ognit
S

C ve Computation Trends 2
Serie

[
Editor: Amir Hussain

LN

Kaizhu Huang - Amir Hussain
Qiu-Feng Wang
Rui Zhang Editors

Deep Learning:
Fundamentals,
Theory and
Applications

@ Springer

Cognitive Computation Trends

Volume 2

Series Editor

Amir Hussain

School of Computing
Edinburgh Napier University
Edinburgh, UK

Cognitive Computation Trends is an exciting new Book Series covering cutting-
edge research, practical applications and future trends covering the whole spectrum
of multi-disciplinary fields encompassed by the emerging discipline of Cognitive
Computation. The Series aims to bridge the existing gap between life sciences,
social sciences, engineering, physical and mathematical sciences, and humanities.
The broad scope of Cognitive Computation Trends covers basic and applied work
involving bio-inspired computational, theoretical, experimental and integrative
accounts of all aspects of natural and artificial cognitive systems, including:
perception, action, attention, learning and memory, decision making, language
processing, communication, reasoning, problem solving, and consciousness.

More information about this series at http://www.springer.com/series/15648

http://www.springer.com/series/15648

Kaizhu Huang ¢ Amir Hussain ¢ Qiu-Feng Wang
Rui Zhang

Editors

Deep Learning:
Fundamentals, Theory
and Applications

@ Springer

Editors
Kaizhu Huang

Xi’an Jiaotong-Liverpool University
Suzhou, China

Qiu-Feng Wang

Amir Hussain

School of Computing
Edinburgh Napier University
Edinburgh, UK

Rui Zhang

Xi’an Jiaotong-Liverpool University
Suzhou, China

Xi’an Jiaotong-Liverpool University
Suzhou, China

ISSN 2524-5341

Cognitive Computation Trends
ISBN 978-3-030-06072-5 ISBN 978-3-030-06073-2 (eBook)
https://doi.org/10.1007/978-3-030-06073-2

ISSN 2524-535X (electronic)

Library of Congress Control Number: 2019930405

© Springer Nature Switzerland AG 2019

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, express or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-06073-2

Preface

Over the past 10 years, deep learning has attracted a lot of attention, and many
exciting results have been achieved in various areas, such as speech recognition,
computer vision, handwriting recognition, machine translation, and natural lan-
guage understanding. Rather surprisingly, the performance of machines has even
surpassed humans’ in some specific areas. The fast development of deep learning
has already started impacting people’s lives; however, challenges still exist. In
particular, the theory of successful deep learning has yet to be clearly explained,
and realization of state-of-the-art performance with deep learning models requires
tremendous amounts of labelled data. Further, optimization of deep learning models
can require substantially long times for real-world applications. Hence, much effort
is still needed to investigate deep learning theory and apply it in various challenging
areas. This book looks at some of the problems involved and describes, in depth, the
fundamental theories, some possible solutions, and latest techniques achieved by
researchers in the areas of machine learning, computer vision, and natural language
processing.

The book comprises six chapters, each preceded by an introduction and followed
by a comprehensive list of references for further reading and research. The chapters
are summarized below:

Density models provide a framework to estimate distributions of the data, which
is a major task in machine learning. Chapter 1 introduces deep density models
with latent variables, which are based on a greedy layer-wise unsupervised learning
algorithm. Each layer of deep models employs a model that has only one layer of
latent variables, such as the Mixtures of Factor Analyzers (MFAs) and the Mixtures
of Factor Analyzers with Common Loadings (MCFAs).

Recurrent Neural Networks (RNN)-based deep learning models have been
widely investigated for the sequence pattern recognition, especially the Long Short-
term Memory (LSTM). Chapter 2 introduces a deep LSTM architecture and a
Connectionist Temporal Classification (CTC) beam search algorithm and evaluates
this design on online handwriting recognition.

Following on above deep learning-related theories, Chapters 3, 4, 5 and 6
introduce recent advances on applications of deep learning methods in several

http://dx.doi.org/10.1007/978-3-030-06073-2_1
http://dx.doi.org/10.1007/978-3-030-06073-2_2
http://dx.doi.org/10.1007/978-3-030-06073-2_3
http://dx.doi.org/10.1007/978-3-030-06073-2_4
http://dx.doi.org/10.1007/978-3-030-06073-2_5
http://dx.doi.org/10.1007/978-3-030-06073-2_6

vi Preface

areas. Chapter 3 overviews the state-of-the-art performance of deep learning-based
Chinese handwriting recognition, including both isolated character recognition and
text recognition.

Chapters 4 and 5 describe application of deep learning methods in natural
language processing (NLP), which is a key research area in artificial intelligence
(AI). NLP aims at designing computer algorithms to understand and process natural
language in the same way as humans do. Specifically, Chapter 4 focuses on
NLP fundamentals, such as word embedding or representation methods via deep
learning, and describes two powerful learning models in NLP: Recurrent Neural
Networks (RNN) and Convolutional Neural Networks (CNN). Chapter 5 addresses
deep learning technologies in a number of benchmark NLP tasks, including entity
recognition, super-tagging, machine translation, and text summarization.

Finally, Chapter 6 introduces Oceanic data analysis with deep learning models,
focusing on how CNNs are used for ocean front recognition and LSTMs for sea
surface temperature prediction, respectively.

In summary, we believe this book will serve as a useful reference for senior
(undergraduate or graduate) students in computer science, statistics, electrical
engineering, as well as others interested in studying or exploring the potential of
exploiting deep learning algorithms. It will also be of special interest to researchers
in the area of Al, pattern recognition, machine learning, and related areas, alongside
engineers interested in applying deep learning models in existing or new practical
applications. In terms of prerequisites, readers are assumed to be familiar with basic
machine learning concepts including multivariate calculus, probability and linear
algebra, as well as computer programming skills.

Suzhou, China Kaizhu Huang
Edinburgh, UK Amir Hussain
Suzhou, China Qiu-Feng Wang
Suzhou, China Rui Zhang

March 2018

http://dx.doi.org/10.1007/978-3-030-06073-2_3
http://dx.doi.org/10.1007/978-3-030-06073-2_4
http://dx.doi.org/10.1007/978-3-030-06073-2_5
http://dx.doi.org/10.1007/978-3-030-06073-2_4
http://dx.doi.org/10.1007/978-3-030-06073-2_5
http://dx.doi.org/10.1007/978-3-030-06073-2_6

Contents

1 Introduction to Deep Density Models with Latent Variables 1
Xi Yang, Kaizhu Huang, Rui Zhang, and Amir Hussain

2 Deep RNN Architecture: Design and Evaluation......................... 31
Tonghua Su, Li Sun, Qiu-Feng Wang, and Da-Han Wang

3 Deep Learning Based Handwritten Chinese Character and Text
Recognition 57
Xu-Yao Zhang, Yi-Chao Wu, Fei Yin, and Cheng-Lin Liu

4 Deep Learning and Its Applications to Natural Language
ProcesSingooiiiiiii e 89
Haiqin Yang, Linkai Luo, Lap Pong Chueng, David Ling,
and Francis Chin

5 Deep Learning for Natural Language Processing 111
Jiajun Zhang and Chengqing Zong

6 Oceanic Data Analysis with Deep Learning Models 139
Guogiang Zhong, Li-Na Wang, Qin Zhang, Estanislau Lima, Xin Sun,
Junyu Dong, Hui Wang, and Biao Shen

vii

Chapter 1
Introduction to Deep Density Models Qe
with Latent Variables

Xi Yang, Kaizhu Huang, Rui Zhang, and Amir Hussain

Abstract This chapter introduces deep density models with latent variables which
are based on a greedy layer-wise unsupervised learning algorithm. Each layer of the
deep models employs a model that has only one layer of latent variables, such as the
Mixtures of Factor Analyzers (MFAs) and the Mixtures of Factor Analyzers with
Common Loadings (MCFAs). As the background, MFAs and MCFAs approaches
are reviewed. By the comparison between these two approaches, sharing the
common loading is more physically meaningful since the common loading is
regarded as a kind of feature selection or reduction matrix. Importantly, MCFAs can
remarkably reduce the number of free parameters than MFAs. Then the deep models
(deep MFAs and deep MCFAs) and their inferences are described, which show that
the greedy layer-wise algorithm is an efficient way to learn deep density models
and the deep architectures can be much more efficient (sometimes exponentially)
than shallow architectures. The performance is evaluated between two shallow
models, and two deep models separately on both density estimation and clustering.
Furthermore, the deep models are also compared with their shallow counterparts.

Keywords Deep density model - Mixture of factor analyzers - Common
component factor loading - Dimensionality reduction

1.1 Introduction

Density models provide a framework for estimating distributions of the data
and therefore emerge as one of the central theoretical approaches for designing
machines (Rippel and Adams 2013; Ghahramani 2015). One of the essential

X. Yang - K. Huang (P<) - R. Zhang
Xi’an Jiaotong-Liverpool University, Suzhou, China
e-mail: xi.yang @xjtlu.edu.cn; kaizhu.huang @xjtlu.edu.cn; rui.zhang02 @xjtlu.edu.cn

A. Hussain
School of Computing, Edinburgh Napier University, Edinburgh, UK
e-mail: a.hussain @napier.ac.uk

© Springer Nature Switzerland AG 2019 1
K. Huang et al. (eds.), Deep Learning: Fundamentals, Theory and Applications,
Cognitive Computation Trends 2, https://doi.org/10.1007/978-3-030-06073-2_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06073-2_1&domain=pdf
mailto:xi.yang@xjtlu.edu.cn
mailto:kaizhu.huang@xjtlu.edu.cn
mailto:rui.zhang02@xjtlu.edu.cn
mailto:a.hussain@napier.ac.uk
https://doi.org/10.1007/978-3-030-06073-2_1

2 X. Yang et al.

probabilistic methods is to adopt latent variables, which reveals data structure
and explores features for subsequent discriminative learning. The latent variable
models are widely used in machine learning, data mining and statistical analysis.
In the recent advances in machine learning, a central task is to estimate the deep
architectures for modeling the type of data which has the complex structure such as
text, images, and sounds. The deep density models have always been the hot spot
for constructing sophisticated density estimates. The existed models, probabilistic
graphical models, not only prove that the deep architectures can create a better prior
for complex structured data than the shallow density architectures theoretically,
but also has practical significance in prediction, reconstruction, clustering, and
simulation (Hinton et al. 2006; Hinton and Salakhutdinov 2006). However, they
often encounter computational difficulties in practice due to a large number of free
parameters and costly inference procedures (Salakhutdinov et al. 2007).

To this end, the greedy layer-wise learning algorithm is an efficient way to
learn deep architectures which consist of many latent variables layers. With this
algorithm, the first layer is learned by using a model that has only one layer of
latent variables. Especially, the same scheme can be extended to train the following
layers at a time. Compared with previous methods, this deep latent variable model
has fewer free parameters by sharing the parameters between successive layers,
and a simpler inference procedure due to a concise objective function. The deep
density models with latent variables are often used to solve unsupervised tasks. In
many applications, the parameters of these density models are determined by the
maximum likelihood, which typically adopts the expectation-maximization (EM)
algorithm (Ma and Xu 2005; Do and Batzoglou 2008; McLachlan and Krishnan
2007). In Sect. 1.4, we shall see that EM is a powerful and elegant method to find
the maximum likelihood solutions for models with latent variables.

1.1.1 Density Model with Latent Variables

Density estimation is a major task in machine learning. In general, the most
commonly used method is Maximum Likelihood Estimate (MLE). In this way, we
can establish a likelihood function L(u, ¥) = Z,Ilvzl In p(y, i, X).! However,
the derivation of directly calculating the likelihood functions has computational
difficulties because of the very high dimensions of X. Thus, a set of variables x
is defined to govern multiple y, and when the distribution of p(x) is found, p(y)
can be determined by the joint distribution over y and x. Typically, the covariates
XY are ruled out. In this setting, x is assumed to affect the manifest variables
(observable variables), but it is not directly observable. Thus, x is so-called the latent
variable (Loehlin 1998). Importantly, the introduction of latent variables allows
the formation of complicated distributions from simpler components. In statistics,

ly, - N observation data, ;1 - mean, X - covariates

1 Introduction to Deep Density Models with Latent Variables 3

Table 1.1 Different types of latent variable models. We fucose on the Latent Profile Analysis and
the Latent Class Analysis, where the latent variables are treated as a multinomial distribution

Latent variables

Manifest variables Continuous Discrete
Continuous Factor analysis Latent profile analysis
Discrete Latent trait analysis Latent class analysis

latent variable models are probabilistic models that represent the existence of a set
of latent variables and relate them to manifest variables (Vermunt and Magidson
2004). These models are typically grouped according to whether the nature of the
manifest and latent variables are discrete or continuous (see Table 1.1) (Galbraith
et al. 2002; Everett 2013). Whilst, they are also widely applied to analyze data,
especially in the presence of repeated observations, multi-level data, and panel
data (Bishop 1998). In this chapter, we shall see the finite mixture models which
based on discrete latent variables (details in Sect. 1.2). This finite mixture model
is a convex combination of more than one density functions and comes up with an
expression of heterogeneity in a finite number of latent classes, such as the Mixtures
of Factor Analyzers (MFAs) (Ghahramani and Hinton 1996) and the Mixtures of
Factor Analyzers with Common Loadings (MCFAs) (Baek et al. 2010).

1.1.2 Deep Architectures via Greedy Layer-Wise Learning
Algorithm

The latent variable models are usually expressed as a shallow architecture which
just has one visible layer and one single hidden layer, such as a directed acyclic
graph (see in Fig. 1.1). As shown in Sects. 1.2.4.1 and 1.2.4.2, shallow architectures
has achieved good performances in practice. Despite all this, shallow architectures
also have a serious problem which is very inefficient in dealing with the complex
structural data or large amounts of hidden units (Bengio et al. 2007). In contrast,
the deep architectures have multiple hidden layers to help in learning better
representations of the complicated hidden units. A directed deep architecture is
illustrated in Fig. 1.2. Also, deep architectures reduce the need for hand-crafted
features which is a very time-consuming process requiring expert knowledge.

Fig. 1.1 A directed acyclic Ny Y i]
graph represents a shallow ') () | | Hidden layer
density model which has only \ = /

one hidden layer

Visible layer

4 X. Yang et al.

Fig. 1.2 A multi-layer
directed acyclic graph
represents a deep density
model which has three hidden
layers and one visible layer

\\
). Hidden
_// layers

e

\

Visible
layer

However, it is difficult to train all layers at once when a multi-layered architecture
to build generative models of data (Arnold and Ollivier 2012).

To this end, the greedy layer-wise procedures are developed for training deep
generative models by using the same criterion for optimizing each layer starting
from the bottom and for transferring the problem upwards to the next layer, so-
called the layer-wise learning algorithm (Arnold and Ollivier 2012). Thus, the
latent variable models can be an ideal criterion for a deep architecture, as well as
providing a framework for building more complex probability distributions (Bengio
et al. 2009). Specifically, although a deep latent variable model has many layers
of latent variables, the learning procedure is just using a model has only one layer
of latent variables for optimizing each layer (Tang et al. 2012). Besides, the deep
architectures can also be used for a finite mixture model, which means each sub-
population is assumed to come from the manifest variables having more than one
distributions. Deep density models also have very important practical significance
in many disciplines, especially, attracted considerable attention in unsupervised
learning (Patel et al. 2015; Tang et al. 2013; Yang et al. 2017).

1.1.3 Unsupervised Learning

In practical applications, the (deep) density models with latent variables are typi-
cally used for solving unsupervised tasks, especially in dimensionality reduction,
and clustering. The (deep) density model with latent variables is a probabilistic
algorithm which based on modeling the density of the observed data and assumes
that there are some potential/unobservable processes to manage data generation.
Clustering is a method of putting similar data points together, and probabilistic
unsupervised learning builds a generation model that describes the item’s clustering.
Wherein, each cluster can be represented by a precise component distribution
(multiple distributions for a deep model). Hence, each data point is generated from
the selection of a component matters (Law et al. 2004; Figueiredo and Jain 2002).

1 Introduction to Deep Density Models with Latent Variables 5

The idea is that all the same types of data points belonging to the same cluster (all
from the same distribution) are more or less equivalent, and any differences between
them are accidental (Bishop 2006).

In dimensionality reduction, the primary role of the latent variables is to
allow a complicated distribution over observed variables constructed from simpler
conditional distributions. Importantly, the dimensional of latent variables are always
lower than the observable variables. Therefore, the higher-dimensional observable
variables are reduced to the low-dimensional latent variables to represent a model.

1.2 Shallow Architectures of Latent Variable Models

This section introduces the density models with latent variables that explicitly shows
how inferences of the models correspond to operations in a single layer of a deep
architecture. Density models are widely used in data mining, pattern recognition,
machine learning, and statistical analysis. As a basic model, Factor analysis (FA)
is commonly used to define a appropriate density distribution of data to promote
the well-known mixtures of Gaussians (Everitt 1984). MFAs are improved density
estimators that model by allowing each Gaussian in the mixture to be represented
in a different lower-dimensional manifold. In particular, MFAs simultaneously
perform clustering and dimensionality reduction of the data (Montanari and Viroli
2011; McLachlan and Peel 2000). Exploiting similar ideas of MFAs, MCFAs are
proposed as another mixture framework by sharing a common component loading.
Importantly, unlike MFAs which specify a multivariate standard normal prior for
the latent factors over all the components, MCFAs exploit on each latent unit
Gaussian density distributions whose mean and covariance could be learned from
data. On the other hand, sharing a common factor loading for all the components
reduces the parameters significantly. While, since a common factor loading can be
considered as a feature selection or dimensionality reduction matrix, it can be well
justified and physically more meaningful (Baek and McLachlan 2011; Tortora et al.
2016). Since MFAs and MCFAs are implemented involving steps that attribute the
postulated sub-populations to individual observations, these models are typically
used in unsupervised learning or clustering procedures, and achieved impressive
performance (Mclanchlan et al. 2003; Yang et al. 2017).

1.2.1 Notation

We begin by considering the problem of identifying groups/clusters of data points in
a multidimensional space. Suppose we have a dataset y consisting of N observations
which have a p-dimensional vector {y1, y2,..., y,} of each feature variable. By
introducing latent variables, the manifest distribution p(y) can be signified in terms
of a g-dimensional vector {z1, z2, ..., z4} of latent variables z, where g is a small

6 X. Yang et al.

number than p (Smaragdis et al. 2006). Through this process, the joint distribution
P(y, z) is decomposed into the conditional distribution of the feature variables given
the latent variables and the product of the marginal distribution of the latent variables
p(z) (Bishop 1998).

p
P(y,z) = p(ylD)p(@ = p@ [| pGil2). (1.1)
i=1

As shown in Fig. 1.3, the latent variable models can be graphically represented by a
directed graph.

By considering a mixture of C multinomial distributions, the density of y could
be modeled as a finite mixture model

C
P(y;0) =Y mep(ylc: 0.), where c=1,....C. (1.2)

c=1

These distributions are referred to as components of this model (or sub-populations
of observations) and describe the p-variate density function (Figueiredo and Jain
2002). The mixture distribution can be expressed by a simple graph, as shown in
Fig. 1.4. These components must belong to the same parametric family of distri-
butions but with different parameters 6. . denotes the observations’ parameters
which are associated with the component c. For instance, the mixture components
belong to Gaussian distributions, and then each component has different means and
variances. Additionally, the parameters are random variables in a Bayesian setting,
and prior probability distributions p(y|c; 6.) are placed over the variables (Bishop
1998; Loehlin 1998). ., = p(c) denotes the C mixture weights and satisfies the
requirement that probabilities sum to 1.

Fig. 1.3 The factorization p(z)

property of Eq. 1.1 can be z

expressed in terms of a) .

directed graph, in which the // ;’f 3

feature variables y; are p(nlz) // / \ pvplz)
independent of the latent g p

variables z Vi Y2 ceven)’p

Fig. 1.4 A simple mixture T
model is expressed in terms f C \
of a Bayesian network

1 Introduction to Deep Density Models with Latent Variables 7

ple)=m p(z)

C Z
pyile.z) m plyle,z)
Y1 Y2 | eeeee yp

Fig. 1.5 A mixture of latent variables model is graphically expressed by the Bayesian network.
The feature variables y; are conditionally independent of the given mixture weights ¢ and latent
variables z

Then, a mixture of latent variables model can be obtained by combining ingredi-
ents from the technical of mixture models with the idea of latent variables (Fokoué
2005). Consequently, the joint distribution P(y, z) is derived as follows and the
corresponding Bayesian network is shown in Fig. 1.5.

C C p

P(y,z) =Y p(ylp(©).npe)p@c) =Y mecp@) [[piln). (1.3)
c=1 c=1 i=1

This mixture model is explicitly computed with discrete latent variables. Hence, the

integral is replaced by a sum.

1.2.2 Mixtures of Factor Analyzers

We first introduce a globally nonlinear latent variable model which is referred
to as Mixture of Factor Analyzers (MFAs). MFAs are considered as extending
the traditional Factor Analysis by ideas of the analysis of the finite mixture of
distributions. To separate the observations independently into ¢ non-overlapping
components, the MFAs approach is modeled as

c
y=> m.+Wcz+e. withprobabilitym, (c=1,...,C), (1.4)

c=1

where u. is a p-dimensional mean vector associated with the component c; W,
is a p x g factor loading matrix of the cth component, where ¢ < p; and 7, =
p(c) denotes the mixing proportion. Each (unobservable) factor z is distributed
independently by a normal distribution with zero mean and a g x g identity
covariance matrix, N (0, I;). The noise model €. is also independent and assumed
as a Gaussian distribution with zero mean and a g-dimensional diagonal covariance
matrix, N (0, ¥). Given the latent variables and the component indicator variables,
the conditional distribution of observations p(y|c, z) follows a Gaussian distribution
which has mean W,z 4 p. and variance ¥ .

8 X. Yang et al.

The joint distribution is given by p(y|c, z) p(z|c) p(c), and the density of the
observed data P(y; @) is obtained by summing up all mixture components. Then,
the MFAs model is obtained by marginalizing over the latent variables

pWlo) = [, p(yle,)p(zlc)dz = N(y; po, WeW, + W), (1.5)

P(y; 0) = Y mep(yle,)p(zle) = Yoy weN(y; e, WW! +W,), (1.6)

where 6 denotes the model parameter vector. It consists of the mixture weight
7., the means of the component ., the factor loading W, and the covariance of
component matrices ¥ . (Montanari and Viroli 2011)

C
T

"
0. = ¢ . 1.7
¢ W, (vec) (1.7)
Y (diag)/ ._,
Therefore, the MFAs can be considered as a globally nonlinear latent variable
model, where C Gaussian factors are fitted on the data.

1.2.2.1 Maximum Likelihood

After determining the “best-fitting” distribution (Eq. 1.6), the parameters will be
estimated for that distribution. Maximum likelihood estimation (MLE) is a common
technique for estimating the parameters of a probability distribution. In other words,
the MLE can be known as to maximize the sample likelihood by estimating the
values of the parameters. These unknown parameters are contained in a vector 8 (as
Eq. 1.7). Loosely speaking, the goal of MLE is to maximize a likelihood function
of the sample data. Suppose we have a sample of independent and identically
distributed (iid) random variables, {y;y2;...;¥yn}, which is described by the
MFAs model (Eq. 1.6). The basic likelihood function is defined as

C N
P(y:0)=> mc [[N(yni e WeW] +0,). (1.8)

c=1 i=1

Since maximizing the product is very tedious, logarithms are often used to turn
multiplications into summation. It will be equivalent to maximise the log-likelihood
since the logarithm is an increasing function (Montanari and Viroli 2011)

c N
L@®) =log P(y;0) = > 3 log{neN (yaulpe, WeW[+ W)}, (1.9)

c=1n=1

é:argmgaxL(H). (1.10)

1 Introduction to Deep Density Models with Latent Variables 9

Here, 6 denotes the estimated parameters when the empirical log-likelihood has a
maximum value.

1.2.2.2 Maximum A Posteriori

Maximum A Posteriori (MAP) is also a method for estimating variables in the
probability distributions settings. The MAP is closely related to the MLE, which can
be regarded as a regularization of the MLE. However, the MAP is more interested in
a posterior distribution, not only the likelihood. For inference, MAP usually comes
up with Bayesian setting, and the posterior over the components can be found by
recalling Bayes rule

q(z, cly) = q(zly, c)q(cly), (1.11)

9(cly) = P UBS s o p(yle) p(©). (1.12)

More concretely, the posterior over the latent factors is also a multivariate Gaussian
density on z given y and c:

q(zly,c) = N(z; ke, V. 1), (1.13)
where
Voi=1+W/'w W,
ke =VIWIw l(y—pn). (1.14)

A point estimate can be made by selecting the component ¢ with maximum a
posterior probability

¢ = argmax p(c) p(cly). (1.15)

Then, the likelihood in the MLE (Eq. 1.10) is replaced by the posterior. Conse-
quently, MAP estimation will back at MLE equation

c N
Opap = argmeaxz Zlog{p(YlC)p(C)} =0yMLE. (1.16)

c=1n=1

10 X. Yang et al.

1.2.3 Mixtures of Factor Analyzers with Common Factor
Loadings

Suppose the observations y follow a Gaussian distribution N(y; ., X.). As a
special case of MFAs, MCFAs further assumes the additional restrictions:

n.=A&,; X.= ARAT + W
V. =Vv; W.=AK.. 1.17)

Thereby, we get a new linear model by rewriting Eq. 1.4

c
y= ZAZC + € with probability ., (c=1,...,C). (1.18)

c=1

Conventionally, A is the p x g common loading matrix, and z. is refered to as
hidden variables or latent factors. Different with the latent factor of MFAs, this
common loading matrix can be regarded as a global transformation matrix, and the
Gaussian distributions over each latent factor whose mean and covariance could be
learned from data. These settings not only reduce the parameters significantly but
also estimate the density accurately. Besides, a multivariate standard Gaussian prior
of MFAs may limit the flexibility.

To use this framework, the MCFAs are defined to a directed generative model, as
follows

C
plc)y=m., Y. m.=1;
c=1
€e~N@O,¥); ylc,z~ N(Az,, V), (1.19)

where ¥ is a p x p diagonal matrix which represents the variances of the
independent noise. ¢ denotes the component indicator over the C total components
of the mixture, and p(c) = m, is a mixing proportion. The prior of the latent factor
z given c follows a Gaussian density distribution:

p(ZlC) = N(Zc‘; gcv 32C)

Here, &, is a g-dimension vector and £2. is a ¢ X g positive definite symmetric
matrix. With the above definitions, the density of y given c¢ can be written as a
shallow form by integrating out the latent variables z
p(yle) = [, p(yle, 2) p(zlc)dz = N(y; po, o), (1.20)
n.=At., X.=ARAT + V.

1 Introduction to Deep Density Models with Latent Variables 11

Finally, the marginal density of MCFAs model on observed data y is then given by
a mixture which is obtained by summing the joint distribution p(y|c, z) p(z|c) p(c)

C
p@y) = 21 p(c)p(ylo),

C
P(y;0.) = Y mN(y; Aé., AR AT +).

c=1

Apparently, the model of MCFAs is also a multivariate Gaussian with constrained
mean and covariance. Here, the parameter vector consists of the global parameters,
the common loading matrix A., the covariance matrix ¥, and the local parameters
for each mixture component

T,
0. = & .(vec) . (1.21)

2.(Sym)) _,

1.2.3.1 Maximun Likelihood

In Sect. 1.2.2.1, the MLE of MFAs was introduced. We now turn to the MLE of
MCFAs with same inference procedure. A sample of iid random variables was
described by the MCFAs model (Eq. 1.21). The log-likelihood function is given by

C N
L) =log P(y; 0) =) _) loglncN(y,|AE., ARAT + W)}, (122)

c=1 n=1

When the empirical log-likelihood has a maximum, the maximizing a function is
shown as follows

0 = arg max L(6). (1.23)

A general technique for finding maximum likelihood estimators in latent variable
models is the Expectation-maximization(EM) algorithm. In Sect. 1.4, we shall see
that the Maximum likelihood learning can straightforward use the EM algorithm.

1.2.3.2 Maximum A Posteriori

In Maximum A Posteriori (MAP), the formulation of the posterior can be expressed
using the Bayes rule:

12 X. Yang et al.

7N(y; Aé., AR AT + W)

qlcly;0c) = — . (1.24)
> TnN(y; AE),, AR,AT + W)
h=1
The component ¢ can be selected by maximizing a posterior probability
¢ = argmax p(c)q(cly; 0.). (1.25)
c

The posterior of the latent factors is also a multivariate Gaussian density on z
given the observations y and the component c:

q(@ly,c) = Nz k., V), (1.26)
where

Vil=2 ' + AT 1A,
ke =§.+VIATw 1 (y — A,). (1.27)

More concretely, the posterior probability over the components of the mixture
can be found by p(cly; 0.) = pr{w. = 1|y}, where w. = 1 if y belongs to the cth
component, otherwise w, = 0.

1.2.4 Unsupervised Learning

The MFAs model performs the dimensionality reduction of data by making locally
linear assumptions. Therefore, the model transforms the points of different clusters
into different sub-spaces, as show in Fig. 1.6. The principle is to maximize the
similarity of points from the same cluster. Importantly, the MCFAs model performs
the dimensionality reduction of data by making global linear assumptions, which
has capability to transform the different clusters into a sub-space, as shown in
Fig. 1.7. Different with MFAs, MCFAs not only follow the principle of maximizing
the similarity but also to maximize the distance between clusters.

We conduct extensive experiments on a variety of datasets to evaluate the
performance of both algorithms, including artificial data, gray images, and digitized
aerial image. The following datasets are used in our empirical experiments.

e ULC-3: The urban land cover (ULC) data is used to classify a high resolution
aerial image which consists of 3 types with 273 training samples, 77 test samples
and 147 attributes (Johnson and Xie 2013; Johnson 2013).

e Coil-4-proc: This dataset contains images for 4 objects discarding the back-
ground and each object has 72 samples (Nene et al. 1996). The images are down

1 Introduction to Deep Density Models with Latent Variables 13

e % 40 5 0 5 10

Fig. 1.6 The sketch of clustering and dimensionality reduction. MFAs drop the data points of
different clusters into different sub-spaces and cluster them at the same time. Different color
represents different cluster

Fig. 1.7 The sketch of clustering and dimensionality reduction. MCFAs performs the dimension-
ality reduction and clustering simultaneously.Different color represents different cluster

sampled into 32 by 32 pixels and then reshaped to a 1024-dimensional vector.
There are just 248 samples in the training set and 40 samples in the test set.

* Leuk72_3k: This dataset is an artificial dataset including 3 classes which have
been drawn from randomly generated Gaussian mixtures. The Leuk72_3k has
only 54 training samples and 18 test samples with 39 attributes.

e USPS1-4: This handwriting digit data contains 1 to 4 digits images of size 16 by
16 pixels. Each image is reshaped to a 256-dimensional vector. The training set
includes 100 samples of each digit and the test set also consists of 100 of each
digit.

14 X. Yang et al.

. Dataset

‘qw's 0 ULC-3 Coil-4-proc Leuk72_3k USPS1-4
o -10 T T T T

£

c

©

E _101 E

°

[e]

o

£ 10%F

Q

X

ok L |
S -10%f L

g VFAs
® [CIMcFAs
g -10%*

<

Fig. 1.8 Performance on various real data (on Training Set) in terms of the log-likelihood (the
larger, the better)

1.2.4.1 Empirical Results

Finite mixture models are able to present arbitrarily complex probability density
functions, which fact makes them an excellent choice for representing com-
plex class-conditional (Figueiredo and Jain 2002). Empirically, the average log-
likelihood as a criterion for examining the quality of the density estimates after
modeling the density of the observed data. The empirical results are demonstrated
for both MFAs and MCFAs. The model parameters are estimated over the training
data by maximizing the log-likelihood value. By multiple trials, the average log-
likelihood value on the training data is shown in Fig. 1.8. In order to intuitively
observe the trend of the entire experimental results, the image results have to be
treated as logarithmic, which is used to controlled all the results in the same range.
On the testing data, the log-likelihood value obtained using only the model has
been trained and did not update the model parameters, and the results are shown in
Fig. 1.9. From the comparison of both results, the log-likelihood values obtained by
the MCFAs model are lower than that of the MFAs on all datasets. Consequently,
sharing a common loading can improve the true log-likelihood dramatically.

1.2.4.2 Clustering

Then, the clustering error rate is demonstrated of both training and testing datasets
and the best results are reported from multiple trials. In the experiments, both
methods have been initialized by random assortment. Also, the number of mixes
is set to be the same as the number of real categories. Comparing both MFAs and
MCFAs results on the training data in Fig. 1.10, the results of these two methods are
not significantly different on the Coil-4-proc dataset, and even get the same result
on the Leuk72_3k dataset. However, comparing the results in Fig. 1.11, the MCFA

1 Introduction to Deep Density Models with Latent Variables 15

Dataset
%,7 0 ULC-3 Coil-4-proc Leuk72_3k USPS1-4
g -10 T T T T
£
2
= -10'
°
o
2
E -10
5 L |
S 108 L
% Il vFAs
§ 104 [CIMCFAs
<

Fig. 1.9 Performance on various real data (on Testing Set) in terms of the log-likelihood (the
larger, the better)

0.35r

lVFAs
[CIMcFAs

0.3r

0.25r
0.2
0.15r
0.1

Error Rate (Training set)

0.05r

el

ULC-3 Coil-4-proc Leuk72_3k USPS1-4
Dataset

Fig. 1.10 Clustering error rate on 4 datasets. The best result is reported from each model on
training set

model still maintains good performance on the test dataset. On the whole, the results
of MCFAs are consistently better than the MFAs.

1.3 Deep Architectures with Latent Variables

In the above section, we defined the shallow architectures and also exhibit inferences
to optimize a single layer. We now consider how to extend the shallow models
by defining the deep density models. Firstly, the deep architectures needs to have
many layers of latent variables. Secondly, parameters should be learned by the
efficient greedy layer-wise algorithms. In this section, two deep density models
will be described, Deep Mixtures of Factor Analyzers (DMFAs) who adopts an

16 X. Yang et al.

0.35r

I MFAs
= 0.3 [CIMCFAs
é 0.25-

é 0.2}
2 015
©
o
§ 0.1
w 0.05f |—|
ULC-3 Coil-4-proc Leuk72_3k USPS1-4

Dataset

Fig. 1.11 Clustering error rate on 4 datasets. The best result is reported from each model on testing
sets

MFAs in each hidden layer (McLachlan and Peel 2000; Tang et al. 2012) and
Deep Mixtures of Factor Analyzers with Common loadings (DMCFAs) who adopts
an MCFAs (Yang et al. 2017). Therefore, both deep models are the directed
generative models and use the layer-wise training procedure as approximations.
The observation vector and the first hidden layer are treated as an MFAs/MCFAs
model, and learning parameters are used by this unsupervised method. After fixing
the first layer parameters, the priors of next layer MFAs/MCFAs are replaced by
sampling the hidden units of the current layer MFA/MCFAs The same scheme can
be extended to train the following layers. Compared with the shallow models with
same scale mixtures (Collapse Models), the deep models have fewer free parameters
and a simpler inference procedure. On one hand, the components of adjacent layers
share the parameters; on the other hand, large-scale mixtures can cause the objective
function of a shallow model to be too complexity.

1.3.1 Deep Mixtures of Factor Analyzers

Having formulated the MFAs model, we now show how to construct the MFAs into
a deep architecture. In a shallow model, each FA in MFAs has an isotropic Gaussian
prior in its factor, as well as a Gaussian posterior over each training sample.
However, the posterior is generally non-Gaussian when a posterior is aggregated
for many training samples. If we replace the prior of each FA with a separate mixed
model, this mixture model can learn to model an aggregated posterior rather than
model an isotropic Gaussian, and the sketches are shown in Fig. 1.12. Therefore,
it can improve a variational lower bound on the log probability of the training
data (McLachlan and Peel 2000; Tang et al. 2012). According to this method, Tang
et al. (2012) construct a DMFAs model by replacing the FA in the mixture with an
MFAs model and even substitute the FA of the next mixtures. The graphical model

1 Introduction to Deep Density Models with Latent Variables 17

> 0 Frgy
A
15 sl
=10
10 -10 -5 1] 5 10
3 X
N5 10
5
o 10
5 > 0
5 0

Fig. 1.12 The sketch of a mixture of the DMFAs’ higher layer for clustering and dimensionality
reduction. Left: The aggregated posterior of a component in the lower layer is not a Gaussian
distribution. Right: The higher layer has an ability to model a better aggregated posterior of the
lower layer

Fig. 1.13 Graphical models ms N(0,I)
of a two-layer DMFA. The -
DMFAs is a deep directed |

graphical model utilizing the T

multi-layer factor analyzers @ @

which are developed by

adopting a MFAs model in U (2)

each hidden layer @ z(1) 2
(S A
A (2)
e

of two-layer DMCFAs is visualized in Fig. 1.13. Importantly, the pivotal method is
to sample the data regarding the posterior distributions of the current layer and treat
it as the training data for the next layer.

The observations y and the factors z in the first hidden layer are treated as the
MFAs, and the first layer parameters 8 are used by this unsupervised method to
learn. The aggregated posterior over z factor with a specific component c is given
by & 0", p(2", ¢y = clyn). For the second layer, z()) and ¢ are treated as training
data by sampling posterior distribution (Egs. 1.13 and 1.15). Then a more powerful
MFAs prior replaces the standard multivariate normal prior

p(elc) = Pura@®; 0). (1.28)
The same scheme can be extended to training the following layers.

In the second layer, some new symbols need to be defined: z! is a g-dimension
vector as the data input to the second layer; 053) emphasizes that a new parameters

18 X. Yang et al.

vector in the second layer which is specific to component ¢ of the first layer
MFAs?2: The layer factors are denoted as a d-dimension vector 2?5 is a new
sub-component indicator variable, and the total number of sub-components is S

satisfying § = Zle M ;me. =1, ..., M, denotes the number of sub-components
corresponding to the cth first layer component; The second layer mixing proportions
p(s) = 715(2) are defined as p(cs)p(s|cs), where Zle ns(z) = 1 and c¢; denotes

the sub-components corresponding to the ¢ component. Then, the DMFASs prior is
written as follows

p(z; c) = p(c)p(mc|c) p(z|me). (1.29)
The density of vectors z!) follows the joint density over z® and s:
p@D,2®,5) = p@ah, c|z?),5)pa®1s) p(s), (1.30)
pD, cls, 2?) = N@D; W2 4 u® w®),
pa?|s) = N(0,T). (1.31)

Here, the new parameter vector 023) consists of W§2) e RI*d, 'Il§2) € R1*4, [L?) €

R?,z® e R?.3 Specifically, since every s is just allowed to belong to one and only
one ¢, we obtain the Gaussian density on the observed data y given z(!) and ¢

pGle.z) = Ny Wz + D e, (1.32)
where, ng) € RP>4, -115” € RP*P, uﬁ” e R?,z) e RY denote the first layer
parameters.
1.3.1.1 Inference

For inference, the posterior distribution is computed in a similar fashion with
Egs.1.11 and 1.13

q@? 5120, ¢) = @12V ¢, 5)q (512", o)
= NE?; k@, VO, (1.33)
where
VO =1+ W2 e W,

2) w7 g, 7! 2, (2
@ =V WP e @ WD), (1.34)

2The superscript represents which layer these variables belongs to
3d denotes the d-dimension subspace of second layer, where d < ¢.

1 Introduction to Deep Density Models with Latent Variables 19

Here, The subscript emphasizes the sub-component s which is specific to component
c of the first layer, and I is a d-dimensional identity matrix. The posterior over the
components can be found as follows

q(s|zV, ¢) o« p(a, cls)p(s). (1.35)
§ = argmax p(s)q(s|z"). (1.36)

For the second layer, p(z)) and ¢ are treated as input data and initial labels
when the first layer parameters is fixed and the Eq. 1.10 is maximized. According
to the Eq. 1.28, the DMFAs formulation seeks to find a better prior p(z|c) =
Pyra (z(l)|6; Og)). Given the new data vectors {zgl); z(21); R zél)}, maximizing
the Eq. 1.8 with respect to the second layer parameters is equivalent to maximizing
the density function P Og)). The basic likelihood objective function of the

second layer is defined as

A q T
P 0P) = ¥ om, [1INGE I, WPWE 1 w®)) 1.37)

SEC i=1

It is worth to denote that, at the second layer, each mixture model of C components
derived from the first layer can be updated separately, since S second layer
parameters are non-overlapping and just allowed to belong to one and only one
of the first layer component.

écs(z) = arg ng() log P, Og)). (1.38)
Ocs |

Despite the good performance in practice, the DMFAs model still has many
drawbacks. Specifically, this model uses different loading matrices for different
components, which may lead to over-fitting in practical applications. Meanwhile, it
also inherits the shortcoming of MFAs, that is, assuming the prior of each potential
factor follows a standard Gaussian distribution, which may limit the flexibility and
accuracy.

1.3.1.2 Collapse Model

While it is true that DMFASs can also be collapsed into a shallow form by integrating
out the latent factors. According to Eq. 1.5, we obtain the collapse model after the
first layer factors z!) are integrated out:

py1z?.s) = / o, POle 2D p@Dls 22 p@®s)dz?
z
.w(2),(2 2 1 Dy QwD! 1
= N(y: WO WP2® 4 5@y + pO WOwOWD" 1w D).
(1.39)

20 X. Yang et al.

Then the final shallow form is obtained by further integrating out z®:

pyls) = [0 p(ylz?, 5)dz® = N(y; my, Xy), (1.40)

T T
m, = WP + 1, 2 =W @P+WIWEHWE 4wl (.41

Finally, the marginal density of the shallowed model on observed data y is then
given by a mixture of Gaussians:

N S
Py =) pE)pyls) =) wN(y;my, Zy). (142)

s=1 s=1

Conventionally, 8, = {ms, uy, Wy, ¥y, We, i, 'Ilc}f’zcl’] Tepresent the parame-
ters of the shallow form of DMFAs.

In this case, the posterior probability of the shallowed MFA which collapses from
a two-layer DMFAs for the sth mixture is given by p(s|y) = ws p(y|s)/p(y). We are
also interested in the posterior distribution of the latent factor z; which is collapsed
to a shallow form

q@®,sly) = N@; 15, Vi D), (1.43)
-1
Vs_l — (W§2)W§2)T n -11§2>)—1 +W£1)TII/£1) Agl)’ (1.44)
r -1
Ky = W§2) ILEZ) +VS—1A(1)T.I’(1) ¥y — Bo). (1.45)

1.3.2 Deep Mixtures of Factor Analyzers with Common Factor
Loadings

The same scheme was extended to training the DMCFAs model. By illustrating a
mixture of the higher layer in Fig. 1.14, we can clearly see that a mixture model
can better model a non-Gaussian posterior component in the lower layer. The key
improvement is that the same load matrix is used for each mixture component that
uses the MCFAs as an aggregated prior. This would potentially further improve the
performance. Since different loading matrices are used in the DMFAs, the number
of parameters may be unmanageable when the data has a larger feature dimensional
and/or smaller observations. Moreover different load matrices may not be physically
essential or even unnecessary (Yang et al. 2017).

Figure 1.15 presents an illustration of two-layer DMCFA’s graphical model
which is constructed with two global parameters, the factor loading, and noise
covariance matrices in the first layer. As shown in the graphical model, the common
parameters are set in every latent unit at the next level. Based on this setting,
the number of free parameters can be dramatically reduced compared to DMFAs,

1 Introduction to Deep Density Models with Latent Variables

21

o
X

Fig. 1.14 The sketch of a mixture of the higher layer of DMCFAs. Left: The aggregated posterior
of a component in the lower layer is not a Gaussian distribution. Right: The higher layer has an

ability to model a better aggregated posterior of the lower layer

Fig. 1.15 Graphical models
of a two-layer DMFA.The
DMCFAs is a deep directed
graphical model utilizing the
multi-layer factor analyzers
which are developed by
adopting a MCFAs model in
each hidden layer

ph)

s N(€2, Q)

A(l)

even though MCFAs introduce the mean and variance matrices of latent factors.
Therefore, DMCFAs model could be considerably interested in the tasks with a

large number of clusters or with insufficient instances.

Speaking in a more abstract term, we defined the DMCFAs model in the
mathematical expressions. Firstly, an MCFAs prior is adopted to replace the prior

of latent factors in the first layer.

1
p(zlc) = Pycra@; 09).

