
MATLAB
Deep Learning

With Machine Learning, Neural
Networks and Artificial Intelligence
—
Phil Kim

MATLAB Deep
Learning

With Machine Learning, Neural
Networks and Artificial Intelligence

Phil Kim

MATLAB Deep Learning: With Machine Learning, Neural Networks and Artificial Intelligence

Phil Kim					
Seoul, Soul-t'ukpyolsi, Korea (Republic of)	

ISBN-13 (pbk): 978-1-4842-2844-9		 ISBN-13 (electronic): 978-1-4842-2845-6
DOI 10.1007/978-1-4842-2845-6

Library of Congress Control Number: 2017944429

Copyright © 2017 by Phil Kim

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or
information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol
with every occurrence of a trademarked name, logo, or image we use the names, logos, and images only
in an editorial fashion and to the benefit of the trademark owner, with no intention of infringement of
the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject
to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal responsibility for
any errors or omissions that may be made. The publisher makes no warranty, express or implied, with
respect to the material contained herein.

Cover image designed by Freepik

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Jonah Lissner
Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California
LLC and the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions
and licenses are also available for most titles. For more information, reference our Print and eBook
Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book's product page, located at www.apress.com/9781484228449. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

mailto:orders-ny@springer-sbm.com
www.springeronline.com
mailto:rights@apress.com
http://www.apress.com/rights-permissions
http://www.apress.com/rights-permissions
http://www.apress.com/bulk-sales
www.apress.com/9781484228449
http://www.apress.com/source-code

iii

Contents at a Glance

About the Author��� ix

About the Technical Reviewer��� xi

Acknowledgments��� xiii

Introduction�� xv

■■Chapter 1: Machine Learning�� 1

■■Chapter 2: Neural Network�� 19

■■Chapter 3: Training of Multi-Layer Neural Network����������������������� 53

■■Chapter 4: Neural Network and Classification������������������������������� 81

■■Chapter 5: Deep Learning�� 103

■■Chapter 6: Convolutional Neural Network����������������������������������� 121

■■Index�� 149

v

Contents

About the Author��� ix

About the Technical Reviewer��� xi

Acknowledgments��� xiii

Introduction�� xv

■■Chapter 1: Machine Learning�� 1

What Is Machine Learning?�� 2

Challenges with Machine Learning�� 4

Overfitting�� 6

Confronting Overfitting�� 10

Types of Machine Learning�� 12

Classification and Regression��� 14

Summary�� 17

■■Chapter 2: Neural Network�� 19

Nodes of a Neural Network�� 20

Layers of Neural Network��� 22

Supervised Learning of a Neural Network��� 27

Training of a Single-Layer Neural Network: Delta Rule�������������������������� 29

Generalized Delta Rule��� 32

■ Contents

vi

SGD, Batch, and Mini Batch�� 34

Stochastic Gradient Descent�� 34

Batch��� 35

Mini Batch��� 36

Example: Delta Rule��� 37

Implementation of the SGD Method��� 38

Implementation of the Batch Method��� 41

Comparison of the SGD and the Batch��� 43

Limitations of Single-Layer Neural Networks��� 45

Summary�� 50

■■Chapter 3: Training of Multi-Layer Neural Network����������������������� 53

Back-Propagation Algorithm�� 54

Example: Back-Propagation��� 60

XOR Problem�� 62

Momentum�� 65

Cost Function and Learning Rule��� 68

Example: Cross Entropy Function��� 73

Cross Entropy Function�� 74

Comparison of Cost Functions��� 76

Summary�� 79

■■Chapter 4: Neural Network and Classification������������������������������� 81

Binary Classification��� 81

Multiclass Classification��� 86

Example: Multiclass Classification��� 93

Summary�� 102

■ Contents

vii

■■Chapter 5: Deep Learning�� 103

Improvement of the Deep Neural Network��� 105

Vanishing Gradient��� 105

Overfitting�� 107

Computational Load��� 109

Example: ReLU and Dropout��� 109

ReLU Function��� 110

Dropout�� 114

Summary�� 120

■■Chapter 6: Convolutional Neural Network����������������������������������� 121

Architecture of ConvNet��� 121

Convolution Layer��� 124

Pooling Layer�� 130

Example: MNIST��� 131

Summary�� 147

Index��� 149

ix

About the Author

Phil Kim, PhD is an experienced MATLAB programmer and user. He also works
with algorithms of large datasets drawn from AI, and Machine Learning. He
has worked at the Korea Aerospace Research Institute as a Senior Researcher.
There, his main task was to develop autonomous flight algorithms and onboard
software for unmanned aerial vehicles. He developed an onscreen keyboard
program named “Clickey” during his period in the PhD program, which served
as a bridge to bring him to his current assignment as a Senior Research Officer at
the National Rehabilitation Research Institute of Korea.

xi

About the Technical
Reviewer

Jonah Lissner is a research scientist advancing PhD and DSc programs,
scholarships, applied projects, and academic journal publications in theoretical
physics, power engineering, complex systems, metamaterials, geophysics,
and computation theory. He has strong cognitive ability in empiricism and
scientific reason for the purpose of hypothesis building, theory learning, and
mathematical and axiomatic modeling and testing for abstract problem solving.
His dissertations, research publications and projects, CV, journals, blog, novels,
and system are listed at http://Lissnerresearch.weebly.com.

http://lissnerresearch.weebly.com/

xiii

Acknowledgments

Although I assume that the acknowledgements of most books are not relevant
to readers, I would like to offer some words of appreciation, as the following
people are very special to me. First, I am deeply grateful to those I studied
Deep Learning with at the Modulabs (www.modulabs.co.kr). I owe them for
teaching me most of what I know about Deep Learning. In addition, I offer my
heartfelt thanks to director S. Kim of Modulabs, who allowed me to work in such
a wonderful place from spring to summer. I was able to finish the most of this
book at Modulabs.

I also thank president Jeon from Bogonet, Dr. H. You, Dr. Y.S. Kang, and
Mr. J. H. Lee from KARI, director S. Kim from Modulabs, and Mr. W. Lee and
Mr. S. Hwang from J.MARPLE. They devoted their time and efforts to reading and
revising the draft of this book. Although they gave me a hard time throughout the
revision process, I finished it without regret.

Lastly, my deepest thanks and love to my wife, who is the best woman I have
ever met, and children, who never get bored of me and share precious memories
with me.

http://www.modulabs.co.kr/

xv

Introduction

I was lucky enough to witness the world’s transition to an information society,
followed by a networked environment. I have been living with the changes
since I was young. The personal computer opened the door to the world of
information, followed by online communication that connected computers via
the Internet, and smartphones that connected people. Now, everyone perceives
the beginning of the overwhelming wave of artificial intelligence. More and more
intelligent services are being introduced, bringing in a new era. Deep Learning
is the technology that led this wave of intelligence. While it may hand over its
throne to other technologies eventually, it stands for now as a cornerstone of this
new technology.

Deep Learning is so popular that you can find materials about it virtually
anywhere. However, not many of these materials are beginner friendly. I wrote
this book hoping that readers can study this subject without the kind of difficulty
I experienced when first studying Deep Learning. I also hope that the step-by-
step approach of this book can help you avoid the confusion that I faced.

This book is written for two kinds of readers. The first type of reader is one
who plans to study Deep Learning in a systematic approach for further research
and development. This reader should read all the content from the beginning to
end. The example code will be especially helpful for further understanding the
concepts. A good deal of effort has been made to construct adequate examples
and implement them. The code examples are constructed to be easy to
read and understand. They are written in MATLAB for better legibility. There
is no better programming language than MATLAB at being able to handle the
matrices of Deep Learning in a simple and intuitive manner. The example code
uses only basic functions and grammar, so that even those who are not familiar
with MATLAB can easily understand the concepts. For those who are familiar
with programming, the example code may be easier to understand than the text

of this book.
The other kind of reader is one who wants more in-depth information about

Deep Learning than what can be obtained from magazines or newspapers,
yet doesn’t want to study formally. These readers can skip the example
code and briefly go over the explanations of the concepts. Such readers may
especially want to skip the learning rules of the neural network. In practice,
even developers seldom need to implement the learning rules, as various Deep
Learning libraries are available. Therefore, those who never need to develop it

■ Introduction

xvi

do not need to bother with it. However, pay closer attention to Chapters 1 and 2
and Chapters 5 and 6. Chapter 6 will be particularly helpful in capturing the
most important techniques of Deep Learning, even if you’re just reading over
the concepts and the results of the examples. Equations occasionally appear
to provide a theoretical background. However, they are merely fundamental
operations. Simply reading and learning to the point you can tolerate will
ultimately lead you to an overall understanding of the concepts.

Organization of the Book
This book consists of six chapters, which can be grouped into three subjects. The
first subject is Machine Learning and takes place in Chapter 1. Deep Learning
stems from Machine Learning. This implies that if you want to understand the
essence of Deep Learning, you have to know the philosophy behind Machine
Learning to some extent. Chapter 1 starts with the relationship between Machine
Learning and Deep Learning, followed by problem solving strategies and
fundamental limitations of Machine Learning. The detailed techniques are not
introduced in this chapter. Instead, fundamental concepts that apply to both the
neural network and Deep Learning will be covered.

The second subject is the artificial neural network.1 Chapters 2-4 focus
on this subject. As Deep Learning is a type of Machine Learning that employs
a neural network, the neural network is inseparable from Deep Learning.
Chapter 2 starts with the fundamentals of the neural network: principles of its
operation, architecture, and learning rules. It also provides the reason that the
simple single-layer architecture evolved to the complex multi-layer architecture.
Chapter 3 presents the back-propagation algorithm, which is an important and
representative learning rule of the neural network and also employed in Deep
Learning. This chapter explains how cost functions and learning rules are related
and which cost functions are widely employed in Deep Learning.

Chapter 4 explains how to apply the neural network to classification
problems. We have allocated a separate section for classification because it is
currently the most prevailing application of Machine Learning. For example,
image recognition, one of the primary applications of Deep Learning, is a
classification problem.

The third topic is Deep Learning. It is the main topic of this book.
Deep Learning is covered in Chapters 5 and 6. Chapter 5 introduces the
drivers that enable Deep Learning to yield excellent performance. For a
better understanding, it starts with the history of barriers and solutions of
Deep Learning. Chapter 6 covers the convolution neural network, which is

1Unless it can be confused with the neural network of human brain, the artificial neural
network is referred to as neural network in this book.

http://dx.doi.org/10.1007/978-1-4842-2845-6_1
http://dx.doi.org/10.1007/978-1-4842-2845-6_2
http://dx.doi.org/10.1007/978-1-4842-2845-6_5
http://dx.doi.org/10.1007/978-1-4842-2845-6_6
http://dx.doi.org/10.1007/978-1-4842-2845-6_6
http://dx.doi.org/10.1007/978-1-4842-2845-6_1
http://dx.doi.org/10.1007/978-1-4842-2845-6_1
http://dx.doi.org/10.1007/978-1-4842-2845-6_2
http://dx.doi.org/10.1007/978-1-4842-2845-6_4
http://dx.doi.org/10.1007/978-1-4842-2845-6_2
http://dx.doi.org/10.1007/978-1-4842-2845-6_3
http://dx.doi.org/10.1007/978-1-4842-2845-6_4
http://dx.doi.org/10.1007/978-1-4842-2845-6_5
http://dx.doi.org/10.1007/978-1-4842-2845-6_6
http://dx.doi.org/10.1007/978-1-4842-2845-6_5
http://dx.doi.org/10.1007/978-1-4842-2845-6_6

■ Introduction

xvii

representative of Deep Learning techniques. The convolution neural network
is second to none in terms of image recognition. This chapter starts with an
introduction of the basic concept and architecture of the convolution neural
network as it compares with the previous image recognition algorithms. It is
followed by an explanation of the roles and operations of the convolution layer
and pooling layer, which act as essential components of the convolution neural
network. The chapter concludes with an example of digit image recognition
using the convolution neural network and investigates the evolution of the
image throughout the layers.

Source Code
All the source code used in this book is available online via the Apress web site
at www.apress.com/9781484228449. The examples have been tested under
MATLAB 2014a. No additional toolbox is required.

http://www.apress.com/9781484228449

1© Phil Kim 2017
P. Kim, MATLAB Deep Learning, DOI 10.1007/978-1-4842-2845-6_1

CHAPTER 1

Machine Learning

You easily find examples where the concepts of Machine Learning and Deep
Learning are used interchangeably in the media. However, experts generally
distinguish them. If you have decided to study this field, it’s important you
understand what these words actually mean, and more importantly, how they
differ.

What occurred to you when you heard the term “Machine Learning” for the
first time? Did you think of something that was similar to Figure 1-1? Then you
must admit that you are seriously literal-minded.

Figure 1-1.  Machine Learning or Artificial Intelligence? Courtesy of Euclidean
Technologies Management (www.euclidean.com)

Figure 1-1 portrays Artificial Intelligence much more than Machine
Learning. Understanding Machine Learning in this way will bring about
serious confusion. Although Machine Learning is indeed a branch of Artificial
Intelligence, it conveys an idea that is much different from what this image may
imply.

http://www.euclidean.com/

Chapter 1 ■ Machine Learning

2

In general, Artificial Intelligence, Machine Learning, and Deep Learning are
related as follows:

“Deep Learning is a kind of Machine Learning, and
Machine Learning is a kind of Artificial Intelligence.”

How is that? It’s simple, isn’t it? This classification may not be as absolute as
the laws of nature, but it is widely accepted.

Let’s dig into it a little further. Artificial Intelligence is a very common word
that may imply many different things. It may indicate any form of technology
that includes some intelligent aspects rather than pinpoint a specific technology
field. In contrast, Machine Learning refers to a specific field. In other words,
we use Machine Learning to indicate a specific technological group of Artificial
Intelligence. Machine Learning itself includes many technologies as well. One of
them is Deep Learning, which is the subject of this book.

The fact that Deep Learning is a type of Machine Learning is very important,
and that is why we are going through this lengthy review on how Artificial
Intelligence, Machine Learning, and Deep Learning are related. Deep Learning
has been in the spotlight recently as it has proficiently solved some problems
that have challenged Artificial Intelligence. Its performance surely is exceptional
in many fields. However, it faces limitations as well. The limitations of Deep
Learning stems from its fundamental concepts that has been inherited from
its ancestor, Machine Learning. As a type of Machine Learning, Deep Learning
cannot avoid the fundamental problems that Machine Learning faces. That is
why we need to review Machine Learning before discussing the concept of Deep
Learning.

What Is Machine Learning?
In short, Machine Learning is a modeling technique that involves data. This
definition may be too short for first-timers to capture what it means. So, let me
elaborate on this a little bit. Machine Learning is a technique that figures out
the “model” out of “data.” Here, the data literally means information such as
documents, audio, images, etc. The “model” is the final product of Machine
Learning.

Before we go further into the model, let me deviate a bit. Isn’t it strange that
the definition of Machine Learning only addresses the concepts of data and
model and has nothing to do with “learning”? The name itself reflects that the
technique analyzes the data and finds the model by itself rather than having a
human do it. We call it “learning” because the process resembles being trained
with the data to solve the problem of finding a model. Therefore, the data
that Machine Learning uses in the modeling process is called “training” data.
Figure 1-2 illustrates what happens in the Machine Learning process.

Chapter 1 ■ Machine Learning

3

Training Data

Machine Learning

Model

Figure 1-2.  What happens during the machine learning process

Now, let’s resume our discussion about the model. Actually, the model is
nothing more than what we want to achieve as the final product. For instance, if
we are developing an auto-filtering system to remove spam mail, the spam mail
filter is the model that we are talking about. In this sense, we can say the model
is what we actually use. Some call the model a hypothesis. This term seems more
intuitive to those with statistical backgrounds.

Machine Learning is not the only modeling technique. In the field of
dynamics, people have been using a certain modeling technique, which employs
Newton’s laws and describes the motion of objects as a series of equations called
equations of motion, for a long time. In the field of Artificial Intelligence, we
have the expert system, which is a problem-solving model that is based on the
knowledge and know-how of the experts. The model works as well as the experts
themselves.

However, there are some areas where laws and logical reasoning are not
very useful for modeling. Typical problems can be found where intelligence is
involved, such as image recognition, speech recognition, and natural language
processing. Let me give you an example. Look at Figure 1-3 and identify the
numbers.

Chapter 1 ■ Machine Learning

4

I’m sure you have completed the task in no time. Most people do. Now,
let’s make a computer do the same thing. What do we do? If we use a traditional
modeling technique, we will need to find some rule or algorithm to distinguish
the written numbers. Hmm, why don’t we apply the rules that you have just used
to identify the numbers in your brain? Easy enough, isn’t it? Well, not really.
In fact, this is a very challenging problem. There was a time when researchers
thought it must be a piece of cake for computers to do this, as it is very easy for
even a human and computers are able to calculate much faster than humans.
Well, it did not take very long until they realized their misjudgment.

How were you able to identify the numbers without a clear specification or
a rule? It is hard to answer, isn’t it? But, why? It is because we have never learned
such a specification. From a young age, we have just learned that this is 0, and
that this is 1. We just thought that’s what it is and became better at distinguishing
numbers as we faced a variety of numbers. Am I right?

What about computers, then? Why don’t we let computers do the same
thing? That’s it! Congratulations! You have just grasped the concept of Machine
Learning. Machine Learning has been created to solve the problems for which
analytical models are hardly available. The primary idea of Machine Learning
is to achieve a model using the training data when equations and laws are not
promising.

Challenges with Machine Learning
We just discovered that Machine Learning is the technique used to find (or learn)
a model from the data. It is suitable for problems that involve intelligence,
such as image recognition and speech recognition, where physical laws or
mathematical equations fail to produce a model. On the one hand, the approach
that Machine Learning uses is what makes the process work. On the other hand,
it brings inevitable problems. This section provides the fundamental issues
Machine Learning faces.

Figure 1-3.  How does a computer identify numbers when they have no
recognizable pattern?

Chapter 1 ■ Machine Learning

5

Once the Machine Learning process finds the model from the training data,
we apply the model to the actual field data. This process is illustrated in Figure 1-4.
The vertical flow of the figure indicates the learning process, and the trained model
is described as the horizontal flow, which is called inference.

The data that is used for modeling in Machine Learning and the data
supplied in the field application are distinct. Let’s add another block to this
image, as shown in Figure 1-5, to better illustrate this situation.

Training Data

Machine Learning

ModelInput Data Output

Figure 1-4.  Applying a model based on field data

Chapter 1 ■ Machine Learning

6

The distinctness of the training data and input data is the structural
challenge that Machine Learning faces. It is no exaggeration to say that every
problem of Machine Learning originates from this. For example, what about
using training data, which is composed of handwritten notes from a single
person? Will the model successfully recognize the other person’s handwriting?
The possibility will be very low.

No Machine Learning approach can achieve the desired goal with the wrong
training data. The same ideology applies to Deep Learning. Therefore, it is
critical for Machine Learning approaches to obtain unbiased training data that
adequately reflects the characteristics of the field data. The process used to make
the model performance consistent regardless of the training data or the input
data is called generalization. The success of Machine Learning relies heavily on
how well the generalization is accomplished.

Overfitting
One of the primary causes of corruption of the generalization process is
overfitting. Yes, another new term. However, there is no need to be frustrated. It
is not a new concept at all. It will be much easier to understand with a case study
than with just sentences.

Consider a classification problem shown in Figure 1-6. We need to divide
the position (or coordinate) data into two groups. The points on the figure are
the training data. The objective is to determine a curve that defines the border of
the two groups using the training data.

Training Data

Machine Learning

ModelInput Data Output

Distinct

Figure 1-5.  Training and input data are sometimes very distinct

Chapter 1 ■ Machine Learning

7

Although we see some outliers that deviate from the adequate area, the
curve shown in Figure 1-7 seems to act as a reasonable border between the
groups.

Figure 1-7.  Curve to differentiate between two types of data

Figure 1-6.  Determine a curve to divide two groups of data

Chapter 1 ■ Machine Learning

8

When we judge this curve, there are some points that are not correctly
classified according to the border. What about perfectly grouping the points
using a complex curve, as shown in Figure 1-8?

This model yields the perfect grouping performance for the training data.
How does it look? Do you like this model better? Does it seem to reflect correctly
the general behavior?

Now, let’s use this model in the real world. The new input to the model is
indicated using the symbol ■, as shown in Figure 1-9.

Figure 1-8.  Better grouping, but at what cost?

Chapter 1 ■ Machine Learning

9

This proud error-free model identifies the new data as a class ∆. However,
the general trend of the training data tells us that this is doubtable. Grouping it
as a class • seems more reasonable. What happened to the model that yielded
100% accuracy for the training data?

Let’s take another look at the data points. Some outliers penetrate the
area of the other group and disturb the boundary. In other words, this data
contains much noise. The problem is that there is no way for Machine Learning
to distinguish this. As Machine Learning considers all the data, even the noise,
it ends up producing an improper model (a curve in this case). This would be
penny-wise and pound-foolish. As you may notice here, the training data is
not perfect and may contain varying amounts of noise. If you believe that every
element of the training data is correct and fits the model precisely, you will get a
model with lower generalizability. This is called overfitting.

Certainly, because of its nature, Machine Learning should make every effort
to derive an excellent model from the training data. However, a working model
of the training data may not reflect the field data properly. This does not mean
that we should make the model less accurate than the training data on purpose.
This will undermine the fundamental strategy of Machine Learning.

Now we face a dilemma—reducing the error of the training data leads to
overfitting that degrades generalizability. What do we do? We confront it, of
course! The next section introduces the techniques that prevent overfitting.

Figure 1-9.  The new input is placed into the data

Chapter 1 ■ Machine Learning

10

Confronting Overfitting
Overfitting significantly affects the level of performance of Machine Learning.
We can tell who is a pro and who is an amateur by watching their respective
approaches in dealing with overfitting. This section introduces two typical
methods used to confront overfitting: regularization and validation.

Regularization is a numerical method that attempts to construct a model
structure as simple as possible. The simplified model can avoid the effects
of overfitting at the small cost of performance. The grouping problem of the
previous section can be used as a good example. The complex model (or curve)
tends to be overfitting. In contrast, although it fails to classify correctly some
points, the simple curve reflects the overall characteristics of the group much
better. If you understand how it works, that is enough for now. We will revisit
regularization with further details in Chapter Three’s “Cost Function and
Learning Rule” section.

We are able to tell that the grouping model is overfitted because the training
data is simple, and the model can be easily visualized. However, this is not the
case for most situations, as the data has higher dimensions. We cannot draw the
model and intuitively evaluate the effects of overfitting for such data. Therefore,
we need another method to determine whether the trained model is overfitted
or not. This is where validation comes into play.

The validation is a process that reserves a part of the training data and uses
it to monitor the performance. The validation set is not used for the training
process. Because the modeling error of the training data fails to indicate
overfitting, we use some of the training data to check if the model is overfitted.
We can say that the model is overfitted when the trained model yields a low level
of performance to the reserved data input. In this case, we will modify the model
to prevent the overfitting. Figure 1-10 illustrates the division of the training data
for the validation process.

Chapter 1 ■ Machine Learning

11

When validation is involved, the training process of Machine Learning
proceeds by the following steps:

	 1.	 Divide the training data into two groups: one for
training and the other for validation. As a rule of thumb,
the ratio of the training set to the validation set is 8:2.

