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General paradigm in solving a computer vision problem is to represent a raw image
using a more informative vector called feature vector and train a classifier on top of
feature vectors collected from training set. From classification perspective, there are
several off-the-shelf methods such as gradient boosting, random forest and support
vector machines that are able to accurately model nonlinear decision boundaries.
Hence, solving a computer vision problem mainly depends on the feature extraction
algorithm.

Feature extraction methods such as scale invariant feature transform, histogram
of oriented gradients, bank of Gabor filters, local binary pattern, bag of features and
Fisher vectors are some of the methods that performed well compared with their
predecessors. These methods mainly create the feature vector in several steps. For
example, scale invariant feature transform and histogram of oriented gradients first
compute gradient of the image. Then, they pool gradient magnitudes over different
regions and concatenate them in order to create the final feature vector. Similarly,
bag of feature and Fisher vectors start with extracting a feature vector such as
histogram of oriented gradient on regions around bunch salient points on image.
Then, these features are pooled again in order to create higher level feature vectors.

Despite the great efforts in computer vision community, the above
hand-engineered features were not able to properly model large classes of natural
objects. Advent of convolutional neural networks, large datasets and parallel
computing hardware changed the course of computer vision. Instead of designing
feature vectors by hand, convolutional neural networks learn a composite feature
transformation function that makes classes of objects linearly separable in the
feature space.

Recently, convolutional neural networks have surpassed human in different tasks
such as classification of natural objects and classification of traffic signs. After their
great success, convolutional neural networks have become the first choice for
learning features from training data.

One of the fields that have been greatly influenced by convolutional neural
networks is automotive industry. Tasks such as pedestrian detection, car detection,
traffic sign recognition, traffic light recognition and road scene understanding are
rarely done using hand-crafted features anymore.
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viii Preface

Designing, implementing and evaluating are crucial steps in developing a suc-
cessful computer vision-based method. In order to design a neural network, one
must have the basic knowledge about the underlying process of neural network and
training algorithms. Implementing a neural network requires a deep knowledge
about libraries that can be used for this purpose. Moreover, neural network must be
evaluated quantitatively and qualitatively before using them in practical
applications.

Instead of going into details of mathematical concepts, this book tries to ade-
quately explain fundamentals of neural network and show how to implement and
assess them in practice. Specifically, Chap. 2 covers basic concepts related to
classification and it derives the idea of feature learning using neural network starting
from linear classifiers. Then, Chap. 3 shows how to derive convolutional neural
networks from fully connected neural networks. It also reviews classical network
architectures and mentions different techniques for evaluating neural networks.

Next, Chap. 4 thoroughly talks about a practical library for implementing con-
volutional neural networks. It also explains how to use Python interface of this
library in order to create and evaluate neural networks. The next two chapters
explain practical examples about detection and classification of traffic signs using
convolutional neural networks. Finally, the last chapter introduces a few techniques
for visualizing neural networks using Python interface.

Graduate/undergraduate students as well as machine vision practitioners can use
the book to gain a hand-on knowledge in the field of convolutional neural networks.
Exercises have been designed such that they will help readers to acquire deeper
knowledge in the field. Last but not least, Python scripts have been provided so
reader will be able to reproduce the results and practice the topics of this book
easily.

Books Website

Most of codes explained in this book are available in https://github.com/pcnn/. The
codes are written in Python 2.7 and they require numpy and matplotlib libraries.
You can download and try the codes on your own.

Tarragona, Spain Hamed Habibi Aghdam
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Traffic Sign Detection and Recognition

1.1 Introduction

Assume you are driving at speed of 90km/h in a one-way road and you are about
to join a new road. Even though there was a “danger: two way road” sign in the
junction, you have not seen the sign and you keep driving in opposite lane of the new
road. This is a hazardous situation which may end up with a fatal accident because
the driver assumes he or she is still driving in a two-way road. This was only a simple
example in which failing to detect traffic sign may cause irreversible consequences.
This danger gets even more serious with inexperienced drivers and senior drivers,
specially, in unfamiliar roads.

According to National Safety Council, medically consulted motor-vehicle injuries
for the first 6 months of 2015 were estimated to be about 2,254,000.! Also, World
Health Organization reported that? there have been about 1,250,000 fatalities in 2015
due to car accidents. Moreover, another study shows that human error accounts solely
for 57% of all accidents and it is a contributing factor in over 90% of accidents. The
above example is one of the scenarios which may occur because of failing to identify
traffic signs.

Furthermore, self-driving cars are going be commonly used in near future. They
must also conform with the road rules in order not to endanger other users of road.
Likewise, smart-cars try to assist human drivers and make driving more safe and
comfortable. Advanced Driver Assistant System (ADAS) is a crucial component on
these cars. One of the main tasks of this module is to recognize traffic signs. This
helps a human driver to be aware of all traffic signs and have a more safe driving
experience.

1
2

www.nsc.org/NewsDocuments/2015/6-month-fatality-increase.pdf.
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2 1 Traffic Sign Detection and Recognition

1.2 Challenges

A Traffic signs recognition module is composed of two main steps including detection
and classification. This is shown in Fig. 1.1. The detection stage scans image of scene
i