


	

Unsupervised	Deep	Learning	in	Python
	

	Master	Data	Science	and	Machine	Learning	with	
Modern	Neural	Networks	written	in	Python	and	Theano	
By:	The	LazyProgrammer	(http://lazyprogrammer.me)	

Introduction

Chapter	1:	Principal	Components	Analysis
Chapter	2:	t-SNE
Chapter	3:	Autoencoders	and	Stacked	Denoising	Autoencoders

Chapter	4:	Restricted	Boltzmann	Machines	and	Deep	Belief	Networks
Chapter	5:	Feature	Visualization
Chapter	6:	Tricking	a	Neural	Network

Conclusion
	

http://lazyprogrammer.me


	
Introduction
	
	

	
When	we	talk	about	modern	deep	learning,	we	are	often	not	talking	about	vanilla
neural	 networks	 -	 but	 newer	 developments,	 like	 using	 Autoencoders	 and
Restricted	Boltzmann	Machines	to	do	unsupervised	pretraining.
	
	
	
Deep	neural	networks	suffer	from	the	vanishing	gradient	problem,	and	for	many
years	 researchers	 couldn’t	 get	 around	 it	 -	 that	 is,	 until	 new	unsupervised	 deep
learning	methods	were	invented.
	
	
	
That	is	what	this	book	aims	to	teach	you.
	
	
	
Aside	 from	 that,	we	 are	 also	 going	 to	 look	 at	 Principal	 Components	Analysis
(PCA)	and	t-Distributed	Stochastic	Neighbor	Embedding	(t-SNE),	which	are	not
only	 related	 to	 deep	 learning	 mathematically,	 but	 often	 are	 part	 of	 a	 deep
learning	or	machine	learning	pipeline.
	
	
	
Mostly	 I	 am	 just	 ultra	 frustrated	with	 the	way	 PCA	 is	 usually	 taught!	 So	 I’m
using	 this	 platform	 to	 teach	 you	 Principal	 Components	 Analysis	 in	 a	 clear,
logical,	 and	 intuitive	 way	 without	 you	 having	 to	 imagine	 rotating	 globes	 and
spinning	vectors	and	all	that	nonsense.
	



	
	
	
One	major	component	of	unsupervised	 learning	 is	visualization.	We	are	going
to	do	a	lot	of	that	in	this	book.	PCA	and	t-SNE	both	help	you	visualize	data	from
high	dimensional	spaces	on	a	flat	plane.
	
	
	
Autoencoders	and	Restricted	Boltzmann	Machines	help	you	visualize	what	each
hidden	node	in	a	neural	network	has	learned.	One	interesting	feature	researchers
have	 discovered	 is	 that	 neural	 networks	 learn	 hierarchically.	 Take	 images	 of
faces	 for	 example.	 The	 first	 layer	 of	 a	 neural	 network	 will	 learn	 some	 basic
strokes.	The	 next	 layer	will	 combine	 the	 strokes	 into	 combinations	 of	 strokes.
The	 next	 layer	might	 form	 the	 pieces	 of	 a	 face,	 like	 the	 eyes,	 nose,	 ears,	 and
mouth.	It	truly	is	amazing!
	
	
	
Perhaps	this	might	provide	insight	into	how	our	own	brains	take	simple	electrical
signals	and	combine	them	to	perform	complex	reactions.
	
	
	
We	will	also	see	in	this	book	how	you	can	“trick”	a	neural	network	after	training
it!	You	may	think	it	has	learned	to	recognize	all	the	images	in	your	dataset,	but
add	 some	 intelligently	 designed	 noise,	 and	 the	 neural	 network	 will	 think	 it’s
seeing	something	else,	even	when	the	picture	looks	exactly	the	same	to	you!
	
	
	
So	if	the	machines	ever	end	up	taking	over	the	world,	you’ll	at	least	have	some
tools	to	combat	them.
	



	
	
Finally,	in	this	book	I	will	show	you	exactly	how	to	train	a	deep	neural	network
so	 that	 you	 avoid	 the	 vanishing	 gradient	 problem	 -	 a	 method	 called	 “greedy
layer-wise	pretraining”.
	
	
	
“Hold	up...	what’s	deep	learning	and	all	this	other	crazy	stuff	you’re	talking
about?”
	
	
	
If	 you	 are	 completely	 new	 to	 deep	 learning,	 you	might	want	 to	 check	 out	my
earlier	books	and	courses	on	the	subject:
	
	
	
Deep	Learning	in	Python
	
Deep	Learning	in	Python	Prerequisities
	
	
	
Much	 like	 how	 IBM’s	 Deep	 Blue	 beat	 world	 champion	 chess	 player	 Garry
Kasparov	 in	 1996,	 Google’s	 AlphaGo	 recently	 made	 headlines	 when	 it	 beat
world	champion	Lee	Sedol	in	March	2016.
	
	
	
What	was	 amazing	 about	 this	win	was	 that	 experts	 in	 the	 field	 didn’t	 think	 it
would	happen	for	another	10	years.	The	search	space	of	Go	is	much	larger	than
that	of	chess,	meaning	that	existing	techniques	for	playing	games	with	artificial

https://www.udemy.com/data-science-deep-learning-in-python
https://www.udemy.com/data-science-logistic-regression-in-python


intelligence	 were	 infeasible.	 Deep	 learning	 was	 the	 technique	 that	 enabled
AlphaGo	 to	 correctly	 predict	 the	 outcome	 of	 its	 moves	 and	 defeat	 the	 world
champion.
	
	
	
Deep	 learning	progress	has	accelerated	 in	 recent	years	due	 to	more	processing
power	(see:	Tensor	Processing	Unit	or	TPU),	larger	datasets,	and	new	algorithms
like	the	ones	discussed	in	this	book.
	
	
	



	
Formatting
	
	

	
I	know	 that	 the	 e-book	 format	 can	be	quite	 limited	on	many	platforms.	 If	 you
find	 the	 formatting	 in	 this	book	 lacking,	particularly	 for	 the	 code	or	diagrams,
please	 shoot	me	 an	 email	 at	 info@lazyprogrammer.me	 along	with	 a	 proof-of-
purchase,	 and	 I	 will	 send	 you	 the	 original	 ePub	 from	 which	 this	 book	 was
created.
	
	
	

mailto:info@lazyprogrammer.me


	
Chapter	1:	Principal	Components	Analysis
	
	

	
In	this	chapter	we	are	going	to	talk	about	PCA	or	principal	components	analysis.
There	are	2	components	to	their	description:
	
	
	
1) describing	what	PCA	does	and	how	it	is	used
	
2) the	math	behind	PCA.
	
	
	
So	what	does	PCA	do?	Firstly,	it	is	a	linear	transformation.
	
	
	
If	you	think	about	what	happens	when	you	multiply	a	vector	by	a	scalar,	you’ll
see	that	it	never	changes	direction.	It	only	becomes	a	vector	of	different	length.
Of	course,	you	could	multiply	it	by	-1	and	it	would	face	the	opposite	direction,
but	it	can’t	be	rotated	arbitrarily.
	
	
	
Ex.	2(1,	2)	=	(2,	4)
	
	
	
If	you	multiply	a	vector	by	a	matrix	 -	 it	CAN	change	direction	and	be	 rotated



arbitrarily.
	
	
	
Ex.	[[1,	1],	[1,	0]]	[1,	2]T	=	[3,	1]T

	
	
	
So	what	does	PCA	do?	Simply	put,	a	linear	transformation	on	your	data	matrix:
	
	
	
Z	=	XQ
	
	
	
It	takes	an	input	data	matrix	X,	which	is	NxD,	multiplies	it	by	a	transformation
matrix	Q,	which	is	DxD,	and	outputs	the	transformed	data	Z	which	is	also	NxD.
	
	
	
If	 you	want	 to	 transform	 an	 individual	 vector	 x	 to	 a	 corresponding	 individual
vector	z,	 that	would	be	z	=	Qx.	It’s	in	a	different	order	because	when	x	is	 in	a
data	matrix	 it’s	 a	 1xD	 row	 vector,	 but	when	we	 talk	 about	 individual	 vectors
they	are	Dx1	column	vectors.	It’s	just	convention.
	
	
	
What	makes	PCA	an	interesting	algorithm	is	how	it	chooses	the	Q	matrix.
	
	
	



Notice	that	because	this	is	unsupervised	learning,	we	have	an	X	but	no	Y,	or	no
targets.
	
	
	
	
	
On	Rotation
	
	
	
Another	view	of	what	happens	when	you	multiply	by	a	matrix	is	not	that	you	are
are	 rotating	 the	 vectors,	 but	 you	 instead	 are	 rotating	 the	 coordinate	 system	 in
which	the	vectors	live.
	
	
	
Which	view	we	take	will	depend	on	which	problem	we	are	trying	to	solve.
	
	
	
	
	
Dimensionality	Reduction
	
	
	
One	 use	 of	 PCA	 is	 dimensionality	 reduction.	 When	 you’re	 looking	 at	 the
MNIST	dataset,	which	 is	 28x28	 images,	 or	 vectors	 of	 size	 784,	 that’s	 a	 lot	 of
dimensions,	and	it’s	definitely	not	something	you	can	visualize.
	
	
	



	
28x28	is	a	very	tiny	image,	and	most	images	these	days	are	much	larger	than	that
-	so	we	either	need	to	have	the	resources	to	handle	data	that	can	have	millions	of
dimensions,	 or	 we	 could	 reduce	 the	 data	 dimensionality	 using	 techniques	 like
PCA.
	
	
	
We	of	course	can’t	just	take	arbitrary	dimensions	from	X	-	we	want	to	reduce	the
data	size	but	at	the	same	time	capture	as	much	information	as	possible.
	
	
	
So	if	we	want	to	go	from	784	to	2	dimensions	-	so	that	we	can	visualize	it	-	we
want	those	2	dimensions	to	have	as	much	information	from	X	as	possible.
	
	
	
Ex.	info(1st	col	of	Z)	>	info(2nd	col	of	Z)	>	...
	
	
	
How	 do	 we	 measure	 this	 information?	 In	 traditional	 PCA	 and	 many	 other
traditional	 statistical	 methods	 we	 use	 variance.	 If	 something	 varies	 more,	 it
carries	more	information.
	
	
	
You	 can	 imagine	 the	 opposite	 situation,	 where	 a	 variable	 is	 completely
deterministic,	 i.e.	 it	 has	 no	 variance.	 Then	measuring	 this	 variable	 would	 not
give	us	any	new	information,	because	we	already	knew	what	it	was	going	to	be.
	
	
	



	
So	when	we	get	our	transformed	data	Z,	what	we	want	is	for	the	first	column	to
have	 the	 most	 information,	 the	 second	 column	 to	 have	 the	 second	 most
information,	and	so	on.
	
	
	
Thus,	when	we	take	the	2	columns	with	the	most	information,	that	would	mean
taking	the	first	2	columns.
	
	
	
	
	
Decorrelation
	
	
	
Another	thing	PCA	does	is	decorrelation.
	
	
	
If	we	find	correlations,	that	means	some	of	the	data	is	redundant,	because	we	can
predict	one	column	from	another	column.
	
	
	



	
	
	
So	now	if	you	take	the	coordinate	system	rotation	view,	you	can	imagine	that	if
we	rotated	our	coordinate	system	to	be	aligned	with	the	spread	of	these	points,
then	the	data	would	become	uncorrelated.
	
