning rate is an 
annealing parameter. learning_rates naturally has a length that is 
one greater than the number of epochs. show_progress will print a 
progress bar for each epoch. validate_after_epochs will perform 
validation after such many epochs on a different validation dataset. The 
full code for this tutorial with additional commentary can be found in 
the file pantry.tutorials.mlp.py. Run the code as follows:

>> from pantry.examples.mlp import mlp
>> mlp(dataset = 'some dataset created')

Convolutional Neural Network

Now that we are through with the basics, extending this to a LeNet-5 
type network is not that difficult. All we need to do is add a few convpool 
layers, and they can be added using the same add_layer method:
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>> net.add_layer (type = "conv_pool",
origin = "input",
id = "conv_pool_1",
num_neurons = 20,
filter_size = (5,5),
pool_size = (2,2),
activation = 'tanh',
verbose = verbose
)

>> net.add_layer ( type = "conv_pool",
origin = "conv_pool_1",
id = "conv_pool_2",
num_neurons = 50,
filter_size = (3,3),
pool_size = (2,2),
activation = 'tanh',
verbose = verbose
)

conv _ pool _ 2 could now be added to the MLNN architecture dis-
cussed above and we have a CNN. This CNN would produce a gener-
alization accuracy well over 99% on the MNIST dataset.

The toolbox has several more options that are not discussed here 
and the descriptions for using them can be found in the yann online 
documentation. Again code for this is presented in the tutorial’s 
directory.

Autoencoder

An autoencoder is a little trickier than the other networks but not too 
tricky. The initial steps are the same until the first layer (or several lay-
ers) of the autoencoder. The decoder layer now needs to take as input 
the same set of parameters of the encoder layer with a transpose in it. 
The following code block creates such a layer using yann:

>> net.add_layer ( type = "dot_product",
origin = "encoder",
id = "decoder",
num_neurons = 784,
activation = 'tanh',
input_params = [net.
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  layers['encoder'].w.T,None],
# Use the same weights but 
  transposed for decoder.
learnable = False,
verbose = verbose
)

Thus we have added a decoder layer, which will decode the image 
into 784 outputs and takes as input the transposed weights of the 
input. The None corresponds to the bias. If needed, we can force the 
encoder bias on there as well.

To create a loss function, we need to reshape or unflatten the image 
back into its square shape; we can use the unflatten layer to do this job 
using the following code:

>> net.add_layer ( type = "unflatten",
origin = "decoder",
id = "unflatten",
shape = (28,28,1),
verbose = verbose
)

Once unflattened, the image needs to be compared to the input and this 
should be the objective to learn from. We can make use of the merge layer 
and layer _ type arguments in the objective layer to accomplish this task:

>> net.add_layer ( type = "merge",
origin = ("input","unflatten"),
id = "merge",
layer_type = "error",
error = "rmse",
verbose = verbose)

>> net.add_layer ( type = "objective",
origin = "merge",
id = "obj",
objective = None,
layer_type = 'generator',
verbose = verbose
)
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The autoencoder is thus created. After cooking and training, if we 
use a visualizer, we can visualize the images being saved and produced.

Summary

The above examples are intended to quickly demonstrate some of 
the networks and their types described here. The complete code for 
all of these is available in the tutorials directory in the code pantry. 
The toolbox is capable of much more and has more options than those 
that are described here; however, only selected items have been pre-
sented here. Refer to the code documentation at http://www.yann 
.network for more details and other bleeding-edge developmental 
tutorials and code.
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Postscript

There are several epistemological philosophies on machine learning. 
In this book, we studied the philosophy of connectionism and its 
application toward computer vision. We began in Chapter 1 with an 
introduction to image representations in its various forms and some 
nonconnectionist image modeling. In Chapter 2, we studied linear 
regression, optimization, and regularization. Chapter 3 introduced 
the perceptron or computational neuron, multilayer perceptrons or 
multilayer neural networks and their learning through the back-
propagation algorithm, along with some tricks to make the learning 
better, faster, and more stable. Chapter 4 introduced the convpool 
layer and the convolutional neural network (CNN) and studied some 
of its popular cases. Chapter 5 mainly demonstrated some modern, 
novel uses of some pretrained networks, which have been among the 
most popular ways of deploying CNNs in practice. Generative mod-
els based on CNNs were also introduced in Chapter 5.