	 2.	 Train the model with the training set.

	 3.	 Evaluate the performance of the model using the
validation set.

a.	 If the model yields satisfactory performance, finish
the training.

b.	 If the performance does not produce sufficient
results, modify the model and repeat the process
from Step 2.

Cross-validation is a slight variation of the validation process. It still divides
the training data into groups for the training and validation, but keeps changing
the datasets. Instead of retaining the initially divided sets, cross-validation
repeats the division of the data. The reason for doing this is that the model can
be overfitted even to the validation set when it is fixed. As the cross-validation
maintains the randomness of the validation dataset, it can better detect the
overfitting of the model. Figure 1-11 describes the concept of cross-validation.
The dark shades indicate the validation data, which is randomly selected
throughout the training process.

Training Data

Training Set

Validation Set

Figure 1-10.  Dividing the training data for the validation process

Chapter 1 ■ Machine Learning

12

Types of Machine Learning
Many different types of Machine Learning techniques have been developed to
solve problems in various fields. These Machine Learning techniques can be
classified into three types depending on the training method (see Figure 1-12).

•	 Supervised learning

•	 Unsupervised learning

•	 Reinforcement learning

Training #1 Training #2 Training #N

Figure 1-11.  Cross-validation

Machine
Learning

Supervised
Learning

Unsupervised
Learning

Reinforcement
Learning

Figure 1-12.  Three types of Machine Learning techniques

Chapter 1 ■ Machine Learning

13

Supervised learning is very similar to the process in which a human learns
things. Consider that humans obtain new knowledge as we solve exercise
problems.

	 1.	 Select an exercise problem. Apply current knowledge
to solve the problem. Compare the answer with the
solution.

	 2.	 If the answer is wrong, modify current knowledge.

	 3.	 Repeat Steps 1 and 2 for all the exercise problems.

When we apply an analogy between this example and the Machine Learning
process, the exercise problems and solutions correspond to the training data,
and the knowledge corresponds to the model. The important thing is the fact
that we need the solutions. This is the vital aspect of the supervised learning.
Its name even implies the tutoring in which the teacher gives solutions to the
students to memorize.

In supervised learning, each training dataset should consist of input and
correct output pairs. The correct output is what the model is supposed to
produce for the given input.

{ input, correct output }

Learning in supervised learning is the series of revisions of a model to
reduce the difference between the correct output and the output from the model
for the same input. If a model is perfectly trained, it will produce a correct output
that corresponds to the input from the training data.

In contrast, the training data of the unsupervised learning contains only
inputs without correct outputs.

{ input }

At a first glance, it may seem difficult to understand how to train without
correct outputs. However, many methods of this type have been developed
already. Unsupervised learning is generally used for investigating the
characteristics of the data and preprocessing the data. This concept is similar
to a student who just sorts out the problems by construction and attribute and
doesn’t learn how to solve them because there are no known correct outputs.

Reinforcement learning employs sets of input, some output, and grade as
training data. It is generally used when optimal interaction is required, such as
control and game plays.

{ input, some output, grade for this output }

Chapter 1 ■ Machine Learning

14

This book only covers supervised learning. It is used for more applications
compared to unsupervised learning and reinforcement learning, and more
importantly, it is the first concept you will study when entering the world of
Machine Learning and Deep Learning.

Classification and Regression
The two most common types of application of supervised learning are
classification and regression. These words may sound unfamiliar, but are
actually not so challenging.

Let’s start with classification. This may be the most prevailing application
of Machine Learning. The classification problem focuses on literally finding the
classes to which the data belongs. Some examples may help.

Spam mail filtering service ➔ Classifies the mails by regular or spam
Digit recognition service ➔ Classifies the digit image into one of 0-9
Face recognition service ➔ Classifies the face image into one of the

registered users
We addressed in the previous section that supervised learning requires

input and correct output pairs for the training data. Similarly, the training data of
the classification problem looks like this:

{ input, class }

In the classification problem, we want to know which class the input belongs
to. So the data pair has the class in place of the correct output corresponding to
the input.

Let’s proceed with an example. Consider the same grouping problem that
we have been discussing. The model we want Machine Learning to answer is
which one of the two classes (∆ and •) does the user’s input coordinate (X, Y)
belong (see Figure 1-13).

Chapter 1 ■ Machine Learning

15

In this case, the training data of N sets of the element will look like Figure 1-14.

Figure 1-14.  Classifying the data

Figure 1-13.  Same data viewed from the perspective of classification

Chapter 1 ■ Machine Learning

16

In contrast, the regression does not determine the class. Instead, it estimates
a value. As an example, if you have datasets of age and income (indicated with
a •) and want to find the model that estimates income by age, it becomes a
regression problem (see Figure 1-15).1

The dataset of this example will look like the table in Figure 1-16, where X
and Y are age and income, respectively.

Income

Age

Figure 1-15.  Datasets of age and income

1The original meaning of the word “regress” is to go back to an average. Francis Galton, a
British geneticist, researched the correlation of the height of parents and children and
found out that the individual height converged to the average of the total population. He
named his methodology “regression analysis.”

Chapter 1 ■ Machine Learning

17

Figure 1-16.  Classifying the age and income data

Both classification and regression are parts of supervised learning.
Therefore, their training data is equally in the form of {input, correct
output}. The only difference is the type of correct outputs—classification
employs classes, while the regression requires values.

In summary, analysis can become classification when it needs a model to
judge which group the input data belongs to and regression when the model
estimates the trend of the data.

Just for reference, one of the representative applications of unsupervised
learning is clustering. It investigates the characteristics of the individual data
and categorizes the related data. It is very easy to confuse clustering and
classification, as their results are similar. Although they yield similar outputs,
they are two completely different approaches. We have to keep in mind that
clustering and classification are distinct terms. When you encounter the term
clustering, just remind yourself that it focuses on unsupervised learning.

Summary
Let’s briefly recap what we covered in this chapter:

•	 Artificial Intelligence, Machine Learning, and Deep
Learning are distinct. But they are related to each other in
the following way: “Deep Learning is a kind of Machine
Learning, and Machine Learning is a kind of Artificial
Intelligence”.

Chapter 1 ■ Machine Learning

18

•	 Machine Learning is an inductive approach that derives
a model from the training data. It is useful for image
recognition, speech recognition, and natural language
processing etc.

•	 The success of Machine Learning heavily relies on how
well the generalization process is implemented. In order
to prevent performance degradation due to the differences
between the training data and actual input data, we need a
sufficient amount of unbiased training data.

•	 Overfitting occurs when the model has been overly
customized to the training data that it yields poor
performance for the actual input data, while its
performance for the training data is excellent. Overfitting is
one of the primary factors that reduces the generalization
performance.

•	 Regularization and validation are the typical approaches
used to solve the overfitting problem. Regularization is
a numerical method that yields the simplest model as
possible. In contrast, validation tries to detect signs of
overfitting during training and takes action to prevent it.
A variation of validation is cross-validation.

•	 Depending on the training method, Machine Learning
can be supervised learning, unsupervised learning, and
reinforcement learning. The formats of the training data for
theses learning methods are shown here.

Training Method Training Data

Supervised Learning { input, correct output }

Unsupervised Learning { input }

Reinforced Learning { input, some output, grade for this output }

•	 Supervised learning can be divided into classification
and regression, depending on the usage of the model.
Classification determines which group the input data
belongs to. The correct output of the classification is given
as categories. In contrast, regression predicts values and
takes the values for the correct output in the training data.

19© Phil Kim 2017
P. Kim, MATLAB Deep Learning, DOI 10.1007/978-1-4842-2845-6_2

CHAPTER 2

Neural Network

This chapter introduces the neural network, which is widely used as the model
for Machine Learning. The neural network has a long history of development
and a vast amount of achievement from research works. There are many
books available that purely focus on the neural network. Along with the recent
growth in interest for Deep Learning, the importance of the neural network has
increased significantly as well. We will briefly review the relevant and practical
techniques to better understand Deep Learning. For those who are new to the
concept of the neural network, we start with the fundamentals.

First, we will see how the neural network is related to Machine Learning.
The models of Machine Learning can be implemented in various forms.
The neural network is one of them. Simple isn’t it? Figure 2-1 illustrates the
relationship between Machine Learning and the neural network. Note that we
have the neural network in place of the model, and the learning rule in place of
Machine Learning. In context of the neural network, the process of determining
the model (neural network) is called the learning rule. This chapter explains
the learning rules for a single-layer neural network. The learning rules for a
multi-layer neural network are addressed in Chapter 3.

Training Data

Learning Rule

Input Data OutputNeural Network

Figure 2-1.  The relationship between Machine Learning and the neural network

http://dx.doi.org/10.1007/978-1-4842-2845-6_3

Chapter 2 ■ Neural Network

20

Nodes of a Neural Network
Whenever we learn something, our brain stores the knowledge. The computer
uses memory to store information. Although they both store information, their
mechanisms are very different. The computer stores information at specified
locations of the memory, while the brain alters the association of neurons.
The neuron itself has no storage capability; it just transmits signals from one
neurons to the other. The brain is a gigantic network of these neurons, and the
association of the neurons forms specific information.

The neural network imitates the mechanism of the brain. As the brain
is composed of connections of numerous neurons, the neural network is
constructed with connections of nodes, which are elements that correspond to
the neurons of the brain. The neural network mimics the neurons’ association,
which is the most important mechanism of the brain, using the weight value. The
following table summarizes the analogy between the brain and neural network.

Brain Neural Network

Neuron Node

Connection of neurons Connection weight

Explaining this any further using text may cause more confusion. Look at a
simple example for a better understanding of the neural network’s mechanism.
Consider a node that receives three inputs, as shown in Figure 2-2.

b

y

x1

x2

x3

w3

w2

w1

Figure 2-2.  A node that receives three inputs

The circle and arrow of the figure denote the node and signal flow,
respectively. x

1
, x

2
, and x

3
 are the input signals. w

1
, w

2
, and w

3
 are the weights for

the corresponding signals. Lastly, b is the bias, which is another factor associated
with the storage of information. In other words, the information of the neural net
is stored in the form of weights and bias.

Chapter 2 ■ Neural Network

21

The input signal from the outside is multiplied by the weight before it
reaches the node. Once the weighted signals are collected at the node, these
values are added to be the weighted sum. The weighted sum of this example is
calculated as follows:

 v w x w x w x b= ´() + ´() + ´() +1 1 2 2 3 3

This equation indicates that the signal with a greater weight has a greater
effect. For instance, if the weight w

1
 is 1, and w

2
 is 5, then the signal x

2
 has five

times larger effect than that of x
1
. When w

1
 is zero, x

1
 is not transmitted to the

node at all. This means that x
1
 is disconnected from the node. This example

shows that the weights of the neural network imitate how the brain alters the
association of the neurons.

The equation of the weighted sum can be written with matrices as:

v wx b= +

where w and x are defined as:

w w w w x

x

x

x

= [] =
é

ë

ê
ê
ê

ù

û

ú
ú
ú

1 2 3

1

2

3

Finally, the node enters the weighted sum into the activation function and
yields its output. The activation function determines the behavior of the node.

y v= ()j

j ×() of this equation is the activation function. Many types of activation
functions are available in the neural network. We will elaborate on them later.

Let’s briefly review the mechanism of the neural net. The following process
is conducted inside the neural net node:

	 1.	 The weighted sum of the input signals is calculated.

v w x w x w x b

wx b

= + + +
= +

1 1 2 2 3 3

	 2.	 The output from the activation function to the weighted
sum is passed outside.

y v wx b= () = +()j j

Chapter 2 ■ Neural Network

22

Layers of Neural Network
As the brain is a gigantic network of the neurons, the neural network is a network
of nodes. A variety of neural networks can be created depending on how the
nodes are connected. One of the most commonly used neural network types
employs a layered structure of nodes as shown in Figure 2-3.

Input Layer Output LayerHidden Layers

Figure 2-3.  A layered structure of nodes

The group of square nodes in Figure 2-3 is called the input layer. The nodes
of the input layer merely act as the passage that transmits the input signals to the
next nodes. Therefore, they do not calculate the weighted sum and activation
function. This is the reason that they are indicated by squares and distinguished
from the other circular nodes. In contrast, the group of the rightmost nodes is
called the output layer. The output from these nodes becomes the final result of
the neural network. The layers in between the input and output layers are called
hidden layers. They are given this name because they are not accessible from the
outside of the neural network.

The neural network has been developed from a simple architecture to a
more and more complex structure. Initially, neural network pioneers had a very
simple architecture with only input and output layers, which are called single-
layer neural networks. When hidden layers are added to a single-layer neural
network, this produces a multi-layer neural network. Therefore, the multi-layer
neural network consists of an input layer, hidden layer(s), and output layer. The
neural network that has a single hidden layer is called a shallow neural network
or a vanilla neural network. A multi-layer neural network that contains two or
more hidden layers is called a deep neural network. Most of the contemporary
neural networks used in practical applications are deep neural networks. The
following table summarizes the branches of the neural network depending on
the layer architecture.

Chapter 2 ■ Neural Network

23

Single-layer Neural Network (Shallow) Multi-layer Neural Network

Deep Neural Network

Figure 2-4.  The branches of the neural network depend on the layer architecture

Single-Layer Neural Network Input Layer – Output Layer

Multi-Layer
Neural Network

Shallow Neural
Network

Input Layer – Hidden Layer – Output
Layer

Deep Neural
Network

Input Layer – Hidden Layers – Output
Layers

The reason that we classify the multi-layer neural network by these two
types has to do with its historical background of development. The neural
network started as the single-layer neural network and evolved to the shallow
neural network, followed by the deep neural network. The deep neural network
has not been seriously highlighted until the mid-2000s, after two decades had
passed since the development of the shallow neural network. Therefore, for a
long time, the multi-layer neural network meant just the single hidden-layer
neural network. When the need to distinguish multiple hidden layers arose, they
gave a separate name to the deep neural network. See Figure 2-4.

Chapter 2 ■ Neural Network

24

In the layered neural network, the signal enters the input layer, passes
through the hidden layers, and leaves through the output layer. During this
process, the signal advances layer by layer. In other words, the nodes on one
layer receive the signal simultaneously and send the processed signal to the next
layer at the same time.

Let’s follow a simple example to see how the input data is processed as it
passes through the layers. Consider the neural network with a single hidden
layer shown in Figure 2-5.

x

(x) = x

Figure 2-6.  The activation function of each node is a linear function

1

2

3

2

4

1
1

3

5

1

2

1

1

1

Figure 2-5.  A neural network with a single hidden layer

Just for convenience, the activation function of each node is assumed to be
a linear function shown in Figure 2-6. This function allows the nodes to send out
the weighted sum itself.

Chapter 2 ■ Neural Network

25

The first node of the hidden layer calculates the output as:

Weighted sum: v = ´() + ´() + =3 1 1 2 1 6

Output: y v v= () = =j 6

In a similar manner, the second node of the hidden layer calculates the
output as:

Weighted sum: v = ´() + ´() + =2 1 4 2 1 11

Output: y v v= () = =j 11

The weighted sum calculations can be combined in a matrix equation as
follows:

v =
´ + ´ +
´ + ´ +

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú
é

ë
ê
ù

û
ú +

é

ë
ê
ù

û
ú =

3 1 1 2 1

2 1 4 2 1

3 1

2 4

1

2

1

1

6

11

éé

ë
ê

ù

û
ú

The weights of the first node of the hidden layer lay in the first row, and the
weights of the second node are in the second row. This result can be generalized
as the following equation:

	 v Wx b= + 	 (Equation 2.1)

1

2

3

4

3

1

2

1

5

2
1

1

1

1

Figure 2-7.  Calculate the output from the hidden layer

Now we will calculate the output from the hidden layer (Figure 2-7). As
previously addressed, no calculation is needed for the input nodes, as they just
transmit the signal.

Chapter 2 ■ Neural Network

26

where x is the input signal vector and b is the bias vector of the node. The matrix
W contains the weights of the hidden layer nodes on the corresponding rows.
For the example neural network, W is given as:

W =
é

ë
ê

ù

û

- - --
-- --

weightsof the first node

weightsof the second node úú =
é

ë
ê

ù

û
ú

3 1

2 4

Since we have all the outputs from the hidden layer nodes, we can
determine the outputs of the next layer, which is the output layer. Everything is
identical to the previous calculation, except that the input signal comes from the
hidden layer.

1

1
1

1

1

11

2

2

2

5

3 3

4

Figure 2-8.  Determine the outputs of the output layer

Let’s use the matrix form of Equation 2.1 to calculate the output.

Weighted sum: v =
é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú +

é

ë
ê

ù

û
ú =

é

ë
ê

ù

û
ú

3 2

5 1

6

11

1

1

41

42

Output: y v v= () = =
é

ë
ê

ù

û
új

41

42

How was that? The process may be somewhat cumbersome, but there is
nothing difficult in the calculation itself. As we just saw, the neural network is
nothing more than a network of layered nodes, which performs only simple
calculations. It does not involve any difficult equations or a complicated
architecture. Although it appears to be simple, the neural network has been
breaking all performance records for the major Machine Learning fields, such as
image recognition and speech recognition. Isn’t it interesting? It seems like the
quote, “All the truth is simple” is an apt description.

I must leave a final comment before wrapping up the section. We used a
linear equation for the activation of the hidden nodes, just for convenience.
This is not practically correct. The use of a linear function for the nodes negates

Chapter 2 ■ Neural Network

27

the effect of adding a layer. In this case, the model is mathematically identical
to a single-layer neural network, which does not have hidden layers. Let’s see
what really happens. Substituting the equation of weighted sum of the hidden
layer into the equation of weighted sum of the output layer yields the following
equation:

v =
é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú +

é

ë
ê

ù

û
ú

=
é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú
é

ë
ê

ù

û

3 2

5 1

6

11

1

1

3 2

5 1

3 1

2 4

1

2 úú
+
é

ë
ê

ù

û
ú

æ

è
ç

ö

ø
÷ +

é

ë
ê

ù

û
ú

=
é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú +

1

1

1

1

3 2

5 1

3 1

2 4

1

2

3 2

55 1

1

1

1

1

13 11

17 9

1

2

6

7

é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú +

é

ë
ê

ù

û
ú

=
é

ë
ê

ù

û
ú
é

ë
ê

ù

û
ú +

é

ë
ê

ù

û
ú

This matrix equation indicates that this example neural network is
equivalent to a single layer neural network as shown in Figure 2-9.

Keep in mind that the hidden layer becomes ineffective when the hidden
nodes have linear activation functions. However, the output nodes may, and
sometimes must, employ linear activation functions.

Supervised Learning of a Neural Network
This section introduces the concepts and process of supervised learning of the
neural network. It is addressed in the “Types of Machine Learning” section
in Chapter 1. Of the many training methods, this book covers only supervised
learning. Therefore, only supervised learning is discussed for the neural network

1

1
1

1

1

11

2 5

2

2

3 3

4

1

2

13

17

11

9

7

6

Figure 2-9.  This example neural network is equivalent to a single layer neural
network

http://dx.doi.org/10.1007/978-1-4842-2845-6_1

Chapter 2 ■ Neural Network

28

as well. In the big picture, supervised learning of the neural network proceeds in
the following steps:

	 1.	 Initialize the weights with adequate values.

	 2.	 Take the “input” from the training data, which is
formatted as { input, correct output }, and enter
it into the neural network. Obtain the output from the
neural network and calculate the error from the correct
output.

	 3.	 Adjust the weights to reduce the error.

	 4.	 Repeat Steps 2-3 for all training data

These steps are basically identical to the supervised learning process of the
“Types of Machine Learning” section. This makes sense because the training of
supervised learning is a process that modifies the model to reduce the difference
between the correct output and model’s output. The only difference is that
the modification of the model becomes the changes in weights for the neural
network. Figure 2-10 illustrates the concept of supervised learning that has
been explained so far. This will help you clearly understand the steps described
previously.

Training Data

{ Input, Correct output }
Input

Correct output

Output -

+

Error

Weight Update

Figure 2-10.  The concept of supervised learning

Chapter 2 ■ Neural Network

29

Training of a Single-Layer Neural Network:
Delta Rule
As previously addressed, the neural network stores information in the form of
weights.1 Therefore, in order to train the neural network with new information,
the weights should be changed accordingly. The systematic approach to
modifying the weights according to the given information is called the
learning rule. Since training is the only way for the neural network to store the
information systematically, the learning rule is a vital component in neural
network research.

In this section, we deal with the delta rule,2 the representative learning rule
of the single-layer neural network. Although it is not capable of multi-layer
neural network training, it is very useful for studying the important concepts of
the learning rule of the neural network.

Consider a single-layer neural network, as shown in Figure 2-11. In the
figure, d

i
 is the correct output of the output node i.

xj
wij

i
yi yiei di –

Figure 2-11.  A single-layer neural network

1Unless otherwise noticed, the weight in this book includes bias as well.
2It is also referred to as Adaline rule as well as Widrow-Hoff rule.

Long story short, the delta rule adjusts the weight as the following
algorithm:

“If an input node contributes to the error of the output
node, the weight between the two nodes is adjusted in
proportion to the input value, x

j
 and the output error, e

i
.”

Chapter 2 ■ Neural Network

30

This rule can be expressed in equation as:

	 w w e xij ij i j¬ + a 	 (Equation 2.2)

where

x
j
 = The output from the input node j, (j =1 2 3, ,)

e
i
 = The error of the output node i

w
ij
 = The weight between the output node i and input

node j

α = Learning rate (0 1< £a)

The learning rate, α, determines how much the weight is changed per time. If
this value is too high, the output wanders around the solution and fails to converge.
In contrast, if it is too low, the calculation reaches the solution too slowly.

To take a concrete example, consider the single-layer neural network, which
consists of three input nodes and one output node, as shown in Figure 2-12. For
convenience, we assume no bias for the output node at this time. We use a linear
activation function; i.e., the weighted sum is directly transferred to the output.

x1

y1 e1 d1 y1x2

x3

w11

w12

w13

= –

Figure 2-12.  A single-layer neural network with three input nodes and one
output node

Note that the first number of the subscript (1) indicates the node number
to which the input enters. For example, the weight between the input node 2
and output node 1 is denoted as w

12
. This notation enables an easier matrix

operation; the weights associated with the node i are allocated at the i -th row of
the weight matrix.

Applying the delta rule of Equation 2.2 to the example neural network yields
the renewal of the weights as:

w w e x

w w e x

w w e x

11 11 1 1

12 12 1 2

13 13 1 3

¬ +
¬ +
¬ +

a
a
a

Chapter 2 ■ Neural Network

31

3The delta rule is a type of numerical method called gradient descent. The gradient
descent starts from the initial value and proceeds to the solution. Its name originates from
its behavior whereby it searches for the solution as if a ball rolls down the hill along the
steepest path. In this analogy, the position of the ball is the occasional output from the
model, and the bottom is the solution. It is noteworthy that the gradient descent method
cannot drop the ball to the bottom with just one throw.

Let’s summarize the training process using the delta rule for the single-layer
neural network.

	 1.	 Initialize the weights at adequate values.

	 2.	 Take the “input” from the training data of { input,
correct output } and enter it to the neural network.
Calculate the error of the output, y

i
, from the correct

output, d
i
, to the input.

e d yi i i= -

	 3.	 Calculate the weight updates according to the following
delta rule:

D =w e xij i ja

	 4.	 Adjust the weights as:

w w wij ij ij¬ + D

	 5.	 Perform Steps 2-4 for all training data.

	 6.	 Repeat Steps 2-5 until the error reaches an acceptable
tolerance level.

These steps are almost identical to that of the process for the supervised
learning in the “Supervised Learning of a Neural Network” section. The only
difference is the addition of Step 6. Step 6 just states that the whole training
process is repeated. Once Step 5 has been completed, the model has been
trained with every data point. Then, why do we train it using all of the same
training data? This is because the delta rule searches for the solution as it repeats
the process, rather than solving it all at once.3 The whole process repeats, as
retraining the model with the same data may improve the model.