	
	
Again	the	question	is	-	how	do	we	find	Q	so	 that	we	rotate	 the	data	 in	exactly
this	way?
	
	
	
	
	
Visualization
	



	
	
Once	we	 have	 the	 information	 of	 our	 data	 sorted	 in	 descending	 order	 in	 each
dimension,	we	can	just	take	the	top	2	and	make	a	scatter	plot.	This	will	then	give
us	an	idea	of	the	separation	of	the	data	points,	and	it	allows	us	to	create	a	visual
representation	of	high-dimensional	data.
	
	
	
	
	
Pre-processing	and	Overfitting
	
	
	
The	last	application	of	PCA	we’ll	talk	about	is	pre-processing	and	overfitting.
	
	
	
You	 can	 imagine	 that	 our	 data	 is	 often	 noisy.	 Hopefully,	 the	 noise	 is	 small
compared	to	the	true	pattern.	In	that	case,	the	variance	of	the	noise,	which	should
be	 small,	would	 go	 into	 the	 last	 columns	 of	 our	 transformed	 data	Z,	 at	which
point	we	could	just	discard	it.
	
	
	
We	could	then	feed	this	new	data	into	a	supervised	machine	learning	model	such
as	logistic	regression	-	in	fact	we	did	this	in	my	previous	courses.
	
	
	
So	by	getting	rid	of	the	noise	we	are	preventing	overfitting	by	making	sure	we
are	not	fitting	to	the	noise.



	
	
	
To	make	this	clear,	here’s	an	imaginary	data	pipeline:
	
	
	
Input:	X	(data),	Y	(targets)
	
	
	
1) Convert	X	to	Z	-->	Z	=	XQ
	
2) Take	the	first	K	columns	of	Z,	call	that	ZK

	
3) Train	your	model	on	(ZK,	Y),	i.e.	model.fit(ZK,	Y)
	
4) Any	further	predictions	can	use	the	same	model	and	pipeline:
	

1) zK	=	Qx
	

2) prediction	=	model.predict(zK)
	
	
	
You’ll	see	that	this	idea	of	unsupervised	pre-training	will	come	into	play	again
when	we	study	autoencoders	and	RBMs.
	
	
	
	
	



	
Latent	Variables
	
	
	
Another	 view	 of	 PCA	 is	 that	 the	 transformed	 variables	 Z	 are	 the	 “latent
variables”,	as	in	they	are	some	sort	of	underlying	cause	of	the	data	X.
	
	
	
Then	 it	 makes	 sense	 that	 they	 should	 be	 uncorrelated,	 because	 they	 are	 just
independent	hidden	causes.
	
	
	
It	also	makes	sense	that	some	of	the	data	in	X	is	correlated	because	they	are	just
measurements	you’re	taking	of	some	data	that	is	produced	by	a	combination	of
those	hidden	causes.
	
	
	
What	we	are	assuming	when	we	do	PCA	is	that	the	data	is	a	linear	combination
of	those	hidden	causes.
	
	
	
In	fact	with	PCA	the	linearity	goes	both	ways	-	the	latent	variable	Z	is	a	linear
combination	 of	 the	 observed	 variable	 X,	 but	 if	 you	 were	 to	 do	 a	 reverse
transformation,	 the	 observed	 data	X	 is	 also	 a	 linear	 combination	 of	 the	 latent
variable	Z.
	
	
	



Z	=	XQ
	
X	=	ZQ-1

	
	
	
You’ll	 recall	 that	 we	 first	 encountered	 the	 idea	 of	 latent	 variables	 in	my	 first
unsupervised	 learning	 course	 on	 clustering	 and	 Gaussian	 mixture	 models	 -
because	those	models	assumed	that	the	identities	of	the	clusters	were	the	latent
variable.
	
	
	
	
	
The	Math	Behind	PCA
	
	
	
Now	let	us	turn	to	the	second	part	of	the	PCA	description	-	how	to	actually	find
the	transformation	matrix	Q.
	
	
	
To	recap,	I’ve	just	told	you	about	all	the	magical	things	this	Q	matrix	can	do:
	
	
	
1) Make	Z	uncorrelated	even	though	X	is	correlated
	
2) Order	each	column	if	Z	by	its	information	content	(variance)
	



	
	
A	lot	of	the	steps	here	may	seem	arbitrary	at	first,	but	you’ll	see	how	it	all	fits
together	 in	 the	 end	 and	 results	 in	 all	 the	 properties	 that	 I	 talked	 about	 in	 the
previously.
	
	
	
The	first	step	is	to	calculate	the	covariance	of	X.
	
	
	
C(x(i),	x(j))	=	E[	(x(i)	-	m(i))(x(j)	-	m(j))	]	=	sum(n=1..N){	(xn(i)	-	m(i))(xn(j)	-
m(j))	}	/	N
	
	
	
Where	m(i)	is	the	mean	of	all	x(i).
	
	
	
If	i	=	j	then	it’s	just	the	regular	variance.	In	other	words,	the	diagonals	of	the	C
matrix	are	the	variances	of	each	dimension	of	X.	This	will	be	important	later.
	
	
	
In	matrix	form:
	
	
	
C	=	(X	-	m)T(X	-	m)	/	N
	



	
	
This	 gives	us	 a	DxD	matrix.	Remember,	D	 is	 the	dimensionality	 and	N	 is	 the
number	of	data	points.
	
	
	
Technically	you	can’t	subtract	the	mean	like	that	because	it	has	a	different	shape
than	X,	but	we	will	assume	that	broadcasting	is	being	used.
	
	
	
	
	
Eigenvalues	and	Eigenvectors
	
	
	
Recall	 that	 a	DxD	matrix	 has	D	 eigenvalues	 and	D	 eigenvectors.	 If	 you	 don’t
know	 what	 eigenvalues	 and	 eigenvectors	 are,	 I’m	 going	 to	 give	 you	 a	 short
introduction.
	
	
	
Remember	 that	matrices	 in	general	change	 the	direction	of,	or	 rotate,	a	vector.
Eigenvectors	 of	 a	 matrix	 are	 special	 vectors	 which	 are	 NOT	 rotated	 by	 the
matrix,	but	just	change	in	length.	The	change	in	length	is	called	the	eigenvalue.
	
	
	
So	we	can	relate	the	covariance	matrix,	its	eigenvector,	and	its	eigenvalue,	using
this	equation,	where	e	is	the	eigenvalue	and	v	is	the	eigenvector.
	



	
	
	
Cv	=	ev
	
	
	
There	are	 some	 theorems	which	we	won’t	prove,	but	basically	 there	will	be	D
eigenvectors	 and	 D	 corresponding	 eigenvalues,	 and	 the	 eigenvalues	 will	 be
greater	than	or	equal	to	0.
	
	
	
Finding	 eigenvectors	 and	 eigenvalues	 is	 itself	 not	 a	 trivial	 task,	 and	 there	 are
many	 algorithms	 that	 can	 do	 this,	 including	 gradient	 descent.	 Since	 numpy
already	 has	 a	 function	 to	 do	 this,	we’re	 not	 going	 to	worry	 about	 it	 -	 just	 the
theory	is	important	to	give	you	the	right	perspective.
	
	
	
Now	we	have	these	D	eigenvalues,	what	do	we	do	with	them?
	
	
	
Again	an	arbitrary	step,	but	let’s	sort	the	eigenvalues	in	descending	order.	This
means	that	the	corresponding	eigenvectors	have	to	be	sorted	in	the	same	way.
	
	
	
e1	>	e2	>	e3	>	...	>	eD
	
	
	



Once	 we’ve	 done	 this,	 we	 can	 put	 them	 into	 matrices	 of	 size	 DxD.	 The
eigenvalues	 will	 go	 in	 a	 diagonal	 matrix	 of	 size	 DxD	 we’ll	 call	 E,	 and	 the
eigenvectors	will	be	lined	up	beside	each	other	in	a	matrix	we’ll	call	V.
	
	
	
Ex.	In	2	dimensions:
	
	
	
E	=	[	e1	0	]
	
[	0	e2	]
	
	
	
V	=	[	v11	v12	]
	
[	v21	v22	]
	
	
	
Where	v(i,j)	is	the	ith	component	of	the	jth	eigenvector.
	
	
	
It’s	easy	to	prove	that:
	
	
	
CV	=	VE
	



	
	
	
Try	it	yourself	on	paper	with	the	scalar	components.
	
	
	
One	 last	 ingredient	 is	 that	 the	 matrix	 V	 is	 orthonormal.	 This	 means	 that	 any
eigenvector	 dotted	 with	 itself	 is	 1,	 and	 any	 eigenvector	 dotted	 with	 another
different	eigenvector	is	0.
	
	
	
Ex.
	
	
	
viTvj	=	0	if	i	!=	j
	
viTvi	=	1
	
	
	
In	matrix	form:
	
	
	
VTV	=	I	(the	identity	matrix)
	
	
	
Finally,	we’ll	now	look	at	the	transformed	data,	Z.	Remember	that	we	still	don’t
know	what	Q	is.	But	 let’s	solve	for	 its	covariance.	Notice	how	we	can	express



the	covariance	of	Z	in	terms	of	the	covariance	of	X.
	
	
	
CZ	=	(Z	-	mZ)T(Z	-	mZ)	/	N
	
CZ	=	(XQ	-	mQ)T(XQ	-	mQ)	/	N
	
CZ	=	QT(X	-	m)T(X	-	m)Q	/	N
	
CZ	=	QT	[(X	-	m)T(X	-	m)	/	N	]	Q
	
CZ	=	QT	C	Q
	
	
	
We	can	express	the	covariance	of	Z	in	terms	of	the	covariance	of	X	and	Q!
	
	
	
Next,	look	what	happens	if	we	choose	Q	=	V.
	
	
	
CZ	=	VTCV
	
	
	
But	remember	that	CV	=	VE.
	
	
	



	
CZ	=	VTVE
	
	
	
And	remember	that	V	is	orthonormal	so	VTV	=	I	(the	identity	matrix).	Thus:
	
	
	
CZ	=	E
	
	
	
We	get	that	the	covariance	of	Z	is	just	equal	to	E,	which	is	the	diagonal	matrix	of
eigenvalues.
	
	
	
So	what	does	this	all	mean?
	
	
	
Since	all	the	off-diagonal	elements	of	E	are	0,	that	means	any	dimension	i	is	not
correlated	with	any	other	dimension	j,	which	means	there	are	no	correlations	in
the	transformed	data.
	
	
	
So	by	choosing	Q	=	V,	we’ve	decorrelated	Z.
	
	
	



Next,	because	we	sorted	E	by	 the	eigenvalues	 in	descending	order,	 that	means
the	first	dimension	of	Z	has	the	most	variance,	the	second	dimension	of	Z	has	the
second	most	variance,	and	so	on.
	
	
	
	
	
The	PCA	Objective
	
	
	
One	 thing	 that	 is	 not	 immediately	 obvious	 with	 the	 PCA	 derivation	 is	 that	 it
actually	minimizes	an	objective	function.
	
	
	
The	 objective	 function	 is	 what	 you	 would	 naturally	 expect	 -	 it’s	 the	 squared
reconstruction	error	of	the	data.
	
	
	
J	=	||	X	-	XQQ-1	||2

	
	
	
Since	Q	is	orthonormal,	we	know	that	QT	=	Q-1.
	
	
	
In	other	words,	the	transpose	of	Q	is	equal	to	the	inverse	of	Q.
	