The artificial neural network is one of the classic areas of machine 
learning and its popularity and usage have gone up and down in past 
decades. It has often been advertised and sensationalized for what it 
is not and may have also been overlooked for what it was capable of. 
It has been largely misunderstood by those who have not diligently 
studied it. Through its ups and downs, there have been several argu-
ments toward using end-to-end neural networks for computer vision. 
Among the strongest may be the recent view that “It’s learning all 
the way down” (LeCun, 2015). For those who are interested in a 
well-written history of connectionism, the authors recommend the 
book Talking Nets: An Oral History of Neural Networks (Anderson and 
Rosenfeld, 2000).

There have always been philosophical conundrums over connec-
tionism and its implications on the understanding of higher human 
cognition. A good, albeit controversial source for some of these ques-
tions is the article by Fodor and Pylyshyn (1988). Although this article 
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has some well-argued criticisms including the paper by Chalmers 
(1990) and some of its central premises have been proven wrong, 
it indeed gives good insight for those who seek some philosophical 
underpinnings into neural networks. In this book, although we have 
purposefully stayed away from such philosophies and focused primar-
ily on the engineering of neural networks, the authors would like to 
point out a modern-day neural network–related reincarnation of a 
classic debate in philosophy.

Chapter 5 introduced the ideas of fine-tuning a pretrained network 
versus initializing a new network from scratch. It also motivated sev-
eral arguments for and against blindly using pretrained networks for 
computer vision tasks. Most often, it is only through implementa-
tion experiences (what is considered “dirty work” [Ng, 2016]) that 
an engineer could develop the intuition as to when to use pretrained 
networks and when not to. In the debate over using pretrained net-
works against training a network from scratch for every task, for most 
computer vision tasks, some levels of the former seem to be winning 
this debate as was demonstrated throughout the first part of Chapter 
5. Given this, an engineer is always well-advised to try fine-tuning a 
network pretrained on a related task before attempting to build and 
train his or her own architecture totally from scratch.

It also appears that, in the debate over the use of neural networks 
for studying human cognition, the one question that is often raised 
is the capability of neural networks to generalize the data that is not 
seen. This is in opposition to the systematicity debate whose propo-
nents argue that neural networks merely make associations and do not 
learn structure or syntax, again from the work of Fodor and Pylyshn 
(1988). Several early arguments were made in support of neural net-
works (Niklasson and Gelder, 1994). Neural networks have since 
demonstrated strong generalization capabilities, the best of which is 
demonstrated through the use of pretrained networks and through 
the generator networks generating samples from very complex distri-
butions as in generative adversarial networks (GANs) (Goodfellow 
et al., 2014). In this widely changing scenario, we require novel ways 
to think about generalization. Most engineers who develop neu-
ral network–related products for certain domains often do not have the 
amount of data required for training large networks sufficiently in 
that domain. While pretrained networks are one way out, another 
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practical method is to acquire training data from related domains 
during training. If training data from a related domain can be obtained 
easily for learning good representations, which will then be adapted 
to the testing data’s domain, it may provide another way around the 
problem. Studies on such domain adaptation and transfer learning 
ideas have become an exciting area to consider.