Just for reference, the number of training iterations, in each of which all
training data goes through Steps 2-5 once, is called an epoch. For instance,
epoch = 10 means that the neural network goes through 10 repeated training
processes with the same dataset.

Chapter 2 ■ Neural Network

32

Are you able to follow this section so far? Then you have learned most of the
key concepts of the neural network training. Although the equations may vary
depending on the learning rule, the essential concepts are relatively the same.
Figure 2-13 illustrates the training process described in this section.

Generalized Delta Rule
This section touches on some theoretical aspects of the delta rule. However,
you don’t need to be frustrated. We will go through the most essential subjects
without elaborating too much on the specifics.

The delta rule of the previous section is rather obsolete. Later studies
have uncovered that there exists a more generalized form of the delta rule. For
an arbitrary activation function, the delta rule is expressed as the following
equation.

	 w w xij ij i j¬ + ad 	 (Equation 2.3)

It is the same as the delta rule of the previous section, except that e
i
 is

replaced with δ
i
. In this equation, δ

i
 is defined as:

	 d ji i iv e= ()¢ 	 (Equation 2.4)

ij ij

Figure 2-13.  The training process

Chapter 2 ■ Neural Network

33

where

e
i
 = The error of the output node i

v
i
 = The weighted sum of the output node i

φ′ = The derivative of the activation function φ of the
output node i

Recall that we used a linear activation function of j x x() = for the example.
The derivative of this function is ¢() =j x 1 . Substituting this value into

Equation 2.4 yields δ
i
 as:

di ie=

Plugging this equation into Equation 2.3 results in the same formula as the
delta rule in Equation 2.2. This fact indicates that the delta rule in Equation 2.2 is
only valid for linear activation functions.

Now, we can derive the delta rule with the sigmoid function, which is widely
used as an activation function. The sigmoid function is defined as shown in
Figure 2-14.4

4The output from a sigmoid function is within the range of 0-1. This behavior of the
sigmoid function is useful when the neural network produces probability outputs.

1

0 x

(x) = 1
1+e -x

Figure 2-14.  The sigmoid function defined

We need the derivative of this function, which is given as:

¢() = () - ()()j j jx x x1

Substituting this derivative into Equation 2.4 yields δ
i
 as:

d j j ji i i i i iv e v v e= () = () - ()()¢ 1

Chapter 2 ■ Neural Network

34

Again, plugging this equation into Equation 2.3 gives the delta rule for the
sigmoid function as:

	 w w v v e xij ij i i i j¬ + () - ()()a j j1 	 (Equation 2.5)

Although the weight update formula is rather complicated, it maintains the
identical fundamental concept where the weight is determined in proportion to
the output node error, e

i
 and the input node value, x

j
.

SGD, Batch, and Mini Batch
The schemes that are used to calculate the weight update, ∆w

ij
, are introduced

in this section. Three typical schemes are available for supervised learning of the
neural network.

Stochastic Gradient Descent
The Stochastic Gradient Descent (SGD) calculates the error for each training
data and adjusts the weights immediately. If we have 100 training data points,
the SGD adjusts the weights 100 times. Figure 2-15 shows how the weight update
of the SGD is related to the entire training data.

TrainingWeight Update

Training Data

Figure 2-15.  How the weight update of the SGD is related to the entire training
data

Chapter 2 ■ Neural Network

35

As the SGD adjusts the weight for each data point, the performance of the
neural network is crooked while the undergoing the training process. The name
“stochastic” implies the random behavior of the training process. The SGD
calculates the weight updates as:

D =w xij i jad

This equation implies that all the delta rules of the previous sections are
based on the SGD approach.

Batch
In the batch method, each weight update is calculated for all errors of the training
data, and the average of the weight updates is used for adjusting the weights. This
method uses all of the training data and updates only once. Figure 2-16 explains
the weight update calculation and training process of the batch method.

Training Data

Average of Weight Updates
Training

Figure 2-16.  The batch method’s weight update calculation and training process

The batch method calculates the weight update as:

	 D = D ()
=
åw

N
w kij

k

N

ij

1

1

	 (Equation 2.6)

where ∆w
ij
(k) is the weight update for the k -th training data and N is the total

number of the training data.

Chapter 2 ■ Neural Network

36

Because of the averaged weight update calculation, the batch method
consumes a significant amount of time for training.

Mini Batch
The mini batch method is a blend of the SGD and batch methods. It selects a part
of the training dataset and uses them for training in the batch method. Therefore,
it calculates the weight updates of the selected data and trains the neural network
with the averaged weight update. For example, if 20 arbitrary data points are
selected out of 100 training data points, the batch method is applied to the 20 data
points. In this case, a total of five weight adjustments are performed to complete
the training process for all the data points (5 = 100/20). Figure shows 2-17 how the
mini batch scheme selects training data and calculates the weight update.

Training Data

Average of Weight Updates
Training

Figure 2-17.  How the mini batch scheme selects training data and calculates the
weight update

The mini batch method, when it selects an appropriate number of data
points, obtains the benefits from both methods: speed from the SGD and
stability from the batch. For this reason, it is often utilized in Deep Learning,
which manipulates a significant amount of data.

Now, let’s delve a bit into the SGD, batch, and mini batch in terms of the
epoch. The epoch is briefly introduced in the “Training of a Single-Layer Neural
Network: Delta Rule” section. As a recap, the epoch is the number of completed
training cycles for all of the training data. In the batch method, the number of
training cycles of the neural network equals an epoch, as shown in Figure 2-18.
This makes perfect sense because the batch method utilizes all of the data for
one training process.

Chapter 2 ■ Neural Network

37

In contrast, in the mini batch, the number of training processes for one
epoch varies depending on the number of data points in each batch. When we
have N training data points in total, the number of training processes per epoch
is greater than one, which corresponds to the batch method, and smaller than N,
which corresponds to the SGD.

Example: Delta Rule
You are now ready to implement the delta rule as a code. Consider a neural
network that consists of three input nodes and one output node, as shown in
Figure 2-19. The sigmoid function is used for the activation function of the
output node.

Training Data

Average of Weight Updates
Training

epoch =1

Figure 2-18.  The number of training cycles of the neural network equals an epoch

y

x1

x2

x3

w3

w2

w1

Figure 2-19.  Neural network that consists of three input nodes and one output
node

Chapter 2 ■ Neural Network

38

We have four training data points, as shown in the following table. As they
are used for supervised learning, each data point consists of an input-correct
output pair. The last bold number of each dataset is the correct output.

Let’s train the neural network with this data. The delta rule for the sigmoid
function, which is given by Equation 2.5, is the learning rule. Equation 2.5 can be
rearranged as a step-by-step process, as follows:

	

d j j

a d
i i i i

ij i j

ij ij ij

v v e

w x

w w w

= () - ()()
=

¬ + D

D

1

	 (Equation 2.7)

We will implement the delta rule using the SGD and batch methods for the
example neural network. As it is single-layered and contains simple training
data, the code is not complicated. Once you follow the code, you will clearly
see the difference between the SGD code and the batch code. As previously
addressed, the SGD trains every data point immediately and does not require
addition or averages of the weight updates. Therefore, the code for the SGD is
simpler than that of the batch.

Implementation of the SGD Method
The function DeltaSGD is the SGD method of the delta rule given by Equation 2.7.
It takes the weights and training data of the neural network and returns the
newly trained weights.

W = DeltaSGD(W, X, D)

Chapter 2 ■ Neural Network

39

where W is the argument that carries the weights. X and D carry the inputs
and correct outputs of the training data, respectively. The training data is divided
into two variables for convenience. The following listing shows the DeltaSGD.m
file, which implements the DeltaSGD function.

function W = DeltaSGD(W, X, D)
 alpha = 0.9;

 N = 4;
 for k = 1:N
 x = X(k, :)';
 d = D(k);

 v = W*x;
 y = Sigmoid(v);

 e = d - y;
 delta = y*(1-y)*e;

 dW = alpha*delta*x; % delta rule

 W(1) = W(1) + dW(1);
 W(2) = W(2) + dW(2);
 W(3) = W(3) + dW(3);
 end
end

The code proceeds as follows: Take one of the data points and calculate the
output, y. Calculate the difference between this output and the correct output, d.
Calculate the weight update, dW, according to the delta rule. Using this weight
update, adjust the weight of neural network. Repeat the process for the number
of the training data points, N. This way, the function DeltaSGD trains the neural
network for every epoch.

The function Sigmoid that DeltaSGD calls is listed next. This outlines the
pure definition of the sigmoid function and is implemented in the Sigmoid.m
file. As it is a very simple code, we skip further discussion of it.

function y = Sigmoid(x)
 y = 1 / (1 + exp(-x));
end

The following listing shows the TestDeltaSGD.m file, which tests the
DeltaSGD function. This program calls the function DeltaSGD, trains it 10,000
times, and displays the output from the trained neural network with the input

Chapter 2 ■ Neural Network

40

of all the training data. We can see how well the neural network was trained by
comparing the output with the correct output.

clear all

X = [0 0 1;
 0 1 1;
 1 0 1;
 1 1 1;
];

D = [0
 0
 1
 1
];

W = 2*rand(1, 3) - 1;

for epoch = 1:10000 % train
 W = DeltaSGD(W, X, D);
end

N = 4; % inference
for k = 1:N
 x = X(k, :)';
 v = W*x;
 y = Sigmoid(v)
end

This code initializes the weights with random real numbers between -1 and
1. Executing this code produces the following values. These output values are
very close to the correct outputs in D. Therefore, we can conclude that the neural
network has been properly trained.

0 0102

0 0083

0 9932

0 9917

0

0

1

1

.

.

.

.

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Û =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

D

Every example code in this book consists of the implementation of the
algorithm and the test program in separate files. This is because putting them
together often makes the code more complicated and hampers efficient analysis

Chapter 2 ■ Neural Network

41

of the algorithm. The file name of the test program starts with Test and is
followed by the name on the algorithm file. The algorithm file is named after
the function name, in compliance with the naming convention of MATLAB.
For example, the implementation file of the DeltaSGD function is named
DeltaSGD.m.

Algorithm implementation example/ DeltaSGD.m

Test program example/ TestDeltaSGD.m

Implementation of the Batch Method
The function DeltaBatch implements the delta rule of Equation 2.7 using the
batch method. It takes the weights and training data of the neural network and
returns trained weights.

W = DeltaBatch(W, X, D)

In this function definition, the variables carry the same meaning as those
in the function DeltaSGD; W is the weight of the neural network, X and D are the
input and correct output of the training data, respectively. The following listing
shows the DeltaBatch.m file, which implements the function DeltaBatch.

function W = DeltaBatch(W, X, D)
 alpha = 0.9;

 dWsum = zeros(3, 1);

 N = 4;
 for k = 1:N
 x = X(k, :)';
 d = D(k);

 v = W*x;
 y = Sigmoid(v);

 e = d - y;
 delta = y*(1-y)*e;

 dW = alpha*delta*x;

 dWsum = dWsum + dW;
 end
 dWavg = dWsum / N;

Chapter 2 ■ Neural Network

42

 W(1) = W(1) + dWavg(1);
 W(2) = W(2) + dWavg(2);
 W(3) = W(3) + dWavg(3);
end

This code does not immediately train the neural network with the weight
update, dW, of the individual training data points. It adds the individual weight
updates of the entire training data to dWsum and adjusts the weight just once
using the average, dWavg. This is the fundamental difference that separates
this method from the SGD method. The averaging feature of the batch method
allows the training to be less sensitive to the training data.

Recall that Equation 2.6 yields the weight update. It will be much easier
to understand this equation when you look into it using the previous code.
Equation 2.6 is shown here again, for your convenience.

D = D ()
=
åw

N
w kij

k

N

ij

1

1

where ∆w
ij
(k) is the weight update for the k -th training data point.

The following program listing shows the TestDeltaBatch.m file that tests the
function DeltaBatch. This program calls in the function DeltaBatch and trains
the neural network 40,000 times. All the training data is fed into the trained
neural network, and the output is displayed. Check the output and correct
output from the training data to verify the adequacy of the training.

clear all

X = [0 0 1;
 0 1 1;
 1 0 1;
 1 1 1;
];

D = [0
 0
 1
 1
];

W = 2*rand(1, 3) - 1;

for epoch = 1:40000
 W = DeltaBatch(W, X, D);
end

Chapter 2 ■ Neural Network

43

N = 4;
for k = 1:N
 x = X(k, :)';
 v = W*x;
 y = Sigmoid(v)
end

Next, execute this code, and you will see the following values on your screen.
The output is very similar to the correct output, D. This verifies that the neural
network has been properly trained.

0 0102

0 0083

0 9932

0 9917

0

0

1

1

.

.

.

.

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Û =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

D

As this test program is almost identical to the TestDeltaSGD.m file, we will
skip the detailed explanation. An interesting point about this method is that it
trained the neural network 40,000 times. Recall that the SGD method performed
only 10,000 trainings. This indicates that the batch method requires more time
to train the neural network to yield a similar level of accuracy of that of the SGD
method. In other words, the batch method learns slowly.

Comparison of the SGD and the Batch
In this section, we practically investigate the learning speeds of the SGD and
the batch. The errors of these methods are compared at the end of the training
processes for the entire training data. The following program listing shows the
SGDvsBatch.m file, which compares the mean error of the two methods. In order
to evaluate a fair comparison, the weights of both methods are initialized with
the same values.

clear all

X = [0 0 1;
 0 1 1;
 1 0 1;
 1 1 1;
];

Chapter 2 ■ Neural Network

44

D = [0
 0
 1
 1
];

E1 = zeros(1000, 1);
E2 = zeros(1000, 1);

W1 = 2*rand(1, 3) - 1;
W2 = W1;

for epoch = 1:1000 % train
 W1 = DeltaSGD(W1, X, D);
 W2 = DeltaBatch(W2, X, D);

 es1 = 0;
 es2 = 0;
 N = 4;
 for k = 1:N
 x = X(k, :)';
 d = D(k);

 v1 = W1*x;
 y1 = Sigmoid(v1);
 es1 = es1 + (d - y1)^2;

 v2 = W2*x;
 y2 = Sigmoid(v2);
 es2 = es2 + (d - y2)^2;
 end
 E1(epoch) = es1 / N;
 E2(epoch) = es2 / N;
end

plot(E1, 'r')
hold on
plot(E2, 'b:')
xlabel('Epoch')
ylabel('Average of Training error')
legend('SGD', 'Batch')

Chapter 2 ■ Neural Network

45

This program trains the neural network 1,000 times for each function,
DeltaSGD and DeltaBatch. At each epoch, it inputs the training data into the
neural network and calculates the mean square error (E1, E2) of the output.
Once the program completes 1,000 trainings, it generates a graph that shows the
mean error at each epoch. As Figure 2-20 shows, the SGD yields faster reduction
of the learning error than the batch; the SGD learns faster.

Limitations of Single-Layer Neural Networks
This section presents the critical reason that the single-layer neural network
had to evolve into a multi-layer neural network. We will try to show this through
a particular case. Consider the same neural network that was discussed in the
previous section. It consists of three input nodes and an output node, and the
activation function of the output node is a sigmoid function (Figure 2-21).

0.3

0.25

0.15

0.1

0.2

0.05

0
0 200 400 600 800 1000

Av
er

ag
e

of
 T

ra
in

in
g

er
ro

r

Epoch

SGD
Batch

Figure 2-20.  The SGD method learns faster than the batch method

Chapter 2 ■ Neural Network

46

Assume that we have four training data points, as shown here. It is different
from that of the “Example: Delta Rule” section in that the second and fourth
correct outputs are switched while the inputs remain the same. Well, the
difference is barely noticeable. It shouldn’t cause any trouble, right?

We will now train it with the delta rule using the SGD. As we are considering
the same neural network, we can train it using the function DeltaSGD from the
“Example: Delta Rule” section. We have to just change its name to DeltaXOR.
The following program listing shows the TestDeltaXOR.m file, which tests the
DeltaXOR function. This program is identical to the TestDeltaSGD.m file from
the “Example: Delta Rule” section, except that it has different values for D, and it
calls the DeltaXOR function instead of DeltaSGD.

x1

x2

x3

y

w1

w2

w3

Figure 2-21.  Our same neural network

Chapter 2 ■ Neural Network

47

clear all

X = [0 0 1;
 0 1 1;
 1 0 1;
 1 1 1;
];

D = [0
 1
 1
 0
];

W = 2*rand(1, 3) - 1;

for epoch = 1:40000 % train
 W = DeltaXOR(W, X, D);
end

N = 4; % inference
for k = 1:N
 x = X(k, :)';
 v = W*x;
 y = Sigmoid(v)
end

When we run the code, the screen will show the following values, which
consist of the output from the trained neural network corresponding to the
training data. We can compare them with the correct outputs given by D.

0 5297

0 5000

0 4703

0 4409

0

1

1

0

.

.

.

.

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Û =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

D

What happened? We got two totally different sets. Training the neural
network for a longer period does not make a difference. The only difference from
the code from the “Example: Delta Rule” section is the correct output variable, D.
What actually happened?

Chapter 2 ■ Neural Network

48

Illustrating the training data can help elucidate this problem. Let’s interpret
the three values of the input data as the X, Y, and Z coordinates, respectively.
As the third value, i.e. the Z coordinate, is fixed as 1, the training data can be
visualized on a plane as shown in Figure 2-22.

The values 0 and 1 in the circles are the correct outputs assigned to each
point. One thing to notice from this figure is that we cannot divide the regions of
0 and 1 with a straight line. However, we may divide it with a complicated curve,
as shown in Figure 2-23. This type of problem is said to be linearly inseparable.

Y

(0,1) (1,1)

(0,0) (1,0) X

1 0

0 1

Figure 2-22.  Interpreting the three values of the input data as the X, Y, and Z
coordinates

Chapter 2 ■ Neural Network

49

Y

X

(0,1) (1,1)

(0,0) (1,0)

1 0

0 1

Figure 2-23.  We can only separate the regions of 0 and 1 with a complicated
curve

In the same process, the training data from the “Example: Delta Rule”
section on the X-Y plane appears in Figure 2-24.

Y

(0,1) (1,1)

(0,0) (1,0) X

0 1

0 1

Figure 2-24.  The delta rule training data

In this case, a straight border line that divides the regions of 0 and 1 can be
found easily. This is a linearly separable problem (Figure 2-25).

Chapter 2 ■ Neural Network

50

Y

(0,1) (1,1)

(0,0) (1,0) X

0 1

0 1

Figure 2-25.  This data presents a linearly separable problem

To put it simply, the single-layer neural network can only solve linearly
separable problems. This is because the single-layer neural network is a model
that linearly divides the input data space. In order to overcome this limitation of
the single-layer neural network, we need more layers in the network. This need
has led to the appearance of the multi-layer neural network, which can achieve
what the single-layer neural network cannot. As this is rather mathematical; it is
fine to skip this portion if you are not familiar with it. Just keep in mind that
the single-layer neural network is applicable for specific problem types. The
multi-layer neural network has no such limitations.

Summary
This chapter covered the following concepts:

•	 The neural network is a network of nodes, which imitate the
neurons of the brain. The nodes calculate the weighted sum of the
input signals and output the result of the activation function with
the weighted sum.

•	 Most neural networks are constructed with the layered nodes. For
the layered neural network, the signal enters through the input layer,
passes through the hidden layer, and exits through the output layer.

•	 In practice, the linear functions cannot be used as the activation
functions in the hidden layer. This is because the linear function
negates the effects of the hidden layer. However, in some
problems such as regression, the output layer nodes may employ
linear functions.

Chapter 2 ■ Neural Network

51

•	 For the neural network, supervised learning implements the
process to adjust the weights and to reduce the discrepancies
between the correct output and output of the neural network
(Figure 2-26).

•	 The method used to adjust the weight according to the training
data is called the learning rule.

•	 There are three major types of error calculations: the stochastic
gradient descent, batch, and mini batch.

•	 The delta rule is the representative learning rule of the neural
network. Its formula varies depending on the activation function.

d j
ad

i i i

ij ij i j

v e

w w x

= ()
¬ +

¢

•	 The delta rule is an iterative method that gradually reaches the
solution. Therefore, the network should be repeatedly trained
with the training data until the error is reduced to the satisfactory
level.

•	 The single-layer neural network is applicable only to specific
types of problems. Therefore, the single-layer neural network has
very limited usages. The multi-layer neural network has been
developed to overcome the essential limitations of the single-
layer neural network.

Training Data
{ Input, Correct output } Input

Correct output

Output -

+

Error

Weight Update

Figure 2-26.  Review of supervised learning

53© Phil Kim 2017
P. Kim, MATLAB Deep Learning, DOI 10.1007/978-1-4842-2845-6_3

CHAPTER 3

Training of Multi-Layer
Neural Network

In an effort to overcome the practical limitations of the single-layer, the
neural network evolved into a multi-layer architecture. However, it has taken
approximately 30 years to just add on the hidden layer to the single-layer neural
network. It’s not easy to understand why this took so long, but the problem involved
the learning rule. As the training process is the only method for the neural network
to store information, untrainable neural networks are useless. A proper learning
rule for the multi-layer neural network took quite some time to develop.

The previously introduced delta rule is ineffective for training of the
multi-layer neural network. This is because the error, the essential element for
applying the delta rule for training, is not defined in the hidden layers. The error
of the output node is defined as the difference between the correct output and
the output of the neural network. However, the training data does not provide
correct outputs for the hidden layer nodes, and hence the error cannot be
calculated using the same approach for the output nodes. Then, what? Isn’t the
real problem how to define the error at the hidden nodes? You got it. You just
formulated the back-propagation algorithm, the representative learning rule of
the multi-layer neural network.

In 1986, the introduction of the back-propagation algorithm finally solved
the training problem of the multi-layer neural network.1 The significance of
the back-propagation algorithm was that it provided a systematic method to
determine the error of the hidden nodes. Once the hidden layer errors are
determined, the delta rule is applied to adjust the weights. See Figure 3-1.

1“Learning representations by back-propagating errors,” David E. Rumelhart,
Geoffrey E. Hinton, Ronald J. Williams, Nature, October 1986.

http://dx.doi.org/10.1007/978-1-4842-2845-6_1#Fig1

Chapter 3 ■ Training of Multi-Layer Neural Network

54

The input data of the neural network travels through the input layer, hidden
layer, and output layer. In contrast, in the back-propagation algorithm, the
output error starts from the output layer and moves backward until it reaches
the right next hidden layer to the input layer. This process is called back-
propagation, as it resembles an output error propagating backward. Even in
back-propagation, the signal still flows through the connecting lines and the
weights are multiplied. The only difference is that the input and output signals
flow in opposite directions.