	
	
We	can	thus	reconstruct	X	using	the	transpose	instead	of	the	inverse.
	
	
	
We’ll	encounter	this	again	when	we	look	at	autoencoders.
	
	
	
Qk	is	just	the	first	k	eigenvectors	of	the	covariance	of	X	-	meaning	that	it’s	a	Dxk
matrix.
	
	
	
By	multiplying	X	by	Qk,	we	get	Zk,	 the	 first	 k	 columns	of	Z.	Remember,	 this
gives	us	Z	“without	the	noise”.
	
	
	
Since	we	are	now	not	using	 the	 full	Q,	 there	will	be	a	non-zero	 reconstruction
error.
	
	
	
And	we	can	get	back	the	reconstruction	by	multiplying	by	QkT.
	
	
	
Xhat	=	ZkQkT

	
	
	



	
J	=	||	X	-	XQkQkT	||2

	
	
	
You’ll	 want	 to	 keep	 this	 idea	 of	 the	 PCA	 objective	 function	 in	 your	memory
because	we	are	going	to	encounter	it	again	later.
	
	
	
	
	
Exercises
	
	
	
Try	PCA	on	the	MNIST	dataset.	(Use	the	sci-kit	learn	library	or	try	writing	PCA
yourself)
	
	



	
Chapter	2:	t-SNE
	
	

	
In	 this	 lecture	we	are	going	 to	 talk	about	another	dimensionality	 reduction	and
visualization	method	called	t-SNE.	The	t	means	we	are	going	to	incorporate	the
t-distribution	and	SNE	stands	for	“stochastic	neighbor	embedding”.
	
	
	
One	 big	 advantage	 of	 t-SNE	 is	 that	 it’s	 a	 nonlinear	 method,	 so	 it	 is	 more
expressive	than	PCA.
	
	
	
Why	study	t-SNE?
	
	
	
2	reasons:
	
	
	
1)	t-SNE	was	jointly	developed	by	Geoffrey	Hinton,	who	as	you	know,	is	one	of
the	main	figures	of	deep	learning.
	
	
	
2)	by	doing	t-SNE,	we	are	seeing	how	the	limitations	of	PCA	can	be	overcome
by	using	a	more	complex	mathematical	model.
	



	
	
One	key	difference	between	PCA	and	 t-SNE,	other	 than	 the	 fact	 that	 t-SNE	 is
nonlinear,	is	that	there	is	no	transformation	model	with	t-SNE.
	
	
	
Instead,	 t-SNE	 just	modifies	 the	outputs	directly	 in	order	 to	minimize	 the	 cost
function.
	
	
	
What	 this	means	 is	 that,	you	won’t	have	any	 train	and	 test	 sets,	 and	you	can’t
transform	data	after	fitting	on	some	other	data.
	
	
	
The	way	that	t-SNE	works	is	essentially	it	tries	to	preserve	the	distances	between
each	input	vector.
	
	
	
We	will	start	with	symmetric	SNE	since	it	intuitively	makes	more	sense.
	
	
	
On	the	original	data	X,	we	define	a	joint	probability	distribution	p(i,j)	which	is
equal	to:
	
	
	
p(i,j)	=	exp(-||xi	-	xj||2	/(2s2))	/	sum[k!=m]{	exp(-||xm	-	xk||2	/(2s2))	}
	



	
	
	
Note	that	i	and	j	here	are	not	the	index	for	the	dimensions	like	we	did	with	PCA,
but	rather	the	ith	and	jth	data	point	in	the	dataset,	i.e.	i	and	j	are	the	ith	and	jth
sample.
	
	
	
Notice	 it	kind	of	 looks	 like	a	Gaussian	distribution.	You	can	 think	of	 “s”	as	 a
hyperparameter.	It’s	controlling	the	“spread”	of	the	distribution.
	
	
	
Next,	we	 have	 our	 low-dimensional	mapping	Y,	which	we	 define	 in	 the	 same
way,	but	there	is	no	s	term.
	
	
	
q(i,j)	=	exp(-||yi	-	yj||2)	/	sum[k!=m]{	exp(-||ym	-	yk||2)	}
	
	
	
Note	that	we	just	set	p(i,i)	=	q(i,i)	=	0.
	
	
	
So	we’ve	defined	2	probability	distributions,	one	between	every	pair	of	points	in
X,	and	one	between	every	pair	of	points	in	Y.
	
	
	



We	usually	just	initialize	every	data	point	in	Y	randomly.
	
	
	
i.e.	If	we’re	looking	for	a	2-D	representation,	we’ll	create	Y	as:
	
	
	
Y	=	np.random.randn(N,	2)
	
	
	
Once	 we’ve	 done	 that,	 we	 can	 try	 to	 find	 a	 better	 Y	 by	 optimizing	 some
objective	function	that	relates	p(i,j)	and	q(i,j).
	
	
	
If	 you	 are	 not	 familiar	 with	 how	 we	 compare	 2	 probability	 distributions,	 we
usually	use	the	Kullback-Leibler	divergence	or	KL	divergence	for	short.
	
	
	
C	=	DKL(P	||	Q)	=	sum[i,j]{	p(i,j)log(	p(i,j)	/	q(i,j)	)	}
	
	
	
If	P	and	Q	are	exactly	the	same,	this	would	be	0.
	
	
	
How	we	solve	this	problem	is	 the	same	as	how	we	solve	all	other	problems	of
this	type	-	we	take	the	derivative	of	the	objective	and	do	gradient	descent.
	



	
	
	
Notice	how	with	this	type	of	model	we	don’t	have	weights	-	we	just	have	Y.	So
are	taking	the	gradient	with	respect	to	Y,	which	is	the	output	mapping	itself.
	
	
	
i.e.
	
	
	
Y	<-	Y	-	learning_rate*dC/dY
	
	
	
One	problem	with	symmetric	SNE	and	the	SNE	that	came	before	it	is	known	as
the	“crowding	problem”,	which	prevents	gaps	from	forming	around	the	natural
clusters.
	
	
	
What	 t-SNE	does	 is	 it	 uses	 slightly	 different	 distributions	 for	Q	 and	 P,	which
helps	space	out	the	clusters	better.
	
	
	
The	new	P	and	Q	are	defined	as	follows:
	
	
	
p(i,j)	=	[	p(i	|	j)	+	p(j	|	i)	]	/	2N
	



	
	
	
Where:
	
	
	
p(j	|	i)	=	exp(-||xi	-	xj||2	/(2si2))	/	sum[k!=i]{	exp(-||xi	-	xk||2	/(2si2))	}
	
	
	
Notice	how	here	each	sample	has	its	own	“s”.
	
	
	
q(i,j)	=	(1	+	||yi	-	yj||2)-1	/	sum[k!=m]{	(1	+	||yk	-	ym||2)-1	}
	
	
	
The	Q	distribution	uses	the	t-distribution,	hence	the	name.
	
	
	
The	cost	function	remains	the	same	as	before.
	
	
	
Note	 that	 we	 won’t	 actually	 implement	 t-SNE	 -	 even	 though	 it	 should	 be
relatively	simple	given	the	definitions	above.
	
	
	



It’s	easy	to	define	the	cost	and	find	its	derivative,	which	is	more	than	we	can	say
for	many	of	the	deep	learning	models	we’ve	worked	with.
	
	
	
The	problem	is	 that	 it’s	 slow	and	has	huge	RAM	requirements	 -	 in	 fact	 t-SNE
will	probably	crash	on	your	computer	with	the	full	MNIST	dataset.
	
	
	
Why?	Because	we	need	to	calculate	q(i,j)	and	p(i,j)	for	i=1..N	and	j=1..N,	this	is
naturally	an	O(N2)	algorithm.
	
	
	
There	is	a	variant	of	it,	which	is	called	Barnes-Hut,	that	is	O(NlogN)	run	time,
but	still	has	huge	RAM	requirements.	This	is	the	default	method	used	in	Sci-Kit
Learn.
	
	
	
One	solution	is	to	take	a	sample	of	just	a	few	hundred	data	points	and	do	t-SNE
on	 that,	 but	 of	 course	 you	 can	 increase	 this	 amount	 if	 you’re	 willing	 to	 wait
longer	and	you	have	enough	RAM.
	
	
	
	
	
Exercises
	
	
	



	
Try	t-SNE	(from	the	sci-kit	learn	library)	on	the	MNIST	dataset.
	
	
	
Try	writing	your	own	naive	implementation	given	the	definitions	above,	and
take	advantage	of	Theano’s	automatic	differentiation.
	
	
	
	



	
Chapter	3:	Autoencoders	and	Stacked	Denoising	
Autoencoders
	
	

	
In	 this	 chapter	 we	 are	 going	 to	 talk	 about	 autoencoders.	 Autoencoders	 are
actually	nothing	really	new,	just	a	small	twist	on	something	you	already	know.
	
	
	
I	always	say	that	a	supervised	machine	learning	model	has	2	main	functions	as
its	API,	train	or	fit,	and	predict.
	
	
	
Usually	 when	we	 call	 a	 neural	 network,	 we	 call	 model.fit(X,	 Y),	 and	 then	 to
make	predictions	we	call	model.predict(X).
	
	
	
But	 what	 if	 we	 just	 make	 a	 neural	 network	 try	 to	 predict	 itself?	 So	 we	 call
model.fit(X,	X)	instead.
	
	
	
o---o---o
	
x			z			x’
	
	
	



	
That’s	exactly	what	an	autoencoder	is.
	
	
	
In	most	of	my	previous	courses,	we	did	classification,	but	remember	that	our	X
can	be	any	real	value.
	
	
	
So	 if	 you	 are	 trying	 to	predict	 real	 values	 in	general,	 you	 can	use	 the	 squared
error,	and	it	becomes	more	like	a	regression.
	
	
	
You	can	alternatively	still	use	the	cross-entropy	error,	and	consider	your	inputs
and	outputs	to	be	binary	variables,	even	for	variables	that	are	not	exactly	binary.
	
	
	
You’ll	see	that	we	do	this	with	both	autoencoders	and	RBMs,	and	you’ll	see	that
both	error	functions	can	work.
	
	
	
You	can	think	of	images	like	MNIST	as	having	pixel	intensities.	0	would	be	no
intensity	 at	 all,	 and	 1	would	 be	maximum	 intensity,	 since	we	 always	 scale	 by
255.
	
	
	
To	 make	 the	 outputs	 go	 between	 0	 and	 1,	 we	 are	 going	 to	 use	 the	 sigmoid
function	at	both	the	hidden	layer	and	output	layer.
	



	
	
	
One	slight	modification	we	sometimes	use	for	both	autoencoders	and	RBMs	is
the	idea	of	shared	weights.
	
	
	
So	instead	of	using	another	weight	at	the	output	layer,	we	just	use	the	transpose
of	the	first	weight.
	
	
	
Ex.
	
	
	
Z	=	sigmoid(XW	+	b)
	
Xhat	=	sigmoid(ZWT	+	c)
	
We	 first	 encountered	 the	 idea	 of	 shared	 weights	 when	 we	 looked	 at
convolutional	neural	networks,	since	it	was	the	same	filter	getting	passed	along
each	part	of	the	image.
	
	
	
Remember	that	having	shared	weights	is	a	kind	of	regularization	because	we	are
reducing	the	number	of	parameters,	thereby	reducing	the	chance	of	overfitting.
	
	
	
Next,	let’s	return	to	the	squared	error	objective.