Another exciting area of research and development in neural net-
works is reinforcement learning. Reinforcement learning has become 
popular since demonstrations by companies such as DeepMind and 
others show that neural networks can learn to play games and can 
even better the best of humans in such games. Learning to play games 
with neural networks is not a new concept and has been an active 
area since its inception. From Arthur Samuel’s checkers to Google 
DeepMind’s AlphaGo, neural networks have been shown to be suc-
cessful in several games. Data are abundant; in the case of reinforce-
ment learning, we can simulate a world that is faster than real time. 
The community is looking forward to a system that will learn from 
these domains while ensuring that what was learned here could trans-
fer to the real world. Learning from synthetic data has also sparked the 
use of GANs to create pretrained networks. Synthesizing data could 
lead to learning with very small amounts of actual real data and this is 
currently being actively studied. Another active and possibly the next 
frontier of neural network research is unsupervised learning. With the 
rise of mobile phones and image-sharing social media, the amount of 
image content that is generated has exploded exponentially. Labeling 
such a vast treasure trove of raw data is a seemingly monumental task 
and therefore researchers are looking toward unsupervised learning to 
tap the potential in this data. This would be another exciting area to 
watch for an interested person.

While not strictly related to neural networks in the technical sense, 
the recent explosion of interest in neural networks is due to several 
factors besides neural networks themselves. One that we would like 
to mention and appreciate is the community’s sense of oneness in 
sharing knowledge and material. The culture of open source software 
from academics and industries alike has significantly improved the 
flexibility and speed of discourse and the ease of reproducing some of 
the results. This culture coupled with tools such as GitHub, travis-ci, 
and readthedocs for reliable code sharing has had a positive impact and 
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has largely contributed to better collaboration and easy dissemination 
of scholarly work. We therefore encourage the readers to follow and 
continue this culture.

While neural networks are proving reliable in the end-to-end learn-
ing of several tasks, some tasks still need hand-carved representations 
or logic. Not all systems could be learned end-to-end purely from the 
data. While “deep learning can do anything that humans can do in 
less than a second” (Ng, 2016), this also seems to imply that if a task 
involves too much cognitive and logical thinking that takes humans a 
long time to complete, it may not be an easy task for the current deep 
learning approaches at which to excel. Although informal, we believe 
that this may still be a good benchmark for the state and accomplish-
ment for current deep learning systems. While we may not be able 
to prophesize what deep learning and neural networks hold for the 
future, being able to do anything a human can do in less than a second 
is clearly not a bad place to begin.
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Index

A

Activation functions, 67, 69, 82–85
Adaptive learning rates, alternative 

update rules using, 59–60
add _ layer method, 151, 154
add _ module method, 153
Affine sparse codes, 28
AlexNet, 45, 102–107, 133
Alternative update rules using 

adaptive learning rates, 
59–60

ANNs, See Artificial neural 
networks

Aperture problem, 16
a posteriori probability, 22
Artificial neural networks (ANNs), 65

BP algorithm, 79–82
improving BP-based learning, 

82–86
multilayer neural networks, 

74–79
perceptron, 66–74

Atomic structures, dataset, 122
Attribute of employee, 34

Autoencoders, 134–137, 155–157
Automated assessment, of image 

aesthetics, 133

B

Backpropagation (BP) algorithm, 
71, 79–82

based learning, improving, 82–86
Basic logistic regression, 68
Basis function expansion, 44
Batch gradient descent, 58–59
Batch normalization, 85–86
Bayesian decision-making, 21–23
Bernoulli distribution, AlexNet,  

106
Better model, 39–40
Bowl-shaped function, 50, 51
BP algorithm, See Backpropagation 

algorithm

C

Caltech101 dataset, 132
Caltech-256 dataset, 132
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Cameras, 4
Case studies

AlexNet, 102–107
GoogLeNet and inception 

module, 107–109
LeNet5, 100–102
MNIST dataset, 99–100
ResNet, 112–114
VGG-19, 109–112

CIFAR-10 dataset, 95
classifier layer, 150
CNNs, See Convolutional neural 

networks
Codeword layer, 142
Contemporary datasets, 118
Convex bowl error surface, 57
Convolutional neural networks 

(CNNs), 18, 58, 59, 154
Convolution layer, 90
Convpool layer, 94, 97
Cooking, network, 148
Core of yann toolbox, 148
Cross-correlation process, 92
Cross-validation, 48–49
Cuda-convnet, 104
Cumulative error, 40