Back-Propagation Algorithm
This section explains the back-propagation algorithm using an example of the
simple multi-layer neural network. Consider a neural network that consists of two
nodes for both the input and output and a hidden layer, which has two nodes as
well. We will omit the bias for convenience. The example neural network is shown
in Figure 3-2, where the superscript describes the layer indicator.

x1

x2

w11
(1) w11

(2)

w12
(2)

w21
(2)

w22
(2)w22

(1)

w21
(1)

w12
(1)

y1

y2

Figure 3-2.  Neural network that consists of two nodes for the input and output
and a hidden layer, which has two nodes

ei

Figure 3-1.  Illustration of back-propagation

Chapter 3 ■ Training of Multi-Layer Neural Network

55

In order to obtain the output error, we first need the neural network’s output
from the input data. Let’s try. As the example network has a single hidden
layer, we need two input data manipulations before the output calculation is
processed. First, the weighted sum of the hidden node is calculated as:

	

v

v

w w

w w

x

x
1
1

2
1

11
1

12
1

21
1

22
1

1

2

()

()

() ()

() ()

é

ë
ê
ê

ù

û
ú
ú
=

é

ë
ê
ê

ù

û
ú
ú

é

ë
ê

ùù

û
ú

� W x1

	 (Equation 3.1)

When we put this weighted sum, Equation 3.1, into the activation function,
we obtain the output from the hidden nodes.

y

y

v

v

1
1

2
1

1
1

2
1

()

()

()

()

é

ë
ê
ê

ù

û
ú
ú
=

()
()

é

ë

ê
ê

ù

û

ú
ú

j

j

where y1
1() and y2

1() are outputs from the corresponding hidden nodes. In a
similar manner, the weighted sum of the output nodes is calculated as:

	

v

v

w w

w w

y

y

1

2

11
2

12
2

21
2

22
2

1
1

2
1

é

ë
ê

ù

û
ú =

é

ë
ê
ê

ù

û
ú
ú

é

ë
ê
ê

ù() ()

() ()

()

()
ûû
ú
ú

()� W y2
1

	 (Equation 3.2)

As we put this weighted sum into the activation function, the neural network
yields the output.

y

y

v

v
1

2

1

2

é

ë
ê

ù

û
ú =

()
()

é

ë
ê

ù

û
ú

j
j

Now, we will train the neural network using the back-propagation algorithm.
The first thing to calculate is delta, δ, of each node. You may ask, “Is this delta
the one from the delta rule?” It is! In order to avoid confusion, the diagram in
Figure 3-3 has been redrawn with the unnecessary connections dimmed out.

Chapter 3 ■ Training of Multi-Layer Neural Network

56

In the back-propagation algorithm, the delta of the output node is defined
identically to the delta rule of the “Generalized Delta Rule” section in Chapter 2,
as follows:

	

e d y

v e

e d y

v e

1 1 1

1 1 1

2 2 2

2 2 2

= -
= ()

= -
= ()

¢

¢

d j

d j 	 (Equation 3.3)

where ¢ ×()j is the derivative of the activation function of the output node,
y

i
 is the output from the output node, d

i
 is the correct output from the training

data, and v
i
 is the weighted sum of the corresponding node.

Since we have the delta for every output node, let’s proceed leftward to
the hidden nodes and calculate the delta (Figure 3-4). Again, unnecessary
connections are dimmed out for convenience.

w11
(1) w11

(2)

w12
(2)

w21
(2)

w22
(2)w22

(1)

w21
(1)

w12
(1)

e1 = d1 − y1

e2 = d2 − y2

(1)

(1)

11

2 2

Figure 3-4.  Proceed leftward to the hidden nodes and calculate the delta

w11
(1) w11

(2)

w12
(2)

w21
(2)

w22
(2)

w22
(1)

w21
(1)

w12
(1)

e1 = d1 − y1

e2 = d2 − y2

1

2

Figure 3-3.  Train the neural network using the back-propagation algorithm

As addressed at the beginning of the chapter, the issue of the hidden node is
how to define the error. In the back-propagation algorithm, the error of the node
is defined as the weighted sum of the back-propagated deltas from the layer on
the immediate right (in this case, the output layer). Once the error is obtained,

http://dx.doi.org/10.1007/978-1-4842-2845-6_2

Chapter 3 ■ Training of Multi-Layer Neural Network

57

the calculation of the delta from the node is the same as that of Equation 3.3.
This process can be expressed as follows:

	

e w w

v e

e w

1
1

11
2

1 21
2

2

1
1

1
1

1
1

2
1

12
2

1

() () ()

() () ()

() ()

= +

= ()

= +

¢

d d

d j

d ww

v e

22
2

2

2
1

2
1

2
1

()

() () ()= ()¢

d

d j 	 (Equation 3.4)

where v1
1() and v2

1() are the weight sums of the forward signals at the
respective nodes. It is noticeable from this equation that the forward and
backward processes are identically applied to the hidden nodes as well as the
output nodes. This implies that the output and hidden nodes experience the
same backward process. The only difference is the error calculation (Figure 3-5).

In summary, the error of the hidden node is calculated as the backward
weighted sum of the delta, and the delta of the node is the product of the error
and the derivative of the activation function. This process begins at the output
layer and repeats for all hidden layers. This pretty much explains what the
back-propagation algorithm is about.

The two error calculation formulas of Equation 3.4 are combined in a matrix
equation as follows:

	
e

e

w w

w w

1
1

2
1

11
2

21
2

12
2

22
2

1

2

()

()

() ()

() ()

é

ë
ê
ê

ù

û
ú
ú
=

é

ë
ê
ê

ù

û
ú
ú

é

ë
ê
d
d

ùù

û
ú 	 (Equation 3.5)

y

 = y

e

e=

Figure 3-5.  The error calculation is the only difference

Chapter 3 ■ Training of Multi-Layer Neural Network

58

Compare this equation with the neural network output of Equation 3.2.
The matrix of Equation 3.5 is the result of transpose of the weight matrix, W, of
Equation 3.2.2 Therefore, Equation 3.5 can be rewritten as:

	
e

e
WT1

1

2
1 2

1

2

()

()

é

ë
ê
ê

ù

û
ú
ú
=

é

ë
ê

ù

û
ú

d
d

	 (Equation 3.6)

This equation indicates that we can obtain the error as the product of the
transposed weight matrix and delta vector. This very useful attribute allows an
easier implementation of the algorithm.

If we have additional hidden layers, we will just repeat the same backward
process for each hidden layer and calculate all the deltas. Once all the deltas
have been calculated, we will be ready to train the neural network. Just use the
following equation to adjust the weights of the respective layers.

	 D =
¬ + D
w x

w w w
ij i j

ij ij ij

ad 	 (Equation 3.7)

where xj is the input signal for the corresponding weight. For convenience,
we omit the layer indicator from this equation. What do you see now? Isn’t this
equation the same as that of the delta rule of the previous section? Yes, they are the
same. The mere difference is the deltas of the hidden nodes, which are obtained
from the backward calculation using the output error of the neural network.

We will proceed a bit further and derive the equation to adjust the weight
using Equation 3.7. Consider the weight w21

2() for example.
The weight w21

2() of Figure 3-6 can be adjusted using Equation 3.7 as:

2When two matrices have rows and columns switched, they are transpose matrices to each
other.

Chapter 3 ■ Training of Multi-Layer Neural Network

59

w w y21
2

21
2

2 1
1() () ()¬ + ad

where y1
1() is the output of the first hidden node. Here is another example.

The weight w11
1() of Figure 3-7 is adjusted using Equation 3.7 as:

w w x11
1

11
1

1
1

1
() () ()¬ + ad

where x
1
 is the output of the first input node, i.e., the first input of the neural

network.
Let’s organize the process to train the neural network using the back-

propagation algorithm.

	 1.	 Initialize the weights with adequate values.

	 2.	 Enter the input from the training data { input, correct
output } and obtain the neural network’s output.
Calculate the error of the output to the correct output
and the delta, δ, of the output nodes.

e d y

v e

= -
= ()¢d j

w11
(1) w11

(2)

w12
(2)

w21
(2)

w22
(2)w22

(1)

w21
(1)

w12
(1)

x1
d1 − y1

d2 − y2

(1)
1

Figure 3-7.  Derive the equation to adjust the weight, again

w11
(1) w11

(2)

w12
(2)

w21
(2)

w22
(2)w22

(1)

w21
(1)

w12
(1)

y1
(1)

1

2

d1 – y1

d2 – y2

Figure 3-6.  Derive the equation to adjust the weight

Chapter 3 ■ Training of Multi-Layer Neural Network

60

	 3.	 Propagate the output node delta, δ, backward, and
calculate the deltas of the immediate next (left) nodes.

e W

v e

k T

k k k

()

() () ()

=

= ()¢

d

d j

	 4.	 Repeat Step 3 until it reaches the hidden layer that is on
the immediate right of the input layer.

	 5.	 Adjust the weights according to the following learning rule.

D =
¬ + D
w x

w w w
ij i j

ij ij ij

ad

	 6.	 Repeat Steps 2-5 for every training data point.

	 7.	 Repeat Steps 2-6 until the neural network is properly
trained.

Other than Steps 3 and 4, in which the output delta propagates backward
to obtain the hidden node delta, this process is basically the same as that of the
delta rule, which was previously discussed. Although this example has only one
hidden layer, the back-propagation algorithm is applicable for training many
hidden layers. Just repeat Step 3 of the previous algorithm for each hidden layer.

Example: Back-Propagation
In this section, we implement the back-propagation algorithm. The training
data contains four elements as shown in the following table. Of course, as this
is about supervised learning, the data includes input and correct output pairs.
The bolded rightmost number of the data is the correct output. As you may have
noticed, this data is the same one that we used in Chapter 2 for the training of
the single-layer neural network; the one that the single-layer neural network had
failed to learn.

http://dx.doi.org/10.1007/978-1-4842-2845-6_2

Chapter 3 ■ Training of Multi-Layer Neural Network

61

Ignoring the third value, the Z-axis, of the input, this dataset actually
provides the XOR logic operations. Therefore, if we train the neural network with
this dataset, we would get the XOR operation model.

Consider a neural network that consists of three input nodes and a single
output node, as shown in Figure 3-8. It has one hidden layer of four nodes. The
sigmoid function is used as the activation function for the hidden nodes and the
output node.

Figure 3-8.  Neural network that consists of three input nodes and a single
output node

Chapter 3 ■ Training of Multi-Layer Neural Network

62

This section employs SGD for the implementation of the back-propagation
algorithm. Of course, the batch method will work as well. What we have to do is
use the average of the weight updates, as shown in the example in the “Example:
Delta Rule” section of Chapter 2. Since the primary objective of this section is to
understand the back-propagation algorithm, we will stick to a simpler and more
intuitive method: the SGD.

XOR Problem
The function BackpropXOR, which implements the back-propagation algorithm
using the SGD method, takes the network’s weights and training data and
returns the adjusted weights.

[W1 W2] = BackpropXOR(W1, W2, X, D)

where W1 and W2 carries the weight matrix of the respective layer. W1 is the
weight matrix between the input layer and hidden layer and W2 is the weight
matrix between the hidden layer and output layer. X and D are the input and
correct output of the training data, respectively. The following listing shows the
BackpropXOR.m file, which implements the BackpropXOR function.

function [W1, W2] = BackpropXOR(W1, W2, X, D)
 alpha = 0.9;

 N = 4;
 for k = 1:N
 x = X(k, :)';
 d = D(k);

 v1 = W1*x;
 y1 = Sigmoid(v1);
 v = W2*y1;
 y = Sigmoid(v);

 e = d - y;
 delta = y.*(1-y).*e;

 e1 = W2'*delta;
 delta1 = y1.*(1-y1).*e1;

 dW1 = alpha*delta1*x';
 W1 = W1 + dW1;

http://dx.doi.org/10.1007/978-1-4842-2845-6_2

Chapter 3 ■ Training of Multi-Layer Neural Network

63

 dW2 = alpha*delta*y1';
 W2 = W2 + dW2;
 end
end

The code takes point from the training dataset, calculates the weight update,
dW, using the delta rule, and adjusts the weights. So far, the process is almost
identical to that of the example code of Chapter 2. The slight differences are the
two calls of the function Sigmoid for the output calculation and the addition of
the delta (delta1) calculation using the back-propagation of the output delta as
follows:

e1 = W2'*delta;
delta1 = y1.*(1-y1).*e1;

where the calculation of the error, e1, is the implementation of Equation 3.6.
As this involves the back-propagation of the delta, we use the transpose matrix,
W2'. The delta (delta1) calculation has an element-wise product operator, .*,
because the variables are vectors. The element-wise operator of MATLAB has a
dot (period) in front of the normal operator and performs an operation on each
element of the vector. This operator enables simultaneous calculations of deltas
from many nodes.

The function Sigmoid, which the BackpropXOR code calls, also replaced the
division with the element-wise division ./ to account for the vector.

function y = Sigmoid(x)
 y = 1 ./ (1 + exp(-x));
end

The modified Sigmoid function can operate using vectors as shown by the
following example:

Sigmoid([-1 0 1])  [0.2689 0.5000 0.7311]

The program listing that follows shows the TestBackpropXOR.m file, which tests
the function BackpropXOR. This program calls in the BackpropXOR function and
trains the neural network 10,000 times. The input is given to the trained network,
and its output is shown on the screen. The training performance can be verified as
we compare the output to the correct outputs of the training data. Further details
are omitted, as the program is almost identical to that of Chapter 2.

http://dx.doi.org/10.1007/978-1-4842-2845-6_2
http://dx.doi.org/10.1007/978-1-4842-2845-6_2

Chapter 3 ■ Training of Multi-Layer Neural Network

64

clear all

X = [0 0 1;
 0 1 1;
 1 0 1;
 1 1 1;
];

D = [0
 1
 1
 0
];

W1 = 2*rand(4, 3) - 1;
W2 = 2*rand(1, 4) - 1;

for epoch = 1:10000 % train
 [W1 W2] = BackpropXOR(W1, W2, X, D);
end

N = 4; % inference
for k = 1:N
 x = X(k, :)';
 v1 = W1*x;
 y1 = Sigmoid(v1);
 v = W2*y1;
 y = Sigmoid(v)
end

Execute the code, and find the following values on the screen. These values
are very close to the correct output, D, indicating that the neural network has
been properly trained. Now we have confirmed that the multi-layer neural
network solves the XOR problem, which the single-layer network had failed to
model properly.

0 0060

0 9888

0 9891

0 0134

0

1

1

0

.

.

.

.

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Û =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

D

Chapter 3 ■ Training of Multi-Layer Neural Network

65

Momentum
This section explores the variations of the weight adjustment. So far, the weight
adjustment has relied on the simplest forms of Equations 2.7 and 3.7. However,
there are various weight adjustment forms available.3 The benefits of using
the advanced weight adjustment formulas include higher stability and faster
speeds in the training process of the neural network. These characteristics are
especially favorable for Deep Learning as it is hard to train. This section only
covers the formulas that contain momentum, which have been used for a long
time. If necessary, you may want to study this further with the link shown in the
footnote.

The momentum, m, is a term that is added to the delta rule for adjusting
the weight. The use of the momentum term drives the weight adjustment to a
certain direction to some extent, rather than producing an immediate change. It
acts similarly to physical momentum, which impedes the reaction of the body to
the external forces.

	

D =

= D +
= +

=

-

-

w x

m w m

w w m

m m

ad

b
	 (Equation 3.8)

where m- is the previous momentum and β is a positive constant that is less
than 1. Let’s briefly see why we modify the weight adjustment formula in this
manner. The following steps show how the momentum changes over time:

	

m

m w m w

m w m w w

m

0 0

1 1 0 1

2 2 1 2 1

() =

() = D ()+ () = D ()
() = D ()+ () = D ()+ D ()

b

b b

33 3 2 3 2 1

3 2 12

() = D ()+ () = D ()+ D ()+ D (){ }
= D ()+ D ()+ D (

w m w w w

w w w

b b b

b b))
�

It is noticeable from these steps that the previous weight update, i.e. ∆w(1),
∆w(2), ∆w(3), etc., is added to each momentum over the process. Since β is less
than 1, the older weight update exerts a lesser influence on the momentum.
Although the influence diminishes over time, the old weight updates remain

3sebastianruder.com/optimizing-gradient-descent

Chapter 3 ■ Training of Multi-Layer Neural Network

66

in the momentum. Therefore, the weight is not solely affected by a particular
weight update value. Therefore, the learning stability improves. In addition,
the momentum grows more and more with weight updates. As a result, the
weight update becomes greater and greater as well. Therefore, the learning rate
increases.

The following listing shows the BackpropMmt.m file, which implements the
back-propagation algorithm with the momentum. The BackpropMmt function
operates in the same manner as that of the previous example; it takes the
weights and training data and returns the adjusted weights. This listing employs
the same variables as defined in the BackpropXOR function.

[W1 W2] = BackpropMmt(W1, W2, X, D)
function [W1, W2] = BackpropMmt(W1, W2, X, D)
 alpha = 0.9;
 beta = 0.9;

 mmt1 = zeros(size(W1));
 mmt2 = zeros(size(W2));

 N = 4;
 for k = 1:N
 x = X(k, :)';
 d = D(k);

 v1 = W1*x;
 y1 = Sigmoid(v1);
 v = W2*y1;
 y = Sigmoid(v);

 e = d - y;
 delta = y.*(1-y).*e;

 e1 = W2'*delta;
 delta1 = y1.*(1-y1).*e1;

 dW1 = alpha*delta1*x';
 mmt1 = dW1 + beta*mmt1;
 W1 = W1 + mmt1;

 dW2 = alpha*delta*y1';
 mmt2 = dW2 + beta*mmt2;
 W2 = W2 + mmt2;
 end
end

Chapter 3 ■ Training of Multi-Layer Neural Network

67

The code initializes the momentums, mmt1 and mmt2, as zeros when it starts
the learning process. The weight adjustment formula is modified to reflect the
momentum as:

dW1 = alpha*delta1*x';
mmt1 = dW1 + beta*mmt1;
W1 = W1 + mmt1;

The following program listing shows the TestBackpropMmt.m file, which
tests the function BackpropMmt. This program calls the BackpropMmt function
and trains the neural network 10,000 times. The training data is fed to the neural
network and the output is shown on the screen. The performance of the training
is verified by comparing the output to the correct output of the training data. As
this code is almost identical to that of the previous example, further explanation
is omitted.

clear all

X = [0 0 1;
 0 1 1;
 1 0 1;
 1 1 1;
];

D = [0
 1
 1
 0
];

W1 = 2*rand(4, 3) - 1;
W2 = 2*rand(1, 4) - 1;

for epoch = 1:10000 % train
 [W1 W2] = BackpropMmt(W1, W2, X, D);
end

N = 4; % inference
for k = 1:N
 x = X(k, :)';
 v1 = W1*x;
 y1 = Sigmoid(v1);
 v = W2*y1;
 y = Sigmoid(v)
end

Chapter 3 ■ Training of Multi-Layer Neural Network

68

Cost Function and Learning Rule
This section briefly explains what the cost function4 is and how it affects the
learning rule of the neural network. The cost function is a rather mathematical
concept that is associated with the optimization theory. You don’t have to know
it. However, it is good to know if you want to better understand the learning rule
of the neural network. It is not a difficult concept to follow.

The cost function is related to supervised learning of the neural network.
Chapter 2 addressed that supervised learning of the neural network is a process
of adjusting the weights to reduce the error of the training data. In this context,
the measure of the neural network’s error is the cost function. The greater the
error of the neural network, the higher the value of the cost function is. There are
two primary types of cost functions for the neural network’s supervised learning.

	 J d y
i

M

i i= -()
=
å

1

21

2
	 (Equation 3.9)

	 J d y d y
i

M

i i i i= - () - -() -(){ }
=
å

1

1 1ln ln 	 (Equation 3.10)

where y
i
 is the output from the output node, d

i
 is the correct output from the

training data, and M is the number of output nodes.
First, consider the sum of squared error shown in Equation 3.9. This cost

function is the square of the difference between the neural network’s output, y,
and the correct output, d. If the output and correct output are the same, the error
becomes zero. In contrast, a greater difference between the two values leads to a
larger error. This is illustrated in Figure 3-9.

E

d – y

E = 1
2
_ (d – y)2

Figure 3-9.  The greater the difference between the output and the correct output,
the larger the error

4It is also called the loss function and objective function.

http://dx.doi.org/10.1007/978-1-4842-2845-6_2

Chapter 3 ■ Training of Multi-Layer Neural Network

69

It is clearly noticeable that the cost function value is proportional to the
error. This relationship is so intuitive that no further explanation is necessary.
Most early studies of the neural network employed this cost function to derive
learning rules. Not only was the delta rule of the previous chapter derived
from this function, but the back-propagation algorithm was as well. Regression
problems still use this cost function.

Now, consider the cost function of Equation 3.10. The following formula,
which is inside the curly braces, is called the cross entropy function.

E d y d y= - () - -() -()ln ln1 1

It may be difficult to intuitively capture the cross entropy function’s
relationship to the error. This is because the equation is contracted for simpler
expression. Equation 3.10 is the concatenation of the following two equations:

E
y d

y d
=

- () =
- -() =

ì
í
ï

îï

ln

ln

1

1 0

Due to the definition of a logarithm, the output, y, should be within 0 and 1.
Therefore, the cross entropy cost function often teams up with sigmoid and
softmax activation functions in the neural network.5 Now we will see how this
function is related to the error. Recall that cost functions should be proportional
to the output error. What about this one?

Figure 3-10 shows the cross entropy function at d = 1 .

E

0 1
y

E = – ln(y), d = 1

Figure 3-10.  The cross entropy function at d = 1

5If the other activation function is employed, the definition of the cross entropy function
slightly changes as well.

Chapter 3 ■ Training of Multi-Layer Neural Network

70

When the output y is 1, i.e., the error (d y-) is 0, the cost function value is
0 as well. In contrast, when the output y approaches 0, i.e., the error grows, the
cost function value soars. Therefore, this cost function is proportional to the
error.

Figure 3-11 shows the cost function at d = 0. If the output y is 0, the error is

0, the cost function yields 0. When the output approaches 1, i.e., the error grows,
the function value soars. Therefore, this cost function in this case is proportional
to the error as well. These cases confirm that the cost function of Equation 3.10 is
proportional to the output error of the neural network.

The primary difference of the cross entropy function from the quadratic
function of Equation 3.9 is its geometric increase. In other words, the cross
entropy function is much more sensitive to the error. For this reason, the
learning rules derived from the cross entropy function are generally known to
yield better performance. It is recommended that you use the cross entropy-
driven learning rules except for inevitable cases such as the regression.

We had a long introduction to the cost function because the selection of the
cost function affects the learning rule, i.e., the formula of the back-propagation
algorithm. Specifically, the calculation of the delta at the output node changes
slightly. The following steps detail the procedure in training the neural network
with the sigmoid activation function at the output node using the cross entropy-
driven back-propagation algorithm.

E

0 1
y

E = – ln(1 – y) , d = 0

Figure 3-11.  The cross entropy function at d = 0

Chapter 3 ■ Training of Multi-Layer Neural Network

71

	 1.	 Initialize the neural network’s weights with adequate
values.

	 2.	 Enter the input of the training data { input, correct
output } to the neural network and obtain the output.
Compare this output to the correct output, calculate the
error, and calculate the delta, δ, of the output nodes.

e d y

e

= -
=d

	 3.	 Propagate the delta of the output node backward and
calculate the delta of the subsequent hidden nodes.

e W

v e

k T

k k k

()

() () ()

=

= ()¢

d

d j

	 4.	 Repeat Step 3 until it reaches the hidden layer that is
next to the input layer.

	 5.	 Adjust the neural network’s weights using the following
learning rule:

D =
¬ + D
w x

w w w
ij i j

ij ij ij

ad

	 6.	 Repeat Steps 2-5 for every training data point.

	 7.	 Repeat Steps 2-6 until the network has been adequately
trained.

Did you notice the difference between this process and that of the “Back-
Propagation Algorithm” section? It is the delta, δ, in Step 2. It has been changed
as follows:

d j d= () ® =¢ v e e

Everything else remains the same. On the outside, the difference seems
insignificant. However, it contains the huge topic of the cost function based
on the optimization theory. Most of the neural network training approaches of
Deep Learning employ the cross entropy-driven learning rules. This is due to
their superior learning rate and performance.

