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Introduction

I was lucky enough to witness the world’s transition to an information society, 
followed by a networked environment. I have been living with the changes 
since I was young. The personal computer opened the door to the world of 
information, followed by online communication that connected computers via 
the Internet, and smartphones that connected people. Now, everyone perceives 
the beginning of the overwhelming wave of artificial intelligence. More and more 
intelligent services are being introduced, bringing in a new era. Deep Learning 
is the technology that led this wave of intelligence. While it may hand over its 
throne to other technologies eventually, it stands for now as a cornerstone of this 
new technology.

Deep Learning is so popular that you can find materials about it virtually 
anywhere. However, not many of these materials are beginner friendly. I wrote 
this book hoping that readers can study this subject without the kind of difficulty 
I experienced when first studying Deep Learning. I also hope that the step-by-
step approach of this book can help you avoid the confusion that I faced.

This book is written for two kinds of readers. The first type of reader is one 
who plans to study Deep Learning in a systematic approach for further research 
and development. This reader should read all the content from the beginning to 
end. The example code will be especially helpful for further understanding the 
concepts. A good deal of effort has been made to construct adequate examples 
and implement them. The code examples are constructed to be easy to  
read and understand. They are written in MATLAB for better legibility. There 
is no better programming language than MATLAB at being able to handle the 
matrices of Deep Learning in a simple and intuitive manner. The example code 
uses only basic functions and grammar, so that even those who are not familiar 
with MATLAB can easily understand the concepts. For those who are familiar 
with programming, the example code may be easier to understand than the text 

of this book.
The other kind of reader is one who wants more in-depth information about 

Deep Learning than what can be obtained from magazines or newspapers, 
yet doesn’t want to study formally. These readers can skip the example 
code and briefly go over the explanations of the concepts. Such readers may 
especially want to skip the learning rules of the neural network. In practice, 
even developers seldom need to implement the learning rules, as various Deep 
Learning libraries are available. Therefore, those who never need to develop it 
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do not need to bother with it. However, pay closer attention to Chapters 1 and 2  
and Chapters 5 and 6. Chapter 6 will be particularly helpful in capturing the 
most important techniques of Deep Learning, even if you’re just reading over 
the concepts and the results of the examples. Equations occasionally appear 
to provide a theoretical background. However, they are merely fundamental 
operations. Simply reading and learning to the point you can tolerate will 
ultimately lead you to an overall understanding of the concepts.

Organization of the Book
This book consists of six chapters, which can be grouped into three subjects. The 
first subject is Machine Learning and takes place in Chapter 1. Deep Learning 
stems from Machine Learning. This implies that if you want to understand the 
essence of Deep Learning, you have to know the philosophy behind Machine 
Learning to some extent. Chapter 1 starts with the relationship between Machine 
Learning and Deep Learning, followed by problem solving strategies and 
fundamental limitations of Machine Learning. The detailed techniques are not 
introduced in this chapter. Instead, fundamental concepts that apply to both the 
neural network and Deep Learning will be covered.

The second subject is the artificial neural network.1 Chapters 2-4 focus 
on this subject. As Deep Learning is a type of Machine Learning that employs 
a neural network, the neural network is inseparable from Deep Learning. 
Chapter 2 starts with the fundamentals of the neural network: principles of its 
operation, architecture, and learning rules. It also provides the reason that the 
simple single-layer architecture evolved to the complex multi-layer architecture. 
Chapter 3 presents the back-propagation algorithm, which is an important and 
representative learning rule of the neural network and also employed in Deep 
Learning. This chapter explains how cost functions and learning rules are related 
and which cost functions are widely employed in Deep Learning.

Chapter 4 explains how to apply the neural network to classification 
problems. We have allocated a separate section for classification because it is 
currently the most prevailing application of Machine Learning. For example, 
image recognition, one of the primary applications of Deep Learning, is a 
classification problem.

The third topic is Deep Learning. It is the main topic of this book. 
Deep Learning is covered in Chapters 5 and 6. Chapter 5 introduces the 
drivers that enable Deep Learning to yield excellent performance. For a 
better understanding, it starts with the history of barriers and solutions of 
Deep Learning. Chapter 6 covers the convolution neural network, which is 

1Unless it can be confused with the neural network of human brain, the artificial neural 
network is referred to as neural network in this book.

http://dx.doi.org/10.1007/978-1-4842-2845-6_1
http://dx.doi.org/10.1007/978-1-4842-2845-6_2
http://dx.doi.org/10.1007/978-1-4842-2845-6_5
http://dx.doi.org/10.1007/978-1-4842-2845-6_6
http://dx.doi.org/10.1007/978-1-4842-2845-6_6
http://dx.doi.org/10.1007/978-1-4842-2845-6_1
http://dx.doi.org/10.1007/978-1-4842-2845-6_1
http://dx.doi.org/10.1007/978-1-4842-2845-6_2
http://dx.doi.org/10.1007/978-1-4842-2845-6_4
http://dx.doi.org/10.1007/978-1-4842-2845-6_2
http://dx.doi.org/10.1007/978-1-4842-2845-6_3
http://dx.doi.org/10.1007/978-1-4842-2845-6_4
http://dx.doi.org/10.1007/978-1-4842-2845-6_5
http://dx.doi.org/10.1007/978-1-4842-2845-6_6
http://dx.doi.org/10.1007/978-1-4842-2845-6_5
http://dx.doi.org/10.1007/978-1-4842-2845-6_6
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representative of Deep Learning techniques. The convolution neural network 
is second to none in terms of image recognition. This chapter starts with an 
introduction of the basic concept and architecture of the convolution neural 
network as it compares with the previous image recognition algorithms. It is 
followed by an explanation of the roles and operations of the convolution layer 
and pooling layer, which act as essential components of the convolution neural 
network. The chapter concludes with an example of digit image recognition 
using the convolution neural network and investigates the evolution of the 
image throughout the layers.

Source Code
All the source code used in this book is available online via the Apress web site 
at www.apress.com/9781484228449. The examples have been tested under 
MATLAB 2014a. No additional toolbox is required.

http://www.apress.com/9781484228449
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CHAPTER 1

Machine Learning

You easily find examples where the concepts of Machine Learning and Deep 
Learning are used interchangeably in the media. However, experts generally 
distinguish them. If you have decided to study this field, it’s important you 
understand what these words actually mean, and more importantly, how they 
differ.

What occurred to you when you heard the term “Machine Learning” for the 
first time? Did you think of something that was similar to Figure 1-1? Then you 
must admit that you are seriously literal-minded.

Figure 1-1.  Machine Learning or Artificial Intelligence? Courtesy of Euclidean 
Technologies Management (www.euclidean.com)

Figure 1-1 portrays Artificial Intelligence much more than Machine 
Learning. Understanding Machine Learning in this way will bring about 
serious confusion. Although Machine Learning is indeed a branch of Artificial 
Intelligence, it conveys an idea that is much different from what this image may 
imply.

http://www.euclidean.com/


Chapter 1 ■ Machine Learning

2

In general, Artificial Intelligence, Machine Learning, and Deep Learning are 
related as follows:

“Deep Learning is a kind of Machine Learning, and 
Machine Learning is a kind of Artificial Intelligence.”

How is that? It’s simple, isn’t it? This classification may not be as absolute as 
the laws of nature, but it is widely accepted.

Let’s dig into it a little further. Artificial Intelligence is a very common word 
that may imply many different things. It may indicate any form of technology 
that includes some intelligent aspects rather than pinpoint a specific technology 
field. In contrast, Machine Learning refers to a specific field. In other words, 
we use Machine Learning to indicate a specific technological group of Artificial 
Intelligence. Machine Learning itself includes many technologies as well. One of 
them is Deep Learning, which is the subject of this book.

The fact that Deep Learning is a type of Machine Learning is very important, 
and that is why we are going through this lengthy review on how Artificial 
Intelligence, Machine Learning, and Deep Learning are related. Deep Learning 
has been in the spotlight recently as it has proficiently solved some problems 
that have challenged Artificial Intelligence. Its performance surely is exceptional 
in many fields. However, it faces limitations as well. The limitations of Deep 
Learning stems from its fundamental concepts that has been inherited from 
its ancestor, Machine Learning. As a type of Machine Learning, Deep Learning 
cannot avoid the fundamental problems that Machine Learning faces. That is 
why we need to review Machine Learning before discussing the concept of Deep 
Learning.

What Is Machine Learning?
In short, Machine Learning is a modeling technique that involves data. This 
definition may be too short for first-timers to capture what it means. So, let me 
elaborate on this a little bit. Machine Learning is a technique that figures out 
the “model” out of “data.” Here, the data literally means information such as 
documents, audio, images, etc. The “model” is the final product of Machine 
Learning.

Before we go further into the model, let me deviate a bit. Isn’t it strange that 
the definition of Machine Learning only addresses the concepts of data and 
model and has nothing to do with “learning”? The name itself reflects that the 
technique analyzes the data and finds the model by itself rather than having a 
human do it. We call it “learning” because the process resembles being trained 
with the data to solve the problem of finding a model. Therefore, the data 
that Machine Learning uses in the modeling process is called “training” data. 
Figure 1-2 illustrates what happens in the Machine Learning process.
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Training Data

Machine Learning

Model

Figure 1-2.  What happens during the machine learning process

Now, let’s resume our discussion about the model. Actually, the model is 
nothing more than what we want to achieve as the final product. For instance, if 
we are developing an auto-filtering system to remove spam mail, the spam mail 
filter is the model that we are talking about. In this sense, we can say the model 
is what we actually use. Some call the model a hypothesis. This term seems more 
intuitive to those with statistical backgrounds.

Machine Learning is not the only modeling technique. In the field of 
dynamics, people have been using a certain modeling technique, which employs 
Newton’s laws and describes the motion of objects as a series of equations called 
equations of motion, for a long time. In the field of Artificial Intelligence, we 
have the expert system, which is a problem-solving model that is based on the 
knowledge and know-how of the experts. The model works as well as the experts 
themselves.

However, there are some areas where laws and logical reasoning are not 
very useful for modeling. Typical problems can be found where intelligence is 
involved, such as image recognition, speech recognition, and natural language 
processing. Let me give you an example. Look at Figure 1-3 and identify the 
numbers.



Chapter 1 ■ Machine Learning

4

I’m sure you have completed the task in no time. Most people do. Now, 
let’s make a computer do the same thing. What do we do? If we use a traditional 
modeling technique, we will need to find some rule or algorithm to distinguish 
the written numbers. Hmm, why don’t we apply the rules that you have just used 
to identify the numbers in your brain? Easy enough, isn’t it? Well, not really. 
In fact, this is a very challenging problem. There was a time when researchers 
thought it must be a piece of cake for computers to do this, as it is very easy for 
even a human and computers are able to calculate much faster than humans. 
Well, it did not take very long until they realized their misjudgment.

How were you able to identify the numbers without a clear specification or 
a rule? It is hard to answer, isn’t it? But, why? It is because we have never learned 
such a specification. From a young age, we have just learned that this is 0, and 
that this is 1. We just thought that’s what it is and became better at distinguishing 
numbers as we faced a variety of numbers. Am I right?

What about computers, then? Why don’t we let computers do the same 
thing? That’s it! Congratulations! You have just grasped the concept of Machine 
Learning. Machine Learning has been created to solve the problems for which 
analytical models are hardly available. The primary idea of Machine Learning 
is to achieve a model using the training data when equations and laws are not 
promising.

Challenges with Machine Learning
We just discovered that Machine Learning is the technique used to find (or learn) 
a model from the data. It is suitable for problems that involve intelligence, 
such as image recognition and speech recognition, where physical laws or 
mathematical equations fail to produce a model. On the one hand, the approach 
that Machine Learning uses is what makes the process work. On the other hand, 
it brings inevitable problems. This section provides the fundamental issues 
Machine Learning faces.

Figure 1-3.  How does a computer identify numbers when they have no 
recognizable pattern?
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Once the Machine Learning process finds the model from the training data, 
we apply the model to the actual field data. This process is illustrated in Figure 1-4. 
The vertical flow of the figure indicates the learning process, and the trained model 
is described as the horizontal flow, which is called inference.

The data that is used for modeling in Machine Learning and the data 
supplied in the field application are distinct. Let’s add another block to this 
image, as shown in Figure 1-5, to better illustrate this situation.

Training Data

Machine Learning

ModelInput Data Output

Figure 1-4.  Applying a model based on field data
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The distinctness of the training data and input data is the structural 
challenge that Machine Learning faces. It is no exaggeration to say that every 
problem of Machine Learning originates from this. For example, what about 
using training data, which is composed of handwritten notes from a single 
person? Will the model successfully recognize the other person’s handwriting? 
The possibility will be very low.

No Machine Learning approach can achieve the desired goal with the wrong 
training data. The same ideology applies to Deep Learning. Therefore, it is 
critical for Machine Learning approaches to obtain unbiased training data that 
adequately reflects the characteristics of the field data. The process used to make 
the model performance consistent regardless of the training data or the input 
data is called generalization. The success of Machine Learning relies heavily on 
how well the generalization is accomplished.

Overfitting
One of the primary causes of corruption of the generalization process is 
overfitting. Yes, another new term. However, there is no need to be frustrated. It 
is not a new concept at all. It will be much easier to understand with a case study 
than with just sentences.

Consider a classification problem shown in Figure 1-6. We need to divide 
the position (or coordinate) data into two groups. The points on the figure are 
the training data. The objective is to determine a curve that defines the border of 
the two groups using the training data.

Training Data

Machine Learning

ModelInput Data Output

Distinct

Figure 1-5.  Training and input data are sometimes very distinct
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Although we see some outliers that deviate from the adequate area, the 
curve shown in Figure 1-7 seems to act as a reasonable border between the 
groups.

Figure 1-7.  Curve to differentiate between two types of data

Figure 1-6.  Determine a curve to divide two groups of data
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When we judge this curve, there are some points that are not correctly 
classified according to the border. What about perfectly grouping the points 
using a complex curve, as shown in Figure 1-8?

This model yields the perfect grouping performance for the training data. 
How does it look? Do you like this model better? Does it seem to reflect correctly 
the general behavior?

Now, let’s use this model in the real world. The new input to the model is 
indicated using the symbol ■, as shown in Figure 1-9.

Figure 1-8.  Better grouping, but at what cost?
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This proud error-free model identifies the new data as a class ∆. However, 
the general trend of the training data tells us that this is doubtable. Grouping it 
as a class • seems more reasonable. What happened to the model that yielded 
100% accuracy for the training data?

Let’s take another look at the data points. Some outliers penetrate the 
area of the other group and disturb the boundary. In other words, this data 
contains much noise. The problem is that there is no way for Machine Learning 
to distinguish this. As Machine Learning considers all the data, even the noise, 
it ends up producing an improper model (a curve in this case). This would be 
penny-wise and pound-foolish. As you may notice here, the training data is 
not perfect and may contain varying amounts of noise. If you believe that every 
element of the training data is correct and fits the model precisely, you will get a 
model with lower generalizability. This is called overfitting.

Certainly, because of its nature, Machine Learning should make every effort 
to derive an excellent model from the training data. However, a working model 
of the training data may not reflect the field data properly. This does not mean 
that we should make the model less accurate than the training data on purpose. 
This will undermine the fundamental strategy of Machine Learning.

Now we face a dilemma—reducing the error of the training data leads to 
overfitting that degrades generalizability. What do we do? We confront it, of 
course! The next section introduces the techniques that prevent overfitting.

Figure 1-9.  The new input is placed into the data
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Confronting Overfitting
Overfitting significantly affects the level of performance of Machine Learning. 
We can tell who is a pro and who is an amateur by watching their respective 
approaches in dealing with overfitting. This section introduces two typical 
methods used to confront overfitting: regularization and validation.

Regularization is a numerical method that attempts to construct a model 
structure as simple as possible. The simplified model can avoid the effects 
of overfitting at the small cost of performance. The grouping problem of the 
previous section can be used as a good example. The complex model (or curve) 
tends to be overfitting. In contrast, although it fails to classify correctly some 
points, the simple curve reflects the overall characteristics of the group much 
better. If you understand how it works, that is enough for now. We will revisit 
regularization with further details in Chapter Three’s “Cost Function and 
Learning Rule” section.

We are able to tell that the grouping model is overfitted because the training 
data is simple, and the model can be easily visualized. However, this is not the 
case for most situations, as the data has higher dimensions. We cannot draw the 
model and intuitively evaluate the effects of overfitting for such data. Therefore, 
we need another method to determine whether the trained model is overfitted 
or not. This is where validation comes into play.

The validation is a process that reserves a part of the training data and uses 
it to monitor the performance. The validation set is not used for the training 
process. Because the modeling error of the training data fails to indicate 
overfitting, we use some of the training data to check if the model is overfitted. 
We can say that the model is overfitted when the trained model yields a low level 
of performance to the reserved data input. In this case, we will modify the model 
to prevent the overfitting. Figure 1-10 illustrates the division of the training data 
for the validation process.
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When validation is involved, the training process of Machine Learning 
proceeds by the following steps:

	 1.	 Divide the training data into two groups: one for 
training and the other for validation. As a rule of thumb, 
the ratio of the training set to the validation set is 8:2.

	 2.	 Train the model with the training set.

	 3.	 Evaluate the performance of the model using the 
validation set.

a.	 If the model yields satisfactory performance, finish 
the training.

b.	 If the performance does not produce sufficient 
results, modify the model and repeat the process 
from Step 2.

Cross-validation is a slight variation of the validation process. It still divides 
the training data into groups for the training and validation, but keeps changing 
the datasets. Instead of retaining the initially divided sets, cross-validation 
repeats the division of the data. The reason for doing this is that the model can 
be overfitted even to the validation set when it is fixed. As the cross-validation 
maintains the randomness of the validation dataset, it can better detect the 
overfitting of the model. Figure 1-11 describes the concept of cross-validation. 
The dark shades indicate the validation data, which is randomly selected 
throughout the training process.

Training Data

Training Set

Validation Set

Figure 1-10.  Dividing the training data for the validation process
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Types of Machine Learning
Many different types of Machine Learning techniques have been developed to 
solve problems in various fields. These Machine Learning techniques can be 
classified into three types depending on the training method (see Figure 1-12).

•	 Supervised learning

•	 Unsupervised learning

•	 Reinforcement learning

Training #1 Training #2 Training #N

Figure 1-11.  Cross-validation

Machine
Learning

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

Figure 1-12.  Three types of Machine Learning techniques
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Supervised learning is very similar to the process in which a human learns 
things. Consider that humans obtain new knowledge as we solve exercise 
problems.

	 1.	 Select an exercise problem. Apply current knowledge 
to solve the problem. Compare the answer with the 
solution.

	 2.	 If the answer is wrong, modify current knowledge.

	 3.	 Repeat Steps 1 and 2 for all the exercise problems.

When we apply an analogy between this example and the Machine Learning 
process, the exercise problems and solutions correspond to the training data, 
and the knowledge corresponds to the model. The important thing is the fact 
that we need the solutions. This is the vital aspect of the supervised learning. 
Its name even implies the tutoring in which the teacher gives solutions to the 
students to memorize.

In supervised learning, each training dataset should consist of input and 
correct output pairs. The correct output is what the model is supposed to 
produce for the given input.

{ input, correct output }

Learning in supervised learning is the series of revisions of a model to 
reduce the difference between the correct output and the output from the model 
for the same input. If a model is perfectly trained, it will produce a correct output 
that corresponds to the input from the training data.

In contrast, the training data of the unsupervised learning contains only 
inputs without correct outputs.

{ input }

At a first glance, it may seem difficult to understand how to train without 
correct outputs. However, many methods of this type have been developed 
already. Unsupervised learning is generally used for investigating the 
characteristics of the data and preprocessing the data. This concept is similar 
to a student who just sorts out the problems by construction and attribute and 
doesn’t learn how to solve them because there are no known correct outputs.

Reinforcement learning employs sets of input, some output, and grade as 
training data. It is generally used when optimal interaction is required, such as 
control and game plays.

{ input, some output, grade for this output }
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This book only covers supervised learning. It is used for more applications 
compared to unsupervised learning and reinforcement learning, and more 
importantly, it is the first concept you will study when entering the world of 
Machine Learning and Deep Learning.

Classification and Regression
The two most common types of application of supervised learning are 
classification and regression. These words may sound unfamiliar, but are 
actually not so challenging.

Let’s start with classification. This may be the most prevailing application 
of Machine Learning. The classification problem focuses on literally finding the 
classes to which the data belongs. Some examples may help.

Spam mail filtering service ➔ Classifies the mails by regular or spam
Digit recognition service ➔ Classifies the digit image into one of 0-9
Face recognition service ➔ Classifies the face image into one of the 

registered users
We addressed in the previous section that supervised learning requires 

input and correct output pairs for the training data. Similarly, the training data of 
the classification problem looks like this:

{ input, class }

In the classification problem, we want to know which class the input belongs 
to. So the data pair has the class in place of the correct output corresponding to 
the input.

Let’s proceed with an example. Consider the same grouping problem that 
we have been discussing. The model we want Machine Learning to answer is 
which one of the two classes (∆ and •) does the user’s input coordinate (X, Y) 
belong (see Figure 1-13).
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In this case, the training data of N sets of the element will look like Figure 1-14.