	
	
	
If	we	write	it	out	in	terms	of	the	weights	and	the	inputs	(ignoring	the	biases),	we
get:
	
J	=	||	X	-	s(s(XW)WT)	||2

	
	
	
Remember	 back	 when	 we	 were	 doing	 PCA,	 I	 asked	 you	 to	 remember	 the
objective	function?
	
	
	
J	=	||	X	-	XQQT	||2

	
	
	
Well	consider	what	would	happen	if	we	did	NOT	use	the	sigmoid	here.
	
	
	
J	=	||	X	-	XWWT	||2

	
	
	
We	would	in	fact,	just	get	back	PCA!
	
	
	



You	can	in	fact	think	of	autoencoders	as	a	sort	of	nonlinear	PCA.
	
	
	
This	is	doing	a	nonlinear	mapping,	just	like	t-SNE.
	
	
	
Note	that	this	isn’t	really	the	full	picture	because	we	are	not	considering	biases,
and	 we	 also	 don’t	 have	 any	 requirement	 that	 each	 column	 of	 the	 weight	 has
length	 1,	 or	 that	 each	 column	 is	 orthogonal,	 or	 that	 they	 are	 ordered	 in	 any
particular	way.
	
	
	
So	while	the	functional	form	looks	“like”	PCA,	it’s	not	doing	everything	PCA	is
doing.
	
	
	
	
	
Denoising	Autoencoders
	
	
	
In	this	section	we	are	going	to	talk	about	yet	another	method	of	regularization.
	
	
	
Remember	that	when	we’re	given	a	dataset,	we	don’t	have	to	only	train	on	that
dataset.	We	first	saw	this	when	we	talked	about	images.	An	upside-down	cat	is



still	a	cat,	so	we	should	add	that	to	our	dataset.	Similarly,	a	sideways	cat	is	still	a
cat.	A	cat	on	the	top	right	of	a	photo	is	still	the	same	cat	as	that	cat	shifted	to	the
bottom	left.
	
	
	
Therefore,	 there	 are	 ways	 we	 can	 modify	 our	 data	 to	 improve	 our	 neural
network’s	generalization	capabilities.
	
	
	
Another	way	to	modify	data	other	than	moving	things	around	explicitly	is	to	add
noise.
	
	
	
One	way	is	to	add	Gaussian	noise	to	the	input,	another	way	is	to	simply	set	some
of	the	values	to	0.
	
	
	
This	 is	almost	 trivial	 to	do	since	 it’s	 just	adding	a	bitmask	 to	your	 input,	or	 in
other	words,	you	generate	a	random	vector	of	0s	and	1s,	and	do	an	element	by
element	multiplication	on	X,	to	get	your	new	X.
	
	
	
Ex.
	
	
	
from	theano.tensor.shared_randomstreams	import	RandomStreams	rng	=
RandomStreams()



	
bitmask	=	rng.binomial(n=1,	p=p,	size=X.shape)	X	=	bitmask	*	X
	
	
	
Typically,	we	set	the	probability	of	generating	a	0	to	something	less	than	50%,
so	 perhaps	maybe	 something	 like	 30%,	 but	 researchers	 have	 found	 that	 up	 to
50%	still	provides	good	results.
	
	
	
	
	
Stacked	Autoencoders
	
	
	
In	this	section	we	are	going	to	explore	what	happens	when	we	take	a	bunch	of
autoencoders	and	put	them	together	in	layers.
	
	
	
The	basic	algorithm	is	this.
	
	
	
You	train	one	autoencoder,	and	then	fix	its	weights.	Then	you	throw	out	the	last
layer,	keeping	only	the	input	to	hidden	part.
	
	
	
Next,	you	 take	 the	output	of	 the	hidden	layer	of	 the	first	autoencoder,	and	you



make	that	the	input	to	another	autoencoder.
	
	
	
And	you	just	repeat	this	process	for	multiple	autoencoders.
	
	
	
Ex:
	
	
	
Train:
	
o--o--o
	
x		z		x’
	
	
	
Keep:
	
o--o
	
x		z
	
	
	
Train	another:
	
o--o--o
	



	
z		z2	z’
	
	
	
Keep	another:
	
o--o
	
z		z2
	
	
	
Train	another:
	
o--o--o
	
z2	z3	z2’
	
	
	
Keep	another:
	
o--o
	
z2	z3
	
	
	
Finally,	you	end	up	with	a	stack	of	autoencoders,	each	designed	simply	to	learn	a
more	compact	version	of	the	previous	layer.
	



	
	
What	you	end	up	with	is	a	deep	unsupervised	network:
	
o--o--o--o
	
x		z		z2	z3
	
	
	
Since	 each	 time	we	 use	 an	 autoencoder,	we	 are	 trying	 to	 get	 a	more	 compact
representation	than	what	we	had	in	the	previous	layer,	we	are	going	to	want	each
layer	to	be	smaller	in	size	than	the	previous	layer.
	
	
	
Note	 that	 this	doesn’t	necessarily	have	 to	be	 the	case.	We	could	 in	fact	have	a
huge	 number	 of	 hidden	 units	 in	 the	 middle	 layer.	 Theoretically,	 if	 we	 had	 N
training	samples,	and	N	hidden	units,	then	we	could	get	a	perfect	reconstruction
because	 each	 of	 the	 N	 columns	 of	W	 could	 be	 responsible	 for	 reproducing	 a
different	sample.
	
	
	
You	would	think	that	this	would	lead	to	severe	overfitting,	however	researchers
have	found	it	does	not	overfit,	and	even	a	number	of	hidden	units	greater	than	N
can	work.
	
	
	
In	 our	 code,	 we	 will	 use	 classes	 and	 objects	 to	 represent	 the	 ANN	 and
Autoencoder.
	



	
	
This	will	help	us	compartmentalize	our	code	much	better,	given	the	fact	that	we
can	have	an	arbitrary	number	of	autoencoders.
	
	
	
We	can	then	simply	make	the	hidden	output	of	each	autoencoder	the	input	into
the	next	autoencoder.
	
	
	
	
	
Greedy	layer-wise	pretraining
	
	
	
The	 process	 that	 we’ve	 just	 talked	 about	 is	 called	 “greedy	 layer-wise
pretraining”.
	
	
	
The	 reason	 it	 is	 called	greedy	you	 should	understand	 if	 you	have	 ever	 studied
algorithms.	Greedy	intuitively	means	you	make	the	best	short-sighted	decision,
which	in	our	case	is	simply	training	one	layer	of	the	autoencoder.
	
	
	
While	 it	 is	 theoretically	 not	 optimal,	 it	 actually	 helps	 a	 lot	 with	 supervised
training,	which	is	the	next	step,	and	that	is	why	we	call	it	pretraining.
	



	
	
The	last	step	in	the	process	is	to	add	a	logistic	regression	layer	to	the	end	of	the
stacked	autoencoders.
	
	
	
Once	you’ve	done	that,	you’ve	made	what	is	called	a	deep	neural	network.
	
	
	
Since	 the	 last	 layer	with	 logistic	 regression	will	 have	 randomized	weights,	we
will	still	need	to	do	some	backpropagation.
	
	
	
But	what	we	find	is	that	doing	backpropagation	at	this	point	doesn’t	take	as	long,
because	 the	 autoencoder	 weights	 already	 put	 us	 in	 the	 neighborhood	 of	 the
correct	answer.
	
	
	
So	 we	 just	 need	 to	 do	 a	 few	 epochs	 of	 backpropagation	 to	 “fine-tune”	 the
network.
	
	
	
Notice	that	there	are	zero	new	things	here	in	terms	of	architecture	and	functional
forms,	just	a	new	concept	using	old	ideas.
	
	
	



You	 already	 know	 how	 to	 do	 all	 this	 stuff	 -	 build	 a	 neural	 network,	 build	 a
neural	network	with	multiple	layers,	do	gradient	descent	in	Theano,	etc.
	
	
	
In	the	code,	note	that	we	assume	as	usual	that	we	have	a	function	getData()	that
returns	 some	NxD	matrix	 for	 the	 input	 data	 and	 an	Nx1	 vector	 for	 the	 output
targets.
	
	
	
We	 will	 load	 both	 training	 data	 and	 test	 data,	 so	 we’ll	 have	 Xtrain	 of	 size
NtrainxD,	Ytrain	of	size	Ntrainx1,	Xtest	of	size	NtestxD,	and	Ytest	of	size	Ntestx1.
	
	
	
Note	 that	 there	 is	 code	 for	 both	 the	 squared	 error	 objective	 and	 cross-entropy
objective.	Typically	we	use	 cross-entropy	 for	 0/1	 targets,	 but	 you’ll	 see	 that	 it
works	even	better	than	squared	error.	We	will	explain	why	later	in	the	book.
	
	
	
Let’s	see	the	code:
	
	
	
def	relu(x):
	
return	x	*	(x	>	0)
	
	
	



	
	
def	error_rate(p,	t):
	
return	np.mean(p	!=	t)
	
	
	
def	init_weights(shape):
	
return	np.random.randn(*shape)	/	np.sqrt(sum(shape))
	
	
	
import	numpy	as	np
	
import	theano
	
import	theano.tensor	as	T
	
import	matplotlib.pyplot	as	plt
	
	
	
from	sklearn.utils	import	shuffle
	
	
	
	
	
class	AutoEncoder(object):
	



	
def	__init__(self,	M):
	
self.M	=	M
	
	
	
def	fit(self,	X,	learning_rate=0.5,	mu=0.99,	epochs=1,	batch_sz=100,
show_fig=False):	N,	D	=	X.shape
	
n_batches	=	N	/	batch_sz
	
	
	
W0	=	init_weights((D,	self.M))
	
self.W	=	theano.shared(W0)
	
self.bh	=	theano.shared(np.zeros(self.M))	self.bo	=	theano.shared(np.zeros(D))
	
self.params	=	[self.W,	self.bh,	self.bo]
	
self.forward_params	=	[self.W,	self.bh]
	
	
	
self.dW	=	theano.shared(np.zeros(W0.shape))	self.dbh	=
theano.shared(np.zeros(self.M))	self.dbo	=	theano.shared(np.zeros(D))
	
self.dparams	=	[self.dW,	self.dbh,	self.dbo]
	
self.forward_dparams	=	[self.dW,	self.dbh]
	



	
	
	
X_in	=	T.matrix('X_%s'	%	self.id)
	
X_hat	=	self.forward_output(X_in)
	
	
	
#	attach	it	to	the	object	so	it	can	be	used	later	#	must	be	sigmoidal	because	the
output	is	also	a	sigmoid	H	=	T.nnet.sigmoid(X_in.dot(self.W)	+	self.bh)
self.hidden_op	=	theano.function(
	
inputs=[X_in],
	
outputs=H,
	
)
	
	
	
#	cost	=	((X_in	-	X_hat)	*	(X_in	-	X_hat)).sum()	/	N
	
cost	=	-(X_in	*	T.log(X_hat)	+	(1	-	X_in)	*	T.log(1	-	X_hat)).sum()	/	N
	
cost_op	=	theano.function(
	
inputs=[X_in],
	
outputs=cost,
	
)
	



	
	
	
updates	=	[
	
(p,	p	+	mu*dp	-	learning_rate*T.grad(cost,	p))	for	p,	dp	in	zip(self.params,
self.dparams)	]	+	[
	
(dp,	mu*dp	-	learning_rate*T.grad(cost,	p))	for	p,	dp	in	zip(self.params,
self.dparams)	]
	
train_op	=	theano.function(
	
inputs=[X_in],
	
updates=updates,
	
)
	