(1.46)

Here, new symbols are the same as the definition of DMFAs. Let’s be more concrete,

the DMCFAs model can be written as

2 S 2
po) =2, Y5 2? =

p@?ls) = N@®: 67, 27),

2 2
paWV cls,2?) = N@zV; APz w?),
p(yle,z0) = N(y; ADzD D)y,

(1.47)
(1.48)

(1.49)
(1.50)

22 X. Yang et al.

Here, AV € RPx4 WD) ¢ RPxP z(D ¢ RI AP € RIxd g ¢ Rixa 42 ¢
R4, & §2) e R4, SZ§2) € Rdxd 4 Conventionally, the joint distribution with the second
layer latent variables is given by

p@ 2%, 5) = p@®, clz®, 5)p@?|5) p(s), (1.51)

The same scheme can be extended to train the following layers of MCFAs.

Up to this point, we can roughly calculate the total number of free parameters.
In a two-layer DMCFAs model, the total number of free parameters is in the order
of pg + cqd which is much smaller than that of cpg + sgd in DMFAs, where
the number of dimensions g < p and the number of components s is often in the
order of ¢Z. In summary, a typical two-layer DMCFAs model usually uses only 1/¢
parameters of DMFAs.

1.3.2.1 Inference

For the MAP inference, the formulations of the posterior distribution are a similar
fashion in Sect. 1.2.3.2 with respect to the second layer parameters’

-1
@@, 512V, ¢) = N@®; Kg), Vg)), (1.52)

where
—1 —1 T -1
Ve =2l AP WAL,
2 L T . 2)7! 2
P =@ L VI AP WD @) APE®), (1.53)

s

The posterior of the components can be found as follows

q(s|zV, ¢) o< p(a, cls) p(s), (1.54)
§ = argmax p(s)q(s|zV). (1.55)
N

In MLE, the likelihood of the mixture model corresponding to the cth component
derived from the first layer is estimated concerning the new observations zgl) and

parameters 02%)

“In the second layer, the sub-components corresponding to a component of the first layer share a
common loading and a variance of the independent noise, Af.z) and lllf.z) has the subscript c.

5The subscript emphasizes the sub-component s which is specific to a component ¢ of the first
layer.

1 Introduction to Deep Density Models with Latent Variables 23

q
T
P":02) =Y 7, [[INEYAPEP AP 2PAD" +w?)), (1.56)

sec j=l

where s is just allowed to belong to one and only one ¢, and g denotes the number
of dimensions of the new observations. Parameters of the mixture model on the new
observations zg.l) can be updated

(;’cs @ — arg mag() log P(zgl); 023)). (1.57)
Ocg

1.3.2.2 Collapse Model

Although a DMCFAs model can be collapsed back into a standard shallow MCFA
by multiplying the factor loading matrices at each layer, the learning of these
two models is entirely different since the lower layer shares the parameters with
the components of the upper layers in the deep model. Therefore, DMCFAs are
more efficient and straightforward than the shallow form, which attributes to the
conditional distribution of the components in the previously hidden layer which is
not modeled using the parameters of the following hidden layers. Moreover, the
over-fitting risk and the computational cost of learning can be significantly reduced
by sharing the factor loadings among the layers.

After the first layer factors z!) are integrated out, we obtain a multivariate
Gaussian density

p(y1z?,5) = N(y; AV AL Z?), ADw @AD" L D), (1.58)

Then a standard MCFAs model is obtained by further integrating out z®:
pIs) = [0 pY1ZP, 5)pE®15)dz® = N(y: my, Xy), (1.59)
m, = AVAPE®) 2 —AOAP2PAP e @)AD Ly D (1.60)

Finally, the marginal density is then given by a mixture of Gaussians
N S
Py =Y p)p(yls) =Y aN(y; my, Xy). (1.61)
s=1 s=1

Conventionally, 8., = {n;, A, W, A., ¥, &, .!'Zs}f’zc1 | Tepresents the parameters
of this shallow MCFAs. The posterior distribution of the latent factor z; can also be

collapsed to a shallow form

q(zs, sly) = N (25 k5, Vi), (1.62)

24 X. Yang et al.

Vil = AP 2AP + w@)~1 L AO g AD), (1.63)

ks =ADE L VIAO YO (y _my). (1.64)

1.3.3 Unsupervised Learning

We evaluate the performance of the proposed DMFAs and DMCFAs in comparison
with their shallow counterparts on the datasets shown in Sect. 1.2.4. For the density
evaluation, the average log-likelihood is conducted to examine the quality of the
density estimates produced by the deep density models and the standard density
model by collapsing the deep models. When we do empirical analyses, all the results
are all the results are logarithmically computed which makes the results of different
datasets more conveniently compared. The average log-likelihood value on training
data is shown in Fig. 1.16 by multiple trials. The results of the testing data are also
obtained without updating parameters, as shown in Fig. 1.17. we can observe that the
deep models can improve the true log-likelihood of the standard model dramatically.

To assess the model-based clustering, we compute the error rate (the lower, the
better) on 4 real datasets for comparing the performance of deep density models with
the standard models with same scale mixtures. In the experiment, all the methods
are initialized by random grouping, and the numbers of clusters are set according
to the real classes of data. Also, we have done many trials to choose the best result
by dropping attributes into different dimensions. The results shown here are the
best from each model in the most appropriate dimensions. Figures 1.18 and 1.19
show that the results of the models using the common loading outperform other
competitors in both the training set and the testing set. Furthermore, as clearly

Dataset
100 ULC-3 Coil-4-proc Leuk72_3k USPS1-4

B
w
2 o1
= -10'fF
©
=

2F
3 -10
9]
£ L
I 3
= -10°T [mmDMFAs L] o
o) [DMCFAs
S [S-MFAs —

_104E [S-MCFAs

Fig. 1.16 Performance on various real data (on Training Set) in terms of the log-likelihood (the
larger, the better). DMFAs and DMCFAs are all set in two layers. S-MFA and S-MCFA denote
respectively the shallow form by collapsing the deep models

1 Introduction to Deep Density Models with Latent Variables 25

Dataset
0 ULC-3 Coil-4-proc Leuk72_3k USPS1-4

-10 M M M M
D
(2]
2 -10'f
D
(o)
-
-8 _102 E
o
<
S s — o
= -10°T r@momrAs L] —
2 [DMCFAs
- [S-MFAs —

-104% | S-MCFAs

Fig. 1.17 Performance on various real data (on Testing Set) in terms of the log-likelihood (the
larger, the better). DMFAs and DMCFAs are all set in two layers. S-MFAs and S-MCFAs denote
respectively the shallow form by collapsing the deep models

0.35
— I DMFAs
= 03} [DMCFAs
9 [S-MFAs
© 025} [S-MCFAs
=
© 02
-
o 015F
i
< 01
(<]
B T
ULC-3 Coil-4-proc Leuk72_3k USPS1-4

Dataset

Fig. 1.18 Clustering error rate on training datasets. Both DMFAs and DMCFAs are two layers
architecture. The shallow forms S-MFA and S-MCFA have the same scale mixtures of the deep
models

observed, deep models consistently propose the better performance than their same
scale shallow models.

1.4 Expectation-Maximization Algorithm

In density models who have the incomplete data or hidden variables, expectation-
maximization (EM) algorithms make the parameter estimation possible (Do and
Batzoglou 2008). As the general purpose iterative strategy, the EM algorithm
alternates between two steps. Given the current model, the expected step (step E) is
used to predict the probability distribution over completions of missing data. There

26 X. Yang et al.

0.35r

B DMFAs
R 3 [DMCFAs
§ 0.3 o [S-MFAs
g) 0251 |:|S—_MCFAS
é 0.2+
L 0.15F
©
14
§ 0.1F
W 0.05+ |—| I H

ULC-3 Coil-4-proc Leuk72_3k USPS1-4

Dataset

Fig. 1.19 Clustering error rate on testing datasets. Both DMFAs and DMCFAs are two layers
architecture. The shallow forms S-MFA and S-MCFA have the same scale mixtures of the deep
models

is usually no need to establish a probability distribution over these completions
explicitly, and it is often necessary to calculate “expected” sufficient statistics
over completions. The maximization step (M-step) is used for re-estimating the
model parameters by utilizing these completions, which can be thought of as
“maximization” of the expected log-likelihood of the data (Do and Batzoglou 2008).

When observing variable y, latent variable z, and parameter 6 are given, the
mathematical expression is as follows:

E—step: 0Q@010%) = Eq(z|y;9)[log/p(y,z|0(k))dz]; (1.65)
Z

M —step: @*+D = argmoaxQ(0|0(k)). (1.66)

Then, we introduce the convergence proof of the latent variable-based EM algo-
rithm. Based on the Jensen inequality, it is easy to prove that the EM algorithm
repeatedly constructs new lower bounds F (g, #) where g denotes the posterior of
the latent variable, and then solving the parameters.

_ _ . 9, PO 2I0)

L(8) = log / p(y, 210)dz = log / glely; 0)7 e (1.67)
> / g(aly:)1og 281D 1y £ 0), (1.68)
Uz q(zly; 9)

F(g.0) = / 4 (aly:) log p(y. 216)dz — / g(aly: 0) log g (zly: 0)dz (1.69)

= (log p(y., z|0)(z)y;6)) + H(q). (1.70)

1 Introduction to Deep Density Models with Latent Variables 27

Fig. 1.20 Illustration of EM L(0)
algorithm. The E step is to

calculate ¢ by fixing §*+D, :
and then raise the lower
bound from F(q; 0%V to
F(q; 0%+2)) where

F(g: 0%%2) is equal to L(0)
at 0%+D M step is to
migrated from §*+1 to
0%+ when g is fixed, and
then to find the maximum
F(q; 0%t2)

|
|
|
1
1
1

Btk} glk+1) gk 2) 7]

In simple terms, the process of EM is to calculate a lower bound function of the
current latent variables distribution according to the current parameters and to obtain
new parameters by optimizing this function, and then continue the loop (as shown
in Fig. 1.20).

In the deep model, there is involved an efficient and simple optimization
algorithm to perform inference and learning, so-called the greedy layer-wise
unsupervised algorithm. Due to this layer-wise algorithm, the EM algorithm can
typically be used to estimate the parameters of each mixture in each layer to find a
local maximum of the log-likelihood. Importantly, a simple objective function can
be fed to the EM algorithm in a layer-wise style to instead of the massive objective
function of a shallow model with same scale mixtures. For instance, the expectation
log-likelihood of the mixture in the first layer is shown as follows

C
0610%) = " [ata.clys 00 1n p(y. 2. o)z
c=1"%
= Ey@,cly;00In p(ylc, z) + In p(z|c) + Inm.]. (1.71)

During M-step, the parameters 0];'” (at (k + 1)th iteration) are updated by solving
the partial differentiation of the expectation log-likelihood equation over each
parameter

8Eq (z,cly,0014) [L (0C)] —
00,

0. (1.72)

The higher layer has an ability to model a better aggregated posterior of the first
layer, with variational inference, any increase in the bound will improve the true
log-likelihood of the model when the bound is tight. Therefore, training the deep
model is better than training a shallow model.

28 X. Yang et al.

1.5 Conclusion

In summary, this chapter introduces the novel deep density models with latent
variables. We detail the two standard probabilistic models, MFAs and MCFAs,
and the deep models with which they are deduced. Compared with previous deep
density models, the greedy layer-wise algorithm enjoys an easy inference procedure
and a significantly smaller number of free parameters. Experimental results are
compared between deep models and shallow models in both density evaluation
and clustering. Empirical results showed that the deep models could significantly
improve the true log-likelihood of the standard model. Moreover, deep models also
consistently propose the better performance than shallow models on clustering. For
more practical applications, the deep density models also useful for creating a good
prior that can be used for tasks such as image denoising and inpainting or tracking
animate motion.

Acknowledgements The work reported in this paper was partially supported by the following:
National Natural Science Foundation of China (NSFC) under grant n0.61473236; Natural Science
Fund for Colleges and Universities in Jiangsu Province under grant no.17K JD520010; Suzhou
Science and Technology Program under grant no.SY G201712, SZS5201613; Jiangsu University
Natural Science Research Programme under grant no.17K J B520041; and Key Program Special
Fund in XJTLU (KSF — A —01).

References

Arnold L, Ollivier Y (2012) Layer-wise learning of deep generative models. CoRR, abs/1212.1524

Baek J, McLachlan GJ (2011) Mixtures of common ¢-factor analyzers for clustering high-
dimensional microarray data. Bioinformatics 27(9):1269-1276

Baek J, McLachlan GJ, Flack LK (2010) Mixtures of factor analyzers with common factor
loadings: applications to the clustering and visualization of high-dimensional data. IEEE Trans
Pattern Anal Mach Intell 32(7):1298-1309

Bengio Y, Lamblin P, Popovici D, Larochelle H (2007) Greedy layer-wise training of deep
networks. In: Advances in neural information processing systems, pp 153—-160

Bengio Y et al (2009) Learning deep architectures for Al. Found Trends Mach Learn 2(1):1-127

Bishop CM (1998) Latent variable models. In: Learning in graphical models. Springer, New York,
pp 371-403

Bishop C (2006) Pattern recognition and machine learning. Springer, New York

Do CB, Batzoglou S (2008) What is the expectation maximization algorithm? Nat Biotech
26(8):897-899

Everitt BS (1984) Factor analysis. Springer Netherlands, Dordrecht, pp 13-31

Everett BS (2013) An introduction to latent variable models. Springer Science & Business Media,
Berlin

Figueiredo M, Jain AK (2002) Unsupervised learning of finite mixture models. IEEE Trans Pattern
Anal Mach Intell 24(3):381-396

Fokoué E (2005) Mixtures of factor analyzers: an extension with covariates. J Multivar Anal
95(2):370-384

Galbraith JI, Moustaki I, Bartholomew DJ, Steele F (2002) The analysis and interpretation of
multivariate data for social scientists. Chapman & Hall/CRC Press, Boca Raton

1 Introduction to Deep Density Models with Latent Variables 29

Ghahramani Z (2015) Probabilistic machine learning and artificial intelligence. Nature
521(7553):452

Ghahramani Z, Hinton G (1996) The em algorithm for mixtures of factor analyzers. Technical
Report CRG-TR-96-1, University of Toronto, pp 11-18. http://www.gatsby.ucl.ac.uk/.zoubin/
papers.html

Hinton GE, Salakhutdinov RR (2006) Reducing the dimensionality of data with neural networks.
Science 313(5786):504-507

Hinton GE, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural
Comput 18(7):1527-1554

Mclanchlan GJ, Peel D, Bean RW (2003) Modelling high-dimensional data by mixtures of factor
analyzers. Comput Stat Data Anal 41:379-388

Johnson B (2013) High resolution urban land cover classification using a competitive multi-scale
object-based approach. Remote Sens Lett 4(2):131-140

Johnson B, Xie Z (2013) Classifying a high resolution image of an urban area using super-object
information. ISPRS J Photogrammetry Remote Sens 83:40—49

Law MHC, Figueiredo MAT, Jain AK (2004) Simultaneous feature selection and clustering using
mixture models. IEEE Trans Pattern Anal Mach Intell 26(9):1154-1166

Loehlin JC (1998) Latent variable models: an introduction to factor, path, and structural analysis.
Lawrence Erlbaum Associates Publishers

Ma J, Xu L (2005) Asymptotic convergence properties of the em algorithm with respect to the
overlap in the mixture. Neurocomputing 68:105-129

McLachlan G, Krishnan T (2007) The EM algorithm and extensions, vol 382. John Wiley & Sons,
Hoboken

McLachlan GJ, Peel D (2000) Mixtures of factor analyzers. In: International Conference on
Machine Learning (ICML), pp 599-606

Montanari A, Viroli C (2011) Maximum likelihood estimation of mixtures of factor analyzers.
Comput Stat Data Anal 55(9):2712-2723

Nene SA, Nayar SK, Murase H (1996) Columbia object image library (coil-20). Technical report,
Technical Report CUCS-005-96

Patel AB, Nguyen T, Baraniuk RG (2015) A probabilistic theory of deep learning. arXiv preprint
arXiv:1504.00641

Rippel O, Adams RP (2013) High-dimensional probability estimation with deep density models.
CoRR, abs/1302.5125

Salakhutdinov R, Mnih A, Hinton GE (2007) Restricted boltzmann machines for collaborative
filtering. In: Machine Learning, Proceedings of the Twenty-Fourth International Conference
(ICML), Corvallis, Oregon, USA, 20-24 June 2007, pp 791-798

Smaragdis P, Raj B, Shashanka M (2006) A probabilistic latent variable model for acoustic
modeling. Adv Models Acoust Process NIPS 148:8-1

Tang Y, Salakhutdinov R, Hinton GE (2012) Deep mixtures of factor analysers. In: Proceedings
of the 29th International Conference on Machine Learning, ICML 2012, Edinburgh, Scotland,
UK, June 26-July 1 2012

Tang Y, Salakhutdinov R, Hinton G (2013) Tensor analyzers. In: International Conference on
Machine Learning, pp 163-171

Tortora C, McNicholas PD, Browne RP (2016) A mixture of generalized hyperbolic factor
analyzers. Adv Data Anal Classif 10(4):423—440

Vermunt JK, Magidson J (2004) Latent class analysis. The sage encyclopedia of social sciences
research methods, pp 549-553

Yang X, Huang K, Goulermas JY, Zhang R (2004) Joint learning of unsupervised dimensionality
reduction and gaussian mixture model. Neural Process Lett 45(3):791-806 (2017)

Yang X, Huang K, Zhang R (2017) Deep mixtures of factor analyzers with common loadings:
a novel deep generative approach to clustering. In: International Conference on Neural
Information Processing. Springer, pp 709719

http://www.gatsby.ucl.ac.uk/.zoubin/papers.html
http://www.gatsby.ucl.ac.uk/.zoubin/papers.html

Chapter 2 ®
Deep RNN Architecture: Design Qe
and Evaluation

Tonghua Su, Li Sun, Qiu-Feng Wang, and Da-Han Wang

Abstract Sequential data labelling tasks, such as handwriting recognition, face two
critical challenges. One is in great needs of a large-scale well-annotated training
data. The other is how to effectively encode both the current signal segment and
the contextual dependency. Both needs many human efforts. Motivated to relieve
such issues, this chapter presents a systematic investigation on architecture design
strategies for recurrent neural networks in two different perspectives: the pipeline
perspective and micro core perspective. From the pipeline perspective, a deep end-
to-end recognition architecture is proposed, allowing a fast adaptation to new tasks
with minimal human intervention. Firstly, the deep architecture of RNN gave a high
nonlinear feature representation. Through hierarchical representations, effective and
complex features are expressed in terms of other, simpler ones. Moreover, a hybrid
unit is used to encode the long contextual trajectories, which comprise of a BLSTM
(bidirectional Long Short-Term Memory) layer and a FFS (feed forward subsam-
pling) layer. Secondly, the CTC (Connectionist Temporal Classification) objective
function makes it possible to train the model without annotating the data in character
level. Thirdly, a modified CTC beam search algorithm integrates the linguistic
constraints wisely during decoding in a unified formulation. In such an end-to-end

Part of this chapter is reprinted from:

IEEE Proceedings, Li Sun, “GMU: A Novel RNN Neuron and Its Application to Handwriting
Recognition” 2017 with permission from IEEE

IEEE Proceedings, Li Sun, “Deep LSTM Networks for Online Chinese Handwriting Recognition”,
2016, with permission from IEEE

T. Su (X4) - L. Sun

School of Computer Science and Technology, Harbin Institute of Technology, Harbin, China
e-mail: thsu@hit.edu.cn

Q.-F. Wang

Xi’an Jiaotong-Liverpool University, Suzhou, China

D.-H. Wang

School of Computer and Information Engineering, Xiamen University of Technology, Xiamen,
China

© Springer Nature Switzerland AG 2019 31
K. Huang et al. (eds.), Deep Learning: Fundamentals, Theory and Applications,
Cognitive Computation Trends 2, https://doi.org/10.1007/978-3-030-06073-2_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06073-2_2&domain=pdf
mailto:thsu@hit.edu.cn
https://doi.org/10.1007/978-3-030-06073-2_2

32 T. Suetal.

style, a thin and compact network with high accuracy can be designed and ready to
industry-scale applications. From the micro core perspective, a new neuron structure
named gated memory unit (GMU) is presented, inspired by both LSTM and GRU.
GMU preserves the constant error carousels (CEC) which is devoted to enhance
a smooth information flow. GMU also lends both the cell structure of LSTM and
the interpolation gates of GRU. Our methods are evaluated on CASIA-OLHWDB
2.x, a publicly available Chinese handwriting database. Comparing with state-of-
the-art methods, it shows that: (1) our pipeline demonstrates over 30% relative error
reductions on test set in terms of both correct rate and accurate rate; (2) better results
can be achieved by our pipeline at certain feasible assumption on competition set;
(3) GMU is of potential choice in handwriting recognition tasks.

Keywords Deep learning architecture - Neuron design - Recurrent neural
network - Handwriting recognition - Large-category labelling

2.1 Introduction

Online Chinese handwriting recognition is a typical sequential data-labelling task.
During writing, the running pen (or more generally writing instrument) tip is
recorded by sensing devices. Each textline can be viewed as a temporal sequence of
tensor, also called trajectory. Online handwriting recognition plays a significant role
for entering Chinese text. Compared with other input methods, it is more natural to
human beings, especially to those Chinese people who are not good at Pinyin.

The pioneer works on online Chinese handwriting recognition were indepen-
dently studied in 1966 by two groups from MIT and University of Pittsburgh (Liu
1966; Zobrak 1966). Since then, extensive concerns have been received, owing to
the popularity of personal computers and smart devices. Successful applications
have been found in pen-based text input (Wang et al. 2012a), overlapped input
method(Zou et al. 2011; Lv et al. 2013), and notes digitalization and retrieval (Zhang
et al. 2014).

In recent years, combination of recurrent neural network (RNN) and Connec-
tionist Temporal Classification (CTC) becomes a powerful sequential labeling tool
(Graves et al. 2009a). Messina et al. utilize this tool to transcribe offline Chinese
handwriting (Messina and Louradour 2015) and its potentials are proved. More
recently, convolutional LSTM is applied to online Chinese handwriting recognition
(Xie et al. 2016) with pleasing results.

The recurrent neurons are the building blocks of RNN. Their own capabilities and
combinations thereof can form different network architectures, resulting in different
modeling capabilities. Although RNN can approximate any sequence to sequence
mapping in theory, decades of studies suggest that vanilla recurrent neural networks
are difficult to capture the long-term dependencies (Bengio et al. 1994). This chapter
aims to present RNN design solutions from both pipeline perspective and micro core
neuron perspective. In the pipeline level, a novel end-to-end recognition method

2 Deep RNN Architecture: Design and Evaluation 33

is proposed based on deep recurrent neural networks. Instead of rendering the
trajectories as offline mode (Xie et al. 2016; Liu et al. 2015), we explore the possible
capacities of raw pen trajectory using a deep architecture. The architecture mixes
bidirectional LSTM layers and feed forward subsampling layers, which are used to
encode the long contextual history trajectories. We also follow the CTC objective
function, making it possible to train the model without alignment information
between input trajectories and output strings. As suggested in (Liu et al. 2015), we
utilize the explicit linguistic constraints to boost our end-to-end systems in online
mode. To integrate the linguistic constraints wisely, a modified CTC beam search
algorithm is devised for decoding. In the micro core level, we propose a new kind
of recurrent neuron called Gated Memory Unit (GMU) based on the principle of
highway channel. The GMU neuron combines two components. One is used to
keep history context and the other to generate the neuron activation. We retain the
memory cell structure of LSTM to constitute a transmission channel, and lend the
interpolation gate of GRU to regulate the flow of information. At both levels, the
proposed method is evaluated on a publicly available database.

2.2 Related Works

2.2.1 Segmentation-Free Handwriting Recognition

Most approaches for online Chinese handwriting recognition fall into segmentation-
recognition integrated strategy (Cheriet et al. 2007). Firstly, the textline is over-
segmented into primitive segments. Next, consecutive segments are merged and
assigned a list of candidate classes by a character classifier (Liu et al. 2013), which
forms segmentation-recognition lattice. Last, path searching is executed to identify
an optimal path by wisely integrating character classification scores, geometric
context and linguistic context (Wang et al. 2012b). Great success of such strategy
has been achieved during the past few years.

If there are big well-annotated training data, segmentation-recognition integrated
strategy may be the first choice. Many works are conducted to optimize any
of the key factors, such as character recognition (Zhou et al. 2016), confidence
transformation (Wang and Liu 2013), parameter learning methods (Zhou et al. 2013,
2014). In (Yin et al. 2013), such three modules are termed by Vision Objects Ltd. as
segmentation, recognition, and interpretation experts. They are separately trained
and their weighting to the task is scored through a global discriminant training
process. The complex training phases involves intense expert intervention.

However, construction of such a system is nontrivial. As a precondition, a large-
scale training data needs to be annotated in character level. The widespread Chinese
handwriting databases, such as HIT-MW (Su et al. 2007) and CASIA-OLHWDB
(Liu et al. 2011), had been taken years to be annotated by hand. Moreover, features
for classification are derived through experts’ handcraft. In addition, different

34 T. Suetal.

components of the system are developed separated, probably requiring different data
for tuning. Definitely, it needs great human efforts.

As an alternation, segmentation-free strategy is promising to solve above issues.
There is no need to explicitly segment textlines into characters. Thus labeling each
character boundaries in training data is unnecessary. Previously, hidden markov
models (HMM:s) have been successfully used to recognize Chinese handwriting (Su
et al. 2009) in a segmentation-free way.

Nowadays, RNN especially LSTM became powerful tool to sequential labelling
tasks. Messina et al. utilize this tool to transcribe offline Chinese handwriting
(Messina and Louradour 2015). The preliminary results are comparable to those
ever reported. More recently, convolutional LSTM is applied to online Chinese
handwriting recognition (Xie et al. 2016) with pleasing results. The system includes
four kinds of layers. The input trajectory is first converted into textline images
using a path signature layer. Then convolutional layers are concatenated to learn
features. After that, the features are fed to multiple layers of bidirectional LSTM.
And finally, the CTC beam search is used to transform the output of network to
labels in transcription layer.

Instead of rendering the trajectories as offline mode (Xie et al. 2016; Liu et al.
2015), we explore the possible capacities of original pen trajectory using a deep
architecture. As suggested in (Liu et al. 2015), we utilize the explicit linguistic
constraints to boost our end-to-end systems in online mode.

2.2.2 Variants of RNN Neuron

Since the early 1990s, pursuit of sophisticated recurrent neurons has been a
significant topic. Long Short-term Memory (LSTM) and Gated Recurrent Unit
(GRU) are two kinds of commonly used sophisticated recurrent neurons. Currently
these RNN neurons are widely used in many research fields, including natural
language processing (Cho et al. 2014a), speech recognition (Amodei et al. 2016;
Graves et al. 2013), image recognition (Russakovsky et al. 2015). The state-of-the-
art character recognition methods (Graves et al. 2009b; Graves and Schmidhuber
2009; Graves 2012a), are increasingly using recurrent neural networks and have
made a lot of progress. Briefly speaking, there are two reasons for their success.
Firstly, they invent special gates which can keep longer contextual dependencies,
such as forget gate (for LSTM) or update gate (for GRU). Secondly, they build
a highway channel to provide shortcuts for the smooth propagation of history
information and back propagation of error information.

LSTM is one of the earliest proposed sophisticated recurrent neuron. The original
LSTM structure (Hochreiter and Schmidhuber 1997) comprises one or more self-
connected memory cell, input gate and the output gate. The structure establishes
constant error carousels (CEC), which facilitates both the storage of history
information to encode a long-term dependency and the gradient back propagation
to prevent gradient decay problem. The input gate is used for controlling the ratio

2 Deep RNN Architecture: Design and Evaluation 35

Cit

Fig. 2.1 LSTM is unfolded in the time steps

of information to enter the memory cell. The output gate is used to control the
exposure portion of memory cell content as neuron activation. To further enhance
the ability of LSTM, forget gate is added (Gers et al. 2000), which resets operation
if previous history should be discarded. More recent enhancement on LSTM is
peephole connections (Gers et al. 2002). It is helpful to improve the precise timing
and counting ability of internal state.

LSTM neurons can be unfolded in time steps, as shown in Fig. 2.1. Here the cell
is deliberately depicted as a channel flowing from left to right. During the forward
propagation process, the contents of memory cell are stored in the channel. And
during the back-propagation process, the gradient of objective function can flow
back using the channel. Memory content updates using Eq. 2.1:

k= ek 4k (2.1)

where forget gate’s (Gt) output value f{‘ determines how much the content of history
(ciil) preserved. In case f{‘ is close to 0, it means discarding almost all history
information; otherwise the history information will be partially retained. Even we
can control the input gate (Go) to maximize the usage of history information. The
contents of the memory cell are not fully exposed to the hidden state. Instead, it is
controlled using the value of the output gate, 0{‘.

36 T. Suetal.

iy

Fig. 2.2 GRU is unfoleded in the time steps

Another type of sophisticated recurrent neuron is Gated Recurrent Unit (GRU)
(Cho et al. 2014a, b). It is unfolded in time steps in Fig. 2.2. GRU uses a simpler
memory block than LSTM. Each GRU block consists of an input transformation, a
reset gate (Gr) and an update gate (Gz). Reset gate controls short-term contextual
dependencies using a self-connected structure and update gate controls long-term
contextual dependencies using an interpolation between the history information and
the current activation. To adaptively capture the dependencies of different lengths,
just tune those two gates. Moreover, since the unit outputs (hidden states) are self-
connected, it becomes the channel for historical information. Similar to LSTM cell,
the channel ensures a smooth gradient back propagation. But it is different from
LSTM. The new unit output is updated using Eq. 2.2.

e (A VR 2.2)

In case z{‘ is close to 1, the hidden state is forced to ignore the previous hidden states;
otherwise, the previous information is retained through the interpolation coefficient.
To achieve maximum usage of history information, one can even allow z{‘ close to
zero. Different from LSTM, the contents of memory cell are exposed fully without
any reservation.

2 Deep RNN Architecture: Design and Evaluation 37

2.3 Datasets

We use an online Chinese handwriting database, CASIA-OLHWDB (Liu et al.
2011), to train and evaluate our models. This database comprises trajectories of both
isolated characters and lines of text. The part comprising only isolated characters
has three sub-sets, named OLHWDB 1.0~1.2, and the other also has three parts:
OLHWDB 2.0~2.2.0LHWDB 2.0~2.2 are divided into train set and fest set by
authors of (Liu et al. 2011). The train set includes 4072 pages from 815 people while
the zest set includes 1020 pages from 204 people. Also there is a held-out subset for
ICDAR2013 Chinese handwriting recognition competition (denoted as comp set)
(Yin et al. 2013). Characteristics of those datasets are summarized in Table 2.1. Our
systems are evaluated on test set or comp set. Note that there are 5 characters in fest
set which are not coved by train set while around 2.02% characters in comp set are
not coved by train set.

Certain preprocessing is taken before the experiment. Firstly, determine a
character set to cover all samples occurred in CASIA-OLHWDB 2.x. Totally there
are 2765 unique character terms (including 2764 terms and one {blank}). Secondly,
remove the manually annotated points in the sample. In order to retain the true
handwriting behavior, the cutting points added to segment the ligatures are removed.
Thirdly, derive a compact feature representation. The input trajectory is represented
in raw form. At each timestep, it consists of first order difference of x, y coordinates,
along with a state to indicate whether the pen is lifted. As for the start of the
trajectory, first two dimensions are set as zeroes.

We want to construct n-gram models to express the linguistic constraints. A large
amount of textual data are collected from electronic news of People’s Daily(in html
format). We just filter out the html markups and no human effort is intervened while
the data contain some noisy lines. The texts are ranging from 1999 to 2005 including
193,842,123 characters. We estimate our n-gram language models using SRILM
toolkit (Stolcke 2002). All characters outside of 7356 classes are removed. Bigram
and trigram are considered respectively in base-10 logarithm scale. Both of them
are pruned with a threshold of 7e-7.

Table 2.1 Characteristics of Subsets of OLHWDB 2.0~2.2
CASIA-OLHWDB 1.0~1.2 .

Items train test Comp
datasets

#pages | 4072 1020 300

#lines 41,710 10,510 | 3432
#chars 1,082,220 | 269,674 | 91,576
#classes | 2650 2631 1375

38 T. Suetal.

2.4 Proposed Deep Neural Network
The proposed system aims to map a fed pen trajectory X (=x'x?...x7T) to a textual
string 1 following an end-to-end paradigm and learn an optimal map. This process
is illustrated in Fig. 2.1. Here we let a LSTM model to encode the map. Supposing
such a map is learned. Then we can feed an unseen trajectory textline. The LSTM
network is propagated from input layer to output layer through hidden layers. As
the final step, CTC beam search is performed to output most possible strings. The
performance of each trajectory is measured based on the alignment between 1 and
the ground-truth z.

How to derive an optimal map is left to the training process of Fig. 2.3. We
generate the needed LSTM models by minimizing the empirical loss function:

LO=) LX), (2.3)

with S denoting the training set. Because the problem is a multi-class classification,
we use the £ (X, z) = —In P (z|X) to represent the example loss function which can
be effectively computed by CTC and forward-backward algorithm. Training data in
the CASIA-OLHWDB database (Liu et al. 2011) is used to derive the classification

training prediction
Training Test
trajectory trajectory
Arrange the Arrange the
trajectory trajectory
Train LSTM N Forward
/ propagation
N-gram —v[» CTC Beam Search
string

Fig. 2.3 Flowchart of the system

2 Deep RNN Architecture: Design and Evaluation 39

model. Also we estimate n-gram language models from textual corpus in advance
which will be used to facilitate the search process during decoding.

2.4.1 Architecture

We develop a deep recurrent neural network (RNN) to derive the mapping function
that is specialized for processing a sequence of vectors. Fig. 2.4 shows a typical
instance of the unfolded recurrent neural networks. Besides the input and output
layers, there are hidden layers and subsampling layers. The history information is
encoded through the recurrent hidden layer. Hidden variable vector at time step ¢ in
the n-th hidden layer h/, is iteratively computed from both (n-1)-th hidden variable

vector hfz—l (h6 = x’) and previous hidden variable vector h;‘l:

b, = tanh (W;h{_, + UFn;™"), 2.4)

where W,ﬁ is the weight matrix between (n-1)-th hidden layer and n-th hidden layer
and U¥ is the self-connected recurrent weight matrix. Since h!, is defined in a
recursive manner, the dependency on input vectors ranging first to t-th time step
may be possible.

To further benefit the geometric context both from left to right and vice versa,
we also consider a bidirectional recurrent neural network (BRNN) (Schuster and

Output Layer

\{/ \{ BRNN Layer

Subsample
Layer

BRNN Layer

Subsample
Layer

BRNN Layer

Input Layer

Fig. 2.4 The architecture of the unfolded BRNN (with 5 hidden layers)

40 T. Suetal.

Paliwal 1997) where each recurrent layer is replaced with a forward layer and
backward layer. The forward pass is the same as usual, while the backward processes
data from ¢t = T to . The recurrent formulation results in the sharing of parameters
through all time steps (Graves 2012b).

Subsampling layers are worthy to explore considering the large length of
trajectories and the variability in writing styles. Herein we devise feedforward-
like neuron units which allow inputs from a window of consecutive timesteps to
be collapsed. It is a simplified version of (Graves 2012b). The k-th hidden variable
at time step w X ¢ in the n-th subsampling layer is computed as:

iy = tanh (327 who () 2.5)

where w is the window size, Wf1) is the weight vector from (n-1)-th layer to the
k-th unit in the n-th layer.
The network output vector at time ¢ can be computed as:

y' =softmax (a') = sof tmax (WohlL> , (2.6)

where W is the weight matrix from the last hidden layer to output layer.
Note one extra output node is reserved for {null} that will be used in CTC
algorithm.

The standard RNNs suffer from vanishing gradient problem (Goodfellow et al.
2016). In our RNN network, LSTM memory blocks (Hochreiter and Schmidhuber
1997) are used to replace the nodes of RNN in hidden layers. Herein each memory
block includes three gates, one cell, and three peephole connections. Forget gate’s
output value determines how much the content of history preserved. In case it
is close to 0, it means discarding almost all history information; otherwise the
history information will be partially retained. Even we can control the input gate
to maximize the usage of history information. The contents of the memory cell are
not fully exposed to the hidden state. Instead, it is controlled using the value of
the output gate. All of them are nonlinear summation units. In general, the input
activation function is fanh function and the gate activation function is sigmoid
function which can squeeze the gate data between 0 and 1.

2.4.2 Learning

Connectionist Temporal Classification (CTC) is a powerful object function for
sequential data labelling. It allows RNNs to be trained without requiring any prior
alignment between input and target sequences (Graves and Jaitly 2014). Assuming
all labels are draw from an alphabet A, define the extended alphabet A" = AU{null}.
If the output is null, it emits no label at that timestep. A CTC mapping function

2 Deep RNN Architecture: Design and Evaluation 41

is defined to remove repeated labels and then delete the nulls from each output
sequence. Providing that the null label is injected into the label sequence z, we get
a new sequence z’ of length 2|z| + 1.

CTC uses a forward-backward algorithm (Graves 2012b) to sum over all possible
alignments and determine the conditional probability Pr(z|X) of the target sequence
given the input sequence. For a labelling z, the forward variable a(#, «) is defined as
the summed probability of all length 7 paths that are mapped by onto the length
u/2 prefix of z. On the contrary, the backward variable B(z, u) is defined as the
summed probabilities of all paths starting at ¢ + / that complete z when appended
to any path contributing to a(#, «). Thus the conditional probability Pr(z|X) can be
expressed as:

PreX)=), atwpuw, 2.7)

Substituting Eq. 2.7 into Eq. 2.3, we obtain the empirical loss function. Defining
the sensitivity signal at output layer as 8, £ 9.L/da}, we can get:

t t 1

8 = yi — mzuemm“ (t.u) B (t.u), (2.8)

where B (z,k) = {u : z, = k}. Based on Eq. 2.8, the sensitivity signals at other
layers can be easily backpropagated through the network.

2.4.3 Decoding

Beam search is employed to integrate the linguistic constraints. Modifications are
made to wisely integrate constraints. To reduce the bias of noisy estimation, the
extension probability Pr(k,y,?) is rescaled, while the pseudocode in Algorithm 1 falls
into the similar framework proposed in (Graves and Jaitly 2014). Define Pr—(y,t),
Pr*(y,t) and Pr(y,f) as the null, non-null and total probabilities assigned to partial
output transcription y, at time t respectively. The probability Pr(k,y,t) of y by label
k at time 7 can be expressed as follows:

Pr—()’,t— 1),y6 :k
Pr(k,y,t) =Pr(k, t|X) [y Pr(k
r(k,y, 1) =Pr(k, 1[X) [y Pr(Iy)]{ Pr(y. — 1), others
where Pr(k,?|X) is the CTC emission probability of k at ¢, as defined in (2.3), Pr(k|y)
is the linguistic transition from y to y + &, y© is the final label in y and vy is the
language weight.

42 T. Suetal.

Algorithm 1: Modified CTC Beam Search

1: initialize : B ={0};Pr=(9,0) =1

2: fort=1..Tdo

3: B =the N-Bestin B

4: B = {0}

S: foryin B do

6: if y# @ then

7: Prt(y,t) « Prt(y,t — 1)Pr(y®,t|X)

8: if(» €B)then

9: Prt(y,t) « Pr(y,t—1)+Pr(y%j ,t)
10: Pr(y,t) « Pr(y,t—1)Pr(— t|X)

11: addyto B

12: prune emission probabilities at time ¢ (retain K, classes)
13: fork=1..K,do

14: Pro(y+kt) <0

15: Prt(y+ k,t) « Pr(k,y,t)

16: add(y +k)to B

17: Return: arg maxyEBPr‘iY‘(y, T)

2.4.4 Experimental Setup

We set 2765 units to the output layer. One is reserved as null indicator; others cover
all characters occurred in train set, test set and comp set of OLHWDB 2.0~2.2. We
also select isolated samples from OLHWDB 1.x with no more than 700 samples per
class hoping to alleviate the out-of-vocabulary problem of comp set.

Three different networks are investigated, as provide in Table 2.2. The type
column reflects the number of hidden layers. The setting column describes the size
of each layer. The suffix has specific meaning: I-input layer, S-subsampling layer, L-
LSTM layer and O-output layer. The second column summarizes the overall number
of network parameters (in million). The three networks are deliberately tuned to be
comparable in number of parameters. Our LSTM layer is very thin compared to
(Xie et al. 2016) where 1024 nodes are assigned.

The system is developed from scratch by our own. The probabilities except
language model are expressed in natural logarithm scale. The learning rate is driven
by AdaDelta algorithm (Zeiler 2012) with a momentum of 0.95. During CTC beam
search decoding, the emission probabilities are pruned with the reciprocal of the
output units as threshold and the beam size is fixed as 64 in our evaluation. Both
CPU version and GPU version are implemented. Using a mini-batch size of 32
textlines, a speedup of more than 200X can be achieved by our GPU version along
with a Tesla K40.

2 Deep RNN Architecture: Design and Evaluation 43

Table 2.2 Three different network setups

Type #para Setting

3-layer 1.63 M 3I-64 L-128S-192 L-27650

5-layer 1.50 M 3I-64 L-80S-96 L-128S-160 L-27650
6-layer 1.84 M 31-48 L-64S5-96 L-128 L-144S-160 L-27650

To overcome the data sparsity, the training process is divided into four stages. In
the first stage, isolated samples are used to train the networks with a mini-batch size
of 128 characters. It has cycled for 5 epochs. The next stage is run on all training
data from OLHWDB 2.x with a mini-batch size of 32 textlines and it is repeated
for 10 epochs. The third stage is executed on the same data as the first stage with
10 epochs. At the final stage, 95% of the training data from OLHWDB 2.x is used
to fine-tune the networks no more than 20 epochs. The rest of the training data is
reserved for validation of the best model.

The output of certain recognizer is compared with the reference transcription and
two metrics, the correct rate (CR) and accurate rate (AR), are calculated to evaluate
the results. Supposing the number of substitution errors (S.), deletion errors (D,),
and insertion errors (/,) are known, CR and AR are defined respectively as:

CR — Nt_Se_De

Ne 29
Ni—=Se—=D.—1, > (2.9)
AR = ===

t

where N; is the number of total characters in the reference transcription.

2.4.5 Results

The 4th training stage is illustrated in Fig. 2.5 where the y axis illustrates the AR on
validation set. The best model in this phase is selected and used to evaluate on fest
set or comp set afterwards.

The rescaling intensity of language models is determined based on their perfor-
mance on validation set. In Fig. 2.6, the role of character-level trigram is given. We
can see that it is stable when the language weight ranges from 1.0 to 1.8 while the
standard decoding algorithm uses a value around 2.3. Similar observation can be
seen for bigram. In the following experiments, we simply fix it as 1.0.

We investigate the role of different language models as well as network depth
both on fest set and comp set, as shown in Table 2.3. Though three networks have
almost same quantity of parameters, the deeper networks generally work better
on both sets. On the other, we can see a steady increase in performance when
more strong linguistic constraints are imposed. Compared between two sets, the
improvement by using language models on comp set is more remarkable.

44 T. Suetal.

96
X 94
=
< —m— 3-layer

—@— 5-layer
92 —he— (-layer
90 1 1 1 1
4 8 12 16 20
Training Epochs

Fig. 2.5 The fourth training stage is evaluated on validation set

98

—m—3-layer
—@— 5-layer
—e— (-layer

1 1 i 1 1 i 1
0 05 08 1 1.2 15 1.8 2 23
LM weight

Fig. 2.6 Investigation of language model (trigram) weight on the validation set

Finally, we compare our results with previous works, as shown in Table 2.4. The
systems in first four rows use a segmentation-recognition integrated strategy. The
fifth row employs a hybrid of CNN and LSTM architecture and a specific feature
extraction layer is presented. Best results on test set are achieved by our system.
Compared with (Xie et al. 2016), 1.15% and 1.71% absolute error reductions
are observed in CR and AR respectively. Compared with the best results from
the segmentation-recognition integrated strategy (Zhou et al. 2014), around 2.3%
absolute error reductions are made in both CR and AR. Our system achieves a bit
lower result than the segmentation-recognition integrated strategy on comp set. It is
severely challenging for the segmentation-free strategy to perform on comp set since

2 Deep RNN Architecture: Design and Evaluation 45

Table 2.3 Role of language No LM
models on both test set and
comp set (%)

bigram trigram

Type AR CR AR CR AR CR
Test set

3-layer | 94.81 | 95.52 |96.13 |96.84 |96.83 | 97.45
S-layer | 95.08 |95.63 |96.34 [96.92 |97.04 |97.58
6-layer | 95.30 | 95.82 |96.45 |[97.00 |97.05 |97.55
comp set

3-layer | 88.06 |89.40 |91.42 [92.87 |93.00 |94.28
5-layer | 88.91 |90.00 |92.05 [93.20 |93.37 |94.44
6-layer | 89.12 1 90.18 |92.12 [93.25 |93.40 |94.43

Table 2.4 Comparisons with previous results (%)

Test set comp set

Methods AR CR AR CR
Wang2012 (Wang et al. 2012a) 91.97 92.76 - -
Zhou2013 (Zhou et al. 2013) 93.75 94.34 94.06 94.62
Zhou2014 (Zhou et al. 2014) 94.69 95.32 94.22 94.76
VO-3 (Yin et al. 2013) - - 94.49 95.03
Xie2016 (Xie et al. 2016) 95.34 96.40 92.88* 95.00%*
Our method 97.05 97.55 93.40 94.43

94.65% 95.65%

4Remove all characters in comp set which are not coved by train set

there is a noticeable out-of-vocabulary problem. If we remove all out-of-vocabulary
characters from comp set, our system achieves 94.65% and 95.65% in AR and CR,
respectively, even outperforming the best system of Vision Objects (Yin et al. 2013).