D

DAGs, See Directed acyclic  
graphs

Dalal and Triggs method, 27
Dark knowledge

pretrained networks, 128
transfer, 130

datastream module, 150, 151
DCT, See Discrete cosine transform
Decision boundary, 23
Decision-making

with linear decision boundaries, 
23–25

process, 19–21
techniques, 25

Deep learning systems, 59
Deformable part models (DPMs), 

25–27
Denoising autoencoders, 137
1D Gaussian distribution, 41
Directed acyclic graphs (DAGs), 153
Discrete cosine transform (DCT), 6
Discriminator networks, 

See Generative networks
DPMs, See Deformable part models
Dropout technique, 106

E

Edges, 5, 10
detection filters, 12

Employee compensation dataset, 
35, 38

E network, 110
epoch, 154
era, 154
Error function, 39
Extension to nonlinear models, 

43–45

F

Feature extractor, purpose of, 120
Feed-forward network, 65, 66
Filter bank, 93
Filters, 10, 93
FitNets, 130–132
Fourier transform, 6
Frequency-domain approaches, 5

G

Gaussian probability distributions, 
21

Gaussian-shape kernel, 14
Gaussian smoothing filter, 14
Generative adversarial networks 

(GANs), 138–142
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Generative networks, 134
autoencoders, 134–137
generative adversarial networks, 

137–142
Geometry of regularization, 55–57
Gestalt principles, 26
GoogLeNet

and inception module, 107
and ResNet, 112

Gradient descent algorithm, 49–55
Gradient filters, 13
Grayscale image, 5

H

Hand-crafting features, 28
Harris corner detector, 16–17
Hessian approximation, 55, 59
Hidden layers, 152
Histogram of oriented gradients 

(HOG), 17–19, 25, 119, 120
Bayesian decision-making, 21–23
decision-making process, 19–21
decision-making, with linear 

decision boundaries, 23–25
Histogram representations, 10
HOG, See Histogram of oriented 

gradients
Hough transform, 15
Human neural system, 1
Human visual system, 1
Hyperparameters, 48

I

Id, 148
ILSVRC, See ImageNet large-scale 

visual recognition challenge
Image aesthetics, using CNNs, 

132–134
Image datasets, 118
Image gradients, 10–15
Image histograms, 7, 9

ImageNet, 120, 125
ImageNet large-scale visual 

recognition challenge 
(ILSVRC), 102, 104

Image representation, 3–6
edges and gradients, 10–15
histograms, 7–10
transform-domain 

representations, 6–7
Image sampling, 4
Inception module, 107–109
InfoGAN, 141
Interferometers, 2
Invariance, 17
Iterative learning algorithm, 53

J

Joint Photographic Experts Group 
(JPEG), 6–7

K

Kernel methods, 43–44
Kernels, See Filters
Kernel SVM, 25
Keys, 151
k-fold cross-validations, 49

L

Laplacian of the Gaussian (LoG), 
14, 15

Laplacian of two-dimensional 
function, 12

Laplacian operators, 13
Layer, 150
layer.activity method, 151
layer.output object, 151
layers, 148
LCD, See Liquid-crystal display
Learning rate, 70
learning _ rates, 154
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Least squares, 39–41
Leave-one-out cross-validation 

(LOOCV), 49
LeNet, 122
LeNet5, 100–102
LeNet-5 type network, 152
Likelihood functions, 22
Linear approaches, 25
Linear decision boundaries, 

decision-making, with, 
23–25

Linear models, 36–39
Linear regression, 36

probabilistic model of, 42
problem, 50, 70

Linear threshold neuron, 67
Line detection, using Hough 

transform, 15–16
Liquid-crystal display (LCD), 10
Local connectivity, 91
LoG, See Laplacian of the Gaussian
Logistic neuron, 70
Logistic regression, 149–152
LOOCV, See Leave-one-out 

cross-validation
L2 regularization, 55–57
L1 regularizer, 47

M

Margin, 25
Maximum likelihood estimation 

(MLE), 43
Maximum-likelihood interpretation, 

41–43
Maxpool, 97

generative networks, 135
McCulloch–Pitts neuron model, 

65, 67
Mentee networks, 130–132
Mentor–mentee connections, 131
MLE, See Maximum likelihood 