Figure 3-12 depicts what this section has explained so far. The key is the fact that
the output and hidden layers employ the different formulas of the delta calculation
when the learning rule is based on the cross entropy and the sigmoid function.

Chapter 3 ■ Training of Multi-Layer Neural Network

72

While we are at it, we will address just one more thing about the cost function.
You saw in Chapter 1 that overfitting is a challenging problem that every technique
of Machine Learning faces. You also saw that one of the primary approaches
used to overcome overfitting is making the model as simple as possible using
regularization. In a mathematical sense, the essence of regularization is adding
the sum of the weights to the cost function, as shown here. Of course, applying the
following new cost function leads to a different learning rule formula.

J d y w
i

M

i i= -() +
=
å1

2

1

21

2 2l

J d y d y w
i

M

i i i i= - () - -() -(){ } +
=
å

1

2
1 1

1

2
ln ln l

where λ is the coefficient that determines how much of the connection
weight is reflected on the cost function.

This cost function maintains a large value when one of the output errors and
the weight remain large. Therefore, solely making the output error zero will not
suffice in reducing the cost function. In order to drop the value of the cost function,
both the error and weight should be controlled to be as small as possible. However,
if a weight becomes small enough, the associated nodes will be practically
disconnected. As a result, unnecessary connections are eliminated, and the neural
network becomes simpler. For this reason, overfitting of the neural network can be
improved by adding the sum of weights to the cost function, thereby reducing it.

Figure 3-12.  the output and hidden layers employ the different formulas of the
delta calculation

http://dx.doi.org/10.1007/978-1-4842-2845-6_1

Chapter 3 ■ Training of Multi-Layer Neural Network

73

In summary, the learning rule of the neural network’s supervised learning
is derived from the cost function. The performance of the learning rule and the
neural network varies depending on the selection of the cost function. The cross
entropy function has been attracting recent attention for the cost function. The
regularization process that is used to deal with overfitting is implemented as a
variation of the cost function.

Example: Cross Entropy Function
This section revisits the back-propagation example. But this time, the learning
rule derived from the cross entropy function is used. Consider the training of
the neural network that consists of a hidden layer with four nodes, three input
nodes, and a single output node. The sigmoid function is employed for the
activation function of the hidden nodes and output node.

Figure 3-13.  Neural network with a hidden layer with four nodes, three input
nodes, and a single output node

The training data contains the same four elements as shown in the following
table. When we ignore the third numbers of the input data, this training dataset
presents a XOR logic operation. The bolded rightmost number of each element
is the correct output.

Chapter 3 ■ Training of Multi-Layer Neural Network

74

Cross Entropy Function
The BackpropCE function trains the XOR data using the cross entropy function.
It takes the neural network’s weights and training data and returns the adjusted
weights.

[W1 W2] = BackpropCE(W1, W2, X, D)

where W1 and W2 are the weight matrices for the input-hidden layers and
hidden-output layers, respectively. In addition, X and D are the input and
correct output matrices of the data, respectively. The following listing shows the
BackpropCE.m file, which implements the BackpropCE function.

function [W1, W2] = BackpropCE(W1, W2, X, D)
 alpha = 0.9;

 N = 4;
 for k = 1:N
 x = X(k, :)'; % x = a column vector
 d = D(k);

 v1 = W1*x;
 y1 = Sigmoid(v1);
 v = W2*y1;
 y = Sigmoid(v);

 e = d - y;
 delta = e;

Chapter 3 ■ Training of Multi-Layer Neural Network

75

 e1 = W2'*delta;
 delta1 = y1.*(1-y1).*e1;

 dW1 = alpha*delta1*x';
 W1 = W1 + dW1;

 dW2 = alpha*delta*y1';
 W2 = W2 + dW2;
 end
end

This code pulls out the training data, calculates the weight updates (dW1 and
dW2) using the delta rule, and adjusts the neural network’s weights using these
values. So far, the process is almost identical to that of the previous example. The
difference arises when we calculate the delta of the output node as:

e = d - y;
delta = e;

Unlike the previous example code, the derivative of the sigmoid function no
longer exists. This is because, for the learning rule of the cross entropy function,
if the activation function of the output node is the sigmoid, the delta equals the
output error. Of course, the hidden nodes follow the same process that is used by
the previous back-propagation algorithm.

e1 = W2'*delta;
delta1 = y1.*(1-y1).*e1;

The following program listing shows the TestBackpropCE.m file, which tests
the BackpropCE function. This program calls the BackpropCE function and trains
the neural network 10,000 times. The trained neural network yields the output
for the training data input, and the result is displayed on the screen. We verify
the proper training of the neural network by comparing the output to the correct
output. Further explanation is omitted, as the code is almost identical to that
from before.

clear all

X = [0 0 1;
 0 1 1;
 1 0 1;
 1 1 1;
];

Chapter 3 ■ Training of Multi-Layer Neural Network

76

D = [0
 1
 1
 0
];

W1 = 2*rand(4, 3) - 1;
W2 = 2*rand(1, 4) - 1;

for epoch = 1:10000 % train
 [W1 W2] = BackpropCE(W1, W2, X, D);
end

N = 4; % inference
for k = 1:N
 x = X(k, :)';
 v1 = W1*x;
 y1 = Sigmoid(v1);
 v = W2*y1;
 y = Sigmoid(v)
end

Executing this code produces the values shown here. The output is very
close to the correct output, D. This proves that the neural network has been
trained successfully.

0 00003

0 9999

0 9998

0 00036

0

1

1

0

.

.

.

.

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

Û =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

D

Comparison of Cost Functions
The only difference between the BackpropCE function from the previous section
and the BackpropXOR function from the “XOR Problem” section is the calculation
of the output node delta. We will examine how this insignificant difference
affects the learning performance. The following listing shows the CEvsSSE.m file
that compares the mean errors of the two functions. The architecture of this file
is almost identical to that of the SGDvsBatch.m file in the “Comparison of the
SGD and the Batch” section in Chapter 2.

http://dx.doi.org/10.1007/978-1-4842-2845-6_2

Chapter 3 ■ Training of Multi-Layer Neural Network

77

clear all

X = [0 0 1;
 0 1 1;
 1 0 1;
 1 1 1;
];

D = [0
 0
 1
 1
];

E1 = zeros(1000, 1);
E2 = zeros(1000, 1);

W11 = 2*rand(4, 3) - 1; % Cross entropy
W12 = 2*rand(1, 4) - 1; %
W21 = W11; % Sum of squared error
W22 = W12; %

for epoch = 1:1000
 [W11 W12] = BackpropCE(W11, W12, X, D);
 [W21 W22] = BackpropXOR(W21, W22, X, D);

 es1 = 0;
 es2 = 0;
 N = 4;
 for k = 1:N
 x = X(k, :)';
 d = D(k);

 v1 = W11*x;
 y1 = Sigmoid(v1);
 v = W12*y1;
 y = Sigmoid(v);
 es1 = es1 + (d - y)^2;

 v1 = W21*x;
 y1 = Sigmoid(v1);
 v = W22*y1;

Chapter 3 ■ Training of Multi-Layer Neural Network

78

 y = Sigmoid(v);
 es2 = es2 + (d - y)^2;
 end
 E1(epoch) = es1 / N;
 E2(epoch) = es2 / N;
end

plot(E1, 'r')
hold on
plot(E2, 'b:')
xlabel('Epoch')
ylabel('Average of Training error')
legend('Cross Entropy', 'Sum of Squared Error')

This program calls the BackpropCE and the BackpropXOR functions and
trains the neural networks 1,000 times each. The squared sum of the output error
(es1 and es2) is calculated at every epoch for each neural network, and their
average (E1 and E2) is calculated. W11, W12, W21, and W22 are the weight matrices
of respective neural networks. Once the 1,000 trainings have been completed,
the mean errors are compared over the epoch on the graph. As Figure 3-14
shows, the cross entropy-driven training reduces the training error at a much
faster rate. In other words, the cross entropy-driven learning rule yields a faster
learning process. This is the reason that most cost functions for Deep Learning
employ the cross entropy function.

Chapter 3 ■ Training of Multi-Layer Neural Network

79

0.3

0.25

0.15

0.05

0.2

0.1

0
0 200 400 600 800 1000

Epoch

Av
er

ag
e

of
 T

ra
in

in
g

er
ro

r

Cross Entropy
Sum of Squared Error

Figure 3-14.  Cross entropy-driven training reduces training error at a much
faster rate

This completes the contents for the back-propagation algorithm. If you had
a hard time catching on, don’t be discouraged. Actually, understanding the back-
propagation algorithms is not a vital factor when studying and developing Deep
Learning. As most of the Deep Learning libraries already include the algorithms;
we can just use them. Cheer up! Deep Learning is just one chapter away.

Summary
This chapter covered the following concepts:

•	 The multi-layer neural network cannot be trained using the delta
rule; it should be trained using the back-propagation algorithm,
which is also employed as the learning rule of Deep Learning.

•	 The back-propagation algorithm defines the hidden layer error
as it propagates the output error backward from the output layer.
Once the hidden layer error is obtained, the weights of every layer
are adjusted using the delta rule. The importance of the back-
propagation algorithm is that it provides a systematic method to
define the error of the hidden node.

Chapter 3 ■ Training of Multi-Layer Neural Network

80

•	 The single-layer neural network is applicable only to linearly
separable problems, and most practical problems are linearly
inseparable.

•	 The multi-layer neural network is capable of modeling the
linearly inseparable problems.

•	 Many types of weight adjustments are available in the back-
propagation algorithm. The development of various weight
adjustment approaches is due to the pursuit of a more stable
and faster learning of the network. These characteristics are
particularly beneficial for hard-to-learn Deep Learning.

•	 The cost function addresses the output error of the neural
network and is proportional to the error. Cross entropy has
been widely used in recent applications. In most cases, the
cross entropy-driven learning rules are known to yield better
performance.

•	 The learning rule of the neural network varies depending on
the cost function and activation function. Specifically, the delta
calculation of the output node is changed.

•	 The regularization, which is one of the approaches used to
overcome overfitting, is also implemented as an addition of the
weight term to the cost function.

81© Phil Kim 2017
P. Kim, MATLAB Deep Learning, DOI 10.1007/978-1-4842-2845-6_4

CHAPTER 4

Neural Network and
Classification

As addressed in Chapter 1, the primary Machine Learning applications that
require supervised learning are classification and regression. Classification is
used to determine the group the data belongs. Some typical applications of
classification are spam mail filtering and character recognition. In contrast,
regression infers values from the data. It can be exemplified with the prediction
of income for a given age and education level.

Although the neural network is applicable to both classification and
regression, it is seldom used for regression. This is not because it yields poor
performance, but because most of regression problems can be solved using
simpler models. Therefore, we will stick to classification throughout this book.

In the application of the neural network to classification, the output layer is
usually formulated differently depending on how many groups the data should
be divided into. The selection of the number of nodes and suitable activation
functions for the classification of two groups is different when using more
groups. Keep in mind that it affects only the output nodes, while the hidden
nodes remain intact. Of course, the approaches of this chapter are not only
ones available. However, these may be the best to start with, as they have been
validated through many studies and cases.

Binary Classification
We will start with the binary classification neural network, which classifies the
input data into one of the two groups. This kind of classifier is actually useful
for more applications than you may expect. Some typical applications include
spam mail filtering (a spam mail or a normal mail) and loan approvals (approve
or deny).

http://dx.doi.org/10.1007/978-1-4842-2845-6_1

Chapter 4 ■ Neural Network and Classification

82

For binary classification, a single output node is sufficient for the neural
network. This is because the input data can be classified by the output value,
which is either greater than or less than the threshold. For example, if the
sigmoid function is employed as the activation function of the output node, the
data can be classified by whether the output is greater than 0.5 or not. As the
sigmoid function ranges from 0-1, we can divide groups in the middle, as shown
in Figure 4-1.

Consider the binary classification problem shown in Figure 4-1. For the
given coordinates (x, y), the model is to determine which group the data belongs.
In this case, the training data is given in the format shown in Figure 4-2. The
first two numbers indicate the x and y coordinates respectively, and the symbol
represents the group in which the data belongs. The data consists of the input
and correct output as it is used for supervised learning.

Figure 4-1.  Binary classification problem

Chapter 4 ■ Neural Network and Classification

83

Figure 4-2.  Training data binary classification

1The hidden layer is not our concern. The layer that varies depending on the number of classes is the
output layer, not the hidden layer. There is no standard rule for the composition of the hidden layer.

Now, let’s construct the neural network. The number of input nodes
equals the number of input parameters. As the input of this example consists
of two parameters, the network employs two input nodes. We need one output
node because this implements the classification of two groups as previously
addressed. The sigmoid function is used as the activation function, and the
hidden layer has four nodes.1 Figure 4-3 shows the described neural network.

Chapter 4 ■ Neural Network and Classification

84

When we train this network with the given training data, we can get the
binary classification that we want. However, there is a problem. The neural
network produces numerical outputs that range from 0-1, while we have the
symbolic correct outputs given as △ and ●. We cannot calculate the error in
this way; we need to switch the symbols to numerical codes. We can assign the
maximum and minimum values of the sigmoid function to the two classes as
follows:

Class △  1

Class ●  0

The change of the class symbols yields the training data shown in Figure 4-4.

Figure 4-3.  Neural network for the training data

Chapter 4 ■ Neural Network and Classification

85

The training data shown in Figure 4-4 is what we use to train the neural
network. The binary classification neural network usually adopts the cross
entropy function of the previous equation for training. You don’t have to do so
all the time, but it is beneficial for the performance and implementation process.
The learning process of the binary classification neural network is summarized
in the following steps. Of course, we use the cross entropy function as the cost
function and the sigmoid function as the activation function of the hidden and
output nodes.

	 1.	 The binary classification neural network has one node
for the output layer. The sigmoid function is used for the
activation function.

	 2.	 Switch the class titles of the training data into numbers
using the maximum and minimum values of the
sigmoid function.

Class △  1

Class ●  0

	 3.	 Initialize the weights of the neural network with
adequate values.

Figure 4-4.  Change the class symbols and the data is classified differently

Chapter 4 ■ Neural Network and Classification

86

	 4.	 Enter the input from the training data { input, correct
output } into the neural network and obtain the output.
Calculate the error between the output and correct
output, and determine the delta, δ, of the output nodes.

e d y

d e

= -
=

	 5.	 Propagate the output delta backwards and calculate the
delta of the subsequent hidden nodes.

e k T

k k k

W

v e

()

() () ()

=

= ()¢

d

d j

	 6.	 Repeat Step 5 until it reaches the hidden layer on the
immediate right of the input layer.

	 7.	 Adjust the weights of the neural network using this
learning rule:

D =
¬ + D
w x

w w w
ij i j

ij ij ij

ad

	 8.	 Repeat Steps 4-7 for all training data points.

	 9.	 Repeat Steps 4-8 until the neural network has been
trained properly.

Although it appears complicated because of its many steps, this process is
basically the same as that of the back-propagation of Chapter 3. The detailed
explanations are omitted.

Multiclass Classification
This section introduces how to utilize the neural network to deal with the
classification of three or more classes. Consider a classification of the given
inputs of coordinates (x, y) into one of three classes (see Figure 4-5).

http://dx.doi.org/10.1007/978-1-4842-2845-6_3

Chapter 4 ■ Neural Network and Classification

87

We need to construct the neural network first. We will use two nodes for the
input layer as the input consists of two parameters. For simplicity, the hidden
layers are not considered at this time. We need to determine the number of the
output nodes as well. It is widely known that matching the number of output
nodes to the number of classes is the most promising method. In this example,
we use three output nodes, as the problem requires three classes. Figure 4-6
illustrates the configured neural network.

Once the neural network has been trained with the given data, we obtain
the multiclass classifier that we want. The training data is given in Figure 4-7. For
each data point, the first two numbers are the x and y coordinates respectively,

Figure 4-6.  Configured neural network for the three classes

Figure 4-5.  Data with three classes

Chapter 4 ■ Neural Network and Classification

88

and the third value is the corresponding class. The data includes the input and
correct output as it is used for supervised learning.

In order to calculate the error, we switch the class names into numeric
codes, as we did in the previous section. Considering that we have three output
nodes from the neural network, we create the classes as the following vectors:

Class 1  [1 0 0]

Class 2  [0 1 0]

Class 3  [0 0 1]

This transformation implies that each output node is mapped to an element
of the class vector, which only yields 1 for the corresponding node. For example,
if the data belongs to Class 2, the output only yields 1 for the second node and 0
for the others (see Figure 4-8).

Figure 4-7.  Training data with multiclass classifier

Chapter 4 ■ Neural Network and Classification

89

This expression technique is called one-hot encoding or 1-of-N encoding.
The reason that we match the number of output nodes to the number of classes
is to apply this encoding technique. Now, the training data is displayed in the
format shown in Figure 4-9.

Figure 4-8.  Each output node is now mapped to an element of the class vector

Figure 4-9.  Training data is displayed in a new format

Chapter 4 ■ Neural Network and Classification

90

Next, the activation function of the output node should be defined. Since the
correct outputs of the transformed training data range from zero to one, can we
just use the sigmoid function as we did for the binary classification? In general,
multiclass classifiers employ the softmax function as the activation function of
the output node.

The activation functions that we have discussed so far, including the sigmoid
function, account only for the weighted sum of inputs. They do not consider the
output from the other output nodes. However, the softmax function accounts not
only for the weighted sum of the inputs, but also for the inputs to the other output
nodes. For example, when the weighted sum of the inputs for the three output nodes
are 2, 1, and 0.1, respectively, the softmax function calculates the outputs shown in
Figure 4-10. All of the weighted sums of the inputs are required in the denominator.

Figure 4-10.  Softmax function calculations

Why do we insist on using the softmax function? Consider the sigmoid
function in place of the softmax function. Assume that the neural network
produced the output shown in Figure 4-11 when given the input data. As the
sigmoid function concerns only its own output, the output here will be generated.

Figure 4-11.  Output when using a sigmoid function

Chapter 4 ■ Neural Network and Classification

91

The first output node appears to be in Class 1 by 100 percent probability.
Does the data belong to Class 1, then? Not so fast. The other output nodes also
indicate 100 percent probability of being in Class 2 and Class 3. Therefore,
adequate interpretation of the output from the multiclass classification neural
network requires consideration of the relative magnitudes of all node outputs.
In this example, the actual probability of being each class is 1

3
. The softmax

function provides the correct values.
The softmax function maintains the sum of the output values to be one and

also limits the individual outputs to be within the values of 0-1. As it accounts
for the relative magnitudes of all the outputs, the softmax function is a suitable
choice for the multiclass classification neural networks. The output from the i-th
output node of the softmax function is calculated as follows:

y v
e

e e e e

e

e

i i

v

v v v v

v

k

M
v

i

M

i

k

= () =
+ + + +

=

=
å

j
1 2 3

1



where, v
i
 is the weighted sum of the i-th output node, and M is the number

of output nodes. Following this definition, the softmax function satisfies the
following condition:

j j j jv v v vM1 2 3 1() + () + () + + () =

Finally, the learning rule should be determined. The multiclass classification
neural network usually employs the cross entropy-driven learning rules just
like the binary classification network does. This is due to the high learning
performance and simplicity that the cross entropy function provides.

Long story short, the learning rule of the multiclass classification neural
network is identical to that of the binary classification neural network of
the previous section. Although these two neural networks employ different
activation functions—the sigmoid for the binary and the softmax for the
multiclass—the derivation of the learning rule leads to the same result. Well, it is
better for us to have less to remember.

The training process of the multiclass classification neural network is
summarized in these steps.

	 1.	 Construct the output nodes to have the same value as
the number of classes. The softmax function is used as
the activation function.

Chapter 4 ■ Neural Network and Classification

92

	 2.	 Switch the names of the classes into numeric vectors via
the one-hot encoding method.

Class 1  [1 0 0]

Class 2  [0 1 0]

Class 3  [0 0 1]

	 3.	 Initialize the weights of the neural network with
adequate values.

	 4.	 Enter the input from the training data { input, correct
output } into the neural network and obtain the output.
Calculate the error between the output and correct
output and determine the delta, δ, of the output nodes.

e d y

e

= -
=d

	 5.	 Propagate the output delta backwards and calculate the
delta of the subsequent hidden nodes.

e W

v e

k T

k k k

()

() () ()

=

= ()¢

d

d j

	 6.	 Repeat Step 5 until it reaches the hidden layer on the
immediate right of the input layer.

	 7.	 Adjust the weights of the neural network using this
learning rule:

D =
¬ + D
w x

w w w
ij i j

ij ij ij

ad

	 8.	 Repeat Steps 4-7 for all the training data points.

	 9.	 Repeat Steps 4-8 until the neural network has been
trained properly.

Of course, the multiclass classification neural network is applicable for
binary classification. All we have to do is construct a neural network with two
output nodes and use the softmax function as the activation function.

Chapter 4 ■ Neural Network and Classification

93

Example: Multiclass Classification
In this section, we implement a multiclass classifier network that recognizes
digits from the input images. The binary classification has been implemented
in Chapter 3, where the input coordinates were divided into two groups. As it
classified the data into either 0 or 1, it was binary classification.

Consider an image recognition of digits. This is a multiclass classification, as
it classifies the image into specified digits. The input images are five-by-five pixel
squares, which display five numbers from 1 to 5, as shown in Figure 4-12.

The neural network model contains a single hidden layer, as shown in
Figure 4-13. As each image is set on a matrix, we set 25 input nodes. In addition,
as we have five digits to classify, the network contains five output nodes. The
softmax function is used as the activation function of the output node. The
hidden layer has 50 nodes and the sigmoid function is used as the activation
function.

Figure 4-12.  Five-by-five pixel squares that display five numbers from 1 to 5

Figure 4-13.  The neural network model for this new dataset

http://dx.doi.org/10.1007/978-1-4842-2845-6_3

Chapter 4 ■ Neural Network and Classification

94

The function MultiClass implements the learning rule of multiclass
classification using the SGD method. It takes the input arguments of the weights
and training data and returns the trained weights.

[W1, W2] = MultiClass(W1, W2, X, D)

where W1 and W2 are the weight matrices of the input-hidden and hidden-output
layers, respectively. X and D are the input and correct output of the training
data, respectively. The following listing shows the MultiClass.m file, which
implements the function MultiClass.

function [W1, W2] = MultiClass(W1, W2, X, D)
 alpha = 0.9;

 N = 5;
 for k = 1:N
 x = reshape(X(:, :, k), 25, 1);
 d = D(k, :)';

 v1 = W1*x;
 y1 = Sigmoid(v1);
 v = W2*y1;
 y = Softmax(v);

 e = d - y;
 delta = e;

 e1 = W2'*delta;
 delta1 = y1.*(1-y1).*e1;

 dW1 = alpha*delta1*x';
 W1 = W1 + dW1;

 dW2 = alpha*delta*y1';
 W2 = W2 + dW2;
 end
end

This code follows the same procedure as that of the example code in the
“Cross Entropy Function” section in Chapter 3, which applies the delta rule to
the training data, calculates the weight updates, dW1 and dW2, and adjusts the
neural network’s weights. However, this code slightly differs in that it uses the

http://dx.doi.org/10.1007/978-1-4842-2845-6_3

Chapter 4 ■ Neural Network and Classification

95

function softmax for the calculation of the output and calls the function reshape
to import the inputs from the training data.

x = reshape(X(:, :, k), 25, 1);

The input argument X contains the stacked two-dimensional image data.
This means that X is a 5 5 5´ ´ three-dimensional matrix. Therefore, the first
argument of the function reshape, X(:, :, k) indicates the 5 5´ matrix that
contains the k-th image data. As this neural network is compatible with only the
vector format inputs, the two-dimensional matrix should be transformed into a
25 1´ vector. The function reshape performs this transformation.