2.4.6 Error Analysis

We inspect the recognition result of each text line. We arrange the ARs of all
textlines into 11 intervals and consider the number of textlines that fall into the
interval, as shown in Fig. 2.7. The width of interval is 5% if the AR is bigger than
50%. There are 113 text lines in comp set whose ARs are lower than 75% and we
inspect all of them to get some insights.

Generally, errors are caused by three challenging issues, as shown in Fig. 2.8.
First of all, there are cursively written samples, even two or more characters are
joined as ligature. Moreover, severe skew or slant textlines are not easy to deal with
since there are limited training samples to cover such phenomena. In addition, there
are inadequate samples for English letters/words. It may be helpful to further reduce
or alleviate such issues.

46 T. Suetal.

2000
50
404
1500 F
304
" 204
= 10
2 1000 |
g 0 1 1 1 1
= 70-75 65-70 60-65 55-60 50-55 <50
500 F
0
95-10090-95 85-90 80-85 75-80 70-75 65-70 60-65 55-60 50-55 <50

AR Range

Fig. 2.7 Illustration of the ARs using interval histogram

output: SEH—[M JEWIHEI LT F. MRIREDKIEI HH
label: S H—[AHDIEWF) L F(MHOTEE, HRRE(TIZIGA) 5

(a)

A
]
e
3
YA

> - ; Jok P <0 :.' 1.4 i Bl %
A "/-- ot 20| P A f './ ,f -4 V [
Woav 'J[Farr '3/ J/ El Hf ’.o‘_:f"-‘ =y 7 " ey i s

output: [w] O[GEDJO[r]n{e]S)E BTHES = %L&ﬁ?dlﬁf&&ﬁﬁn[15RER
label: [W]o[rldP]o[i]n[t]s) B BHE7ESE — i (B2 BRIE A T B[R K845

(b)

Fig. 2.8 Typical errors and reasons in comp set (errors are marked with[.]). (a) cursive or skew
textline. (b) English words

2 Deep RNN Architecture: Design and Evaluation 47

2.5 Proposed RNN Neuron

2.5.1 Architecture

A new recurrent neuron named Gated Memory Unit (GMU) is proposed, which
combines the memory cell of LSTM and the interpolation gate of GRU. GMU
consists of a memory cell, two gates (memorial gate and operating gate). Memory
cell plays a role of CEC, which is used for transmission of the historical information
and error messages. Memorial gate is mainly responsible for updating the contents
of the memory cell, which controls how much of the history should be retained.
Operating gate is primarily responsible for hidden state generation. It mixes the
history and current input transformation using learned weights. Those two gates can
be run independently, which makes it easy to parallel.

In Fig. 2.9, GMU is unfolded in the time steps. During its forward propagating,
the history information is saved into cell. Since the cell is self-connected, long
dependencies are possibly encoded. Cell also serves as a CEC channel in the
back propagation process, avoiding gradient vanishing problems. Compared with
standard RNN neuron, GMU uses additive component to achieve the evolution from
time t to time t + 1. Standard RNN state always come from the former state and
current information. Unlikely, GMU can keep the previous contents and recursively
integrates fresh information.

Fig. 2.9 GMU is unfolded in the time steps

48 T. Suetal.

Similar to LSTM, GMU also uses Memory Cell as a highway channel. The
hidden state is derived from the contents of memory cell with proper scaling
operation. Their difference is that the range of information in GMU cell is ensured
to be stable since an interpolation is used.

Similar to GRU, GMU use interpolation structure to merge the history informa-
tion and current information. Both of them have a simple arithmetic component.
Different to GRU, GMU uses memory cell to store history information, rather than
the activation value itself, better guarantee the independence of memory cell and
hidden state.

2.5.2 Forward Propagation

Memorial gate in GMU uses a logistic sigmoid transformation:

I H
k_ m,x 1 h,my j c,m k
a; = Zwl,k x; + ij,k hlf1 +w ke
Jj=1

=1
k_ k
mk =0 (af)

Similarly, operating gate also employs a sigmoid:
1 H
k _ x,p_1 h,pyj ap .k
b =Y wyilxp) wilhl +wp” s
=1 j=1

Pt =o ()

Input transformation can be computed as:

~k A H

. x,i 1 hyiyJ

e = Zwi,kxt + ij,khtfl
=1 j=1

~k
ik =h (i ,)
The hidden state or activation is given by interpolation:

k _ k k k -k
hy = (1 —m,)ct_1 + myi;

2 Deep RNN Architecture: Design and Evaluation 49

Memory cell is updated using:

= (1=) i+ ek,

2.5.3 Backward Propagation

As the critical step is to derive the gradients, we list them as follows. Firstly, define
the derivative to hidden state as

ok def oL
€; = a—}l){(

Also define the derivative memory cell as

¢,k def oL

= —
8c{‘

The gradient of memory cell can be derived:

c.k _ _hik k ck _k p.k c,p mk_ c,m
€ =€ (1—m,>+et+1p,+8t+lwk + 8, 1wy

The gradient of operating gate is:

sPk = o (bf) ek (lf - Cf—l)
The gradient of memorial gate:

s = o (df) i (o —)

The gradient of input transformation:

~ ~k
aﬁzygggw¢+¢qug)

2.5.4 Experimental Setup

Unlikely to subsection 4.4, this section simplifies the experimental process. Firstly,
we don’t consider the comp set. We just set 2750 units to the output layer. Secondly,
we don’t use the isolated samples from OLHWDB 1.x. In order to use early stop
technique, 5% of the training data is drawn randomly as validation set.

50 T. Suetal.

Table 2.5 Setup for

: . Neuron type | #Param | Setting
networks with three hidden

layer RNN 1M 31-64R-96S-160R-27500
GRU 1.18 M
GMU 1.1I9M
LSTM 1.28M

Table 2.6 Setup for

DUEP Y Neuron type | #Param | Setting
networks with six hidden

layers RNN 1.1I9M | 3I-48R-64S-96R-128R-144S-
160R-27500
GRU 1.62M
GMU 1.63 M
LSTM 1.83 M

Two network architectures are investigated: one is bi-direction recurrent network
with three hidden layers, the other with six hidden layers. Four types of neurons
are considered: RNN, GRU, GMU and LSTM. Each network has input layer with
3 nodes, and output layer with 2750 nodes, and all sampling layer has a window
width of 2. Network settings are shown in Tables 2.5 and 2.6 respectively. Early
stop is used to avoid over-fitting while training. The training process stops when
error rate never drop for consecutive twenty rounds on validation set. The mini-
batch is set to 32 and the learning rate is driven by AdaDelta algorithm (Zeiler
2012) with a momentum of 0.95. Network output is transformed to textual results
using a maximum path decoding algorithm, without any language constraints. For
each network, four runs are presented. The recognition results are summarized to
provide the minimum, maximum, mean and standard variance of the error rates.

During CTC beam search decoding, the emission probabilities are pruned with
the reciprocal of the output units as threshold and the beam size is fixed as 64 in our
evaluation.

2.5.5 Experimental Results

We first investigate the four three-hidden layer networks. We select one run of the
validation process and the results (without language model) are plotted in Fig. 2.10.
GMU has the fastest convergence rate and GMU achieves the lowest recognition
error rate on the validation data.

The models are evaluated on the test set using different language models. The
results are shown in Table 2.7. As can be seen, GMU achieves the best results
among almost all metrics. In an average sense, GMU is better than GRU about
1% and better than LSTM about 2%. Considering the sensitivity to the network
initialization, GMU becomes the most stable one.

2 Deep RNN Architecture: Design and Evaluation 51

0.94

0.84

0.74

0.64

0.24 -

0.14 -

0.04 T T T T T T T T T T
1 21 41 61 81 101

Fig. 2.10 Validation process for three-hidden layer networks

Table 2.7 Chinese

handwriting recognition :
results using three-hidden Neuron type n max | mean_| STD

layer networks RNN |noLM |19.75 |21.43 |20.57 0.70

GRU | bigram |17.25 |21.33 | 18.84 | 1.78
trigram | 14.75 | 18.55 | 16.24 | 1.66
nolLM |11.55 |13.81 |12.65 |0.95
GMU | bigram | 9.18 |12.10 | 10.53 |1.24
trigram | 7.76 |10.41 | 8.97 | 1.13
noLM |11.50 |11.96 |11.63 | 0.22
LSTM |bigram | 9.25 | 9.59 | 9.35 | 0.16
trigram | 7.70 | 812 | 7.84 | 0.19
noLM |12.32 [13.02 |12.76 |0.31
bigram | 10.84 |11.52 |11.33 | 0.33
trigram | 9.28 | 10.14 | 9.82 | 0.38

Error rates (%)

We further consider the six-hidden layer networks. We select one run of the
validation process and the results (without language model) are plotted in Fig. 2.11.
Three sophisticated recurrent neurons converge significantly faster than standard
neuron at the early epochs, meanwhile the error rate is significantly smaller.
Unlikely, RNN also can quickly trigger the early stop. Here, the performance of
GMU is close to the GRU, and it converges slightly faster than LSTM.

52 T. Suet al.

0.95

0.85

0.75

0.65

0.55

0.45

0.35

0.25

0.15 -

0.05 : : : : . : .
1 21 41 61

Fig. 2.11 Validation process for six-hidden layer networks

Table 2.8 Chinese

handwriting recognition ;
Lo Neuron type min | max | mean | std
results using six-hidden layer

networks RNN nolLM |14.39 |15.23 |14.67 | 0.39
GRU | bigram |11.52 |12.45 |11.86 |0.44
trigram | 9.74 | 10.75 | 10.09 | 0.47
noLM | 8.65 | 9.01 | 885 0.17
GMU | bigram | 697 | 7.29 | 7.12 |0.15
trigram | 6.06 | 6.40 | 6.23 |0.14
noLM | 892 | 9.02 | 8.99 |0.046
LSTM |bigram | 7.20 | 7.37 | 7.28 |0.072
trigram | 6.34 | 6.43 | 6.39 | 0.047
noLM | 891 | 9.16 | 9.09 |0.12
bigram | 7.32 | 7.66 | 7.52 |0.14
trigram | 638 | 6.76 | 6.60 |0.16

Error rates (%)

Finally, five-hidden layer models are also evaluated on test set using different
language models and the results are shown in Table 2.8. As can be seen, GRU
achieves the minimum error rate, and GMU ranks second. Their differences are
small. In addition, GMU is insensitive to the network initialization. Here GMU is a
good alternative to both GRU and LSTM.

2 Deep RNN Architecture: Design and Evaluation 53

2.6 Conclusions

The chapter explores ways to design the architecture of deep RNN. In the pipeline
level, this chapter presents a novel end-to-end recognition architecture for sequential
data labelling tasks. Unlikely to previous practices, we directly feed the original
pen trajectory into the network. The long contextual dependencies and complex
dynamics are intended to be encoded by a mixture architecture. The CTC objective
function makes it possible to train the model without character level annotation.
A modified beam search decoding algorithm is devised to wisely integrate the
linguistic constraints. It shows that our method remarkably outperforms state-of-the-
art approaches on test set. Further evaluating on the more challenging competition
set, our results are at least comparable to ones already published.

In the micro neuron level, this chapter presents a novel recurrent neuron named
GMU. Great inspirations are lent from LSTM and GRU. To form a highway channel,
self-connected memory cells are designed. In GMU, there are two interpolation
gates. Each of them has a specific function and they work together independently.
Experimental results on fest set show that GMU may serves a good alternative to
both LSTM and GRU.

Acknowledgments The work was partially supported by the following funding: National Natural
Science Foundation of China (NSFC) under grant No. 61673140, 81671771, 61473236; Natural
Science Fund for Colleges and Universities in Jiangsu Province under grant No. 17KJD520010;
Suzhou Science and Technology Program under grant No. SYG201712, SZS201613; Jiangsu
University Natural Science Research Programme under grant No. 17KJB520041; Key Program
Special Fund in XJTLU (KSF-A-01).

References

Amodei D et al (2016) Deep speech 2: end-to-end speech recognition in English and Mandarin. In:
Proceedings of the 33rd international conference on machine learning, New York, USA

Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is
difficult. IEEE Trans Neural Netw 5(2):157-166

Cheriet M et al (2007) Character recognition systems: a guide for students and practitioners. Wiley,
Hoboken

Cho K et al (2014a) Learning phrase representations using RNN encoder-decoder for statistical
machine translation. In: Proceedings of conference on empirical methods in natural language
processing

Cho K et al (2014b) On the properties of neural machine translation: Encoder-decoder approaches.
arXiv preprint arXiv:1409.1259

Gers FA, Schmidhuber J, Cummins F (2000) Learning to forget: continual prediction with LSTM.
Neural Comput 12(10):2451-2471

Gers FA, Schraudolph NN, Schmidhuber J (2002) Learning precise timing with LSTM recurrent
networks. J Mach Learn Res 3(1):115-143

Goodfellow I, Bengio Y, Courville A (2016) Deep learning. MIT Press, Cambridge, MA

Graves A (2012a) Supervised sequence labelling. In: Supervised sequence labelling with recurrent
neural networks. Springer, Berlin

54 T. Suetal.

Graves A (2012b) Supervised sequence labelling with recurrent neural networks. Springer, Berlin

Graves A, Jaitly N (2014) Towards end-to-end speech recognition with recurrent neural networks.
In: Proceedings of the 31st international conference on machine learning, Beijing, China

Graves A, Schmidhuber J (2009) Offline handwriting recognition with multidimensional recurrent
neural networks. In Advances in Neural Information Processing Systems (NIPS), pp 855-868

Graves A et al (2009a) A novel connectionist system for unconstrained handwriting recognition.
IEEE Trans PAMI 31(5):855-868

Graves A et al (2009b) A novel connectionist system for unconstrained handwriting recognition.
IEEE Trans Pattern Anal Mach Intell 31(5):855-868

Graves A, Mohamed A.-r, Hinton G (2013) Speech recognition with deep recurrent neural
networks. In ICASSP, IEEE International Conference on Acoustics, Speech and Signal
Processing — Proceedings, pp 6645-6649

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735-1780

Liu J-H (1966) Real time Chinese handwriting recognition. Department of Electrical Engineering,
Massachusetts Institute of Technology, Cambridge

Liu C-L et al (2011) CASIA online and offline Chinese handwriting databases. In: Proceedings of
the International Conference on Document Analysis and Recognition (ICDAR), pp 37-41

Liu C-L et al (2013) Online and offline handwritten Chinese character recognition: benchmarking
on new databases. Pattern Recogn 46(1):155-162

Liu Q, Wang L, Huo Q (2015) A study on effects of implicit and explicit language model infor-
mation for DBLSTM-CTC based handwriting recognition. In: Proceedings of the International
Conference on Document Analysis and Recognition (ICDAR), pp 461465

Lv Y et al (2013) Learning-based candidate segmentation scoring for real-time recognition
of online overlaid Chinese handwriting. In Proceedings of the International Conference on
Document Analysis & Recognition (ICDAR), pp 74-78

Messina R, Louradour J (2015) Segmentation-free handwritten Chinese text recognition with
LSTM-RNN. In: Proceedings of the International Conference on Document Analysis and
Recognition (ICDAR), pp 171-175

Russakovsky O et al (2015) ImageNet large scale visual recognition challenge. Int J Comput Vis
115(3):211-252

Schuster M, Paliwal K (1997) Bidirectional recurrent neural networks. IEEE Trans Signal Process
45:2673-2681

Stolcke A (2002) SRILM-an extensible language modeling toolkit. In: Proceedings of the 7th
international conference on spoken language processing, Colorado, USA

Su T, Zhang T, Guan D (2007) Corpus-based HIT-MW database for offline recognition of general-
purpose Chinese handwritten text. Int J Doc Anal Recognit 10(1):27-38

Su T, Zhang T, Guan D (2009) Off-line recognition of realistic Chinese handwriting using
segmentation-free strategy. Pattern Recogn 42(1):167-182

Wang D-H, Liu C-L (2013) Learning confidence transformation for handwritten Chinese text
recognition. Int J Doc Anal Recognit 17(3):205-219

Wang D-H, Liu C-L, Zhou X-D (2012a) An approach for real-time recognition of online Chinese
handwritten sentences. Pattern Recogn 45(10):3661-3675

Wang Q-F, Yin F, Liu C-L (2012b) Handwritten Chinese text recognition by integrating multiple
contexts. IEEE Trans PAMI 34(8):1469-1481

Xie Z, Sun Z, Jin L, Feng Z, Zhang S (2016) Fully convolutional recurrent network for handwritten
Chinese text recognition. In: arXiv

Yin F et al (2013) ICDAR 2013 Chinese handwriting recognition competition. In: Proceedings of
the International Conference on Document Analysis and Recognition (ICDAR), pp 1464-1470

Zeiler MD (2012) Adadelta: an adaptive learning rate method. In: arXiv preprint arXiv:1212.5701

Zhang H, Wang D-H, Liu C-L (2014) Character confidence based on N-best list for keyword
spotting in online Chinese handwritten documents. Pattern Recogn 47(5):1880-1890

Zhou XD et al (2013) Handwritten Chinese/Japanese text recognition using Semi-Markov
conditional random fields. IEEE Trans PAMI 35(10):2413-2426

2 Deep RNN Architecture: Design and Evaluation 55

Zhou X-D et al (2014) Minimum-risk training for semi-Markov conditional random fields with
application to handwritten Chinese/Japanese text recognition. Pattern Recogn 47(5):1904-1916

Zhou M-K et al (2016) Discriminative quadratic feature learning for handwritten Chinese character
recognition. Pattern Recogn 49:7-18

Zobrak MJ (1966) A method for rapid recognition hand drawn line patterns. University of
Pittsburgh, Pennsylvania

Zou Y et al (2011) Overlapped handwriting input on mobile phones. In: Proceedings of the
International Conference on Document Analysis & Recognition (ICDAR), pp 369-73

Chapter 3)
Deep Learning Based Handwritten Qe
Chinese Character and Text Recognition

Xu-Yao Zhang, Yi-Chao Wu, Fei Yin, and Cheng-Lin Liu

Abstract This chapter introduces recent advances on using deep learning methods
for handwritten Chinese character recognition (HCCR) and handwritten Chinese
text recognition (HCTR). In HCCR, we integrate the traditional normalization-
cooperated direction-decomposed feature map (directMap) with the deep convo-
lutional neural network, and under this framework, we can eliminate the needs for
data augmentation and model ensemble, which are widely used in other systems to
achieve their best results. Although the baseline accuracy is very high, we show that
writer adaptation with style transfer mapping (STM) in this case is still effective
for further boosting the performance. In HCTR, we use an effective approach based
on over-segmentation and path search integrating multiple contexts, wherein the
language model (LM) and character shape models play important roles. Instead of
using traditional back-off n-gram LMs (BLMs), two types of character-level neural
network LMs (NNLMs), namely, feedforward neural network LMs (FNNLMs)
and recurrent neural network LMs (RNNLMs) are applied. Both FNNLMs and

Part of this chapter is reprinted from:

Pattern Recognition, 61, 348-360, Xu-Yao Zhang, Yoshua Bengio, Cheng-Lin Liu, “Online and
offline handwritten Chinese character recognition: A comprehensive study and new benchmark”
2017, with permission from Elsevier

Pattern Recognition, 65, 251-264, Yi-Chao Wu, Fei Yin, Cheng-Lin Liu, “Improving handwritten
Chinese text recognition using neural network language models and convolutional neural network
shape models”, 2017, with permission from Elsevier

X.-Y. Zhang - Y.-C. Wu - F. Yin

NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, People’s Republic
of China

e-mail: xyz@nlpr.ia.ac.cn; yichao.wu@nlpr.ia.ac.cn; fyin@nlpr.ia.ac.cn

C.-L. Liu (<)
NLPR, Institute of Automation, Chinese Academy of Sciences, Beijing, People’s Republic
of China

CAS Center for Excellence in Brain Science and Intelligence Technology, University
of Chinese Academy of Sciences, Beijing, People’s Republic of China
e-mail: liucl@nlpr.ia.ac.cn

© Springer Nature Switzerland AG 2019 57
K. Huang et al. (eds.), Deep Learning: Fundamentals, Theory and Applications,
Cognitive Computation Trends 2, https://doi.org/10.1007/978-3-030-06073-2_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06073-2_3&domain=pdf
mailto:xyz@nlpr.ia.ac.cn
mailto:yichao.wu@nlpr.ia.ac.cn
mailto:fyin@nlpr.ia.ac.cn
mailto:liucl@nlpr.ia.ac.cn
https://doi.org/10.1007/978-3-030-06073-2_3

58 X.-Y. Zhang et al.

RNNLMs are combined with BLMs to construct hybrid LMs. To further improve
the performance of HCTR, we also replace the baseline character classifier, over-
segmentation, and geometric context models with convolutional neural network
based models. By integrating deep learning methods with traditional approaches,
we are able to achieve state-of-the-art performance for both HCCR and HCTR.

Keywords Deep learning - Handwriting recognition - Writer adaptation -
Convolutional neural network - Recurrent neural network - Language model -
Shape model - Character - Text

3.1 Introduction

Handwritten Chinese character recognition (HCCR) has been studied for more than
fifty years (Dai et al. 2007; Kimura et al. 1987) to deal with the challenges of
large number of character classes, confusion between similar characters, and distinct
handwriting styles across individuals. According to the type of input data, handwrit-
ing recognition can be divided into online and offline. In online HCCR, the trajecto-
ries of pen tip movements are recorded and analyzed to identify the linguistic infor-
mation expressed (Liu et al. 2004), while in offline HCCR, character images are ana-
lyzed and classified into different classes. Offline HCCR finds many applications,
such as bank check reading, mail sorting (Liu et al. 2002), book and handwritten
notes transcription, while online HCCR has been widely used for pen input devices,
personal digital assistants, computer-aided education, smart phones, and so on.

Meanwhile, during the past forty years, the field of handwritten Chinese text
recognition (HCTR) has also observed tremendous progresses (Dai et al. 2007;
Fujisawa 2008). Handwritten text recognition involves not only character recogni-
tion, but also character segmentation, which cannot be performed reliably before
character recognition due to the irregular character size and spacing. HCTR
remains a challenging problem due to the diversity of writing styles, the character
segmentation difficulty, large character set and unconstrained language domain.
The recognition approach based on over-segmentation by integrating character
classifier, geometric and linguistic context models has been demonstrated successful
in handwritten text recognition (Wang et al. 2012), among which both the linguistic
context model (i.e., language model) and the character shape models are of great
importance.

To promote academic research and benchmark on HCCR and HCTR, the
National Laboratory of Pattern Recognition from Institute of Automation at Chinese
Academy of Science, has organized three competitions at CCPR-2010 (Liu et al.
2010), ICDAR-2011 (Liu et al. 2011), and ICDAR-2013 (Yin et al. 2013). The
results of competition show improvements over time and involve many different
recognition methods. An overwhelming trend is that deep learning based methods
gradually dominate the competition. With the impact from the success of deep
learning (Bengio et al. 2013; Hinton and Salakhutdinov 2006; LeCun et al. 2015)

3 Deep Learning Based Handwritten Chinese Character and Text Recognition 59

in different domains, the solutions for HCCR and HCTR have also been changed
from traditional methods to deep learning based approaches. In this chapter, we
combine the traditional well-studied domain-specific knowledge with the modern
deep learning based methods to build state-of-the-art systems for both HCCR and
HCTR.

For HCCR, instead of training the convolutional neural network (convNet)
from raw data, we represent both the online and offline handwritten characters
by the normalization-cooperated (Liu 2007) direction-decomposed feature maps
(directMap), which can be viewed as a d x n X n sparse tensor (d is the number
of quantized directions and n is the size of the map). DirectMap contains the
domain-specific knowledge of shape normalization and direction decomposition,
and hence is a powerful representation for HCCR. Furthermore, inspired by the
recent success of using deep convNet for image classification (Krizhevsky et al.
2012; Szegedy et al. 2015; Simonyan and Zisserman 2015), we developed an
11-layer convNet for HCCR. With directMap+convNet, we are able to achieve state-
of-the-art performance for both online and offline HCCR under the same framework.

The large variability of handwriting styles across individuals is another challenge
for HCCR. Writer adaptation (Sarkar and Nagy 2005; Connell and Jain 2002) is
widely used to handle this challenge by gradually reducing the mismatch between
writer-independent system and particular individuals. Although deep learning based
methods have set a high record for HCCR which already surpass human-level per-
formance, we show that writer adaptation in this case is still effective. Inspired from
our early work on style transfer mapping (Zhang and Liu 2013), we add a special
adaptation layer in the convNet to match and eliminate the distribution shift between
training and test data in an unsupervised manner, which can guarantee performance
improvements even when only a small number of samples are available.

For HCTR, we improve the over-segmentation based system by using neural
network language models and convolutional neural network shape models. The
statistical language models, which give the prior probability of a sequence of
characters or words, play an important role in HCTR. The back-off N-gram
language models (BLMs) were proposed over twenty years ago (Katz 1987; Chen
and Goodman 1996) and have been used in handwritten text recognition for more
than ten years. Recently, a new type of language model called neural network
language model (NNLM) (Bengio et al. 2003) has been successfully used in
handwriting recognition (Zamora-Martinez et al. 2014; Wu et al. 2015). In this
chapter, we evaluate the effects of two types of character-level NNLMs, namely,
the feedforward NNLMs (FNNLMs) (Bengio et al. 2003; Schwenk 2007, 2012;
Schwenk et al. 2012; Zamora-Martinez et al. 2014; Wu et al. 2015) and the recurrent
NNLMs (RNNLMs) (Mikolov et al. 2010, 2011¢,b; Kombrink et al. 2011) for over-
segmentation based text recognition systems. Both FNNLMs and RNNLMs are also
combined with BLMs to construct hybrid LMs. Experimental results show that the
NNLMs improve the recognition performance, and hybrid RNNLMs outperform
the other LMs. Apart from the language model, character classifier (Wang et al.
2016), over-segmentation (Liu et al. 2002; Wu et al. 2015; Lee and Verma 2012),
and geometric context models (Zhou et al. 2007) (called shape models generally)

60 X.-Y. Zhang et al.

are also important to the text recognition performance. To further improve the
performance of HCTR, we replace all the baseline character classifier, over-
segmentation algorithm, and geometric context models with convolutional neural
network based models in the system. By using neural network language models
and convolutional neural network shape models in the traditional framework, the
performance of HCTR can be improved significantly.

This chapter is a re-organization of our previous works Zhang et al. (2017)
and Wu et al. (2017). In the rest of this chapter, we first introduce different
components used in the HCCR system, and then describe the detailed procedures
for the HCTR framework. At last, we draw some concluding remarks for future
researches.

3.2 Handwritten Chinese Character Recognition (HCCR)

This section describes the whole system for handwritten Chinese character recogni-
tion (HCCR) including the direction decomposed feature map, convolutional neural
network, writer adaptation, and experimental results on benchmark datasets.

3.2.1 Direction Decomposed Feature Map

Shape normalization and direction decomposition are powerful domain knowledge
in HCCR. Shape normalization can be viewed as a coordinate mapping in contin-
uous 2D space between original and normalized characters. Therefore, direction
decomposition can be implemented either on original (normalization-cooperated)
or normalized (normalization-based) characters (Liu 2007). The normalization-
cooperated method maps the direction elements of original character to directional
maps without generating normalized character, and thus can alleviate the effect
of stroke direction distortion caused by shape normalization and provide higher
recognition accuracies (Liu 2007). In this chapter, we use normalization-cooperated
method to generate directMaps for both online and offline HCCR (Liu et al. 2013).

3.2.1.1 Offline DirectMap

The offline HCCR datasets provide gray-scaled images with background pixels
labeled as 255. For the purpose of fast computation, we first reverse the gray
levels: background as 0 and foreground in [1,255]. After that, the foreground gray
levels are nonlinearly normalized to a specified range for overcoming the gray
scale variation among different images (Liu et al. 2013). For shape normalization

3 Deep Learning Based Handwritten Chinese Character and Text Recognition 61

of offline characters, we choose the line density projection interpolation (LDPI)
method due to its superior performance (Liu and Marukawa 2005). For direction
decomposition, we first compute the gradient by the Sobel operator from the original
image, and then decompose the direction of gradient into its two adjacent standard
chaincode directions by the parallelogram rule (Liu et al. 2003). Note that in this
process, the normalized character image is not generated, but instead, the gradient
elements of original image are directly mapped to directional maps of standard
image size incorporating pixel coordinates transformation.

3.2.1.2 Online DirectMap

The online HCCR datasets provide the sequences of coordinates of strokes. We also
use the normalization-cooperated method for online handwritten characters, i.e., the
features are extracted from the original pattern incorporating coordinate transfor-
mation without generating the normalized pattern. The shape normalization method
used for online HCCR is the pseudo 2D bi-moment normalization (P2DBMN) (Liu
and Zhou 2006). For direction decomposition, the local stroke direction (of the line
segment formed by two adjacent points) is decomposed into 8 directions and then
generate the feature map of each direction (Liu and Zhou 2006; Bai and Huo 2005).
The imaginary strokes (pen lifts or called off-strokes) (Ding et al. 2009) are also
added with a weight of 0.5 to get enhanced representation.

3.2.1.3 Analysis
To build compact representations, we set the size of feature map to be 32, and

therefore, the generated directMap is an 8 x 32 x 32 tensor. Figure 3.1 shows
the examples for online and offline directMaps. For better illustration, we also

| b
4 ;
5

Average 4 N 0

3 1
_ 2
=
.. E/

Fig. 3.1 The directMaps for online and offline handwritten Chinese characters

online

62 X.-Y. Zhang et al.

show the average map of the eight directional maps. It is shown that the shape
in the average map is normalized compared with original character. For offline
character, the gradient is decomposed, hence the average map gives the contour
information of original image. Contrarily, for online character, the local stroke is
decomposed, hence the input character can be well reconstructed by the average
map, from which we can also find that the imaginary strokes are already taken
into consideration. Because gradient is perpendicular to local stroke, the online
and offline directMaps are different although they adopt the same direction coding.
DirectMap is a powerful representation for HCCR which utilizes strong prior
knowledge that Chinese character is produced by basic directional strokes during
writing process. As shown in Fig. 3.1, directMap is very sparse. Actually, in our
experimental database, 92.41% (online) and 79.01% (offline) of the elements in
directMap are zeros. With this sparsity, we can store and reuse the extracted
directMaps efficiently. Owing to the sparsity, using maps with size smaller than
the original image does not lose shape information.

3.2.2 Convolutional Neural Network

As shown by Zhang et al. (2017), the traditional HCCR framework can be viewed
as a simplified convolutional neural network on the directMap, and therefore, it is
straightforward and necessary to integrate directMap with deep convolutional neural
network to look for a new benchmark. It is shown that the depth is crucial for the
success of convolutional neural networks (convNet) (Szegedy et al. 2015; Simonyan
and Zisserman 2015). Considering the size of our directMap (8 x 32 x 32), we build
an 11-layer network for HCCR.

3.2.2.1 Architecture

As shown in Fig. 3.2, the directMap (online or offline) is passed through a stack
of convolutional (conv) layers, where the filters are with a small receptive field
3 x 3, which is the smallest size to capture notion of left/right, up/down, and
center (Simonyan and Zisserman 2015). All the convolution stride is fixed to
one. The number of feature maps is increased from 50 (layer-1) to 400 (layer-8)
gradually. Spatial pooling is widely used to obtain translation invariance (robustness
to position). To increase the depth of network, the size of feature map should be
reduced slowly. Therefore, in our architecture, the spatial pooling is implemented
after every two conv layers (Fig. 3.2), which is carried out by max-pooling (over a
2 x 2 window with stride 2) to halve the size of feature map. After the stack of 8
conv layers and 4 max-pool layers, the feature maps are flattened and concatenated
into a vector with dimensionality 1600. Two fully-connected (FC) layers (with 900

3 Deep Learning Based Handwritten Chinese Character and Text Recognition 63

and 200 hidden units respectively) are then followed. At last, the softMax layer is
used to perform the 3755-way classification.

3.2.2.2 Regularization

Regularization is important for deep networks. Dropout (Srivastava et al. 2014)
is a widely used strategy to increase generalization performance, which can be
implemented by randomly dropping units (along with their connections) for each
layer with a given probability. We use dropout for all the layers except layer-1 and
layer-10. As shown in Fig. 3.2, the dropout probabilities are increased with respect
to the depth. Layer-10 is the last FC layer before softMax layer, and thus can be
viewed as a very high-level feature extractor. We set the dimensionality of layer-10
to be as low as 200 to obtain a compact representation (which already can be viewed
as regularization), therefore, we make the dropout probability on layer-10 to be zero.
Another regularization strategy we used is the weight decay with L, penalty. The
multiplier for weight decay is 0.0005 during the training process.

8x32x32 directMap

layer-1: conv-50 3x3 drop 0.0

| SemEad st |
A 4
[ayer-1: convs0 33 drop 00 _

layer-2: conv-100 3x3 drop 0.1

max-pool 2x2
layer-3: conv-150 3x3 drop 0.1
layer-4: conv-200 3x3 drop 0.2
max-pool 2x2
layer-5: conv-250 3x3 drop 0.2
layer-6: conv-300 3x3 drop 0.3
max-pool 2x2
layer-7: conv-350 3x3 drop 0.3
layer-8: conv-400 3x3 drop 0.4
max-pool 2x2
layer-9: FC-900 drop 0.5
layer-10: FC-200 drop 0.0

Adaptation

1

Layer

layer-11: SoftMax-3755

Fig. 3.2 The convNet architecture used for both online and offline HCCR

64 X.-Y. Zhang et al.

3.2.2.3 Activation

Activation function is crucial for adding non-linearity into the network. Rectified
linear unit (ReLU) is one of the keys to the success of deep networks (Krizhevsky
et al. 2012). A more general form named leaky-ReLLU (Maas et al. 2013) is defined
as f(x) = max(x, 0) 4+ A min(x, 0) (standard ReLU use A = 0), which can expedite
convergence and obtain better performance than conventional activations (such as
sigmoid and tanh). In our convNet (Fig. 3.2), all hidden layers are equipped with the
leaky-ReL.U non-linearity with A = 1/3.

3.2.24 Training

The whole network is trained by the back-propagation algorithm (Rumelhart et al.
1986). The training is implemented by minimizing the multi-class negative log-
likelihood loss using mini-batch gradient descent with momentum. The mini-batch
size is set to be 1000, while the momentum is 0.9. The learning rate is initially set
to 0.005, and then decreased by x0.3 when the cost or accuracy on the training
data stop improving. We do not use any data augmentation methods to generate
distorted samples during the training process, because we believe directMap is
already a powerful representation, and we want to make the training more efficient.
The training is finished after about 70 epochs. After each epoch, we shuffle the
training data to make different mini-batches. In our experiments, both the online
and offline HCCR adopt the same convNet architecture and share the same training
strategies as described above.

3.2.3 Adaptation of ConvNet

To adapt the deep convNet to the new handwriting style of particular writers, we
propose a special adaptation layer based on our previous work (Zhang and Liu
2013). The adaptation layer can be placed after any fully-connected layer in a
network. Suppose ¢ (x) € R? is the output (after activation) of a particular layer (let
us call it source layer), and we want to put the adaptation layer after this layer. First,
we estimate class-specific means on source layer from training data {x{™, yl?m}fv_ |
where y}m € {1,2,...,c} and c is the number of classes:

1 N
i = D bG™IG™ =k, 3.1)

ZlNzl H(y}m =k 5

where () = 1 when the condition is true and otherwise 0. The {uq, ..., e}
represent the class distribution on source layer and will be used to learn parameters
of adaptation layer.

3 Deep Learning Based Handwritten Chinese Character and Text Recognition 65

The adaptation layer contains a weight matrix A € R?*¢ and an offset vector
b € RY. There is no activation function on adaptation layer. Suppose we have
some unlabeled data {x;}?_, for adaptation. By passing them through the pretrained
convNet, we can obtain the predictions for them y; = convNetpreq(x;) € {1, ..., c}.
Since the last layer of convNet is softMax, we can also get a confidence about this
prediction with f; = convNetgymvax (x;) € [0, 1]. With all these information, now
the purpose of adaptation is to reduce the mismatch between the training and test
data. Note that we already have the class-specific means p; on source layer, the
adaptation problem can be formulated as:

2
CHBIA-TIR+y b3, (G2

n
min} fi [Ag (i) +b =y,

i=1

where || - || r is the matrix Frobenius norm, || - ||2 is the vector Ly norm, and [is the
identity matrix.

The objective of adaptation as shown in (3.2) is to transform each point ¢ (x;)
towards the class-specific mean jiy, on the source layer. Since the prediction y; may
be not reliable, each transformation is weighted by the confidence f; given by the
softMax of the network. In practice, to guarantee the adaptation performance with
small n, two regularization terms are adopted: the first is to constrain the deviation
of A from identity matrix, while the second is to constrain the deviation of b from
zero vector. When B = y = +o00, we will get A = [and b = 0 which means no
adaptation is happening.

After obtaining A and b, the source layer and adaptation layer are combined
together to produce an output as:

output(x) = A¢(x) + b € RY, (3.3)

which is then fed into the next layer of the network. In practice, it is better to put the
adaptation layer right after the bottleneck layer in a network, i.e., the fully-connected
layer which has the smallest number of hidden units compared with other layers. In
this way, the size of A and b can be minimized, and thus the adaptation will be more
efficient and effective. From this consideration, we set the dimensionality of layer-
10 in our convNet (Fig. 3.2) to be as low as 200, and the adaptation layer is placed
right after this layer.

The problem in (3.2) is a convex quadratic programming (QP) problem which
can be solved efficiently with a closed-form solution (Zhang and Liu 2013). We use
a self-training strategy for unsupervised adaptation of convNet. We first initialize
the adaptation as A = I and b = 0. After estimating y; and f; from convNet, we
update A and b according to (3.2). With new parameters of A and b, the network
prediction y; and softMax confidence f; will be more accurate. Therefore, we repeat
this process several times to automatically boost the performance. More details on
the writer adaptation process can be found in Zhang and Liu (2013) and Zhang et al.
(2017), and this kind of adaptation for convolutional neural network can also be
extended to many other applications.

66 X.-Y. Zhang et al.
3.2.4 Experiments

We conduct experiments for both online and offline HCCR to compare our
methods with other previously reported state-of-the-art approaches. After that, the
effectiveness for the adaptation of convNet is evaluated on 60 writers from the
ICDAR-2013 competition database.

3.2.4.1 Database

For training the convNets, the databases collected by CASIA (Liu et al. 2011) can
be used as training sets, which contain the offline handwritten character datasets
HWDB1.0-1.2 and the online handwritten character datasets OLHWDB1.0-1.2. In
the following sections, we denote these datasets (either offline or online) simply
as DB1.0-1.2. The test data are the ICDAR-2013 offline and online competition
datasets (Yin et al. 2013) respectively, which were produced by 60 writers different
from the training datasets. The number of character classes is 3755 (level-1 set of
GB2312-80).

3.2.4.2 Offline HCCR Results

Table 3.1 shows the results of different methods on ICDAR-2013 offline competition
database. From Table 3.1, we can find that there is a large gap between the traditional
method (2nd row) and the human-level performance (1st row). Through the three
competitions, the recognition accuracies are gradually increased, which identify the
effectiveness of holding competition for promoting researches. In ICDAR-2011, the
team from IDSIA of Switzerland (4th row) won the first place (Liu et al. 2011),
and in ICDAR-2013, the team from Fujitsu (5th row) took the first place (Yin
et al. 2013). After correcting a bug in their system (Ciresan and Schmidhuber
2013), the team of IDSIA again achieved the best performance (6th row). After
that, by improving their method (Wu et al. 2014), the team from Fujitsu boosted
their performance as shown in 7th row. The human-level performance was firstly
surpassed by Zhong et al. (2015) (8th row) with their Gabor-GoogLeNet. By using
the ensemble of ten models, their accuracy was further improved to 96.74% (10th
row). Recently, the team from Fujitsu (Chen et al. 2015) further improved their
system by using proper sample generation (local and global distortion), multi-
supervised training, and multi-model ensemble. They achieved 96.58% by a single
network (11th row), and with the ensemble of 5 networks, their accuracy was
improved to 96.79% (12th row). Our proposed method of directMap+convNet can
achieve a new benchmark for offline HCCR as shown in the 13th row of Table 3.1.
Particularly, our result is based on a single network, and our method also has the
lowest memory usage compared with all the other systems, due to the compact
representation of directMap and our special convNet structure.

67

3 Deep Learning Based Handwritten Chinese Character and Text Recognition

ON ON I'+0°'1 qIN0S €T %LE L6 smQ | uoneidepy +1ONAU0D + dejAnoarq 14!

ON ON 'T+0°1 qIN0S €T %5696 sinQ 1ONAUOD) + deANORII el

(S) sax BN CI+HITHO'T qIN0"0S6 %6L96 (S107) Te 30 uey) G-SUNOA-NND Cl
ON SO CIHITHO'T qdIN0061 %8596 (S102) Te 30 uayD JS[SUIS-NND 11

(01) seX ON 'T+0°1 qIN0"0LT %YL 96 (S102) 'Te 10 Suoyz 01-19NP13000-9[quIasug-dDDH 01
(¥) sox ON I'1+0°1 dN6'0LT %Y9°96 (S102) 'Te 30 Suoyz #-1NOT500D-9[quIasU-YDOH 6
ON ON I'1+0°1 dINLL LT BSE96 (S107) "Te 30 Suoyz 10N T3009-10qeD-YDOH 8

(¥) sox BN 11 qINS 90T %9096 (F107) Te 10 npp SunoA NND-JIV L
(8) sex SO 11 qdINO'67¢ %6L'S6 | (€107) 12qNUPTUYDS pue UESII) (NNADIN) NN uwnjo)-ninja 9
(¥) ok SO 't qgDc0v'¢C BLLY6 (€107) Te 10 uIx nsyn,g seuuIp €102-4VADI S
ON SOA 'l dINSE LT %81°C6 (1102) 'Te39 NIy C-uuyIsd] euuiM 1102-d4VADI 14

ON SO 1'1+0°1 dINT 6¢€ %6668 (0107) Te I N3H HR_UUI 0102-ddDD €

ON ON 1'1+0°1 qdIN00C1 BTLTO (€107) Tew 07| AAOTA + 9Ad :POYIRIA [EUONTPEI], C

e/u B/u e/u B/u %€1°96 (£107) T8 12 U1y, Soueunioyred uewnyg 1
J[quiesuy | UOMIO)SI(] | ®'Iep Jururel], AowdpN | AoeInooy PEN| POYIRIN | ON

aseqeiep uonnadwod YODH SUIRIO €10Z-AVAD] U0 SHNsIY

uonnadwod YOOH U0 €10Z-AVADI 103 SPOYIRUW JUAIPIA '€ YL

68 X.-Y. Zhang et al.

3.2.4.3 Online HCCR Results

The comparison of different methods on ICDAR-2013 online competition database
is shown in Table 3.2. For online HCCR, the traditional method (2nd row) is already
better than human performance (1st row), and the human performance for online
HCCR is much lower than offline HCCR. This is because the display of online
characters (stroke coordinates) as still images is not as pleasing as that of offline
samples. The three competitions also exhibit evident progresses for online HCCR.
The best single network (5th row) is the ICDAR-2013 winner from University of
Warwick, which represents the characteristics of stroke trajectory with a “signature”
from the theory of differential equations (Graham 2013) and adopts a sparse
structure of convolutional neural network (Graham 2014). Recently, by combining
multiple domain knowledge and using a “dropSample” training strategy, Yang et al.
(2015) can achieve comparable performance by using a single network (6th row).
With the ensemble of nine networks, they further improve the performance to
97.51% (7th row). With our directMap+convNet, we can also set a new benchmark
for online HCCR as shown in the 8th row of Table 3.2. Our result is based on a single
network without data augmentation, which makes the training process to be more
efficient. The above approaches are all based on convolutional neural networks,
recently, it is shown that the recurrent neural network based approach (Zhang et al.
2018) can further improve the performance of online HCCR.