	
	
costs	=	[]
	
for	i	in	xrange(epochs):
	
print	"epoch:",	i
	
X	=	shuffle(X)
	
for	j	in	xrange(n_batches):
	
batch	=	X[j*batch_sz:(j*batch_sz	+	batch_sz)]
	



	
train_op(batch)
	
the_cost	=	cost_op(X)	#	technically	we	could	also	get	the	cost	for	Xtest	here	
print	"j		n_batches:",	j,	"",	n_batches,	"cost:",	the_cost	costs.append(the_cost)
	
if	show_fig:
	
plt.plot(costs)
	
plt.show()
	
	
	
def	forward_hidden(self,	X):
	
Z	=	T.nnet.sigmoid(X.dot(self.W)	+	self.bh)	return	Z
	
	
	
def	forward_output(self,	X):
	
Z	=	self.forward_hidden(X)
	
Y	=	T.nnet.sigmoid(Z.dot(self.W.T)	+	self.bo)	return	Y
	
	
	
@staticmethod
	
def	createFromArrays(W,	bh,	bo):
	



ae	=	AutoEncoder(W.shape[1])
	
ae.W	=	theano.shared(W)
	
ae.bh	=	theano.shared(bh)
	
ae.bo	=	theano.shared(bo)
	
ae.params	=	[ae.W,	ae.bh,	ae.bo]
	
ae.forward_params	=	[ae.W,	ae.bh]
	
return	ae
	
	
	
	
	
class	DNN(object):
	
def	__init__(self,	hidden_layer_sizes,	UnsupervisedModel=AutoEncoder):
self.hidden_layers	=	[]
	
for	M	in	hidden_layer_sizes:
	
ae	=	UnsupervisedModel(M)
	
self.hidden_layers.append(ae)
	
	
	
def	fit(self,	X,	Y,	Xtest,	Ytest,	pretrain=True,	learning_rate=0.01,	mu=0.99,



def	fit(self,	X,	Y,	Xtest,	Ytest,	pretrain=True,	learning_rate=0.01,	mu=0.99,
reg=0.1,	epochs=1,	batch_sz=100):	#	greedy	layer-wise	training	of	autoencoders
pretrain_epochs	=	1
	
if	not	pretrain:
	
pretrain_epochs	=	0
	
	
	
current_input	=	X
	
for	ae	in	self.hidden_layers:
	
ae.fit(current_input,	epochs=pretrain_epochs)
	
#	create	current_input	for	the	next	layer	current_input	=
ae.hidden_op(current_input)
	
#	initialize	logistic	regression	layer
	
N	=	len(Y)
	
K	=	len(set(Y))
	
W0	=	init_weights((self.hidden_layers[-1].M,	K))	self.W	=	theano.shared(W0)
	
self.b	=	theano.shared(np.zeros(K))
	
	
	
self.params	=	[self.W,	self.b]
	



	
for	ae	in	self.hidden_layers:
	
self.params	+=	ae.forward_params
	
	
	
#	for	momentum
	
self.dW	=	theano.shared(np.zeros(W0.shape))	self.db	=
theano.shared(np.zeros(K))
	
self.dparams	=	[self.dW,	self.db]
	
for	ae	in	self.hidden_layers:
	
self.dparams	+=	ae.forward_dparams
	
	
	
X_in	=	T.matrix('X_in')
	
targets	=	T.ivector('Targets')
	
pY	=	self.forward(X_in)
	
	
	
#	squared_magnitude	=	[(p*p).sum()	for	p	in	self.params]
	
#	reg_cost	=	T.sum(squared_magnitude)
	
cost	=	-T.mean(	T.log(pY[T.arange(pY.shape[0]),	targets])	)	#+	reg*reg_cost



cost	=	-T.mean(	T.log(pY[T.arange(pY.shape[0]),	targets])	)	#+	reg*reg_cost
prediction	=	self.predict(X_in)
	
cost_predict_op	=	theano.function(
	
inputs=[X_in,	targets],
	
outputs=[cost,	prediction],
	
)
	
	
	
updates	=	[
	
(p,	p	+	mu*dp	-	learning_rate*T.grad(cost,	p))	for	p,	dp	in	zip(self.params,
self.dparams)	]	+	[
	
(dp,	mu*dp	-	learning_rate*T.grad(cost,	p))	for	p,	dp	in	zip(self.params,
self.dparams)	]
	
	
	
train_op	=	theano.function(
	
inputs=[X_in,	targets],
	
updates=updates,
	
)
	
	
	



	
n_batches	=	N	/	batch_sz
	
costs	=	[]
	
print	"supervised	training..."
	
for	i	in	xrange(epochs):
	
print	"epoch:",	i
	
X,	Y	=	shuffle(X,	Y)
	
for	j	in	xrange(n_batches):
	
Xbatch	=	X[j*batch_sz:(j*batch_sz	+	batch_sz)]
	
Ybatch	=	Y[j*batch_sz:(j*batch_sz	+	batch_sz)]
	
train_op(Xbatch,	Ybatch)
	
the_cost,	the_prediction	=	cost_predict_op(Xtest,	Ytest)	error	=	
error_rate(the_prediction,	Ytest)	print	"j		n_batches:",	j,	"",	n_batches,	"cost:",	
the_cost,	"error:",	error	costs.append(the_cost)
	
plt.plot(costs)
	
plt.show()
	
	
	
def	predict(self,	X):
	



	
return	T.argmax(self.forward(X),	axis=1)
	
def	forward(self,	X):
	
current_input	=	X
	
for	ae	in	self.hidden_layers:
	
Z	=	ae.forward_hidden(current_input)
	
current_input	=	Z
	
	
	
#	logistic	layer
	
Y	=	T.nnet.softmax(T.dot(current_input,	self.W)	+	self.b)	return	Y
	
	
	
	
	
def	main():
	
Xtrain,	Ytrain,	Xtest,	Ytest	=	getKaggleMNIST()	#	TRY	BOTH!
	
#	dnn	=	DNN([1000,	750,	500])
	
#	dnn.fit(Xtrain,	Ytrain,	Xtest,	Ytest,	epochs=3)	#	vs
	
dnn	=	DNN([1000,	750,	500])
	



	
dnn.fit(Xtrain,	Ytrain,	Xtest,	Ytest,	pretrain=False,	epochs=10)
	
	
	
if	__name__	==	'__main__':
	
main()
	
	
	
	
	
Exercises
	
	
	
Add	denoising	to	the	autoencoder.
	
	
	
	
	
Cross-Entropy	vs.	KL	Divergence
	
	
	
You	have	already	seen	that	KL	Divergence	can	be	used	to	compare	the	similarity
of	2	probability	distributions,	as	we	did	with	t-SNE.
	
	
	



	
One	identity	to	remember	is	that	cross-entropy	is	equivalent	to	KL	divergence	up
to	an	additive	constant.
	
	
	
i.e.
	
	
	
H(P,	Q)	=	cross-entropy	between	P	and	Q
	
H(P)	=	entropy	of	P
	
DKL(P	||	Q)	=	KL	divergence	between	P	and	Q
	
	
	
H(P,Q)	=	-sum[i]{	P(i)	logQ(i)	}
	
H(P)	=	-sum[i]{	P(i)	logP(i)	}
	
DKL(P	||	Q)	=	sum[i]{	P(i)log(	P(i)	/	Q(i)	}
	
	
	
We	can	show	that:
	
	
	
H(P,Q)	=	H(P)	+	DKL(P	||	Q)
	



Why	is	this	significant?
	
	
	
The	 derivative	 of	 a	 constant	 is	 0.	 Therefore,	 the	 gradient,	 and	 thus	 gradient
descent,	is	the	same	for	both	cross-entropy	and	KL	divergence.
	
	
	
So	when	we	use	cross-entropy	on	 the	autoencoder,	what	we’re	 really	saying	 is
the	distribution	of	 the	 input	X	 is	 the	 target	distribution,	 and	 the	distribution	of
the	reconstruction	of	X	is	the	output	distribution,	and	we	would	like	them	to	be
the	same.
	
	
	
	
	
Summary
	
	
	
The	MOST	important	concept	to	get	out	of	this	is	that	for	the	single	autoencoder,
the	“Z”	is	a	“low-dimensional	representation”	of	the	input	data	X.	We	saw	this
same	concept	with	PCA.	We	will	see	it	again	with	RBMs.
	
	



	
Chapter	4:	Restricted	Boltzmann	Machines	and	Deep	
Belief	Networks
	
	

	
In	 this	chapter	we	are	going	 to	 talk	about	Restricted	Boltzmann	Machines	and
deep	 belief	 networks,	 which	 is	 just	 stacked	 Restricted	 Boltzmann	Machines	 -
used	in	exactly	the	same	way	we	stacked	autoencoders.
	
	
	
It’s	interesting	to	look	back	at	what	we’ve	learned	at	this	point.
	
	
	
When	we	did	linear	regression	-	we	were	able	to	calculate	the	derivative	of	the
cost,	set	it	to	0,	and	solve	for	the	weights	to	get	the	best	weights.
	
	
	
With	 logistic	 regression	 and	neural	 networks,	 you	know	 that	we	 can’t	 directly
solve	 for	 the	weights,	 so	we	 take	 the	derivative	of	 the	cost	with	 respect	 to	 the
weights,	and	take	small	steps	in	that	direction.
	
	
	
With	RBMs,	we	enter	an	even	more	difficult	situation.	We	can’t	even	calculate
the	 derivative,	 so	 instead	 we	 try	 to	 estimate	 it	 approximately	 using	 Gibbs
sampling,	which	is	a	special	case	of	Markov	Chain	Monte	Carlo.
	
	
	



	
To	 understand	 RBMs,	 we	 first	 have	 to	 talk	 a	 little	 bit	 about	Markov	 random
fields.
	
	
	
A	Markov	 random	 field	 is	 just	 a	 graph	 of	 states,	 where	 each	 node	 is	 a	 state,
which	is	a	random	variable.
	
	
	
A		B
	
o--o
	

|\/|

	

|/\|

	
o--o
	
C		D
	
	
	
P(A,	B,	C,	D)
	



	
	
A	 Markov	 random	 field	 represents	 a	 joint	 probability	 distribution,	 i.e.	 the
probability	of	all	those	random	variables.
	
	
	
2	things	to	note	about	the	MRF:
	
	
	
First:	that	the	Markov	property	holds,	i.e.:
	
	
	
P(s(t)	|	s(t-1),	s(t-2),	...)	=	P(s(t)	|	s(t-1))
	
	
	
The	next	 state	 only	depends	on	 the	 current	 state,	 and	not	 on	 any	 states	 before
that.
	
	
	
Second:	 the	 graph	 is	 undirected,	 so	 you	 can	 move	 along	 any	 edge	 in	 any
direction.
	
	
	
This	brings	us	to	the	concept	of	Boltzmann	machines.
	
	
	



	
Boltzmann	machines	are	Markov	 random	fields	where	everything	 is	connected
to	everything.
	
	
	
The	 idea	 is	 you	define	 an	 energy	on	 the	network,	 and	your	goal	 is	 to	 find	 the
minimum	energy	state,	much	like	how	physical	systems	do.
	
	
	
In	 fact,	 the	Boltzmann	 distribution,	which	 is	 the	 distribution	we	 use	when	we
talk	 about	 Boltzmann	 machines	 and	 restricted	 Boltzmann	 machines,	 is	 from
statistical	mechanics.
	