Figure 1-14.  Classifying the data

Figure 1-13.  Same data viewed from the perspective of classification
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In contrast, the regression does not determine the class. Instead, it estimates 
a value. As an example, if you have datasets of age and income (indicated with 
a •) and want to find the model that estimates income by age, it becomes a 
regression problem (see Figure 1-15).1

The dataset of this example will look like the table in Figure 1-16, where X 
and Y are age and income, respectively.

Income

Age

Figure 1-15.  Datasets of age and income

1The original meaning of the word “regress” is to go back to an average. Francis Galton, a 
British geneticist, researched the correlation of the height of parents and children and 
found out that the individual height converged to the average of the total population. He 
named his methodology “regression analysis.”



Chapter 1 ■ Machine Learning

17

Figure 1-16.  Classifying the age and income data

Both classification and regression are parts of supervised learning. 
Therefore, their training data is equally in the form of {input, correct 
output}. The only difference is the type of correct outputs—classification 
employs classes, while the regression requires values.

In summary, analysis can become classification when it needs a model to 
judge which group the input data belongs to and regression when the model 
estimates the trend of the data.

Just for reference, one of the representative applications of unsupervised 
learning is clustering. It investigates the characteristics of the individual data 
and categorizes the related data. It is very easy to confuse clustering and 
classification, as their results are similar. Although they yield similar outputs, 
they are two completely different approaches. We have to keep in mind that 
clustering and classification are distinct terms. When you encounter the term 
clustering, just remind yourself that it focuses on unsupervised learning.

Summary
Let’s briefly recap what we covered in this chapter:

•	 Artificial Intelligence, Machine Learning, and Deep 
Learning are distinct. But they are related to each other in 
the following way: “Deep Learning is a kind of Machine 
Learning, and Machine Learning is a kind of Artificial 
Intelligence”.
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•	 Machine Learning is an inductive approach that derives 
a model from the training data. It is useful for image 
recognition, speech recognition, and natural language 
processing etc.

•	 The success of Machine Learning heavily relies on how 
well the generalization process is implemented. In order 
to prevent performance degradation due to the differences 
between the training data and actual input data, we need a 
sufficient amount of unbiased training data.

•	 Overfitting occurs when the model has been overly 
customized to the training data that it yields poor 
performance for the actual input data, while its 
performance for the training data is excellent. Overfitting is 
one of the primary factors that reduces the generalization 
performance.

•	 Regularization and validation are the typical approaches 
used to solve the overfitting problem. Regularization is 
a numerical method that yields the simplest model as 
possible. In contrast, validation tries to detect signs of 
overfitting during training and takes action to prevent it.  
A variation of validation is cross-validation.

•	 Depending on the training method, Machine Learning 
can be supervised learning, unsupervised learning, and 
reinforcement learning. The formats of the training data for 
theses learning methods are shown here.

Training Method Training Data

Supervised Learning { input, correct output }

Unsupervised Learning { input }

Reinforced Learning { input, some output, grade for this output }

•	 Supervised learning can be divided into classification 
and regression, depending on the usage of the model. 
Classification determines which group the input data 
belongs to. The correct output of the classification is given 
as categories. In contrast, regression predicts values and 
takes the values for the correct output in the training data.
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CHAPTER 2

Neural Network

This chapter introduces the neural network, which is widely used as the model 
for Machine Learning. The neural network has a long history of development 
and a vast amount of achievement from research works. There are many 
books available that purely focus on the neural network. Along with the recent 
growth in interest for Deep Learning, the importance of the neural network has 
increased significantly as well. We will briefly review the relevant and practical 
techniques to better understand Deep Learning. For those who are new to the 
concept of the neural network, we start with the fundamentals.

First, we will see how the neural network is related to Machine Learning. 
The models of Machine Learning can be implemented in various forms. 
The neural network is one of them. Simple isn’t it? Figure 2-1 illustrates the 
relationship between Machine Learning and the neural network. Note that we 
have the neural network in place of the model, and the learning rule in place of 
Machine Learning. In context of the neural network, the process of determining 
the model (neural network) is called the learning rule. This chapter explains  
the learning rules for a single-layer neural network. The learning rules for a 
multi-layer neural network are addressed in Chapter 3.

Training Data

Learning Rule

Input Data OutputNeural Network

Figure 2-1.  The relationship between Machine Learning and the neural network

http://dx.doi.org/10.1007/978-1-4842-2845-6_3
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Nodes of a Neural Network
Whenever we learn something, our brain stores the knowledge. The computer 
uses memory to store information. Although they both store information, their 
mechanisms are very different. The computer stores information at specified 
locations of the memory, while the brain alters the association of neurons. 
The neuron itself has no storage capability; it just transmits signals from one 
neurons to the other. The brain is a gigantic network of these neurons, and the 
association of the neurons forms specific information.

The neural network imitates the mechanism of the brain. As the brain 
is composed of connections of numerous neurons, the neural network is 
constructed with connections of nodes, which are elements that correspond to 
the neurons of the brain. The neural network mimics the neurons’ association, 
which is the most important mechanism of the brain, using the weight value. The 
following table summarizes the analogy between the brain and neural network.

Brain Neural Network

Neuron Node

Connection of neurons Connection weight

Explaining this any further using text may cause more confusion. Look at a 
simple example for a better understanding of the neural network’s mechanism. 
Consider a node that receives three inputs, as shown in Figure 2-2.

b

y

x1

x2

x3

w3

w2

w1

Figure 2-2.  A node that receives three inputs

The circle and arrow of the figure denote the node and signal flow, 
respectively. x

1
, x

2
, and x

3
 are the input signals. w

1
, w

2
, and w

3
 are the weights for 

the corresponding signals. Lastly, b is the bias, which is another factor associated 
with the storage of information. In other words, the information of the neural net 
is stored in the form of weights and bias.
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The input signal from the outside is multiplied by the weight before it 
reaches the node. Once the weighted signals are collected at the node, these 
values are added to be the weighted sum. The weighted sum of this example is 
calculated as follows:

 v w x w x w x b= ´( ) + ´( ) + ´( ) +1 1 2 2 3 3

This equation indicates that the signal with a greater weight has a greater 
effect. For instance, if the weight w

1
 is 1, and w

2
 is 5, then the signal x

2
 has five 

times larger effect than that of x
1
. When w

1
 is zero, x

1
 is not transmitted to the 

node at all. This means that x
1
 is disconnected from the node. This example 

shows that the weights of the neural network imitate how the brain alters the 
association of the neurons.

The equation of the weighted sum can be written with matrices as:

v wx b= +

where w and x are defined as:

w w w w x

x

x

x

= [ ] =
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Finally, the node enters the weighted sum into the activation function and 
yields its output. The activation function determines the behavior of the node.

y v= ( )j

j ×( )  of this equation is the activation function. Many types of activation 
functions are available in the neural network. We will elaborate on them later.

Let’s briefly review the mechanism of the neural net. The following process 
is conducted inside the neural net node:

	 1.	 The weighted sum of the input signals is calculated.

v w x w x w x b

wx b

= + + +
= +

1 1 2 2 3 3

	 2.	 The output from the activation function to the weighted 
sum is passed outside.

y v wx b= ( ) = +( )j j
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Layers of Neural Network
As the brain is a gigantic network of the neurons, the neural network is a network 
of nodes. A variety of neural networks can be created depending on how the 
nodes are connected. One of the most commonly used neural network types 
employs a layered structure of nodes as shown in Figure 2-3.

Input Layer Output LayerHidden Layers

Figure 2-3.  A layered structure of nodes

The group of square nodes in Figure 2-3 is called the input layer. The nodes 
of the input layer merely act as the passage that transmits the input signals to the 
next nodes. Therefore, they do not calculate the weighted sum and activation 
function. This is the reason that they are indicated by squares and distinguished 
from the other circular nodes. In contrast, the group of the rightmost nodes is 
called the output layer. The output from these nodes becomes the final result of 
the neural network. The layers in between the input and output layers are called 
hidden layers. They are given this name because they are not accessible from the 
outside of the neural network.

The neural network has been developed from a simple architecture to a 
more and more complex structure. Initially, neural network pioneers had a very 
simple architecture with only input and output layers, which are called single-
layer neural networks. When hidden layers are added to a single-layer neural 
network, this produces a multi-layer neural network. Therefore, the multi-layer 
neural network consists of an input layer, hidden layer(s), and output layer. The 
neural network that has a single hidden layer is called a shallow neural network 
or a vanilla neural network. A multi-layer neural network that contains two or 
more hidden layers is called a deep neural network. Most of the contemporary 
neural networks used in practical applications are deep neural networks. The 
following table summarizes the branches of the neural network depending on 
the layer architecture.
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Single-layer Neural Network (Shallow) Multi-layer Neural Network

Deep Neural Network

Figure 2-4.  The branches of the neural network depend on the layer architecture

Single-Layer Neural Network Input Layer – Output Layer

Multi-Layer 
Neural Network

Shallow Neural 
Network

Input Layer – Hidden Layer – Output 
Layer

Deep Neural 
Network

Input Layer – Hidden Layers – Output 
Layers

The reason that we classify the multi-layer neural network by these two 
types has to do with its historical background of development. The neural 
network started as the single-layer neural network and evolved to the shallow 
neural network, followed by the deep neural network. The deep neural network 
has not been seriously highlighted until the mid-2000s, after two decades had 
passed since the development of the shallow neural network. Therefore, for a 
long time, the multi-layer neural network meant just the single hidden-layer 
neural network. When the need to distinguish multiple hidden layers arose, they 
gave a separate name to the deep neural network. See Figure 2-4.
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In the layered neural network, the signal enters the input layer, passes 
through the hidden layers, and leaves through the output layer. During this 
process, the signal advances layer by layer. In other words, the nodes on one 
layer receive the signal simultaneously and send the processed signal to the next 
layer at the same time.

Let’s follow a simple example to see how the input data is processed as it 
passes through the layers. Consider the neural network with a single hidden 
layer shown in Figure 2-5.

x

(x )  = x

Figure 2-6.  The activation function of each node is a linear function

1

2

3

2

4

1
1

3

5

1

2

1

1

1

Figure 2-5.  A neural network with a single hidden layer

Just for convenience, the activation function of each node is assumed to be 
a linear function shown in Figure 2-6. This function allows the nodes to send out 
the weighted sum itself.
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The first node of the hidden layer calculates the output as:

Weighted sum: v = ´( ) + ´( ) + =3 1 1 2 1 6

Output: y v v= ( ) = =j 6

In a similar manner, the second node of the hidden layer calculates the 
output as:

Weighted sum: v = ´( ) + ´( ) + =2 1 4 2 1 11

Output: y v v= ( ) = =j 11

The weighted sum calculations can be combined in a matrix equation as 
follows:
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The weights of the first node of the hidden layer lay in the first row, and the 
weights of the second node are in the second row. This result can be generalized 
as the following equation:

	 v Wx b= + 	 (Equation 2.1)
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Figure 2-7.  Calculate the output from the hidden layer

Now we will calculate the output from the hidden layer (Figure 2-7). As 
previously addressed, no calculation is needed for the input nodes, as they just 
transmit the signal.
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where x is the input signal vector and b is the bias vector of the node. The matrix 
W contains the weights of the hidden layer nodes on the corresponding rows. 
For the example neural network, W is given as:

W =
é

ë
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- - --
-- --

weightsof the first node

weightsof the second node úú =
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û
ú

3 1

2 4

Since we have all the outputs from the hidden layer nodes, we can 
determine the outputs of the next layer, which is the output layer. Everything is 
identical to the previous calculation, except that the input signal comes from the 
hidden layer.
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Figure 2-8.  Determine the outputs of the output layer

Let’s use the matrix form of Equation 2.1 to calculate the output.
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How was that? The process may be somewhat cumbersome, but there is 
nothing difficult in the calculation itself. As we just saw, the neural network is 
nothing more than a network of layered nodes, which performs only simple 
calculations. It does not involve any difficult equations or a complicated 
architecture. Although it appears to be simple, the neural network has been 
breaking all performance records for the major Machine Learning fields, such as 
image recognition and speech recognition. Isn’t it interesting? It seems like the 
quote, “All the truth is simple” is an apt description.

I must leave a final comment before wrapping up the section. We used a 
linear equation for the activation of the hidden nodes, just for convenience. 
This is not practically correct. The use of a linear function for the nodes negates 
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the effect of adding a layer. In this case, the model is mathematically identical 
to a single-layer neural network, which does not have hidden layers. Let’s see 
what really happens. Substituting the equation of weighted sum of the hidden 
layer into the equation of weighted sum of the output layer yields the following 
equation:
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This matrix equation indicates that this example neural network is 
equivalent to a single layer neural network as shown in Figure 2-9.

Keep in mind that the hidden layer becomes ineffective when the hidden 
nodes have linear activation functions. However, the output nodes may, and 
sometimes must, employ linear activation functions.

Supervised Learning of a Neural Network
This section introduces the concepts and process of supervised learning of the 
neural network. It is addressed in the “Types of Machine Learning” section 
in Chapter 1. Of the many training methods, this book covers only supervised 
learning. Therefore, only supervised learning is discussed for the neural network 
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Figure 2-9.  This example neural network is equivalent to a single layer neural 
network

http://dx.doi.org/10.1007/978-1-4842-2845-6_1
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as well. In the big picture, supervised learning of the neural network proceeds in 
the following steps:

	 1.	 Initialize the weights with adequate values.

	 2.	 Take the “input” from the training data, which is 
formatted as { input, correct output }, and enter 
it into the neural network. Obtain the output from the 
neural network and calculate the error from the correct 
output.

	 3.	 Adjust the weights to reduce the error.

	 4.	 Repeat Steps 2-3 for all training data

These steps are basically identical to the supervised learning process of the 
“Types of Machine Learning” section. This makes sense because the training of 
supervised learning is a process that modifies the model to reduce the difference 
between the correct output and model’s output. The only difference is that 
the modification of the model becomes the changes in weights for the neural 
network. Figure 2-10 illustrates the concept of supervised learning that has 
been explained so far. This will help you clearly understand the steps described 
previously.

Training Data

{ Input, Correct output }
Input

Correct output

Output -

+

Error

Weight Update

Figure 2-10.  The concept of supervised learning
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Training of a Single-Layer Neural Network:  
Delta Rule
As previously addressed, the neural network stores information in the form of 
weights.1 Therefore, in order to train the neural network with new information, 
the weights should be changed accordingly. The systematic approach to 
modifying the weights according to the given information is called the 
learning rule. Since training is the only way for the neural network to store the 
information systematically, the learning rule is a vital component in neural 
network research.

In this section, we deal with the delta rule,2 the representative learning rule 
of the single-layer neural network. Although it is not capable of multi-layer 
neural network training, it is very useful for studying the important concepts of 
the learning rule of the neural network.

Consider a single-layer neural network, as shown in Figure 2-11. In the 
figure, d

i
 is the correct output of the output node i.

xj
wij

i
yi yiei di –

Figure 2-11.  A single-layer neural network

1Unless otherwise noticed, the weight in this book includes bias as well.
2It is also referred to as Adaline rule as well as Widrow-Hoff rule.

Long story short, the delta rule adjusts the weight as the following 
algorithm:

“If an input node contributes to the error of the output 
node, the weight between the two nodes is adjusted in 
proportion to the input value, x

j
 and the output error, e

i
.”
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This rule can be expressed in equation as:

	 w w e xij ij i j¬ + a 	 (Equation 2.2)

where

x
j
 = The output from the input node j, ( j =1 2 3, , )

e
i
 = The error of the output node i

w
ij
 = The weight between the output node i and input 

node j

α = Learning rate ( 0 1< £a )

The learning rate, α, determines how much the weight is changed per time. If 
this value is too high, the output wanders around the solution and fails to converge. 
In contrast, if it is too low, the calculation reaches the solution too slowly.

To take a concrete example, consider the single-layer neural network, which 
consists of three input nodes and one output node, as shown in Figure 2-12. For 
convenience, we assume no bias for the output node at this time. We use a linear 
activation function; i.e., the weighted sum is directly transferred to the output.

x1

y1 e1 d1 y1x2

x3

w11

w12

w13

= –

Figure 2-12.  A single-layer neural network with three input nodes and one 
output node

Note that the first number of the subscript (1) indicates the node number 
to which the input enters. For example, the weight between the input node 2 
and output node 1 is denoted as w

12
. This notation enables an easier matrix 

operation; the weights associated with the node i are allocated at the i -th row of 
the weight matrix.

Applying the delta rule of Equation 2.2 to the example neural network yields 
the renewal of the weights as:

w w e x

w w e x

w w e x

11 11 1 1

12 12 1 2

13 13 1 3

¬ +
¬ +
¬ +

a
a
a
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3The delta rule is a type of numerical method called gradient descent. The gradient 
descent starts from the initial value and proceeds to the solution. Its name originates from 
its behavior whereby it searches for the solution as if a ball rolls down the hill along the 
steepest path. In this analogy, the position of the ball is the occasional output from the 
model, and the bottom is the solution. It is noteworthy that the gradient descent method 
cannot drop the ball to the bottom with just one throw.

Let’s summarize the training process using the delta rule for the single-layer 
neural network.

	 1.	 Initialize the weights at adequate values.

	 2.	 Take the “input” from the training data of { input, 
correct output } and enter it to the neural network. 
Calculate the error of the output, y

i
, from the correct 

output, d
i
, to the input.

e d yi i i= -

	 3.	 Calculate the weight updates according to the following 
delta rule:

D =w e xij i ja

	 4.	 Adjust the weights as:

w w wij ij ij¬ + D

	 5.	 Perform Steps 2-4 for all training data.

	 6.	 Repeat Steps 2-5 until the error reaches an acceptable 
tolerance level.

These steps are almost identical to that of the process for the supervised 
learning in the “Supervised Learning of a Neural Network” section. The only 
difference is the addition of Step 6. Step 6 just states that the whole training 
process is repeated. Once Step 5 has been completed, the model has been 
trained with every data point. Then, why do we train it using all of the same 
training data? This is because the delta rule searches for the solution as it repeats 
the process, rather than solving it all at once.3 The whole process repeats, as 
retraining the model with the same data may improve the model.

Just for reference, the number of training iterations, in each of which all 
training data goes through Steps 2-5 once, is called an epoch. For instance, 
epoch = 10 means that the neural network goes through 10 repeated training 
processes with the same dataset.
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Are you able to follow this section so far? Then you have learned most of the 
key concepts of the neural network training. Although the equations may vary 
depending on the learning rule, the essential concepts are relatively the same. 
Figure 2-13 illustrates the training process described in this section.

Generalized Delta Rule
This section touches on some theoretical aspects of the delta rule. However, 
you don’t need to be frustrated. We will go through the most essential subjects 
without elaborating too much on the specifics.

The delta rule of the previous section is rather obsolete. Later studies 
have uncovered that there exists a more generalized form of the delta rule. For 
an arbitrary activation function, the delta rule is expressed as the following 
equation.

	 w w xij ij i j¬ + ad 	 (Equation 2.3)

It is the same as the delta rule of the previous section, except that e
i
 is 

replaced with δ
i
. In this equation, δ

i
 is defined as:

	 d ji i iv e= ( )¢ 	 (Equation 2.4)

ij ij

Figure 2-13.  The training process
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where

e
i
 = The error of the output node i

v
i
 = The weighted sum of the output node i

φ′ = The derivative of the activation function φ of the 
output node i

Recall that we used a linear activation function of j x x( ) =  for the example. 
The derivative of this function is ¢( ) =j x 1 . Substituting this value into  

Equation 2.4 yields δ
i
 as:

di ie=

Plugging this equation into Equation 2.3 results in the same formula as the 
delta rule in Equation 2.2. This fact indicates that the delta rule in Equation 2.2 is 
only valid for linear activation functions.

Now, we can derive the delta rule with the sigmoid function, which is widely 
used as an activation function. The sigmoid function is defined as shown in 
Figure 2-14.4

4The output from a sigmoid function is within the range of 0-1. This behavior of the 
sigmoid function is useful when the neural network produces probability outputs.

1

0 x

(x) = 1
1+e -x

Figure 2-14.  The sigmoid function defined

We need the derivative of this function, which is given as:

¢( ) = ( ) - ( )( )j j jx x x1

Substituting this derivative into Equation 2.4 yields δ
i
 as:

d j j ji i i i i iv e v v e= ( ) = ( ) - ( )( )¢ 1
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Again, plugging this equation into Equation 2.3 gives the delta rule for the 
sigmoid function as:

	 w w v v e xij ij i i i j¬ + ( ) - ( )( )a j j1 	 (Equation 2.5)

Although the weight update formula is rather complicated, it maintains the 
identical fundamental concept where the weight is determined in proportion to 
the output node error, e

i
 and the input node value, x

j
.

SGD, Batch, and Mini Batch
The schemes that are used to calculate the weight update, ∆w

ij
, are introduced 

in this section. Three typical schemes are available for supervised learning of the 
neural network.

Stochastic Gradient Descent
The Stochastic Gradient Descent (SGD) calculates the error for each training 
data and adjusts the weights immediately. If we have 100 training data points, 
the SGD adjusts the weights 100 times. Figure 2-15 shows how the weight update 
of the SGD is related to the entire training data.

TrainingWeight Update

Training Data

Figure 2-15.  How the weight update of the SGD is related to the entire training 
data
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As the SGD adjusts the weight for each data point, the performance of the 
neural network is crooked while the undergoing the training process. The name 
“stochastic” implies the random behavior of the training process. The SGD 
calculates the weight updates as:

D =w xij i jad

This equation implies that all the delta rules of the previous sections are 
based on the SGD approach.