3.2.4.4 Adaptation Results

Writer adaptation is an important issue for HCCR. Compared with traditional
methods and human-level performance, deep learning based methods can achieve
much higher accuracies. Nevertheless, in this section, we will show that writer
adaptation of deep convNet is still effective in further improving the performance.
The ICDAR-2013 competition database (Yin et al. 2013) contains 60 writers, and to
analyze the behavior of adaptation on individuals, we consider the error reduction
rate:

Errorinitial — Erroradapted

Error reduction rate = (3.4

Erroripitial

The plots of 60 writers by their error reduction rate and initial accuracy are shown
in Fig. 3.3. We can find that: all the error reduction rates are larger than zero (except
one writer), which means after adaptation the accuracies are consistently improved
for both online and offline HCCR. It is also revealed that: for the writers with
high initial accuracy, more improvements can be obtained with adaptation. This
is because the success of self-training relies on the initial prediction. For example,
in the top-right corner of Fig.3.3 (offline HCCR), there is a writer whose initial
accuracy is already as high as 99.33%, but after adaptation it is improved to 99.63%,
given an error reduction rate of more than 44%.

69

3 Deep Learning Based Handwritten Chinese Character and Text Recognition

ON ON I'1+0°1 qINOS €C %16'L6 smQ uoneidepy +1oNAU0D + dejApoari(6

ON ON I'1+0'1 qINOS €T %SS'L6 smQ 1NAU0D + dejpoanq 8

(6) oA BN I'I+0°1 N0 SET B1S L6 (S107) " 10 Suex a[quiasug-NND(-o[dwegdoiq L
ON S9K I'1+0°1 dINOO ST %ETLO (S10T) Te 30 Suex NNOQ-erdwegdoi(9

ON S9X CTIHITH0'L qINO8'LE %6E°L6 (€107) e @ WX APIMIBA () “IoUUIA €102-dVADI S

ON SOA SO+ [+0°] N’ 1Y PBbLLS6 (1102) ‘e 10 NIy €-OA “RPUUIM [10¢-dVADI 14

(2) s9x ON ['1+0°L dIN90°0¢ %b6ETO (0100) e NI CIIDH-LNDS /Ui 0102-4dDD €
ON ON I'I+0°1 dINO°0CI Bb1ES6 (€107) Te @ I 4a01d + 94 :POYIRIN [euonIpeL], C

e/u B/u B/u e/u %61°S6 (€100) Te @ WX 9OUBULIOLIS] Ueuny I
Jrquiosuyg uonIOoISII ele Sururel], KIOWN KoeInooy BEN| POUIOIN 'ON

aseqeieq uonnadwo) YOOH AUIUQ £107-YVADI U0 SINSIY

uonnaduod YIDH SUIUO € 0Z-IVADI 103 SPOYIOW JUAIPIA '€ AYEL

70 X.-Y. Zhang et al.

45 T T T T (o] 50 T T T T
»- Offline HCCR Online HCCR o
—~ 35 4
g g o
g NMEBE 2
- o Seg o0
S ag% | § g%
S [g o © o 7o
i A& 1 $io
4 Og¢ [} 8 2 10 VY |
-g. 10} 5 N .g_
w s o O w O
C °le® 0 ©
0
o
S B e s W% % o % s i 18,
80 8 84 8 8 9 o2 094 9 88 100

Initial Accuracy (%) Initial Accuracy (%)

Fig. 3.3 The error reduction rates of 60 writers for offline and online HCCR

The average accuracies of the 60 writers after adaptation are shown in the
14th row of Table 3.1 and 9th row of Table 3.2 respectively. For offline HCCR,
the accuracy is improved from 96.95% to 97.37%, while for online HCCR, the
accuracy is improved from 97.55% to 97.91%. Note that in the adaptation process,
we only add an adaptation layer into the network with parameters A € R200%200
and b € R?%, which are negligible compared with the full size of convNet. The
number of writer-specific data used for adaptation is equal to (or less than) the
number of classes. Moreover, the whole process is happened in an unsupervised
manner. Consider all these together, we can conclude that the proposed adaptation
layer is effective in improving the accuracy of convNet.

3.3 Handwritten Chinese Text Recognition (HCTR)

3.3.1 System Overview

Our system is based on the integrated segmentation-and-recognition framework,
which typically consists the steps of over-segmentation of a text line image,
construction of the segmentation-recognition candidate lattice, and path search in
the lattice with context fusion. The diagram of our system is shown in Fig. 3.4, and
the tasks of document image pre-processing and text line segmentation are assumed
to have been accomplished externally.

First, the input text line image is over-segmented into a sequence of primitive
image segments by connected component analysis and touching pattern split-
ting (Wang et al. 2012; Liu et al. 2002), so that each segment is a character or a part
of a character. Then, one or more consecutive segments are combined to generate
candidate character patterns, forming a segmentation candidate lattice, and each
path in this lattice is called a candidate segmentation path. Each candidate pattern
is classified to assign a number of candidate character classes using a character

3 Deep Learning Based Handwritten Chinese Character and Text Recognition 71

Input text line

|

I

| Over-segmentation | !
H

Consecutive
primitive segments

| Segments combination |

Segmentation____.
candidate lattice
o Character

| Character recognition |4—

classifier

Character

candidate lattice
Geometric Language”
——| Path search |4— e
maodel l model

Result string

Fig. 3.4 System diagram of HCTR

classifier, and all the candidate patterns in a candidate segmentation path form a
character candidate lattice. All of these character candidate lattices are merged to
construct the segmentation-recognition lattice of the input text line, and each path
in this lattice is constructed by a character sequence paired with a candidate pattern
sequence, which is called a candidate segmentation-recognition path. The rest of
the task is to evaluate each path by fusing multiple contexts and to search the
optimal path with minimum cost (or maximum score) to obtain the segmentation
and recognition result.

We denote a sequence of candidate character patterns as X = xj...Xx,. Each
candidate character is assigned candidate class (denoted as c;) by a character
classifier, and then the result of text line recognition is a character string C =
c1...cp. In this work, we formulate the task of string recognition from Bayesian
decision view, and adopt the path evaluation criterion presented in Wang et al.
(2012) which integrates the character classification score, geometric context (Yin
et al. 2013) and linguistic context. For saving space, we give the criterion directly
below, and more details can be found in Wang et al. (2012).

Denote the character classifier output of candidate class ¢; for the ith character
pattern x; as P(ci|x;). The linguistic context is denoted as P(c;j|h;), where
h;idenotes the history of ¢;. The geometric context models give the unary class-
dependent geometric (ucg) score, unary class-independent geometric (uig) score,
binary class-dependent geometric (bcg) score and binary class-independent geo-
metric (big) score, denoted as P(cilg;®), P(z} = 1]g"*), P(ci-1, c,-lgf”g),
and P(zf = 1] gf"g), respectively, where g;denotes corresponding geometric
features, and the output scores are given by geometric models classifying on fea-
tures extracted. We obtain a log-likelihood function f (X, C)for the segmentation-
recognition path:

72 X.-Y. Zhang et al.

f(X.0) = Z(wi log P(ci|xi) + A1 log P(cilg;®) (3.5)

i=1
+ralog P(zF = 11" + A3 log P(ci_1, cilg’®)

+ialog P(z5 = 1]g") + hslog P(cilhi)),

where w;is the word insertion penalty used to overcome the bias to short strings,
for which we utilize the term of Weighting with Character Pattern Width (WCW)
(Wang et al. 2012), Aj-As are the weights to balance the effects of different
models and are optimized with Maximum Character Accuracy (MCA) criterion
(Wang et al. 2012). Via confidence transformation (transforming classifier output
scores to probabilities), the six models, namely, one character classifier, four
geometric models and one character linguistic model, are combined to evaluate the
segmentation paths. As for path search, a refined frame-synchronous beam search
algorithm (Wang et al. 2012) is employed to find the optimal paths in two steps: first
retain a limited number of partial paths with maximum scores at each frame, and
then find the globally optimal path in the second step.

3.3.2 Neural Network Language Models

To overcome the data sparseness problem of traditional BLMs, we introduce two
types of NNLMs including FNNLMs and RNNLMs in this section. If the sequence
C contains m characters, P(C) can be decomposed as:

m
p(C) =[] plei™, (3.6)
i=1
where c’i_l =< cy,...,ci—1 > denotes the history of character c¢;. For an N-gram

model, it only considers the N — 1 history characters in (3.6):

m m
p(©) =[] pildZy,) =]] pleilhi), (3.7)
i=1 i=1
where hj = ¢/”\ .| =< ¢i—N1, ..., ci—1 > (hy is null). Although FNNLMs can

be trained with larger context sizes than BLMs, it is intrinsically an N-gram LMs as
well. However, RNNLMs can get rid of limited context size and capture unbounded
context patterns in theory. Therefore, we have h; = c’fl in this case.

3 Deep Learning Based Handwritten Chinese Character and Text Recognition 73

3.3.2.1 Feedforward Neural Network Language Models

In FNNLMs, history characters (or words for English texts) are projected into a
continuous space to perform an implicit smoothing and estimate the probability of
a sequence. Both the projection and estimation can be jointly performed by a multi-
layer neural network. The original FNNLM model was proposed in Bengio et al.
(2003) to attack the curse of dimensionality, and the basic architecture with one
hidden layer is shown in Fig. 3.5a.

The input of the N-gram FNNLM is formed by concatenating the information of
N — 1 history characters h;, while the outputs are the posterior probabilities of all
the characters in the vocabulary:

plci = wjlhi), j=1....V, (3.8)

where V is the size of the vocabulary, and w; denotes a character class in the
vocabulary. The network functions as follows:

(1) Each of the previous N — 1 input characters is initially encoded as a vector with
length V using the 1-of-V scheme.

(2) Then, each 1-of-V representation of character is projected to a lower dimen-
sional vector denoted as r in a continuous space. In fact, each column of the
P x Vdimensional projection matrix corresponds to a distributed representation,
and all the weights of the projection layer are shared.

(3) After step 2, if we denote the weights between the projection layer and the
hidden layer as W p_y whose dimension should be H x (N — 1) x P) using
the column-major form, the N — 1 history characters’ distributed representations

as R = [rl.Tf Nglr - rl.Tf 1]T, then the hidden layer outputs Scan be computed
as:
S =tanh(Wp g * R), 3.9)
input layer . output
hidden o
: projection output layer g
o layer layer input layer (recurrent)

hidden
layer

B pic = 1)
. C

v i=l

E—bph'_ =a)

3\

(a) (b)

Fig. 3.5 (a) Architecture of FNNLM with one hidden layer. (b) Architecture of RNNLM. P is the
size of one projection, and H, V are the sizes of the hidden and output layer, respectively

74 X.-Y. Zhang et al.

where tanh(-) is the hyperbolic tangent activation function performed element
wise. If there are multiple hidden layers, the same processing of Eq. (3.9)
applies to the succeeding hidden layer with the former hidden layer outputs
as inputs.

(4) Finally, the prediction of all the characters in the vocabulary can be calculated
by

M=Wpgo=x*S, (3.10)

\%4
0 =exp(M)/) exp (m)), (3.11)

i=1

where Wy o is the V x H dimensional weight matrix of the output layer, M is
the vector of the activation values calculated before softmax normalization, m;
is the ith element of M. The exp(-) function as well as the division function are
performed element wise.

The above formulas have absorbed the bias items into the weight parameters for
the sake of illustration simplicity. After all the above operations, the jth component
of O, denoted as o}, corresponds to the probability p(c; = wj|h;). The standard
back-propagation algorithm is used in training to minimize the regularized cross-
entropy criterion:

Vv
E==tjlogo; + BUWpr 3+ Wnold, (3.12)
j=1

where ¢; is the desired output, which is 1 for the next character in the training
sentence, and O for the others.

3.3.2.2 Recurrent Neural Network Language Models

RNNLMs were firstly proposed in Mikolov et al. (2010). Its architecture (Fig. 3.5b)
is similar to that of FNNLMSs, except that the hidden layer involves recurrent
connections. The RNNLM embeds word/character representation projection as well,
and there are mainly three stages for estimation:

(1) The input R(¢) of the time step ¢ is firstly formed by concatenating two parts:
vector x (¢t — 1) representing the previous word ¢;_; by 1-of-V coding, and the
previous hidden layer output S(¢ — 1), expressed as:

Ro)=[x¢t—-DTse - DT, (3.13)

3 Deep Learning Based Handwritten Chinese Character and Text Recognition 75

(2) The input R(t) is then separately projected to a continuous vector S(¢), which
is also the hidden layer for the next time step:

St) =sigm(Wrgxx(t—1)+Wg g xSt —1)), (3.14)

where sigm(-) is the sigmoid activation function performed element wise, W g
and Wy g are H x V projection and H x H recurrent weight matrices,
respectively.

(3) The probabilities of all the words in the vocabulary are estimated in the same
way as the 4th step of FNNLM:s.

The RNNLM is trained by minimizing a regularized cross-entropy criterion
similar to that in Eq. (3.12). However, the recurrent weights are optimized using the
back-propagation through time (BPTT) algorithm (Mikolov et al. 2011c), and the
truncated BPTT is used to prevent the gradient vanishing or explosion problems.

The main difference between FNNLMs and RNNLMs lies in the representation
of the history. For FNNLMs, the history is restricted to limited previous characters;
while for RNNLMs, because of the recurrent connection, the hidden layer represents
the whole history of text theoretically. In this way, RNNLMs can efficiently explore
the context of longer sequence than FNNLMs.

It was observed that for use with larger corpus, the architecture of RNNLMs
should have more hidden units (Mikolov et al. 2011b), otherwise, the performance
can be even inferior to that of BLMs. However, the increase of hidden layer size
also increases the computational complexity. To overcome this problem, Mikolov
et al. combined RNNLMs with maximum entropy models (Mikolov et al. 2011b).
The resulting model, called RNNME, can be trained jointly with BPTT. The
RNNME model yielded promising performance with relatively small hidden layer
sizes.

The maximum entropy model can be seen as a weight matrix that directly con-
nects the input layer and the output layer in neural networks. When using N-gram
features (Fiirnkranz 1998), the direct connection part can offer complementarity
to RNNLMs, therefore, RNNME can achieve superior performance with relatively
simple structures. Furthermore, it is natural to improve the efficiency of RNNME
using hashing, and the RNNME can be viewed as a pruned model with a small hash
array.

3.3.2.3 Hybrid Language Models

For use with large vocabulary tasks, it is a common practice to linearly interpolate
an NNLM with a standard BLM for further improvement (Schwenk et al. 2012).
In such hybrid language models (HLMs), the interpolation weights are usually
estimated by minimizing the perplexity (PPL) on a development dataset.

76 X.-Y. Zhang et al.

To overcome the high computational complexity, NNLMs are usually simplified
with simple structures or approximation techniques. The simplified models are then
combined with BLMs to give hybrid models. Due to the great complementarity
of NNLMs to BLMs (Bengio et al. 2003; Schwenk 2007; Joshua and Goodman
2001; Mikolov et al. 2011a), it was observed that even NNLMs with moderate
performance can considerably improve the performance of HLMs (Wu et al. 2015).
This can be attributed to the fact that NNLMs and BLMs learn very different
distributions (Bengio and Senecal 2008).

3.3.2.4 Acceleration

NNLMs suffer from high computational complexity in both training and testing, due
to the layer-by-layer matrix computation, unlike BLMs that calculate and retrieve
probabilities directly. Since the complexity of NNLM:s is basically proportional to
O(|V]) (Bengio et al. 2003), i.e., the softmax operation of output layer dominates
the processing time, there have been two mainstream techniques for acceleration:
short-list (Schwenk et al. 2012) and output factorization (Morin and Bengio 2005;
Goodman 2001). More details on this issue can be found in Wu et al. (2017).

3.3.3 Convolutional Neural Network Shape Models

To further improve the performance, we consider altering the modules of HCTR
framework, namely, character classifier, over segmentation, and geometric context
models from traditional methods to CNN based models. These models take charac-
ter or text images as input, and hence, are called shape models in general.

3.3.3.1 Character Classifier

We build a 15-layer CNN as the character classifier, which is similar to the one used
for HCCR (with small modifications). Besides the directMaps, we resize the original
character image to 32 x 32 while keeping the aspect ratio as an extra input feature
map, which was found to improve the network convergence. More details on the
architecture of this network can be found in Wu et al. (2017). This network is used
to perform the 7357-way classification, including 7356 character classes and one
non-character class. The extra non-character class unit is to explicitly reject non-
characters, which are generated frequently in text line recognition (Liu et al. 2004).
Wang et al. (2016) have found that it is better to directly add an extra negative class
other than using the cascading CNN.

3 Deep Learning Based Handwritten Chinese Character and Text Recognition 77

3.3.3.2 Over-Segmentation

Over-segmentation is to separate a text line image into primitive segments, each
being a character or a part of a character, such that characters can be formed by
concatenating consecutive primitive segments. Connected component (CC) analysis
has been commonly used for over-segmentation in Chinese text recognition, but
the splitting of touched Chinese character is still critical to the performance of text
recognition. The conventional splitting method based on profile shape analysis (Liu
et al. 2002) has been applied successfully in many works (Wang et al. 2012, 2014;
Wu et al. 2015), but it fails in dealing with complex touching situations, as is shown
in Fig. 3.6a. For improving the character separation rate, we adopt a two-stage CNN
based over-segmentation method:

(1) The text line image is initially over-segmented into primitive segments using the
visibility-based foreground analysis method proposed in Xu et al. (2011). The
position between two adjacent primitive segments is a candidate segmentation
point.

(2) A binary output CNN is used to classify sliding windows on CCs generated in
step 1 for detecting more candidate segmentation points. Detected segmentation
points close to each other are suppressed heuristically.

Fig. 3.6 Examples of
over-segmentation: (a)
Traditional method (Liu et al.
2002), (b) Xu et al. (2011),
(¢) Our method. (d) Sliding
window based (a)
over-segmentation

(b)

—-—— ; S S

78 X.-Y. Zhang et al.

Previous work on neural network based over-segmentation has demonstrated
effective in scene text recognition (He et al. 2015). We further improve this
algorithm in two aspects. Firstly, the visibility-based foreground analysis for over-
segmentation (Xu et al. 2011) before sliding window detection is complementary to
the sliding window method, and can speed up the subsequent operation. Secondly,
we use CNN as the classifier rather than a traditional neural network, for higher
detection rate of segmentation points. The step 2 is elaborated in the following.

On the image of a CC, a fixed-width window slides from left to right with a stride
of 0.1 times the CC height, as depicted in Fig. 3.6d. The window image is classified
by a CNN to judge whether the center column is a segmentation point or not. The
window has the same height as the CC, and the width of 0.8 times the CC height.
We observed experimentally that the segmentation and recognition performance is
insensitive to the stride coefficient ranged from 0.04 to 0.1 and the window width
ranged from 0.6 to 1 times the CC height.

When training a CNN for segment point classification, a complex structure
is prone to overfitting. Hence, we built a simple 4-layer network for binary
classification (details can be found in Wu et al. 2017). This network also uses
extended directMaps mentioned above as input. The CNN is trained using window
image samples with the center positions labeled as segmentation point (positive)
or not (negative). On a CC image, after segmentation point detection by sliding
window classification, we merge adjacent candidate segmentation points which are
close to each other, i.e., horizontal distance less than a threshold, and retain the one
with the smallest vertical projection. The threshold is empirically set as the stroke
width, which is estimated from the contour length and foreground pixel number in
the text line image. Figure 3.6 shows some examples of over-segmentation, where
we can see that the method of Xu et al. (2011) is slightly better at recall rate than
that of Liu et al. (2002), and our proposed method can separate touching characters
better than both the methods of Liu et al. (2002) and Xu et al. (2011).

3.3.3.3 Geometric Context Models

Geometric context models have been successfully used in character string recogni-
tion (Wang et al. 2012; Zhou et al. 2007), and transcript mapping (Yin et al. 2013),
where they play an important role to exclude non-characters and further improve the
system performance. In this study, we adopt the framework of geometric context
model presented in Yin et al. (2013), where geometric context is divided into
four statistical models (unary and binary class-dependent, unary and binary class-
independent), abbreviated as ucg, beg, uig, big, respectively.

The class-dependent geometric model can be seen as a complement to the
character classifier since the candidate patterns retain their original outlines without
normalization designed for character classification, which may exclude some useful
context information related to writing styles. Following Yin et al. (2013), we reduce
the number of character geometry classes to six super-classes. The uig model is
used to measure whether a candidate pattern is a valid character or not, while the

3 Deep Learning Based Handwritten Chinese Character and Text Recognition 79

big model is used to measure whether an over-segmentation gap is a valid between-
character gap or not. They are both two-class (binary classification) models.

For modeling the four geometric models, we used to extract geometric features
firstly, and then use quadratic discriminant function (ucg, beg) or support vector
machine (uig, big) for classification, and finally transform the output scores to
probabilities by confidence transformation. In this work, we utilize CNN to perform
feature extraction and classification in a unified framework, then directly use the
output of a specific unit as the final score. Instead of simply resizing the character
patterns as the input, we acquire the center curve of the text line by polynomial
fitting, as it is necessary to keep the writing styles of text lines for geometric context
models. The degree of polynomial is set to be 0.075 times the connected component
number. After that, the top and bottom boundaries of each CC are adjusted according
to the center curve and the character height. In this case, we use the same CNN
architecture as the one in Zhang et al. (2017) except for different units for output
layers. In order to maintain the writing styles, we only use the original CC image as
input without directMaps.

3.3.4 Experiments

We evaluated the performance of our HCTR system on two databases: a large
database of offline Chinese handwriting called CASIA-HWDB (Liu et al. 2011),
and a small dataset from the ICDAR 2013 Chinese Handwriting Recognition
Competition (Yin et al. 2013), abbreviated as ICDAR-2013.

3.3.4.1 Settings

The details on the database and baseline experimental setup can be found in Wu
et al. (2017). We report recognition performance in terms of two character-level
metrics following (Su et al. 2009): correct rate (CR) and accurate rate (AR):

CR == (Nt - De - SS)/NI’

AR = (Ny — D, — S5 — Ie)/Nt,

(3.15)

where N;is the total number of characters in the transcript of test documents.
The numbers of substitution errors (S,), deletion errors (D,) and insertion errors
(1.) are calculated by aligning the recognition result string with the transcript by
dynamic programming. In addition to the AR and CR, we also measured the PPL
of language models on the development set. Since our experiments involve many
context models, we give a list of the models in Table 3.3.

The generic language models were trained on a text corpus containing about
50 million characters, which is the same as that in Wang et al. (2012). For

80 X.-Y. Zhang et al.

Table 3.3 List of context
models used in HCTR

Abbreviation | Referred model

cls Character classifier (MQDF)

g Union of all geometric models

cbi Character bigram language model

cti Character trigram language model
cfour Character 4-gram language model
cfive Character 5-gram language model

rnn Character recurrent neural network

language model
iwe Interpolating word and class bigram

Table 3.4 Recognition results on ICDAR-2013 dataset

Language model type Combination AR (%) CR (%) Time (h) PPL

BLM cls+iwc+g+cca 89.28 90.22 - -
Wang et al. (2012)

BLM cls+cfive+g 89.03 89.91 2.44 73.09

RNNME cls+rnn+g 89.69 90.41 5.86 56.50

HRMELM cls+rnn+g 89.86 90.58 5.84 52.92

comparison with the results in Wang et al. (2014), we also trained language models
on the same large corpus, which contains the above general corpus and the corpus
from Sogou Labs, containing approximately 1.6 billion characters. In addition, we
collected a development set containing 3.8 million characters from the People’s
Daily corpus (Yu et al. 2003) and TORCH2009 corpus (http://www.bfsu-corpus.org/
channels/corpus), for validating the trained language models.

3.3.4.2 Effects of Language Models

We first compare the recognition performance using language models trained
on the general corpus and traditional over-segmentation in the system. Detailed
comparison of different kinds of baseline systems, FNNLMs, and RNNLMs please
refer to Wu et al. (2017). Since the test set of ICDAR 2013 Chinese handwriting
recognition competition is now widely taken for benchmarking, we report results
on this dataset. We present recognition results with three types of language models:
5-gram BLM, RNNME, and HRMELM, where HRMELM denotes the RNNME
based HLM interpolated with a 5-gram BLM. The recognition results are shown in
Table 3.4, which also gives the results of interpolated word class (iwc) bigram with
candidate character augmentation (CCA) (Wang et al. 2012). Due to the effect of
CCA, the iwc bigram even outperforms the character-based 5-gram BLM. From the
comparison we can find that the RNNME outperforms the 5-gram BLM, and the
HRMELM yields the best performance. Compared to the state-of-the-art result of
the method in Wang et al. (2012), the error rate is reduced by 5.41% relative with
only the help of character level language models.

http://www.bfsu-corpus.org/channels/corpus
http://www.bfsu-corpus.org/channels/corpus

3 Deep Learning Based Handwritten Chinese Character and Text Recognition 81

3.3.4.3 Effects of CNN Shape Models

We replace the traditional character classifier, over-segmentation, and geometric
context models with CNN shape models, and integrate the three CNN-based models
into the recognition system to validate the improvement of performance. Based on
the former comparison of LMs, we only used one best NNLM, the HRMELM. The
recognition results on the CASIA-HWDB database and the ICDAR-2013 dataset
are listed in Table 3.5.

From Table 3.5, the comparison between the traditional models and CNN based
models in this work shows the superiority of the CNN. Combined with CNN
shape models, the HRMELM yields the best performance on both two datasets.
For references, the ICDAR-2013 competition paper (Yin et al. 2013) reported best
results of 89.28% AR and 90.22% CR using the method of Wang et al. (2012).
The work Messina and Louradour (2015) implemented the LSTM-RNN framework
(initially introduced in Graves et al. 2009) for HCTR and reported promising
recognition performance on the ICDAR-2013 dataset: 89.40% AR. This is inferior
to the performance of the proposed method using HRMELM with either traditional
models or CNN shape models. A recent work Wang et al. (2016), which adopts a
similar framework to ours, achieves 95.21% AR and 96.28% CR on the CASIA-
HWDB test set, 94.02% AR and 95.53% CR on the ICDAR-2013 dataset. It should
be mentioned that both Messina and Louradour (2015) and Wang et al. (2016)
removed some special tokens when tested on the ICDAR-2013 dataset.

3.3.4.4 Results with LMs on Large Corpus

To better model linguistic contexts, we extended our experiments using a large
corpus containing 1.6 billion characters, which was used in a previous work of
language model adaptation (Wang et al. 2014). On the large corpus, we trained
a 5-gram BLM with the Katz smoothing. Since it is too time consuming to train
NNLMs on the large corpus, we simply used the NNLMs trained on the general
corpus containing 50 millions of characters, and combined them with BLMs trained
on the large corpus. Particularly, we used the RNNME model trained on the general
corpus and combined it with the 5-gram BLM trained on the large corpus to give
a hybrid model HRMELM. The recognition results on two datasets are shown in
Table 3.6.

From the results of CASIA-HWDB in Table 3.6, we can find that the 5-gram
BLM obviously outperforms the 3-gram cti when trained on large corpus, since the
large corpus alleviates the data sparseness problem. Although the performance of
the 5-gram BLM is improved by the large corpus, the RNNME still benefits the
performance significantly in the HRMELM: it brings 9.23% error rate reduction
compared to the 5-gram BLM. Moreover, CNN shape models again improve
the system performance in the context of large corpus, because they not only
provide larger potential of containing correct candidate character patterns, but also

X.-Y. Zhang et al.

82

uoneydepe [opowr oFen3ue| ew|

899 SI'S6 P0'S6 €891 £9°'S6 $5'S6 S+uunsp | WTAINGH
96T 96 1576 L9'8 S1°S6 $0°S6 S+oAyO+S[W1d NND
¥8'S| 8506 9868 8¥°91 %16 v0'16 S+uunsp | WTAINGH
o 16'68 €0°68 89 7806 €206 3+oAyo+so W1d
- - - L1°01 LET6 €L16| (#107) Te 10 SUBA BW[+3+10+S]0 W1d
- TT06 87°68 8L'81 616 SL'06 | (TI0T) T 10 Suepy BOI+3+0MI+S]O W1d [euonipen
Wowil| (%D KAV WawL| (%A (%) IV uoneuIquIo) W1 [opow adeys
£10T-¥VADI GAMH-VISVD

sjosejep om) uo s[pout Jo 2d£) JuaIagyip Suisn S)NSa1 UONIUS009Y '€ dqeL

83

3 Deep Learning Based Handwritten Chinese Character and Text Recognition

STy €6'S 7€'96 0796 ST €891 S6'S6 88°S6 SHuuI+s[o NND
STy €6'S €6 6516 ST9Y LS91 11726 ¥9'16 S+uur+sp [euonipen | WTHINYH
12°69 £6'C 1£°96 8196 | 1T°S9 168 9%'S6 9€°S6 S+aAYO+S]D NND
1259 e L1T6 8¥'16| 1T°S9 889 116 6L06 S+0ALI+S]D JeuonIpelL,
- - - - - €8°6 8T16 99°06 (#107) ‘T8 32 Suepy S+139+S[0 [euonIpelL,
- - - - - LTOT LET6 €L16 | (#107) T8 10 SUBMBW[++10+S[0 [euonIpeL], N1d
Tdd| (WowiL | (%) YD | (WYY | Tdd, @ewiL | (%) ™D | (%) IV uoneurquio) | [opow adeyg adKy IN'T
€102-4vaoI JAMH-VISVD

snd10o 931e[UO S]] JUISN SJASeIEp OM] UO SI[NSAI UONTUZ003Y 9°¢ dqRL

84 X.-Y. Zhang et al.

offer stronger classification capabilities. Compared to the previous state-of-the-art
baseline (Wang et al. 2014) using Ima on large corpus, our method using HRMELM
and CNN shape models improves the AR by 4.15% absolutely.

It is noteworthy in Table 3.6 that when using the large corpus for training
LMs, the HRMELM shows no obvious superiority to the BLM on the ICDAR-
2013 dataset. We found that the transcripts of the ICDAR-2013 dataset are mostly
included in the corpus from Sogou Labs, thus, the BLM can fit the test data very
well and yields high recognition accuracies. To further investigate into this problem,
we deleted the sentences which appear in the ICDAR-2013 corpus from the large
corpus. However, as the topics of this corpus are very typical and concentrated, on
the ICDAR-2013 dataset, we can achieve 96.16% AR and 96.29% CR with the 5-
gram back-off LM trained on the processed corpus as well. This alerts researchers
to pay attention to the overfitting of language model to the transcripts of test text
images. On the other hand, neural network LMs generalize well to unseen texts.

3.3.4.5 Performance Analysis

We show some examples of text line recognition in Fig. 3.7, which reveal several
factors causing recognition errors. We consider two typical settings: the 5-gram
BLM combined with traditional models, the best language model HRMELM
combined with CNN shape models. The four examples show the effects of both
language models and context evaluation models. The recognition error in Fig. 3.7a
was also shown in Wang et al. (2014), and was not corrected by language model

SEEID PRI Fs v Tﬁ% 4B AR

EErEET EERREET EEETI Y

FEMBFHRITF, M HTWESKEER |

EErrET EENETEEETIT]
(a)

RAWKIES huw@arde. 2WNABHB :w\.{.}a
& + @ +

Hd

ot || H

BB HEE S HMLRZ M LA \aw\ \

BRMERAL LR EZHE | [IMADBELE| [BA]

BR HERAT LR Z E #4 amagﬁwﬁ\\ A |
(b) ()

Fig. 3.7 Recognition of four text lines. For each example, the first row is the text line image,

second row is the result using 5-gram BLM and traditional models, third row is the result using
HRMELM and CNN shape models, fourth row is the transcript (ground-truth)

gt (| gt
;:

d

—_—

3 Deep Learning Based Handwritten Chinese Character and Text Recognition 85

adaptation. However, it is corrected by the HRMELM which captures long-term
context. In (b) the error is corrected by the CNN based character classifier and
geometric models with better modeling of the contexts. In (c), the error is corrected
by CNN based over-segmentation, while the tradition over-segmentation method
could not separate the touched characters. In (d), the error is irreducible due to the
inaccuracy of candidate segmentation-recognition path evaluation.

3.4 Conclusion

This chapter introduces HCCR and HCTR by integrating traditional approaches
with modern deep learning methods. Specifically, we combine the deep convolu-
tional neural network with the domain-specific knowledge of shape normalization
and direction decomposition (directMap) for both online and offline HCCR. Com-
bining directMap with an 11-layer convNet can achieve state-of-the-art performance
without the help from data augmentation and model ensemble. Although deep learn-
ing based methods can achieve very high accuracy, we show that writer adaptation
of deep networks can still improve the performance consistently and significantly.
Furthermore, in HCTR, we make two modifications (using deep learning methods)
to the traditional framework of over-segmentation and path search integrating
multiple contexts. The first one is the neural network language models for modelling
long-distance language contexts, while the other one is the convolutional neural
network shape models for modelling character classifier, over-segmentation, and
geometric context. With this new approach, we can achieve state-of-the-art results
for HCTR. In future, to further improve the performance of HCCR, more advanced
network architecture should be exploited. The extension of writer adaptation from
HCCR to HCTR will further boost the performance since texts usually contain
more style context than characters. Moreover, to further improve the performance
of HCTR, the proposed methods can be hopefully integrated with other end-to-end
deep learning based sequence-to-sequence models.

Acknowledgements This work has been supported by National Natural Science Foundation of
China under Grants 61411136002, 61403380, 61633021, and 61573355.

References

Bai Z, Huo Q (2005) A study on the use of 8-directional features for online handwritten Chinese
character recognition. In: Proceedings of International Conference Document Analysis and
Recognition (ICDAR), pp 262-266

Bengio Y, Courville A, Vincent P (2013) Representation learning: a review and new perspectives.
IEEE Trans Pattern Anal Mach Intell 35(8):1798-1828

Bengio Y, Ducharme R, Vincent P, Jauvin C (2003) A neural probabilistic language model. J Mach
Learn Res 3(2):1137-1155

86 X.-Y. Zhang et al.

Bengio Y, Senecal J-S (2008) Adaptive importance sampling to accelerate training of a neural
probabilistic language model. IEEE Trans Neural Netw 19(4):713-722

Chen L, Wang S, Fan W, Sun J, Naoi S (2015) Beyond human recognition: a CNN-based
framework for handwritten character recognition. In: Proceedings of Asian Conference on
Pattern Recognition (ACPR)

Chen SF, Goodman J (1996) An empirical study of smoothing techniques for language modeling.
In: Proceedings of 34th Annual Meeting on Association for Computational Linguistics, pp 310-
318

Ciresan D, Schmidhuber J (2013) Multi-column deep neural networks for offline handwritten
Chinese character classification. arXiv:1309.0261

Connell SD, Jain AK (2002) Writer adaptation for online handwriting recognition. IEEE Trans
Pattern Anal Mach Intell 24(3):329-346

Dai R-W, Liu C-L, Xiao B-H (2007) Chinese character recognition: history, status and prospects.
Front Comput Sci China 1(2):126-136

Ding K, Deng G, Jin L (2009) An investigation of imaginary stroke technique for cursive online
handwriting Chinese character recognition. In: Proceedings of International Conference on
Document Analysis and Recognition (ICDAR), pp 531-535

Fujisawa H (2008) Forty years of research in character and document recognition—an industrial
perspective. Pattern Recognit 41(8):2435-2446

Fiirnkranz J (1998) A study using n-gram features for text categorization. Austrian Res Inst Artif
Intell 3:1-10

Goodman J (2001) Classes for fast maximum entropy training. In: Proceedings of ICASSP,
pp 561-564

Graham B (2013) Sparse arrays of signatures for online character recognition. arXiv:1308.0371

Graham B (2014) Spatially-sparse convolutional neural networks. arXiv:1409.6070

Graves A, Liwicki M, Fernandez S, Bertolami R, Bunke H, Schmidhuber J (2009) A novel
connectionist system for unconstrained handwriting recognition. IEEE Trans Pattern Anal
Mach Intell 31(5):855-868

He X, Wu Y-C, Chen K, Yin F, Liu C-L (2015) Neural network based over-segmentation for scene
text recognition. In: Proceedings of ACPR, pp 715-719

Hinton G, Salakhutdinov R (2006) Reducing the dimensionality of data with neural networks.
Science 313(5786):504-507

Joshua T, Goodman J (2001) A bit of progress in language modeling extended version. In: Machine
Learning and Applied Statistics Group Microsoft Research, pp 1-72

Katz S (1987) Estimation of probabilities from sparse data for the language model component of
a speech recognizer. IEEE Trans Acoust Speech Signal Process 35(3):400-401

Kimura F, Takashina K, Tsuruoka S, Miyake Y (1987) Modified quadratic discriminant functions
and the application to Chinese character recognition. IEEE Trans Pattern Anal Mach Intell
(1):149-153

Kombrink S, Mikolov T, Karafiat M, Burget L (2011) Recurrent neural network based language
modeling in meeting recognition. In: INTERSPEECH, pp 2877-2880

Krizhevsky A, Sutskever I, Hinton G (2012) ImageNet classification with deep convolutional
neural networks. In: Proceedings of Advances in Neural Information Processing Systems
(NIPS), pp 1097-1105

LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature 521(7553):436—444

Lee H, Verma B (2012) Binary segmentation algorithm for English cursive handwriting
recognition. Pattern Recognit 45(4):1306-1317

Liu C-L (2007) Normalization-cooperated gradient feature extraction for handwritten character
recognition. IEEE Trans Pattern Anal Mach Intell 29(8):1465-1469

Liu C-L, Jaeger S, Nakagawa M (2004) Online recognition of Chinese characters: the state-of-the-
art. IEEE Trans Pattern Anal Mach Intell 26(2):198-213

Liu C-L, Koga M, Fujisawa H (2002) Lexicon-driven segmentation and recognition of handwritten
character strings for Japanese address reading. IEEE Trans Pattern Anal Mach Intell
24(11):1425-1437

3 Deep Learning Based Handwritten Chinese Character and Text Recognition 87

Liu C-L, Marukawa K (2005) Pseudo two-dimensional shape normalization methods for
handwritten Chinese character recognition. Pattern Recognit 38(12):2242-2255

Liu C-L, Nakashima K, Sako H, Fujisawa H (2003) Handwritten digit recognition: benchmarking
of state-of-the-art techniques. Pattern Recognit 36(10):2271-2285

Liu C-L, Sako H, Fujisawa H (2004) Effects of classifier structures and training regimes on
integrated segmentation and recognition of handwritten numeral strings. IEEE Trans Pattern
Anal Mach Intell 26(11):1395-1407

Liu C-L, Yin F, Wang D-H, Wang Q-F (2010) Chinese handwriting recognition contest 2010. In:
Proceedings of Chinese Conference on Pattern Recognition (CCPR)

Liu C-L, Yin F, Wang D-H, Wang Q-F (2011) CASIA online and offline Chinese handwriting
databases. In: Proceedings of International Conference on Document Analysis and Recognition
(ICDAR), pp 3741

Liu C-L, Yin F, Wang D-H, Wang Q-F (2013) Online and offline handwritten Chinese character
recognition: benchmarking on new databases. Pattern Recognit 46(1):155-162

Liu C-L, Yin F, Wang Q-F, Wang D-H (2011) ICDAR 2011 Chinese handwriting recognition com-
petition. In: Proceedings of International Conference on Document Analysis and Recognition
(ICDAR), pp 1464-1469

Liu C-L, Zhou X-D (2006) Online Japanese character recognition using trajectory-based
normalization and direction feature extraction. In: Proceedings of International Workshop on
Frontiers in Handwriting Recognition (IWFHR), pp 217-222

Maas A, Hannun A, Ng A (2013) Rectifier nonlinearities improve neural network acoustic models.
In: Proceedings of International Conference on Machine Learning (ICML)

Messina R, Louradour J (2015) Segmentation-free handwritten Chinese text recognition with
LSTM-RNN. In: Proceedings of 13th International Conference on Document Analysis and
Recognition, pp 171-175

Mikolov T, Deoras A, Kombrink S, Burget L, Cernocky J (2011) Empirical evaluation and
combination of advanced language modeling techniques. In: INTERSPEECH, pp 605-608

Mikolov T, Deoras A, Povey D, Burget L, Cemocky J (2011) Strategies for training large scale
neural network language models. In: Proceedings of ASRU, pp 196-201

Mikolov T, Karafiat M, Burget L, Cernocky J, Khudanpur S (2010) Recurrent neural network
based language model. In: Proceedings of INTERSPEECH, pp 1045-1048

Mikolov T, Kombrink S, Burget L, Cernocky J, Khudanpur S (2011) Extensions of recurrent neural
network language model. In: Proceedings of ICASSP, pp 5528-5531

Morin F, Bengio Y (2005) Hierarchical probabilistic neural network language model. In:
Proceedings of AISTATS, vol 5, pp 246-252

Rumelhart D, Hinton G, Williams R (1986) Learning representations by back-propagating errors.
Nature 323(9):533-536

Sarkar P, Nagy G (2005) Style consistent classification of isogenous patterns. IEEE Trans Pattern
Anal Mach Intell 27(1):88-98

Schwenk H (2007) Continuous space language models. Comput Speech Lang 21(3):492-518

Schwenk H (2012) Continuous space translation models for phrase-based statistical machine
translation. In: Proceedings of COLING, pp 1071-1080

Schwenk H, Rousseau A, Attik M (2012) Large, pruned or continuous space language models on
a GPU for statistical machine translation. In: Proceedings of NAACL-HLT 2012 Workshop,
pp 11-19

Simonyan K, Zisserman A (2015) Very deep convolutional networks for large-scale image
recognition. In: Proceedings of International Conference on Learning Representations (ICLR)

Srivastava N, Hinton G, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple
way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929-1958

Su T-H, Zhang T-W, Guan D-J, Huang H-J Off-line recognition of realistic Chinese handwriting
using segmentation-free strategy. Pattern Recognit 42(1):167-182 (2009)

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich
A (2015) Going deeper with convolutions. In: Proceedings of Computer Vision and Pattern
Recognition (CVPR)

88 X.-Y. Zhang et al.

Wang Q-F, Yin F, Liu C-L (2012) Handwritten Chinese text recognition by integrating multiple
contexts. IEEE Trans Pattern Anal Mach Intell 34(8):1469-1481

Wang Q-F, Yin F, Liu C-L (2014) Unsupervised language model adaptation for handwritten
Chinese text recognition. Pattern Recognit 47(3):1202-1216

Wang S, Chen L, Xu L, Fan W, Sun J, Naoi S (2016) Deep knowledge training and heterogeneous
CNN for handwritten Chinese text recognition. In: Proceedings of 15th ICFHR, pp 84-89

Wu C, Fan W, He Y, Sun J, Naoi S (2014) Handwritten character recognition by alternately
trained relaxation convolutional neural network. In: Proceedings of International Conference
on Frontiers in Handwriting Recognition (ICFHR), pp 291-296

Wu Y-C, Yin F, Liu C-L (2015) Evaluation of neural network language models in handwritten
Chinese text recognition. In: Proceedings of 13th International Conference on Document
Analysis and Recognition, pp 166—170

Wu Y-C, Yin F, Liu C-L (2017) Improving handwritten Chinese text recognition using neural
network language models and convolutional neural network shape models. Pattern Recognit
65:251-264

Xu L, Yin F, Wang Q-F, Liu C-L (2011) Touching character separation in Chinese handwriting
using visibility-based foreground analysis. In: Proceedings of 11th International Conference
on Document Analysis and Recognition, pp 859—863

Yang W, Jin L, Tao D, Xie Z, Feng Z (2015) DropSample: a new training method to enhance deep
convolutional neural networks for large-scale unconstrained handwritten Chinese character
recognition. arXiv:1505.05354

Yin F, Wang Q-F, Liu C-L (2013) Transcript mapping for handwritten Chinese documents by
integrating character recognition model and geometric context. Pattern Recognit 46(10):2807—
2818

Yin F, Wang Q-F, Zhang X-Y, Liu C-L (2013) ICDAR 2013 Chinese handwriting recognition com-
petition. In: Proceedings of International Conference on Document Analysis and Recognition
(ICDAR), pp 1095-1101

Yu S, Duan H, Swen B, Chang B-B (2003) Specification for corpus processing at Peking
University: word segmentation, pos tagging and phonetic notation. J Chinese Lang Comput
13(2):1-20

Zamora-Martinez F, Frinken V, Espafia-Boquera S, Castro-Bleda MJ, Fischer A, Bunke H (2014)
Neural network language models for off-line handwriting recognition. Pattern Recognit
47(4):1642-1652

Zhang X-Y, Bengio Y, Liu C-L (2017) Online and offline handwritten Chinese character
recognition: a comprehensive study and new benchmark. Pattern Recognit 61:348-360

Zhang X-Y, Liu C-L (2013) Writer adaptation with style transfer mapping. IEEE Trans Pattern
Anal Mach Intell 35(7):1773-1787

Zhang X-Y, Yin F, Zhang Y-M, Liu C-L, Bengio Y (2018) Drawing and recognizing Chinese
characters with recurrent neural network. IEEE Trans Pattern Anal Mach Intell (PAMI)
40(4):849-862

Zhong Z, Jin L, Xie Z (2015) High performance offline handwritten Chinese character recognition
using GoogLeNet and directional feature maps. In: Proceedings of International Conference
on Document Analysis and Recognition (ICDAR)

Zhou X-D, Yu J-L, Liu C-L, Nagasaki T, Marukawa K (2007) Online handwritten Japanese char-
acter string recognition incorporating geometric context. In: Proceedings of 9th International
Conference on Document Analysis and Recognition, pp 48-52

Chapter 4 ®
Deep Learning and Its Applications Qe
to Natural Language Processing

Haiqin Yang, Linkai Luo, Lap Pong Chueng, David Ling, and Francis Chin

Abstract Natural language processing (NLP), utilizing computer programs to pro-
cess large amounts of language data, is a key research area in artificial intelligence
and computer science. Deep learning technologies have been well developed and
applied in this area. However, the literature still lacks a succinct survey, which would
allow readers to get a quick understanding of (1) how the deep learning technologies
apply to NLP and (2) what the promising applications are. In this survey, we try
to investigate the recent developments of NLP, centered around natural language
understanding, to answer these two questions. First, we explore the newly developed
word embedding or word representation methods. Then, we describe two powerful
learning models, Recurrent Neural Networks and Convolutional Neural Networks.
Next, we outline five key NLP applications, including (1) part-of-speech tagging
and named entity recognition, two fundamental NLP applications; (2) machine
translation and automatic English grammatical error correction, two applications
with prominent commercial value; and (3) image description, an application
requiring technologies of both computer vision and NLP. Moreover, we present a
series of benchmark datasets which would be useful for researchers to evaluate the
performance of models in the related applications.