Using the cross entropy-driven learning rule, the delta of the output node is
calculated as follows:

e = d - y;
delta = e;

Similar to the example from Chapter 3, no other calculation is required.
This is because, in the cross entropy-driven learning rule that uses the softmax
activation function, the delta and error are identical. Of course, the previous
back-propagation algorithm applies to the hidden layer.

e1 = W2'*delta;
delta1 = y1.*(1-y1).*e1;

The function Softmax, which the function MultiClass calls in, is
implemented in the Softmax.m file shown in the following listing. This file
implements the definition of the softmax function literally. It is simple enough
and therefore further explanations have been omitted.

function y = Softmax(x)
 ex = exp(x);
 y = ex / sum(ex);
end

The following listing shows the TestMultiClass.m file, which tests the
function MultiClass. This program calls MultiClass and trains the neural
network 10,000 times. Once the training process has been finished, the program
enters the training data into the neural network and displays the output. We
can verify the training results via the comparison of the output with the correct
output.

http://dx.doi.org/10.1007/978-1-4842-2845-6_3

Chapter 4 ■ Neural Network and Classification

96

clear all

rng(3);

X = zeros(5, 5, 5);

X(:, :, 1) = [0 1 1 0 0;
 0 0 1 0 0;
 0 0 1 0 0;
 0 0 1 0 0;
 0 1 1 1 0
];

X(:, :, 2) = [1 1 1 1 0;
 0 0 0 0 1;
 0 1 1 1 0;
 1 0 0 0 0;
 1 1 1 1 1
];

X(:, :, 3) = [1 1 1 1 0;
 0 0 0 0 1;
 0 1 1 1 0;
 0 0 0 0 1;
 1 1 1 1 0
];

X(:, :, 4) = [0 0 0 1 0;
 0 0 1 1 0;
 0 1 0 1 0;
 1 1 1 1 1;
 0 0 0 1 0
];

X(:, :, 5) = [1 1 1 1 1;
 1 0 0 0 0;
 1 1 1 1 0;
 0 0 0 0 1;
 1 1 1 1 0
];

Chapter 4 ■ Neural Network and Classification

97

D = [1 0 0 0 0;
 0 1 0 0 0;
 0 0 1 0 0;
 0 0 0 1 0;
 0 0 0 0 1
];

W1 = 2*rand(50, 25) - 1;
W2 = 2*rand(5, 50) - 1;

for epoch = 1:10000 % train
 [W1 W2] = MultiClass(W1, W2, X, D);
end

N = 5; % inference
for k = 1:N
 x = reshape(X(:, :, k), 25, 1);
 v1 = W1*x;
 y1 = Sigmoid(v1);
 v = W2*y1;
 y = Softmax(v)
end

The input data X of the code is a two-dimensional matrix, which encodes the
white pixel into a zero and the black pixel into a unity. For example, the image of
the number 1 is encoded in the matrix shown in Figure 4-14.

In contrast, the variable D contains the correct output. For example, the
correct output to the first input data, i.e. the image of 1, is located on the first row
of the variable D, which is constructed using the one-hot encoding method for
each of the five output nodes. Execute the TestMultiClass.m file, and you will
see that the neural network has been properly trained in terms of the difference
between the output and D.

Figure 4-14.  The image of the number 1 is encoded in the matrix

Chapter 4 ■ Neural Network and Classification

98

So far, we have verified the neural network for only the training data.
However, the practical data does not necessarily reflect the training data.
This fact, as we previously discussed, is the fundamental problem of Machine
Learning and needs to solve. Let’s check our neural network with a simple
experiment. Consider the slightly contaminated images shown in Figure 4-15
and watch how the neural network responds to them.

The following listing shows the RealMultiClass.m file, which classifies
the images shown in Figure 4-15. This program starts with the execution of the
TestMultiClass command and trains the neural network. This process yields
the weight matrices W1 and W2.

clear all

TestMultiClass; % W1, W2

X = zeros(5, 5, 5);

X(:, :, 1) = [0 0 1 1 0;
 0 0 1 1 0;
 0 1 0 1 0;
 0 0 0 1 0;
 0 1 1 1 0
];

X(:, :, 2) = [1 1 1 1 0;
 0 0 0 0 1;
 0 1 1 1 0;
 1 0 0 0 1;
 1 1 1 1 1
];

Figure 4-15.  Let’s see how the neural network responds to these contaminated
images

Chapter 4 ■ Neural Network and Classification

99

X(:, :, 3) = [1 1 1 1 0;
 0 0 0 0 1;
 0 1 1 1 0;
 1 0 0 0 1;
 1 1 1 1 0
];

X(:, :, 4) = [0 1 1 1 0;
 0 1 0 0 0;
 0 1 1 1 0;
 0 0 0 1 0;
 0 1 1 1 0
];

X(:, :, 5) = [0 1 1 1 1;
 0 1 0 0 0;
 0 1 1 1 0;
 0 0 0 1 0;
 1 1 1 1 0
];

N = 5; % inference
for k = 1:N
 x = reshape(X(:, :, k), 25, 1);
 v1 = W1*x;
 y1 = Sigmoid(v1);
 v = W2*y1;
 y = Softmax(v)
end

This code is identical to that of the TestMultiClass.m file, except that it has
a different input X and does not include the training process. Execution of this
program produces the output of the five contaminated images. Let’s take a look
one by one.

For the first image, the neural network decided it was a 4 by 96.66%
probability. Compare the left and right images in Figure 4-16, which are the
input and the digit that the neural network selected, respectively. The input
image indeed contains important features of the number 4. Although it appears
to be a 1 as well, it is closer to a 4. The classification seems reasonable.

Chapter 4 ■ Neural Network and Classification

100

Next, the second image is classified as a 2 by 99.36% probability. This
appears to be reasonable when we compare the input image and the training
data 2. They only have a one-pixel difference. See Figure 4-17.

The third image is classified as a 3 by 97.62% probability. This also seems
reasonable when we compare the images. See Figure 4-18.

Figure 4-16.  Left and right images are the input and digit that the neural
network selected, respectively

Figure 4-17.  The second image is classified as a 2

Figure 4-18.  The third image is classified as a 3

Chapter 4 ■ Neural Network and Classification

101

However, when we compare the second and third input images, the
difference is only one pixel. This tiny difference results in two totally different
classifications. You may not have paid attention, but the training data of these
two images has only a two-pixel difference. Isn’t it amazing that the neural
network catches this small difference and applies it to actual practice?

Let’s look at the fourth image. It is classified as a 5 by 47.12% probability.
At the same time, it could be a 3 by a pretty high probability of 32.08%. Let’s see
what happened. The input image appears to be a squeezed 5. Furthermore,
the neural network finds some horizontal lines that resemble features of a 3,
therefore giving that a high probability. In this case, the neural network should
be trained to have more variety in the training data in order to improve its
performance.

Finally, the fifth image is classified as a 5 by 98.18% probability. It is no
wonder when we see the input image. However, this image is almost identical to
the fourth image. It merely has two additional pixels on the top and bottom of
the image. Just extending the horizontal lines results in a dramatic increase in
the probability of being a 5. The horizontal feature of a 5 is not as significant in
the fourth image. By enforcing this feature, the fifth image is correctly classified
as a 5, as shown in Figure 4-20.

Figure 4-19.  The neural network may have to be trained to have more variety in
the training data in order to improve its performance

Chapter 4 ■ Neural Network and Classification

102

Summary
This chapter covered the following concepts:

•	 For the neural network classifier, the selection of the number of
output nodes and activation function usually depends on whether
it is for a binary classification (two classes) or for a multiclass
classification (three or more classes).

•	 For binary classification, the neural network is constructed with a
single output node and sigmoid activation function. The correct
output of the training data is converted to the maximum and
minimum values of the activation function. The cost function of
the learning rule employs the cross entropy function.

•	 For a multiclass classification, the neural network includes
as many output nodes as the number of classes. The softmax
function is employed for the activation function of the output
node. The correct output of the training data is converted into a
vector using the one-hot encoding method. The cost function of
the learning rule employs the cross entropy function.

Figure 4-20.  The fifth image is correctly classified as a 5

103© Phil Kim 2017
P. Kim, MATLAB Deep Learning, DOI 10.1007/978-1-4842-2845-6_5

CHAPTER 5

Deep Learning

It’s time for Deep Learning. You don’t need to be nervous though. As Deep
Learning is still an extension of the neural network, most of what you previously
read is applicable. Therefore, you don’t have many additional concepts to learn.

Briefly, Deep Learning is a Machine Learning technique that employs the
deep neural network. As you know, the deep neural network is the multi-layer
neural network that contains two or more hidden layers. Although this may be
disappointingly simple, this is the true essence of Deep Learning. Figure 5-1
illustrates the concept of Deep Learning and its relationship to Machine Learning.

The deep neural network lies in the place of the final product of Machine
Learning, and the learning rule becomes the algorithm that generates the model
(the deep neural network) from the training data.

Training Data

Learning Rule

Input Data OutputDeep Neural Network

Figure 5-1.  The concept of Deep Learning and its relationship to Machine
Learning

104

Chapter 5 ■ Deep Learning

Now, knowing that Deep Learning is just the use of a deeper (more hidden
layers) neural network, you may ask, “What makes Deep Learning so attractive?
Has anyone ever thought of making the neural network’s layers even deeper?”
In order to answer these questions, we need to look into the history of the neural
network.

It did not take very long for the single-layer neural network, the first
generation of the neural network, to reveal its fundamental limitations
when solving the practical problems that Machine Learning faced.1 The
researchers already knew that the multi-layer neural network would be the next
breakthrough. However, it took approximately 30 years until another layer was
added to the single-layer neural network. It may not be easy to understand why
it took so long for just one additional layer. It was because the proper learning
rule for the multi-layer neural network was not found. Since the training is the
only way for the neural network to store the information, the untrainable neural
network is useless.

The problem of training of the multi-layer neural network was finally solved
in 1986 when the back-propagation algorithm was introduced. The neural
network was on stage again. However, it was soon met with another problem.
Its performance on practical problems did not meet expectations. Of course,
there were various attempts to overcome the limitations, including the addition
of hidden layers and addition of nodes in the hidden layer. However, none of
them worked. Many of them yielded even poorer performances. As the neural
network has a very simple architecture and concept, there was nothing much to
do that could improve it. Finally, the neural network was sentenced to having no
possibility of improvement and it was forgotten.

It remained forgotten for about 20 years until the mid-2000s when Deep
Learning was introduced, opening a new door. It took a while for the deep
hidden layer to yield sufficient performance because of the difficulties in training
the deep neural network. Anyway, the current technologies in Deep Learning
yield dazzling levels of performance, which outsmarts the other Machine
Learning techniques as well as other neural networks, and prevail in the studies
of Artificial Intelligence.

In summary, the reason the multi-layer neural network took 30 years
to solve the problems of the single-layer neural network was the lack of the
learning rule, which was eventually solved by the back-propagation algorithm.
In contrast, the reason another 20 years passed until the introduction of deep
neural network-based Deep Learning was the poor performance. The back-
propagation training with the additional hidden layers often resulted in poorer
performance. Deep Learning provided a solution to this problem.

1As addressed in Chapter 2, the single-layer neural network can solve only linearly
separable problems.

http://dx.doi.org/10.1007/978-1-4842-2845-6_2

105

Chapter 5 ■ Deep Learning

Improvement of the Deep Neural Network
Despite its outstanding achievements, Deep Learning actually does not have
any critical technologies to present. The innovation of Deep Learning is a result
of many small technical improvements. This section briefly introduces why
the deep neural network yielded poor performance and how Deep Learning
overcame this problem.

The reason that the neural network with deeper layers yielded poorer
performance was that the network was not properly trained. The back-
propagation algorithm experiences the following three primary difficulties in the
training process of the deep neural network:

•	 Vanishing gradient

•	 Overfitting

•	 Computational load

Vanishing Gradient
The gradient in this context can be thought as a similar concept to the delta of
the back-propagation algorithm. The vanishing gradient in the training process
with the back-propagation algorithm occurs when the output error is more likely
to fail to reach the farther nodes. The back-propagation algorithm trains the
neural network as it propagates the output error backward to the hidden layers.
However, as the error hardly reaches the first hidden layer, the weight cannot
be adjusted. Therefore, the hidden layers that are close to the input layer are
not properly trained. There is no point of adding hidden layers if they cannot be
trained (see Figure 5-2).

106

Chapter 5 ■ Deep Learning

The representative solution to the vanishing gradient is the use of the
Rectified Linear Unit (ReLU) function as the activation function. It is known to
better transmit the error than the sigmoid function. The ReLU function is defined
as follows:

j x
x x

x

x

()
ì
í
ï

îï

()

=
>
£

=

,

,

max ,

0

0 0

0

Figure 5-3 depicts the ReLU function. It produces zero for negative inputs
and conveys the input for positive inputs.2 Its implementation is extremely easy
as well.

2It earned its name as its behavior is similar to that of the rectifier, an electrical element
that converts the alternating current into direct current as it cuts out negative voltage.

Figure 5-2.  The vanishing gradient

107

Chapter 5 ■ Deep Learning

The sigmoid function limits the node’s outputs to the unity regardless of the
input’s magnitude. In contrast, the ReLU function does not exert such limits. Isn’t
it interesting that such a simple change resulted in a drastic improvement of the
learning performance of the deep neural network?

Another element that we need for the back-propagation algorithm is
the derivative of the ReLU function. By the definition of the ReLU function, its
derivative is given as:

¢ =
>
£

()
ì
í
ï

îï
j x

x

x

1 0

0 0

,

,

In addition, the cross entropy-driven learning rules may improve the
performance, as addressed in Chapter 3. Furthermore, the advanced gradient
descent3, which is a numerical method that better achieves the optimum value,
is also beneficial for the training of the deep neural network.

Overfitting
The reason that the deep neural network is especially vulnerable to overfitting
is that the model becomes more complicated as it includes more hidden layers,
and hence more weight. As addressed in Chapter 1, a complicated model is
more vulnerable to overfitting. Here is the dilemma—deepening the layers for

Figure 5-3.  The ReLU function

3sebastianruder.com/optimizing-gradient-descent/

http://dx.doi.org/10.1007/978-1-4842-2845-6_3
http://dx.doi.org/10.1007/978-1-4842-2845-6_1

108

Chapter 5 ■ Deep Learning

higher performance drives the neural network to face the challenge of Machine
Learning.

The most representative solution is the dropout, which trains only some of
the randomly selected nodes rather than the entire network. It is very effective,
while its implementation is not very complex. Figure 5-4 explains the concept
of the dropout. Some nodes are randomly selected at a certain percentage and
their outputs are set to be zero to deactivate the nodes.

The dropout effectively prevents overfitting as it continuously alters
the nodes and weights in the training process. The adequate percentages
of the dropout are approximately 50% and 25% for hidden and input layers,
respectively.

Figure 5-4.  Dropout is where some nodes are randomly selected and their outputs
are set to zero to deactivate the nodes

109

Chapter 5 ■ Deep Learning

Another prevailing method used to prevent overfitting is adding
regularization terms, which provide the magnitude of the weights, to the cost
function. This method works as it simplifies the neural network’ architecture as
much as possible, and hence reduces the possible onset of overfitting. Chapter 3
explains this aspect. Furthermore, the use of massive training data is also very
helpful as the potential bias due to particular data is reduced.

Computational Load
The last challenge is the time required to complete the training. The number
of weights increases geometrically with the number of hidden layers, thus
requiring more training data. This ultimately requires more calculations to be
made. The more computations the neural network performs, the longer the
training takes. This problem is a serious concern in the practical development
of the neural network. If a deep neural network requires a month to train, it can
only be modified 20 times a year. A useful research study is hardly possible in
this situation. This trouble has been relieved to a considerable extent by the
introduction of high-performance hardware, such as GPU, and algorithms, such
as batch normalization.

The minor improvements that this section introduced are the drivers that
has made Deep Learning the hero of Machine Learning. The three primary
research areas of Machine Learning are usually said to be the image recognition,
speech recognition, and natural language processing. Each of these areas had
been separately studied with specifically suitable techniques. However, Deep
Learning currently outperforms all the techniques of all three areas.

Example: ReLU and Dropout
This section implements the ReLU activation function and dropout, the
representative techniques of Deep Learning. It reuses the example of the digit
classification from Chapter 4. The training data is the same five-by-five square
images.

Figure 5-5.  Training data in five-by-five square images

http://dx.doi.org/10.1007/978-1-4842-2845-6_3
http://dx.doi.org/10.1007/978-1-4842-2845-6_4

110

Chapter 5 ■ Deep Learning

Consider the deep neural network with the three hidden layers, as shown
in Figure 5-6. Each hidden layer contains 20 nodes. The network has 25 input
nodes for the matrix input and five output nodes for the five classes. The output
nodes employ the softmax activation function.

ReLU Function
This section introduces the ReLU function via the example. The function
DeepReLU trains the given deep neural network using the back-propagation
algorithm. It takes the weights of the network and training data and returns the
trained weights.

[W1, W2, W3, W4] = DeepReLU(W1, W2, W3, W4, X, D)

where W1, W2, W3, and W4 are weight matrices of input-hidden1, hidden1-
hidden2, hidden2-hidden3, and hidden3-output layers, respectively. X and D
are input and correct output matrices of the training data. The following listing
shows the DeepReLU.m file, which implements the DeepReLU function.

function [W1, W2, W3, W4] = DeepReLU(W1, W2, W3, W4, X, D)
 alpha = 0.01;

 N = 5;
 for k = 1:N
 x = reshape(X(:, :, k), 25, 1);
 v1 = W1*x;
 y1 = ReLU(v1);

Figure 5-6.  The deep neural network with three hidden layers

111

Chapter 5 ■ Deep Learning

 v2 = W2*y1;
 y2 = ReLU(v2);

 v3 = W3*y2;
 y3 = ReLU(v3);

 v = W4*y3;
 y = Softmax(v);

 d = D(k, :)';

 e = d - y;
 delta = e;

 e3 = W4'*delta;
 delta3 = (v3 > 0).*e3;

 e2 = W3'*delta3;
 delta2 = (v2 > 0).*e2;

 e1 = W2'*delta2;
 delta1 = (v1 > 0).*e1;

 dW4 = alpha*delta*y3';
 W4 = W4 + dW4;

 dW3 = alpha*delta3*y2';
 W3 = W3 + dW3;

 dW2 = alpha*delta2*y1';
 W2 = W2 + dW2;

 dW1 = alpha*delta1*x';
 W1 = W1 + dW1;
 end
end

This code imports the training data, calculates the weight updates (dW1, dW2,
dW3, and dW4) using the delta rule, and adjusts the weight of the neural network.
So far, the process is identical to the previous training codes. It only differs in that
the hidden nodes employ the function ReLU, in place of sigmoid. Of course, the
use of a different activation function yields a change in its derivative as well.

Now, let’s look into the function ReLU that the function DeepReLU calls. The
listing of the function ReLU shown here is implemented in the ReLU.m file. As this
is just a definition, further discussion is omitted.

112

Chapter 5 ■ Deep Learning

function y = ReLU(x)
 y = max(0, x);
end

Consider the back-propagation algorithm portion, which adjusts the weights
using the back-propagation algorithm. The following listing shows the extract of
the delta calculation from the DeepReLU.m file. This process starts from the delta
of the output node, calculates the error of the hidden node, and uses it for the
next error. It repeats the same steps through delta3, delta2, and delta1.

...
e = d - y;
delta = e;

e3 = W4'*delta;
delta3 = (v3 > 0).*e3;

e2 = W3'*delta3;
delta2 = (v2 > 0).*e2;

e1 = W2'*delta2;
delta1 = (v1 > 0).*e1;
...

Something noticeable from the code is the derivative of the function ReLU.
For example, in the calculation of the delta of the third hidden layer, delta3, the
derivative of the ReLU function is coded as follows:

(v3 > 0)

Let’s see how this line becomes the derivative of the ReLU function. MATLAB
returns a unity and zero if the expressions in the brackets are true and false,
respectively. Therefore, this line becomes 1 if v3 > 0 and 0 otherwise. The
same result is produced as the definition of the derivative of the ReLU function
shown here:

¢ =
>
£

()
ì
í
ï

îï
j x

x

x

1 0

0 0

,

,

The following listing shows the TestDeepReLU.m file, which tests the
DeepReLU function. This program calls the DeepReLU function and trains the
network 10,000 times. It enters the training data into the trained network and
displays the output. We verify the adequacy of the training by comparing the
output and correct output.

113

Chapter 5 ■ Deep Learning

clear all

X = zeros(5, 5, 5);

X(:, :, 1) = [0 1 1 0 0;
 0 0 1 0 0;
 0 0 1 0 0;
 0 0 1 0 0;
 0 1 1 1 0
];

X(:, :, 2) = [1 1 1 1 0;
 0 0 0 0 1;
 0 1 1 1 0;
 1 0 0 0 0;
 1 1 1 1 1
];

X(:, :, 3) = [1 1 1 1 0;
 0 0 0 0 1;
 0 1 1 1 0;
 0 0 0 0 1;
 1 1 1 1 0
];

X(:, :, 4) = [0 0 0 1 0;
 0 0 1 1 0;
 0 1 0 1 0;
 1 1 1 1 1;
 0 0 0 1 0
];

X(:, :, 5) = [1 1 1 1 1;
 1 0 0 0 0;
 1 1 1 1 0;
 0 0 0 0 1;
 1 1 1 1 0
];

D = [1 0 0 0 0;
 0 1 0 0 0;
 0 0 1 0 0;
 0 0 0 1 0;
 0 0 0 0 1
];

114

Chapter 5 ■ Deep Learning

W1 = 2*rand(20, 25) - 1;
W2 = 2*rand(20, 20) - 1;
W3 = 2*rand(20, 20) - 1;
W4 = 2*rand(5, 20) - 1;

for epoch = 1:10000 % train
 [W1, W2, W3, W4] = DeepReLU(W1, W2, W3, W4, X, D);
end

N = 5; % inference
for k = 1:N
 x = reshape(X(:, :, k), 25, 1);
 v1 = W1*x;
 y1 = ReLU(v1);

 v2 = W2*y1;
 y2 = ReLU(v2);

 v3 = W3*y2;
 y3 = ReLU(v3);

 v = W4*y3;
 y = Softmax(v)
end

As this code is also almost identical to the previous test programs, a detailed
explanation is omitted. This code occasionally fails to train properly and yields
wrong outputs, which has never happened with the sigmoid activation function.
The sensitivity of the ReLU function to the initial weight values seems to cause
this anomaly.