Batch
In the batch method, each weight update is calculated for all errors of the training 
data, and the average of the weight updates is used for adjusting the weights. This 
method uses all of the training data and updates only once. Figure 2-16 explains 
the weight update calculation and training process of the batch method.

Training Data

Average of Weight Updates
Training

Figure 2-16.  The batch method’s weight update calculation and training process

The batch method calculates the weight update as:

	 D = D ( )
=
åw

N
w kij

k

N

ij

1

1

	 (Equation 2.6)

where ∆w
ij
(k) is the weight update for the k -th training data and N is the total 

number of the training data.
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Because of the averaged weight update calculation, the batch method 
consumes a significant amount of time for training.

Mini Batch
The mini batch method is a blend of the SGD and batch methods. It selects a part 
of the training dataset and uses them for training in the batch method. Therefore, 
it calculates the weight updates of the selected data and trains the neural network 
with the averaged weight update. For example, if 20 arbitrary data points are 
selected out of 100 training data points, the batch method is applied to the 20 data 
points. In this case, a total of five weight adjustments are performed to complete 
the training process for all the data points (5 = 100/20). Figure shows 2-17 how the 
mini batch scheme selects training data and calculates the weight update.

Training Data

Average of Weight Updates
Training

Figure 2-17.  How the mini batch scheme selects training data and calculates the 
weight update

The mini batch method, when it selects an appropriate number of data 
points, obtains the benefits from both methods: speed from the SGD and 
stability from the batch. For this reason, it is often utilized in Deep Learning, 
which manipulates a significant amount of data.

Now, let’s delve a bit into the SGD, batch, and mini batch in terms of the 
epoch. The epoch is briefly introduced in the “Training of a Single-Layer Neural 
Network: Delta Rule” section. As a recap, the epoch is the number of completed 
training cycles for all of the training data. In the batch method, the number of 
training cycles of the neural network equals an epoch, as shown in Figure 2-18. 
This makes perfect sense because the batch method utilizes all of the data for 
one training process.



Chapter 2 ■ Neural Network

37

In contrast, in the mini batch, the number of training processes for one 
epoch varies depending on the number of data points in each batch. When we 
have N training data points in total, the number of training processes per epoch 
is greater than one, which corresponds to the batch method, and smaller than N, 
which corresponds to the SGD.

Example: Delta Rule
You are now ready to implement the delta rule as a code. Consider a neural 
network that consists of three input nodes and one output node, as shown in 
Figure 2-19. The sigmoid function is used for the activation function of the 
output node.

Training Data

Average of Weight Updates
Training

epoch =1

Figure 2-18.  The number of training cycles of the neural network equals an epoch

y

x1

x2

x3

w3

w2

w1

Figure 2-19.  Neural network that consists of three input nodes and one output 
node
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We have four training data points, as shown in the following table. As they 
are used for supervised learning, each data point consists of an input-correct 
output pair. The last bold number of each dataset is the correct output.

Let’s train the neural network with this data. The delta rule for the sigmoid 
function, which is given by Equation 2.5, is the learning rule. Equation 2.5 can be 
rearranged as a step-by-step process, as follows:

	

d j j

a d
i i i i

ij i j

ij ij ij

v v e

w x

w w w

= ( ) - ( )( )
=

¬ + D

D

1

	 (Equation 2.7)

We will implement the delta rule using the SGD and batch methods for the 
example neural network. As it is single-layered and contains simple training 
data, the code is not complicated. Once you follow the code, you will clearly 
see the difference between the SGD code and the batch code. As previously 
addressed, the SGD trains every data point immediately and does not require 
addition or averages of the weight updates. Therefore, the code for the SGD is 
simpler than that of the batch.

Implementation of the SGD Method
The function DeltaSGD is the SGD method of the delta rule given by Equation 2.7.  
It takes the weights and training data of the neural network and returns the 
newly trained weights.

W = DeltaSGD(W, X, D)
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where W is the argument that carries the weights. X and D carry the inputs 
and correct outputs of the training data, respectively. The training data is divided 
into two variables for convenience. The following listing shows the DeltaSGD.m 
file, which implements the DeltaSGD function.

function W = DeltaSGD(W, X, D)
  alpha = 0.9;

  N = 4;  
  for k = 1:N
    x = X(k, :)';
    d = D(k);

    v = W*x;
    y = Sigmoid(v);

    e     = d - y;  
    delta = y*(1-y)*e;

    dW = alpha*delta*x;     % delta rule    

    W(1) = W(1) + dW(1);
    W(2) = W(2) + dW(2);
    W(3) = W(3) + dW(3);    
  end
end

The code proceeds as follows: Take one of the data points and calculate the 
output, y. Calculate the difference between this output and the correct output, d. 
Calculate the weight update, dW, according to the delta rule. Using this weight 
update, adjust the weight of neural network. Repeat the process for the number 
of the training data points, N. This way, the function DeltaSGD trains the neural 
network for every epoch.

The function Sigmoid that DeltaSGD calls is listed next. This outlines the 
pure definition of the sigmoid function and is implemented in the Sigmoid.m 
file. As it is a very simple code, we skip further discussion of it.

function y = Sigmoid(x)
  y = 1 / (1 + exp(-x));
end

The following listing shows the TestDeltaSGD.m file, which tests the 
DeltaSGD function. This program calls the function DeltaSGD, trains it 10,000 
times, and displays the output from the trained neural network with the input 
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of all the training data. We can see how well the neural network was trained by 
comparing the output with the correct output.

clear all

X = [ 0 0 1;
      0 1 1;
      1 0 1;
      1 1 1;
    ];

D = [ 0
      0
      1
      1
    ];

W = 2*rand(1, 3) - 1;

for epoch = 1:10000           % train
  W = DeltaSGD(W, X, D);
end

N = 4;                        % inference
for k = 1:N
  x = X(k, :)';
  v = W*x;
  y = Sigmoid(v)
end

This code initializes the weights with random real numbers between -1 and 
1. Executing this code produces the following values. These output values are 
very close to the correct outputs in D. Therefore, we can conclude that the neural 
network has been properly trained.
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Every example code in this book consists of the implementation of the 
algorithm and the test program in separate files. This is because putting them 
together often makes the code more complicated and hampers efficient analysis 
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of the algorithm. The file name of the test program starts with Test and is 
followed by the name on the algorithm file. The algorithm file is named after 
the function name, in compliance with the naming convention of MATLAB. 
For example, the implementation file of the DeltaSGD function is named 
DeltaSGD.m.

Algorithm implementation example/ DeltaSGD.m

Test program example/ TestDeltaSGD.m

Implementation of the Batch Method
The function DeltaBatch implements the delta rule of Equation 2.7 using the 
batch method. It takes the weights and training data of the neural network and 
returns trained weights.

W = DeltaBatch(W, X, D)

In this function definition, the variables carry the same meaning as those 
in the function DeltaSGD; W is the weight of the neural network, X and D are the 
input and correct output of the training data, respectively. The following listing 
shows the DeltaBatch.m file, which implements the function DeltaBatch.

function W = DeltaBatch(W, X, D)
  alpha = 0.9;

  dWsum = zeros(3, 1);

  N = 4;  
  for k = 1:N
    x = X(k, :)';
    d = D(k);

    v = W*x;
    y = Sigmoid(v);

    e     = d - y;    
    delta = y*(1-y)*e;

    dW = alpha*delta*x;

    dWsum = dWsum + dW;
  end
  dWavg = dWsum / N;
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  W(1) = W(1) + dWavg(1);
  W(2) = W(2) + dWavg(2);
  W(3) = W(3) + dWavg(3);
end

This code does not immediately train the neural network with the weight 
update, dW, of the individual training data points. It adds the individual weight 
updates of the entire training data to dWsum and adjusts the weight just once 
using the average, dWavg. This is the fundamental difference that separates 
this method from the SGD method. The averaging feature of the batch method 
allows the training to be less sensitive to the training data.

Recall that Equation 2.6 yields the weight update. It will be much easier 
to understand this equation when you look into it using the previous code. 
Equation 2.6 is shown here again, for your convenience.

D = D ( )
=
åw

N
w kij

k

N

ij

1

1

where ∆w
ij
(k) is the weight update for the k -th training data point.

The following program listing shows the TestDeltaBatch.m file that tests the 
function DeltaBatch. This program calls in the function DeltaBatch and trains 
the neural network 40,000 times. All the training data is fed into the trained 
neural network, and the output is displayed. Check the output and correct 
output from the training data to verify the adequacy of the training.

clear all

X = [ 0 0 1;
      0 1 1;
      1 0 1;
      1 1 1;
    ];

D = [ 0
      0
      1
      1
    ];

W = 2*rand(1, 3) - 1;

for epoch = 1:40000
  W = DeltaBatch(W, X, D);
end
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N = 4;
for k = 1:N
  x = X(k, :)';
  v = W*x;
  y = Sigmoid(v)
end

Next, execute this code, and you will see the following values on your screen. 
The output is very similar to the correct output, D. This verifies that the neural 
network has been properly trained.
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As this test program is almost identical to the TestDeltaSGD.m file, we will 
skip the detailed explanation. An interesting point about this method is that it 
trained the neural network 40,000 times. Recall that the SGD method performed 
only 10,000 trainings. This indicates that the batch method requires more time 
to train the neural network to yield a similar level of accuracy of that of the SGD 
method. In other words, the batch method learns slowly.

Comparison of the SGD and the Batch
In this section, we practically investigate the learning speeds of the SGD and 
the batch. The errors of these methods are compared at the end of the training 
processes for the entire training data. The following program listing shows the 
SGDvsBatch.m file, which compares the mean error of the two methods. In order 
to evaluate a fair comparison, the weights of both methods are initialized with 
the same values.

clear all

X = [ 0 0 1;
      0 1 1;
      1 0 1;
      1 1 1;
    ];
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D = [ 0
      0
      1
      1
    ];

E1 = zeros(1000, 1);
E2 = zeros(1000, 1);

W1 = 2*rand(1, 3) - 1;
W2 = W1;

for epoch = 1:1000           % train
  W1 = DeltaSGD(W1, X, D);
  W2 = DeltaBatch(W2, X, D);

  es1 = 0;
  es2 = 0;
  N   = 4;
  for k = 1:N
    x = X(k, :)';
    d = D(k);

    v1  = W1*x;
    y1  = Sigmoid(v1);
    es1 = es1 + (d - y1)^2;

    v2  = W2*x;
    y2  = Sigmoid(v2);
    es2 = es2 + (d - y2)^2;
  end
  E1(epoch) = es1 / N;
  E2(epoch) = es2 / N;
end

plot(E1, 'r')
hold on
plot(E2, 'b:')
xlabel('Epoch')
ylabel('Average of Training error')
legend('SGD', 'Batch')
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This program trains the neural network 1,000 times for each function, 
DeltaSGD and DeltaBatch. At each epoch, it inputs the training data into the 
neural network and calculates the mean square error (E1, E2) of the output. 
Once the program completes 1,000 trainings, it generates a graph that shows the 
mean error at each epoch. As Figure 2-20 shows, the SGD yields faster reduction 
of the learning error than the batch; the SGD learns faster.

Limitations of Single-Layer Neural Networks
This section presents the critical reason that the single-layer neural network 
had to evolve into a multi-layer neural network. We will try to show this through 
a particular case. Consider the same neural network that was discussed in the 
previous section. It consists of three input nodes and an output node, and the 
activation function of the output node is a sigmoid function (Figure 2-21).
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Figure 2-20.  The SGD method learns faster than the batch method
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Assume that we have four training data points, as shown here. It is different 
from that of the “Example: Delta Rule” section in that the second and fourth 
correct outputs are switched while the inputs remain the same. Well, the 
difference is barely noticeable. It shouldn’t cause any trouble, right?

We will now train it with the delta rule using the SGD. As we are considering 
the same neural network, we can train it using the function DeltaSGD from the 
“Example: Delta Rule” section. We have to just change its name to DeltaXOR. 
The following program listing shows the TestDeltaXOR.m file, which tests the 
DeltaXOR function. This program is identical to the TestDeltaSGD.m file from 
the “Example: Delta Rule” section, except that it has different values for D, and it 
calls the DeltaXOR function instead of DeltaSGD.

x1
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x3

y

w1

w2

w3

Figure 2-21.  Our same neural network
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clear all

X = [ 0 0 1;
      0 1 1;
      1 0 1;
      1 1 1;
    ];

D = [ 0
      1
      1
      0
    ];

W = 2*rand(1, 3) - 1;

for epoch = 1:40000           % train
  W = DeltaXOR(W, X, D);
end

N = 4;                        % inference
for k = 1:N
  x = X(k, :)';
  v = W*x;
  y = Sigmoid(v)
end

When we run the code, the screen will show the following values, which 
consist of the output from the trained neural network corresponding to the 
training data. We can compare them with the correct outputs given by D.
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What happened? We got two totally different sets. Training the neural 
network for a longer period does not make a difference. The only difference from 
the code from the “Example: Delta Rule” section is the correct output variable, D. 
What actually happened?
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Illustrating the training data can help elucidate this problem. Let’s interpret 
the three values of the input data as the X, Y, and Z coordinates, respectively. 
As the third value, i.e. the Z coordinate, is fixed as 1, the training data can be 
visualized on a plane as shown in Figure 2-22.

The values 0 and 1 in the circles are the correct outputs assigned to each 
point. One thing to notice from this figure is that we cannot divide the regions of 
0 and 1 with a straight line. However, we may divide it with a complicated curve, 
as shown in Figure 2-23. This type of problem is said to be linearly inseparable.

Y

(0,1) (1,1)

(0,0) (1,0) X

1 0

0 1

Figure 2-22.  Interpreting the three values of the input data as the X, Y, and Z 
coordinates
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Y

X

(0,1) (1,1)

(0,0) (1,0)

1 0

0 1

Figure 2-23.  We can only separate the regions of 0 and 1 with a complicated 
curve

In the same process, the training data from the “Example: Delta Rule” 
section on the X-Y plane appears in Figure 2-24.

Y

(0,1) (1,1)

(0,0) (1,0) X

0 1

0 1

Figure 2-24.  The delta rule training data

In this case, a straight border line that divides the regions of 0 and 1 can be 
found easily. This is a linearly separable problem (Figure 2-25).
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Y

(0,1) (1,1)

(0,0) (1,0) X

0 1

0 1

Figure 2-25.  This data presents a linearly separable problem

To put it simply, the single-layer neural network can only solve linearly 
separable problems. This is because the single-layer neural network is a model 
that linearly divides the input data space. In order to overcome this limitation of 
the single-layer neural network, we need more layers in the network. This need 
has led to the appearance of the multi-layer neural network, which can achieve 
what the single-layer neural network cannot. As this is rather mathematical; it is 
fine to skip this portion if you are not familiar with it. Just keep in mind that  
the single-layer neural network is applicable for specific problem types. The 
multi-layer neural network has no such limitations.

Summary
This chapter covered the following concepts:

•	 The neural network is a network of nodes, which imitate the 
neurons of the brain. The nodes calculate the weighted sum of the 
input signals and output the result of the activation function with 
the weighted sum.

•	 Most neural networks are constructed with the layered nodes. For 
the layered neural network, the signal enters through the input layer, 
passes through the hidden layer, and exits through the output layer.

•	 In practice, the linear functions cannot be used as the activation 
functions in the hidden layer. This is because the linear function 
negates the effects of the hidden layer. However, in some 
problems such as regression, the output layer nodes may employ 
linear functions.
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•	 For the neural network, supervised learning implements the 
process to adjust the weights and to reduce the discrepancies 
between the correct output and output of the neural network 
(Figure 2-26).

•	 The method used to adjust the weight according to the training 
data is called the learning rule.

•	 There are three major types of error calculations: the stochastic 
gradient descent, batch, and mini batch.

•	 The delta rule is the representative learning rule of the neural 
network. Its formula varies depending on the activation function.

d j
ad

i i i

ij ij i j

v e

w w x

= ( )
¬ +

¢

•	 The delta rule is an iterative method that gradually reaches the 
solution. Therefore, the network should be repeatedly trained 
with the training data until the error is reduced to the satisfactory 
level.

•	 The single-layer neural network is applicable only to specific 
types of problems. Therefore, the single-layer neural network has 
very limited usages. The multi-layer neural network has been 
developed to overcome the essential limitations of the single-
layer neural network.

Training Data
{ Input, Correct output } Input

Correct output

Output -

+

Error

Weight Update

Figure 2-26.  Review of supervised learning
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CHAPTER 3

Training of Multi-Layer 
Neural Network

In an effort to overcome the practical limitations of the single-layer, the 
neural network evolved into a multi-layer architecture. However, it has taken 
approximately 30 years to just add on the hidden layer to the single-layer neural 
network. It’s not easy to understand why this took so long, but the problem involved 
the learning rule. As the training process is the only method for the neural network 
to store information, untrainable neural networks are useless. A proper learning 
rule for the multi-layer neural network took quite some time to develop.

The previously introduced delta rule is ineffective for training of the 
multi-layer neural network. This is because the error, the essential element for 
applying the delta rule for training, is not defined in the hidden layers. The error 
of the output node is defined as the difference between the correct output and 
the output of the neural network. However, the training data does not provide 
correct outputs for the hidden layer nodes, and hence the error cannot be 
calculated using the same approach for the output nodes. Then, what? Isn’t the 
real problem how to define the error at the hidden nodes? You got it. You just 
formulated the back-propagation algorithm, the representative learning rule of 
the multi-layer neural network.

In 1986, the introduction of the back-propagation algorithm finally solved 
the training problem of the multi-layer neural network.1 The significance of 
the back-propagation algorithm was that it provided a systematic method to 
determine the error of the hidden nodes. Once the hidden layer errors are 
determined, the delta rule is applied to adjust the weights. See Figure 3-1.

1“Learning representations by back-propagating errors,” David E. Rumelhart,  
Geoffrey E. Hinton, Ronald J. Williams, Nature, October 1986.

http://dx.doi.org/10.1007/978-1-4842-2845-6_1#Fig1
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The input data of the neural network travels through the input layer, hidden 
layer, and output layer. In contrast, in the back-propagation algorithm, the 
output error starts from the output layer and moves backward until it reaches 
the right next hidden layer to the input layer. This process is called back-
propagation, as it resembles an output error propagating backward. Even in 
back-propagation, the signal still flows through the connecting lines and the 
weights are multiplied. The only difference is that the input and output signals 
flow in opposite directions.

Back-Propagation Algorithm
This section explains the back-propagation algorithm using an example of the 
simple multi-layer neural network. Consider a neural network that consists of two 
nodes for both the input and output and a hidden layer, which has two nodes as 
well. We will omit the bias for convenience. The example neural network is shown 
in Figure 3-2, where the superscript describes the layer indicator.

x1

x2

w11
(1) w11

(2)

w12
(2)

w21
(2)

w22
(2)w22

(1)

w21
(1)

w12
(1)

y1

y2

Figure 3-2.  Neural network that consists of two nodes for the input and output 
and a hidden layer, which has two nodes

ei

Figure 3-1.  Illustration of back-propagation
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In order to obtain the output error, we first need the neural network’s output 
from the input data. Let’s try. As the example network has a single hidden 
layer, we need two input data manipulations before the output calculation is 
processed. First, the weighted sum of the hidden node is calculated as:
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	 (Equation 3.1)

When we put this weighted sum, Equation 3.1, into the activation function, 
we obtain the output from the hidden nodes.
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where y1
1( )  and y2

1( )  are outputs from the corresponding hidden nodes. In a 
similar manner, the weighted sum of the output nodes is calculated as:
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	 (Equation 3.2)

As we put this weighted sum into the activation function, the neural network 
yields the output.
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Now, we will train the neural network using the back-propagation algorithm. 
The first thing to calculate is delta, δ, of each node. You may ask, “Is this delta 
the one from the delta rule?” It is! In order to avoid confusion, the diagram in 
Figure 3-3 has been redrawn with the unnecessary connections dimmed out.
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In the back-propagation algorithm, the delta of the output node is defined 
identically to the delta rule of the “Generalized Delta Rule” section in Chapter 2, 
as follows:
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where ¢ ×( )j  is the derivative of the activation function of the output node, 
y

i
 is the output from the output node, d

i
 is the correct output from the training 

data, and v
i
 is the weighted sum of the corresponding node.

Since we have the delta for every output node, let’s proceed leftward to 
the hidden nodes and calculate the delta (Figure 3-4). Again, unnecessary 
connections are dimmed out for convenience.

w11
(1) w11

(2)
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w22
(2)w22

(1)

w21
(1)

w12
(1)

e1 = d1 − y1

e2 = d2 − y2

(1)

(1)

11

2 2

Figure 3-4.  Proceed leftward to the hidden nodes and calculate the delta
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w12
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e1 = d1 − y1

e2 = d2 − y2

1

2

Figure 3-3.  Train the neural network using the back-propagation algorithm

As addressed at the beginning of the chapter, the issue of the hidden node is 
how to define the error. In the back-propagation algorithm, the error of the node 
is defined as the weighted sum of the back-propagated deltas from the layer on 
the immediate right (in this case, the output layer). Once the error is obtained, 

http://dx.doi.org/10.1007/978-1-4842-2845-6_2
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the calculation of the delta from the node is the same as that of Equation 3.3. 
This process can be expressed as follows:
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where v1
1( )  and v2

1( )  are the weight sums of the forward signals at the 
respective nodes. It is noticeable from this equation that the forward and 
backward processes are identically applied to the hidden nodes as well as the 
output nodes. This implies that the output and hidden nodes experience the 
same backward process. The only difference is the error calculation (Figure 3-5).