Keywords Deep learning - Natural language processing - Word2Vec - Recurrent
neural networks - Convolutional neural networks

H. Yang (><) - L. Luo - L. P. Chueng - D. Ling - F. Chin

Department of Computing, Deep Learning Research and Application Centre, Hang Seng
Management College, Sha Tin, Hong Kong

e-mail: hyang@hsmc.edu.hk; linkailuo@hsmc.edu.hk; Ipcheung @hsmc.edu.hk;
davidling@hsmc.edu.hk; francischin@hsmc.edu.hk

© Springer Nature Switzerland AG 2019 89
K. Huang et al. (eds.), Deep Learning: Fundamentals, Theory and Applications,
Cognitive Computation Trends 2, https://doi.org/10.1007/978-3-030-06073-2_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06073-2_4&domain=pdf
mailto:hyang@hsmc.edu.hk
mailto:linkailuo@hsmc.edu.hk
mailto:lpcheung@hsmc.edu.hk
mailto:davidling@hsmc.edu.hk
mailto:francischin@hsmc.edu.hk
https://doi.org/10.1007/978-3-030-06073-2_4

90 H. Yang et al.

4.1 Introduction

Deep learning has revived neural networks and artificial intelligence technologies
to effectively learn data representation from the original data (LeCun et al. 2015;
Goodfellow et al. 2016). Excellent performance has been reported in speech
recognition (Graves et al. 2013) and computer vision (Krizhevsky et al. 2017). Now,
much effort has now turned to the area of natural language processing.

Natural language processing (NLP), utilizing computer programs to process
large amounts of language data, is a key research area in artificial intelligence and
computer science. Challenges of NLP include speech recognition, natural language
understanding, and natural language generation. Though much effort has been
devoted in this area, the literature still lacks a succinct survey, which would allow
readers to get a quick understanding of how the deep learning technologies apply to
NLP and what the interesting applications are.

In this survey, we try to investigate recent development of NLP to answer the
above two questions. We mainly focus on the topics that tackle the challenge of
natural language understanding. We will divide the introduction into the following
three aspects:

— summarizing the neural language models to learn word vector representations,
including Word2vec and Glove (Mikolov et al. 2013a,b; Pennington et al. 2014),

— introducing the powerful tools of the recurrent neural networks (RNNs) (Elman
1990; Chung et al. 2014; Hochreiter and Schmidhuber 1997) and the convolu-
tional neural networks (CNNs) (Kim 2014; dos Santos and Gatti 2014; Gehring
et al. 2017), for language models to capture dependencies in languages. More
specifically, we will introduce two popular extensions of RNNs, i.e., the long
short-term memory (LSMT) (Hochreiter and Schmidhuber 1997) network and
the Gated Recurrent Unit (GRU) (Chung et al. 2014) network, and briefly discuss
the efficiency of CNNs for NLP.

— outlining and sketching the development of five key NLP applications, including
part-of-speech (POS) tagging (Collobert et al. 2011; Toutanova et al. 2003),
named entity recognition (NER) (Collobert et al. 2011; Florian et al. 2003),
machine translation (Bahdanau et al. 2014; Sutskever et al. 2014), automatic
English grammatical error correction (Bhirud et al. 2017; Hoang et al. 2016;
Manchanda et al. 2016; Ng et al. 2014), and image description (Bernardi et al.
2016; Hodosh et al. 2013; Karpathy and Fei-Fei 2017).

Finally, we present a series of benchmark datasets which are popularly applied
in the above models and applications, while concluding the whole article with some
discussions. We hope this short review of the recent progress of NLP can help
researchers new to the area to quickly enter this field.

4 DL for NLP 91
4.2 Learning Word Representations

A critical issue of NLP is to effectively represent the features from the origi-
nal text data. Traditionally, the numerical statistics, such as term frequency or
term frequency inverse document frequency (tf-idf), are utilized to determine the
importance of a word. However, in NLP, the goal is to extract the semantic
meaning from the given corpus. In the following, we will introduce the state-of-
the-art word embedding methods, including word2vec (Mikolov et al. 2013a) and
Glove (Pennington et al. 2014).

Word embeddings (or word representations) are arguably the most widely known
technique in the recent history of NLP. Formally, a word embedding or a word
representation is represented as a vector of real numbers for each word in the
vocabulary. There are various approaches to learn word embeddings, which force
similar words to be as close as possible in the semantic space. Among them
word2vec and Glove have attracted a great amount of attention in recent 4 years.
These two methods are based on the distributional hypothesis (Harris 1954), where
words appearing in similar contexts tend to have similar meaning, and the concept
that one can know a word by the company it keeps (Firth 1957).

Word2vec (Mikolov et al. 2013a) is not a new concept; however, it gained pop-
ularity only after two important papers Mikolov et al. (2013a,b) were published
in 2013. Word2vec models are constructed by shallow (only two-layer) feedfor-
ward neural networks to reconstruct linguistic contexts of words. The networks
are fed a large corpus of text and then produce a vector space that is shown to
carry the semantic meanings. In Mikolov et al. (2013a), two wor2vec models,
i.e., Continuous Bag of Words (CBOW) and skip-gram, are introduced. In
CBOW, the word embeddings is constructed through a supervised deep learning
approach by considering the fake learning task of predicting a word by its
surrounding context, which is usually restricted to a small window of words.
In skip-gram, the model utilizes the current word to predict its surrounding
context words. Both approaches take the value of the vector of a fixed-size inner
layer as the embedding. Note that the order of context words does not influence
the prediction in both settings. According to Mikolov et al. (2013a), CBOW
trains faster than skip-gram, but skip-gram does better job in detecting infrequent
words.

One main issue of word2vec is the high computational cost due to the
huge amount of corpora. In Mikolov et al. (2013b), hierarchical softmax and
negative sampling are proposed to address the computational issue. Moreover,
to enhance computational efficiency, several tricks are adopted: including (1)
eliminating most frequent words such as “a”, “the”, and etc., as they provide
less informational value than rare words; and (2) learning common phrases and
treating them as single words, e.g., “‘New York” is replaced by “New_York”.
More details about the algorithms and the tricks can be found in Rong (2014).

92 H. Yang et al.

An implementation of word2vec in C language is available in the Google Code
Archive! and its Python version can be downloaded in gensim.>

Glove (Pennington et al. 2014) is based on the hyperthesis that related words
often appear in the same documents and looks at the ratio of the co-occurrence
probability of two words rather than their co-occurrence probability. That is, the
Glove algorithm involves collecting word co-occurrence statistics in the form of
a word co-occurrence matrix X, whose element X;; represents how often word i
appears in the context of word j. It then defines a weighted cost function to yield
the final word vectors for all the words in the vocabulary. The corresponding
source code for the model and pre-trained word vectors are available here.’

Word embeddings are widely adopted in a variant of NLP tasks. In Kim (2014),
the pre-trained word2vec is directly employed for sentence-level classifications.
In Hu et al. (2017, 2018), the pre-trained word2vec is tested in predicting the
quality of online health expert question-answering services. It is noted that the
determination of word vector dimensions is mostly task-dependent. For example,
a smaller dimensionality works better for more syntactic tasks such as named entity
recognition (Melamud et al. 2016) or part-of-speech (POS) tagging (Plank et al.
2016), while a larger dimensionality is more effective for more semantic tasks such
as sentiment analysis (Ruder et al. 2016).

4.3 Learning Models

A long-running challenge of NLP models is to capture dependencies, especially the
long-distance dependencies, of sentences. A natural idea is to apply the powerful
sequence data learning models, i.e., the recurrent neural networks (RNNs) (Elman
1990), in language models. Hence, in the following, we will introduce RNNs and
more especially, the famous long short-term memory (LSMT) network (Hochre-
iter and Schmidhuber 1997) and the recently proposed Gated Recurrent Unit
(GRU) (Chung et al. 2014). Moreover, we will briefly describe convolutional neural
networks (CNNs) in NLP, which can be efficiently trained.

4.3.1 Recurrent Neural Networks (RNNs)

RNNSs are powerful tools for language models, since they have the ability to capture
long-distance dependencies in sequence data. The idea to model long-distance
dependencies is quite straightforward, that is, to simply use the previous hidden

Thttps://code.google.com/archive/p/word2vec/
Zhttps://radimrehurek.com/gensim/
3https://nlp.stanford.edu/projects/glove/

https://code.google.com/archive/p/word2vec/
https://radimrehurek.com/gensim/
https://nlp.stanford.edu/projects/glove/

4 DL for NLP 93

&)

i
'l

}_,

T3
' i

Fig. 4.1 Architecture of RNN

state h;_1 as input when calculating the current hidden state h;. See Fig. 4.1 for an
illustration, where the recursive node can be unfolded into a sequence of nodes.
Mathematically, an RNN can be defined by the following equation:

4.1
0 otherwise. “.1)

h, = {tanh (Wanxr + Wpphe oy +bp) £ >1,
where X; is the ¢-th sequence input, W is the weight matrix, and b is the bias vector.
At the 7-th (> 1) time stamp, the only difference between an RNN and a standard
neural network lies in the additional connection Wj,,h;_{ from the hidden state at
time step ¢t — 1 to that at the ¢ time stamp.

Though RNNs are simply and easy to compute, they encounter the vanishing
gradient problem, which results in little change in the weights and thus no training,
or the exploding gradient problems, which results in large changes in the weights
and thus unstable training. These problems typically arises in the back propagation
algorithm for updating the weights of the networks (Pascanu et al. 2013). In Pascanu
et al. (2013), a gradient norm clipping strategy is proposed to deal with exploding
gradients and a soft constraint is proposed for the vanishing gradients problem. The
proposed method does not utilize the information in a whole.

RNNs are very effective for sequence processing, especially for short-term
dependencies, i.e., neighboring contexts. However, if the sequence is long, the long
term information is lost. One successful and popular model is to modify the RNN
architecture, producing namely the long short-term memory (LSMT) (Hochreiter
and Schmidhuber 1997) network. The creativity of LSTM is to introduce the
memory cell ¢ and gates that controlling the signal flows in the architecture. See
the illustrated architecture in Fig. 4.2a and the corresponding formulas as follows:

f, =0 (Wi, + Wyrh_ +by) 4.2)
ir =0 (Wyix, + Wpihy_1 +by) (4.3)
0 =0 (Wyeox; + Wyohi—1 +by,) “4.4)
¢ = tanh (WyeX; + Wych,_1 +be) (4.5)
¢=foc_1+i,0¢ (4.6)

h; = o, © tanh(c,). 4.7

94 H. Yang et al.

P
(h)
-
h,_ 1 (3
Ci=1] ” R % &
n
.-"l' _“\}

L

h,

®
®

Fig. 4.2 Architecture of (a) LSTM and (b) GRU

Equations (4.2), (4.3) and (4.4) correspond to the forget gate, the input gate, and the
output gate, respectively. o is the logistic function outputting the value in the range
[0, 1], W and b are the weight matrix and bias vector, respectively, and © is the
element wise multiplication operator. Equations 4.2, 4.3 and 4.4 corresponds to the
forget gate, input gate and output gate, respectively. The function of these gates, as
their name indicate, is either allow all signal information to pass through (the gate
output equals 1) or block it from passing (the gate output equals 0).

In addition to the standard LSTM model described above, a few LSTM variants
have been proposed and proven to be effective. Among them, the Gated Recurrent
Unit (GRU) (Chung et al. 2014) network is one of the most popular ones. GRU is
simpler than a standard LSTM as it combines the input gate and the forget gate into a
single update gate. See the illustrated architecture in Fig. 4.2b and the corresponding
formulas as follows:

r; =0 (WeX, + Wy h_ +b,) (4.8)
7 =0 (WeX, + Wychy_y +by) (4.9)
h; = tanh (W,,x, + Wy (r; O h,_1) +by) (4.10)
hy=(1-2)0h_+z Oh,. 4.11)

Compared to the LSTM, the GRU has slightly fewer parameters and also does not
have a separate “cell” to store intermediate information. Due to its simplicity, GRU
has been extensively used in many sequence learning tasks to conserve memory
or computation time. Besides GRU, there are a few variants that share similar but
slightly different architecture as LSTM. More details can be found in Gers and
Schmidhuber (2000), Koutnik et al. (2014), Graves et al. (2017), and Jézefowicz
et al. (2015).

4 DL for NLP 95
4.3.2 Convolutional Neural Networks (CNNs)

While RNNs are the ideal choices for many NLP tasks, they have an inherent
limitation. Most RNNs rely on bi-directional encoders to build representations of
both past and future contexts (Bahdanau et al. 2014; Zhou et al. 2016). They can only
process one word at a time. It is less natural to utilize the parallelization architecture
of GPU computation in the training and the hierarchical representations over the
input sequence (Gehring et al. 2017). To tackle these challenges, researchers have
proposed the convolutional architecture for neural machine translation (Gehring
et al. 2017). The work borrows the idea of CNNs which utilize layers with
convolving filters to extract local features and have been successfully applied
in image processing (LeCun et al. 1998). In the convolutional architecture, the
input elements x = (x1, x2, ..., X;;) are embedded in a distributional space as
w = (wy, w2, ..., Wy)), where w; € R/ . The final input element representation is
computed by e = (w1 + p1, w2 + p2, ..., Wy + pm), Where p = (p1, p2, -+ Pm)
is the embedded representation of the absolute position of input elements with
pj € R/. A convolutional block structure is applied in the input elements to output
the decoder network g = (g1, g2, - .., &) The proposed architecture is reported to
outperform the previous best result by 1.9 BLEU on WMT’ 16 English-Romanian
translation (Zhou et al. 2016).

CNNs not only can compute all words simultaneously by taking advantage of
GPU parallelization computation, which shows much faster training than RNNs, but
they also show better performance than the LSTM models (Zhou et al. 2016). Other
NLP tasks, such as sentence-level sentiment analysis (Kim 2014; dos Santos and
Gatti 2014), character-level machine translation (Costa-Jussa and Fonollosa 2016),
and simple question answering (Yin et al. 2016), also demonstrate the effectiveness
of CNNZs.

4.4 Applications

In the following, we present the development of five key NLP applications: part-
of-speech (POS) tagging and named entity recognition (NER) are two fundamental
NLP applications, which can enrich the analysis of other NLP applications (Col-
lobert et al. 2011; Florian et al. 2003; Toutanova et al. 2003); machine translation
and automatic English grammatical error correction are two applications containing
direct commercial value (Bahdanau et al. 2014; Bhirud et al. 2017; Hoang et al.
2016; Manchanda et al. 2016; Ng et al. 2014; Sutskever et al. 2014); and image
description, an attractive and significant application requiring the techniques of both
computer vision and NLP (Bernardi et al. 2016; Hodosh et al. 2013; Karpathy and
Fei-Fei 2017).

96 H. Yang et al.
4.4.1 Part-of-Speech (POS) Tagging

Part-of-speech (POS) tagging (Collobert et al. 2011) aims at labeling (assocating)
each word with a unique tag that indicates its syntactic role, e.g., plural noun,
adverbs, etc. The POS tags are usually utilized as common input features for various
NLP tasks, e.g., information retrieval, machine translation (Ueffing and Ney 2003),
grammar checking (Ng et al. 2014), etc.

Nowadays, the most common used POS category is the tag set in the Penn
Treebank Project, which defines 48 different tags (Marcus et al. 1993). They are
commonly used in various NLP libraries, such as NLTK? in Python, Stanford
tagger,” and Apache OpenNLP.®

The existing algorithms for tagging can be generally categorized into two
groups, the rule-based group and the stochastic group. The rule-based meth-
ods such as the Eric Brills tagger (Brill 1992) and the disambiguation rules
in LanguageTool,” are usually hand-crafted, derived from corpus, or developed
collaboratively (e.g., for LanguageTool). The rule-based methods can achieve a
pretty low error rate (Brill 1992), but generally, they are still less sophisticated
when compared with stochastic taggers. In contrast, stochastic taggers, such as the
Hidden Markov Model (HMM) (Brants 2000) and the Maximum Entropy Markov
Model (MEMM) (McCallum et al. 2000), model the sequence of POS tags as the
hidden states, which can be learned from the observed word sequence of sentences.
The probability of co-occurrence of words and tags is modeled by HMM (Brants
2000) and the conditional probability of tags given the words is modeled by
MEMM (McCallum et al. 2000) to output the corresponding tags.

Later, more advanced methods have been proposed to improve both HMM and
MEMM. The methods include utilizing bidirectional cyclic dependency network
tagger (Manning 2011) and using other linguistic features (Jurafsky and Martin
2017). More than 96% accuracy was reported by both HMM (Brants 2000) and
MEMM (Manning 2011). More state-of-the-art performances can be found on
internet.’

4.4.2 Named Entity Recognition (NER)

Named entity recognition (NER) is a classic NLP task that seeks to locate and
classify named entities such as person names, organizations, locations, numbers,

“http://www.nltk.org/
Shttps://nlp.stanford.edu/software/tagger.shtml
6https://opennlp.apache.org/
7http://wiki.languagetool.org/developing-a-disambiguator
8https://aclweb.org/aclwiki/POS_Tagging_(State_of _the_art)

http://www.nltk.org/
https://nlp.stanford.edu/software/tagger.shtml
https://opennlp.apache.org/
http://wiki.languagetool.org/developing-a-disambiguator
https://aclweb.org/aclwiki/POS_Tagging_(State_of_the_art)

4 DL for NLP 97

dates, etc. from the text corpora. Most existing NER taggers are built on linear
statistical models, such as Hidden Markov Models (McCallum et al. 2000) and
Conditional Random Field (Lafferty et al. 2001). Traditional NER techniques
heavily rely on hand-crafted features for the taggers and only apply for small
corpora (Chieu and Ng 2002).

Nowadays, due to the development of deep learning technologies, a variety
of neural network models, such as LSTM and CNN, have been proposed to
establish the tagger models (Huang et al. 2015; Lample et al. 2016). Unlike the
standard neural networks for conventional classification whose final layer is a
softmax, the NN based named entity models utilize a linear-chain CRF to model the
dependencies across the word sequence for NER. In Huang et al. (2015) and Lample
et al. (2016), the sequence tagging model consists of a bidirectional LSTM network
and a CRF layer (BI-LSTM-CRF). In Ma and Hovy (2016), the BI-LSTM-CREF is
modified by adding a character-based CNNs at the bottom of BI-LSTM. The CNNs
are used to encode the characters of a word into its character-level representation.
The added character-level information, together with word-level representation is
then fed into the bidirectional LSTM. This so-called Bi-directional LSTM-CNNs-
CRF architecture is reported to be better than the BI-LSTM-CRF one. Similar
publications have been generated to implement the LSTM network and the CRF
layer for NER tasks (Chiu and Nichols 2016; Yang et al. 2016; Wang et al. 2015).

4.4.3 Neural Machine Translation

The objective of machine translation (MT) is to translate text or speech from
one language to another one. Conventional MT utilizes statistical models whose
parameters are inferred from bilingual text corpora. Recently, a major development
in MT is the adoption of sequence to sequence learning models, promoting the
state-of-art technique called neural machine translation (NMT) (Wu et al. 2016;
Gehring et al. 2017; Vaswani et al. 2017). NMT has been proven great success
owing to the rapid development of deep learning technologies, whose architecture
is comprised of an encoder-decoder model (Sutskever et al. 2014), and an attention
mechanism (Bahdanau et al. 2014).

An encoder model RNN,,,. provides a representation of the source sentence by
inputing a sequence of source words X = (x1, ..., X;;) and producing a sequence of
hidden statesh = (hy, ..., h,). According to Sutskever et al. (2014), a bidirectional
RNN,,,. is usually favored to reduce long sentence dependencies, and the final state
h is the concatenation of the states produced by forward and backward RNNS,
h = [E) (E] The decoder is also a recurrent neural network, RNN.., which
predicts the probability of a target word of a sentence yi, based on the hidden
state h, the previous words y-x = (y1, ..., yx—1), the recurrent hidden state in the
decoder RNN sy, and the context vector ¢. The context vector ¢ is also called the
attention vector, which is computed as a weighted vector of the source hidden state

98 H. Yang et al.

h: Z};E:I a;jhj, where m is the length of source sentence, and «;; is the attention
weight. The attention weight can be calculated in the fashion of concatenation of
bi-directional encoder (Bahdanau et al. 2014) or a simpler version with a location-
based function on the target hidden state (Luong et al. 2015b). Finally, the decoder

outputs a distribution over a fixed-size vocabulary through softmax approximation:

P (y|y <k, x) = softmax (g(¥k—1, €k, Sk)) (4.12)

where g is a non-linear function. The encoder-decoder and attention-driven model
is trained end-to-end by optimizing the negative log likelihood of the target words
using stochastic gradient descent (SGD).

The tuning of hyper-parameters of NMT model is crucial to the performance
of translation. In Britz et al. (2017), it is concluded that a higher dimensional
embedding such as 2,048 usually yields the best performance. Nevertheless, small
dimensionality such as 128 shall surprisingly perform well and converge much
faster for some tasks. The depth of encoder and decoder is not necessarily
deeper than four layers, although in Wu et al. (2016), eight layers are employed.
Bidirectional encoders always outperform unidirectional ones as they are able to
create representations that take both past and future sequence words into account.
The comparison in Wu et al. (2016) also shows that LSTM cells consistently beat
GRU cells. Moreover, beam search (Wiseman and Rush 2016) is commonly used in
most NMT tasks to output more precise target words. Usually, the well-tuned beam
search size ranges from 5 to 10. The algorithm optimizer in the training will also
affect the performance. Adam (Kingma and Ba 2014) optimizer with a fixed learning
rate (smaller than 0.01) without decay seems effective and shows fast convergence.
In some tasks, however, standard SGD with scheduling will generally lead to better
performance although the convergence is relatively slow (Ruder 2016). There are
other hyper-parameters that directly relate to the model performance, to name a
few, dropout (Srivastava et al. 2014), layer normalization (Ba et al. 2016), residual
connection of layers (He et al. 2016), etc.

Next, we summarize some aspects in advancing NMT. The first issue is to restrict
the size of the vocabulary. Though NMT is an open vocabulary problem, the number
of target words of NMT must be limited, because the complexity of training an
NMT model increases as the number of target words increases. In practice, the
target vocabulary size K is often in the range of 30k (Bahdanau et al. 2014) to
80k (Sutskever et al. 2014). Any word out of the vocabulary is represented as
an unknown word, denoted by unk. The traditional NMT model works well if
there are fewer unknown words in the target sentences, but it has been observed
that the performance of translation degrades dramatically if there are too many
unknown words (Jean et al. 2015). An intuitive solution to address this problem
is to use a larger vocabulary, while simultaneously reducing the computational
complexity using sampling approximations (Jean et al. 2015; Mi et al. 2016; Ji
et al. 2015). Other researcher reported that the unknown word problem can be
addressed alternatively without expanding vocabulary. For example, one can replace
the unknown word with special token unk, and then post-process the target sentence

4 DL for NLP 99

by copying the unk from source sentence or applying word translation to the
unknown word (Luong et al. 2015c). Instead of implementing word-based neural
machine translation, other researchers proposed to using character-based NMT to
eliminate unknown words (Costa-Jussa and Fonollosa 2016; Chung et al. 2016),
or using a hybrid method — a combination of word-level and character-level NMT
model (Luong and Manning 2016). The implementation of subword units also
shows significant effectiveness in reducing the vocabulary size (Sennrich et al.
2016b). The algorithm, called byte pair encoding (BPE), starts with a vocabulary
of characters, and replaces the most frequent n-gram pairs with a new n-gram.’
To summarize, the word-level, BPE-level and character-level vocabulary forms the
fundamental treatment of neural machine translation practice.

The second issue is about the training corpus. As widely noted, one of the major
factors behind the success of NMT is the availability of high quality parallel corpora.
How to include more other data sources into NMT training has become critical
and drawn great attention recently. Inspired by statistical machine translation, the
researchers improve the translation quality by leveraging abundant monolingual
corpora for neural machine translation (Gucehre et al. 2015; Sennrich et al. 2016a).
Two recent publications propose an unsupervised machine translation method to
utilize monolingual data (Artetxe et al. 2017; Lample et al. 2017). Both methods
train a neural machine translation model without any parallel corpora with fairly
high accuracy, and establish the future direction for NMT. In Luong et al. (2015a),
Johnson et al. (2017), and Firat et al. (2017), the authors use a single NMT model to
translate between multiple languages, such that the encoder, decoder and attention
modules can be shard across all languages.

The third issue is the implementation of neural machine translation. To deploy
neural machine translation systems, one needs to build the encoder-decoder model
(with attention mechanism) and to train the end-to-end model on GPUs. Nowadasy,
there are quite many toolkits publicly available for research, development and
deployment:

— dl4mt-tutorial (based on Theano): https://github.com/nyu-dl/dl4mt-tutorial
— Seq2seq (based on Tensorflow): https://github.com/google/seq2seq

— OpenNMT (based on Torch/PyTorch): http://opennmt.net

— xnmt (based on DyNet): https://github.com/neulab/xnmt

— Sockeye (based on MXNet): https://github.com/awslabs/sockeye

— Marian (based on C++): https://github.com/marian-nmt/marian

— nmt-keras (based on Keras): https://github.com/lvapeab/nmt-keras

The source code can be found at https://github.com/rsennrich/nematus.

https://github.com/nyu-dl/dl4mt-tutorial
https://github.com/google/seq2seq
http://opennmt.net
https://github.com/neulab/xnmt
https://github.com/awslabs/sockeye
https://github.com/marian-nmt/marian
https://github.com/lvapeab/nmt-keras
https://github.com/rsennrich/nematus

100 H. Yang et al.
4.4.4 Automatic English Grammatical Error Correction

Since English is not the first language of many people in the world, to facilitate
the writing, grammar checkers have been developed. Some commercial or freeware
such as Microsoft Word, Glrammarly,10 LanguageTool,11 Apache Wave,!? and Gin-
ger,'3 can provide grammar checking services. However, due to various exceptions
and rules in natural languages, these grammar checkers are still fall far short of
human English teachers.

To boost the development of grammatical error checking and correction, various
shared tasks and focused sessions were launched to attract researchers’ interests
and contributions. The tasks include the Helping Our Own (HOOQO) Shared Task
in 2011 (Dale and Kilgarriff 2011), the CoNLL Shared Task in 2013 (Ng et al.
2013) and 2014 (Ng et al. 2014), respectively, and the AESW Shared Task in
2016 (Daudaravicius et al. 2016). Each of the shared tasks provided the original
text corpus and the corresponding ones corrected by human editors. The dataset of
CoNLL Shared Task 2013 and 2014 is a collection of 1,414 marked student essays
from the National University of Singapore, where all the students are non-native
English speakers. The detected grammatical errors are classified into 28 types.
Meanwhile, the datasets of the HOO and the AESW shared tasks are extracted from
published papers and proceedings of conferences. The HOO task is a collection
of fractional texts from 19 published papers, while the AESW one is a collection of
shuffled sentences generated from 9,919 published papers (mainly from physics and
mathematics).

Recently, various methods have been proposed to correct the grammatical
errors (Manchanda et al. 2016; Rozovskaya and Roth 2016; Bhirud et al. 2017;
Ng et al. 2014), which can be categorized into three main types: (1) the rule-
based approach, (2) the statistical approach, (3) the machine translation approach.
The rule-based approach utilizes rules in the detection of mistakes. The rules are
usually hand-crafted rules, inputted manually based on different cases. Most of
them use pattern matching, dependency parse tree, as well as POS to find the
grammatical errors, e.g., subject-verb-agreement. The rule-based approach can be
found in LanguageTool (Daniel 2003) and several systems in the CoNLL shared
task (Ng et al. 2014). It is usually too time-consuming to generating the hand-
crafted rules. Hence, researchers turn to the statistical approaches, which can learn
the rules from large corpora such as the English Wikipedia dump, the Google
Book N-gram, Web1T corpus, Cambridge Learner Corpus, and English Giga Word
corpus, et. Some typical methods include (1) extracted tri-grams with low frequency
and particular patterns from the Web1T corpus (Wu et al. 2013), (2) utilizing the

Onhttps://www.grammarly.com/
https://languagetool.org/
2https://incubator.apache.org/wave/
BGinger

https://www.grammarly.com/
https://languagetool.org/
https://incubator.apache.org/wave/
http://Ginger

4 DL for NLP 101

three tokens around the target article and the Averaged Perceptron to suggest the
correct article (Rozovskaya and Roth 2010), and (3) detecting grammar errors by
comparing non-existent bi-grams in Google Book n-gram corpus (Nazar and Renau
2012). The statistical approaches are often favorable in grammar checking because
they only require a big corpus from native English users. In contrast, the machine
translation approaches need a big parallel corpus to extract the corresponding rules.
Due to the development of deep learning technologies, the machine translation
approaches become prevalent in correcting the grammatical errors. These methods
utilize the methods mentioned in Sect. 4.4.3 to feed the problematic sentences and
output the correct ones. For example, the AMU team (Ng et al. 2014) utilized the
Phrase-based machine translation in the detection for the task in CoNLL 2014
while CNN with LSTM is applied to tackle the correction problem (Schmaltz
et al. 2016). In Schmaltz et al. (2016), the input and output sentences are encoded
by some additional tags to fit the requirement of NMT. For example, the input
sentence ‘“The models works <eos>" corresponds to the output sentence ‘“The
models works <ins>work</ins> <eos>", where , <ins>,
and <eos> are the tags denoting the deletion operation, the insertion operation,
and the end of sentence. More recent proposals for machine translation methods
and some fair comparisons can be referred to Junczys-Dowmunt and Grundkiewicz
(2016), Hoang et al. (2016), and Rozovskaya and Roth (2016).

4.4.5 Image Description

Image description (Karpathy and Fei-Fei 2017; Vinyals et al. 2017; Xu et al.
2015) is a challenging and active research topic which requires techniques from
both computer vision and natural language processing. Its goal is to automatically
generate natural language descriptions of images on the corresponding regions.
Researchers have proposed different models to learn about the correspondences
between language and visual data. For example, in Karpathy and Fei-Fei (2017),
a multimodal RNN architecture is proposed to align a modality trained by CNNs
over image regions with a modality trained by bidirectional RNNs over sentences.
In Vinyals et al. (2017), CNNs are applied to learn the representation of images
while LSTMs are utilized to output the sentences. A direct model is built to
maximize the likelihood of the sentence given the image. In Xu et al. (2015),
similar to Vinyals et al. (2017), CNNs are applied to generate the representation of
images and LSTMs are utilized to produce the captions. The key improvement is to
include attention-based mechanisms to further improve the model performance. The
performance of image captioning is increased as new methods have been proposed.
More details can be referred to Bernardi et al. (2016).

102 H. Yang et al.
4.5 Datasets for Natural Language Processing

Many datasets have been published in different research domains for natural
language processing. We try to provide the basic ones mentioned in previous
sections.

4.5.1 Word Embedding

— word2vec'*: The link not only provides the pre-trained vectors in 300-
dimensions of 3 million words and phrases, which are trained on Google News
dataset (about 100 billion words), but also provide various online available
datasets, such as the first billion characters from wikipedia, the latest Wikipedia
dump, the WMTT11 site, and etc.

— Glove!>: The word vectors are trained by Glove (Pennington et al. 2014). The
dataset contains pre-trained vectors trained from sources including Wikipedia,
Twitter and some common crawled data.

4.5.2 N-Gram

— Google Book N-gram'®: The dataset contains 1-5-gram counting from printed
books in different languages, e.g., English, Chinese, French, Hebre, Italian, etc.
Specialized corpora are available for English, like American English, British
English, English Fiction, and English One Million. The n-grams are tagged with
Part-Of-Speech, and are counted yearly.

— Web 1T 5-gram'’: The dataset, contributed by Google, consists of 1-5-gram
counting from accessible websites and yields about 1 trillion tokens. The
compressed file size (gzip’ed) is approximately 24 GB.

4https://code.google.com/archive/p/word2vec/
https://lp.stanford.edu/projects/glove/
16http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
https://catalog.1dc.upenn.edu/ldc2006t13

https://code.google.com/archive/p/word2vec/
https://nlp.stanford.edu/projects/glove/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
https://catalog.ldc.upenn.edu/ldc2006t13

4 DL for NLP 103
4.5.3 Text Classification

— Reuters Corpora (RCV1, RCV2, TRC2)!3: The dataset contains a large
collection of Reuters News stories, which is written in five languages and the
corresponding translations in six categories. Detailed description can be found
in Lewis et al. (2004)

— IMDB Movie Review Sentiment Classification!®: The dataset, consisting of
review comments of 50,000 movies, is first tested in Maas et al. (2011) for binary
sentiment classification.

— News Group Movie Review Sentiment Classification’’: The datasets were
introduced in Pang et al. (2002) and Pang and Lee (2004, 2005) for sentimental
analysis. They consist of movie-review documents labeled with respect to their
overall sentiment polarity (position or negative) or subjective rating (e.g., “two
and a half stars”) and sentences labeled with respect to their subjectivity status
(subjective or objective) or polarity.

4.5.4 Part-Of-Speech (POS) Tagging

— Penn Treebank?!: The dataset selected 2,499 stories from a three year Wall
Street Journal (WSJ) collection of 98,732 stories for syntactic annotation (Mar-
cus et al. 1999).

— Universal Dependencies®”>: Universal Dependencies is a project that seeks
to develop cross-linguistically consistent treebank annotation for multiple lan-
guages. The latest version contains 102 treebanks in 60 languages (Nivre et al.
2017).

4.5.5 Machine Translation

— Europarl®®: The Europarl parallel corpus contains sentences pairs in 21 Euro-
pean languages. Detailed description can be found in Koehn (2005).

8http://trec.nist.gov/data/reuters/reuters.html
Yhttp://ai.stanford.edu/~amaas/data/sentiment/
2Ohttp://www.cs.cornell.edu/people/pabo/movie-review-data/
2Ihttps://catalog.ldc.upenn.edu/Idc99t42
22https://catalog.ldc.upenn.edu/LDC2000T43

23 http://www.statmt.org/europarl/

http://trec.nist.gov/data/reuters/reuters.html
http://ai.stanford.edu/~amaas/data/sentiment/
http://www.cs.cornell.edu/people/pabo/movie-review-data/
https://catalog.ldc.upenn.edu/ldc99t42
https://catalog.ldc.upenn.edu/LDC2000T43
http://www.statmt.org/europarl/

104 H. Yang et al.

— United Nations Parallel Corpus®*: The corpus is generated from the offi-
cial records and other parliamentary documents of the United Nations. These
documents are mostly available in the six official languages of the United
Nations (Ziemski et al. 2016).

4.5.6 Automatic Grammatical Error Correction

— NUS Corpus of Learner English (NUCLE)>: The corpus consists of about
1,400 essays written by students at the National University of Singapore. The
essays are completely annotated with error tags and corrections by English
instructors.

— AESW 2016 Data Set’%: The dataset is a collection of random ordered sentences
extracted from 9,919 published journal articles (mainly from physics and mathe-
matics).The sentences are annotated with the changes made by journal editors.

4.5.7 Image Description

— Flickr8K?’: The dataset is standard benchmark for sentence-based image
description, consisting of around 8K images crawled from the Flickr.com
website, where each image is paired with five different captions to provide
clear descriptions of the salient entities and events (Hodosh et al. 2013).

— Flickr30K?®: The dataset is an extended version of Flickr8K and consists of
around 30K images while each image containing five descriptions (Plummer
et al. 2017).

— MSCOCO?: The dataset consists of 123,287 images with five different descrip-
tions per image (Lin et al. 2014). Images in the dataset are annotated for 80
categories and provided the bounding boxes around all instances in one of the
categories.

Z4https://conferences.unite.un.org/uncorpus
2http://www.comp.nus.edu.sg/~nlp/conll14st.html
20http://textmining.lt/aesw/index.html
2Thttp://nlp.cs.illinois.edu/HockenmaierGroup/8k- pictures.html
Bhttp://web.engr.illinois.edu/~bplumme2/Flickr30kEntities/
Phttp://cocodataset.org/

https://conferences.unite.un.org/uncorpus
http://www.comp.nus.edu.sg/~nlp/conll14st.html
http://textmining.lt/aesw/index.html
http://nlp.cs.illinois.edu/HockenmaierGroup/8k-pictures.html
http://web.engr.illinois.edu/~bplumme2/Flickr30kEntities/
http://cocodataset.org/

4 DL for NLP 105

4.6 Conclusions and Discussions

In this survey, we have provided a succinct review of the recent development
of NLP, including word representation, learning models, and key applications.
Nowadays, Word2vect and Glove are two main successful methods to learn the
word representation in the semantic space. RNNs and CNNs are two mainstreams of
learning models to train the NLP models. After exploring the five key applications,
we envision the following interesting research topics. First, it is effective to
include additional features or results (e.g., POS tagging and NER) to improve the
performance for other applications, such as machine translations and automatic
grammar correction. Second, it is worth investigating the end-to-end model, which
may further improve the model performance. For example, nowadays, the embedded
word representation is learned independently to the applications. One may explore
new representations which fit for the later applications, e.g., sentimental analysis,
text matching. Third, it is promising to explore the advancement of multidisciplinary
approaches. For example, in the image description application, one needs the
technologies from both computer vision and natural language processing. It is
significant to understand both areas and make the breakthrough.

Acknowledgements The work described in this paper was partially supported by the
Research Grants Council of the Hong Kong Special Administrative Region, China (Project
No. UGC/IDS14/16).