	
	
The	energy	is	defined	as:
	
	
	
E(s)	=	-(	sum[i,j]{	w(i,j)s(i)s(j)	}	+	sum[i]{	b(i)s(i)	}
	
	
	
It’s	not	super	important	since	we	won’t	be	using	this	exact	form,	but	recognize
the	 “structure”	 here.	There’s	 a	 2-D	weight	 that	 gets	multiplied	 by	 “interaction
terms”	and	a	1-D	linear	weight.
	
	
	
Now	we	can	go	from	Boltzmann	machines	to	restricted	Boltzmann	machines.
	



	
	
	
Here	 instead	 of	 everything	 being	 connected	 to	 everything,	 we	 instead	 have	 a
“bipartite	graph”.
	
	
	

	
	
	
	
	
This	means	 that	 everything	on	 the	 left	 is	 connected	 to	everything	on	 the	 right,
and	vice	versa.
	
	
	
We	usually	label	the	nodes	on	the	left	the	visible	units	(v),	and	the	nodes	on	the
right	 the	hidden	units	 (h).	This	gives	us	 a	 latent	variable	model,	 just	 like	with
PCA	and	autoencoders.
	
	
	
Note	that	the	Markov	property	still	holds.	What	this	means	in	this	graph	is	that



we	have	conditional	independence.	So	the	probability	p(h(i)	 |	v)	is	independent
of	the	probability	p(h(j)	|	v).
	
	
	
Similarly,	if	you	go	in	the	other	direction	(remember,	this	graph	is	undirected),
the	probability	p(v(i)	|	h)	is	independent	of	the	probability	p(v(j)	|	h).
	
	
	
With	RBMs	we	 technically	 assume	both	 the	visible	units	 and	hidden	units	 are
binary	units.
	
	
	
This	is	why	we	used	the	sigmoid	for	autoencoders	also,	and	why	we	only	use	the
sigmoid	uniformly	throughout	this	book.
	
	
	
We	know	that	this	works	just	fine	for	MNIST,	and	in	fact	a	lot	of	data	is	binary.
All	categorical	variables,	since	we	use	one-hot	encoding,	are	binary,	as	are	bag
of	words	models,	so	basically	anything	to	do	with	NLP	will	work	here	too.
	
	
	
There	 is	 some	material	out	 there	 that	goes	over	at	 a	high	 level	how	you	could
have	Gaussian	 units,	 but	 these	 other	 formulations	 have	 been	 reported	 to	 have
stability	issues,	so	we	won’t	cover	them	here.
	
	
	
We	are	ready	to	talk	about	the	math	behind	RBMs.



	
	
	
Note	that	this	is	very	similar	to	the	regular	Boltzmann	machine,	there	is	one	term
that	 depends	 on	 the	 interaction	 of	 2	 different	 nodes,	 and	 then	 a	 bias-like	 term
that	depends	only	on	one	node.
	
	
	
The	total	energy	is	E(v,h)	=	-bTv	-	cTh	-	vTWh
	
	
	
So	if	v	 is	Dx1	and	h	 is	Mx1,	 then	W	must	be	DxM,	which	is	what	we	usually
have	in	a	neural	network.
	
	
	
b	is	Dx1	and	c	is	Mx1	to	give	us	a	valid	dot	product.
	
	
	
Note	 that	 in	 terms	 of	 these	 variables,	 the	 conditional	 probabilities	 we	 talked
about	earlier	are:
	
	
	
p(h	|	v)	=	sigmoid(WTv	+	c)	(forward	direction)
	
p(v	|	h)	=	sigmoid(Wh	+	b)	(backward	direction)
	
	
	



	
Like	autoencoders,	we	again	use	shared	weights.
	
	
	
Now	that	we	have	an	expression	for	our	energy	function,	we	can	now	define	the
joint	probability	of	v	and	h.
	
	
	
P(v,h)	=	exp(-E(v,h))	/	Z
	
	
	
Where:
	
	
	
Z	=	sum{	sum{	exp(-E(v,h)	}}
	
	
	
We	call	Z	the	partition	function,	which	just	ensures	that	all	the	probabilities	add
up	to	1.
	
	
	
Note	 that	 this	 itself	 is	 intractable	 to	 calculate,	 because	 the	 summations	 mean
summing	 over	 all	 possible	 values	 of	 v	 and	 h.	 Since	 they	 are	 both	 binary
variables,	that	is	O(2N)	for	each	of	them.
	
	
	



	
Ex.	if	M=3,	then	the	possible	values	for	h	are:
	
	
	
000
	
001
	
010
	
011
	
100
	
101
	
110
	
111
	
	
	
And	we	must	sum	over	all	of	them.
	
	
	
What	 we	 want	 then,	 given	 this	 model,	 is	 to	 maximize	 P(v),	 which	 is	 P(v,h)
marginalized	over	h.	This	is	because	we	don’t	actually	care	about	the	values	of
h,	we	just	want	to	maximize	the	probability	of	what	we	have	seen,	which	is	v.
	
	
	



	
i.e.
	
	
	
P(v)	=	sum[h]{	P(v,	h)	}
	
	
	
As	usual,	we	don’t	maximize	P(v)	directly,	but	 rather	 the	 log	of	P(v).	So	 let’s
begin	by	trying	to	take	its	derivative	with	respect	to	some	arbitrary	parameter	w.
	
	
	
d(-log(P(v))/dw
	
=	d(-log(sum[h]	{P(v,h)	}	)/dw
	
=	d(-log(sum[h]	{	exp(-E(v,h))	Z	})dw
	
=	sum[h]{	P(h	|	v)E(v,h)	}	-sum[v,h]{	P(v,h)E(v,h)	}
	
=Eh	|	v{	E(v,h)	}	-	Ev,h{	E(v,h)	}
	
	
	
This	is	read	as	“the	expected	value	of	E(v,h)	over	the	conditional	distribution	P(h
|	v)”	-	“the	expected	value	of	E(v,h)	over	the	joint	distributoon	P(v,	h)”.
	
	
	
So	 what	 we	 end	 up	 with	 is	 the	 difference	 between	 2	 expectations.	 The	 first



expectation	 is	 easy	 but	 the	 second	 expectation	 is	 hard	 because	 it	 requires	 an
infinite	 number	 of	 Gibbs	 samples.	We	 usually	 call	 the	 first	 term	 the	 clamped
term	and	the	second	term	the	unclamped	term.
	
	
	
Let’s	 take	 the	previous	 expression	 and	 expand	 it	 further.	Let’s	 do	 the	 input	 to
hidden	weights	explicitly.
	
	
	
J	=	sum[h]{	P(h	|	v)E(v,h)	}	-	sum[v,h]{	P(v,h)E(v,h)	}
	
dJ/dW(i,	j)	=	-	sum[h]	{	P(h	|	v)	h(j)v(i)	}	+	sum[v]{	P(v)hP(h	|	v)h(j)v(i)	}
	
dJ/dW(i,	j)	=	-	p(h(j)=1	|	v)v(i)	+	sum[v]{	P(v)p(h(j)=1	|	v)v(i)	}
	
dJ/dW(i,	 j)	 =	 -	 sigmoid(c(j)	 +	 vTW(:,j))v(i)	 +	 sum[v]{	 P(v)sigmoid(c(j)	 +
vTW(:,j))v(i)	}
	
	
	
We	 can	 do	 similar	 derivatives	 for	 the	 biases	 and	 that	 gives	 us	 these	 3	 update
equations:
	
	
	
dJ/dW(i,	 j)	 =	 -	 sigmoid(c(j)	 +	 vTW(:,j))v(i)	 +	 sum[v]{	 P(v)sigmoid(c(j)	 +
vTW(:,j))v(i)	}
	
dJ/b(i)	=	v(i)	-	sum[v]{	P(v)v(i)	}
	



dJ/dc(j)	=	sigmoid(c(j)	+	vTW(:,j))	-	sum[v]{	P(v)sigmoid(c(j)	+	vTW(:,j))	}
	
	
	
So	now	you	see	what	we	mean	by	 the	clamped	 term	and	unclamped	 term.	We
are	going	to	get	the	first	term	simply	by	direct	calculation,	but	we	are	going	to
get	the	second	term	-	which	requires	a	sum	over	all	v	-	which	is	infeasible	-	by
sampling.
	
	
	
Note	 that	 if	we	were	 to	code	 the	RBM	using	numpy,	we	would	use	 the	actual
gradient	 expressions	 directly	 as	 I	 previously	 defined	 them,	 but	 since	 Theano
automatically	finds	gradients	we	don’t	have	to.
	
	
	
Another	 method,	 which	 is	 the	 method	 we	 are	 going	 to	 use,	 makes	 use	 of	 a
function	called	the	free	energy.
	
	
	
We	define	the	free	energy	as	the	negative	log	of	the	sum	over	all	h	of	the	top	part
of	the	joint	probability.
	
	
	
F(v)	=	-log(	sum[h]{	exp(-E(v,h))	}	)
	
	
	
It’s	hard	to	prove	because	you	can’t	just	use	direct	algebraic	notation,	but	if	you
are	interested	in	learning	more	this	is	a	result	of	all	the	units	being	conditionally



independent,	and	it	is	related	to	something	called	the	sum-product	algorithm.	In
any	case,	the	free	energy	reduces	to:
	
	
	
F(v)	=	-bTv	-	sum[j=1..M]{	log(1+exp(c(j)	+	vTW(:,j)))	}
	
	
	
So	that	it	now	no	longer	depends	on	h	at	all.
	
	
	
When	you	use	this	in	the	cost	function	and	take	the	derivative,	what	you	get	is	a
simpler	expression	with	only	one	expected	value.
	
	
	
dJ(v)/dw	=	dF(v)/dw	-	sum[v’]{	P(v’)dF(v’)/dw	}
	
	
	
Notice	how	this	actually	gives	us	the	same	update	rules	as	before.
	
	
	
We	call	the	first	term	the	positive	phase	and	the	second	term	the	negative	phase.
	
	
	
Since	the	first	term	goes	in	the	direction	of	the	free	energy	at	the	sample	v,	it’s
basically	trying	to	reduce	the	energy	for	that	particular	v,	which	corresponds	to	a



higher	probability	for	that	sample	v.
	
	
	
The	 other	 term,	 the	 negative	 phase,	 tries	 to	 lower	 the	 probability	 for	 ALL
possible	values	of	v.
	
	
	
One	 last	 note	 about	 RBMs	 is	 that	 we	 can	 stack	 them	 just	 like	 how	we	 stack
autoencoders	and	do	“greedy	layer-wise	pretraining”.
	
	
	
Except	 when	 we	 stack	 RBMs	 they	 get	 a	 special	 name	 -	 they	 are	 called	 deep
belief	networks.
	
	
	
One	small	note	about	the	proper	terminology	here	-	“deep	belief	network”	refers
to	the	unsupervised	model,	whereas	if	you	train	it	in	a	supervised	way	it	is	called
a	“deep	neural	network”.
	
	
	
Sometimes	 “deep	 belief	 network”	 can	 also	 refer	 to	 the	 stacked	 autoencoder
configuration	from	the	last	chapter.
	
	
	
	
	



Contrastive	Divergence
	
	
	
In	 this	 section	 we	 are	 going	 to	 talk	 about	 the	 sampling	 algorithm,	 called
contrastive	divergence,	that	we	use	to	estimate	the	gradient	we	derived	in	the	last
section.
	