Dropout
This section presents the code that implements the dropout. We use the sigmoid
activation function for the hidden nodes. This code is mainly used to see how
the dropout is coded, as the training data may be too simple for us to perceive
the actual improvement of overfitting.

The function DeepDropout trains the example neural network using the
back-propagation algorithm. It takes the neural network’s weights and training
data and returns the trained weights.

[W1, W2, W3, W4] = DeepDropout(W1, W2, W3, W4, X, D)

115

Chapter 5 ■ Deep Learning

where the notation of the variables is the same as that of the function
DeepReLU of the previous section. The following listing shows the DeepDropout.m
file, which implements the DeepDropout function.

function [W1, W2, W3, W4] = DeepDropout(W1, W2, W3, W4, X, D)
 alpha = 0.01;

 N = 5;
 for k = 1:N
 x = reshape(X(:, :, k), 25, 1);
 v1 = W1*x;
 y1 = Sigmoid(v1);
 y1 = y1 .* Dropout(y1, 0.2);

 v2 = W2*y1;
 y2 = Sigmoid(v2);
 y2 = y2 .* Dropout(y2, 0.2);

 v3 = W3*y2;
 y3 = Sigmoid(v3);
 y3 = y3 .* Dropout(y3, 0.2);

 v = W4*y3;
 y = Softmax(v);

 d = D(k, :)';

 e = d - y;
 delta = e;

 e3 = W4'*delta;
 delta3 = y3.*(1-y3).*e3;

 e2 = W3'*delta3;
 delta2 = y2.*(1-y2).*e2;

 e1 = W2'*delta2;
 delta1 = y1.*(1-y1).*e1;

 dW4 = alpha*delta*y3';
 W4 = W4 + dW4;

 dW3 = alpha*delta3*y2';
 W3 = W3 + dW3;

116

Chapter 5 ■ Deep Learning

 dW2 = alpha*delta2*y1';
 W2 = W2 + dW2;

 dW1 = alpha*delta1*x';
 W1 = W1 + dW1;
 end
end

This code imports the training data, calculates the weight updates (dW1, dW2,
dW3, and dW4) using the delta rule, and adjusts the weight of the neural network.
This process is identical to that of the previous training codes. It differs from the
previous ones in that once the output is calculated from the Sigmoid activation
function of the hidden node, the Dropout function modifies the final output of
the node. For example, the output of the first hidden layer is calculated as:

y1 = Sigmoid(v1);
y1 = y1 .* Dropout(y1, 0.2);

Executing these lines switches the outputs from 20% of the first hidden
nodes to 0; it drops out 20% of the first hidden nodes.

Here are the details of the implementation of the function Dropout. It takes
the output vector and dropout ratio and returns the new vector that will be
multiplied to the output vector.

ym = Dropout(y, ratio)

where y is the output vector and ratio is the ratio of the dropout of the
output vector. The return vector ym of the function Dropout has the same
dimensions as y. ym contains zeros for as many elements as the ratio and
1 1/ -()ratio for the other elements. Consider the following example:

y1 = rand(6, 1)
ym = Dropout(y1, 0.5)
y1 = y1 .* ym

The function Dropout implements the dropout. Executing this code will
display the results shown in Figure 5-7.

117

Chapter 5 ■ Deep Learning

The vector ym has three elements: half (0.5) of the six elements of the vector
y1, which are filled with zeroes, and the others are filled with 1 1 0 5/ .-() , which
equals 2. When this ym is multiplied to the original vector y1, the revised y1 has
zeros by the specified ratio. In other words, y1 drops out the specified portion of
the elements.

The reason that we multiply the other element by 1 1/ -()ratio is to
compensate for the loss of output due to the dropped elements. In the previous
example, once half of the vector y1 has been dropped out, the magnitude of the
layer’s output significantly diminishes. Therefore, the outputs of the survived
nodes are amplified by the proper proportion.

The function Dropout is implemented in the Dropout.m file :

function ym = Dropout(y, ratio)
 [m, n] = size(y);
 ym = zeros(m, n);

 num = round(m*n*(1-ratio));
 idx = randperm(m*n, num);
 ym(idx) = 1 / (1-ratio);
end

The explanation is long, but the code itself is very simple. The code prepares
the zero matrix ym, of which the dimension is the same as that of y. It calculates the
number of survivors, num, based on the given dropout ratio, ratio, and randomly
selects the survivors from ym. Specifically, it selects the indices of the elements of
ym. This is done by the randperm portion of the code. Now that the code has the
indices of the non-zero elements, put 1 1/ -()ratio into those elements. The other
elements are already filled with zeros, as the vector ym has been a zero matrix from
the beginning.

The following listing shows the TestDeepDropout.m file, which tests the
DeepDropout function. This program calls DeepDropout and trains the neural
network 20,000 times. It enters the training data into the trained network and

11

0.5356 2 1.0712

0.9537 2 1.9075

0.5442 0 0

0.0821 0 0

0.3663 0 0

0.8509 2 1.7017

y ym y ym= = =*

Figure 5-7.  The dropout function in action

118

Chapter 5 ■ Deep Learning

displays the output. We verify the adequacy of the training by comparing the
output and correct output.

clear all

X = zeros(5, 5, 5);

X(:, :, 1) = [0 1 1 0 0;
 0 0 1 0 0;
 0 0 1 0 0;
 0 0 1 0 0;
 0 1 1 1 0
];

X(:, :, 2) = [1 1 1 1 0;
 0 0 0 0 1;
 0 1 1 1 0;
 1 0 0 0 0;
 1 1 1 1 1
];

X(:, :, 3) = [1 1 1 1 0;
 0 0 0 0 1;
 0 1 1 1 0;
 0 0 0 0 1;
 1 1 1 1 0
];

X(:, :, 4) = [0 0 0 1 0;
 0 0 1 1 0;
 0 1 0 1 0;
 1 1 1 1 1;
 0 0 0 1 0
];

X(:, :, 5) = [1 1 1 1 1;
 1 0 0 0 0;
 1 1 1 1 0;
 0 0 0 0 1;
 1 1 1 1 0
];

119

Chapter 5 ■ Deep Learning

D = [1 0 0 0 0;
 0 1 0 0 0;
 0 0 1 0 0;
 0 0 0 1 0;
 0 0 0 0 1
];

W1 = 2*rand(20, 25) - 1;
W2 = 2*rand(20, 20) - 1;
W3 = 2*rand(20, 20) - 1;
W4 = 2*rand(5, 20) - 1;

for epoch = 1:20000 % train
 [W1, W2, W3, W4] = DeepDropout(W1, W2, W3, W4, X, D);
end

N = 5; % inference
for k = 1:N
 x = reshape(X(:, :, k), 25, 1);
 v1 = W1*x;
 y1 = Sigmoid(v1);

 v2 = W2*y1;
 y2 = Sigmoid(v2);

 v3 = W3*y2;
 y3 = Sigmoid(v3);

 v = W4*y3;
 y = Softmax(v)
end

This code is almost identical to the other test codes. The only difference is
that it calls the DeepDropout function when it calculates the output of the trained
network. Further explanation is omitted.

120

Chapter 5 ■ Deep Learning

Summary
This chapter covered the following topics:

•	 Deep Learning can be simply defined as a Machine
Learning technique that employs the deep neural network.

•	 The previous neural networks had a problem where the
deeper (more) hidden layers were harder to train and
degraded the performance. Deep Learning solved this
problem.

•	 The outstanding achievements of Deep Learning were not
made by a critical technique but rather are due to many
minor improvements.

•	 The poor performance of the deep neural network is due
to the failure of proper training. There are three major
showstoppers: the vanishing gradient, overfitting, and
computational load.

•	 The vanishing gradient problem is greatly improved by
employing the ReLU activation function and the cross
entropy-driven learning rule. Use of the advanced gradient
descent method is also beneficial.

•	 The deep neural network is more vulnerable to overfitting.
Deep Learning solves this problem using the dropout or
regularization.

•	 The significant training time is required due to the heavy
calculations. This is relieved to a large extent by the GPU
and various algorithms.

121© Phil Kim 2017
P. Kim, MATLAB Deep Learning, DOI 10.1007/978-1-4842-2845-6_6

CHAPTER 6

Convolutional Neural Network

Chapter 5 showed that incomplete training is the cause of the poor performance
of the deep neural network and introduced how Deep Learning solved the
problem. The importance of the deep neural network lies in the fact that it
opened the door to the complicated non-linear model and systematic approach
for the hierarchical processing of knowledge.

This chapter introduces the convolutional neural network (ConvNet), which
is a deep neural network specialized for image recognition. This technique
exemplifies how significant the improvement of the deep layers is for information
(images) processing. Actually, ConvNet is an old technique, which was developed
in the 1980s and 1990s.1 However, it has been forgotten for a while, as it was
impractical for real-world applications with complicated images. Since 2012
when it was dramatically revived2, ConvNet has conquered most computer vision
fields and is growing at a rapid pace.

Architecture of ConvNet
ConvNet is not just a deep neural network that has many hidden layers. It is
a deep network that imitates how the visual cortex of the brain processes and
recognizes images. Therefore, even the experts of neural networks often have a
hard time understanding this concept on their first encounter. That is how much
ConvNet differs in concept and operation from the previous neural networks.
This section briefly introduces the fundamental architecture of ConvNet.

1LeCun, Y., et al., “Handwritten digit recognition with a back-propagation network,” In
Proc. Advances in Neural Information Processing Systems, 396–404 (1990).
2Krizhevsky, Alex, “ImageNet Classification with Deep Convolutional Neural
Networks,” 17 November 2013.

http://dx.doi.org/10.1007/978-1-4842-2845-6_5
http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf
http://www.image-net.org/challenges/LSVRC/2012/supervision.pdf

Chapter 6 ■ Convolutional Neural Network

122

Basically, image recognition is the classification. For example, recognizing
whether the image of a picture is a cat or a dog is the same as classifying the
image into a cat or dog class. The same thing applies to the letter recognition;
recognizing the letter from an image is the same as classifying the image into one
of the letter classes. Therefore, the output layer of the ConvNet generally employs
the multiclass classification neural network.

However, directly using the original images for image recognition leads
to poor results, regardless of the recognition method; the images should be
processed to contrast the features. The examples in Chapter 4 used the original
images and they worked well because they were simple black-and-white images.
Otherwise, the recognition process would have ended up with very poor results.
For this reason, various techniques for image feature extraction have been
developed.3

Before ConvNet, the feature extractor has been designed by experts of
specific areas. Therefore, it required a significant amount of cost and time while
it yielded an inconsistent level of performance. These feature extractors were
independent of Machine Learning. Figure 6-1 illustrates this process.

Figure 6-1.  Feature extractors used to be independent of Machine Learning

ConvNet includes the feature extractor in the training process rather than
designing it manually. The feature extractor of ConvNet is composed of special
kinds of neural networks, of which the weights are determined via the training
process. The fact that ConvNet turned the manual feature extraction design into
the automated process is its primary feature and advantage. Figure 6-2 depicts
the training concept of ConvNet.

3The representative methods include SIFT, HoG, Textons, Spin image, RIFT, and GLOH.

http://dx.doi.org/10.1007/978-1-4842-2845-6_4

Chapter 6 ■ Convolutional Neural Network

123

ConvNet yields better image recognition when its feature extraction neural
network is deeper (contains more layers), at the cost of difficulties in the training
process, which had driven ConvNet to be impractical and forgotten for a while.

Let’s go a bit deeper. ConvNet consists of a neural network that extracts
features of the input image and another neural network that classifies the feature
image. Figure 6-3 shows the typical architecture of ConvNet.

Figure 6-2.  ConvNet’s feature extractor is composed of special kinds of
neural networks

Figure 6-3.  Typical architecture of ConvNet

The input image enters into the feature extraction network. The extracted
feature signals enter the classification neural network. The classification neural
network then operates based on the features of the image and generates the
output. The classification techniques discussed in Chapter 4 apply here.

http://dx.doi.org/10.1007/978-1-4842-2845-6_4

Chapter 6 ■ Convolutional Neural Network

124

The feature extraction neural network consists of piles of the convolutional
layer and pooling layer pairs. The convolution layer, as its name implies, converts
the image using the convolution operation. It can be thought of as a collection
of digital filters. The pooling layer combines the neighboring pixels into a single
pixel. Therefore, the pooling layer reduces the dimension of the image. As the
primary concern of ConvNet is the image; the operations of the convolution and
pooling layers are conceptually in a two-dimensional plane. This is one of the
differences between ConvNet and other neural networks.

In summary, ConvNet consists of the serial connection of the feature
extraction network and the classification network. Through the training process,
the weights of both layers are determined. The feature extraction layer has piled
pairs of the convolution and pooling layers. The convolution layer converts
the images via the convolution operation, and the pooling layer reduces the
dimension of the image. The classification network usually employs the ordinary
multiclass classification neural network.

Convolution Layer
This section explains how the convolution layer, which is one side of the feature
extraction neural network, works. The pooling layer, the other side of the pair, is
introduced in the next section.

The convolution layer generates new images called feature maps. The feature
map accentuates the unique features of the original image. The convolution layer
operates in a very different way compared to the other neural network layers.
This layer does not employ connection weights and a weighted sum.4 Instead, it
contains filters5 that convert images. We will call these filters convolution filters.
The process of the inputting the image through the convolution filters yields the
feature map.

Figure 6-4 shows the process of the convolution layer, where the circled
* mark denotes the convolution operation, and the φ mark is the activation
function. The square grayscale icons between these operators indicate the
convolution filters. The convolution layer generates the same number of feature
maps as the convolution filters. Therefore, for instance, if the convolution layer
contains four filters, it will generate four feature maps.

4It is often explained using the local receptive filed and shared weights from the
perspective of the ordinary neural network. However, they would not be helpful for
beginners. This book does not insist its relationship with the ordinary neural network and
explains it as a type of digital filter.
5Also called kernels.

Chapter 6 ■ Convolutional Neural Network

125

Figure 6-4.  The convolution layer process

Let’s further explore the details of the convolution filter. The filters of the
convolution layer are two-dimensional matrices. They usually come in 5 5´ or
3 3´ matrices, and even 1 1´ convolution filters have been used in recent
applications. Figure 6-4 shows the values of the 5 5´ filters in grayscale pixels.
As addressed in the previous section, the values of the filter matrix are determined
through the training process. Therefore, these values are continuously trained
throughout the training process. This aspect is similar to the updating process of
the connection weights of the ordinary neural network.

The convolution is a rather difficult operation to explain in text as it lies on the
two-dimensional plane. However, its concept and calculation steps are simpler
than they appear.6 A simple example will help you understand how it works.
Consider a 4 4´ pixel image that is expressed as the matrix shown in Figure 6-5.
We will generate a feature map via the convolution filter operation of this image.

6deeplearning.stanford.edu/wiki/images/6/6c/Convolution_schematic.gif

Chapter 6 ■ Convolutional Neural Network

126

We use the two convolution filters shown here. It should be noted that the
filters of the actual ConvNet are determined through the training process and not
by manual decision.

1 0

0 1

0 1

1 0

é

ë
ê

ù

û
ú

é

ë
ê

ù

û
ú,

Let’s start with the first filter. The convolution operation begins at the
upper-left corner of the submatrix that is the same size as the convolution filter
(see Figure 6-6).

Figure 6-5.  Four-by-four pixel image

Figure 6-6.  The convolution operation starts at the upper-left corner

The convolution operation is the sum of the products of the elements that are
located on the same positions of the two matrices. The result of 7 in Figure 6-6 is
calculated as:

1 1 1 0 4 0 6 1 7´ + ´ + ´ + ´ =() () () ()

Chapter 6 ■ Convolutional Neural Network

127

Another convolution operation is conducted for the next submatrix
(see Figure 6-7).7

7The designer decides how many elements to stride for each operation. It can be greater
than one if the filter is larger.

Figure 6-7.  The second convolution operation

Figure 6-8.  The third convolution operation

In the same manner, the third convolution operation is conducted, as shown
in Figure 6-8.

Once the top row is finished, the next row starts over from the left
(see Figure 6-9).

Figure 6-9.  The convolution operation starts over from the left

Chapter 6 ■ Convolutional Neural Network

128

It repeats the same process until the feature map of the given filter is
produced, as shown in Figure 6-10.

Figure 6-10.  The feature map of the given filter has been completed

Figure 6-11.  The submatrix of the image matches the convolution filter

Figure 6-12.  The convolution operation yields large values when the input
matches the filter

Now, take a closer look at the feature map. The element of (3, 1) of the map
shows the greatest value. What happened to this cell? This value is the result of
the convolution operation shown in Figure 6-11.

It is noticeable from the figure that the submatrix of the image matches the
convolution filter; both are diagonal matrices with significant numbers on the
same cells. The convolution operation yields large values when the input matches
the filter, as shown in Figure 6-12.

Chapter 6 ■ Convolutional Neural Network

129

Figure 6-13.  When the image matrix does not match the filter, the significant
elements are not aligned

In contrast, in the case shown in Figure 6-13, the same significant number
of 30 does not affect the convolution result, which is only 4. This is because the
image matrix does not match the filter; the significant elements of the image
matrix are aligned in the wrong direction.

In the same manner, processing the second convolution filter produces the
feature map shown in Figure 6-14.

Figure 6-14.  The values depend on whether the image matrix matches the
convolution filter

Similarly to the first convolution operation, the values in the elements of this
feature map depend on whether the image matrix matches the convolution filter
or not.

In summary, the convolution layer operates the convolution filters on the
input image and produces the feature maps. The features that are extracted in the
convolution layer determined by the trained convolution filters. Therefore, the
features that the convolution layer extracts vary depending on which convolution
filter is used.

The feature map that the convolution filter creates is processed through the
activation function before the layer yields the output. The activation function of
the convolution layer is identical to that of the ordinary neural network. Although

Chapter 6 ■ Convolutional Neural Network

130

the ReLU function is used in most of the recent applications, the sigmoid function
and the tanh function are often employed as well.8

Just for the reference, the moving average filter, which is widely used in the
digital signal processing field, is a special type of convolution filter. If you are
familiar with digital filters, relating them to this concept may allow you to better
understand the ideas behind the convolution filter.

Pooling Layer
The pooling layer reduces the size of the image, as it combines neighboring
pixels of a certain area of the image into a single representative value. Pooling
is a typical technique that many other image processing schemes have already
been employing.

In order to conduct the operations in the pooling layer, we should determine
how to select the pooling pixels from the image and how to set the representative
value. The neighboring pixels are usually selected from the square matrix, and
the number of pixels that are combined differs from problem to problem. The
representative value is usually set as the mean or maximum of the selected pixels.

The operation of the pooling layer is surprisingly simple. As it is a
two-dimensional operation, and an explanation in text may lead to more
confusion, let’s go through an example. Consider the 4 4´ pixel input image,
which is expressed by the matrix shown in Figure 6-15.

8Sometimes the activation function is omitted depending on the problem.

Figure 6-15.  The four-by-four pixel input image

We combine the pixels of the input image into a 2 2´ matrix without
overlapping the elements. Once the input image passes through the pooling layer,
it shrinks into a 2 2´ pixel image. Figure 6-16 shows the resultant cases of pooling
using the mean pooling and max pooling.

Chapter 6 ■ Convolutional Neural Network

131

Figure 6-16.  The resultant cases of pooling using two different methods

Actually, in a mathematical sense, the pooling process is a type of
convolution operation. The difference from the convolution layer is that the
convolution filter is stationary, and the convolution areas do not overlap. The
example provided in the next section will elaborate on this.

The pooling layer compensates for eccentric and tilted objects to some
extent. For example, the pooling layer can improve the recognition of a cat,
which may be off-center in the input image. In addition, as the pooling process
reduces the image size, it is highly beneficial for relieving the computational
load and preventing overfitting.

Example: MNIST
We implement a neural network that takes the input image and recognizes the digit
that it represents. The training data is the MNIST9 database, which contains 70,000
images of handwritten numbers. In general, 60,000 images are used for training,
and the remaining 10,000 images are used for the validation test. Each digit image is
a 28-by-28 pixel black-and-white image, as shown in Figure 6-17.

9Mixed National Institute of Standards and Technology.

https://en.wikipedia.org/wiki/National_Institute_of_Standards_and_Technology

Chapter 6 ■ Convolutional Neural Network

132

Figure 6-17.  A 28-by-28 pixel black-and-white image from the MNIST database

Considering the training time, this example employs only 10,000 images with
the training data and verification data in an 8:2 ratio. Therefore, we have 8,000
MNIST images for training and 2,000 images for validation of the performance of
the neural network. As you may know well by now, the MNIST problem is caused
by the multiclass classification of the 28 28´ pixel image into one of the ten digit
classes of 0-9.

Let’s consider a ConvNet that recognizes the MNIST images. As the input
is a 28 28´ pixel black-and-white image, we allow 784(=28x28) input nodes.
The feature extraction network contains a single convolution layer with 20 9 9´
convolution filters. The output from the convolution layer passes through the
ReLU function, followed by the pooling layer. The pooling layer employs the mean
pooling process of two by two submatrices. The classification neural network
consists of the single hidden layer and output layer. This hidden layer has 100
nodes that use the ReLU activation function. Since we have 10 classes to classify,
the output layer is constructed with 10 nodes. We use the softmax activation
function for the output nodes. The following table summarizes the example
neural network.

Layer Remark Activation Function

Input 28 28´ nodes -

Convolution 20 convolution filters (9 9´) ReLU

Pooling 1 mean pooling (2 2´) -

Hidden 100 nodes ReLU

Output 10 nodes Softmax

Chapter 6 ■ Convolutional Neural Network

133

Figure 6-18 shows the architecture of this neural network. Although it has
many layers, only three of them contain the weight matrices that require training;
they are W

1
, W

5
, and W

o
 in the square blocks. W

5
 and W

o
 contain the connection

weights of the classification neural network, while W
1
 is the convolution layer’s

weight, which is used by the convolution filters for image processing.

Figure 6-18.  The architecture of this neural network

The input nodes between the pooling layer and the hidden layer,
which are the square nodes left of the W

5
 block, are the transformations of

the two-dimensional image into a vector. As this layer does not involve any
operations, these nodes are denoted as squares.

The function MnistConv, which trains the network using the back-propagation
algorithm, takes the neural network’s weights and training data and returns the
trained weights.