References

Artetxe M, Labaka G, Agirre E, Cho K (2017) Unsupervised neural machine translation. CoRR,
abs/1710.11041

Ba JL, Kiros R, Hinton EG (2016) Layer normalization. CoRR, abs/1607.06450

Bahdanau D, Cho K, Bengio Y (2014) Neural machine translation by jointly learning to align and
translate. CoRR, abs/1409.0473

Bernardi R, Cakici R, Elliott D, Erdem A, Erdem E, Ikizler-Cinbis N, Keller F, Muscat A, Plank
B (2016) Automatic description generation from images: a survey of models, datasets, and
evaluation measures. J Artif Intell Res 55:409-442

Bhirud SN, Bhavsar R, Pawar B (2017) Grammar checkers for natural languages:a review. IntJ
Natural Lang Comput 6(4):1

Brants T (2000) Tnt: a statistical part-of-speech tagger. In: ANLC’00, Stroudsburg. Association
for Computational Linguistics, pp 224-231

Brill E (1992) A simple rule-based part of speech tagger. In: ANLC, Stroudsburg, pp 152-155

Britz D, Goldie A, Luong M, Le VQ (2017) Massive exploration of neural machine translation
architectures. CoRR, abs/1703.03906

Chieu LH, Ng TH (2002) Named entity recognition: a maximum entropy approach using global
information. In: COLING, Taipei

Chiu JPC, Nichols E (2016) Named entity recognition with bidirectional LSTM-CNNs. TACL
4:357-370

Chung J, Gulcehre C, Cho K, Bengio Y (2014) Empirical evaluation of gated recurrent neural
networks on sequence modeling. CoRR, abs/1412.3555

106 H. Yang et al.

Chung J, Cho K, Bengio Y (2016) A character-level decoder without explicit segmentation for
neural machine translation. In: ACL, Berlin

Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa PP (2011) Natural language
processing (almost) from scratch. J Mach Learn Res 12:2493-2537

Costa-Jussa MR, Fonollosa JAR (2016) Character-based neural machine translation. In: ACL,
Berlin

Dale R, Kilgarriff A (2011) Helping our own: the HOO 2011 pilot shared task. In: ENLG, Nancy,
pp 242-249

Daniel N (2003) A rule-based style and grammar checker. Master’s thesis, Bielefeld University,
Bielefeld

Daudaravicius V, Banchs ER, Volodina E, Napoles C (2016) A report on the automatic evaluation
of scientific writing shared task. In: Proceedings of the 11th workshop on innovative use of NLP
for building educational applications, BEA@NAACL-HLT 2016, San Diego, 16 June 2016, pp
53-62

dos Santos CN, Gatti M (2014) Deep convolutional neural networks for sentiment analysis of short
texts. In: COLING, Dublin, pp 69-78

Elman LJ (1990) Finding structure in time. Cogn Sci 14(2):179-211

Firat O, Cho K, Sankaran B, Yarman-Vural FT, Bengio Y (2017) Multi-way, multilingual neural
machine translation. Comput Speech Lang 45:236-252

Firth RJ (1957) A synopsis of linguistic theory 1930-1955. Studies in linguistic analysis.
Blackwell, Oxford, pp 1-32

Florian R, Ittycheriah A, Jing H, Zhang T (2003) Named entity recognition through classifier
combination. In: Proceedings of the seventh conference on natural language learning, CoONLL
2003, Held in cooperation with HLT-NAACL 2003, Edmonton, 31 May—1 June 2003, pp 168—
171

Gehring J, Auli M, Grangier D, Dauphin Y (2017) A convolutional encoder model for neural
machine translation. In: ACL, Vancouver, pp 123-135

Gehring J, Auli M, Grangier D, Yarats D, Dauphin NY (2017) Convolutional sequence to sequence
learning. In: ICML, Sydney, pp 1243-1252

Gers AF, Schmidhuber J (2000) Recurrent nets that time and count. In: IICNN (3), Como, pp
189-194

Goodfellow JI, Bengio Y, Courville CA (2016) Deep learning. Adaptive computation and machine
learning. MIT Press, Cambridge

Graves A, Mohamed A, Hinton EG (2013) Speech recognition with deep recurrent neural
networks. In: IEEE ICASSP, British Columbia, pp 6645-6649

Greff K, Srivastava KR, Koutnik J, Steunebrink RB, Schmidhuber J (2017) LSTM: a search space
odyssey. IEEE Trans Neural Netw Learn Syst 28(10):2222-2232

Gucehre C, Firat O, Xu K, Cho K, Barrault L, Lin H, Bougares F, Schwenk H, Bengio Y (2015)
On using monolingual corpora in neural machine translation. CoRR, abs/1503.03535

Harris Z (1954) Distributional structure. Word 10(23):146-162

He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: CVPR, Las
Vegas, pp 770-778

Hoang TD, Chollampatt S, Ng TH (2016) Exploiting n-best hypotheses to improve an SMT
approach to grammatical error correction. In: IICAI, pp 2803-2809

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735-1780

Hodosh M, Young P, Hockenmaier J (2013) Framing image description as a ranking task: data,
models and evaluation metrics. J Artif Intell Res 47:853-899

Huang Z, Xu W, Yu K (2015) Bidirectional LSTM-CRF models for sequence tagging. CoRR,
abs/1508.01991

Hu Z, Zhang Z, Yang H, Chen Q, Zuo D (2017) A deep learning approach for predicting the quality
of online health expert question-answering services. J Biomed Inform 71:241-253

Hu Z, Zhang Z, Yang H, Chen Q, Zhu R, Zuo D (2018) Predicting the quality of online
health expert question-answering services with temporal features in a deep learning framework.
Neurocomputing 275:2769-2782

4 DL for NLP 107

Jean S, Cho K, Memisevic R, Bengio Y (2015) On using very large target vocabulary for neural
machine translation. In: ACL, Beijing, pp 1-10

Ji S, Vishwanathan SVN, Satish N, Anderson JM, Dubey P (2015) Blackout: speeding up recurrent
neural network language models with very large vocabularies. CoRR, abs/1511.06909

Johnson M, Schuster M, Le VQ, Krikun M, Wu Y, Chen Z, Thorat N, Viégas FB, Wattenberg M,
Corrado G, Hughes M, Dean J (2017) Google’s multilingual neural machine translation system:
enabling zero-shot translation. TACL 5:339-351

Jozefowicz R, Zaremba W, Sutskever I (2015) An empirical exploration of recurrent network
architectures. In: ICML, Lille, pp 2342-2350

Junczys-Dowmunt M, Grundkiewicz R (2016) Phrase-based machine translation is state-of-the-art
for automatic grammatical error correction. In: EMNLP, Austin, pp 1546-1556

Jurafsky D, Martin HJ (2017) Speech and language processing — an introduction to natural
language processing. Computational linguistics, and speech recognition. 3rd edn. Prentice
Hall, p 1032

Karpathy A, Fei-Fei L (2017) Deep visual-semantic alignments for generating image descriptions.
IEEE Trans Pattern Anal Mach Intell 39(4):664-676

Kim Y (2014) Convolutional neural networks for sentence classification. In: EMNLP, Doha, pp
1746-1751

Kingma PD, BaJ (2014) Adam: a method for stochastic optimization. CoRR, abs/1412.6980

Koehn P (2005) Europarl: a parallel corpus for statistical machine translation. In: MT summit,
vol 5, pp 79-86

Koutnik J, Greff K, Gomez JF, Schmidhuber J (2014) A clockwork RNN. In: ICML, Beijing, pp
1863-1871

Krizhevsky A, Sutskever I, Hinton EG (2017) Imagenet classification with deep convolutional
neural networks. Commun ACM 60(6):84-90

Lafferty DJ, McCallum A, Pereira FCN (2001) Conditional random fields: probabilistic models
for segmenting and labeling sequence data. In: ICML, Williams College, pp 282-289

Lample G, Ballesteros M, Subramanian S, Kawakami K, Dyer C (2016) Neural architectures for
named entity recognition. In: NAACL HLT, San Diego, pp 260-270

Lample G, Denoyer L, Ranzato M (2017) Unsupervised machine translation using monolingual
corpora only. CoRR, abs/1711.00043

LeCun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document
recognition. Proc IEEE 86(11):2278-2324

LeCun Y, Bengio Y, Hinton EG (2015) Deep learning. Nature 521(7553):436-444

Lewis DD, Yang Y, Rose GT, Li F (2004) RCVI1: a new benchmark collection for text
categorization research. J Mach Learn Res 5:361-397

Lin T, Maire M, Belongie JS, Hays J, Perona P, Ramanan D, Dollar P, Zitnick LC (2014) Microsoft
COCO: common objects in context. In: ECCV, Zurich, pp 740-755

Luong M, Manning DC (2016) Achieving open vocabulary neural machine translation with hybrid
word-character models. In: ACL, Berlin

Luong M, Le VQ, Sutskever I, Vinyals O, Kaiser L (2015a) Multi-task sequence to sequence
learning. CoRR, abs/1511.06114

Luong T, Pham H, Manning DC (2015b) Effective approaches to attention-based neural machine
translation. In: EMNLP, Lisbon, pp 1412-1421

Luong T, Sutskever I, Le VQ, Vinyals O, Zaremba W (2015c) Addressing the rare word problem
in neural machine translation. In: ACL, Beijing, pp 11-19

Ma X, Hovy HE (2016) End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. In:
ACL, Berlin

108 H. Yang et al.

Maas LA, Daly ER, Pham TP, Huang D, Ng YA, Potts C (2011) Learning word vectors
for sentiment analysis. In: The 49th annual meeting of the Association for Computational
Linguistics: human language technologies, proceedings of the conference, 19-24 June 2011,
Portland, pp 142-150

Manchanda B, Athavale AV, Kumar Sharma S (2016) Various techniques used for grammar
checking. Int J Comput Appl Inf Technol 9(1):177

Manning DC (2011) Part-of-speech tagging from 97% to 100%: is it time for some linguistics? In:
CICLing, Tokyo, pp 171-189

Marcus PM, Santorini B, Marcinkiewicz AM (1993) Building a large annotated corpus of English:
the penn treebank. Comput Linguist 19(2):313-330

Marcus M, Santorini B, Marcinkiewicz M, Taylor A (1999) Treebank-3 LDC99T42. Web Down-
load. Linguistic Data Consortium, Philadelphia. https://catalog.ldc.upenn.edu/LDC99T42

McCallum A, Freitag D, Pereira FCN (2000) Maximum entropy Markov models for information
extraction and segmentation. In: ICML’00. Morgan Kaufmann Publishers Inc., San Francisco,
pp 591-598

Melamud O, McClosky D, Patwardhan S, Bansal M (2016) The role of context types and
dimensionality in learning word embeddings. In: NAACL HLT, San Diego, pp 1030-1040

Mi H, Wang Z, Ittycheriah A (2016) Vocabulary manipulation for neural machine translation. In:
ACL, Berlin

Mikolov T, Chen K, Corrado G, Dean J (2013) Efficient estimation of word representations in
vector space. CoRR, abs/1301.3781

Mikolov T, Sutskever I, Chen K, Corrado SG, Dean J (2013) Distributed representations of words
and phrases and their compositionality. In: NIPS, Lake Tahoe, pp 3111-3119

Nazar R, Renau I (2012) Google books n-gram corpus used as a grammar checker. In: Proceedings
of the second workshop on computational linguistics and writing (CLW 2012): linguistic and
cognitive aspects of document creation and document engineering, EACL 2012, Stroudsburg.
Association for Computational Linguistics, pp 27-34

Ng TH, Wu MS, Wu Y, Hadiwinoto C, Tetreault RJ (2013) The conll-2013 shared task on
grammatical error correction. In: Proceedings of the seventeenth conference on computational
natural language learning: shared task, CoONLL 2013, Sofia, 8-9 Aug 2013, pp 1-12

Ng TH, Wu MS, Briscoe T, Hadiwinoto C, Susanto HR, Bryant C (2014) The conll-2014 shared
task on grammatical error correction. In: CoNLL, Baltimore, pp 1-14

Nivre J et al (2017) Universal dependencies 2.1. LINDAT/CLARIN digital library at the Institute
of Formal and Applied Linguistics (

"UFAL), Faculty of Mathematics and Physics, Charles University

Pang B, Lee L (2004) A sentimental education: sentiment analysis using subjectivity summariza-
tion based on minimum cuts. In: Proceedings of the 42nd annual meeting of the Association
for Computational Linguistics, Barcelona, 21-26 July 2004, pp 271-278

Pang B, Lee L (2005) Seeing stars: exploiting class relationships for sentiment categorization
with respect to rating scales. In: ACL 2005, 43rd annual meeting of the Association for
Computational Linguistics, proceedings of the conference, 25-30 June 2005, University of
Michigan, USA, pp 115-124

Pang B, Lee L, Vaithyanathan S (2002) Thumbs up? Sentiment classification using machine
learning techniques. CoRR, cs.CL/0205070

Pascanu R, Mikolov T, Bengio Y (2013) On the difficulty of training recurrent neural networks.
In: ICML, Atlanta, pp 1310-1318

Pennington J, Socher R, Manning DC (2014) Glove: global vectors for word representation. In:
EMNLP, Doha, pp 1532-1543

Plank B, Sggaard A, Goldberg Y (2016) Multilingual part-of-speech tagging with bidirectional
long short-term memory models and auxiliary loss. In: ACL, Berlin

Plummer AB, Wang L, Cervantes MC, Caicedo CJ, Hockenmaier J, Lazebnik S (2017) Flickr30k
entities: collecting region-to-phrase correspondences for richer image-to-sentence models. Int
J Comput Vis 123(1):74-93

Rong X (2014) word2vec parameter learning explained. CoRR, abs/1411.2738

https://catalog.ldc.upenn.edu/LDC99T42

4 DL for NLP 109

Rozovskaya A, Roth D (2010) Training paradigms for correcting errors in grammar and usage. In:
HLT’ 10, Stroudsburg. Association for Computational Linguistics, pp 154-162

Rozovskaya A, Roth D (2016) Grammatical error correction: machine translation and classifiers.
In: ACL, Berlin

Ruder S (2016) An overview of gradient descent optimization algorithms. CoRR, abs/1609.04747

Ruder S, Ghaffari P, Breslin GJ (2016) A hierarchical model of reviews for aspect-based sentiment
analysis. In: EMNLP, Austin, pp 999-1005

Schmaltz A, Kim Y, Rush MA, Shieber MS (2016) Sentence-level grammatical error identification
as sequence-to-sequence correction. In: Proceedings of the 11th workshop on innovative use
of NLP for building educational applications, BEA@NAACL-HLT 2016, 16 June 2016, San
Diego, pp 242-251

Sennrich R, Haddow B, Birch A (2016a) Improving neural machine translation models with
monolingual data. In: ACL, Berlin

Sennrich R, Haddow B, Birch A (2016b) Neural machine translation of rare words with subword
units. In: ACL, Berlin

Srivastava N, Hinton EG, Krizhevsky A, Sutskever I, Salakhutdinov R (2014) Dropout: a simple
way to prevent neural networks from overfitting. J Mach Learn Res 15(1):1929-1958

Sutskever I, Vinyals O, Le VQ (2014) Sequence to sequence learning with neural networks. In:
NIPS, Montreal, pp 3104-3112

Toutanova K, Klein D, Manning DC, Singer Y (2003) Feature-rich part-of-speech tagging with a
cyclic dependency network. In: HLT-NAACL, Edmonton

Ueffing N, Ney H (2003) Using POS information for statistical machine translation into
morphologically rich languages. In: EACL’03, Stroudsburg. Association for Computational
Linguistics, pp 347-354

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez NA, Kaiser L, Polosukhin I (2017)
Attention is all you need. In: NIPS, Long Beach, pp 6000-6010

Vinyals O, Toshev A, Bengio S, Erhan D (2017) Show and tell: lessons learned from the 2015
MSCOCO image captioning challenge. IEEE Trans Pattern Anal Mach Intell 39(4):652-663

Wang P, Qian Y, Soong KF, He L, Zhao H (2015) A unified tagging solution: bidirectional LSTM
recurrent neural network with word embedding. CoRR, abs/1511.00215

Wiseman S, Rush MA (2016) Sequence-to-sequence learning as beam-search optimization. In:
EMNLP, Austin, pp 1296-1306

Wu J, Chang J, Chang SJ (2013) Correcting serial grammatical errors based on n-grams and syntax.
IJCLCLP 18(4)

Wu Y, Schuster M, Chen Z, Le VQ, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey
K, Klingner J, Shah A, Johnson M, Liu X, Kaiser L, Gouws S, Kato Y, Kudo T, Kazawa H,
Stevens K, Kurian G, Patil N, Wang W, Young C, Smith J, Riesa J, Rudnick A, Vinyals O,
Corrado G, Hughes M, Dean J (2016) Google’s neural machine translation system: bridging
the gap between human and machine translation. CoRR, abs/1609.08144

Xu K, Ba J, Kiros R, Cho K, Courville CA, Salakhutdinov R, Zemel SR, Bengio Y (2015) Show,
attend and tell: Neural image caption generation with visual attention. In: ICML, Lille, pp
2048-2057

Yang Z, Salakhutdinov R, Cohen WW (2016) Multi-task cross-lingual sequence tagging from
scratch. CoRR, abs/1603.06270

Yin W, Yu M, Xiang B, Zhou B, Schiitze H (2016) Simple question answering by attentive
convolutional neural network. In: COLING, Osaka, pp 1746-1756

Zhou J, Cao Y, Wang X, Li P, Xu W (2016) Deep recurrent models with fast-forward connections
for neural machine translation. TACL 4:371-383

Ziemski M, Junczys-Dowmunt M, Pouliquen B (2016) The united nations parallel corpus v1.0. In:
Proceedings of the tenth international conference on language resources and evaluation LREC
2016, Portorovz, 23-28 May 2016

Chapter 5 ®
Deep Learning for Natural Language Qe
Processing

Jiajun Zhang and Chengqing Zong

Abstract Natural language processing is a field of artificial intelligence and aims
at designing computer algorithms to understand and process natural language as
humans do. It becomes a necessity in the Internet age and big data era. From
fundamental research to sophisticated applications, natural language processing
includes many tasks, such as lexical analysis, syntactic and semantic parsing,
discourse analysis, text classification, sentiment analysis, summarization, machine
translation and question answering. In a long time, statistical models such as
Naive Bayes (McCallum and Nigam et al., A comparison of event models for
Naive Bayes text classification. In: AAAI-98 workshop on learning for text cate-
gorization, Madison, vol 752, pp 41-48, 1998), Support Vector Machine (Cortes
and Vapnik, Mach Learn 20(3):273-297, 1995), Maximum Entropy (Berger et al.,
Comput Linguist 22(1):39-71, 1996) and Conditional Random Fields (Lafferty et
al., Conditional random fields: probabilistic models for segmenting and labeling
sequence data. In: Proceedings of ICML, 2001) are dominant methods for natural
language processing (Manning and Schiitze, Foundations of statistical natural lan-
guage processing. MIT Press, Cambridge/London, 1999; Zong, Statistical natural
language processing. Tsinghua University Press, Beijing, 2008). Recent years have
witnessed the great success of deep learning in natural language processing, from
Chinese word segmentation (Pei et al., Max-margin tensor neural network for

J. Zhang (<)
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy
of Sciences, Beijing, China

University of Chinese Academy of Sciences, Beijing, China
e-mail: jjzhang@nlpr.ia.ac.cn

C. Zong
National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy
of Sciences, Beijing, China

University of Chinese Academy of Sciences, Beijing, China
CAS Center for Excellence in Brain Science and Intelligence Technology,

University of Chinese Academy of Sciences, Beijing, People’s Republic of China
e-mail: cqzong @nlpr.ia.ac.cn

© Springer Nature Switzerland AG 2019 111
K. Huang et al. (eds.), Deep Learning: Fundamentals, Theory and Applications,
Cognitive Computation Trends 2, https://doi.org/10.1007/978-3-030-06073-2_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06073-2_5&domain=pdf
mailto:jjzhang@nlpr.ia.ac.cn
mailto:cqzong@nlpr.ia.ac.cn
https://doi.org/10.1007/978-3-030-06073-2_5

112 J. Zhang and C. Zong

Chinese word segmentation. In: Proceedings of ACL, pp 293-303, 2014; Chen
et al., Long short-term memory neural networks for Chinese word segmentation.
In: Proceedings of EMNLP, pp 1197-1206, 2015; Cai et al., Fast and accurate
neural word segmentation for Chinese. In: Proceedings of ACL, pp 608-615, 2017),
named entity recognition (Collobert et al., J Mach Learn Res 12:2493-2537, 2011;
Lample et al., Neural architectures for named entity recognition. In: Proceedings
of NAACL-HLT, 2016; Dong et al., Character-based LSTM-CRF with radical-
level features for Chinese named entity recognition. In: International conference on
computer processing of oriental languages. Springer, pp 239-250, 2016; Dong et al.,
Multichannel LSTM-CRF for named entity recognition in Chinese social media. In:
Chinese computational linguistics and natural language processing based on natu-
rally annotated big data. Springer, pp 197-208, 2017), sequential tagging (Vaswani
et al., Supertagging with LSTMs. In: Proceedings of NAACL-HLT, pp 232-237,
2016; Wu et al., An empirical exploration of skip connections for sequential tagging.
In: Proceedings of COLING, 2016a), syntactic parsing (Socher et al., Parsing with
compositional vector grammars. In: Proceedings of ACL, pp 455465, 2013; Chen
and Manning, A fast and accurate dependency parser using neural networks. In:
Proceedings of the 2014 conference on empirical methods in natural language
processing (EMNLP), pp 740-750, 2014; Liu and Zhang, TACL 5:45-58, 2017),
text summarization (Rush et al., A neural attention model for abstractive sentence
summarization. In: Proceedings of EMNLP, 2015; See et al., Get to the point:
summarization with pointer-generator networks. In: Proceedings of ACL, 2017),
machine translation (Bahdanau et al., Neural machine translation by jointly learning
to align and translate. In: Proceedings of ICLR, 2015; Sutskever et al., Sequence to
sequence learning with neural networks. In: Proceedings of NIPS, 2014; Vawani et
al., Attention is all you need. arXiv preprint arXiv:1706.03762, 2017) to question
answering (Andreas et al., Learning to compose neural networks for question
answering. In: Proceedings of NAACL-HLT, pp 232-237, 2016; Bordes et al.,
Question answering with subgraph embeddings. arXiv preprint arXiv:1406.3676,
2014; Large-scale simple question answering with memory networks. arXiv preprint
arXiv:1506.02075, 2015; Yu et al., Deep learning for answer sentence selection.
arXiv preprint arXiv:1412.1632, 2014). This chapter employs entity recognition,
supertagging, machine translation and text summarization as case study to introduce
the application of deep learning in natural language processing.

Keywords Named entity recognition - Super tagging - Machine translation -
Text summarization - Deep learning - Natural language processing
5.1 Deep Learning for Named Entity Recognition

5.1.1 Task Definition

Generally speaking, named entity consists of seven types: names of persons, orga-
nizations, locations, expressions of times, quantities, monetary values, percentages.
Researchers in the community of natural language processing usually focus on the

5 Deep Learning for Natural Language Processing 113

most important three entity categories including person, organization and location.
Named Entity Recognition (NER) aims to locate and classify such named entities
in text.

Figure 5.1 shows an example for named entity recognition. Given an English
sentence on the top, our goal is to recognize the entities Bill Gates, Stanford
University and Silicon Valley, and correctly classify them as person, organization
and location respectively.

Most methods cast the task of NER as a sequence labelling problem as shown in
the bottom part of Fig.5.1. In the past, Hidden Markov Model (HMM), Maximum
Entropy (ME), Support Vector Machine (SVM) and Conditional Random Fields
(CRF) are the main solution to NER. Feature engineering is the most important
part of these models. The features are represented with symbols such as surface
characters, words, bigrams and part-of-speech tags. This kind of symbolic represen-
tation becomes the bottleneck of performance improvement since symbols are easy
to cause data sparsity problem and are difficult to capture the semantic relationship
between any two symbols.

However, distributed representation can solve the above two problems to large
extent. For example, fable and desk are totally different from the perspective of
symbolic representation and thus cannot reveal the semantic similarity between
them. In contrast, we will find the two words fable and desk are close to each other if
we correctly represent them in the low-dimensional real-valued vector space. Take
Fig.5.2 as an example, we project the distributed word representations into two

Bill Gates gave a talk at Stanford University in Silicon Valley.

ﬂNamed Entity Recognition

Bill/B-PER Gates/E-PER gave/O a/O talk/O at/O Stanford/B-ORG University/E-ORG in/O Silicon/B-LOC Valley/E-LOC ./O

Fig. 5.1 An example of named entity recognition, in which we use “B”, “M”, “E” and “O” to
denote “Begin”, “Middle”, “End” and “Out” of a named entity

Fig. 5.2 Distributed word
representation in vector space
@ table
® one
e wo ® desk
® three
e today .
® lomorrow ® river
® yesterday ®
® stream

114 J. Zhang and C. Zong

dimensional space. We can find that words with similar meaning are near with
each other. Because of this advantage, deep neural networks based on distributed
representations quickly become the new state-of-the-art model in NER task.

5.1.2 NER Using Deep Learning

In recent years, many neural architectures have been proposed for the NER task.
Collobert et al. (2011) design an NER model based on Convolutional Neural
Networks (CNN). They first project every word in the sentence into distributed
representations (word embedding) from left to right and then apply CNN over the
sequence of word embeddings. The top layer of the neural network is followed by a
CRF model. Chiu and Nichols (2016) propose a hybrid of bidirectional Long-Short
Term Memory (LSTM) and CNNs to model both character-level and word-level
representations in English. They also utilize external knowledge such as lexicon
features and character types. Ma and Hovy (2016) propose a BLSTM-CNNs-CRF
architecture in which CNNs are employed to model character-level information.
Lample et al. (2016) present a LSTM-CRF architecture with a char-LSTM layer
learning spelling features from supervised corpus without using any additional
resources or gazetteers except for a massive unlabelled corpus for unsupervised
learning of pretrained word embeddings. Instead of char-LSTM for phonogram
languages in Lample et al. (2016), Dong et al. (2016) propose a radical-level LSTM
designed for Chinese characters. As BLSTM-CREF is currently a state-of-the-art
model for NER, we detail this model below.

5.1.21 BLSTM

Recurrent Neural Networds (RNNs) are a family of neural networks designed
for modelling sequential data. RNNs take as input a sequence of vectors
(X1, X2, ..., X,) and return another sequence (hy, hy, ..., h,) that represents high-
level abstract information about the sequence at each step in the input. In RNN, the
hidden state h; of 7-th input is calculated according to the current input x; and the
previous hidden state h;_;:

h; = f(x, hi—1) (5.1

where f(-) is a non-linear activation function and is usually set f(-) = tanh(-). In
theory, RNNs can learn long dependencies, but in practice they tend to be biased
towards their most recent inputs in the sequence (Bengio et al. 1994). LSTMs
incorporate a memory cell to combat this issue and have shown great capabilities
to capture long-range dependencies.

LSTM makes function f(-) more complicated and includes input gate, output
gate, forget gate and peephole connection to calculate f(-). The update of cell state
use both input gate and forget gate results. The implementation is:

5 Deep Learning for Natural Language Processing 115

i, =0c(Wyix, + Wyihy_ 1 +Wgc,_1 +b;) (input gate)
f; = o (Wyrx + Wyrhy 1 +Were, 1 +by) (forget gate)
¢, =f Oc¢_1+i; ©tanh(Wyex; + Wychy_1 +b,) (cell state)
o, = o (Wyox; + Wiohy— 1 + Weoe, +by) (output gate)
h; = 0; © tanh(c;) (output)

where o is the element-wise sigmoid function, © is the element-wise product, Ws
are weight matrices, and bs are biases.

We get the context vector of a character using a bidirectional LSTM. For a given
sentence (chy, chy, ..., ch,) containing n characters, each character ch; is first
mapped into a d-dimensional real-valued vector x; € R?. Then, a LSTM computes

—_
the representation h, of the left context of the sentence at each character ¢. Similarly,

the right context h<_, starting from the end of the sentence should provide useful
information on the right hand of the character ch,. The left-to-right LSTM is called
forward LSTM and the right-to-left LSTM is named backward LSTM. The overall
context vector of the character ch, can be obtained by concatenating both of the left

and right context representations, h; = [h,; ht] (Fig.5.3).

CRF Iayer B-LOC |« E-LOC [<«—» (0] <> (0] <> (¢]

Yy

Backward-LSTM

Forward-LSTM

)
L
@

Character sequence Gb é é

Fig. 5.3 Character-based BLSTM-CRF for NER

Embedding layer

116 J. Zhang and C. Zong

5.1.2.2 BLSTM-CRF Model

The hidden context vector h; can be used directly as features to make independent
tagging decisions for each output y;. But in NER, there are strong dependencies
across output labels. For example, M-PER cannot follow B-ORG, which constrains
the possible output tags after B-ORG. Thus, CRF is employed to model the outputs
of the whole sentence jointly. For an input sentence,

X =(X],X2,...,Xy)

we regard P as the matrix of scores outputted by BLSTM network. P is of size n x k,
where k is the number of distinct tags, and P; ; is the score of the jth tag of the ith
character in a sentence. For a sequence of predictions,

Yy=01Y2 s Yn)

we define its score as
n n
s(x,y) = Z Ayiyin + Z Piy, (5.2)
i=0 i=1

where A is a matrix of transition scores which models the transition possibility from
one tag to another tag. We add start and end tag to the set of possible tags and they
are the tags of yy and y, that separately mean the start and the end symbol of a
sentence. Therefore, A is a square matrix of size k 4 2. After applying a softmax
layer over all possible tag sequences, the probability of the sequence y:

S xY)
- s(x.3)
Zerx e

We maximize the log-probability of the correct tag sequence during training:

p(yIx) = (5.3)

log(p(ylx) = s(x,y) —log(Y &'*V) (5.4)
yeYx
= s5(x,y) — logadd s(x, ¥) (5.5)
yeYx

where Yy represents all possible tag sequences including those that do not obey
the BMEO format constraints. It’s evident that invalid output label sequences will
be discouraged. While decoding, we predict the output sequence that gets the
maximum score given by:

y* = argmax s(x, ¥) (5.6)
yeYx

5 Deep Learning for Natural Language Processing 117

The NER model usually considers bigram constraints between output tags and uses
dynamic programming during decoding.

5.2 Deep Learning for Supertagging

As introduced in the previous section, NER is modeled as a sequential tagging prob-
lem. In natural language processing, many tasks can be projected into the sequential
tagging problem which is much more complicated than NER. In this section, we
introduce another NLP task Combinatory Category Grammar supertagging which
requires deep information for tag prediction.

5.2.1 Task Definition

Combinatory Category Grammar (CCG) provides a connection between syntax and
semantics of natural language. The syntax can be specified by derivations of the
lexicon based on the combinatory rules, and the semantics can be recovered from
a set of predicate-argument relations. CCG provides an elegant solution for a wide
range of semantic analysis, such as semantic representation, semantic parsing, and
semantic composition, all of which heavily depend on the supertagging and parsing
performance. All these need to build a more accurate CCG supertagger.

Combinatory Category Grammar (CCG) supertagging is a sequential tagging
problem in natural language processing and this task is to assign supertags to
each word in a sentence. The supertags in CCG stand for the lexical categories,
that are composed of the basic categories such as N, NP, PP, and complex
categories which are the combination of the basic categories based on a set of
rules. Detailed explanations of CCG refers to Steedman (2000) and Steedman and
Baldridge (2011). Here, we give a brief introduction.

CCG uses a set of lexical categories to represent constituents Steedman (2000).
In particular, a fixed finite set is used as the basis for constructing other categories,
which is described in Table 5.1.

The basic categories could be used to generate an infinite set C of functional
categories by applying the following recursive definition:

« N,NP,PP,SeC
« X/Y,X\Y €eCifX,Y eC

Table 5.1 The description of

. . | Category Description
basic categories used in CCG
N Noun
NP Noun phrase
PP Prepositional phrase

S Sentence

118 J. Zhang and C. Zong

Output/Tags | NP/N | N/N | N/N N (S\NP)/PP | PP/NP N
Input/Tokens | The | Dow | Jones | industrials closed at 2569.26

Fig. 5.4 A CCG supertagging example

Each functional category specifies some arguments. Combining the arguments
can form a new category according to the orders (Steedman and Baldridge 2011).
The argument could be either basic or functional, and the orders are determined by
the forward slash / and the backward slash \. A category X/Y is a forward functor
which could accept an argument Y to the right and yield X, while the backward
functor X\Y results in X by appending its argument Y to the left.

Figure 5.4 gives an example of CCG supertagging. Given the input sentence
consisting of eight tokens, each token is associated with a supertag indicating the
syntactic function of this token. From this example, we can see that this task is more
complicated than NER and requires more sophisticated models for accurate supertag
prediction.

For the task of NER, one layer of bidirectional LSTM (BLSTM) is sufficient
to obtain high performance. However, deep layers are necessary to the CCG
supertagging task. In this section, we introduce our solution (Wu et al. 2016a) to
this task.

5.2.2 Deep Neural Networks with Skip Connection for CCG
Supertagging

Stacked RNN is a naive and simple method to construct deep layers in which the
hidden layers are stacked on top of each other, each feeding up to the layer above:

hi = f'(hi~" b)) (5.7)

where h! is the 7-th hidden state of the /-th layer.

5.2.2.1 Exploring Skip Connections

Similar to horizontal RNN, the vertical stacked layers also face the problem of
gradient vanishing or explosion. Thus, skip connections from [— 2-th layer to [-th
layer are usually explored. Skip connections in simple RNNs are trivial since there
is only one position to connect to the hidden units. But for stacked LSTMs, the skip
connections need to be carefully treated to train the network successfully. In this

5 Deep Learning for Natural Language Processing 119

section, we introduce and compare various types of skip connections in stacked
LSTM. At first, we give a detailed definition of stacked LSTMs, which can help us
to describe skip connections. Then we start our construction of skip connections in
stacked LSTMs. At last, we formulate various kinds of skip connections.

Stacked LSTMs without skip connections can be defined as:

I sigm 1 1 I .l 1
A <h§1> CTROL RO sy
ol sigm h;_, h! = o/ @ tanh(c))

s,l tanh

During the forward pass, LSTM needs to calculate ¢! and h!, which is the
cell’s internal state and the cell output state, respectively. To get cf, s,l needs to be
computed to store the current input. Then this result is multiplied by the input gate
il, which decides when to keep or override information in memory cell ¢!. The cell is
designed to store the previous information cf_ 1» Which can be reset by a forget gate
f,l . The new cell state is then obtained by adding the result to the current input. The
cell outputs h£ are computed by multiplying the activated cell state by the output
gate of, which learns when to access memory cell and when to block it. “sigm” and
“tanh” are the sigmoid and tanh activation function, respectively. W/ € R¥>*?" is
the weight matrix needs to be learned.

The hidden units in stacked LSTMs have two forms. One is the hidden units in the
same layer {hl ,t € 1,..., T}, which are connected through an LSTM. The other
is the hidden units at the same time step {hi, [€ 1,..., L}, which are connected
through a feed-forward network. LSTM can keep the short-term memory for a long
time, thus the error signals can be easily passed through {1, ..., T}. However, when
the number of stacked layers is large, the feed-forward network will suffer from
the gradient vanishing/explosion problems, which make the gradients hard to pass
through {1, ..., L}.

The core idea of LSTM is to use an identity function to make the constant
error carrosel. He et al. (2015) also use an identity mapping to train a very deep
convolution neural network with improved performance. Inspired by these, we use
an identity function for the skip connections. Rather, the gates of LSTM are essential
parts to avoid weight update conflicts, which are also invoked by skip connections.
Following highway gating, we use a gate multiplied with identity mapping to avoid
the conflicts.

Skip connections are cross-layer connections, which means that the output of
layer /-2 is not only connected to the layer /—1, but also connected to layer [, as
shown in Fig. 5.5. For stacked LSTMs, hi_z can be connected to the three different
gates, the internal states, and the cell outputs in the LSTM blocks of the /-th layer.
We explore different kinds of skip connections and respectively formalize them
below:

120 J. Zhang and C. Zong

Fig. 5.5 Deep neural
networks with skip
connection for sequential

tagging

Skip Connections to the Gates

We can connect hi =2 to the gates through an identity mapping:
! g g Yy mapping

i sigm B!
; sigm 1l !

71 =1 (whi) [n_, (5.9)
t gm hl~2

s! tanh !

where I! € R*¥*" is the identity mapping.

Skip Connections to the Internal States
Another kind of skip connections is to connect hi =2 to the cell’s internal state ck:

d=flod +ilos +n (5.10)
h! = o/ © tanh(c!) (5.11)

Skip Connections to the Cell Outputs
We can also connect hi_z to cell outputs:

=1 Oa +ios (5.12)
hl = ol @ tanh(cl) + 1l (5.13)

5 Deep Learning for Natural Language Processing 121

Skip Connections Using Gates

Consider the case of skip connections to the cell outputs. The cell outputs grow
linearly during the presentation of network depth, which makes the hﬁ’s derivative
vanish and hard to convergence. Inspired by the introduction of LSTM gates, we
add a gate to control the skip connections through retrieving or blocking them:

i sigm
! : .
t Siem gl ¢ =f Oc_ +ijOsf
o, | = |sigm | W bl . ; ; , s 5.14)
g; sigm =1 hi = 0; O tanh(c;) +g; O h;~
s! tanh

where gf is the gate which can be used to access the skipped output hﬁ_z or block
it. When g£ equals 0, no skipped output can be passed through skip connections,
which is equivalent to traditional stacked LSTMs. Otherwise, it behaves like a feed-
forward LSTM using gated identity connections. Here we omit the case of adding
gates to skip connections to the internal state, which is similar to the above case.

Skip Connections in Bidirectional LSTM

Using skip connections in bidirectional LSTM is similar to the one used in
unidirectional LSTM, with a bidirectional processing:

o

[_Zad o7 ad T_ T S Ad
G =10 +iOs ¢ =f0q +iOs
VS T, i T« T« 2 G19
h, = ¢ Otanh(¢,)+ ¢ Oh;” h; = o Otanh(c¢;)+ g Oh;~
5.2.2.2 Neural Architecture for CCG Supertagging Tagging
CCQG tagging can be formulated as P (y|x; 6), where x = [x1, ..., x,] indicates the
n words in a sentence, and y = [y1, ..., y,] indicates the corresponding n tags. In

this section we introduce the neural architecture to calculate P(-), which includes
an input layer, a stacked hidden layers and an output layer. Since the stacked hidden
layers have already been introduced in the above section, we only introduce the
input and the output layer here.

5.2.2.3 Network Inputs

Network inputs are the representation of each token in a sequence. There are many
kinds of token representations, such as using a single word embedding, using a local

122 J. Zhang and C. Zong

window approach, or a combination of word and character-level representation.
Considering all the information, we can represent the inputs by concatenating word
representations, character representations, and capitalization representations.

Word Representations

All words in the vocabulary share a common look-up table, which is initialized
with random initializations or pre-trained embeddings. Each word in a sentence
can be mapped to an embedding vector x;. The whole sentence is then represented
by a matrix with columns vector [xi, x7, ..., x,]. Following Wu et al. (2017),
we can employ a context window of size d surrounding with a word x; to get
its context information. Furthermore, we can add logistic gates to each token
in the context window. The word representation can be computed as x; =
[Fe—ld/2)Xi—1d/2); - - - Vit ld/2)Xit+1d/2))s Where 7 i= [Fi—aa)s - Fitlap2)) € RY
is alogistic gate to filter the unnecessary contexts, x;—|4/2|, - - ., Xi+|d/2) 18 the word
embeddings in a fixed window.

Character Representations

Prefix and suffix information about words are important features in CCG supertag-
ging. Fonseca et al. (2015) use a character prefix and suffix with length from 1 to 5
for part-of-speech tagging. Similarly, we can concatenate character embeddings in a
word to get the character-level representation. Concretely, given a word x; consisting
of a sequence of characters [chy, cho, ..., Chlx,-]’ where [, is the length of the
word and L(-) is the look-up table for characters. We can concatenate the leftmost
most m character embeddings L(chy), ..., L(ch;,) with its rightmost m character
embeddings L(chl'_l_ —4)y s L(chlxi). When a word is less than m characters, we
can pad the remaining characters with the same special symbol.

Capitalization Representations
Usually, we lowercase the words to decrease the size of word vocabulary to

reduce sparsity. However, we need an extra capitalization embeddings to store the
capitalization features, which represent whether or not a word is capitalized.

5.2.2.4 Network Outputs

For CCG supertagging, we use a softmax activation function g(-) in the output layer:

0y, = g(W" [y ; by]) (5.16)

5 Deep Learning for Natural Language Processing 123

explh) 4
> exp(hyr)
the k-th dimension of oy,, which corresponds to the k-th tags in the tag set. W is
the hidden-to-output weight.

where 0,, is a probability distribution over all possible tags. oy, (k) =

5.3 Deep Learning for Machine Translation

Compared to NER and CCG supertagging that belong to one-to-one mapping
framework, machine translation (MT) is a classical many-to-many prediction task
in which a m-word source language sentence x is translated automatically into
a n-word target language sentence y. In most cases, n # m. The concept of
machine translation appears in 1940s and has be the representative task to test
machine intelligence since then. In this section, we first give the definition of
machine translation. Then, we briefly introduce statistical machine translation
(SMT) followed by detailed introduction of deep learning methods for MT.

5.3.1 Task Definition

Machine translation aims at automatically transforming the source language into
semantically equivalent target language. Figure 5.6 gives an example for English-
to-Chinese translation. From the perspective of language unit, MT can manipulate
at the word level, the sentence level, the paragraph level and the document level.
In the community of MT research, machine translation mainly focuses on sentence
level. That is to say MT is about mapping a source language sentence into a target
language sentence.

In the past seventy years, several paradigms are invented to solve the MT prob-
lem. In chronological order, the typical methods include the rule-based approach
(Boitet et al. 1982), the example-based model (Nagao 1984), statistical machine
translation (SMT) (Brown et al. 1993) and neural machine translation (NMT)
(Bahdanau et al. 2015; Sutskever et al. 2014).

The World Cup is held every four years

ﬂ Machine Translation

HFAR W 25—k

Fig. 5.6 An example for English to Chinese translation

124 J. Zhang and C. Zong
5.3.2 Statistical Machine Translation

Given a source language sentence X, SMT searches through all the sentences y in
target language and finds the one y* which maximizes the posterior probability
p(y|x). This posterior probability is usually decomposed into two parts using the
Bayes rule as follows:

y* = argmaxy p(y|x)
= argmaxyM 5.17)
P(x)

= argmaxyp(y) - p(x]y)

In which, p(y) is called target language model and p(x|y) is named translation
model. It is usually called noisy channel model. This kind of decomposition
must adhere to rigid probability constraints and cannot make use of other useful
translation features. To solve this problem, the log-linear framework (Och and Ney
2002) is proposed to decompose the posterior probability p(x|y):

y" = argmaxyp(y|x)

— argmax exp(Q_; Aihi(X,y))
Y3y exp(X; hihi(x,¥)

= argmaxyexp (Zi Aihi(x,y))

(5.18)

= argmaxy{zi Aihi(x,y)}

where 4;(x,y) can be any translation feature and A; is the corresponding feature
weight. All the features in the log-linear model will guide the translation process to
generate the best translation hypothesis.

In SMT, the phrase-based model (PBSMT, Koehn et al. 2003) is most popular
and we use it to introduce the translation process. PBSMT divides the translation
process into three steps as shown in Fig. 5.5: (1) partition the source sentence into
sequence of phrases; (2) perform phrase matching and source-to-target mapping
with phrasal translation rules; and (3) composite the fragment translations to obtain
the final target sentence, known as phrase reordering model.

Generally speaking, PBSMT performs like humans do and its process is easy
to explain. However, it faces many problems which make it difficult to obtain
satisfactory translation quality. As PBSMT performs string match to produce
candidate target phrase translations, it cannot take advantage of semantically similar
translation rules. For example, there may be a rule whose source side is was held and
it cannot be used to translate the sentence given in Fig. 5.7. Furthermore, the optimal
phrase reordering model is exponentially complex with the number of phrases. In the
symbolic matching framework, these issues are hard to figure out. Zhang and Zong

5 Deep Learning for Natural Language Processing 125

The World Cup is held every four years

Step 1: Phrase Segmentation

The World Cup every four years
J Step 2: Phrase Translation
A Iy £

tep 3: Phrase Reordering

Fig. 5.7 An example for phrase-based SMT

(2015) give a detail discussion between symbolic and distributed representations.
Some research work is conducted using deep learning to improve statistical machine
translation (Li et al. 2013; Vaswani et al. 2013; Devlin et al. 2014; Zhang et al.
2014a,b).

The new paradigm neural machine translation based on distributed representa-
tions emerges and quickly becomes the dominant method for machine translation
and achieves the new state-of-the-art performance on many language pairs (Wu et al.
2016b)).

Next, we give a detailed description about neural machine translation and briefly
introduce the recent progress.

5.3.3 Neural Machine Translation

Generally, neural machine translation (NMT) follows the encoder-decoder frame-
work. The encoder encodes the source language sentence into semantic representa-
tions from which the decoder generates the target language sentence word by word
from left to right. Figure 5.8 illustrates an example that translates the same sentence
as Fig. 5.7 does.

Without loss of generality, we introduce the attention-based NMT similar to
Google system GNMT (Wu et al. (2016b)) , which utilizes stacked Long-Short Term
Memory (LSTM, Hochreiter and Schmidhuber 1997) layers for both encoder and
decoder as illustrated in Fig. 5.9.

The encoder-decoder NMT first encodes the source sentence x = (xp, x2, - - ,
x7,) into a sequence of context vectors C = (hy, hy, --- , h7,) whose size varies

126 J. Zhang and C. Zong

embedding

encoding

attention |}
1
1
17

~~as
ol ~~

vt
decoding .

ﬁiibﬁﬁ

Fig. 5.8 An example of neural machine translation from English to Chinese

Vi Yis1 i

Attention ! A . T i
L !

21 >ZAi+1 E

i ! — Zil le+1 — i
| ; 0 \ T i
i : — —
PR A EA i
A e e R i |
R it i | 4 rha [|
P ? Aol 1 ? 0 §
E X1 X2 X, E: (BOS) YVi-1 Vi !
' Encoder o Decoder !

Fig. 5.9 The architecture of the attention-based NMT which has m stacked LSTM layers for
encoder and / stacked LSTM layers for decoder

with respect to the source sentence length. Then, the encoder-decoder NMT decodes
from the context vectors C and generates target translation ¥ = (y1, y2, -+, y1,)
one word each time by maximizing the probability of p(y;|y<;, C). Note that x;
(yi) is word embedding corresponding to the j;, (i;;) word in the source (target)
sentence. Next, we briefly review the encoder introducing how to obtain C and the
decoder addressing how to calculate p(y;|y<i, C).

5 Deep Learning for Natural Language Processing 127

Encoder: The context vectors C = (h}{',h}, .- ,h’}‘x) are generated by the
encoder using m stacked LSTM layers. h’; is calculated as follows:

b = LSTM®E_ | nih (5.19)

Where b ™! = x; if k = 1.

Decoder: The conditional probability p(y;|y<i, C) is computed according to
different context ¢; at different time step (Bahdanau et al. 2015):

pily<i, C) = p(yily<i, ci) = softmax(Wz;)) (5.20)
where Z; is the attention output:
Zi = tahn(Welz}; ¢]) (5.21)

The attention model calculates ¢; as the weighted sum of the source-side context
vectors, just as illustrated in the middle part of Fig. 5.9.

=y ayzl (5.22)

j=1

where «;; is a normalized item calculated as follows:

h™ . Zl.
Uj = (5.23)
Zj’ h], . Zi
zf is computed using the following formula:
F=LSTMEE |, Y (5.24)

Ifk =1, zl.l will be calculated by combining z;_; as feed input (Luong et al.
2015):

zt = LSTM(zj_y. yi-1.2i-1) (5.25)

Google reports that this kind of NMT architecture makes a breakthrough in
machine translation and achieves more than 60% improvement on several language
pairs (Wu et al. 2016b). Next, we briefly introduce the recent progress of neural
machine translation.

128 J. Zhang and C. Zong
5.3.4 Recent Progress on Neural Machine Translation

Although RNN-based NMT has made a great progress and remarkably outperform
SMT, it still faces many problems, such as under/over-translation, unknown or
infrequent word translation, monolingual data usage and inefficient training.

To alleviate the under/over translation problem, Tu et al. (2016) and Mi et al.
(2016) believe it is because that the history attention weights of each source words
are ignored when predicting target language words. They design a coverage model in
which the attention weights are accumulated and employed as a feature to encourage
the new target word to attend untranslated source words.

In order to handle unknown or infrequent word translation, Sennrich et al.
(2016b) propose to employ subwords as translation units and many infrequent or
even unknown words can be composed of several subwords. Li et al. (2016) present
a substitution-translation-restoration framework to deal with unknown words. They
replace each unknown word with a similar in-vocabulary word resulting in sentences
without out-of-vocabulary (OOV) words. Then they generate the translation results
for the new sentences. Finally, they replace back the translation of substituted in-
vocabulary with the OOV’s translation if possible.

To make full use of monolingual data, Sennrich et al. (2016a) propose a new
approach to use target-side monolingual data. They generate the synthetic bilingual
data by translating the target monolingual sentences to source language sentences
and retrain NMT with the mixture of original bilingual data and the synthetic
parallel data. Zhang and Zong (2016) further explore the usage of source-side
monolingual data by apply self-learning and multi-task learning algorithms. Cheng
et al. (2016) exploit both of the source and target monolingual data using a semi-
supervised approach.