	
	
If	you	found	the	material	in	the	last	lecture	hard,	don’t	worry	too	much	about	it,
because	following	the	steps	of	the	CD	algorithm	is	actually	much	easier.
	
	
	
Contrastive	divergence	is	usually	called	CD-k,	meaning	you	do	k	steps	of	Gibbs
sampling.
	
	
	
What	 that	 means	 is,	 given	 a	 training	 sample	 v0,	 we	 are	 going	 to	 calculate
p(h0|v0)	which	is	just	the	usual	forward	pass	on	the	network.	Next,	we	are	going
to	use	those	probabilities	to	draw	a	sample	of	h	-	call	that	h0.
	
	
	
So	if	p(h_j	|	v)	is	0.3,	then	h_j	will	be	1	with	probability	0.3.
	
	
	
Next,	 we	 do	 a	 backwards	 pass,	 so	 we	 calculate	 p(v1|h0).	 Now	 we	 use	 these
probabilities	to	draw	a	sample	of	visibles	v1.
	



	
	
	
Next,	we	 calculate	p(h1|v1),	 and	 take	 a	 sample	of	 h	 again.	We	keep	 repeating
this	process	to	infinity.
	
	
	
o---o---o---o-...
	
v0		h0		v1		h1...
	
	
	
By	going	to	infinity,	we	get	an	exact	answer,	but	we	obviously	cannot	train	the
neural	network	for	that	long.
	
	
	
What	researchers	have	found	is	that	k=1	works	just	fine.	We	will	use	k=1	also,
which	will	allow	us	to	avoid	having	to	do	any	loops.
	
	
	
In	pseudocode,	the	process	might	look	something	like	this:
	
	
	
def	derivative(v0):
	
p_h0	=	self.forward(v0)
	
h0	=	sample(p_h0)



h0	=	sample(p_h0)
	
p_v1	=	self.backward(h0)
	
v1	=	sample(p_v1)
	
p_h1	=	self.forward(v1)
	
return	v0.dot(p_h0.T)	-	v1.dot(p_h1.T)
	
	
	
Of	course,	that	would	work	fine	if	we	were	using	numpy,	but	we	are	going	to	use
Theano,	which	will	find	the	gradients	automatically.
	
	
	
What	 we	 will	 do	 instead,	 is	 after	 we	 calculate	 v1	 from	 v0,	 we	 will	 set	 the
objective	to	the	free_energy(v0)	-	free_energy(v1),	and	let	Theano	calculate	the
gradient	for	us.
	
	
	
One	 interesting	 thing	 is,	 because	we	 don’t	 actually	want	 to	 calculate	 P(v),	we
still	want	to	plot	some	cost	function	as	training	progresses.
	
	
	
We	 are	 going	 to	 continue	 to	 use	 the	 cross-entropy	 error	 like	 we	 did	 with
autoencoders,	and	if	you	run	the	code	you’ll	see	that	despite	using	a	completely
different	 training	 algorithm	 and	 theoretical	 framework,	 this	 error	 function	 still
decreases	as	we	train.
	



	
	
Let’s	 get	 to	 the	 code.	 Assume	 relu,	 error_rate,	 getData,	 and	 init_weights	 are
defined	the	same	as	the	last	example.
	
	
	
import	numpy	as	np
	
import	theano
	
import	theano.tensor	as	T
	
import	matplotlib.pyplot	as	plt
	
	
	
from	sklearn.utils	import	shuffle
	
from	theano.tensor.shared_randomstreams	import	RandomStreams
	
from	autoencoder	import	DNN
	
	
	
	
	
class	RBM(object):
	
def	__init__(self,	M):
	
self.M	=	M



self.M	=	M
	
self.rng	=	RandomStreams()
	
	
	
def	fit(self,	X,	learning_rate=0.1,	epochs=1,	batch_sz=100,	show_fig=False):
	
N,	D	=	X.shape
	
n_batches	=	N	/	batch_sz
	
	
	
W0	=	init_weights((D,	self.M))
	
self.W	=	theano.shared(W0)
	
self.c	=	theano.shared(np.zeros(self.M))
	
self.b	=	theano.shared(np.zeros(D))
	
self.params	=	[self.W,	self.c,	self.b]
	
self.forward_params	=	[self.W,	self.c]
	
	
	
#	we	won't	use	this	to	fit	the	RBM	but	we	will	use	these	for	backpropagation
later
	
self.dW	=	theano.shared(np.zeros(W0.shape))
	



	
self.dc	=	theano.shared(np.zeros(self.M))
	
self.db	=	theano.shared(np.zeros(D))
	
self.dparams	=	[self.dW,	self.dc,	self.db]
	
self.forward_dparams	=	[self.dW,	self.dc]
	
	
	
X_in	=	T.matrix('X')
	
	
	
#	attach	it	to	the	object	so	it	can	be	used	later
	
#	must	be	sigmoidal	because	the	output	is	also	a	sigmoid
	
H	=	T.nnet.sigmoid(X_in.dot(self.W)	+	self.c)
	
self.hidden_op	=	theano.function(
	
inputs=[X_in],
	
outputs=H,
	
)
	
	
	
#	we	won't	use	this	cost	to	do	any	updates
	



	
#	but	we	would	like	to	see	how	this	cost	function	changes
	
#	as	we	do	contrastive	divergence
	
X_hat	=	self.forward_output(X_in)
	
cost	=	-(X_in		T.log(X_hat)	+	(1	-	X_in)		T.log(1	-	X_hat)).sum()	/	N
	
cost_op	=	theano.function(
	
inputs=[X_in],
	
outputs=cost,
	
)
	
	
	
#	do	one	round	of	Gibbs	sampling	to	obtain	X_sample
	
H	=	self.sample_h_given_v(X_in)
	
X_sample	=	self.sample_v_given_h(H)
	
	
	
#	define	the	objective,	updates,	and	train	function
	
objective	=	T.mean(self.free_energy(X_in))	-
T.mean(self.free_energy(X_sample))
	



	
	
	
#	need	to	consider	X_sample	constant	because	you	can't	take	the	gradient	of
random	numbers	in	Theano
	
updates	=	[(p,	p	-	learning_rate*T.grad(objective,	p,	consider_constant=
[X_sample]))	for	p	in	self.params]
	
train_op	=	theano.function(
	
inputs=[X_in],
	
updates=updates,
	
)
	
	
	
costs	=	[]
	
for	i	in	xrange(epochs):
	
print	"epoch:",	i
	
X	=	shuffle(X)
	
for	j	in	xrange(n_batches):
	
batch	=	X[j*batch_sz:(j*batch_sz	+	batch_sz)]
	
train_op(batch)
	



	
the_cost	=	cost_op(X)		#	technically	we	could	also	get	the	cost	for	Xtest	here
	
print	"j		n_batches:",	j,	"",	n_batches,	"cost:",	the_cost
	
costs.append(the_cost)
	
if	show_fig:
	
plt.plot(costs)
	
plt.show()
	
	
	
def	free_energy(self,	V):
	
return		-V.dot(self.b)	-	T.sum(T.log(1	+	T.exp(V.dot(self.W)	+	self.c)),	axis=1)
	
	
	
def	sample_h_given_v(self,	V):
	
p_h_given_v	=	T.nnet.sigmoid(V.dot(self.W)	+	self.c)
	
h_sample	=	self.rng.binomial(size=p_h_given_v.shape,	n=1,	p=p_h_given_v)
	
return	h_sample
	
	
	
def	sample_v_given_h(self,	H):
	



	
p_v_given_h	=	T.nnet.sigmoid(H.dot(self.W.T)	+	self.b)
	
v_sample	=	self.rng.binomial(size=p_v_given_h.shape,	n=1,	p=p_v_given_h)
	
return	v_sample
	
	
	
def	forward_hidden(self,	X):
	
return	T.nnet.sigmoid(X.dot(self.W)	+	self.c)
	
	
	
def	forward_output(self,	X):
	
Z	=	self.forward_hidden(X)
	
Y	=	T.nnet.sigmoid(Z.dot(self.W.T)	+	self.b)
	
return	Y
	
	
	
@staticmethod
	
def	createFromArrays(W,	c,	b,	an_id):
	
rbm	=	AutoEncoder(W.shape[1],	an_id)
	
rbm.W	=	theano.shared(W,	'W_%s'	%	rbm.id)



	
rbm.c	=	theano.shared(c,	'c_%s'	%	rbm.id)
	
rbm.b	=	theano.shared(b,	'b_%s'	%	rbm.id)
	
rbm.params	=	[rbm.W,	rbm.c,	rbm.b]
	
rbm.forward_params	=	[rbm.W,	rbm.c]
	
return	rbm
	
	
	
	
	
def	main():
	
Xtrain,	Ytrain,	Xtest,	Ytest	=	getKaggleMNIST()
	
dnn	=	DNN([1000,	750,	500],	UnsupervisedModel=RBM)
	
dnn.fit(Xtrain,	Ytrain,	Xtest,	Ytest,	epochs=3)
	
	
	
#	we	compare	with	no	pretraining	in	autoencoder.py
	
	
	
	
	
if	__name__	==	'__main__':



if	__name__	==	'__main__':
	
main()
	
	



	
Chapter	5:	Feature	Visualization
	
	

	
One	good	exercise	is	to	look	at	what	each	hidden	node	at	each	hidden	layer	has
actually	learned	once	training	is	complete.
	
	
	
This	is	one	way	to	interpret	what	a	neural	network	has	learned.
	
	
	
How	can	we	do	this?
	
	
	
Assume	 we	 want	 h(i,j)	 -	 the	 jth	 hidden	 node	 in	 the	 ith	 hidden	 layer	 -	 to	 be
maximal,	and	all	other	hidden	nodes	in	that	layer	to	be	minimal.
	
	
	
This	is	just	a	calculus	problem!
	
	
	
Maximize	h(i,j)	with	respect	to	X.
	
	
	



Unfortunately,	 it’s	not	as	easy	as	simply	 finding	dh(i,j)/dX,	setting	 it	 to	0,	and
solving	for	X.
	
	
	
You	 can	 solve	 for	 the	 optimal	 X	 in	 closed-form	 for	 the	 first	 input-to-hidden
layer.
	
	
	
You	will	need	to	use	the	method	of	Lagrange	multipliers.
	
	
	
What	 you	 should	 find	 is	 that	 to	 optimize	 the	 jth	 hidden	 node,	 X	 should	 be
proportional	to	W(:,j)	-	the	jth	column	of	the	input-to-hidden	weight	matrix	W.
	
	
	
Recall	that	W	is	a	DxM	matrix,	so	taking	1	column	will	give	us	a	D-dimensional
vector.
	
	
	
To	plot	the	image,	we	simply	reshape	the	jth	column	of	W	to	the	original	image
size	(28x28	for	MNIST)	and	use	plt.imshow()	from	matplotlib.
	
	
	
Use:
	
	
	



	
plt.imshow(X,	cmap=‘gray’)
	
	
	
To	ensure	the	image	is	grayscale	rather	than	a	heatmap.
	
	
	
For	the	layers	beyond	the	input-to-hidden,	we	can’t	solve	in	closed-form,	so	we
return	to	our	old	friend	gradient	descent.
	
	
	
This	 should	 be	 simple	 since	 Theano	 can	 calculate	 gradients	 for	 us.	 The	 only
caveat	is	that	you	now	need	to	take	the	derivative	with	respect	to	the	input,	not
the	weights,	like	we	usually	do	during	training.
	