In summary, the error of the hidden node is calculated as the backward 
weighted sum of the delta, and the delta of the node is the product of the error 
and the derivative of the activation function. This process begins at the output 
layer and repeats for all hidden layers. This pretty much explains what the  
back-propagation algorithm is about.

The two error calculation formulas of Equation 3.4 are combined in a matrix 
equation as follows:
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Figure 3-5.  The error calculation is the only difference
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Compare this equation with the neural network output of Equation 3.2. 
The matrix of Equation 3.5 is the result of transpose of the weight matrix, W, of 
Equation 3.2.2 Therefore, Equation 3.5 can be rewritten as:
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	 (Equation 3.6)

This equation indicates that we can obtain the error as the product of the 
transposed weight matrix and delta vector. This very useful attribute allows an 
easier implementation of the algorithm.

If we have additional hidden layers, we will just repeat the same backward 
process for each hidden layer and calculate all the deltas. Once all the deltas 
have been calculated, we will be ready to train the neural network. Just use the 
following equation to adjust the weights of the respective layers.

	 D =
¬ + D
w x

w w w
ij i j

ij ij ij

ad 	 (Equation 3.7)

where xj is the input signal for the corresponding weight. For convenience, 
we omit the layer indicator from this equation. What do you see now? Isn’t this 
equation the same as that of the delta rule of the previous section? Yes, they are the 
same. The mere difference is the deltas of the hidden nodes, which are obtained 
from the backward calculation using the output error of the neural network.

We will proceed a bit further and derive the equation to adjust the weight 
using Equation 3.7. Consider the weight w21

2( )  for example.
The weight w21

2( )  of Figure 3-6 can be adjusted using Equation 3.7 as:

2When two matrices have rows and columns switched, they are transpose matrices to each 
other.
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where y1
1( )  is the output of the first hidden node. Here is another example.

The weight w11
1( )  of Figure 3-7 is adjusted using Equation 3.7 as:

w w x11
1
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1
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1
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where x
1
 is the output of the first input node, i.e., the first input of the neural 

network.
Let’s organize the process to train the neural network using the back-

propagation algorithm.

	 1.	 Initialize the weights with adequate values.

	 2.	 Enter the input from the training data { input, correct 
output } and obtain the neural network’s output. 
Calculate the error of the output to the correct output 
and the delta, δ, of the output nodes.
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Figure 3-7.  Derive the equation to adjust the weight, again
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Figure 3-6.  Derive the equation to adjust the weight
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	 3.	 Propagate the output node delta, δ, backward, and 
calculate the deltas of the immediate next (left) nodes.

e W

v e

k T

k k k

( )

( ) ( ) ( )

=

= ( )¢

d

d j

	 4.	 Repeat Step 3 until it reaches the hidden layer that is on 
the immediate right of the input layer.

	 5.	 Adjust the weights according to the following learning rule.

D =
¬ + D
w x

w w w
ij i j

ij ij ij

ad

	 6.	 Repeat Steps 2-5 for every training data point.

	 7.	 Repeat Steps 2-6 until the neural network is properly 
trained.

Other than Steps 3 and 4, in which the output delta propagates backward 
to obtain the hidden node delta, this process is basically the same as that of the 
delta rule, which was previously discussed. Although this example has only one 
hidden layer, the back-propagation algorithm is applicable for training many 
hidden layers. Just repeat Step 3 of the previous algorithm for each hidden layer.

Example: Back-Propagation
In this section, we implement the back-propagation algorithm. The training 
data contains four elements as shown in the following table. Of course, as this 
is about supervised learning, the data includes input and correct output pairs. 
The bolded rightmost number of the data is the correct output. As you may have 
noticed, this data is the same one that we used in Chapter 2 for the training of 
the single-layer neural network; the one that the single-layer neural network had 
failed to learn.

http://dx.doi.org/10.1007/978-1-4842-2845-6_2
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Ignoring the third value, the Z-axis, of the input, this dataset actually 
provides the XOR logic operations. Therefore, if we train the neural network with 
this dataset, we would get the XOR operation model.

Consider a neural network that consists of three input nodes and a single 
output node, as shown in Figure 3-8. It has one hidden layer of four nodes. The 
sigmoid function is used as the activation function for the hidden nodes and the 
output node.

Figure 3-8.  Neural network that consists of three input nodes and a single  
output node
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This section employs SGD for the implementation of the back-propagation 
algorithm. Of course, the batch method will work as well. What we have to do is 
use the average of the weight updates, as shown in the example in the “Example: 
Delta Rule” section of Chapter 2. Since the primary objective of this section is to 
understand the back-propagation algorithm, we will stick to a simpler and more 
intuitive method: the SGD.

XOR Problem
The function BackpropXOR, which implements the back-propagation algorithm 
using the SGD method, takes the network’s weights and training data and 
returns the adjusted weights.

[W1 W2] = BackpropXOR(W1, W2, X, D)

where W1 and W2 carries the weight matrix of the respective layer. W1 is the 
weight matrix between the input layer and hidden layer and W2 is the weight 
matrix between the hidden layer and output layer. X and D are the input and 
correct output of the training data, respectively. The following listing shows the 
BackpropXOR.m file, which implements the BackpropXOR function.

function [W1, W2] = BackpropXOR(W1, W2, X, D)
  alpha = 0.9;

  N = 4;  
  for k = 1:N
    x = X(k, :)';
    d = D(k);

    v1 = W1*x;
    y1 = Sigmoid(v1);    
    v  = W2*y1;
    y  = Sigmoid(v);

    e     = d - y;
    delta = y.*(1-y).*e;

    e1     = W2'*delta;
    delta1 = y1.*(1-y1).*e1;

    dW1 = alpha*delta1*x';
    W1  = W1 + dW1;

http://dx.doi.org/10.1007/978-1-4842-2845-6_2
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    dW2 = alpha*delta*y1';    
    W2  = W2 + dW2;
  end
end

The code takes point from the training dataset, calculates the weight update, 
dW, using the delta rule, and adjusts the weights. So far, the process is almost 
identical to that of the example code of Chapter 2. The slight differences are the 
two calls of the function Sigmoid for the output calculation and the addition of 
the delta (delta1) calculation using the back-propagation of the output delta as 
follows:

e1     = W2'*delta;
delta1 = y1.*(1-y1).*e1;

where the calculation of the error, e1, is the implementation of Equation 3.6. 
As this involves the back-propagation of the delta, we use the transpose matrix, 
W2'. The delta (delta1) calculation has an element-wise product operator, .*, 
because the variables are vectors. The element-wise operator of MATLAB has a 
dot (period) in front of the normal operator and performs an operation on each 
element of the vector. This operator enables simultaneous calculations of deltas 
from many nodes.

The function Sigmoid, which the BackpropXOR code calls, also replaced the 
division with the element-wise division ./ to account for the vector.

function y = Sigmoid(x)
  y = 1 ./ (1 + exp(-x));
end

The modified Sigmoid function can operate using vectors as shown by the 
following example:

Sigmoid([-1 0 1])        [0.2689    0.5000    0.7311]

The program listing that follows shows the TestBackpropXOR.m file, which tests 
the function BackpropXOR. This program calls in the BackpropXOR function and 
trains the neural network 10,000 times. The input is given to the trained network, 
and its output is shown on the screen. The training performance can be verified as 
we compare the output to the correct outputs of the training data. Further details 
are omitted, as the program is almost identical to that of Chapter 2.

http://dx.doi.org/10.1007/978-1-4842-2845-6_2
http://dx.doi.org/10.1007/978-1-4842-2845-6_2
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clear all

X = [ 0 0 1;
      0 1 1;
      1 0 1;
      1 1 1;
    ];

D = [ 0
      1
      1
      0
    ];

W1 = 2*rand(4, 3) - 1;
W2 = 2*rand(1, 4) - 1;

for epoch = 1:10000           % train
  [W1 W2] = BackpropXOR(W1, W2, X, D);
end

N = 4;                        % inference
for k = 1:N
  x  = X(k, :)';
  v1 = W1*x;
  y1 = Sigmoid(v1);
  v  = W2*y1;
  y  = Sigmoid(v)
end

Execute the code, and find the following values on the screen. These values 
are very close to the correct output, D, indicating that the neural network has 
been properly trained. Now we have confirmed that the multi-layer neural 
network solves the XOR problem, which the single-layer network had failed to 
model properly.
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Momentum
This section explores the variations of the weight adjustment. So far, the weight 
adjustment has relied on the simplest forms of Equations 2.7 and 3.7. However, 
there are various weight adjustment forms available.3 The benefits of using 
the advanced weight adjustment formulas include higher stability and faster 
speeds in the training process of the neural network. These characteristics are 
especially favorable for Deep Learning as it is hard to train. This section only 
covers the formulas that contain momentum, which have been used for a long 
time. If necessary, you may want to study this further with the link shown in the 
footnote.

The momentum, m, is a term that is added to the delta rule for adjusting 
the weight. The use of the momentum term drives the weight adjustment to a 
certain direction to some extent, rather than producing an immediate change. It 
acts similarly to physical momentum, which impedes the reaction of the body to 
the external forces.
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where m-  is the previous momentum and β is a positive constant that is less 
than 1. Let’s briefly see why we modify the weight adjustment formula in this 
manner. The following steps show how the momentum changes over time:
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It is noticeable from these steps that the previous weight update, i.e. ∆w(1), 
∆w(2), ∆w(3), etc., is added to each momentum over the process. Since β is less 
than 1, the older weight update exerts a lesser influence on the momentum. 
Although the influence diminishes over time, the old weight updates remain 

3sebastianruder.com/optimizing-gradient-descent
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in the momentum. Therefore, the weight is not solely affected by a particular 
weight update value. Therefore, the learning stability improves. In addition, 
the momentum grows more and more with weight updates. As a result, the 
weight update becomes greater and greater as well. Therefore, the learning rate 
increases.

The following listing shows the BackpropMmt.m file, which implements the 
back-propagation algorithm with the momentum. The BackpropMmt function 
operates in the same manner as that of the previous example; it takes the 
weights and training data and returns the adjusted weights. This listing employs 
the same variables as defined in the BackpropXOR function.

[W1 W2] = BackpropMmt(W1, W2, X, D)
function [W1, W2] = BackpropMmt(W1, W2, X, D)
  alpha = 0.9;
  beta  = 0.9;

  mmt1 = zeros(size(W1));
  mmt2 = zeros(size(W2));

  N = 4;  
  for k = 1:N
    x = X(k, :)';
    d = D(k);

    v1 = W1*x;
    y1 = Sigmoid(v1);    
    v  = W2*y1;
    y  = Sigmoid(v);

    e     = d - y;
    delta = y.*(1-y).*e;

    e1     = W2'*delta;
    delta1 = y1.*(1-y1).*e1;

    dW1  = alpha*delta1*x';
    mmt1 = dW1 + beta*mmt1;
    W1   = W1 + mmt1;

    dW2  = alpha*delta*y1';
    mmt2 = dW2 + beta*mmt2;    
    W2   = W2 + mmt2;
  end
end
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The code initializes the momentums, mmt1 and mmt2, as zeros when it starts 
the learning process. The weight adjustment formula is modified to reflect the 
momentum as:

dW1  = alpha*delta1*x';
mmt1 = dW1 + beta*mmt1;
W1   = W1 + mmt1;

The following program listing shows the TestBackpropMmt.m file, which 
tests the function BackpropMmt. This program calls the BackpropMmt function 
and trains the neural network 10,000 times. The training data is fed to the neural 
network and the output is shown on the screen. The performance of the training 
is verified by comparing the output to the correct output of the training data. As 
this code is almost identical to that of the previous example, further explanation 
is omitted.

clear all

X = [ 0 0 1;
      0 1 1;
      1 0 1;
      1 1 1;
    ];

D = [ 0
      1
      1
      0
    ];

W1 = 2*rand(4, 3) - 1;
W2 = 2*rand(1, 4) - 1;

for epoch = 1:10000           % train
  [W1 W2] = BackpropMmt(W1, W2, X, D);
end

N = 4;                        % inference
for k = 1:N
  x  = X(k, :)';
  v1 = W1*x;
  y1 = Sigmoid(v1);
  v  = W2*y1;
  y  = Sigmoid(v)
end
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Cost Function and Learning Rule
This section briefly explains what the cost function4 is and how it affects the 
learning rule of the neural network. The cost function is a rather mathematical 
concept that is associated with the optimization theory. You don’t have to know 
it. However, it is good to know if you want to better understand the learning rule 
of the neural network. It is not a difficult concept to follow.

The cost function is related to supervised learning of the neural network. 
Chapter 2 addressed that supervised learning of the neural network is a process 
of adjusting the weights to reduce the error of the training data. In this context, 
the measure of the neural network’s error is the cost function. The greater the 
error of the neural network, the higher the value of the cost function is. There are 
two primary types of cost functions for the neural network’s supervised learning.
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where y
i
 is the output from the output node, d

i
 is the correct output from the 

training data, and M is the number of output nodes.
First, consider the sum of squared error shown in Equation 3.9. This cost 

function is the square of the difference between the neural network’s output, y, 
and the correct output, d. If the output and correct output are the same, the error 
becomes zero. In contrast, a greater difference between the two values leads to a 
larger error. This is illustrated in Figure 3-9.

E

d – y

E = 1
2
_ (d – y )2

Figure 3-9.  The greater the difference between the output and the correct output, 
the larger the error

4It is also called the loss function and objective function.

http://dx.doi.org/10.1007/978-1-4842-2845-6_2
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It is clearly noticeable that the cost function value is proportional to the 
error. This relationship is so intuitive that no further explanation is necessary. 
Most early studies of the neural network employed this cost function to derive 
learning rules. Not only was the delta rule of the previous chapter derived 
from this function, but the back-propagation algorithm was as well. Regression 
problems still use this cost function.

Now, consider the cost function of Equation 3.10. The following formula, 
which is inside the curly braces, is called the cross entropy function.

E d y d y= - ( ) - -( ) -( )ln ln1 1

It may be difficult to intuitively capture the cross entropy function’s 
relationship to the error. This is because the equation is contracted for simpler 
expression. Equation 3.10 is the concatenation of the following two equations:
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Due to the definition of a logarithm, the output, y, should be within 0 and 1.  
Therefore, the cross entropy cost function often teams up with sigmoid and 
softmax activation functions in the neural network.5 Now we will see how this 
function is related to the error. Recall that cost functions should be proportional 
to the output error. What about this one?

Figure 3-10 shows the cross entropy function at d = 1 .

E

0 1
y

E = – ln(y),  d = 1

Figure 3-10.  The cross entropy function at d = 1

5If the other activation function is employed, the definition of the cross entropy function 
slightly changes as well.
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When the output y is 1, i.e., the error ( d y- ) is 0, the cost function value is 
0 as well. In contrast, when the output y approaches 0, i.e., the error grows, the 
cost function value soars. Therefore, this cost function is proportional to the 
error.

Figure 3-11 shows the cost function at d = 0. If the output y is 0, the error is 

0, the cost function yields 0. When the output approaches 1, i.e., the error grows, 
the function value soars. Therefore, this cost function in this case is proportional 
to the error as well. These cases confirm that the cost function of Equation 3.10 is 
proportional to the output error of the neural network.

The primary difference of the cross entropy function from the quadratic 
function of Equation 3.9 is its geometric increase. In other words, the cross 
entropy function is much more sensitive to the error. For this reason, the 
learning rules derived from the cross entropy function are generally known to 
yield better performance. It is recommended that you use the cross entropy-
driven learning rules except for inevitable cases such as the regression.

We had a long introduction to the cost function because the selection of the 
cost function affects the learning rule, i.e., the formula of the back-propagation 
algorithm. Specifically, the calculation of the delta at the output node changes 
slightly. The following steps detail the procedure in training the neural network 
with the sigmoid activation function at the output node using the cross entropy-
driven back-propagation algorithm.

E

0 1
y

E = – ln(1 – y ) , d = 0

Figure 3-11.  The cross entropy function at d = 0
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	 1.	 Initialize the neural network’s weights with adequate 
values.

	 2.	 Enter the input of the training data { input, correct 
output } to the neural network and obtain the output. 
Compare this output to the correct output, calculate the 
error, and calculate the delta, δ, of the output nodes.

e d y

e

= -
=d

	 3.	 Propagate the delta of the output node backward and 
calculate the delta of the subsequent hidden nodes.
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	 4.	 Repeat Step 3 until it reaches the hidden layer that is 
next to the input layer.

	 5.	 Adjust the neural network’s weights using the following 
learning rule:

D =
¬ + D
w x

w w w
ij i j

ij ij ij

ad

	 6.	 Repeat Steps 2-5 for every training data point.

	 7.	 Repeat Steps 2-6 until the network has been adequately 
trained.

Did you notice the difference between this process and that of the “Back-
Propagation Algorithm” section? It is the delta, δ, in Step 2. It has been changed 
as follows:

d j d= ( ) ® =¢ v e e

Everything else remains the same. On the outside, the difference seems 
insignificant. However, it contains the huge topic of the cost function based 
on the optimization theory. Most of the neural network training approaches of 
Deep Learning employ the cross entropy-driven learning rules. This is due to 
their superior learning rate and performance.

Figure 3-12 depicts what this section has explained so far. The key is the fact that 
the output and hidden layers employ the different formulas of the delta calculation 
when the learning rule is based on the cross entropy and the sigmoid function.
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While we are at it, we will address just one more thing about the cost function. 
You saw in Chapter 1 that overfitting is a challenging problem that every technique 
of Machine Learning faces. You also saw that one of the primary approaches 
used to overcome overfitting is making the model as simple as possible using 
regularization. In a mathematical sense, the essence of regularization is adding 
the sum of the weights to the cost function, as shown here. Of course, applying the 
following new cost function leads to a different learning rule formula.
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where λ is the coefficient that determines how much of the connection 
weight is reflected on the cost function.

This cost function maintains a large value when one of the output errors and 
the weight remain large. Therefore, solely making the output error zero will not 
suffice in reducing the cost function. In order to drop the value of the cost function, 
both the error and weight should be controlled to be as small as possible. However, 
if a weight becomes small enough, the associated nodes will be practically 
disconnected. As a result, unnecessary connections are eliminated, and the neural 
network becomes simpler. For this reason, overfitting of the neural network can be 
improved by adding the sum of weights to the cost function, thereby reducing it.

Figure 3-12.  the output and hidden layers employ the different formulas of the 
delta calculation

http://dx.doi.org/10.1007/978-1-4842-2845-6_1
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In summary, the learning rule of the neural network’s supervised learning 
is derived from the cost function. The performance of the learning rule and the 
neural network varies depending on the selection of the cost function. The cross 
entropy function has been attracting recent attention for the cost function. The 
regularization process that is used to deal with overfitting is implemented as a 
variation of the cost function.

Example: Cross Entropy Function
This section revisits the back-propagation example. But this time, the learning 
rule derived from the cross entropy function is used. Consider the training of 
the neural network that consists of a hidden layer with four nodes, three input 
nodes, and a single output node. The sigmoid function is employed for the 
activation function of the hidden nodes and output node.

Figure 3-13.  Neural network with a hidden layer with four nodes, three input 
nodes, and a single output node

The training data contains the same four elements as shown in the following 
table. When we ignore the third numbers of the input data, this training dataset 
presents a XOR logic operation. The bolded rightmost number of each element 
is the correct output.
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Cross Entropy Function
The BackpropCE function trains the XOR data using the cross entropy function. 
It takes the neural network’s weights and training data and returns the adjusted 
weights.