In order to speedup the training procedure and make full use of contexts,
Gehring et al. (2017) propose a convolutional sequence to sequence model for neural
machine translation, in which the encoder and decoder both adopt a multi-layer
convolutional neural network. By using CNNgs, the sequential dependency of LSTM
does not exist. Thus, both of the encoding and decoding process can be parallelized
during training.

Vawani et al. (2017) go a step further and design a self-attention NMT without
using any recurrent or convolutional neural networks. They encode the source
sentence with purely self-attention and feed-forward network which gets the hidden
representation of i-th input word by calculating attentions between i-th word and
all other words. The decoder is similar. This architecture dramatically facilitates the
parallelism of feed-forward computation and backward gradient update.

Figure 5.10 gives the comparison among recurrent NMT, Convolutional NMT
and self-attention NMT. From this figure, we can analyze the complexity of each
layer, the parallelism of computation and the dependency length between any two
positions. We suppose the sequence contains n tokens, the dimension of distributed

5 Deep Learning for Natural Language Processing 129

RNN: W, W, Wx Wy We

CNN: W, W W,

e @ ©o e o
“® “o 0% @

Fig. 5.10 The architecture comparison among recurrent NMT, convolutional NMT and self-
attention NMT

Self-Attention:

Table 5.2 Comparison from different aspects for recurrent NMT, convolutional NMT and self-
attention NMT

Architecture Complexity per layer Sequential operations Dependency length
Recurrent O -d% 0(n) o(1)
Convolutional Ok -n-d? o) O (logi (n))
Self-attention On?* - d) o) o)

representation is d and the kernel size of convolution is k. We can easily see
from Fig.5.10 that to finish the forward computation of one layer, the recurrent,
convolutional and self-attention NMT require O (n -d?), k-n-d*and n?-d operations.
Due to n < d in most cases, self-attention NMT needs less computation per layer.

The parallelism relies on whether the computation at each time step requires
the information from previous time steps. It is easy to observe from Fig. 5.10 that
convolutional and self-attention architecture can be highly parallelized since they
can individually perform the calculation of each position.

Modeling long-distance dependencies is of great importance in sequential learn-
ing tasks such as syntactic parsing and machine translation. However, it is also very
challenging since it is difficult to capture the relationship between any positions in
sequence. For example, in recurrent NMT, we need i steps if we want to see the
relationship between the first position and the i-th position. Convolutional NMT
lowers the number of steps to O(logi(n)) while self-attention NMT just needs
one step. Table 5.2 shows the detailed comparison of the three aspects for different
NMT architectures. The table demonstrates that self-attention model is much more
attracting. Vawani et al. (2017) report that the self-attention model achieves the new
state-of-the-art translation results and is much more efficient for network training.

130 J. Zhang and C. Zong
5.4 Deep Learning for Text Summarization

Compared to machine translation which maintains the rigid semantic equivalence
between the input and output sequences, text summarization extracts the key
information from the input text and outputs a very concise summary. If the length
of input text is n, the output length m will be much smaller than n.

5.4.1 Task Definition

The concept of automatic text summarization is proposed in 1950s by Luhn
(1958). It aims at condensing a piece of text or multiple documents into a short
summary which reflects the main information of the original texts. Generally,
the produced summary should be highly informative, less redundant and highly
readable. Figure 5.11 gives an example of automatic text summarization that simply
extracts the most two important sentences from the original text.

From the view of methodology, automatic text summarization can be broadly
categorized into two paradigms: extractive summarization (Erkan and Radev 2004;
Nallapati et al. 2017) and abstractive summarization (Barzilay and McKeown 2005;
Filippova and Strube 2008; Rush et al. 2015). Extractive methods extract parts of a
document (usually sentence as basic units) to compose a summary. While abstractive
approaches produce the short summary by paraphrasing or creating new sentences
not featured in the source text — as a human-written summary usually does.

Without a grand slam title from the middle of 2012 to the conclusion of 2016, the Swiss has now won three of his last four
following a gripping 6-2 6-7 (5-7) 6-3 3-6 6-1 victory over Marin Cilic in Sunday‘s Australian Open final. He has reached the
milestone of 20 grand slam titles -- the first man to do so -- and it is a mark that could stand for decades. Or longer. His six
Australian Open crowns also drew him level with the all-time men’s leaders of Roy Emerson and Novak Djokovic and he is the
second oldest man to win a major in the Open Era. The 36-year-old has often said other great players will come along when he
finally does retire. That could be the case but there might not be another player quite like him. Much to the relief of his legions of
supporters, Federer‘s form suggests he won’t be calling it quits anytime soon. The two sets he dropped against the sixth-ranked
Cilic were the only ones he conceded the entire fortnight in Melbourne. “The fairy tale continues for us, for me, after the great
year I had last year,” said Federer, who captured the Australian Open and Wimbledon in 2017 to end his grand slam drought. “It‘s
incredible.” An emotional Federer then thanked the crowd, who had chanted, ‘Let‘s go, Roger’ to get him over the finish line in
the fifth set. There were indeed tears from Federer a la the 2009 Australian Open final. Federer admitted he was nervous in the
buildup as he thought about getting to 20, which would explain why he wasn‘t his usual efficient self in the second and fourth

sets. Federer’s late career revival after a knee injury truly began 12 months ago in Melbourne when he overcame Nadal in five

sets in the final.

@ Automatic Text Summarization

Without a grand slam title from the middle of 2012 to the conclusion of 2016, the Swiss has now won three of his last four
following a gripping 6-2 6-7 (5-7) 6-3 3-6 6-1 victory over Marin Cilic in Sunday‘s Australian Open final. His six Australian
Open crowns also drew him level with the all-time men’s leaders of Roy Emerson and Novak Djokovic and he is the second

oldest man to win a major in the Open Era.

Fig. 5.11 An example of automatic text summarization that generates a two-sentence summary
from the news report

5 Deep Learning for Natural Language Processing 131

Next, we first briefly introduce the extractive summarization methods and
analyze their shortcomings. Then, we give detailed introduction about abstractive
summarization using deep learning.

5.4.2 Extractive Summarization Methods

Extractive methods directly select candidate summary sentences from the original
text. It is the dominant approach to automatic summarization in academic and
industrial community since the method is quite simple and the generated summary
are fluent and easy to read, although it is not the ideal summarization method. We
use single document summarization as the case study to introduce the extractive
methods.

Given a document consisting of n sentences D = {S1, S2, -+, Sy—1, Sp}, the
goal is to extract m salient sentences from D to form a summary. m is a hyper-
parameter or is determined by the word count limit of the summary. We can see that
the most challenging task is to measure the salience of each sentence.

We introduce the most effective method called LexRank proposed by Erkan and
Radev (2004). LexRank is a graph-based algorithm and is inspired by PageRank
(Page et al. 1999). The idea behind is that a sentence is salient if many other
sentences have some similarity with this sentence. All sentences in the document
D are first used to construct a graph G = (V, E). Each vertex V; € V denotes
the i-th sentence S; € D and each edge E;; connects two vertexes V; and V; and a
weight W;; is associated with the edge. The weight W;; reflects the similarity degree
between the two vertexes. Figure 5.12 depicts a graph representing a document that
contains 12 sentences.

The weight W;; is usually calculated by the cosine similarity between two
sentences based on T F I DF (Term-Frequency Inverse Document Frequency):

ZweV,—,V,- (TFIDFw)2
Wi‘ = =

=
\/ervi(TFIDFx)z X \/Zye\/j(TF[DFy)z

(5.26)

w € V;,V; indicates the word appearing both in sentence S; and sentence S;.
TFIDF, =TF,xIDF,.TF, and I DF,, are calculated respectively as follows:

count (w)
TF, = 5 @)
e count (w
wes (5.27)
|D|
IDF, =

ljlw" € S|

132 J. Zhang and C. Zong

sl

s12 _

)
=N
NG AN
%
=\

>
Y

YA\
[7>
-

N\

=
%
%

S~

R

s7

Fig. 5.12 Graph-based representation of texts for sentence score calculation in extractive summa-
rization

where count (w) denotes the number of appearance of the word w in sentence S, | D|
is the number of sentences in the document, and |j|w" € §;| indicates the number
of sentences containing the word w.

Given the above preparations, LexRank calculates the salience score of each
sentence S; as follows:

1—-d W, :
S(V)=——+dx Y =——21—5V) (5.28)
" Vieadj(V;) ZVkEadj(V;) Wik

in which adj (V;) indicates the neighbor vertexes of V; and d € [0, 1] is a dumping
factor which is usually set 0.85, indicating the prior probability of a vertex jumping
to another vertex.

LexRank initializes the salience score of each sentence S; with a random value
and iteratively runs the above Eq.(5.28) until |Sf‘|r1 - S{‘l < € in which € is a
predefined threshold.

After getting the salience scores of all sentences in the document, we can form
the summary be selecting the top m sentences that satisfy the non-redundancy
constraint.

5 Deep Learning for Natural Language Processing 133

Despite of simplicity and effectiveness of the extractive methods, they still face
several inevitable problems. For example, a sentence is selected or discarded even
though some parts of the sentence are salient and other parts are unimportant. The
sentence-based extraction cannot get rid of unimportant parts in a sentence. It will
lead to a summary which contains many irrelevant fragments while many salient
information cannot be included due to the length limit. Furthermore, the extractive
methods calculate the salience scores based on symbolic representation which is
unable to explore the similarity between relevant concepts (e.g. summary and
summarization).

Deep learning methods based on distributed representations can well tackle the
above issues and attract more and more attention from academic and industrial
community.

5.4.3 Abstractive Summarization with Deep Learning

End-to-end deep learning for abstractive summarization is first proposed by Rush
et al. (2015) and it follows the encoder-decoder framework borrowed from neural
machine translation (Bahdanau et al. 2015). At that time, Rush et al. (2015) handles
only sentence summarization that condenses a long sentence into a short one.
Then, several researchers follow this study and improve the sentence summarization
performance by addressing encoder-decoder network (Chopra et al. 2016; Zhou
et al. 2017), unknown words (Gulcehre et al. (2016)) and attention mechanisms
(See et al. 2017).

Nallapati et al. (2016) introduce a large data set CNN/Daily Mail corpus, each
instance of which is a pair of a news text and a corresponding multi-sentence
summary. Then, they design a pure RNN-based encoder-decoder framework to
tackle this task. See et al. (2017) follow this work and improve the model with
the copy mechanism to handle unknown words and the coverage model to deal with
phrase repetition problem.

In principle, neural abstractive summarization (NAS) applies the same encoder-
decoder paradigm as neural machine translation does. The big difference lies in that
the copy mechanism is dramatically useful for neural abstractive summarization
since the result summary and the original text belong to the same language and many
informative words can be directly copied from the original document. Therefore, the
encoder-decoder framework with a copy mechanism becomes the popular method
for neural abstractive summarization (See et al. 2017). In this section, we introduce
this method in detail.

Figure 5.13 gives the overview of this framework. Suppose the input text is a
long word sequence X = (x1,x3,---,x7,) (We concatenate all sentences in the
input text and denote the text with only one word sequence). Similar to NMT,
NAS first encodes this word sequence into a sequence of context vectors C =
(hy,hy, -+, hr,) as shown in bottom left of Fig.5.13. The label (D in Fig.5.13
indicates calculation of attention distribution a; between the current decoder hidden

134 J. Zhang and C. Zong

uoynqLYsi(y Livpngnio

2ID1S UIPPIF] 12POI2(

. . o . <s> Federer beats
Federer wins against Cilic with a score 3-2

\ ’ J \ J

Input Text Output Summary

Fig. 5.13 Abstractive summarization method using the encoder-decoder framework equipped
with copy mechanism

state s; and each input hidden state h;:

er(i) = v tanh(Wyh; + Wss; + barr)
exp(e;(i)) (5.29)
> expler (k)

ar(i) =

in which v, Wj,, W, and b,;; are learnable parameters that can be optimized during
network training.
Then, the dynamic input context ¢, at time step ¢ can be computed as follows:

¢ = Za,(i)hi (5.30)

After attention weight calculation, the label (2) shows how to produce the
probability distribution Py, over the whole vocabulary by using the current
decoder hidden state s, and the overall input context ¢;. In See et al. (2017), Pyocab
is obtained with a two-layer linear transformation followed by a softmax layer:

5 Deep Learning for Natural Language Processing 135

Pyocab = softmax(Vo(Vilsy, ¢]1 + b1) + b2) (5.31)

Similarly, Vi, V,, b1 and b; are network parameters. At this time, we can output
the word with hight probability as the summary word if we do not further consider
other features such as the copy mechanism.

The basic idea behind the copy mechanism is that we have some specific
possibility (choice) to directly copy a word from the input sequence at each decoding
time step. Accordingly, there are three problems need to solve. One is how to figure
out this specific possibility for each decoding step, another one is how to determine
which input word should be copied, and the third one is how to deal with the
relationship between the copy mechanism and the baseline vocabulary probability
distribution.

The label @) in Fig.5.13 shows how to calculate the probability pge, (here 1 —
Dgen 1s the possibility to perform copy) :

Pgen =0 Wrher + Wlsi + Wy + beopy) (5.32)

In which y; is the decoder input at time step f. W, W;, Wy and b.,p, are
corresponding learnable parameters.

The copy probability of each word x; is determined by both of the overall copy
probability 1 — pg, and the attention weight a, (i).

pi = (1 = pgen)as (i) (5.33)

As shown in Fig. 5.13, the word Cilic in the input sequence will get the highest
copy probability since its attention weight is much bigger than others.

Finally, the probability P (w) of each word w in the vocabulary can be updated by
combining the copy mechanism and the original vocabulary distribution as shown
by the label @) in Fig.5.13:

P(W) = pgenPuocab@) + (1 = pgen) Y a:(i) (5.34)

Lwj=w

By combining both of the baseline vocabulary distribution and the copy mecha-
nism, the word Cilic is more opt to be selected as a summary word as illustrated on
the top of Fig.5.13.

Neural abstractive summarization makes a big progress towards understanding
based summarization. However, there are still some crucial issues for future
research. For example, neural methods cannot deal with multi-document summa-
rization currently. One reason is due to the scarce of available labeled data. Another
reason is attributed to the inherent properties of the task of automatic summarization.
The compression ratio of the final summary compared to the original texts is very
high. It may be 1% or even 0.1%. This makes the current model extremely difficult
to find the most 1% important information from the original texts.

136 J. Zhang and C. Zong

5.5 Discussion

In these years, deep learning has been the hot topic in natural language processing
and it is applied into almost all the tasks of NLP. It leads to some breakthroughs in
several tasks especially in machine translation. We believe that deep learning will
play a more important role in natural language processing in the future.

For the future research work, we believe that two crucial issues need to be
solved in deep learning based natural language processing. First, we should fully
exploit the interpretability of deep learning methods since natural language does not
only need computation and processing, but also needs understanding. Second, novel
frameworks should be designed to combine both of the deep learning methods and
the language knowledge such as expert rules and common sense knowledge graphs.

References

Andreas J, Rohrbach M, Darrell T, Klein D (2016) Learning to compose neural networks for
question answering. In: Proceedings of NAACL-HLT, pp 232-237

Bahdanau D, Cho K, Bengio Y (2015) Neural machine translation by jointly learning to align and
translate. In: Proceedings of ICLR

Barzilay R, McKeown KR (2005) Sentence fusion for multidocument news summarization.
Comput Linguist 31(3):297-328

Bengio Y, Simard P, Frasconi P (1994) Learning long-term dependencies with gradient descent is
difficult. IEEE Trans Neural Netw 5(2):157-166

Berger AL, Pietra VID, Pietra SAD (1996) A maximum entropy approach to natural language
processing. Comput Linguist 22(1):39-71

Boitet C, Guillaume P, Quezel-Ambrunaz M (1982) Implementation and conversational environ-
ment of ariane 78.4, an integrated system for automated translation and human revision. In:
Proceedings of the 9th conference on computational linguistics-volume 1. Academia Praha, pp
19-27

Bordes A, Chopra S, Weston J (2014) Question answering with subgraph embeddings. arXiv
preprint arXiv:1406.3676

Bordes A, Usunier N, Chopra S, Weston J (2015) Large-scale simple question answering with
memory networks. arXiv preprint arXiv:1506.02075

Brown PF, Della Pietra SA, Della Pietra VJ, Mercer RL (1993) The mathematics of statistical
machine translation: parameter estimation. Comput Linguist 19(2):263-311

Cai D, Zhao H, Zhang Z, Xin Y, Wu Y, Huang F (2017) Fast and accurate neural word segmentation
for Chinese. In: Proceedings of ACL, pp 608-615

Chen D, Manning C (2014) A fast and accurate dependency parser using neural networks. In:
Proceedings of the 2014 conference on empirical methods in natural language processing
(EMNLP), pp 740750

Chen X, Qiu X, Zhu C, Liu P, Huang X (2015) Long short-term memory neural networks for
Chinese word segmentation. In: Proceedings of EMNLP, pp 1197-1206

Cheng Y, Xu W, He Z, He W, Wu H, Sun M, Liu Y (2016) Semi-supervised learning for neural
machine translation. In: Proceedings of ACL 2016

Chiu JP, Nichols E (2016) Named entity recognition with bidirectional LSTM-CNNs. Trans ACL
4:357-370

Chopra S, Auli M, Rush AM (2016) Abstractive sentence summarization with attentive recurrent
neural networks. In: Proceedings of NAACL-HLT, pp 93-98

5 Deep Learning for Natural Language Processing 137

Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P (2011) Natural language
processing (almost) from scratch. J Mach Learn Res 12(Aug):2493-2537

Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273-297

Devlin J, Zbib R, Huang Z, Lamar T, Schwartz RM, Makhoul J (2014) Fast and robust neural
network joint models for statistical machine translation. In: Proceedings of ACL, pp 1370-
1380

Dong C, Zhang J, Zong C, Hattori M, Di H (2016) Character-based LSTM-CRF with radical-
level features for Chinese named entity recognition. In: International conference on computer
processing of oriental languages. Springer, pp 239-250

Dong C, Wu H, Zhang J, Zong C (2017) Multichannel LSTM-CRF for named entity recognition in
Chinese social media. In: Chinese computational linguistics and natural language processing
based on naturally annotated big data. Springer, pp 197-208

Erkan G, Radev DR (2004) Lexrank: graph-based lexical centrality as salience in text summariza-
tion. J Artif Intell Res 22:457—479

Filippova K, Strube M (2008) Sentence fusion via dependency graph compression. In: Proceedings
of EMNLP, pp 177-185

Fonseca ER, Rosa JLG, Aluisio SM (2015) Evaluating word embeddings and a revised corpus for
part-of-speech tagging in Portuguese. J Braz Comput Soc 21(1):1-14

Gehring J, Auli M, Grangier D, Yarats D, Dauphin YN (2017) Convolutional sequence to sequence
learning. arXiv preprint arXiv:1705.03122

Gulcehre C, Ahn S, Nallapati R, Zhou B, Bengio Y (2016) Pointing the unknown words. In:
Proceedings of ACL

He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. In: Proceedings
of CVPR

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735-1780

Koehn P, Och FJ, Marcu D (2003) Statistical phrase-based translation. In: Proceedings of NAACL

Lafferty J, McCallum A, Pereira FC (2001) Conditional random fields: probabilistic models for
segmenting and labeling sequence data. In: Proceedings of ICML

Lample G, Ballesteros M, Subramanian S, Kawakami K, Dyer C (2016) Neural architectures for
named entity recognition. In: Proceedings of NAACL-HLT

Li P, Liu Y, Sun M (2013) Recursive autoencoders for ITG-based translation. In: Proceedings of
EMNLP

Li X, Zhang J, Zong C (2016) Towards zero unknown word in neural machine translation. In:
Proceedings of IICAI 2016

Liu J, Zhang Y (2017) Shift-reduce constituent parsing with neural lookahead features. TACL
5(Jan):45-58

Luhn HP (1958) The automatic creation of literature abstracts. IBM J Res Dev 2(2):159-165

Luong M-T, Pham H, Manning CD (2015) Effective approaches to attention-based neural machine
translation. In: Proceedings of EMNLP 2015

Ma X, Hovy E (2016) End-to-end sequence labeling via bi-directional LSTM-CNNs-CRF. In:
Proceedings of ACL

Manning CD, Schiitze H (1999) Foundations of statistical natural language processing. MIT Press,
Cambridge/London

McCallum A, Nigam K et al (1998) A comparison of event models for Naive Bayes text
classification. In: AAAI-98 workshop on learning for text categorization, Madison, vol 752, pp
41-48

Mi H, Sankaran B, Wang Z, Ittycheriah A (2016) A coverage embedding model for neural machine
translation. In: Proceedings of EMNLP 2016

Nagao M (1984) A framework of a mechanical translation between Japanese and English by
analogy principle. In: Elithorn A, Banerji R (eds) Artificial and human intelligence, Elsevier
Science Publishers B.V., pp 173-180

Nallapati R, Zhou B, Gulcehre C, Xiang B et al (2016) Abstractive text summarization using
sequence-to-sequence RNNs and beyond. In: Proceedings of CONLL

138 J. Zhang and C. Zong

Nallapati R, Zhai F, Zhou B (2017) Summarunner: a recurrent neural network based sequence
model for extractive summarization of documents. In: AAAI pp 3075-3081

Och FJ, Ney H (2002) Discriminative training and maximum entropy models for statistical
machine translation. In: Proceedings of ACL

Page L, Brin S, Motwani R, Winograd T (1999) The pagerank citation ranking: bringing order to
the web. Technical report, Stanford InfoLab

Pei W, Ge T, Chang B (2014) Max-margin tensor neural network for Chinese word segmentation.
In: Proceedings of ACL, pp 293-303

Rush AM, Chopra S, Weston J (2015) A neural attention model for abstractive sentence
summarization. In: Proceedings of EMNLP

See A, Liu PJ, Manning CD (2017) Get to the point: summarization with pointer-generator
networks. In: Proceedings of ACL

Sennrich R, Haddow B, Birch A (2016a) Improving neural machine translation models with
monolingual data. In: Proceedings of ACL 2016

Sennrich R, Haddow B, Birch A (2016b) Neural machine translation of rare words with subword
units. In: Proceedings of ACL 2016

Socher R, Bauer J, Manning CD et al (2013) Parsing with compositional vector grammars. In:
Proceedings of ACL, pp 455-465

Steedman M (2000) The syntactic process, vol 24. MIT Press, Cambridge

Steedman M, Baldridge J (2011) Combinatory categorial grammar. In: Borsley RD, Borjars K
(eds) Non-transformational syntax: formal and explicit models of grammar. Wiley-Blackwell,
Chichester/Malden

Sutskever I, Vinyals O, Le QV (2014) Sequence to sequence learning with neural networks. In:
Proceedings of NIPS

TuZ,LuZ, LiuY, Liu X, Li H (2016) Coverage-based neural machine translation. In: Proceedings
of ACL 2016

Vaswani A, Zhao Y, Fossum V, Chiang D (2013) Decoding with large-scale neural language models
improves translation. In: Proceedings of EMNLP, pp 1387-1392

Vaswani A, Bisk Y, Sagae K, Musa R (2016) Supertagging with LSTMs. In: Proceedings of
NAACL-HLT, pp 232-237

Vawani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I (2017)
Attention is all you need. arXiv preprint arXiv:1706.03762

Wu H, Zhang J, Zong C (2016a) An empirical exploration of skip connections for sequential
tagging. In: Proceedings of COLING, pp 232-237

Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q, Macherey
K et al (2016b) Google’s neural machine translation system: bridging the gap between human
and machine translation. arXiv preprint arXiv:1609.08144

Wu H, Zhang J, Zong C (2017) A dynamic window neural network for CCG supertagging. In:
Proceedings of AAAI

Yu L, Hermann KM, Blunsom P, Pulman S (2014) Deep learning for answer sentence selection.
arXiv preprint arXiv:1412.1632

Zhang J, Zong C (2015) Deep neural networks in machine translation: an overview. IEEE Intell
Syst 30(5):16-25

Zhang J, Zong C (2016) Exploring source-side monolingual data in neural machine translation.
In: Proceedings of EMNLP 2016

Zhang J, Liu S, Li M, Zhou M, Zong C (2014a) Bilingually-constrained phrase embeddings for
machine translation. In: Proceedings of ACL, pp 111-121

Zhang J, Liu S, Li M, Zhou M, Zong C (2014b) Mind the gap: machine translation by minimizing
the semantic gap in embedding space. In: AAAI pp 1657-1664

Zhou Q, Yang N, Wei F, Zhou M (2017) Selective encoding for abstractive sentence summariza-
tion. In: Proceedings of ACL

Zong C (2008) Statistical natural language processing. Tsinghua University Press, Beijing

Chapter 6 ®
Oceanic Data Analysis with Deep Qe
Learning Models

Guogiang Zhong, Li-Na Wang, Qin Zhang, Estanislau Lima, Xin Sun,
Junyu Dong, Hui Wang, and Biao Shen

Abstract With advanced observation instruments, such as satellite radars and
altimeters, huge amounts of oceanic data can be measured and saved everyday. How
to extract effective information from these raw data becomes an urgent problem in
the research of ocean science. In this chapter, we review the data representation
learning algorithms, which try to learn effective features from raw data and deliver
high prediction accuracy for the unseen data. Particularly, we describe two pieces
of work to show how the state-of-the-art deep learning models can be applied to
oceanic data analysis. That is how the deep convolutional neural networks (CNNs)
are used for ocean front recognition and how the long short term memory (LSTM)
networks are employed for sea surface temperature prediction. We believe that these
two pieces of work are interesting to the researchers in both the machine learning
and the ocean science areas, and many machine learning algorithms will be adopted
in the ocean science applications.

Part of this chapter is reprinted from:

IEEE Geoscience and Remote Sensing Letters, 14:10, Qin Zhang, Hui Wang, Junyu Dong,
Guogiang Zhong, Xin Sun, “Prediction of Sea Surface Temperature Using Long Short-Term
Memory”, 2017, with permission from IEEE

IEEE Geoscience and Remote Sensing Letters, 14:3, Estanislau Lima , “Learning and Transferring
Convolutional Neural Network Knowledge to Ocean Front Recognition”, 2017, with permission
from IEEE

G. Zhong (><) - L.-N. Wang - Q. Zhang - E. Lima - X. Sun - J. Dong
Department of Computer Science and Technology, Ocean University of China, Qingdao, China
e-mail: ggzhong @ouc.edu.cn

H. Wang
College of Oceanic and Atmospheric Sciences, Ocean University of China, Qingdao, China

B. Shen
Key Laboratory of Physical Oceanography.MOE.China, Ocean University of China, Qingdao,
China

© Springer Nature Switzerland AG 2019 139
K. Huang et al. (eds.), Deep Learning: Fundamentals, Theory and Applications,
Cognitive Computation Trends 2, https://doi.org/10.1007/978-3-030-06073-2_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-06073-2_6&domain=pdf
mailto:gqzhong@ouc.edu.cn
https://doi.org/10.1007/978-3-030-06073-2_6

140 G. Zhong et al.

Keywords Deep learning - Oceanic data analysis - Representation learning -
Convolutional neural networks (CNNs) - Long short term memory (LSTM)

6.1 Introduction

Research on ocean science attracts much attention of the governments, organizations
and scientists, due to its importance to fishery industry, military affairs and so
on. As the development of observation instruments, such as satellite radars and
altimeters, huge amounts of oceanic data can be measured and saved everyday.
Most of these data are in the form of images and numerical values, which record
the status of seawater and the generation, change and disappearance of oceanic
phenomena. Hence, how to leverage these observed oceanic data to discover
regularities and predict phenomena that will happen is a critical and urgent problem
to the researchers in related areas of ocean science.

In the terminology of machine learning, to extract effective information from raw
data, we consider “representation learning” algorithms. In most cases, we learn a
new space for the representation of the raw data and conduct subsequent operations
in this new space, such as classification, regression, and retrieval. Typically, for
applications with large scale or high dimensional data, how to learn the low dimen-
sional intrinsic representations of data is a very crucial and challenging problem.

Since more than 100 years ago, many methods have been proposed to learn
effective representations of data. Basically, the data representation learning methods
belong to two categories: “shallow” feature learning methods and deep learning
models, according to the difference between their model structures. For example,
principal component analysis (PCA) (Pearson 1901) and linear discriminant analy-
sis (LDA) (Fisher 1936) are two shallow feature learning methods, while they are
unsupervised and supervised, respectively. Deep belief networks (DBNs) (Hinton
and Salakhutdinov 2006) and deep autoencoders (Hinton et al. 2006) are two deep
learning models.

From the perspective of the mapping function from the original data space to
the learned feature space, the data representation learning methods can be classified
into linear or nonlinear approaches. For example, PCA and LDA are linear feature
learning approaches, while their kernelized algorithms, kernel PCA (Scholkopf et al.
1998) and generalized discriminant analysis (GDA) (Baudat and Anouar 2000),
are nonlinear methods. Since 2000, researchers in the machine learning area have
proposed some manifold learning methods, such as the isometric feature mapping
(Isomap) (Tenenbaum et al. 2000) and locally linear embedding (LLE) (Roweis
and Saul 2000) algorithms, for discovering the low dimensional embeddings of
the high dimensional data. Most of the manifold learning methods are nonlinear.
However, they cannot build an exact mapping function between the low dimensional
embeddings and the high dimensional data. Due to the use of nonlinear activation
functions in deep learning models, almost all of them are nonlinear methods.
However, since there are generally lots of parameters to learn, deep learning models
are highly non-convex.

6 Oceanic Data Analysis with Deep Learning Models 141

In the following section, we introduce some background knowledge about
representation learning and oceanic data analysis. In Sect. 6.3.1, we present the work
that uses deep convolutional neural networks (CNNs) for ocean front recognition. In
Sect. 6.3.2, we introduce a long short term memory (LSTM) network for sea surface
temperature (SST) prediction. Section 6.4 concludes this chapter with remarks and
future research directions.

6.2 Background

In this section, we review the representation learning algorithms and some work
on oceanic data analysis, especially, that related to ocean front recognition and sea
surface temperature prediction.

6.2.1 Representation Learning

As mentioned above, for more than 100 years’ research, many data representation
learning methods have been proposed. In Zhong et al. (2016b), a comprehensive
review of the data representation learning algorithms has been given. In particular,
Zhong and Cheriet (2015) introduced a framework for tensor representation learn-
ing. Many linear, kernel and tensor representation learning algorithms belong to this
framework. Moreover, the convergence of the algorithms within this framework has
been theoretically proved. As the development of deep learning, deep architectures
for pattern recognition, object detection and more other applications have been
extensively proposed. However, there yet exists a review paper to survey the popular
deep learning models.

6.2.1.1 Shallow Feature Learning

Principal component analysis (PCA) is a classic linear dimensionality reduction
method (Pearson 1901; Joliffe 2002). In order to derive the nonlinear version of
PCA, two ways have been adopted. One is the kernel method, which delivers the
kernel PCA (KPCA) (Scholkopf et al. 1998). The other is the latent variable model,
which produces the Gaussian process latent variable model (GPLVM) (Lawrence
2005). Furthermore, to extend GPLVM to supervised learning, Zhong et al. (2010)
presented the Gaussian process latent random field (GPLRF), which can also be
considered as a supervised and nonlinear version of PCA.

Linear discriminant analysis (LDA) (Fisher 1936) is an earliest supervised
data representation learning method. The projection direction of LDA can be
learned with the generalized eigenvalue decomposition (GED). However, GED can
only give an approximate solution to LDA. Zhong and Ling (2016) analyzed an

142 G. Zhong et al.

iterative algorithm for trace ratio problems, and proved the necessary and sufficient
conditions for the existence of the optimal solution of the trace ratio problems. In
this case, the learning of LDA can be converted to a trace ratio problem and obtain
the global optimal solution. Particularly, Zhong et al. (2016a) presented a relational
learning framework called relational Fisher analysis (RFA), which is based on the
trace ratio formulation and has global convergence.

Except PCA, LDA and their variants, there are many other data representation
learning approaches, such as that based on ensemble learning (Zhong and Liu 2013),
that integrated in multi-task learning settings (Zhong and Cheriet 2013), and tensor
representation learning algorithms (Zhong and Cheriet 2012, 2014a,b; Jia et al.
2014a,b).

Since 2000, some manifold learning algorithms have been proposed, such as
isometric feature mapping (Isomap) (Tenenbaum et al. 2000) and locally linear
embedding (LLE) (Roweis and Saul 2000). However, as nonlinear dimensionality
reduction methods, most of the manifold learning algorithms cannot produce an
exact mapping function between the high dimensional data and the low dimensional
embeddings (Zhong et al. 2012). Hence, some linear algorithms have been proposed,
such as locality preserving projections (LPP) (He and Niyogi 2003) and marginal
Fisher analysis (Yan et al. 2007). To the end, manifold learning algorithms have
been widely used for face recognition and handwriting recognition tasks (He et al.
2005; Cheriet et al. 2013).

In addition to the data representation learning methods mentioned above,
similarity learning and distance metric learning algorithms usually learn the latent
representations in a subspace of data (Xing et al. 2002; Weinberger et al. 2005;
Chechik et al. 2010; Zhong et al. 2011, 2016d, 2017b).

6.2.1.2 Deep Learning

Due to the development of feature learning algorithms, the availability of large
scale labeled images, and the high performance of computational hardwares, deep
learning has attracted much attention in recent years and has been applied to many
areas. As an advanced review, Zhong et al. (2018a) describes the benefits from the
deep architectures considering both their width and depth. However, as many deep
networks have been proposed in recent years, only some canonical deep models
are introduced in this review paper, such as AlexNet (Krizhevsky et al. 2012),
VGGNet (Simonyan and Zisserman 2014), GoogLeNet (Szegedy et al. 2014) and
ResNet (He et al. 2015).

Other than the deep architectures with network structure, such as feedforward
networks and convolutional networks, researchers have designed some new deep
architectures. For instance, Zheng et al. (2014) introduced a novel method to
build deep architectures with traditional shallow feature learning modules, such as
PCA and stochastic neighbor embedding (SNE) (Hinton and Roweis 2002). Since
each layer can be pre-trained with a specific objective function, the constructed

6 Oceanic Data Analysis with Deep Learning Models 143

deep architectures generally perform better than deep autoencoders (Hinton and
Salakhutdinov 2006) and stacked denoising autoencoders (Vincent et al. 2010).
Furthermore, Zhong et al. (2017a) proposed the marginal deep architectures (MDA),
which stacked multiple layers of marginal Fisher analysis (MFA) (Yan et al. 2007).
With the dropout (Hinton et al. 2012) and back propagation techniques, MDA can
perform very well on multi-class classification applications. In Zhong et al. (2018b),
the traditional error correcting output codes framework was extended to multi-layer
mode, which can be considered a new way to construct deep architectures using
ensemble learning methods.

To improve the effectiveness of the deep networks, many methods have been
proposed. For example, Zheng et al. (2015) applied the stretching technique (Pandey
and Dukkipati 2014) to map the learned deep features to a higher dimensional
space and performed classification in this new space. Experiments showed the
effectiveness of the adopted methods. Based on the AlexNet (Krizhevsky et al.
2012) and VGGNet (Simonyan and Zisserman 2014), Zhong et al. (2016c) proposed
a deep hashing learning network, which can jointly learn the hashing code and
hashing function. More than the softmax loss, Zhong et al. (2018e) proposed a
convolutional discriminant loss, which enforces the deep features of the same class
to be close and those belonging to different classes to be separated. In order to
compress the amount of parameters and speed up the running of deep networks,
Zhong et al. (2018d) presented a structure compression algorithm of deep neural
networks based on the merging of similar neurons.

Till now, deep learning models have already been widely used in many areas,
such as handwriting recognition and image understanding. In Roy et al. (2016),
a tandem hidden Markov model (HMM) with DBNs (Hinton et al. 2006) was
proposed for offline handwriting recognition. For concreteness, DBNs were used to
learn the compact representations of the handwritten document images, while HMM
was applied for (sub-)word recognition. In Donahue et al. (2014), a feature learning
method based on the AlexNet was introduced, which took the deep convolutional
activation feature (DeCAF) as new representation of the original data. Zhong et al.
(2014) applied DeCAF to the book name recognition and book type classification of
photographed document images, which were two new questions for the community
of document analysis and recognition. In Cai et al. (2015), the problem that whether
DeCAF is good enough for accurate image classification was revisited. Based on the
reducing and stretching operations, the performance of DeCAF has been improved
on several image classification problems. Furthermore, applying the fine-tuning
operation after reducing and stretching DeCAF, it’s performance can be greatly
improved (Zhong et al. 2018c). Besides, deep learning models have also been
used for object detection, texture generation, speech recognition, image caption
generation, machine translation, remote sensing, finance and bioinformatics (Deng
and Li 2013; Xu et al. 2015; Sutskever and Vinyals 2014; Heaton et al. 2016; Min
et al. 2016; Zhang et al. 2017; Gao et al. 2017; Gan et al. 2017; Liu et al. 2017,
2018; Pan et al. 2018; Miao et al. 2018).

144 G. Zhong et al.
6.2.2 Oceanic Data Analysis

In the literature, many machine learning methods have been applied for oceanic data
analysis (Hsieh 2009), such as neural networks and support vector machines (Lins
et al. 2010). Here, we only focus on that related to ocean front recognition and sea
surface temperature prediction.

Ocean fronts are sharp boundaries between different water masses and different
types of vertical structure, that are usually accompanied by enhanced horizontal
gradients of temperature, salinity, density, nutrients and other properties (Belkin
and Cornillon 2003). In order to understand the oceanographic processes, ocean
fronts have been a subject of study for many years. Ocean front recognition is
vital when it comes to provide enlighten information concerning the properties and
dynamics of the oceans and atmosphere. Thus, ocean front constitutes a fundamental
key to understanding the majority of the oceanographic processes, namely, climate
changes. Literature gives a variety of methods to address the problem of ocean
front recognition. The most popular methods include the gradient algorithms, the
edge detector and entropy algorithms (Cayula and Cornillon 1992). Due to the
development of technological innovation and new instruments over the past decade,
remote sensing data such as high-resolution satellite imagery has gained popularity
and is readily available and inexpensive. Consequently, with large quantities of data,
new algorithms and methods for ocean front recognition and detection in satellite
imagery have been proposed (Miller et al. 2015; Yang et al. 2016; Lima et al.
2017). In next section, we present that how to apply a deep learning method, deep
convolutional neural network (CNNs), to an ocean front recognition task.

Sea surface temperature (SST) is an important parameter in the energy balance
system of the earth’s surface, and it is also a critical indicator to measure the heat
of sea water. It plays an important role in the process of the earth’s surface and
atmosphere interaction. Sea occupies three quarters of the global area, therefore SST
has an inestimable influence on the global climate and the biological systems. The
prediction of SST is also important and fundamental in many application domains
such as ocean weather and climate forecast, offshore activities like fishing and
mining, ocean environment protection, ocean military affairs, etc. It is significant in
science research and application to predict accurate temporal and spatial distribution
of SST. However, the accuracy of its prediction is always low due to many uncertain
factors especially in coastal seas. This problem is especially obvious in coastal seas.

Many methods have been published to predict SST. These methods can be
generally classified into two categories (Patil et al. 2016). One is based on physics,
which is also known as numerical model. The other is based on data, which is
also called data-driven model. The former tries to utilize a series of differential
equations to describe the variation of SST, which is usually sophisticated and
demands increasing computational effort and time. In addition, numerical model
differs in different sea areas. Whereas the latter tries to learn the model from data.
Some learning methods have been used such as linear regression (Kug et al. 2004),
support vector machines (Lins et al. 2010) and neural networks (Patil et al. 2016;
Zhang et al. 2017).

6 Oceanic Data Analysis with Deep Learning Models 145
6.3 Oceanic Data Analysis with Deep Learning Models

In this section, we introduce two pieces of work to show how deep learning models
can be used for oceanic data analysis.

6.3.1 Ocean Front Recognition with Convolutional Neural
Networks

Applying deep learning methods to ocean front recognition is a challenging task,
because fronts have significant visual similarities and are indistinguishable on color
and shape. Here, we focused on an interesting property of modern CNNs, which is,
the first few convolutional layers tend to learn features that resemble edges, lines,
corners, shapes, and colors, independent of the training data. More specifically,
earlier layers of the network contain generic features that should be useful to many
tasks. Since we can define and characterize front as edges, lines and corners, modern
CNNSs can be trained to recognize ocean front. The task is to train a CNNs model
to extract generic features that can be useful to our work. Generally, to train a full
CNNs we need a large dataset. However, the ocean front recognition dataset is not
large enough to train the full CNNs; therefore, fine-tuning becomes the preferred
option to extract the features.

6.3.1.1 Network Architecture

The deep architecture (AlexNet), proposed by Krizhevsky, Sutskever and Hin-
ton (Krizhevsky et al. 2012), is applied to the fine-tuning procedure. It has 60
million parameters and 650,000 neurons. This network consists of two types of
layers: convolutional layers and fully connected layers. Its architecture is presented
in Fig. 6.1. it takes a square 224 x 224 pixel RGB image as input and produces a
distribution over the ImageNet object classes. The architecture is composed of five
convolutional layers, three pooling layers, two fully-connected layers and finally a
classifier layer. Very similar to the typical CNNs, the success of this architecture

ImageNet
Dataset

Fig. 6.1 Architecture of the AlexNet: 5 convolutional layers (conv), 2 fully-connected layers (fc)
and 1 classifier layer (softmax)

146 G. Zhong et al.

is based on several factors, such as availability of large datasets, more computing
power, and availability of GPUs. The success of the network also depends on the
implementation of additional techniques, such as dropout, data augmentation to
prevent overfitting, and rectified linear units (ReLU) to accelerate the training phase.

The fine-tuning of the adopted network is based on the idea of transfer learning
(Donahue et al. 2014). Specifically, it is a process that adapts an already learned
model to a novel classification model. There are two possible approaches of
performing fine-tuning in a pre-trained network: first is to fine-tune all the layers
of the CNNs. The second approach is to keep some of the earlier layers fixed (to
avoid overfitting) and fine-tune only the higher-level layers of the network. In the
first approach, the classifier layer is removed from the pre-trained CNNs and the rest
of the CNN:ss is treated as a fixed feature extractor. In the second approach the initial
layers are frozen to keep the generic features already learned, and the final layers
are adjusted for the specific task. In other words, fine-tuning uses the parameters
learned from a previous pre-trained network on a specific dataset, and then adjusts
the parameters from the current state for the new dataset. In this work, we fine-tuned
all layers, and assumed that the features from all layers were important for our task.
The workflow for this approach is illustrated in Fig. 6.2.

6.3.1.2 Experimental Results
The data obtained from the National Oceanic and Atmospheric Administration
(NOAA) contains data of different region and different years, and is posteriorly

processed and labeled by using matlab. Two distinct data, colorful and gray-level
data were processed and each type of data contained two classes, front and no-

Transferring the activations of CNNs trained on the ImageNet

Fine-tuning all layers except the softmax layer

Fig. 6.2 Fine-tuning process. All layers are fine-tuned; basically the last layer (softmax classifier
layer) is ignored and only the layer used to extract the features need to be defined

6 Oceanic Data Analysis with Deep Learning Models 147

front. The primary difference recorded between these two datasets is the color
property, of which the grey-level images are original images. The colorful images
were processed by interpolation algorithms. The two datasets colorful and gray-level
are respectively composed of 2000 images: the front class contains 1279 images and
no-front class contains 721 images. All high resolution images referring to different
regions and years were collected from NOAA. We processed all the images with a
grid size of 2° for both dataset. The colorful date is RGB images. Some samples of
this dataset are presented Fig. 6.3a, b. Some samples of the grey-level images are
shown in Fig. 6.3c, d.

We split the training and test sets by taking a stratified 10-fold of the provided
dataset. To fine-tuned the adopted model, we kept the structure of pre-trained model
unchanged, and only removed the last softmax layer. Moreover, the pre-trained
CNNss required a fixed-size (e.g., 224 x 224) as input image. Therefore each image
was resized to a fixed size in the network. We also changed the number of classes to
just two, corresponding to the front and no-front class. For the training parameters,
we ran the code for 5,000 iterations and set the learning rate to a very small
variations of 0.01 and 0.001. In addition, we fine-tuned the pre-trained model with
our training data to learn the weights. Then we used SVM classifier to classify the
new learned feature. As shown in Table 6.1, the accuracies of the applied method on
the two data sets ware 88% for the colorful data, and 86% for the gray-level data.