estimation

MLNNs, See Multilayer neural 
networks

MLP, See Multilayer perceptron
MNIST dataset, 99–100

LeNet for, 101
MNIST-rotated datasets, 122
Mode-regularized GAN 

(MRGAN), 141
Modern-day GPUs, 59
Modern neural computer vision, 

18–19
modules, 148
Momentum, 60–61
Multilayer neural networks 

(MLNNs), 74–79, 89, 
152–154

Multilayer perceptron (MLP), 75

N

NAG method, See Nesterov’s 
accelerated gradient 
method

Naturalized image datasets, 118
Nesterov’s accelerated gradient 

(NAG) method, 61
Net2net, 126
net.test (), 154
network class, 148
Network-in-network system, 108
Network object, structure of, 148
Neural computer vision, 27–29
Neural networks, 18, 95
Newton’s method, 59
Nonconvex error surfaces, 57–58
num _ neurons, 153
numpy array, 151

O

Objective function, 24
objective layer, 150, 152
1-D convolution, 92
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Online gradient descent, 58–59
optimizer module, 150, 151, 153
origin, 153
output, 151
Overfitting, 44–45

P

params, 148
Perceptron algorithm, 68
Pictorial structures, 26
Pixels, 3

representation of image, 4
Pooling, 96–97
Pooling layer, 90
Pretrained networks, 118–121

application, 132–134
generality and transferability, 

121–126
mentee networks and fitNets, 

130–132
for model compression, 126–130

Principal component analysis 
(PCAs), 135

Probabilistic model of linear 
regression, 42

Probability density functions 
(PDFs), 22

Projection pursuit regression, 78

Q

Quantization, 4

R

Radial basis function network, 75
RAPID method, 133
Receptive fields, 93

referring ways of, 94
Rectified linear unit (ReLU), 82–84
Recurrent neural network (RNN), 131
Reduced training dataset, 48

Regression model, 33
Regularization, 45–48

geometry of, 55–57
process, 47

ReLU, See Rectified linear unit
ReLU activation, 83, 104
Representational space/feature 

space, 34
ResNet, 112–114
Ridge regression, 47
Root-mean-squared propagation 

(RMSPROP), 60
Rosenblatt perceptron, 68

S

Sampling, 4
Scale-invariant feature transform 

(SIFT), 17
Second line of code, 152
Second-order derivative, 55
Shared-weight sparse neurons, 93
show _ progress, 154
SIFT, See Scale-invariant feature 

transform
Simply filtering, 10
Sixth-order polynomial fit, 44
Softmax function, 72
Softmax layer, pretrained networks, 

124
Sparse connectivity, 92
Sparsity, 90
Spatial domain representation, 5
Spatial filtering, 10
Stochastic gradient descent,  

58–59
Supervised learning, 33–36
Supervised machine learning 

models, 36
Support vector machines (SVMs), 

25
Support vector machine (SVM)-

type classifier, 73
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T

Taylor approximation, 55
Temperature softmax, 128, 129
Three-dimensional histogram, 8
Threefold cross-validation, 49
Three-layer feed-forward network, 

80
Toolbox, 147, 155, 157
Traditional computer vision system, 

27
Training, 37
Transform-domain representations, 

6–7
2-D convolutional layer, 94
Two-dimensional filter, 12
Two-parameter linear regressor, 51

U

Unfrozen layer, pretrained networks, 
124

V

validate _ after _ epochs, 154
Validation dataset, 48
Vanilla CNNs, 117

Vanishing gradient, GoogLeNet, 109
VGG-19, 109–112
VGG network, 109, 110
Visual object classification (VOC) 

datasets, 118
Von Helmholtz, Hermann, 2

W

Weight pruning process, 85

X

XOR network, 77

Y

Yet another neural network (Yann)
convolutional neural network, 

154–157
MLNN using, 152–154
quick start with, 149–152
structure of, 148–149

Z

Zero-crossing, 13
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