[W1 W2] = BackpropCE(W1, W2, X, D)

where W1 and W2 are the weight matrices for the input-hidden layers and 
hidden-output layers, respectively. In addition, X and D are the input and 
correct output matrices of the data, respectively. The following listing shows the 
BackpropCE.m file, which implements the BackpropCE function.

function [W1, W2] = BackpropCE(W1, W2, X, D)
  alpha = 0.9;

  N = 4;  
  for k = 1:N
    x = X(k, :)';        % x = a column vector
    d = D(k);

    v1 = W1*x;
    y1 = Sigmoid(v1);    
    v  = W2*y1;
    y  = Sigmoid(v);

    e     = d - y;
    delta = e;
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    e1     = W2'*delta;
    delta1 = y1.*(1-y1).*e1;

    dW1 = alpha*delta1*x';
    W1 = W1 + dW1;

    dW2 = alpha*delta*y1';    
    W2 = W2 + dW2;
  end
end

This code pulls out the training data, calculates the weight updates (dW1 and 
dW2) using the delta rule, and adjusts the neural network’s weights using these 
values. So far, the process is almost identical to that of the previous example. The 
difference arises when we calculate the delta of the output node as:

e     = d - y;
delta = e;

Unlike the previous example code, the derivative of the sigmoid function no 
longer exists. This is because, for the learning rule of the cross entropy function, 
if the activation function of the output node is the sigmoid, the delta equals the 
output error. Of course, the hidden nodes follow the same process that is used by 
the previous back-propagation algorithm.

e1     = W2'*delta;
delta1 = y1.*(1-y1).*e1;

The following program listing shows the TestBackpropCE.m file, which tests 
the BackpropCE function. This program calls the BackpropCE function and trains 
the neural network 10,000 times. The trained neural network yields the output 
for the training data input, and the result is displayed on the screen. We verify 
the proper training of the neural network by comparing the output to the correct 
output. Further explanation is omitted, as the code is almost identical to that 
from before.

clear all

X = [ 0 0 1;
      0 1 1;
      1 0 1;
      1 1 1;
    ];
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D = [ 0
      1
      1
      0
    ];

W1 = 2*rand(4, 3) - 1;
W2 = 2*rand(1, 4) - 1;

for epoch = 1:10000                    % train
  [W1 W2] = BackpropCE(W1, W2, X, D);
end

N = 4;                                 % inference
for k = 1:N
  x  = X(k, :)';
  v1 = W1*x;
  y1 = Sigmoid(v1);
  v  = W2*y1;
  y  = Sigmoid(v)
end

Executing this code produces the values shown here. The output is very 
close to the correct output, D. This proves that the neural network has been 
trained successfully.
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Comparison of Cost Functions
The only difference between the BackpropCE function from the previous section 
and the BackpropXOR function from the “XOR Problem” section is the calculation 
of the output node delta. We will examine how this insignificant difference 
affects the learning performance. The following listing shows the CEvsSSE.m file 
that compares the mean errors of the two functions. The architecture of this file 
is almost identical to that of the SGDvsBatch.m file in the “Comparison of the 
SGD and the Batch” section in Chapter 2.

http://dx.doi.org/10.1007/978-1-4842-2845-6_2


Chapter 3 ■ Training of Multi-Layer Neural Network

77

clear all

X = [ 0 0 1;
      0 1 1;
      1 0 1;
      1 1 1;
    ];

D = [ 0
      0
      1
      1
    ];

E1 = zeros(1000, 1);
E2 = zeros(1000, 1);

W11 = 2*rand(4, 3) - 1;      % Cross entropy      
W12 = 2*rand(1, 4) - 1;      %
W21 = W11;                   % Sum of squared error
W22 = W12;                   %

for epoch = 1:1000
  [W11 W12] = BackpropCE(W11, W12, X, D);
  [W21 W22] = BackpropXOR(W21, W22, X, D);

  es1 = 0;
  es2 = 0;
  N   = 4;
  for k = 1:N
    x = X(k, :)';
    d = D(k);

    v1  = W11*x;
    y1  = Sigmoid(v1);
    v   = W12*y1;
    y   = Sigmoid(v);
    es1 = es1 + (d - y)^2;

    v1  = W21*x;
    y1  = Sigmoid(v1);
    v   = W22*y1;
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    y   = Sigmoid(v);
    es2 = es2 + (d - y)^2;
  end
  E1(epoch) = es1 / N;
  E2(epoch) = es2 / N;
end

plot(E1, 'r')
hold on
plot(E2, 'b:')
xlabel('Epoch')
ylabel('Average of Training error')
legend('Cross Entropy', 'Sum of Squared Error')

This program calls the BackpropCE and the BackpropXOR functions and 
trains the neural networks 1,000 times each. The squared sum of the output error 
(es1 and es2) is calculated at every epoch for each neural network, and their 
average (E1 and E2) is calculated. W11, W12, W21, and W22 are the weight matrices 
of respective neural networks. Once the 1,000 trainings have been completed, 
the mean errors are compared over the epoch on the graph. As Figure 3-14 
shows, the cross entropy-driven training reduces the training error at a much 
faster rate. In other words, the cross entropy-driven learning rule yields a faster 
learning process. This is the reason that most cost functions for Deep Learning 
employ the cross entropy function.
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Figure 3-14.  Cross entropy-driven training reduces training error at a much 
faster rate

This completes the contents for the back-propagation algorithm. If you had 
a hard time catching on, don’t be discouraged. Actually, understanding the back-
propagation algorithms is not a vital factor when studying and developing Deep 
Learning. As most of the Deep Learning libraries already include the algorithms; 
we can just use them. Cheer up! Deep Learning is just one chapter away.

Summary
This chapter covered the following concepts:

•	 The multi-layer neural network cannot be trained using the delta 
rule; it should be trained using the back-propagation algorithm, 
which is also employed as the learning rule of Deep Learning.

•	 The back-propagation algorithm defines the hidden layer error 
as it propagates the output error backward from the output layer. 
Once the hidden layer error is obtained, the weights of every layer 
are adjusted using the delta rule. The importance of the back-
propagation algorithm is that it provides a systematic method to 
define the error of the hidden node.
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•	 The single-layer neural network is applicable only to linearly 
separable problems, and most practical problems are linearly 
inseparable.

•	 The multi-layer neural network is capable of modeling the 
linearly inseparable problems.

•	 Many types of weight adjustments are available in the back-
propagation algorithm. The development of various weight 
adjustment approaches is due to the pursuit of a more stable 
and faster learning of the network. These characteristics are 
particularly beneficial for hard-to-learn Deep Learning.

•	 The cost function addresses the output error of the neural 
network and is proportional to the error. Cross entropy has 
been widely used in recent applications. In most cases, the 
cross entropy-driven learning rules are known to yield better 
performance.

•	 The learning rule of the neural network varies depending on 
the cost function and activation function. Specifically, the delta 
calculation of the output node is changed.

•	 The regularization, which is one of the approaches used to 
overcome overfitting, is also implemented as an addition of the 
weight term to the cost function.



81© Phil Kim 2017 
P. Kim, MATLAB Deep Learning, DOI 10.1007/978-1-4842-2845-6_4

CHAPTER 4

Neural Network and 
Classification

As addressed in Chapter 1, the primary Machine Learning applications that 
require supervised learning are classification and regression. Classification is 
used to determine the group the data belongs. Some typical applications of 
classification are spam mail filtering and character recognition. In contrast, 
regression infers values from the data. It can be exemplified with the prediction 
of income for a given age and education level.

Although the neural network is applicable to both classification and 
regression, it is seldom used for regression. This is not because it yields poor 
performance, but because most of regression problems can be solved using 
simpler models. Therefore, we will stick to classification throughout this book.

In the application of the neural network to classification, the output layer is 
usually formulated differently depending on how many groups the data should 
be divided into. The selection of the number of nodes and suitable activation 
functions for the classification of two groups is different when using more 
groups. Keep in mind that it affects only the output nodes, while the hidden 
nodes remain intact. Of course, the approaches of this chapter are not only 
ones available. However, these may be the best to start with, as they have been 
validated through many studies and cases.

Binary Classification
We will start with the binary classification neural network, which classifies the 
input data into one of the two groups. This kind of classifier is actually useful 
for more applications than you may expect. Some typical applications include 
spam mail filtering (a spam mail or a normal mail) and loan approvals (approve 
or deny).

http://dx.doi.org/10.1007/978-1-4842-2845-6_1
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For binary classification, a single output node is sufficient for the neural 
network. This is because the input data can be classified by the output value, 
which is either greater than or less than the threshold. For example, if the 
sigmoid function is employed as the activation function of the output node, the 
data can be classified by whether the output is greater than 0.5 or not. As the 
sigmoid function ranges from 0-1, we can divide groups in the middle, as shown 
in Figure 4-1.

Consider the binary classification problem shown in Figure 4-1. For the 
given coordinates (x, y), the model is to determine which group the data belongs. 
In this case, the training data is given in the format shown in Figure 4-2. The 
first two numbers indicate the x and y coordinates respectively, and the symbol 
represents the group in which the data belongs. The data consists of the input 
and correct output as it is used for supervised learning.

Figure 4-1.  Binary classification problem
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Figure 4-2.  Training data binary classification

1The hidden layer is not our concern. The layer that varies depending on the number of classes is the 
output layer, not the hidden layer. There is no standard rule for the composition of the hidden layer.

Now, let’s construct the neural network. The number of input nodes 
equals the number of input parameters. As the input of this example consists 
of two parameters, the network employs two input nodes. We need one output 
node because this implements the classification of two groups as previously 
addressed. The sigmoid function is used as the activation function, and the 
hidden layer has four nodes.1 Figure 4-3 shows the described neural network.
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When we train this network with the given training data, we can get the 
binary classification that we want. However, there is a problem. The neural 
network produces numerical outputs that range from 0-1, while we have the 
symbolic correct outputs given as △ and ●. We cannot calculate the error in 
this way; we need to switch the symbols to numerical codes. We can assign the 
maximum and minimum values of the sigmoid function to the two classes as 
follows:

Class △      1

Class ●      0

The change of the class symbols yields the training data shown in Figure 4-4.

Figure 4-3.  Neural network for the training data
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The training data shown in Figure 4-4 is what we use to train the neural 
network. The binary classification neural network usually adopts the cross 
entropy function of the previous equation for training. You don’t have to do so 
all the time, but it is beneficial for the performance and implementation process. 
The learning process of the binary classification neural network is summarized 
in the following steps. Of course, we use the cross entropy function as the cost 
function and the sigmoid function as the activation function of the hidden and 
output nodes.

	 1.	 The binary classification neural network has one node 
for the output layer. The sigmoid function is used for the 
activation function.

	 2.	 Switch the class titles of the training data into numbers 
using the maximum and minimum values of the 
sigmoid function.

Class △    1

Class ●    0

	 3.	 Initialize the weights of the neural network with 
adequate values.

Figure 4-4.  Change the class symbols and the data is classified differently
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	 4.	 Enter the input from the training data { input, correct 
output } into the neural network and obtain the output. 
Calculate the error between the output and correct 
output, and determine the delta, δ, of the output nodes.
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	 5.	 Propagate the output delta backwards and calculate the 
delta of the subsequent hidden nodes.
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	 6.	 Repeat Step 5 until it reaches the hidden layer on the 
immediate right of the input layer.

	 7.	 Adjust the weights of the neural network using this 
learning rule:

D =
¬ + D
w x

w w w
ij i j

ij ij ij

ad

	 8.	 Repeat Steps 4-7 for all training data points.

	 9.	 Repeat Steps 4-8 until the neural network has been 
trained properly.

Although it appears complicated because of its many steps, this process is 
basically the same as that of the back-propagation of Chapter 3. The detailed 
explanations are omitted.

Multiclass Classification
This section introduces how to utilize the neural network to deal with the 
classification of three or more classes. Consider a classification of the given 
inputs of coordinates (x, y) into one of three classes (see Figure 4-5).

http://dx.doi.org/10.1007/978-1-4842-2845-6_3
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We need to construct the neural network first. We will use two nodes for the 
input layer as the input consists of two parameters. For simplicity, the hidden 
layers are not considered at this time. We need to determine the number of the 
output nodes as well. It is widely known that matching the number of output 
nodes to the number of classes is the most promising method. In this example, 
we use three output nodes, as the problem requires three classes. Figure 4-6 
illustrates the configured neural network.

Once the neural network has been trained with the given data, we obtain 
the multiclass classifier that we want. The training data is given in Figure 4-7. For 
each data point, the first two numbers are the x and y coordinates respectively, 

Figure 4-6.  Configured neural network for the three classes

Figure 4-5.  Data with three classes
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and the third value is the corresponding class. The data includes the input and 
correct output as it is used for supervised learning.

In order to calculate the error, we switch the class names into numeric 
codes, as we did in the previous section. Considering that we have three output 
nodes from the neural network, we create the classes as the following vectors:

Class 1    [ 1 0 0 ]

Class 2    [ 0 1 0 ]

Class 3    [ 0 0 1 ]

This transformation implies that each output node is mapped to an element 
of the class vector, which only yields 1 for the corresponding node. For example, 
if the data belongs to Class 2, the output only yields 1 for the second node and 0 
for the others (see Figure 4-8).

Figure 4-7.  Training data with multiclass classifier
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This expression technique is called one-hot encoding or 1-of-N encoding. 
The reason that we match the number of output nodes to the number of classes 
is to apply this encoding technique. Now, the training data is displayed in the 
format shown in Figure 4-9.

Figure 4-8.  Each output node is now mapped to an element of the class vector

Figure 4-9.  Training data is displayed in a new format
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Next, the activation function of the output node should be defined. Since the 
correct outputs of the transformed training data range from zero to one, can we 
just use the sigmoid function as we did for the binary classification? In general, 
multiclass classifiers employ the softmax function as the activation function of 
the output node.

The activation functions that we have discussed so far, including the sigmoid 
function, account only for the weighted sum of inputs. They do not consider the 
output from the other output nodes. However, the softmax function accounts not 
only for the weighted sum of the inputs, but also for the inputs to the other output 
nodes. For example, when the weighted sum of the inputs for the three output nodes 
are 2, 1, and 0.1, respectively, the softmax function calculates the outputs shown in 
Figure 4-10. All of the weighted sums of the inputs are required in the denominator.

Figure 4-10.  Softmax function calculations

Why do we insist on using the softmax function? Consider the sigmoid 
function in place of the softmax function. Assume that the neural network 
produced the output shown in Figure 4-11 when given the input data. As the 
sigmoid function concerns only its own output, the output here will be generated.

Figure 4-11.  Output when using a sigmoid function
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The first output node appears to be in Class 1 by 100 percent probability. 
Does the data belong to Class 1, then? Not so fast. The other output nodes also 
indicate 100 percent probability of being in Class 2 and Class 3. Therefore, 
adequate interpretation of the output from the multiclass classification neural 
network requires consideration of the relative magnitudes of all node outputs.  
In this example, the actual probability of being each class is 1

3
. The softmax 

function provides the correct values.
The softmax function maintains the sum of the output values to be one and 

also limits the individual outputs to be within the values of 0-1. As it accounts 
for the relative magnitudes of all the outputs, the softmax function is a suitable 
choice for the multiclass classification neural networks. The output from the i-th 
output node of the softmax function is calculated as follows:
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where, v
i
 is the weighted sum of the i-th output node, and M is the number 

of output nodes. Following this definition, the softmax function satisfies the 
following condition:

j j j jv v v vM1 2 3 1( ) + ( ) + ( ) + + ( ) =

Finally, the learning rule should be determined. The multiclass classification 
neural network usually employs the cross entropy-driven learning rules just 
like the binary classification network does. This is due to the high learning 
performance and simplicity that the cross entropy function provides.

Long story short, the learning rule of the multiclass classification neural 
network is identical to that of the binary classification neural network of 
the previous section. Although these two neural networks employ different 
activation functions—the sigmoid for the binary and the softmax for the 
multiclass—the derivation of the learning rule leads to the same result. Well, it is 
better for us to have less to remember.

The training process of the multiclass classification neural network is 
summarized in these steps.

	 1.	 Construct the output nodes to have the same value as 
the number of classes. The softmax function is used as 
the activation function.
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	 2.	 Switch the names of the classes into numeric vectors via 
the one-hot encoding method.

Class 1    [ 1 0 0 ]

Class 2    [ 0 1 0 ]

Class 3    [ 0 0 1 ]

	 3.	 Initialize the weights of the neural network with 
adequate values.

	 4.	 Enter the input from the training data { input, correct 
output } into the neural network and obtain the output. 
Calculate the error between the output and correct 
output and determine the delta, δ, of the output nodes.

e d y

e

= -
=d

	 5.	 Propagate the output delta backwards and calculate the 
delta of the subsequent hidden nodes.
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	 6.	 Repeat Step 5 until it reaches the hidden layer on the 
immediate right of the input layer.

	 7.	 Adjust the weights of the neural network using this 
learning rule:

D =
¬ + D
w x

w w w
ij i j

ij ij ij

ad

	 8.	 Repeat Steps 4-7 for all the training data points.

	 9.	 Repeat Steps 4-8 until the neural network has been 
trained properly.

Of course, the multiclass classification neural network is applicable for 
binary classification. All we have to do is construct a neural network with two 
output nodes and use the softmax function as the activation function.
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Example: Multiclass Classification
In this section, we implement a multiclass classifier network that recognizes 
digits from the input images. The binary classification has been implemented 
in Chapter 3, where the input coordinates were divided into two groups. As it 
classified the data into either 0 or 1, it was binary classification.

Consider an image recognition of digits. This is a multiclass classification, as 
it classifies the image into specified digits. The input images are five-by-five pixel 
squares, which display five numbers from 1 to 5, as shown in Figure 4-12.

The neural network model contains a single hidden layer, as shown in 
Figure 4-13. As each image is set on a matrix, we set 25 input nodes. In addition, 
as we have five digits to classify, the network contains five output nodes. The 
softmax function is used as the activation function of the output node. The 
hidden layer has 50 nodes and the sigmoid function is used as the activation 
function.

Figure 4-12.  Five-by-five pixel squares that display five numbers from 1 to 5

Figure 4-13.  The neural network model for this new dataset

http://dx.doi.org/10.1007/978-1-4842-2845-6_3
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The function MultiClass implements the learning rule of multiclass 
classification using the SGD method. It takes the input arguments of the weights 
and training data and returns the trained weights.

[W1, W2] = MultiClass(W1, W2, X, D)

where W1 and W2 are the weight matrices of the input-hidden and hidden-output 
layers, respectively. X and D are the input and correct output of the training 
data, respectively. The following listing shows the MultiClass.m file, which 
implements the function MultiClass.

function [W1, W2] = MultiClass(W1, W2, X, D)
  alpha = 0.9;

  N = 5;
  for k = 1:N
    x = reshape(X(:, :, k), 25, 1);
    d = D(k, :)';

    v1 = W1*x;
    y1 = Sigmoid(v1);
    v  = W2*y1;
    y  = Softmax(v);

    e     = d - y;
    delta = e;

    e1     = W2'*delta;
    delta1 = y1.*(1-y1).*e1;

    dW1 = alpha*delta1*x';
    W1 = W1 + dW1;

    dW2 = alpha*delta*y1';
    W2 = W2 + dW2;
  end
end

This code follows the same procedure as that of the example code in the 
“Cross Entropy Function” section in Chapter 3, which applies the delta rule to 
the training data, calculates the weight updates, dW1 and dW2, and adjusts the 
neural network’s weights. However, this code slightly differs in that it uses the 

http://dx.doi.org/10.1007/978-1-4842-2845-6_3
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function softmax for the calculation of the output and calls the function reshape 
to import the inputs from the training data.

x = reshape(X(:, :, k), 25, 1);

The input argument X contains the stacked two-dimensional image data. 
This means that X is a 5 5 5´ ´  three-dimensional matrix. Therefore, the first 
argument of the function reshape, X(:, :, k) indicates the 5 5´  matrix that 
contains the k-th image data. As this neural network is compatible with only the 
vector format inputs, the two-dimensional matrix should be transformed into a 
25 1´  vector. The function reshape performs this transformation.

Using the cross entropy-driven learning rule, the delta of the output node is 
calculated as follows:

e     = d - y;
delta = e;

Similar to the example from Chapter 3, no other calculation is required. 
This is because, in the cross entropy-driven learning rule that uses the softmax 
activation function, the delta and error are identical. Of course, the previous 
back-propagation algorithm applies to the hidden layer.

e1     = W2'*delta;
delta1 = y1.*(1-y1).*e1;

The function Softmax, which the function MultiClass calls in, is 
implemented in the Softmax.m file shown in the following listing. This file 
implements the definition of the softmax function literally. It is simple enough 
and therefore further explanations have been omitted.

function y = Softmax(x)
  ex = exp(x);
  y  = ex / sum(ex);
end

The following listing shows the TestMultiClass.m file, which tests the 
function MultiClass. This program calls MultiClass and trains the neural 
network 10,000 times. Once the training process has been finished, the program 
enters the training data into the neural network and displays the output. We 
can verify the training results via the comparison of the output with the correct 
output.

http://dx.doi.org/10.1007/978-1-4842-2845-6_3
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clear all

rng(3);

X  = zeros(5, 5, 5);

X(:, :, 1) = [ 0 1 1 0 0;
               0 0 1 0 0;
               0 0 1 0 0;
               0 0 1 0 0;
               0 1 1 1 0
             ];

X(:, :, 2) = [ 1 1 1 1 0;
               0 0 0 0 1;
               0 1 1 1 0;
               1 0 0 0 0;
               1 1 1 1 1
             ];

X(:, :, 3) = [ 1 1 1 1 0;
               0 0 0 0 1;
               0 1 1 1 0;
               0 0 0 0 1;
               1 1 1 1 0
             ];

X(:, :, 4) = [ 0 0 0 1 0;
               0 0 1 1 0;
               0 1 0 1 0;
               1 1 1 1 1;
               0 0 0 1 0
             ];

X(:, :, 5) = [ 1 1 1 1 1;
               1 0 0 0 0;
               1 1 1 1 0;
               0 0 0 0 1;
               1 1 1 1 0
             ];
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D = [ 1 0 0 0 0;
      0 1 0 0 0;
      0 0 1 0 0;
      0 0 0 1 0;
      0 0 0 0 1
    ];

W1 = 2*rand(50, 25) - 1;
W2 = 2*rand( 5, 50) - 1;

for epoch = 1:10000           % train
  [W1 W2] = MultiClass(W1, W2, X, D);
end

N = 5;                        % inference
for k = 1:N
  x  = reshape(X(:, :, k), 25, 1);
  v1 = W1*x;
  y1 = Sigmoid(v1);
  v  = W2*y1;
  y  = Softmax(v)
end

The input data X of the code is a two-dimensional matrix, which encodes the 
white pixel into a zero and the black pixel into a unity. For example, the image of 
the number 1 is encoded in the matrix shown in Figure 4-14.