Figure 6.4 shows the classification accuracy of each layer of the AlexNet.
The classification accuracy for the colorful data increased very slowly in the first
five convolutional layers. The accuracy then droped in the first fully-connected
layer. However, during the last full connected layer, the accuracy increased to the
highest. The classification accuracy for the gray-level data increased faster than the
colorful data in first five convolutional layers, and the last full connected layer were
validated as the most accurate. The colorful data achieved better result during the
last full connected layer compared with gray-level data. We believe that the possible

() (d)

Fig. 6.3 Examples of the colorful and gray-level ocean front images. (a) Class front, colorful data.
(b) Class no-front, colorful data. (c¢) Class front, gray-level. (d) Class no-front, gray-level

(b)

Table 6.1 The accuracies Dataset

. Accuracy %
obtained on each dataset

Colorful 88
Gray-level 86

148 G. Zhong et al.

== colorful
0.951 =@=gray-level

I
o ©
o ©

Accuracy %
o
[ee]

0.75

0.7

0.65

0.6 : :
conv1 conv2 conv3 conv4 conv5 fc6 fc7

Layers

Fig. 6.4 Classification accuracy of each layer of the AlexNet

explanation for the better performance of this model in colorful data rather than the
gray-level data was due to the particular intrinsic properties of each dataset. The
color properties are significantly important since the first convolutional layers tend
to learn features that resemble color.

Understanding the operation of visualization of features learned by a CNNs
model requires interpreting the feature activity in intermediate layers. Figure 6.5
shows feature visualizations from our proposed model once training was completed.
From the results, we can see that the features from early layers (1 — 3) show better
result compared to latter ones (4 — 5). We speculate that it may be due to the first
convolutional layers tendency to learn features that resemble color, edges, lines,
corners and shapes. The earlier layers of the network contain generic features that
should be useful to ocean front recognition task. The latter layers are closer to the
label layer of the nature image classification problem, and thus they contained task-
specific features which may not help our application.

Figure 6.6 shows the comparison in term of the accuracy of the proposed
method with different baselines: the original CNNs model, the last-layer fine-tuned
CNNs model, and the conventional hand craft descriptor with bag-of-visual-words
(BOVW). We first trained and tested the original AlexNet only with our datasets, and
the results were very similar in both datasets. However, the full training performed
better in the colorful data 83% and in the gray-level data 81%. Comparing the results
of the proposed method in relation to fine-tuning higher layers, we observe a big
difference in the results, 55% in the colorful data and 45% in the gray-level data.
One possible reason is that the earlier layers of the network tend to learn features that
resemble color, edges, lines, corners and shapes, which should be useful to ocean
front recognition task. Comparing the results of BOVW with our method, we can
see that our proposed method provides better results than the BOVW that achieved

6 Oceanic Data Analysis with Deep Learning Models 149

1% layer 2 layer 3* layer

>.*

1* layer 2 layer 3 layer 1" layer 2layer 3% layer

Input

¥

Fig. 6.5 Features visualization of the convolutional layers. (Top two lines) the CNNs features from
colorful data. (2nd line, Left) Visualization of class front. (2nd line, Right) Visualization of class
no-front. (Bottom two lines) the CNNs features from gray-level data. (4th line, Left) Visualization
of class front. (4th line, Right) Visualization of class no-front

I Our method [Full training [C__] Fine-tuning higer layers DBOVW}
1

0.9+
0.8
0.7

0.6
0.5¢

Accuracy %

0.4}
0.3}
0.2}
0.1

Colorful Gray-level

Fig. 6.6 The comparison of the proposed method with different baselines

150 G. Zhong et al.

68% in the colorful data and 54% in the gray-level data. The results showed that our
proposed method achieved the highest accuracy in both datasets, 88% in the colorful
data and 86% in the gray-level data.

6.3.2 Sea Surface Temperature Prediction with Long
Short-Term Memory Networks

Usually the sea surface can be divided into grids according to the latitude and
longitude. Each grid will have a value at an interval of time. Then the SST values
can be organized as three dimensional (3D) grids. The problem is how to predict the
future value of SST according this 3D SST grid.

To make the problem simpler, suppose the SST values from one single grid is
taken during the time, it is a sequence of real values. If a model can be built to
capture the temporal relationship among data, then the future values can be predicted
according to the historical values. Therefore the prediction problem at this single
grid can be formulated as a regression problem: if k days’ SST values are given,
what are the SST values for the k 4 1 to k 4- [days? Here [represents the length of
prediction.

6.3.2.1 Network Architectures

To capture the temporal relationship among time series data, LSTM is adopted.
LSTM was first proposed by Hochreiter and Schmidhuber in 1997 (Hochreiter
and Schmidhuber 1997). It is a specific recurrent neural network architecture that
was designed to model sequences and can solve the long-range dependencies more
accurately than conventional RNNs. LSTM can process a sequence of input and
output pairs {(x;, y;)};_,. For current time step with the pair (x;, y;), the LSTM
cell takes a new input x; and the hidden vector A,_; from the last time step, then
produces an estimate output y; also with a new hidden vector 4, and a new memory
vector m,. Figure 6.7 shows the structure of an LSTM cell. The whole computation
can be defined by a series of equations as follows (Graves 2013):

ii =c(WH+b)

fi =W/ H + b))

o, =o(W°H + b°)

¢; = tanh(WH + b°) 6.1)
my = fy Omi—1 +ir O ¢t

h; = tanh(o; © my)

6 Oceanic Data Analysis with Deep Learning Models 151

Fig. 6.7 Structure of LSTM
cell (Hochreiter and
Schmidhuber 1997)

Forget Gate

Iy

where o is the sigmoid function, Wi, WS, We, W¢ in R?%24 are the recurrent
weight matrices, and b', b/, b°, b¢ are the corresponding bias terms. H in R? is
the concatenation of the new input x; and the previous hidden vector /;_1:

Ix,
H = 6.2
|:htl:| (6.2)

The key to LSTM is the cell state, i.e. memory vector m; in Eq. (6.1), which can
remember long-term information. The LSTM does have the ability to remove or
add information to the cell state, carefully regulated by structures called gates. The
gates in Eq. (6.1) are i, f, o, c, representing input gate, forget gate, output gate and
a control gate. Input gate can decide how much input information enter the current
cell. Forget gate can decide how much information be forgotten for the previous
memory vector m;_1, while the control gate can decide to write new information
into the new memory vector m; modulated by the input gate. Output gate can decide
what information will be output from current cell.

Followed the work of Kalchbrenner et al. (2015), we also use a whole function
LST M() as shorthand for Eq. (6.1):

', m') = LSTM([h{xi i|m W) (6.3)

i—1

where W concatenates the four weight matrices wi, Wl we, we.

LSTM is combined with full-connected layer to build a basic LSTM block.
Figure 6.8 shows the structure of a basic LSTM block. There are two basic neural
layers in a block. LSTM layer can capture the temporal relationship, i.e. the regular
variation among the time series SST values. While the output of LSTM layer is
a vector i.e. the hidden vector of the last time step, a full-connected layer is used
to make a better abstraction and combination for the output vector, and reduces

152 G. Zhong et al.

its dimensionality meanwhile maps the reduced vector to the final prediction.
Figure 6.9 shows a full-connected layer. The computation can be defined as follows:

(hismi) = LSTM([’;’”’”} m, W)
i—1

prediction = o(W/h; + b/°) (6.4)

where the definition of function LST M () is as Eq. (6.3), A; is the hidden vector in
the last time step of LSTM, W /€ is the weight matrices in full-connection layer, and
b/ is the corresponding bias terms.

This kind of block can predict future SST of a single grid, according to all the
previous SST values of this grid. But it’s still not enough. Prediction of SST of an
area is needed. So the basic LSTM blocks can be assembled to construct the whole
network.

Figure 6.10 shows the architecture of the network. It’s like a cuboid: the x axis
stands for latitude, the y axis stands for longitude, and the z axis is time direction.
Each grid corresponds to a grid in real data. Actually the grids in the same place
along the time axis form a basic block. We omit the connections between layers for
clarity.

Fig. 6.8 Basic LSTM block Prediction

*

Full-
connected
Layer
N

LSTM Cell]

:

Input

Fig. 6.9 A full-connected
layer

6 Oceanic Data Analysis with Deep Learning Models 153

Fig. 6.10 Network
architecture FC FC FC

LSTMcell LSTMcell ~ LSTM cell

Ft Fi Fe;

LSTM cell LSTM cell LSTM cell

EC! Ft EC;

LsTMcell LSTMcell LSTMecell |5npitude
[j time
latitude
6.3.2.2 Experimental Results

We used NOAA High Resolution SST data provided by the NOAA/OAR/ESRL
PSD, Boulder, Colorado, USA, from their web site at http://www.esrl.noaa.gov/
psd/ (ESRL 2018). This dataset contains SST daily mean values, SST daily
anomalies, SST weekly mean and monthly mean values from Sept. 1981 to Nov.
2016 (12,868 days in total), and covers the global ocean from 89.875S to 89.875N,
0.125E to 359.875E, which is 0.25 degree latitude multiplied by 0.25 degree
longitude global grid (1440 x 720).

The temperature varies relatively stably in far ocean, and fluctuates more greatly
in coastal seas. Hence, the coastal seas near China are focused to evaluate the
proposed method. The Bohai Sea is the innermost gulf of the Yellow Sea and Korea
Bay on the coast of northeastern and northern China. It is approximately 78,000
km? in area and its proximity to Beijing, the capital of China, makes it one of the
busiest seaways in the world (Wikipedia 2018). Bohai sea covers from 37.07N to
41N, 117.35E to 121.10E. We took the corresponding subset to the Bohai Sea from
the dataset mentioned above to form a 16 by 15 grid, which contains a total of
12,868 daily values, named Bohai SST daily mean dataset, and Bohai SST daily
anomaly dataset. The two datasets were used for daily prediction. Furthermore, the
weekly mean values and monthly mean values were used for weekly and monthly
prediction.

Since the SST prediction is formulated as a sequence prediction problem, i.e.
using previous observations to predict the future, how long the previous observations
are to be used to predict the future should be determined. Of course the longer the
length is, the better the prediction will be. Meanwhile the more computation will be
needed. Here the length of previous sequence was set to four times of the length of
prediction according to the characteristics of the periodical change of temperature
data. In addition, there were still other important values to be determined: the
number of layers for LSTM layer /, and full-connected layer /., which would
determine the whole structure of the network. Also the corresponding number of
hidden units denoted by units_r should be determined together.

http://www.esrl.noaa.gov/psd
http://www.esrl.noaa.gov/psd

154 G. Zhong et al.

According to these aspects mentioned above, we first designed a simple but
important experiment to determine the critical values for I, [7. and units_r, using
the basic LSTM block to predict the SST for a single location. Then we evaluated
the proposed method on area SST prediction for Bohai Sea.

Although the structure of the network was determined, there were still other
critical components to be determined in order to train the network, i.e. the activation
function, the optimization method, the learning rate, the batch size, etc. The basic
LSTM block uses logistic sigmoid and hyperbolic tangent as activation function.
Here we used ReLU activation function for that it was easy to optimize and was
not saturated. The traditional optimization method for deep network is stochastic
gradient descent (SGD), which is the batch version of gradient descent. The batch
method can speed up the convergence of network training. Here we adopted
Adagrad optimization method (Duchi et al. 2010), which can adapt the learning
rate to the parameters, performing larger updates for infrequent and smaller updates
for frequent parameters. Dean et al. (2012) have found that Adagrad improved the
robustness of SGD greatly and used it for training large-scale neural networks.
We set the initial learning rate as 0.1, and the batch size as 100 in the following
experiments.

The division of training set, validation set and test set were as follows. The data
from Sept. 1981 to Aug. 2012 (11,323 days in total) was used as training set, the
data from Sept. 2012 to Oct. 2012 (122 days in total) was the validation set, and the
data from Jan. 2013 to Dec. 2015 (1095 days in total) was the test set. We tested for
one week (7 days) and one month (30 days) to evaluate the prediction performance.
The data of 2016 (328 days in total) was reserved for another comparison.

Results of another two regression models, i.e. support vector regression
(SVR) (Awad and Khanna 2007) and multi layer perceptron regression
(MLPR) (Rumelhart and Mcclelland 1986), for SST prediction are given for purpose
of comparison. SVR is one of the most popular regression models in recent years,
which has achieved good results in many application domains. MLPR is a typical
artificial neural network for regression task. We run the experiments under the
environment of Intel(R) Core(TM)2 Quad CPU Q9550 @2.83GHz, 6G RAM,
Ubuntu 16.10 64 bits operating system, and Python 2.7. The proposed network was
implemented by Keras (Chollet et al. 2015). SVR and MLPR were implemented by
Scikit-learn (Pedregosa et al. 2011).

The performance evaluation of SST prediction was a fundamental issue. Here,
root of mean squared error (RMSE) was adopted which is one of the most common
measurement used as the evaluation metric to measure the effectiveness of different
methods. Apparently, the smaller RMSE is, the better the performance is. Here
RMSE can be regarded as an absolute error. And for area prediction the area average
RMSE was used.

We randomly chose 5 locations in the Bohai daily mean SST dataset denoted
as pi, p2, ..., ps to predict 3 days’ SST values with half month (15 days) length
of previous sequence. Firstly, we fixed /, and [y, as 1, units_fc as 3, and chose
a proper value for units_r from {1,2,3,4,5,6}. Table 6.2 shows the results on five

6 Oceanic Data Analysis with Deep Learning Models 155

Table 6.2 Prediction results

(RMSE) on five locations umts r | P P2 ps L ps

with different units_rs 1 0.1595 |0.1171 |0.2690 |0.2988 |0.2626
2 0.1589 |0.1137 |0.2569 |0.2909 |0.2695
3 0.2075 10.0923 |0.2580 | 0.2819 |0.2606
4 0.2152 0.0918 |0.2349 |0.2752 |0.2672
5 0.1280 |0.0914 | 0.2310 |0.2723 |0.2362
6 0.1353 10.0922 |0.2454 |0.2646 |0.2468

Table 6.3 Prediction results I
(RMSE) on five locations
with different [, s

pP1 p2 pP3 P4 ps

1 0.1280 0.0914 0.2310 0.2723 0.2362
2 0.1288 0.1153 0.2500 0.2730 0.2496
3 0.3659 0.0950 0.2656 0.2732 0.3334

Table 6.4 Prediction results
l .

(RMSE) on five locations fe Pl P2 P P4 Ps

with different ks 1[3] 0.1280 |0.0914 |0.2310 | 0.2723 | 0.2362

[
2[3,3] |0.2838 |0.0945 0.2880 |0.2724 |0.2461
2[6,7] |0.3660 |0.2605 | 0.4655 |0.2730 |0.3355

locations with different values of nunits_r. The boldface items in the table represent
the best performance, i.e. the smallest RMSE. It can be seen from the results that
the best performance occurs when units_r = 6.

In this experiment, the best performance occurs when units_r = 5 in four
locations pi, p2, p3 and ps5, while at ps the best performance occurs when
units_r = 6. We can see that the difference of RMSE is not too significant. So
in the following experiments, we set units_r as 5.

Then, we also used the SST sequences from the same five locations to choose a
proper value for /, from {1,2,3}. The other two parameters were set by unit_r =5,
and /s, = 1. Table 6.3 shows the results on five locations with different values of
I,. The boldface items in the table represent the best performance. It can be seen
from the results that the best performance occurs when /, = 1. The reason may
be the increasing weights numbers with increasing recurrent LSTM layers. In this
case the training data is not sufficient enough to learn so many weights. Actually,
experiences in previous study show that the recurrent LSTM layer is not the more
the better. And during the experiments we found that the more LSTM layers are, the
more likely to get unstable results, and the more training time to be needed. So in
the following experiments, we set [, as 1.

Lastly, we still used the SST sequences from the same five locations to choose
a proper value for /7. from {1,2}. Table 6.4 shows the results with different /.s.
The numbers in the square brackets stand for the number of the hidden units. The
boldface items in the table represent the best performance. It can be seen from the
results that it achieves the best performance when /. = 1. The reason may be the
same: more layers means more weights to be trained and more computation it needs.
So in the following experiments, we set [¢. as 1, and the number of its hidden units
was set to the same value as the prediction length.

156 G. Zhong et al.

Therefore, the number of LSTM layers and full-connected layers were both set
to 1. The number of the neurons in the full-connected layer was set the same as the
prediction length /. The number of the hidden units in the LSTM layer was chosen
in an empirical value range L%, 2/ |. More hidden units require more computational
time; thus the number needs to be balanced in the application.

We used Bohai SST dataset to compare the proposed method with two classical
regression methods SVR and MLPR. Specifically, Bohai SST daily mean dataset
and daily anomaly dataset were used for one day and three days short term
prediction. Bohai SST weekly mean and monthly mean dataset were used for one
week and one month long term prediction. The setting was as follows. For short
term prediction of LSTM network, we set k = 10, 15, 30, 120 for / = 1, 3,7, 30
respectively, and [, = 1, units_r = 6, ly. = 1. For long term prediction of LSTM
network, we set k = 10, units_r = 3,1, = 1 and Iy = 1. For SVR, we used
the RBF kernel and set the kernel width 0 = 1.6, which was chosen by 5-fold
cross validation on the validation set. For MLPR, we used a three layers perceptron
network, which included one hidden layer. The number of hidden units was the same
as the setting of LSTM network for fair comparison.

Table 6.5 shows the results of daily short term prediction and weekly, monthly
long term prediction. The boldface items in the table represent the best performance,
i.e. the smallest area average RMSE. We also tested the prediction performance
with respect to the SST daily anomalies shown in Table 6.6. It can be seen from
the results that the LSTM network achieve the best prediction performance. And
Fig.6.11 shows the prediction result at one location using different methods. In
order to see the results clearly, we only show the prediction results for one year
from January 1st, 2013 to December 31st, 2013, which is the first year of the test set.
Green solid line represents the true value. Red dotted line represents the prediction
results of the LSTM network. Blue dashed line represents the prediction results of
SVR with RBF kernel. And cyan dash-dot line represents the prediction results of
the MLPR.

Table 6.5 Prediction results

Daily Weekly | Monthly
gg;zia;g?%agls\gtsm on the Methods One day | Three days | One week | One month
SVR 0.3998 | 0.6158 0.4716 0.6538
MLPR 0.6633 | 0.8215 0.6919 0.8360

LSTM network | 0.0767 | 0.1775 0.3844 0.3928

Table 6.6 Prediction results Daily

(area average RMSE) on the

Bohai SST daily anomaly Methods One day Three days

dataset SVR 0.3277 0.5266
MLPR 0.9386 0.7518

LSTM network 0.3110 0.4857

6 Oceanic Data Analysis with Deep Learning Models 157

S5T predicton using different methods

x s true obiervations
| o e e L R A ~=~ SVH with RS kemel
= ol ad e, LSTH Network

%

LU e

1% %0
datelfan. 158, 2018 to Dec. 31582019

Fig. 6.11 Three days’ SST prediction at one location using different methods

6.4 Conclusion

In this chapter, we have introduced the application of deep learning models for
oceanic data analysis. As there are many problems in the area of ocean science,
and the research in ocean science heavily relies on the computation and analysis,
deep learning is expected to be widely applied to address the oceanic problems, and
meanwhile, deep learning will bring new ideas and technologies to the development
of ocean science. At last, we emphasize that deep learning is only a branch of
machine learning and is far away from perfectness. To solve complex oceanic
problems, we may need design new deep architectures and establish new theories
on deep learning models (Erhan et al. 2010; Cohen et al. 2016; Eldan and Shamir
2016).

Acknowledgements This work was supported by the National Natural Science Foundation of
China (NSFC) under Grant No. 61403353, No. 41576011 and No. 61401413, International
Science and Technology Cooperation Program of China (ISTCP) under Grant No. 2014DFA 10410,
Natural Science Foundation of Shandong Province under Grant No. ZR2014FQ023, Science and
Technology Program of Qingdao under Grant No. 17-3-3-20-nsh and the Fundamental Research
Funds for the Central Universities of China. The Titan X GPU used for this research was donated
by the NVIDIA Corporation.

References

Awad M, Khanna R (2007) Support vector regression. Neural Inf Process Lett Rev 11(10):203-224

Baudat G, Anouar F (2000) Generalized discriminant analysis using a kernel approach. Neural
Comput 12:2385-2404

Belkin I, Cornillon P (2003) Sst fronts of the pacific coastal and marginal seas. Pac Oceanogr
1(2):90-113

Cai Y, Zhong G, Zheng Y, Huang K, Dong J (2015) Is DeCAF good enough for accurate image
classification? In: ICONIP, pp 354-363

Cayula JF, Cornillon P (1992) Edge detection algorithm for SST images. J Atmos Oceanic Technol
9(1):67-80

Chechik G, Sharma V, Shalit U, Bengio S (2010) Large scale online learning of image similarity
through ranking. J Mach Learn Res 11:1109-1135

Cheriet M, Moghaddam R, Arabnejad E, Zhong G (2013) Manifold learning for the shape-based
recognition of historical arabic documents. Elsevier, North Holland, pp 471-491

Chollet F et al (2015) Keras. https://github.com/fchollet/keras

https://github.com/fchollet/keras

158 G. Zhong et al.

Cohen N, Sharir O, Shashua A (2016) On the expressive power of deep learning: a tensor analysis.
In: COLT, pp 698-728

Dean J, Corrado GS, Monga R, Chen K, Devin M, Le QV, Mao MZ, Ranzato A, Senior A, Tucker
P (2012) Large scale distributed deep networks. In: NIPS, pp 1232-1240

Deng L, Li X Machine learning paradigms for speech recognition: an overview. IEEE Trans Audio
Speech Lang Process 21(5):1060-1089 (2013)

Donahue J, Jia Y, Vinyals O, Hoffman J, Zhang N, Tzeng E, Darrell T (2014) DeCAF: a deep
convolutional activation feature for generic visual recognition. In: ICML, pp 647-655

Duchi J, Hazan E, Singer Y (2010) Adaptive subgradient methods for online learning and
stochastic optimization. J Mach Learn Res 12(7):257-269

Eldan R, Shamir O (2016) The power of depth for feedforward neural networks. In: COLT, pp 907-
940

Erhan D, Bengio Y, Courville A, Manzagol PA, Vincent P, Bengio S (2010) Why does unsupervised
pre-training help deep learning? J Mach Learn Res 11:625-660

ESRL N. NOAA OI SST V2 high resolution dataset (2018) http://www.esrl.noaa.gov/psd/data/
gridded/data.noaa.oisst.v2.highres.html

Fisher R (1936) The use of multiple measurements in taxonomic problems. Ann Eugen 7(2):179—
188

Gan Y, Chi H, Gao Y, Liu J, Zhong G, Dong J (2017) Perception driven texture generation. In:
ICME, pp 889-894

Gao F, Liu X, Dong J, Zhong G, Jian M (2017) Change detection in SAR images based on deep
semi-NMF and SVD networks. Remote Sens 9(5):435

Graves A (2013) Generating sequences with recurrent neural networks. CoRR abs/1308.0850

He X, Niyogi P (2003) Locality preserving projections. In: NIPS

He X, Yan S, Hu Y, Niyogi P, Zhang H (2005) Face recognition using laplacianfaces. IEEE Trans
Pattern Anal Mach Intell 27(3):328-340

He K, Zhang X, Ren S, Sun J (2015) Deep residual learning for image recognition. CoRR
abs/1512.03385

Heaton J, Polson N, Witte J (2016) Deep learning in finance. CoRR abs/1602.06561

Hinton G, Roweis S (2002) Stochastic neighbor embedding. In: NIPS, pp 833-840

Hinton G, Salakhutdinov R (2006) Reducing the dimensionality of data with neural networks.
Science 313(5786):504-507

Hinton G, Osindero S, Teh YW (2006) A fast learning algorithm for deep belief nets. Neural
Comput 18(7):1527-1554

Hinton G, Srivastava N, Krizhevsky A, Sutskever I, Salakhutdinov R (2012) Improving neural
networks by preventing co-adaptation of feature detectors. CoRR abs/1207.0580

Hochreiter S, Schmidhuber J (1997) Long short-term memory. Neural Comput 9(8):1735-1780

Hsieh W (2009) Machine learning methods in the environmental sciences: neural networks and
kernels. Cambridge University Press, Cambridge

Jia C, Kong Y, Ding Z, Fu Y (2014a) Latent tensor transfer learning for RGB-D action recognition.
In: ACM Multimedia (MM)

Jia C, Zhong G, Fu Y (2014b) Low-rank tensor learning with discriminant analysis for action
classification and image recovery. In: AAAI, pp 1228-1234

Joliffe I (2002) Principal component analysis. Springer, New York

Kalchbrenner N, Danihelka I, Graves A (2015) Grid long short-term memory. = CoRR
abs/1507.01526

Krizhevsky A, Sutskever I, Hinton G (2012) Imagenet classification with deep convolutional neural
networks. In: NIPS, pp 1106-1114

Kug JS, Kang IS, Lee JY, Jhun JG (2004) A statistical approach to Indian ocean sea surface
temperature prediction using a dynamical enso prediction. Geophys Res Lett 31(9):399-420

Lawrence N (2005) Probabilistic non-linear principal component analysis with Gaussian process
latent variable models. J Mach Learn Res 6:1783-1816

http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html
http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html

6 Oceanic Data Analysis with Deep Learning Models 159

Lima E, Sun X, Dong J, Wang H, Yang Y, Liu L (2017) Learning and transferring convolutional
neural network knowledge to ocean front recognition. IEEE Geosci Remote Sens Lett
14(3):354-358

Lins I, Moura M, Silva M, Droguett E, Veleda D, Araujo M, Jacinto C (2010) Sea surface temper-
ature prediction via support vector machines combined with particle swarm optimization. In:
PSAM

Liu X, Zhong G, Liu C, Dong J (2017) Underwater image colour constancy based on DSNMF.
IET Image Process 11(1):38—43

Liu X, Zhong G, Dong J (2018) Natural image illuminant estimation via deep non-negative matrix
factorisation. IET Image Process 12(1):121-125

Miao H, Guo Y, Zhong G, Liu B, Wang G (2018) A novel model of estimating sea state bias
based on multi-layer neural network and multi-source altimeter data. European J Remote Sens
51(1):616-626

Miller PI, Xu W, Carruthers M (2015) Seasonal shelf-sea front mapping using satellite ocean colour
and temperature to support development of a marine protected area network. Deep Sea Res Part
II Top Stud Oceanogr 119:3-19

Min S, Lee B, Yoon S (2016) Deep learning in bioinformatics. CoRR abs/1603.06430

Pan X, Wang J, Zhang X, Mei Y, Shi L, Zhong G (2018) A deep-learning model for the amplitude
inversion of internal waves based on optical remote-sensing images. Int J Remote Sens
39(3):607-618

Pandey G, Dukkipati A (2014) Learning by stretching deep networks. In: ICML, pp 1719-1727

Patil K, Deo M, Ravichandran M (2016) Prediction of sea surface temperature by combining
numerical and neural techniques. J Atmos Oceanic Technol 33(8):1715-1726

Pearson K (1901) On lines and planes of closest fit to systems of points in space. Philos Mag
2(11):559-572

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P,
Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay
E (2011) Scikit-learn: machine learning in python. J Mach Learn Res 12:2825-2830

Roweis S, Saul L (2000) Nonlinear dimensionality reduction by locally linear embedding. Science
290(5500):2323-2326

Roy P, Zhong G, Cheriet M Tandem (2016) HMMs using deep belief networks for offline
handwriting recognition. Front Inf Technol Electron Eng 18(7):978-988

Rumelhart D, Mcclelland J (1986) Parallel distributed processing: explorations in the microstruc-
ture of cognition: foundations. MIT Press, Cambridge

Scholkopf B, Smola A, Miiller KR (1998) Nonlinear component analysis as a kernel eigenvalue
problem. Neural Comput 10(5):1299-1319

Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image
recognition. CoRR abs/1409.1556

Sutskever I, Vinyals O, Le Q (2014) Sequence to sequence learning with neural networks. In: NIPS,
pp 3104-3112

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich A
(2014) Going deeper with convolutions. CoRR abs/1409.4842

Tenenbaum J, Silva V, Langford J (2000) A global geometric framework for nonlinear dimension-
ality reduction. Science 290(5500):2319-2323

Vincent P, Larochelle H, Lajoie I, Bengio Y, Manzagol PA (2010) Stacked denoising autoencoders:
learning useful representations in a deep network with a local denoising criterion. J Mach Learn
Res 11:3371-3408

Weinberger KQ, Blitzer J, Saul LK (2005) Distance metric learning for large margin nearest
neighbor classification. In: NIPS, pp 1473-1480

Wikipedia: Bohai Sea (2018) https://en.wikipedia.org/wiki/Bohai_Sea

Xing EP, Ng AY, Jordan MI, Russell SJ (2002) Distance metric learning, with application to
clustering with side-information. In: NIPS, pp 505-512

Xu K, Ba J, Kiros R, Cho K, Courville A, Salakhutdinov R, Zemel R, Bengio Y (2015) Show,
attend and tell: neural image caption generation with visual attention. In: ICML, pp 2048-
2057

https://en.wikipedia.org/wiki/Bohai_Sea

160 G. Zhong et al.

Yan S, Xu D, Zhang B, Zhang HJ, Yan Q, Lin S (2007) Graph embedding and extensions: a general
framework for dimensionality reduction. IEEE Trans Pattern Anal Mach Intell 29(1):40-51
Yang Y, Dong J, Sun X, Lguensat R, Jian M, Wang X (2016) Ocean front detection from instant
remote sensing SST images. IEEE Geosci Remote Sens Lett 13(12):1960-1964

Zhang Q, Wang H, Dong J, Zhong G, Sun X (2017) Prediction of sea surface temperature using
long short-term memory. IEEE Geosci Remote Sens Lett 14(10):1745-1749

Zheng Y, Zhong G, Liu J, Cai X, Dong J (2014) Visual texture perception with feature learning
models and deep architectures. In: CCPR, pp 401-410

Zheng Y, Cai Y, Zhong G, Chherawala Y, Shi Y, Dong J (2015) Stretching deep architectures for
text recognition. In: ICDAR, pp 236-240

Zhong G, Cheriet M (2012) Image patches analysis for text block identification. In: ISSPA,
pp 1241-1246

Zhong G, Cheriet M (2013) Adaptive error-correcting output codes. In: IJCAI, pp 1932-1938

Zhong G, Cheriet M (2014a) Large margin low rank tensor analysis. Neural Comput 26(4):761—
780

Zhong G, Cheriet M (2014b) Low rank tensor manifold learning. Springer International Publishing,
Cham, pp 133-150

Zhong G, Cheriet M (2015) Tensor representation learning based image patch analysis for text
identification and recognition. Pattern Recognit 48(4):1211-1224

Zhong G, Ling X (2016) The necessary and sufficient conditions for the existence of the optimal
solution of trace ratio problems. In: CCPR, pp 742-751

Zhong G, Liu CL (2013) Error-correcting output codes based ensemble feature extraction. Pattern
Recognit 46(4):1091-1100

Zhong G, Li WJ, Yeung DY, Hou X, Liu CL (2010) Gaussian process latent random field. In:
AAAI

Zhong G, Huang K, Liu CL (2011) Low rank metric learning with manifold regularization. In:
ICDM, pp 1266-1271

Zhong G, Huang K, Hou X, Xiang S (2012) Local tangent space Laplacian eigenmaps, pp 17-34.
SNOVA Science Publishers, New York

Zhong G, Yao H, Liu Y, Hong C, Pham T (2014) Classification of photographed document images
based on deep-learning features. In: ICGIP

Zhong G, Shi Y, Cheriet M (2016a) Relational fisher analysis: a general framework for dimension-
ality reduction. In: IJCNN, pp 2244-2251

Zhong G, Wang LN, Ling X, Dong J (2016b) An overview on data representation learning: from
traditional feature learning to recent deep learning. J Financ Data Sci 2(4):265-278

Zhong G, Xu H, Yang P, Wang S, Dong J (2016¢) Deep hashing learning networks. In: IJCNN,
pp 2236-2243

Zhong G, Zheng Y, Li S, Fu Y (2016d) Scalable large margin online metric learning. In: IICNN,
pp 2252-2259

Zhong G, Wei H, Zheng Y, Dong J (2017a) Perception driven texture generation. In: ACPR

Zhong G, Zheng Y, Li S, Fu Y (2017b) Slmoml: online metric learning with global convergence.
IEEE Trans Circuits Syst Video Technol PP(99):1-1

Zhong G, Ling X, Wang LN (2018a) From shallow feature learning to deep learning: benefits from
the width and depth of deep architectures. WIREs Data Mining Knowl Discov

Zhong G, Wei H, Zheng Y, Dong J, Cheriet M (2018b) Deep error correcting output codes. In:
ICPRAI

Zhong G, Yan S, Huang K, Cai Y, Dong J (2018c) Reducing and stretching deep convolutional
activation features for accurate image classification. Cogn Comput 10(1):179-186

Zhong G, Yao H, Zhou H (2018d) Merging neurons for structure compression of deep networks.
In: ICPR

Zhong G, Zheng Y, Zhang XY, Wei H, Ling X (2018e) Convolutional discriminant analysis. In:
ICPR

Index

B

Baldridge, J., 117
Bengio, Y., 73
Bernardi, R., 101
Brills, E., 95
Britz, D., 98

C

Cai, Y., 143

Characters, vi, 33, 34, 37, 42, 43, 45, 53,
57-85, 95,97, 99, 102, 112116, 122,
145

Cheng, Y., 128

Chen, L., 67

Cheriet, M., 141

Chin, F,, 89-105

Chueng, L.P., 89-105

Cilic, M., 130

Ciresan, D., 67

Collobert, R., 114

Common component factor loading, 5

Convolutional neural networks (CNNSs), vi, 44,
59, 60, 62-70, 76-79, 81-85, 90, 92,
95,97, 101, 105, 114, 128, 129, 133,
141, 143-150

D

Dean, J., 154

Deep density models, v, 1-28

Deep learning, v, vi, 57-85, 89-105, 111-136,
139-157

Deep learning architecture, 141-143, 145, 157

© Springer Nature Switzerland AG 2019

Dimensionality reduction, 4, 5, 12, 13, 17,
141, 142

Djokovic, N., 130

Donahue, J., 143

Dong, C., 114

Dong, J., 139-157

E
Emerson, R., 130
Erkan, G., 131

F

Federer, R., 130
Fei-Fei, L., 101
Firat, O., 99
Fonseca, E.R., 122

G

Gebhring, J., 128

Gers, A.F,, 94

Graves, A., 94
Grundkiewicz, R., 101

H

Handwriting recognition, v, vi, 32-34, 37, 51,
52,57-85, 142, 143

He, K., 119

Hinton, G., 145

Hoang, T.D., 101

Hochreiter, S., 145

161

K. Huang et al. (eds.), Deep Learning: Fundamentals, Theory and Applications,
Cognitive Computation Trends 2, https://doi.org/10.1007/978-3-030-06073-2

https://doi.org/10.1007/978-3-030-06073-2

162

Hovy, E., 114
Hovy, H.E., 97
Huang, K., 1-28
Huang, Z., 97
Hussain, A., 1-28
Hu, Z., 92

J

Johnson, M., 99
Jozefowicz, R., 94
Junczys-Dowmunt, M., 101

K

Kalchbrenner, N., 151
Karpathy, A., 101
Kim, Y., 92

Koehn, P., 103
Koutnik, J., 94
Krizhevsky, A., 145

L

Lample, G., 97, 114

Language models, 37, 39, 4245, 50-52,
58-60, 72-76, 79-82, 84, 85, 90, 92,
124

Large-category labelling, vi, 31-34, 37, 40,
51-53,79, 80

Lee, L., 103

Lima, E., 139-157

Ling, D., 89-105

Ling, X., 141

Liu, C.-L., 57-85

Li, X., 128

Long short-term memory (LSTM), v, vi,
32-36, 38, 40, 42, 44, 47, 48, 50-53,
92-95,97,98, 101, 112, 114, 115, 118,
119, 121, 125-128, 141, 150-156

Luhn, H.P, 130

Luo, L., 89-105

Luong, M., 99

M

Machine translation (MT), v, vi, 90, 95-97,
99-101, 103-105, 123-130, 136, 143

Ma, X.,97, 114

Messina, R., 32, 34

Mi, H., 128

Index

Mikolov, T., 74, 75, 91
Mixture of Factor Analyzers (MFAs), v, 3, 5,
7-20, 28

N

Nallapati, R., 133

Named entity recognition (NER), 90, 92,
95-97, 105, 112-118, 123

Natural language processing (NLP), v, vi, 34,
89-105, 111-136

Neuron design, 32-36, 40, 47-53, 143, 145,
156

0
Oceanic data analysis, vi, 139-157

P
Pang, B., 103
Pascanu, R., 93

R

Radev, D.R., 131

Recurrent neural networks (RNNSs), v, vi,
31-53, 68, 90, 92-95, 97, 101, 105,
114, 118, 128, 129, 133, 150

Representation learning, 91-92, 105,
140-143

Rong, X., 91

Roth, D., 101

Roy, P, 143

Rozovskaya, A., 101

Rush, AM., 133

S

Schmaltz, A., 101
Schmidhuber, J., 67, 94, 145
See, A., 133, 134

Sennrich, R., 128

Shape models, 58-60, 76-79, 81-85
Shen, B., 139-157
Steedman, M., 117

Sun, L., 31-53

Sun, X., 139-157
Super-tagging, vi, 117-123
Su, T., 31-53

Sutskever, 1., 97, 145

Index

T

Tang, Y., 16

Texts, vi, 2, 32, 37, 45, 57-85, 91, 97, 100,
103, 105, 113, 130-133, 135

Text summarization, vi, 130-135

Tu, Z., 128

\%
Vawani, A., 128, 129
Vinyals, O., 101

W

Wang, D.-H., 31-53

Wang, H., 139-157

Wang, L.-N., 139-157

Wang, Q.-F,, 31-53, 71, 79-84
Wang, S., 76, 81

Word2Vec, 90-92, 102, 105
Writer adaptation, 59, 60, 65, 68, 70, 85
Wu, C., 67

Wu, H., 122

Wu, Y., 98

Wu, Y.-C., 57-85

163

X
Xu, K., 101
Xu, L., 77,78

Y

Yang, H., 89-105
Yang, W., 68, 69
Yang, X., 1-28
Yin, E., 57-85

V4

Zhang, J., 111-136
Zhang, Q., 139-157
Zhang, Q.-F., 79
Zhang, R., 1-28
Zhang, X.-Y., 57-85
Zheng, Y., 142, 143
Zhong, G., 139-157
Zhong, Z., 67

Zong, C., 111-136

	Preface
	Contents
	1 Introduction to Deep Density Models with Latent Variables
	1.1 Introduction
	1.1.1 Density Model with Latent Variables
	1.1.2 Deep Architectures via Greedy Layer-Wise Learning Algorithm
	1.1.3 Unsupervised Learning

	1.2 Shallow Architectures of Latent Variable Models
	1.2.1 Notation
	1.2.2 Mixtures of Factor Analyzers
	1.2.2.1 Maximum Likelihood
	1.2.2.2 Maximum A Posteriori

	1.2.3 Mixtures of Factor Analyzers with Common Factor Loadings
	1.2.3.1 Maximun Likelihood
	1.2.3.2 Maximum A Posteriori

	1.2.4 Unsupervised Learning
	1.2.4.1 Empirical Results
	1.2.4.2 Clustering

	1.3 Deep Architectures with Latent Variables
	1.3.1 Deep Mixtures of Factor Analyzers
	1.3.1.1 Inference
	1.3.1.2 Collapse Model

	1.3.2 Deep Mixtures of Factor Analyzers with Common Factor Loadings
	1.3.2.1 Inference
	1.3.2.2 Collapse Model

	1.3.3 Unsupervised Learning

	1.4 Expectation-Maximization Algorithm
	1.5 Conclusion
	References

	2 Deep RNN Architecture: Design and Evaluation
	2.1 Introduction
	2.2 Related Works
	2.2.1 Segmentation-Free Handwriting Recognition
	2.2.2 Variants of RNN Neuron

	2.3 Datasets
	2.4 Proposed Deep Neural Network
	2.4.1 Architecture
	2.4.2 Learning
	2.4.3 Decoding
	2.4.4 Experimental Setup
	2.4.5 Results
	2.4.6 Error Analysis

	2.5 Proposed RNN Neuron
	2.5.1 Architecture
	2.5.2 Forward Propagation
	2.5.3 Backward Propagation
	2.5.4 Experimental Setup
	2.5.5 Experimental Results

	2.6 Conclusions
	References

	3 Deep Learning Based Handwritten Chinese Character and Text Recognition
	3.1 Introduction
	3.2 Handwritten Chinese Character Recognition (HCCR)
	3.2.1 Direction Decomposed Feature Map
	3.2.1.1 Offline DirectMap
	3.2.1.2 Online DirectMap
	3.2.1.3 Analysis

	3.2.2 Convolutional Neural Network
	3.2.2.1 Architecture
	3.2.2.2 Regularization
	3.2.2.3 Activation
	3.2.2.4 Training

	3.2.3 Adaptation of ConvNet
	3.2.4 Experiments
	3.2.4.1 Database
	3.2.4.2 Offline HCCR Results
	3.2.4.3 Online HCCR Results
	3.2.4.4 Adaptation Results

	3.3 Handwritten Chinese Text Recognition (HCTR)
	3.3.1 System Overview
	3.3.2 Neural Network Language Models
	3.3.2.1 Feedforward Neural Network Language Models
	3.3.2.2 Recurrent Neural Network Language Models
	3.3.2.3 Hybrid Language Models
	3.3.2.4 Acceleration

	3.3.3 Convolutional Neural Network Shape Models
	3.3.3.1 Character Classifier
	3.3.3.2 Over-Segmentation
	3.3.3.3 Geometric Context Models

	3.3.4 Experiments
	3.3.4.1 Settings
	3.3.4.2 Effects of Language Models
	3.3.4.3 Effects of CNN Shape Models
	3.3.4.4 Results with LMs on Large Corpus
	3.3.4.5 Performance Analysis

	3.4 Conclusion
	References

	4 Deep Learning and Its Applications to Natural LanguageProcessing
	4.1 Introduction
	4.2 Learning Word Representations
	4.3 Learning Models
	4.3.1 Recurrent Neural Networks (RNNs)
	4.3.2 Convolutional Neural Networks (CNNs)

	4.4 Applications
	4.4.1 Part-of-Speech (POS) Tagging
	4.4.2 Named Entity Recognition (NER)
	4.4.3 Neural Machine Translation
	4.4.4 Automatic English Grammatical Error Correction
	4.4.5 Image Description

	4.5 Datasets for Natural Language Processing
	4.5.1 Word Embedding
	4.5.2 N-Gram
	4.5.3 Text Classification
	4.5.4 Part-Of-Speech (POS) Tagging
	4.5.5 Machine Translation
	4.5.6 Automatic Grammatical Error Correction
	4.5.7 Image Description

	4.6 Conclusions and Discussions
	References

	5 Deep Learning for Natural Language Processing
	5.1 Deep Learning for Named Entity Recognition
	5.1.1 Task Definition
	5.1.2 NER Using Deep Learning
	5.1.2.1 BLSTM
	5.1.2.2 BLSTM-CRF Model

	5.2 Deep Learning for Supertagging
	5.2.1 Task Definition
	5.2.2 Deep Neural Networks with Skip Connection for CCG Supertagging
	5.2.2.1 Exploring Skip Connections
	5.2.2.2 Neural Architecture for CCG Supertagging Tagging
	5.2.2.3 Network Inputs
	5.2.2.4 Network Outputs

	5.3 Deep Learning for Machine Translation
	5.3.1 Task Definition
	5.3.2 Statistical Machine Translation
	5.3.3 Neural Machine Translation
	5.3.4 Recent Progress on Neural Machine Translation

	5.4 Deep Learning for Text Summarization
	5.4.1 Task Definition
	5.4.2 Extractive Summarization Methods
	5.4.3 Abstractive Summarization with Deep Learning

	5.5 Discussion
	References

	6 Oceanic Data Analysis with Deep Learning Models
	6.1 Introduction
	6.2 Background
	6.2.1 Representation Learning
	6.2.1.1 Shallow Feature Learning
	6.2.1.2 Deep Learning

	6.2.2 Oceanic Data Analysis

	6.3 Oceanic Data Analysis with Deep Learning Models
	6.3.1 Ocean Front Recognition with Convolutional Neural Networks
	6.3.1.1 Network Architecture
	6.3.1.2 Experimental Results

	6.3.2 Sea Surface Temperature Prediction with Long Short-Term Memory Networks
	6.3.2.1 Network Architectures
	6.3.2.2 Experimental Results

	6.4 Conclusion
	References

	Index