[W1, W5, Wo] = MnistConv(W1, W5, Wo, X, D)

where W1, W5, and Wo are the convolution filter matrix, pooling-hidden layer
weight matrix, and hidden-output layer weight matrix, respectively. X and D are
the input and correct output from the training data, respectively. The following
listing shows the MnistConv.m file, which implements the MnistConv function.

function [W1, W5, Wo] = MnistConv(W1, W5, Wo, X, D)
%
%

Chapter 6 ■ Convolutional Neural Network

134

alpha = 0.01;
beta = 0.95;

momentum1 = zeros(size(W1));
momentum5 = zeros(size(W5));
momentumo = zeros(size(Wo));

N = length(D);

bsize = 100;
blist = 1:bsize:(N-bsize+1);

% One epoch loop
%
for batch = 1:length(blist)
 dW1 = zeros(size(W1));
 dW5 = zeros(size(W5));
 dWo = zeros(size(Wo));

 % Mini-batch loop
 %
 begin = blist(batch);
 for k = begin:begin+bsize-1
 % Forward pass = inference
 %
 x = X(:, :, k); % Input, 28x28
 y1 = Conv(x, W1); % Convolution, 20x20x20
 y2 = ReLU(y1); %
 y3 = Pool(y2); % Pool, 10x10x20
 y4 = reshape(y3, [], 1); % 2000
 v5 = W5*y4; % ReLU, 360
 y5 = ReLU(v5); %
 v = Wo*y5; % Softmax, 10
 y = Softmax(v); %

 % One-hot encoding
 %
 d = zeros(10, 1);
 d(sub2ind(size(d), D(k), 1)) = 1;

 % Backpropagation
 %
 e = d - y; % Output layer
 delta = e;

Chapter 6 ■ Convolutional Neural Network

135

 e5 = Wo' * delta; % Hidden(ReLU) layer
 delta5 = (y5 > 0) .* e5;

 e4 = W5' * delta5; % Pooling layer

 e3 = reshape(e4, size(y3));

 e2 = zeros(size(y2));
 W3 = ones(size(y2)) / (2*2);
 for c = 1:20
 e2(:, :, c) = kron(e3(:, :, c), ones([2 2])) .* W3(:, :, c);
 end

 delta2 = (y2 > 0) .* e2; % ReLU layer

 delta1_x = zeros(size(W1)); % Convolutional layer
 for c = 1:20
 delta1_x(:, :, c) = conv2(x(:, :), rot90(delta2(:, :, c), 2),
'valid');
 end

 dW1 = dW1 + delta1_x;
 dW5 = dW5 + delta5*y4';
 dWo = dWo + delta *y5';
 end

 % Update weights
 %
 dW1 = dW1 / bsize;
 dW5 = dW5 / bsize;
 dWo = dWo / bsize;

 momentum1 = alpha*dW1 + beta*momentum1;
 W1 = W1 + momentum1;

 momentum5 = alpha*dW5 + beta*momentum5;
 W5 = W5 + momentum5;

 momentumo = alpha*dWo + beta*momentumo;
 Wo = Wo + momentumo;
end

end

Chapter 6 ■ Convolutional Neural Network

136

This code appears to be rather more complex than the previous examples.
Let’s take a look at it part by part. The function MnistConv trains the network via
the minibatch method, while the previous examples employed the SGD and
batch methods. The minibatch portion of the code is extracted and shown in the
following listing.

bsize = 100;
blist = 1:bsize:(N-bsize+1);

for batch = 1:length(blist)
 ...
 begin = blist(batch);
 for k = begin:begin+bsize-1
 ...
 dW1 = dW1 + delta2_x;
 dW5 = dW5 + delta5*y4';
 dWo = dWo + delta *y5';
 end
 dW1 = dW1 / bsize;
 dW5 = dW5 / bsize;
 dWo = dWo / bsize;
 ...
end

The number of batches, bsize, is set to be 100. As we have a total 8,000
training data points, the weights are adjusted 80 (=8,000/100) times for every
epoch. The variable blist contains the location of the first training data point to
be brought into the minibatch. Starting from this location, the code brings in 100
data points and forms the training data for the minibatch. In this example, the
variable blist stores the following values:

blist = [1, 101, 201, 301, ..., 7801, 7901]

Once the starting point, begin, of the minibatch is found via blist, the
weight update is calculated for every 100th data point. The 100 weight updates
are summed and averaged, and the weights are adjusted. Repeating this process
80 times completes one epoch.

Chapter 6 ■ Convolutional Neural Network

137

Another noticeable aspect of the function MnistConv is that it adjusts the
weights using momentum. The variables momentum1, momentum5, and momentumo
are used here. The following part of the code implements the momentum update:

...
momentum1 = alpha*dW1 + beta*momentum1;
W1 = W1 + momentum1;

momentum5 = alpha*dW5 + beta*momentum5;
W5 = W5 + momentum5;

momentumo = alpha*dWo + beta*momentumo;
Wo = Wo + momentumo;
...

We have now captured the big picture of the code. Now, let’s look at the
learning rule, the most important part of the code. The process itself is not
distinct from the previous ones, as ConvNet also employs back-propagation
training. The first thing that must be obtained is the output of the network. The
following listing shows the output calculation portion of the function MnistConv.
It can be intuitively understood from the architecture of the neural network. The
variable y of this code is the final output of the network.

...
x = X(:, :, k); % Input, 28x28
y1 = Conv(x, W1); % Convolution, 20x20x20
y2 = ReLU(y1); %
y3 = Pool(y2); % Pool, 10x10x20
y4 = reshape(y3, [], 1); % 2000
v5 = W5*y4; % ReLU, 360
y5 = ReLU(v5); %
v = Wo*y5; % Softmax, 10
y = Softmax(v); %
...

Now that we have the output, the error can be calculated. As the network
has 10 output nodes, the correct output should be in a 10 1´ vector in order to
calculate the error. However, the MNIST data gives the correct output as the
respective digit. For example, if the input image indicates a 4, the correct output
will be given as a 4. The following listing converts the numerical correct output
into a 10 1´ vector. Further explanation is omitted.

d = zeros(10, 1);
d(sub2ind(size(d), D(k), 1)) = 1;

Chapter 6 ■ Convolutional Neural Network

138

The last part of the process is the back-propagation of the error. The
following listing shows the back-propagation from the output layer to the
subsequent layer to the pooling layer. As this example employs cross entropy
and softmax functions, the output node delta is the same as that of the network
output error. The next hidden layer employs the ReLU activation function. There
is nothing particular there. The connecting layer between the hidden and
pooling layers is just a rearrangement of the signal.

...
e = d - y;
delta = e;

e5 = Wo' * delta;
delta5 = e5 .* (y5> 0);

e4 = W5' * delta5;
e3 = reshape(e4, size(y3));
...

We have two more layers to go: the pooling and convolution layers. The
following listing shows the back-propagation that passes through the pooling
layer-ReLU-convolution layer. The explanation of this part is beyond the scope
of this book. Just refer to the code when you need it in the future.

...
e2 = zeros(size(y2)); % Pooling
W3 = ones(size(y2)) / (2*2);
for c = 1:20
 e2(:, :, c) = kron(e3(:, :, c), ones([2 2])) .* W3(:, :, c);
end

delta2 = (y2 > 0) .* e2;

delta1_x = zeros(size(W1));
for c = 1:20
 delta1_x(:, :, c) = conv2(x(:, :), rot90(delta2(:, :, c), 2),
'valid');
end
...

Chapter 6 ■ Convolutional Neural Network

139

The following listing shows the function Conv, which the function MnistConv
calls. This function takes the input image and the convolution filter matrix and
returns the feature maps. This code is in the Conv.m file.

function y = Conv(x, W)
%
%

[wrow, wcol, numFilters] = size(W);
[xrow, xcol, ~] = size(x);

yrow = xrow - wrow + 1;
ycol = xcol - wcol + 1;

y = zeros(yrow, ycol, numFilters);

for k = 1:numFilters
 filter = W(:, :, k);
 filter = rot90(squeeze(filter), 2);
 y(:, :, k) = conv2(x, filter, 'valid');
end

end

This code performs the convolution operation using conv2, a built-in
two-dimensional convolution function of MATLAB. Further details of the
function Conv are omitted, as it is beyond the scope of this book.

The function MnistConv also calls the function Pool, which is implemented
in the following listing . This function takes the feature map and returns the image
after the 2 2´ mean pooling process. This function is in the Pool.m file.

function y = Pool(x)
%
% 2x2 mean pooling
%
[xrow, xcol, numFilters] = size(x);

y = zeros(xrow/2, xcol/2, numFilters);
for k = 1:numFilters
 filter = ones(2) / (2*2); % for mean
 image = conv2(x(:, :, k), filter, 'valid');

 y(:, :, k) = image(1:2:end, 1:2:end);
end

end

Chapter 6 ■ Convolutional Neural Network

140

There is something interesting about this code; it calls the two-dimensional
convolution function, conv2, just as the function Conv does. This is because the
pooling process is a type of a convolution operation. The mean pooling of this
example is implemented using the convolution operation with the following
filter:

W =

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1
4

1
4

1
4

1
4

The filter of the pooling layer is predefined, while that of the convolution
layer is determined through training. The further details of the code are beyond
the scope of this book.

The following listing shows the TestMnistConv.m file, which tests the
function MnistConv.10 This program calls the function MnistConv and trains the
network three times. It provides the 2,000 test data points to the trained network
and displays its accuracy. The test run of this example yielded an accuracy of 93%
in 2 minutes and 30 seconds. Be advised that this program takes quite some time
to run.

clear all

Images = loadMNISTImages('./MNIST/t10k-images.idx3-ubyte');
Images = reshape(Images, 28, 28, []);
Labels = loadMNISTLabels('./MNIST/t10k-labels.idx1-ubyte');
Labels(Labels == 0) = 10; % 0 --> 10

rng(1);

% Learning
%
W1 = 1e-2*randn([9 9 20]);
W5 = (2*rand(100, 2000) - 1) * sqrt(6) / sqrt(360 + 2000);
Wo = (2*rand(10, 100) - 1) * sqrt(6) / sqrt(10 + 100);

X = Images(:, :, 1:8000);
D = Labels(1:8000);

10loadMNISTImages and loadMNISTLabels functions are from github.com/amaas/
stanford_dl_ex/tree/master/common.

Chapter 6 ■ Convolutional Neural Network

141

for epoch = 1:3
 epoch
 [W1, W5, Wo] = MnistConv(W1, W5, Wo, X, D);
end

save('MnistConv.mat');

% Test
%
X = Images(:, :, 8001:10000);
D = Labels(8001:10000);

acc = 0;
N = length(D);
for k = 1:N
 x = X(:, :, k); % Input, 28x28

 y1 = Conv(x, W1); % Convolution, 20x20x20
 y2 = ReLU(y1); %
 y3 = Pool(y2); % Pool, 10x10x20
 y4 = reshape(y3, [], 1); % 2000
 v5 = W5*y4; % ReLU, 360
 y5 = ReLU(v5); %
 v = Wo*y5; % Softmax, 10
 y = Softmax(v); %

 [~, i] = max(y);
 if i == D(k)
 acc = acc + 1;
 end
end

acc = acc / N;
fprintf('Accuracy is %f\n', acc);

This program is also very similar to the previous ones. The explanations
regarding the similar parts will be omitted. The following listing shown is a new
entry. It compares the network’s output and the correct output and counts the
matching cases. It converts the 10 1´ vector output back into a digit so that it can
be compared to the given correct output.

...
[~, i] = max(y)
if i == D(k)

Chapter 6 ■ Convolutional Neural Network

142

 acc = acc + 1;
end
...

Lastly, let’s investigate how the image is processed while it passes through the
convolution layer and pooling layer. The original dimension of the MNIST image is
28 28´ . Once the image is processed with the 9 9´ convolution filter, it becomes a
20 20´ feature map.11 As we have 20 convolution filters, the layer produces 20
feature maps. Through the 2 2´ mean pooling process, the pooling layer shrinks
each feature map to a 10 10´ map. The process is illustrated in Figure 6-19.

Figure 6-19.  How the image is processed while it passes through the convolution
and pooling layers

The final result after passing the convolution and pooling layers is as many
smaller images as the number of the convolution filters; ConvNet converts the
input image into the many small feature maps.

Now, we will see how the image actually evolves at each layer of ConvNet. By
executing the TestMnistConv.m file, followed by the PlotFeatures.m file, the screen
will display the five images. The following listing is in the PlotFeatures.m file.

11This size is valid only for this particular example. It varies depending on how the
convolution filter is applied.

Chapter 6 ■ Convolutional Neural Network

143

clear all

load('MnistConv.mat')

k = 2;
x = X(:, :, k); % Input, 28x28
y1 = Conv(x, W1); % Convolution, 20x20x20
y2 = ReLU(y1); %
y3 = Pool(y2); % Pool, 10x10x20
y4 = reshape(y3, [], 1); % 2000
v5 = W5*y4; % ReLU, 360
y5 = ReLU(v5); %
v = Wo*y5; % Softmax, 10
y = Softmax(v); %

figure;
display_network(x(:));
title('Input Image')

convFilters = zeros(9*9, 20);
for i = 1:20
 filter = W1(:, :, i);
 convFilters(:, i) = filter(:);
end
figure
display_network(convFilters);
title('Convolution Filters')

fList = zeros(20*20, 20);
for i = 1:20
 feature = y1(:, :, i);
 fList(:, i) = feature(:);
end
figure
display_network(fList);
title('Features [Convolution]')

fList = zeros(20*20, 20);
for i = 1:20
 feature = y2(:, :, i);
 fList(:, i) = feature(:);
end
figure
display_network(fList);
title('Features [Convolution + ReLU]')

Chapter 6 ■ Convolutional Neural Network

144

fList = zeros(10*10, 20);
for i = 1:20
 feature = y3(:, :, i);
 fList(:, i) = feature(:);
end
figure
display_network(fList);
title('Features [Convolution + ReLU + MeanPool]')

The code enters the second image (k = 2) of the test data into the neural
network and displays the results of all the steps. The display of the matrix on the
screen is performed by the function display_network, which is originally from
the same resource where the loadMNISTImages and loadMNISTLabels of the
TestMnistConv.m file are from.

The first image that the screen shows is the following 28 28´ input image
of a 2, as shown in Figure 6-20.

Figure 6-20.  The first image shown

Figure 6-21 is the second image of the screen, which consists of the 20 trained
convolution filters. Each filter is pixel image and shows the element values as
grayscale shades. The greater the value is, the brighter the shade becomes.
These filters are what ConvNet determined to be the best features that could be
extracted from the MNIST image. What do you think? Do you see some unique
features of the digits?

Chapter 6 ■ Convolutional Neural Network

145

Figure 6-21.  Image showing 20 trained convolution filters

Figure 6-22 is the third image from the screen, which provides the results
(y1) of the image processing of the convolution layer. This feature map consists
of 20 20 20´ pixel images. The various alterations of the input image due to the
convolution filter can be noticeable from this figure.

The fourth image shown in Figure 6-23 is what the ReLU function processed
on the feature map from the convolution layer. The dark pixels of the previous
image are removed, and the current images have mostly white pixels on the letter.
This is a reasonable result when we consider the definition of the ReLU function.

Figure 6-22.  The results (y1) of the image processing of the convolution layer

Chapter 6 ■ Convolutional Neural Network

146

Now, look at the Figure 6-22 again. It is noticeable that the image on third row
fourth column contains a few bright pixels. After the ReLU operation, this image
becomes completely dark. Actually, this is not a good sign because it fails to
capture any feature of the input image of the 2. It needs to be improved through
more data and more training. However, the classification still functions, as the
other parts of the feature map work properly.

Figure 6-24 shows the fifth result, which provides the images after the mean
pooling process in which the ReLU layer produces. Each image inherits the shape
of the previous image in a 10 10´ pixel space, which is half the previous size. This
shows how much the pooling layer can reduce the required resources.

Figure 6-23.  Image showing what the ReLU function processed on the feature
map from the convolution layer

Figure 6-24.  The images after the mean pooling process

Chapter 6 ■ Convolutional Neural Network

147

Figure 6-24 is the final result of the feature extraction neural network.
These images are transformed into a one-dimensional vector and stored in the
classification neural network.

This completes the explanation of the example code. Although only one pair
of convolution and pooling layers is employed in the example; usually many of
them are used in most practical applications. The more the small images that
contain main features of the network, the better the recognition performance.

Summary
This chapter covered the following concepts:

•	 In order to improve the image recognition performance
of Machine Learning, the feature map, which accentuates
the unique features, should be provided rather than the
original image. Traditionally, the feature extractor had
been manually designed. ConvNet contains a special type
of neural network for the feature extractor, of which the
weights are determined via the training process.

•	 ConvNet consists of a feature extractor and classification
neural network. Its deep layer architecture had been a
barrier that made the training process difficult. However,
since Deep Learning was introduced as the solution to this
problem, the use of ConvNet has been growing rapidly.

•	 The feature extractor of ConvNet consists of alternating
stacks of the convolution layer and the pooling layer. As
ConvNet deals with two-dimensional images, most of its
operations are conducted in a two-dimensional conceptual
plane.

•	 Using the convolution filters, the convolution layer
generates images that accentuate the features of the input
image. The number of output images from this layer is the
same as the number of convolution filters that the network
contains. The convolution filter is actually nothing but a
two-dimensional matrix.

•	 The pooling layer reduces the image size. It binds
neighboring pixels and replaces them with a representative
value. The representative value is either the maximum or
mean value of the pixels.

149© Phil Kim 2017
P. Kim, MATLAB Deep Learning, DOI 10.1007/978-1-4842-2845-6

�       � A
Arbitrary activation function, 32–33
Artificial Intelligence, 1–2, 17

�       � B
Back-propagation algorithm, 104

illustration of, 54
momentum (see Momentum)
multi-layer neural network, 54–60
process, 54
XOR problem, 62–64

BackpropCE function, 74–76, 78
BackpropMmt function, 66–67
BackpropXOR function, 62–63
Batch method

comparison of SGD and, 43–45
implementation of, 41–43
training data, 35

Binary classification, 81, 102
class symbols, 84
cross entropy function, 85–86
problem, 82
sigmoid function, 82–83
single output node, 82
training data, 83–84

�       � C
Clustering, 17
Computational load, 109
Confront overfitting, 10–11
Convolution, 125
Convolutional neural network

(ConvNet), 121
architecture, 121

feature extraction, 124
feature extractor, 122–123, 147

image recognition, 122
typical, 123

convolution layer, 124–129
MNIST, 132–133, 135–136, 138–147
pooling layer, 130–131, 147

Convolution filters, 124, 128–129, 147
Cost function

comparison of, 76, 78–79
cross entropy function, 69
and learning rule, 68–71, 73
output error, 72
sum of squared error, 68

Cross entropy function, 68–69
back-propagation algorithm, 70
BackpropCE function, 74–75
at d = 0, 70
at d = 1, 69
example, 73

Cross-validation, 11–12

�       � D
DeepDropout function, 114
Deep Learning, 1–2, 17, 103, 120

back-propagation algorithm, 104
deep neural network, 105

computational load, 109
overfitting, 107–109
vanishing gradient, 105, 107

dropout, 114, 116, 118–119
multi-layer neural network, 104
relationship to Machine Learning, 103
ReLU function, 110–112, 114

Deep neural network, 22, 103, 105, 120
computational load, 109
overfitting, 107–109
with three hidden layers, 110
vanishing gradient, 105, 107

Index

■ INDEX

150

DeepReLU function, 110, 112
Delta, 55
DeltaBatch function, 41–42
Delta rule

arbitrary activation function, 32
example, 37–38
generalized, 32–33
training of single-layer neural

network, 29–32
DeltaSGD function, 39, 41
DeltaXOR function, 46
Dropout function, 116

�       � E
Epoch, 31, 37

�       � F
Feature maps, 124, 128

�       � G
Generalization, 6
Gradient descent method, 31

�       � H
Hidden layers, 22

�       � I, J, K
Image recognition, 122
Input layer, 22

�       � L
Learning rate, 30
Learning rule, 19, 29, 51

cost function and, 68–71, 73
Linear function, 24, 26, 50
Loss function. See Cost function

�       � M
Machine Learning, 1–2, 18

challenges with
confronting overfitting, 10–11
model based on field data, 4
overfitting, 6, 8–9
training and input data, 6

Deep Learning, 2
feature extractors, 122
modeling technique, 3
process, 2–3
relationship between neural network

and, 19
training data, 4
types, 12

classification and regression, 14,
16–17

reinforcement learning, 13
supervised learning, 13
unsupervised learning, 13

Mini batch method, 36–37
Mixed National Institute of Standards and

Technology (MNIST), 132–133,
135, 141–143

convolution operation, 140
display_network function, 144
feature map, 145
MnistConv function, 133, 136–137,

139–140
Pool function, 139
pooling process, 146
ReLU activation function, 138
ReLU function, 145

MnistConv function, 133
Momentum

weight adjustment, 65, 67
weight update, 65–66

Multiclass classification, 86, 92, 102
activation functions, 90
cross entropy-driven learning, 91
data, 87
example, 93–94, 96–99, 101
function MultiClass, 94–95
function reshape, 95
one-hot encoding, 89
output nodes, 88
sigmoid function, 90
softmax function, 90–91
supervised learning, 88
TestMultiClass command, 98–99
training data, 88
training process, 91–92

Multi-layer neural network
back-propagation algorithm, 54–60
consists of, 22
deep neural network, 22
process, 24
single hidden layer, 22–23

■ INDEX

151

�       � N
Neural network, 34, 81

binary classification, 81–82, 84–86
brain and, 20
classifier, 102
Delta rule (see Delta rule)
layers, 22–27
multiclass classification, 86, 88, 90–94,

96–99, 101
nodes, 20–21
node receiving three inputs, 20–21
relationship between Machine

Learning and, 19
SGD, 34–37
supervised learning, 27–28

�       � O
Objective function. See Cost function
1-of-N encoding, 89
One-hot encoding, 89
Output layer, 22
Overfitting, 6, 8–9, 18, 107–109, 120

confront, 10–11

�       � P, Q
Proud error-free model, 9

�       � R
Rectified Linear Unit (ReLU) function,

106, 107, 110–112, 114, 130, 132
Regularization, 10, 18
Reinforcement learning, 12–13

�       � S
Shallow neural network, 23
Sigmoid function, 33

Single hidden layer, neural network
with, 24

linear function, 24
output calculation, 25–26
outputs of output layer, 26

Single-layer neural network
consists of, 22
delta rule, training of, 29–32
limitations, 45–50
single hidden layer, 24–27

Softmax, 69
Squared error, sum of, 68
Stochastic gradient descent (SGD)

batch method, 35–36
comparison of batch and, 43–45
implementation of, 38–39, 41
mini batch method, 36–37
weight update, 34

Supervised learning, 12–13, 18
concept, 28
of neural network, 28

�       � T
Transposed weight matrix, 58

�       � U
Unsupervised learning, 12–13

�       � V, W
Validation process, 10–11, 18
Vanilla neural network. See Single hidden

layer, neural network with
Vanishing gradient, 105, 107, 120

�       � X, Y, Z
XOR problem, 62–64

	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Machine Learning
	What Is Machine Learning?
	Challenges with Machine Learning
	Overfitting
	Confronting Overfitting

	Types of Machine Learning
	Classification and Regression

	Summary

	Chapter 2: Neural Network
	Nodes of a Neural Network
	Layers of Neural Network
	Supervised Learning of a Neural Network
	Training of a Single-Layer Neural Network: Delta Rule
	Generalized Delta Rule
	SGD, Batch, and Mini Batch
	Stochastic Gradient Descent
	Batch
	Mini Batch

	Example: Delta Rule
	Implementation of the SGD Method
	Implementation of the Batch Method
	Comparison of the SGD and the Batch
	Limitations of Single-Layer Neural Networks
	Summary

	Chapter 3: Training of Multi-Layer Neural Network
	Back-Propagation Algorithm
	Example: Back-Propagation
	XOR Problem
	Momentum

	Cost Function and Learning Rule
	Example: Cross Entropy Function
	Cross Entropy Function
	Comparison of Cost Functions
	Summary

	Chapter 4: Neural Network and Classification
	Binary Classification
	Multiclass Classification
	Example: Multiclass Classification
	Summary

	Chapter 5: Deep Learning
	Improvement of the Deep Neural Network
	Vanishing Gradient
	Overfitting
	Computational Load

	Example: ReLU and Dropout
	ReLU Function
	Dropout

	Summary

	Chapter 6: Convolutional Neural Network
	Architecture of ConvNet
	Convolution Layer
	Pooling Layer
	Example: MNIST
	Summary

	Index