In contrast, the variable D contains the correct output. For example, the 
correct output to the first input data, i.e. the image of 1, is located on the first row 
of the variable D, which is constructed using the one-hot encoding method for 
each of the five output nodes. Execute the TestMultiClass.m file, and you will 
see that the neural network has been properly trained in terms of the difference 
between the output and D.

Figure 4-14.  The image of the number 1 is encoded in the matrix
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So far, we have verified the neural network for only the training data. 
However, the practical data does not necessarily reflect the training data. 
This fact, as we previously discussed, is the fundamental problem of Machine 
Learning and needs to solve. Let’s check our neural network with a simple 
experiment. Consider the slightly contaminated images shown in Figure 4-15 
and watch how the neural network responds to them.

The following listing shows the RealMultiClass.m file, which classifies 
the images shown in Figure 4-15. This program starts with the execution of the 
TestMultiClass command and trains the neural network. This process yields 
the weight matrices W1 and W2.

clear all

TestMultiClass;                 % W1, W2

X  = zeros(5, 5, 5);

X(:, :, 1) = [ 0 0 1 1 0;
               0 0 1 1 0;
               0 1 0 1 0;
               0 0 0 1 0;
               0 1 1 1 0
             ];

X(:, :, 2) = [ 1 1 1 1 0;
               0 0 0 0 1;
               0 1 1 1 0;
               1 0 0 0 1;
               1 1 1 1 1
             ];

Figure 4-15.  Let’s see how the neural network responds to these contaminated 
images
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X(:, :, 3) = [ 1 1 1 1 0;
               0 0 0 0 1;
               0 1 1 1 0;
               1 0 0 0 1;
               1 1 1 1 0
             ];

X(:, :, 4) = [ 0 1 1 1 0;
               0 1 0 0 0;
               0 1 1 1 0;
               0 0 0 1 0;
               0 1 1 1 0
             ];

X(:, :, 5) = [ 0 1 1 1 1;
               0 1 0 0 0;
               0 1 1 1 0;
               0 0 0 1 0;
               1 1 1 1 0
             ];

N = 5;                        % inference
for k = 1:N
  x  = reshape(X(:, :, k), 25, 1);
  v1 = W1*x;
  y1 = Sigmoid(v1);
  v  = W2*y1;
  y  = Softmax(v)
end

This code is identical to that of the TestMultiClass.m file, except that it has 
a different input X and does not include the training process. Execution of this 
program produces the output of the five contaminated images. Let’s take a look 
one by one.

For the first image, the neural network decided it was a 4 by 96.66% 
probability. Compare the left and right images in Figure 4-16, which are the 
input and the digit that the neural network selected, respectively. The input 
image indeed contains important features of the number 4. Although it appears 
to be a 1 as well, it is closer to a 4. The classification seems reasonable.
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Next, the second image is classified as a 2 by 99.36% probability. This 
appears to be reasonable when we compare the input image and the training 
data 2. They only have a one-pixel difference. See Figure 4-17.

The third image is classified as a 3 by 97.62% probability. This also seems 
reasonable when we compare the images. See Figure 4-18.

Figure 4-16.  Left and right images are the input and digit that the neural 
network selected, respectively

Figure 4-17.  The second image is classified as a 2

Figure 4-18.  The third image is classified as a 3
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However, when we compare the second and third input images, the 
difference is only one pixel. This tiny difference results in two totally different 
classifications. You may not have paid attention, but the training data of these 
two images has only a two-pixel difference. Isn’t it amazing that the neural 
network catches this small difference and applies it to actual practice?

Let’s look at the fourth image. It is classified as a 5 by 47.12% probability. 
At the same time, it could be a 3 by a pretty high probability of 32.08%. Let’s see 
what happened. The input image appears to be a squeezed 5. Furthermore, 
the neural network finds some horizontal lines that resemble features of a 3, 
therefore giving that a high probability. In this case, the neural network should 
be trained to have more variety in the training data in order to improve its 
performance.

Finally, the fifth image is classified as a 5 by 98.18% probability. It is no 
wonder when we see the input image. However, this image is almost identical to 
the fourth image. It merely has two additional pixels on the top and bottom of 
the image. Just extending the horizontal lines results in a dramatic increase in 
the probability of being a 5. The horizontal feature of a 5 is not as significant in 
the fourth image. By enforcing this feature, the fifth image is correctly classified 
as a 5, as shown in Figure 4-20.

Figure 4-19.  The neural network may have to be trained to have more variety in 
the training data in order to improve its performance
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Summary
This chapter covered the following concepts:

•	 For the neural network classifier, the selection of the number of 
output nodes and activation function usually depends on whether 
it is for a binary classification (two classes) or for a multiclass 
classification (three or more classes).

•	 For binary classification, the neural network is constructed with a 
single output node and sigmoid activation function. The correct 
output of the training data is converted to the maximum and 
minimum values of the activation function. The cost function of 
the learning rule employs the cross entropy function.

•	 For a multiclass classification, the neural network includes 
as many output nodes as the number of classes. The softmax 
function is employed for the activation function of the output 
node. The correct output of the training data is converted into a 
vector using the one-hot encoding method. The cost function of 
the learning rule employs the cross entropy function.

Figure 4-20.  The fifth image is correctly classified as a 5
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CHAPTER 5

Deep Learning

It’s time for Deep Learning. You don’t need to be nervous though. As Deep 
Learning is still an extension of the neural network, most of what you previously 
read is applicable. Therefore, you don’t have many additional concepts to learn.

Briefly, Deep Learning is a Machine Learning technique that employs the 
deep neural network. As you know, the deep neural network is the multi-layer 
neural network that contains two or more hidden layers. Although this may be 
disappointingly simple, this is the true essence of Deep Learning. Figure 5-1 
illustrates the concept of Deep Learning and its relationship to Machine Learning.

The deep neural network lies in the place of the final product of Machine 
Learning, and the learning rule becomes the algorithm that generates the model 
(the deep neural network) from the training data.

Training Data

Learning Rule

Input Data OutputDeep Neural Network

Figure 5-1.  The concept of Deep Learning and its relationship to Machine 
Learning
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Now, knowing that Deep Learning is just the use of a deeper (more hidden 
layers) neural network, you may ask, “What makes Deep Learning so attractive? 
Has anyone ever thought of making the neural network’s layers even deeper?” 
In order to answer these questions, we need to look into the history of the neural 
network.

It did not take very long for the single-layer neural network, the first 
generation of the neural network, to reveal its fundamental limitations 
when solving the practical problems that Machine Learning faced.1 The 
researchers already knew that the multi-layer neural network would be the next 
breakthrough. However, it took approximately 30 years until another layer was 
added to the single-layer neural network. It may not be easy to understand why 
it took so long for just one additional layer. It was because the proper learning 
rule for the multi-layer neural network was not found. Since the training is the 
only way for the neural network to store the information, the untrainable neural 
network is useless.

The problem of training of the multi-layer neural network was finally solved 
in 1986 when the back-propagation algorithm was introduced. The neural 
network was on stage again. However, it was soon met with another problem. 
Its performance on practical problems did not meet expectations. Of course, 
there were various attempts to overcome the limitations, including the addition 
of hidden layers and addition of nodes in the hidden layer. However, none of 
them worked. Many of them yielded even poorer performances. As the neural 
network has a very simple architecture and concept, there was nothing much to 
do that could improve it. Finally, the neural network was sentenced to having no 
possibility of improvement and it was forgotten.

It remained forgotten for about 20 years until the mid-2000s when Deep 
Learning was introduced, opening a new door. It took a while for the deep 
hidden layer to yield sufficient performance because of the difficulties in training 
the deep neural network. Anyway, the current technologies in Deep Learning 
yield dazzling levels of performance, which outsmarts the other Machine 
Learning techniques as well as other neural networks, and prevail in the studies 
of Artificial Intelligence.

In summary, the reason the multi-layer neural network took 30 years 
to solve the problems of the single-layer neural network was the lack of the 
learning rule, which was eventually solved by the back-propagation algorithm. 
In contrast, the reason another 20 years passed until the introduction of deep 
neural network-based Deep Learning was the poor performance. The back-
propagation training with the additional hidden layers often resulted in poorer 
performance. Deep Learning provided a solution to this problem.

1As addressed in Chapter 2, the single-layer neural network can solve only linearly 
separable problems.

http://dx.doi.org/10.1007/978-1-4842-2845-6_2
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Improvement of the Deep Neural Network
Despite its outstanding achievements, Deep Learning actually does not have 
any critical technologies to present. The innovation of Deep Learning is a result 
of many small technical improvements. This section briefly introduces why 
the deep neural network yielded poor performance and how Deep Learning 
overcame this problem.

The reason that the neural network with deeper layers yielded poorer 
performance was that the network was not properly trained. The back-
propagation algorithm experiences the following three primary difficulties in the 
training process of the deep neural network:

•	 Vanishing gradient

•	 Overfitting

•	 Computational load

Vanishing Gradient
The gradient in this context can be thought as a similar concept to the delta of 
the back-propagation algorithm. The vanishing gradient in the training process 
with the back-propagation algorithm occurs when the output error is more likely 
to fail to reach the farther nodes. The back-propagation algorithm trains the 
neural network as it propagates the output error backward to the hidden layers. 
However, as the error hardly reaches the first hidden layer, the weight cannot 
be adjusted. Therefore, the hidden layers that are close to the input layer are 
not properly trained. There is no point of adding hidden layers if they cannot be 
trained (see Figure 5-2).
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The representative solution to the vanishing gradient is the use of the 
Rectified Linear Unit (ReLU) function as the activation function. It is known to 
better transmit the error than the sigmoid function. The ReLU function is defined 
as follows:
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Figure 5-3 depicts the ReLU function. It produces zero for negative inputs 
and conveys the input for positive inputs.2 Its implementation is extremely easy 
as well.

2It earned its name as its behavior is similar to that of the rectifier, an electrical element 
that converts the alternating current into direct current as it cuts out negative voltage.

Figure 5-2.  The vanishing gradient
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The sigmoid function limits the node’s outputs to the unity regardless of the 
input’s magnitude. In contrast, the ReLU function does not exert such limits. Isn’t 
it interesting that such a simple change resulted in a drastic improvement of the 
learning performance of the deep neural network?

Another element that we need for the back-propagation algorithm is 
the derivative of the ReLU function. By the definition of the ReLU function, its 
derivative is given as:
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In addition, the cross entropy-driven learning rules may improve the 
performance, as addressed in Chapter 3. Furthermore, the advanced gradient 
descent3, which is a numerical method that better achieves the optimum value, 
is also beneficial for the training of the deep neural network.

Overfitting
The reason that the deep neural network is especially vulnerable to overfitting 
is that the model becomes more complicated as it includes more hidden layers, 
and hence more weight. As addressed in Chapter 1, a complicated model is 
more vulnerable to overfitting. Here is the dilemma—deepening the layers for 

Figure 5-3.  The ReLU function

3sebastianruder.com/optimizing-gradient-descent/

http://dx.doi.org/10.1007/978-1-4842-2845-6_3
http://dx.doi.org/10.1007/978-1-4842-2845-6_1
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higher performance drives the neural network to face the challenge of Machine 
Learning.

The most representative solution is the dropout, which trains only some of 
the randomly selected nodes rather than the entire network. It is very effective, 
while its implementation is not very complex. Figure 5-4 explains the concept 
of the dropout. Some nodes are randomly selected at a certain percentage and 
their outputs are set to be zero to deactivate the nodes.

The dropout effectively prevents overfitting as it continuously alters 
the nodes and weights in the training process. The adequate percentages 
of the dropout are approximately 50% and 25% for hidden and input layers, 
respectively.

Figure 5-4.  Dropout is where some nodes are randomly selected and their outputs 
are set to zero to deactivate the nodes
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Another prevailing method used to prevent overfitting is adding 
regularization terms, which provide the magnitude of the weights, to the cost 
function. This method works as it simplifies the neural network’ architecture as 
much as possible, and hence reduces the possible onset of overfitting. Chapter 3 
explains this aspect. Furthermore, the use of massive training data is also very 
helpful as the potential bias due to particular data is reduced.

Computational Load
The last challenge is the time required to complete the training. The number 
of weights increases geometrically with the number of hidden layers, thus 
requiring more training data. This ultimately requires more calculations to be 
made. The more computations the neural network performs, the longer the 
training takes. This problem is a serious concern in the practical development 
of the neural network. If a deep neural network requires a month to train, it can 
only be modified 20 times a year. A useful research study is hardly possible in 
this situation. This trouble has been relieved to a considerable extent by the 
introduction of high-performance hardware, such as GPU, and algorithms, such 
as batch normalization.

The minor improvements that this section introduced are the drivers that 
has made Deep Learning the hero of Machine Learning. The three primary 
research areas of Machine Learning are usually said to be the image recognition, 
speech recognition, and natural language processing. Each of these areas had 
been separately studied with specifically suitable techniques. However, Deep 
Learning currently outperforms all the techniques of all three areas.

Example: ReLU and Dropout
This section implements the ReLU activation function and dropout, the 
representative techniques of Deep Learning. It reuses the example of the digit 
classification from Chapter 4. The training data is the same five-by-five square 
images.

Figure 5-5.  Training data in five-by-five square images

http://dx.doi.org/10.1007/978-1-4842-2845-6_3
http://dx.doi.org/10.1007/978-1-4842-2845-6_4
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Consider the deep neural network with the three hidden layers, as shown 
in Figure 5-6. Each hidden layer contains 20 nodes. The network has 25 input 
nodes for the matrix input and five output nodes for the five classes. The output 
nodes employ the softmax activation function.

ReLU Function
This section introduces the ReLU function via the example. The function 
DeepReLU trains the given deep neural network using the back-propagation 
algorithm. It takes the weights of the network and training data and returns the 
trained weights.

[W1, W2, W3, W4] = DeepReLU(W1, W2, W3, W4, X, D)

where W1, W2, W3, and W4 are weight matrices of input-hidden1, hidden1-
hidden2, hidden2-hidden3, and hidden3-output layers, respectively. X and D 
are input and correct output matrices of the training data. The following listing 
shows the DeepReLU.m file, which implements the DeepReLU function.

function [W1, W2, W3, W4] = DeepReLU(W1, W2, W3, W4, X, D)
  alpha = 0.01;

  N = 5;
  for k = 1:N
    x  = reshape(X(:, :, k), 25, 1);
    v1 = W1*x;
    y1 = ReLU(v1);

Figure 5-6.  The deep neural network with three hidden layers
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    v2 = W2*y1;
    y2 = ReLU(v2);

    v3 = W3*y2;
    y3 = ReLU(v3);

    v  = W4*y3;
    y  = Softmax(v);

    d     = D(k, :)';

    e     = d - y;
    delta = e;

    e3     = W4'*delta;
    delta3 = (v3 > 0).*e3;

    e2     = W3'*delta3;
    delta2 = (v2 > 0).*e2;

    e1     = W2'*delta2;
    delta1 = (v1 > 0).*e1;

    dW4 = alpha*delta*y3';
    W4  = W4 + dW4;

    dW3 = alpha*delta3*y2';
    W3  = W3 + dW3;

    dW2 = alpha*delta2*y1';
    W2  = W2 + dW2;

    dW1 = alpha*delta1*x';
    W1  = W1 + dW1;
  end
end

This code imports the training data, calculates the weight updates (dW1, dW2, 
dW3, and dW4) using the delta rule, and adjusts the weight of the neural network. 
So far, the process is identical to the previous training codes. It only differs in that 
the hidden nodes employ the function ReLU, in place of sigmoid. Of course, the 
use of a different activation function yields a change in its derivative as well.

Now, let’s look into the function ReLU that the function DeepReLU calls. The 
listing of the function ReLU shown here is implemented in the ReLU.m file. As this 
is just a definition, further discussion is omitted.
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function y = ReLU(x)
  y = max(0, x);
end

Consider the back-propagation algorithm portion, which adjusts the weights 
using the back-propagation algorithm. The following listing shows the extract of 
the delta calculation from the DeepReLU.m file. This process starts from the delta 
of the output node, calculates the error of the hidden node, and uses it for the 
next error. It repeats the same steps through delta3, delta2, and delta1.

...
e     = d - y;
delta = e;

e3     = W4'*delta;
delta3 = (v3 > 0).*e3;

e2     = W3'*delta3;
delta2 = (v2 > 0).*e2;

e1     = W2'*delta2;
delta1 = (v1 > 0).*e1;
...

Something noticeable from the code is the derivative of the function ReLU. 
For example, in the calculation of the delta of the third hidden layer, delta3, the 
derivative of the ReLU function is coded as follows:

(v3 > 0)

Let’s see how this line becomes the derivative of the ReLU function. MATLAB 
returns a unity and zero if the expressions in the brackets are true and false, 
respectively. Therefore, this line becomes 1 if v3 > 0 and 0 otherwise. The 
same result is produced as the definition of the derivative of the ReLU function 
shown here:
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The following listing shows the TestDeepReLU.m file, which tests the 
DeepReLU function. This program calls the DeepReLU function and trains the 
network 10,000 times. It enters the training data into the trained network and 
displays the output. We verify the adequacy of the training by comparing the 
output and correct output.
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clear all

X  = zeros(5, 5, 5);

X(:, :, 1) = [ 0 1 1 0 0;
               0 0 1 0 0;
               0 0 1 0 0;
               0 0 1 0 0;
               0 1 1 1 0
             ];

X(:, :, 2) = [ 1 1 1 1 0;
               0 0 0 0 1;
               0 1 1 1 0;
               1 0 0 0 0;
               1 1 1 1 1
             ];

X(:, :, 3) = [ 1 1 1 1 0;
               0 0 0 0 1;
               0 1 1 1 0;
               0 0 0 0 1;
               1 1 1 1 0
             ];

X(:, :, 4) = [ 0 0 0 1 0;
               0 0 1 1 0;
               0 1 0 1 0;
               1 1 1 1 1;
               0 0 0 1 0
             ];

X(:, :, 5) = [ 1 1 1 1 1;
               1 0 0 0 0;
               1 1 1 1 0;
               0 0 0 0 1;
               1 1 1 1 0
             ];

D = [ 1 0 0 0 0;
      0 1 0 0 0;
      0 0 1 0 0;
      0 0 0 1 0;
      0 0 0 0 1
    ];
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W1 = 2*rand(20, 25) - 1;
W2 = 2*rand(20, 20) - 1;
W3 = 2*rand(20, 20) - 1;
W4 = 2*rand( 5, 20) - 1;

for epoch = 1:10000           % train
  [W1, W2, W3, W4] = DeepReLU(W1, W2, W3, W4, X, D);
end

N = 5;                        % inference
for k = 1:N
  x  = reshape(X(:, :, k), 25, 1);
  v1 = W1*x;
  y1 = ReLU(v1);

  v2 = W2*y1;
  y2 = ReLU(v2);

  v3 = W3*y2;
  y3 = ReLU(v3);

  v  = W4*y3;
  y  = Softmax(v)
end

As this code is also almost identical to the previous test programs, a detailed 
explanation is omitted. This code occasionally fails to train properly and yields 
wrong outputs, which has never happened with the sigmoid activation function. 
The sensitivity of the ReLU function to the initial weight values seems to cause 
this anomaly.

Dropout
This section presents the code that implements the dropout. We use the sigmoid 
activation function for the hidden nodes. This code is mainly used to see how 
the dropout is coded, as the training data may be too simple for us to perceive 
the actual improvement of overfitting.

The function DeepDropout trains the example neural network using the 
back-propagation algorithm. It takes the neural network’s weights and training 
data and returns the trained weights.

[W1, W2, W3, W4] = DeepDropout(W1, W2, W3, W4, X, D)
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where the notation of the variables is the same as that of the function 
DeepReLU of the previous section. The following listing shows the DeepDropout.m 
file, which implements the DeepDropout function.

function [W1, W2, W3, W4] = DeepDropout(W1, W2, W3, W4, X, D)
  alpha = 0.01;

  N = 5;
  for k = 1:N
    x  = reshape(X(:, :, k), 25, 1);
    v1 = W1*x;
    y1 = Sigmoid(v1);
    y1 = y1 .* Dropout(y1, 0.2);

    v2 = W2*y1;
    y2 = Sigmoid(v2);
    y2 = y2 .* Dropout(y2, 0.2);

    v3 = W3*y2;
    y3 = Sigmoid(v3);
    y3 = y3 .* Dropout(y3, 0.2);

    v  = W4*y3;
    y  = Softmax(v);

    d     = D(k, :)';

    e     = d - y;
    delta = e;

    e3     = W4'*delta;
    delta3 = y3.*(1-y3).*e3;

    e2     = W3'*delta3;
    delta2 = y2.*(1-y2).*e2;

    e1     = W2'*delta2;
    delta1 = y1.*(1-y1).*e1;

    dW4 = alpha*delta*y3';
    W4  = W4 + dW4;

    dW3 = alpha*delta3*y2';
    W3  = W3 + dW3;
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    dW2 = alpha*delta2*y1';
    W2  = W2 + dW2;

    dW1 = alpha*delta1*x';
    W1  = W1 + dW1;
  end
end

This code imports the training data, calculates the weight updates (dW1, dW2, 
dW3, and dW4) using the delta rule, and adjusts the weight of the neural network. 
This process is identical to that of the previous training codes. It differs from the 
previous ones in that once the output is calculated from the Sigmoid activation 
function of the hidden node, the Dropout function modifies the final output of 
the node. For example, the output of the first hidden layer is calculated as:

y1 = Sigmoid(v1);
y1 = y1 .* Dropout(y1, 0.2);

Executing these lines switches the outputs from 20% of the first hidden 
nodes to 0; it drops out 20% of the first hidden nodes.