	



	
Chapter	6:	Tricking	a	Neural	Network
	
	

	
Now	that	you	know	how	to	take	the	derivative	of	a	variable	with	respect	to	the
inputs	 instead	of	 the	weights,	we	are	 ready	 to	 talk	about	how	 to	 trick	a	neural
network.
	
	
	
The	key	is	the	cost	function,	J.
	
	
	
We	 want	 to	 increase	 the	 cost	 function	 as	 much	 as	 possible,	 while	 inducing
minimal	changes	in	X.
	
	
	
To	do	 that,	we	 simply	 ask,	 “in	what	 direction	 should	 I	 change	X,	 such	 that	 it
results	in	the	maximum	change	in	J?”
	
	
	
This	is	again	just	a	calculus	problem	-	we	want	to	find	dJ/dX.
	
	
	
And	again,	we	use	Theano	to	automatically	calculate	the	gradient.
	
	
	



	
Once	you’ve	done	that,	we	simply	change	X	by	a	small	amount	in	that	direction.
	
	
	
X	=	X	+	eps*dJ/dX
	
	
	
Where	eps	is	a	small	number.
	
	
	
What	 you	 should	 find	 that	 is	 the	 image	 itself	 doesn’t	 look	 any	 different
(remember,	matplotlib	will	scale	your	values	to	be	from	0..255),	but	 the	neural
network	 has	 a	 good	 chance	 of	 classifying	 the	 image	 wrong,	 even	 when	 it
classifies	the	original	image	right.
	
	
	
What	implications	does	this	have	in	terms	of	training	a	neural	network?
	
	
	
You	surely	don’t	want	your	neural	network	to	be	so	easily	fooled,	and	the	key
here	is	something	we’ve	already	talked	about	before:
	
	
	
Data	augmentation.
	
	
	



	
The	example	I	like	to	give:	an	upside-down	cat	is	still	a	cat.	A	cat	shifted	to	the
left	is	still	a	cat.	A	rotated	cat	is	still	a	cat.
	
	
	
So	 if	you	only	have	one	cat,	you	 should	create	 these	 invariant	 transformations
and	include	them	as	training	data.
	
	
	
Similarly,	a	cat	with	some	noise	is	still	a	cat.
	
	
	
This	is	like	what	we	did	with	autoencoders	-	set	some	of	the	inputs	to	0.	A	cat
with	some	0s	is	still	a	cat,	so	add	that	as	training	data.
	
	
	
And	like	we’ve	seen	in	this	chapter,	a	cat	+	some	“intelligently	designed”	noise
is	still	a	cat,	so	include	that	as	training	data	too.
	
	
	
By	including	all	these	forms	of	data	augmentation,	you	are	making	your	neural
network	more	robust.
	
	



	
Conclusion
	
	

	
I	really	hope	you	had	as	much	fun	reading	this	book	as	I	did	making	it.
	
	
	
Did	you	find	anything	confusing?	Do	you	have	any	questions?
	
	
	
I	am	always	available	to	help.	Just	email	me	at:	info@lazyprogrammer.me
	
	
	
I	do	1:1	coaching	and	consulting	as	well.
	
	
	
Do	 you	 want	 to	 learn	 more	 about	 deep	 learning?	 Perhaps	 online	 courses	 are
more	your	style.	I	happen	to	have	a	few	of	them	on	Udemy.
	
	
	
My	 first	 course	 in	 deep	 learning	 is	 a	 lot	 like	 the	 book,	 but	 you	 get	 to	 see	me
derive	the	formulas	and	write	the	code	live:
	
	
	

mailto:info@lazyprogrammer.me


Data	Science:	Deep	Learning	in	Python
	
	
	
https://udemy.com/data-science-deep-learning-in-python
	
	
	
Are	you	comfortable	with	this	material,	and	you	want	to	take	your	deep	learning
skillset	to	the	next	level?	Then	my	follow-up	Udemy	course	on	deep	learning	is
for	 you.	 Similar	 to	 this	 book,	 I	 take	 you	 through	 the	 basics	 of	 Theano	 and
TensorFlow	-	creating	functions,	variables,	and	expressions,	and	build	up	neural
networks	from	scratch.	I	teach	you	about	ways	to	accelerate	the	learning	process,
including	batch	gradient	descent,	momentum,	and	adaptive	learning	rates.	I	also
show	you	live	how	to	create	a	GPU	instance	on	Amazon	AWS	EC2,	and	prove
to	 you	 that	 training	 a	 neural	 network	with	GPU	optimization	 can	be	 orders	 of
magnitude	faster	than	on	your	CPU.
	
	
	
Data	Science:	Practical	Deep	Learning	in	Theano	and	TensorFlow
	
	
	
https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow
	
	
	
When	 you’ve	 got	 the	 basics	 of	 deep	 learning	 down,	 you’re	 ready	 to	 explore
alternative	architectures.	One	very	popular	alternative	is	the	convolutional	neural
network,	 created	 specifically	 for	 image	 classification.	 These	 have	 promising
applications	in	medical	imaging,	self-driving	vehicles,	and	more.	In	this	course,	I
show	you	how	to	build	convolutional	nets	in	Theano	and	TensorFlow.
	

https://udemy.com/data-science-deep-learning-in-python
https://udemy.com/data-science-deep-learning-in-python
https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow/
https://www.udemy.com/data-science-deep-learning-in-theano-tensorflow


	
	
	
Deep	Learning:	Convolutional	Neural	Networks	in	Python
	
	
	
https://www.udemy.com/deep-learning-convolutional-neural-networks-theano-
tensorflow
	
	
	
In	 part	 4	 of	 my	 deep	 learning	 series,	 I	 take	 you	 through	 unsupervised	 deep
learning	methods	 (that’s	 this	 book!).	We	 study	 principal	 components	 analysis
(PCA),	 t-SNE	 (jointly	 developed	 by	 the	 godfather	 of	 deep	 learning,	 Geoffrey
Hinton),	 deep	 autoencoders,	 and	 restricted	 Boltzmann	 machines	 (RBMs).	 I
demonstrate	how	unsupervised	pretraining	on	a	deep	network	with	autoencoders
and	RBMs	can	improve	supervised	learning	performance.
	
	
	
Unsupervised	Deep	Learning	in	Python
	
	
	
https://www.udemy.com/unsupervised-deep-learning-in-python
	
	
	
Would	you	like	an	introduction	to	the	basic	building	block	of	neural	networks	-
logistic	 regression?	 In	 this	course	 I	 teach	 the	 theory	of	 logistic	 regression	 (our
computational	model	 of	 the	 neuron),	 and	 give	 you	 an	 in-depth	 look	 at	 binary
classification,	manually	creating	features,	and	gradient	descent.	You	might	want

https://www.udemy.com/deep-learning-convolutional-neural-networks-theano-tensorflow
https://www.udemy.com/deep-learning-convolutional-neural-networks-theano-tensorflow
https://www.udemy.com/unsupervised-deep-learning-in-python
https://www.udemy.com/unsupervised-deep-learning-in-python


to	check	this	course	out	if	you	found	the	material	in	this	book	too	challenging.
	
	
	
Data	Science:	Logistic	Regression	in	Python
	
	
	
https://udemy.com/data-science-logistic-regression-in-python
	
	
	
To	get	an	even	simpler	picture	of	machine	learning	in	general,	where	we	don’t
even	need	gradient	descent	and	can	just	solve	for	the	optimal	model	parameters
directly	in	“closed-form”,	you’ll	want	to	check	out	my	first	Udemy	course	on	the
classical	statistical	method	-	linear	regression:
	
	
	
Data	Science:	Linear	Regression	in	Python
	
	
	
https://www.udemy.com/data-science-linear-regression-in-python
	
	
	
If	you	are	 interested	 in	 learning	about	how	machine	 learning	can	be	applied	 to
language,	 text,	 and	 speech,	 you’ll	 want	 to	 check	 out	 my	 course	 on	 Natural
Language	Processing,	or	NLP:
	
	
	

https://udemy.com/data-science-logistic-regression-in-python
https://udemy.com/data-science-logistic-regression-in-python
https://www.udemy.com/data-science-linear-regression-in-python
https://www.udemy.com/data-science-linear-regression-in-python


	
Data	Science:	Natural	Language	Processing	in	Python
	
	
	
https://www.udemy.com/data-science-natural-language-processing-in-python
	
	
	
If	you	are	 interested	 in	 learning	SQL	-	 structured	query	 language	 -	a	 language
that	can	be	applied	to	databases	as	small	as	 the	ones	sitting	on	your	iPhone,	 to
databases	as	large	as	the	ones	that	span	multiple	continents	-	and	not	only	learn
the	 mechanics	 of	 the	 language	 but	 know	 how	 to	 apply	 it	 to	 real-world	 data
analytics	and	marketing	problems?	Check	out	my	course	here:
	
	
	
SQL	for	Marketers:	Dominate	data	analytics,	data	science,	and	big	data
	
	
	
https://www.udemy.com/sql-for-marketers-data-analytics-data-science-big-data
	
	
	
Are	you	interested	in	stock	prediction,	time	series,	and	sequences	in	general?	My
Hidden	Markov	Models	course	is	where	you	want	to	be.	I	teach	you	not	only	all
the	classical	theory	of	HMMs,	but	I	also	show	you	how	to	write	them	in	Theano
using	gradient	descent!	This	 is	great	practice	 for	writing	deep	 learning	models
and	 it	 will	 prepare	 you	 well	 for	 its	 sequel,	 Deep	 Learning	 Part	 5:	 Recurrent
Neural	Networks	in	Python.	You	can	get	the	HMM	course	here:
	
	
	

https://www.udemy.com/data-science-natural-language-processing-in-python
https://www.udemy.com/data-science-natural-language-processing-in-python
https://www.udemy.com/sql-for-marketers-data-analytics-data-science-big-data
https://www.udemy.com/sql-for-marketers-data-analytics-data-science-big-data


	
Unsupervised	Machine	Learning:	Hidden	Markov	Models	in	Python
	
	
	
https://udemy.com/unsupervised-machine-learning-hidden-markov-models-in-
python
	
	
	
Finally,	I	am	always	giving	out	coupons	and	letting	you	know	when	you	can	get
my	stuff	for	free.	But	you	can	only	do	this	if	you	are	a	current	student	of	mine!
Here	are	some	ways	I	notify	my	students	about	coupons	and	free	giveaways:
	
	
	
My	newsletter,	which	you	can	sign	up	for	at	http://lazyprogrammer.me	(it	comes
with	a	free	6-week	intro	to	machine	learning	course)
	
	
	
My	Twitter,	https://twitter.com/lazy_scientist
	
	
	
My	 Facebook	 page,	 https://facebook.com/lazyprogrammer.me	 (don’t	 forget	 to
hit	“like”!)
	

https://udemy.com/unsupervised-machine-learning-hidden-markov-models-in-python
https://udemy.com/unsupervised-machine-learning-hidden-markov-models-in-python
http://lazyprogrammer.me
https://twitter.com/lazy_scientist
https://facebook.com/lazyprogrammer.me

	Introduction
	Chapter 1: Principal Components Analysis
	Chapter 2: t-SNE
	Chapter 3: Autoencoders and Stacked Denoising Autoencoders
	Chapter 4: Restricted Boltzmann Machines and Deep Belief Networks
	Chapter 5: Feature Visualization
	Chapter 6: Tricking a Neural Network
	Conclusion