Here are the details of the implementation of the function Dropout. It takes 
the output vector and dropout ratio and returns the new vector that will be 
multiplied to the output vector.

ym = Dropout(y, ratio)

where y is the output vector and ratio is the ratio of the dropout of the 
output vector. The return vector ym of the function Dropout has the same 
dimensions as y. ym contains zeros for as many elements as the ratio and 
1 1/ -( )ratio  for the other elements. Consider the following example:

y1 = rand(6, 1)
ym = Dropout(y1, 0.5)
y1 = y1 .* ym

The function Dropout implements the dropout. Executing this code will 
display the results shown in Figure 5-7.
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The vector ym has three elements: half (0.5) of the six elements of the vector 
y1, which are filled with zeroes, and the others are filled with 1 1 0 5/ .-( ) , which 
equals 2. When this ym is multiplied to the original vector y1, the revised y1 has 
zeros by the specified ratio. In other words, y1 drops out the specified portion of 
the elements.

The reason that we multiply the other element by 1 1/ -( )ratio  is to 
compensate for the loss of output due to the dropped elements. In the previous 
example, once half of the vector y1 has been dropped out, the magnitude of the 
layer’s output significantly diminishes. Therefore, the outputs of the survived 
nodes are amplified by the proper proportion.

The function Dropout is implemented in the Dropout.m file :

function ym = Dropout(y, ratio)
  [m, n] = size(y);
  ym     = zeros(m, n);

  num     = round(m*n*(1-ratio));
  idx     = randperm(m*n, num);
  ym(idx) = 1 / (1-ratio);
end

The explanation is long, but the code itself is very simple. The code prepares 
the zero matrix ym, of which the dimension is the same as that of y. It calculates the 
number of survivors, num, based on the given dropout ratio, ratio, and randomly 
selects the survivors from ym. Specifically, it selects the indices of the elements of 
ym. This is done by the randperm portion of the code. Now that the code has the 
indices of the non-zero elements, put 1 1/ -( )ratio  into those elements. The other 
elements are already filled with zeros, as the vector ym has been a zero matrix from 
the beginning.

The following listing shows the TestDeepDropout.m file, which tests the 
DeepDropout function. This program calls DeepDropout and trains the neural 
network 20,000 times. It enters the training data into the trained network and 

11

0.5356 2 1.0712

0.9537 2 1.9075

0.5442 0 0

0.0821 0 0

0.3663 0 0

0.8509 2 1.7017

y ym y ym= = =*

Figure 5-7.  The dropout function in action



118

Chapter 5 ■ Deep Learning

displays the output. We verify the adequacy of the training by comparing the 
output and correct output.

clear all

X  = zeros(5, 5, 5);

X(:, :, 1) = [ 0 1 1 0 0;
               0 0 1 0 0;
               0 0 1 0 0;
               0 0 1 0 0;
               0 1 1 1 0
             ];

X(:, :, 2) = [ 1 1 1 1 0;
               0 0 0 0 1;
               0 1 1 1 0;
               1 0 0 0 0;
               1 1 1 1 1
             ];

X(:, :, 3) = [ 1 1 1 1 0;
               0 0 0 0 1;
               0 1 1 1 0;
               0 0 0 0 1;
               1 1 1 1 0
             ];

X(:, :, 4) = [ 0 0 0 1 0;
               0 0 1 1 0;
               0 1 0 1 0;
               1 1 1 1 1;
               0 0 0 1 0
             ];

X(:, :, 5) = [ 1 1 1 1 1;
               1 0 0 0 0;
               1 1 1 1 0;
               0 0 0 0 1;
               1 1 1 1 0
             ];
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D = [ 1 0 0 0 0;
      0 1 0 0 0;
      0 0 1 0 0;
      0 0 0 1 0;
      0 0 0 0 1
    ];

W1 = 2*rand(20, 25) - 1;
W2 = 2*rand(20, 20) - 1;
W3 = 2*rand(20, 20) - 1;
W4 = 2*rand( 5, 20) - 1;

for epoch = 1:20000           % train
  [W1, W2, W3, W4] = DeepDropout(W1, W2, W3, W4, X, D);
end

N = 5;                        % inference
for k = 1:N
  x  = reshape(X(:, :, k), 25, 1);
  v1 = W1*x;
  y1 = Sigmoid(v1);

  v2 = W2*y1;
  y2 = Sigmoid(v2);

  v3 = W3*y2;
  y3 = Sigmoid(v3);

  v  = W4*y3;
  y  = Softmax(v)
end

This code is almost identical to the other test codes. The only difference is 
that it calls the DeepDropout function when it calculates the output of the trained 
network. Further explanation is omitted.
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Summary
This chapter covered the following topics:

•	 Deep Learning can be simply defined as a Machine 
Learning technique that employs the deep neural network.

•	 The previous neural networks had a problem where the 
deeper (more) hidden layers were harder to train and 
degraded the performance. Deep Learning solved this 
problem.

•	 The outstanding achievements of Deep Learning were not 
made by a critical technique but rather are due to many 
minor improvements.

•	 The poor performance of the deep neural network is due 
to the failure of proper training. There are three major 
showstoppers: the vanishing gradient, overfitting, and 
computational load.

•	 The vanishing gradient problem is greatly improved by 
employing the ReLU activation function and the cross 
entropy-driven learning rule. Use of the advanced gradient 
descent method is also beneficial.

•	 The deep neural network is more vulnerable to overfitting. 
Deep Learning solves this problem using the dropout or 
regularization.

•	 The significant training time is required due to the heavy 
calculations. This is relieved to a large extent by the GPU 
and various algorithms.
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CHAPTER 6

Convolutional Neural Network

Chapter 5 showed that incomplete training is the cause of the poor performance 
of the deep neural network and introduced how Deep Learning solved the 
problem. The importance of the deep neural network lies in the fact that it 
opened the door to the complicated non-linear model and systematic approach 
for the hierarchical processing of knowledge.

This chapter introduces the convolutional neural network (ConvNet), which 
is a deep neural network specialized for image recognition. This technique 
exemplifies how significant the improvement of the deep layers is for information 
(images) processing. Actually, ConvNet is an old technique, which was developed 
in the 1980s and 1990s.1 However, it has been forgotten for a while, as it was 
impractical for real-world applications with complicated images. Since 2012 
when it was dramatically revived2, ConvNet has conquered most computer vision 
fields and is growing at a rapid pace.

Architecture of ConvNet
ConvNet is not just a deep neural network that has many hidden layers. It is 
a deep network that imitates how the visual cortex of the brain processes and 
recognizes images. Therefore, even the experts of neural networks often have a 
hard time understanding this concept on their first encounter. That is how much 
ConvNet differs in concept and operation from the previous neural networks. 
This section briefly introduces the fundamental architecture of ConvNet.

1LeCun, Y., et al., “Handwritten digit recognition with a back-propagation network,” In 
Proc. Advances in Neural Information Processing Systems, 396–404 (1990).
2Krizhevsky, Alex, “ImageNet Classification with Deep Convolutional Neural 
Networks,” 17 November 2013.

http://dx.doi.org/10.1007/978-1-4842-2845-6_5
http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
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Basically, image recognition is the classification. For example, recognizing 
whether the image of a picture is a cat or a dog is the same as classifying the 
image into a cat or dog class. The same thing applies to the letter recognition; 
recognizing the letter from an image is the same as classifying the image into one 
of the letter classes. Therefore, the output layer of the ConvNet generally employs 
the multiclass classification neural network.

However, directly using the original images for image recognition leads 
to poor results, regardless of the recognition method; the images should be 
processed to contrast the features. The examples in Chapter 4 used the original 
images and they worked well because they were simple black-and-white images. 
Otherwise, the recognition process would have ended up with very poor results. 
For this reason, various techniques for image feature extraction have been 
developed.3

Before ConvNet, the feature extractor has been designed by experts of 
specific areas. Therefore, it required a significant amount of cost and time while 
it yielded an inconsistent level of performance. These feature extractors were 
independent of Machine Learning. Figure 6-1 illustrates this process.

Figure 6-1.  Feature extractors used to be independent of Machine Learning

ConvNet includes the feature extractor in the training process rather than 
designing it manually. The feature extractor of ConvNet is composed of special 
kinds of neural networks, of which the weights are determined via the training 
process. The fact that ConvNet turned the manual feature extraction design into 
the automated process is its primary feature and advantage. Figure 6-2 depicts 
the training concept of ConvNet.

3The representative methods include SIFT, HoG, Textons, Spin image, RIFT, and GLOH.

http://dx.doi.org/10.1007/978-1-4842-2845-6_4


Chapter 6 ■ Convolutional Neural Network

123

ConvNet yields better image recognition when its feature extraction neural 
network is deeper (contains more layers), at the cost of difficulties in the training 
process, which had driven ConvNet to be impractical and forgotten for a while.

Let’s go a bit deeper. ConvNet consists of a neural network that extracts 
features of the input image and another neural network that classifies the feature 
image. Figure 6-3 shows the typical architecture of ConvNet.

Figure 6-2.  ConvNet’s feature extractor is composed of special kinds of  
neural networks

Figure 6-3.  Typical architecture of ConvNet

The input image enters into the feature extraction network. The extracted 
feature signals enter the classification neural network. The classification neural 
network then operates based on the features of the image and generates the 
output. The classification techniques discussed in Chapter 4 apply here.

http://dx.doi.org/10.1007/978-1-4842-2845-6_4
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The feature extraction neural network consists of piles of the convolutional 
layer and pooling layer pairs. The convolution layer, as its name implies, converts 
the image using the convolution operation. It can be thought of as a collection 
of digital filters. The pooling layer combines the neighboring pixels into a single 
pixel. Therefore, the pooling layer reduces the dimension of the image. As the 
primary concern of ConvNet is the image; the operations of the convolution and 
pooling layers are conceptually in a two-dimensional plane. This is one of the 
differences between ConvNet and other neural networks.

In summary, ConvNet consists of the serial connection of the feature 
extraction network and the classification network. Through the training process, 
the weights of both layers are determined. The feature extraction layer has piled 
pairs of the convolution and pooling layers. The convolution layer converts 
the images via the convolution operation, and the pooling layer reduces the 
dimension of the image. The classification network usually employs the ordinary 
multiclass classification neural network.

Convolution Layer
This section explains how the convolution layer, which is one side of the feature 
extraction neural network, works. The pooling layer, the other side of the pair, is 
introduced in the next section.

The convolution layer generates new images called feature maps. The feature 
map accentuates the unique features of the original image. The convolution layer 
operates in a very different way compared to the other neural network layers. 
This layer does not employ connection weights and a weighted sum.4 Instead, it 
contains filters5 that convert images. We will call these filters convolution filters. 
The process of the inputting the image through the convolution filters yields the 
feature map.

Figure 6-4 shows the process of the convolution layer, where the circled 
* mark denotes the convolution operation, and the φ mark is the activation 
function. The square grayscale icons between these operators indicate the 
convolution filters. The convolution layer generates the same number of feature 
maps as the convolution filters. Therefore, for instance, if the convolution layer 
contains four filters, it will generate four feature maps.

4It is often explained using the local receptive filed and shared weights from the  
perspective of the ordinary neural network. However, they would not be helpful for 
beginners. This book does not insist its relationship with the ordinary neural network and 
explains it as a type of digital filter.
5Also called kernels.
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Figure 6-4.  The convolution layer process

Let’s further explore the details of the convolution filter. The filters of the 
convolution layer are two-dimensional matrices. They usually come in 5 5´  or 
3 3´  matrices, and even 1 1´  convolution filters have been used in recent 
applications. Figure 6-4 shows the values of the 5 5´  filters in grayscale pixels.  
As addressed in the previous section, the values of the filter matrix are determined 
through the training process. Therefore, these values are continuously trained 
throughout the training process. This aspect is similar to the updating process of 
the connection weights of the ordinary neural network.

The convolution is a rather difficult operation to explain in text as it lies on the 
two-dimensional plane. However, its concept and calculation steps are simpler 
than they appear.6 A simple example will help you understand how it works. 
Consider a 4 4´  pixel image that is expressed as the matrix shown in Figure 6-5.  
We will generate a feature map via the convolution filter operation of this image.

6deeplearning.stanford.edu/wiki/images/6/6c/Convolution_schematic.gif
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We use the two convolution filters shown here. It should be noted that the 
filters of the actual ConvNet are determined through the training process and not 
by manual decision.
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Let’s start with the first filter. The convolution operation begins at the  
upper-left corner of the submatrix that is the same size as the convolution filter 
(see Figure 6-6).

Figure 6-5.  Four-by-four pixel image

Figure 6-6.  The convolution operation starts at the upper-left corner

The convolution operation is the sum of the products of the elements that are 
located on the same positions of the two matrices. The result of 7 in Figure 6-6 is 
calculated as:

1 1 1 0 4 0 6 1 7´ + ´ + ´ + ´ =( ) ( ) ( ) ( )
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Another convolution operation is conducted for the next submatrix  
(see Figure 6-7).7

7The designer decides how many elements to stride for each operation. It can be greater 
than one if the filter is larger.

Figure 6-7.  The second convolution operation

Figure 6-8.  The third convolution operation

In the same manner, the third convolution operation is conducted, as shown 
in Figure 6-8.

Once the top row is finished, the next row starts over from the left  
(see Figure 6-9).

Figure 6-9.  The convolution operation starts over from the left
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It repeats the same process until the feature map of the given filter is 
produced, as shown in Figure 6-10.

Figure 6-10.  The feature map of the given filter has been completed

Figure 6-11.  The submatrix of the image matches the convolution filter

Figure 6-12.  The convolution operation yields large values when the input 
matches the filter

Now, take a closer look at the feature map. The element of (3, 1) of the map 
shows the greatest value. What happened to this cell? This value is the result of 
the convolution operation shown in Figure 6-11.

It is noticeable from the figure that the submatrix of the image matches the 
convolution filter; both are diagonal matrices with significant numbers on the 
same cells. The convolution operation yields large values when the input matches 
the filter, as shown in Figure 6-12.
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Figure 6-13.  When the image matrix does not match the filter, the significant 
elements are not aligned

In contrast, in the case shown in Figure 6-13, the same significant number 
of 30 does not affect the convolution result, which is only 4. This is because the 
image matrix does not match the filter; the significant elements of the image 
matrix are aligned in the wrong direction.

In the same manner, processing the second convolution filter produces the 
feature map shown in Figure 6-14.

Figure 6-14.  The values depend on whether the image matrix matches the 
convolution filter

Similarly to the first convolution operation, the values in the elements of this 
feature map depend on whether the image matrix matches the convolution filter 
or not.

In summary, the convolution layer operates the convolution filters on the 
input image and produces the feature maps. The features that are extracted in the 
convolution layer determined by the trained convolution filters. Therefore, the 
features that the convolution layer extracts vary depending on which convolution 
filter is used.

The feature map that the convolution filter creates is processed through the 
activation function before the layer yields the output. The activation function of 
the convolution layer is identical to that of the ordinary neural network. Although 
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the ReLU function is used in most of the recent applications, the sigmoid function 
and the tanh function are often employed as well.8

Just for the reference, the moving average filter, which is widely used in the 
digital signal processing field, is a special type of convolution filter. If you are 
familiar with digital filters, relating them to this concept may allow you to better 
understand the ideas behind the convolution filter.

Pooling Layer
The pooling layer reduces the size of the image, as it combines neighboring 
pixels of a certain area of the image into a single representative value. Pooling 
is a typical technique that many other image processing schemes have already 
been employing.

In order to conduct the operations in the pooling layer, we should determine 
how to select the pooling pixels from the image and how to set the representative 
value. The neighboring pixels are usually selected from the square matrix, and 
the number of pixels that are combined differs from problem to problem. The 
representative value is usually set as the mean or maximum of the selected pixels.

The operation of the pooling layer is surprisingly simple. As it is a  
two-dimensional operation, and an explanation in text may lead to more 
confusion, let’s go through an example. Consider the 4 4´  pixel input image, 
which is expressed by the matrix shown in Figure 6-15.

8Sometimes the activation function is omitted depending on the problem.

Figure 6-15.  The four-by-four pixel input image

We combine the pixels of the input image into a 2 2´  matrix without 
overlapping the elements. Once the input image passes through the pooling layer, 
it shrinks into a 2 2´  pixel image. Figure 6-16 shows the resultant cases of pooling 
using the mean pooling and max pooling.
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Figure 6-16.  The resultant cases of pooling using two different methods

Actually, in a mathematical sense, the pooling process is a type of 
convolution operation. The difference from the convolution layer is that the 
convolution filter is stationary, and the convolution areas do not overlap. The 
example provided in the next section will elaborate on this.

The pooling layer compensates for eccentric and tilted objects to some 
extent. For example, the pooling layer can improve the recognition of a cat, 
which may be off-center in the input image. In addition, as the pooling process 
reduces the image size, it is highly beneficial for relieving the computational 
load and preventing overfitting.

Example: MNIST
We implement a neural network that takes the input image and recognizes the digit 
that it represents. The training data is the MNIST9 database, which contains 70,000 
images of handwritten numbers. In general, 60,000 images are used for training, 
and the remaining 10,000 images are used for the validation test. Each digit image is 
a 28-by-28 pixel black-and-white image, as shown in Figure 6-17.

9Mixed National Institute of Standards and Technology.

https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology
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Figure 6-17.  A 28-by-28 pixel black-and-white image from the MNIST database

Considering the training time, this example employs only 10,000 images with 
the training data and verification data in an 8:2 ratio. Therefore, we have 8,000 
MNIST images for training and 2,000 images for validation of the performance of 
the neural network. As you may know well by now, the MNIST problem is caused 
by the multiclass classification of the 28 28´  pixel image into one of the ten digit 
classes of 0-9.

Let’s consider a ConvNet that recognizes the MNIST images. As the input 
is a 28 28´  pixel black-and-white image, we allow 784(=28x28) input nodes. 
The feature extraction network contains a single convolution layer with 20 9 9´  
convolution filters. The output from the convolution layer passes through the 
ReLU function, followed by the pooling layer. The pooling layer employs the mean 
pooling process of two by two submatrices. The classification neural network 
consists of the single hidden layer and output layer. This hidden layer has 100 
nodes that use the ReLU activation function. Since we have 10 classes to classify, 
the output layer is constructed with 10 nodes. We use the softmax activation 
function for the output nodes. The following table summarizes the example 
neural network.

Layer Remark Activation Function

Input 28 28´  nodes -

Convolution 20 convolution filters ( 9 9´ ) ReLU

Pooling 1 mean pooling ( 2 2´ ) -

Hidden 100 nodes ReLU

Output 10 nodes Softmax



Chapter 6 ■ Convolutional Neural Network

133

Figure 6-18 shows the architecture of this neural network. Although it has 
many layers, only three of them contain the weight matrices that require training; 
they are W

1
, W

5
, and W

o
 in the square blocks. W

5
 and W

o
 contain the connection 

weights of the classification neural network, while W
1
 is the convolution layer’s 

weight, which is used by the convolution filters for image processing.

Figure 6-18.  The architecture of this neural network

The input nodes between the pooling layer and the hidden layer,  
which are the square nodes left of the W

5
 block, are the transformations of 

the two-dimensional image into a vector. As this layer does not involve any 
operations, these nodes are denoted as squares.

The function MnistConv, which trains the network using the back-propagation 
algorithm, takes the neural network’s weights and training data and returns the 
trained weights.

[W1, W5, Wo] = MnistConv(W1, W5, Wo, X, D)

where W1, W5, and Wo are the convolution filter matrix, pooling-hidden layer 
weight matrix, and hidden-output layer weight matrix, respectively. X and D are 
the input and correct output from the training data, respectively. The following 
listing shows the MnistConv.m file, which implements the MnistConv function.

function [W1, W5, Wo] = MnistConv(W1, W5, Wo, X, D)
%
%
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alpha = 0.01;
beta  = 0.95;

momentum1 = zeros(size(W1));
momentum5 = zeros(size(W5));
momentumo = zeros(size(Wo));

N = length(D);

bsize = 100;
blist = 1:bsize:(N-bsize+1);

% One epoch loop
%
for batch = 1:length(blist)
  dW1 = zeros(size(W1));
  dW5 = zeros(size(W5));
  dWo = zeros(size(Wo));

  % Mini-batch loop
  %
  begin = blist(batch);
  for k = begin:begin+bsize-1
    % Forward pass = inference
    %
    x  = X(:, :, k);                 % Input,           28x28
    y1 = Conv(x, W1);                % Convolution,  20x20x20
    y2 = ReLU(y1);                   %
    y3 = Pool(y2);                   % Pool,         10x10x20
    y4 = reshape(y3, [], 1);         %                   2000
    v5 = W5*y4;                      % ReLU,              360
    y5 = ReLU(v5);                   %
    v  = Wo*y5;                      % Softmax,            10
    y  = Softmax(v);                 %

    % One-hot encoding
    %
    d = zeros(10, 1);
    d(sub2ind(size(d), D(k), 1)) = 1;

    % Backpropagation
    %
    e      = d - y;                   % Output layer
    delta  = e;
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    e5     = Wo' * delta;             % Hidden(ReLU) layer
    delta5 = (y5 > 0) .* e5;

    e4     = W5' * delta5;            % Pooling layer

    e3     = reshape(e4, size(y3));

    e2 = zeros(size(y2));
    W3 = ones(size(y2)) / (2*2);
    for c = 1:20
      e2(:, :, c) = kron(e3(:, :, c), ones([2 2])) .* W3(:, :, c);
    end

    delta2 = (y2 > 0) .* e2;          % ReLU layer

    delta1_x = zeros(size(W1));       % Convolutional layer
    for c = 1:20
      delta1_x(:, :, c) = conv2(x(:, :), rot90(delta2(:, :, c), 2), 
'valid');
    end

    dW1 = dW1 + delta1_x;
    dW5 = dW5 + delta5*y4';
    dWo = dWo + delta *y5';
  end

  % Update weights
  %
  dW1 = dW1 / bsize;
  dW5 = dW5 / bsize;
  dWo = dWo / bsize;

  momentum1 = alpha*dW1 + beta*momentum1;
  W1        = W1 + momentum1;

  momentum5 = alpha*dW5 + beta*momentum5;
  W5        = W5 + momentum5;

  momentumo = alpha*dWo + beta*momentumo;
  Wo        = Wo + momentumo;
end

end
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This code appears to be rather more complex than the previous examples. 
Let’s take a look at it part by part. The function MnistConv trains the network via 
the minibatch method, while the previous examples employed the SGD and 
batch methods. The minibatch portion of the code is extracted and shown in the 
following listing.

bsize = 100;
blist = 1:bsize:(N-bsize+1);

for batch = 1:length(blist)
  ...
  begin = blist(batch);
  for k = begin:begin+bsize-1
    ...
    dW1 = dW1 + delta2_x;
    dW5 = dW5 + delta5*y4';
    dWo = dWo + delta *y5';
  end
  dW1 = dW1 / bsize;
  dW5 = dW5 / bsize;
  dWo = dWo / bsize;
  ...
end

The number of batches, bsize, is set to be 100. As we have a total 8,000 
training data points, the weights are adjusted 80 (=8,000/100) times for every 
epoch. The variable blist contains the location of the first training data point to 
be brought into the minibatch. Starting from this location, the code brings in 100 
data points and forms the training data for the minibatch. In this example, the 
variable blist stores the following values:

blist = [ 1, 101, 201, 301, ..., 7801, 7901 ]

Once the starting point, begin, of the minibatch is found via blist, the 
weight update is calculated for every 100th data point. The 100 weight updates 
are summed and averaged, and the weights are adjusted. Repeating this process 
80 times completes one epoch.
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Another noticeable aspect of the function MnistConv is that it adjusts the 
weights using momentum. The variables momentum1, momentum5, and momentumo 
are used here. The following part of the code implements the momentum update:

...
momentum1 = alpha*dW1 + beta*momentum1;
W1        = W1 + momentum1;

momentum5 = alpha*dW5 + beta*momentum5;
W5        = W5 + momentum5;

momentumo = alpha*dWo + beta*momentumo;
Wo        = Wo + momentumo;
...

We have now captured the big picture of the code. Now, let’s look at the 
learning rule, the most important part of the code. The process itself is not 
distinct from the previous ones, as ConvNet also employs back-propagation 
training. The first thing that must be obtained is the output of the network. The 
following listing shows the output calculation portion of the function MnistConv. 
It can be intuitively understood from the architecture of the neural network. The 
variable y of this code is the final output of the network.

...
x  = X(:, :, k);                   % Input,           28x28
y1 = Conv(x, W1);                  % Convolution,  20x20x20
y2 = ReLU(y1);                     %
y3 = Pool(y2);                     % Pool,         10x10x20
y4 = reshape(y3, [], 1);           %                   2000
v5 = W5*y4;                        % ReLU,              360
y5 = ReLU(v5);                     %
v  = Wo*y5;                        % Softmax,            10
y  = Softmax(v);                   %
...

Now that we have the output, the error can be calculated. As the network 
has 10 output nodes, the correct output should be in a 10 1´  vector in order to 
calculate the error. However, the MNIST data gives the correct output as the 
respective digit. For example, if the input image indicates a 4, the correct output 
will be given as a 4. The following listing converts the numerical correct output 
into a 10 1´  vector. Further explanation is omitted.

d = zeros(10, 1);
d(sub2ind(size(d), D(k), 1)) = 1;
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The last part of the process is the back-propagation of the error. The 
following listing shows the back-propagation from the output layer to the 
subsequent layer to the pooling layer. As this example employs cross entropy 
and softmax functions, the output node delta is the same as that of the network 
output error. The next hidden layer employs the ReLU activation function. There 
is nothing particular there. The connecting layer between the hidden and 
pooling layers is just a rearrangement of the signal.

...
e      = d - y;
delta  = e;

e5     = Wo' * delta;
delta5 = e5 .* (y5> 0);

e4     = W5' * delta5;
e3     = reshape(e4, size(y3));
...

We have two more layers to go: the pooling and convolution layers. The 
following listing shows the back-propagation that passes through the pooling 
layer-ReLU-convolution layer. The explanation of this part is beyond the scope 
of this book. Just refer to the code when you need it in the future.

...
e2 = zeros(size(y2));           % Pooling
W3 = ones(size(y2)) / (2*2);
for c = 1:20
  e2(:, :, c) = kron(e3(:, :, c), ones([2 2])) .* W3(:, :, c);
end

delta2 = (y2 > 0) .* e2;

delta1_x = zeros(size(W1));
for c = 1:20
  delta1_x(:, :, c) = conv2(x(:, :), rot90(delta2(:, :, c), 2), 
'valid');
end
...
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The following listing shows the function Conv, which the function MnistConv 
calls. This function takes the input image and the convolution filter matrix and 
returns the feature maps. This code is in the Conv.m file.

function y = Conv(x, W)
%
%

[wrow, wcol, numFilters] = size(W);
[xrow, xcol, ~         ] = size(x);

yrow = xrow - wrow + 1;
ycol = xcol - wcol + 1;

y = zeros(yrow, ycol, numFilters);

for k = 1:numFilters
  filter = W(:, :, k);
  filter = rot90(squeeze(filter), 2);
  y(:, :, k) = conv2(x, filter, 'valid');
end

end

This code performs the convolution operation using conv2, a built-in  
two-dimensional convolution function of MATLAB. Further details of the 
function Conv are omitted, as it is beyond the scope of this book.

The function MnistConv also calls the function Pool, which is implemented 
in the following listing . This function takes the feature map and returns the image 
after the 2 2´  mean pooling process. This function is in the Pool.m file.

function y = Pool(x)
%
% 2x2 mean pooling
%
[xrow, xcol, numFilters] = size(x);

y = zeros(xrow/2, xcol/2, numFilters);
for k = 1:numFilters
  filter = ones(2) / (2*2);    % for mean
  image  = conv2(x(:, :, k), filter, 'valid');

  y(:, :, k) = image(1:2:end, 1:2:end);
end

end
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There is something interesting about this code; it calls the two-dimensional 
convolution function, conv2, just as the function Conv does. This is because the 
pooling process is a type of a convolution operation. The mean pooling of this 
example is implemented using the convolution operation with the following 
filter:
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The filter of the pooling layer is predefined, while that of the convolution 
layer is determined through training. The further details of the code are beyond 
the scope of this book.

The following listing shows the TestMnistConv.m file, which tests the 
function MnistConv.10 This program calls the function MnistConv and trains the 
network three times. It provides the 2,000 test data points to the trained network 
and displays its accuracy. The test run of this example yielded an accuracy of 93% 
in 2 minutes and 30 seconds. Be advised that this program takes quite some time 
to run.

clear all

Images = loadMNISTImages('./MNIST/t10k-images.idx3-ubyte');
Images = reshape(Images, 28, 28, []);
Labels = loadMNISTLabels('./MNIST/t10k-labels.idx1-ubyte');
Labels(Labels == 0) = 10;    % 0 --> 10

rng(1);

% Learning
%
W1 = 1e-2*randn([9 9 20]);
W5 = (2*rand(100, 2000) - 1) * sqrt(6) / sqrt(360 + 2000);
Wo = (2*rand( 10,  100) - 1) * sqrt(6) / sqrt( 10 +  100);

X = Images(:, :, 1:8000);
D = Labels(1:8000);

10loadMNISTImages and loadMNISTLabels functions are from github.com/amaas/
stanford_dl_ex/tree/master/common.
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for epoch = 1:3
  epoch
  [W1, W5, Wo] = MnistConv(W1, W5, Wo, X, D);
end

save('MnistConv.mat');

% Test
%
X = Images(:, :, 8001:10000);
D = Labels(8001:10000);

acc = 0;
N   = length(D);
for k = 1:N
  x = X(:, :, k);                   % Input,           28x28

  y1 = Conv(x, W1);                 % Convolution,  20x20x20
  y2 = ReLU(y1);                    %
  y3 = Pool(y2);                    % Pool,         10x10x20
  y4 = reshape(y3, [], 1);          %                   2000
  v5 = W5*y4;                       % ReLU,              360
  y5 = ReLU(v5);                    %
  v  = Wo*y5;                       % Softmax,            10
  y  = Softmax(v);                  %

  [~, i] = max(y);
  if i == D(k)
    acc = acc + 1;
  end
end

acc = acc / N;
fprintf('Accuracy is %f\n', acc);

This program is also very similar to the previous ones. The explanations 
regarding the similar parts will be omitted. The following listing shown is a new 
entry. It compares the network’s output and the correct output and counts the 
matching cases. It converts the 10 1´  vector output back into a digit so that it can 
be compared to the given correct output.

...
[~, i] = max(y)
if i == D(k)
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  acc = acc + 1;
end
...

Lastly, let’s investigate how the image is processed while it passes through the 
convolution layer and pooling layer. The original dimension of the MNIST image is 
28 28´ . Once the image is processed with the 9 9´  convolution filter, it becomes a 
20 20´  feature map.11 As we have 20 convolution filters, the layer produces 20 
feature maps. Through the 2 2´  mean pooling process, the pooling layer shrinks 
each feature map to a 10 10´  map. The process is illustrated in Figure 6-19.

Figure 6-19.  How the image is processed while it passes through the convolution 
and pooling layers

The final result after passing the convolution and pooling layers is as many 
smaller images as the number of the convolution filters; ConvNet converts the 
input image into the many small feature maps.

Now, we will see how the image actually evolves at each layer of ConvNet. By 
executing the TestMnistConv.m file, followed by the PlotFeatures.m file, the screen 
will display the five images. The following listing is in the PlotFeatures.m file.

11This size is valid only for this particular example. It varies depending on how the  
convolution filter is applied.
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clear all

load('MnistConv.mat')

k  = 2;
x  = X(:, :, k);                  % Input,           28x28
y1 = Conv(x, W1);                 % Convolution,  20x20x20
y2 = ReLU(y1);                    %
y3 = Pool(y2);                    % Pool,         10x10x20
y4 = reshape(y3, [], 1);          %                   2000
v5 = W5*y4;                       % ReLU,              360
y5 = ReLU(v5);                    %
v  = Wo*y5;                       % Softmax,            10
y  = Softmax(v);                  %

figure;
display_network(x(:));
title('Input Image')

convFilters = zeros(9*9, 20);
for i = 1:20
  filter            = W1(:, :, i);
  convFilters(:, i) = filter(:);
end
figure
display_network(convFilters);
title('Convolution Filters')

fList = zeros(20*20, 20);
for i = 1:20
  feature     = y1(:, :, i);
  fList(:, i) = feature(:);
end
figure
display_network(fList);
title('Features [Convolution]')

fList = zeros(20*20, 20);
for i = 1:20
  feature     = y2(:, :, i);
  fList(:, i) = feature(:);
end
figure
display_network(fList);
title('Features [Convolution + ReLU]')
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fList = zeros(10*10, 20);
for i = 1:20
  feature     = y3(:, :, i);
  fList(:, i) = feature(:);
end
figure
display_network(fList);
title('Features [Convolution + ReLU + MeanPool]')

The code enters the second image (k = 2) of the test data into the neural 
network and displays the results of all the steps. The display of the matrix on the 
screen is performed by the function display_network, which is originally from 
the same resource where the loadMNISTImages and loadMNISTLabels of the 
TestMnistConv.m file are from.

The first image that the screen shows is the following 28 28´  input image  
of a 2, as shown in Figure 6-20.

Figure 6-20.  The first image shown

Figure 6-21 is the second image of the screen, which consists of the 20 trained 
convolution filters. Each filter is pixel image and shows the element values as 
grayscale shades. The greater the value is, the brighter the shade becomes. 
These filters are what ConvNet determined to be the best features that could be 
extracted from the MNIST image. What do you think? Do you see some unique 
features of the digits?
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Figure 6-21.  Image showing 20 trained convolution filters

Figure 6-22 is the third image from the screen, which provides the results 
(y1) of the image processing of the convolution layer. This feature map consists 
of 20 20 20´  pixel images. The various alterations of the input image due to the 
convolution filter can be noticeable from this figure.

The fourth image shown in Figure 6-23 is what the ReLU function processed 
on the feature map from the convolution layer. The dark pixels of the previous 
image are removed, and the current images have mostly white pixels on the letter. 
This is a reasonable result when we consider the definition of the ReLU function. 

Figure 6-22.  The results (y1) of the image processing of the convolution layer
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Now, look at the Figure 6-22 again. It is noticeable that the image on third row 
fourth column contains a few bright pixels. After the ReLU operation, this image 
becomes completely dark. Actually, this is not a good sign because it fails to 
capture any feature of the input image of the 2. It needs to be improved through 
more data and more training. However, the classification still functions, as the 
other parts of the feature map work properly.

Figure 6-24 shows the fifth result, which provides the images after the mean 
pooling process in which the ReLU layer produces. Each image inherits the shape 
of the previous image in a 10 10´  pixel space, which is half the previous size. This 
shows how much the pooling layer can reduce the required resources.

Figure 6-23.  Image showing what the ReLU function processed on the feature 
map from the convolution layer

Figure 6-24.  The images after the mean pooling process
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Figure 6-24 is the final result of the feature extraction neural network. 
These images are transformed into a one-dimensional vector and stored in the 
classification neural network.

This completes the explanation of the example code. Although only one pair 
of convolution and pooling layers is employed in the example; usually many of 
them are used in most practical applications. The more the small images that 
contain main features of the network, the better the recognition performance.

Summary
This chapter covered the following concepts:

•	 In order to improve the image recognition performance 
of Machine Learning, the feature map, which accentuates 
the unique features, should be provided rather than the 
original image. Traditionally, the feature extractor had 
been manually designed. ConvNet contains a special type 
of neural network for the feature extractor, of which the 
weights are determined via the training process.

•	 ConvNet consists of a feature extractor and classification 
neural network. Its deep layer architecture had been a 
barrier that made the training process difficult. However, 
since Deep Learning was introduced as the solution to this 
problem, the use of ConvNet has been growing rapidly.

•	 The feature extractor of ConvNet consists of alternating 
stacks of the convolution layer and the pooling layer. As 
ConvNet deals with two-dimensional images, most of its 
operations are conducted in a two-dimensional conceptual 
plane.

•	 Using the convolution filters, the convolution layer 
generates images that accentuate the features of the input 
image. The number of output images from this layer is the 
same as the number of convolution filters that the network 
contains. The convolution filter is actually nothing but a 
two-dimensional matrix.

•	 The pooling layer reduces the image size. It binds 
neighboring pixels and replaces them with a representative 
value. The representative value is either the maximum or 
mean value of the pixels.



149© Phil Kim 2017 
P. Kim, MATLAB Deep Learning, DOI 10.1007/978-1-4842-2845-6

�       � A
Arbitrary activation function, 32–33
Artificial Intelligence, 1–2, 17

�       � B
Back-propagation algorithm, 104

illustration of, 54
momentum (see Momentum)
multi-layer neural network, 54–60
process, 54
XOR problem, 62–64

BackpropCE function, 74–76, 78
BackpropMmt function, 66–67
BackpropXOR function, 62–63
Batch method

comparison of SGD and, 43–45
implementation of, 41–43
training data, 35

Binary classification, 81, 102
class symbols, 84
cross entropy function, 85–86
problem, 82
sigmoid function, 82–83
single output node, 82
training data, 83–84

�       � C
Clustering, 17
Computational load, 109
Confront overfitting, 10–11
Convolution, 125
Convolutional neural network  

(ConvNet), 121
architecture, 121

feature extraction, 124
feature extractor, 122–123, 147

image recognition, 122
typical, 123

convolution layer, 124–129
MNIST, 132–133, 135–136, 138–147
pooling layer, 130–131, 147

Convolution filters, 124, 128–129, 147
Cost function

comparison of, 76, 78–79
cross entropy function, 69
and learning rule, 68–71, 73
output error, 72
sum of squared error, 68

Cross entropy function, 68–69
back-propagation algorithm, 70
BackpropCE function, 74–75
at d = 0, 70
at d = 1, 69
example, 73

Cross-validation, 11–12

�       � D
DeepDropout function, 114
Deep Learning, 1–2, 17, 103, 120

back-propagation algorithm, 104
deep neural network, 105

computational load, 109
overfitting, 107–109
vanishing gradient, 105, 107

dropout, 114, 116, 118–119
multi-layer neural network, 104
relationship to Machine Learning, 103
ReLU function, 110–112, 114

Deep neural network, 22, 103, 105, 120
computational load, 109
overfitting, 107–109
with three hidden layers, 110
vanishing gradient, 105, 107

Index



■ INDEX

150

DeepReLU function, 110, 112
Delta, 55
DeltaBatch function, 41–42
Delta rule

arbitrary activation function, 32
example, 37–38
generalized, 32–33
training of single-layer neural 

network, 29–32
DeltaSGD function, 39, 41
DeltaXOR function, 46
Dropout function, 116

�       � E
Epoch, 31, 37

�       � F
Feature maps, 124, 128

�       � G
Generalization, 6
Gradient descent method, 31

�       � H
Hidden layers, 22

�       � I, J, K
Image recognition, 122
Input layer, 22

�       � L
Learning rate, 30
Learning rule, 19, 29, 51

cost function and, 68–71, 73
Linear function, 24, 26, 50
Loss function. See Cost function

�       � M
Machine Learning, 1–2, 18

challenges with
confronting overfitting, 10–11
model based on field data, 4
overfitting, 6, 8–9
training and input data, 6

Deep Learning, 2
feature extractors, 122
modeling technique, 3
process, 2–3
relationship between neural network 

and, 19
training data, 4
types, 12

classification and regression, 14, 
16–17

reinforcement learning, 13
supervised learning, 13
unsupervised learning, 13

Mini batch method, 36–37
Mixed National Institute of Standards and 

Technology (MNIST), 132–133, 
135, 141–143

convolution operation, 140
display_network function, 144
feature map, 145
MnistConv function, 133, 136–137, 

139–140
Pool function, 139
pooling process, 146
ReLU activation function, 138
ReLU function, 145

MnistConv function, 133
Momentum

weight adjustment, 65, 67
weight update, 65–66

Multiclass classification, 86, 92, 102
activation functions, 90
cross entropy-driven learning, 91
data, 87
example, 93–94, 96–99, 101
function MultiClass, 94–95
function reshape, 95
one-hot encoding, 89
output nodes, 88
sigmoid function, 90
softmax function, 90–91
supervised learning, 88
TestMultiClass command, 98–99
training data, 88
training process, 91–92

Multi-layer neural network
back-propagation algorithm, 54–60
consists of, 22
deep neural network, 22
process, 24
single hidden layer, 22–23



■ INDEX

151

�       � N
Neural network, 34, 81

binary classification, 81–82, 84–86
brain and, 20
classifier, 102
Delta rule (see Delta rule)
layers, 22–27
multiclass classification, 86, 88, 90–94, 

96–99, 101
nodes, 20–21
node receiving three inputs, 20–21
relationship between Machine 

Learning and, 19
SGD, 34–37
supervised learning, 27–28

�       � O
Objective function. See Cost function
1-of-N encoding, 89
One-hot encoding, 89
Output layer, 22
Overfitting, 6, 8–9, 18, 107–109, 120

confront, 10–11

�       � P, Q
Proud error-free model, 9

�       � R
Rectified Linear Unit (ReLU) function, 

106, 107, 110–112, 114, 130, 132
Regularization, 10, 18
Reinforcement learning, 12–13

�       � S
Shallow neural network, 23
Sigmoid function, 33

Single hidden layer, neural network  
with, 24

linear function, 24
output calculation, 25–26
outputs of output layer, 26

Single-layer neural network
consists of, 22
delta rule, training of, 29–32
limitations, 45–50
single hidden layer, 24–27

Softmax, 69
Squared error, sum of, 68
Stochastic gradient descent (SGD)

batch method, 35–36
comparison of batch and, 43–45
implementation of, 38–39, 41
mini batch method, 36–37
weight update, 34

Supervised learning, 12–13, 18
concept, 28
of neural network, 28

�       � T
Transposed weight matrix, 58

�       � U
Unsupervised learning, 12–13

�       � V, W
Validation process, 10–11, 18
Vanilla neural network. See Single hidden 

layer, neural network with
Vanishing gradient, 105, 107, 120

�       � X, Y, Z
XOR problem, 62–64
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