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The Resistor Color Code

Band color Black Brown Red Orange Yellow Green Blue Violet Gray White
Numeric value 0 1 2 3 4 5 6 7 8 9

' number | Multiplier

2" number Tolerance band (e.g. gold = 5%
silver = 10%, none = 20%)

. Write down the numeric value corresponding to the first band on the left.
. Write down the numeric value corresponding to the second band from the left.
. Write down the number of zeros indicated by the multiplier band, which represents a power of 10

(black = no extra zeros, brown = 1 zero, etc.). A gold multiplier band indicates that the decimal
is shifted one place to the left; a silver multiplier band indicates that the decimal is shifted
two places to the left.

. The tolerance band represents the precision. So, for example, we would not be surprised to find a 100 €

5 percent tolerance resistor that measures anywhere in the range of 95 to 105 .

Example
Red Red Orange Gold =22,000 or22 x 103 =22 k2, 5% tolerance
Blue Gray Gold =6.8 or68 x 107! = 6.8 ©, 20% tolerance

Standard 5 Percent Tolerance Resistor Values

1.0
10.
100
1.0
10.
100
1.0

1.1 12 13 15 16 18 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 91 Q
I1. 12, 13. 15. 16. 18. 20. 22. 24. 27. 30. 33. 36. 39. 43. 47. 51. 56. 62. 68. 75. 82. 9. Q
110 120 130 150 160 180 200 220 240 270 300 330 360 390 430 470 510 560 620 680 750 820 910 Q
1.1 1.2 13 15 16 1.8 20 22 24 27 30 33 36 39 43 47 51 56 62 68 75 82 9.1 kQ
11. 12, 13. 15. 16. 18. 20. 22. 24. 27. 30. 33. 36. 39. 43. 47. 51. 56. 62. 68. 75. 82. 91. kQ
110 120 130 150 160 180 200 220 240 270 300 330 360 390 430 470 510 560 620 680 750 820 910 kQ
1 12 13 15 1.6 1.8 20 22 24 27 30 33 3.6 39 43 47 51 56 62 68 75 82 91 MQ

ace Transform Pairs
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Input-Output Relation

TABLE _ 6.1 Summary of Basic Op Amp Circuits
Circuit Schematic

Vout = _&Uin

Ry

Name
Ry i

Inverting Amplifier «
Rl
—_—
i aF
Yout

Noninverting Amplifier

VUout = Vin

Voltage Follower
(also known as a
Unity Gain Amplifier)

1/()1“

Rf
Vout = _?(Ul + vz + v3)

Summing Amplifier

41

Vout = V2 — V]

Difference Amplifier
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tor in decisions big and small, particularly both the pace and the

overall writing style. Consequently it is important to note that the au-
thors have made the conscious decision to write this book to the student,
and not to the instructor. Our underlying philosophy is that reading the book
should be enjoyable, despite the level of technical detail that it must incor-
porate. When we look back to the very first edition of Engineering Circuit
Analysis, it’s clear that it was developed specifically to be more of a con-
versation than a dry, dull discourse on a prescribed set of fundamental top-
ics. To keep it conversational, we’ve had to work hard at updating the book
so that it continues to speak to the increasingly diverse group of students
using it all over the world.

Although in many engineering programs the introductory circuits course
is preceded or accompanied by an introductory physics course in which
electricity and magnetism are introduced (typically from a fields perspec-
tive), this is not required to use this book. After finishing the course, many
students find themselves truly amazed that such a broad set of analytical
tools have been derived from only three simple scientific laws—Ohm’s
law and Kirchhoff’s voltage and current laws. The first six chapters assume
only a familiarity with algebra and simultaneous equations; subsequent
chapters assume a first course in calculus (derivatives and integrals) is being
taken in tandem. Beyond that, we have tried to incorporate sufficient details
to allow the book to be read on its own.

So, what key features have been designed into this book with the student
in mind? First, individual chapters are organized into relatively short sub-
sections, each having a single primary topic. The language has been up-
dated to remain informal and to flow smoothly. Color is used to highlight
important information as opposed to merely improve the aesthetics of the
page layout, and white space is provided for jotting down short notes and
questions. New terms are defined as they are introduced, and examples are
placed strategically to demonstrate not only basic concepts, but problem-
solving approaches as well. Practice problems relevant to the examples are
placed in proximity so that students can try out the techniques for them-
selves before attempting the end-of-chapter exercises. The exercises repre-
sent a broad range of difficulties, generally ordered from simpler to more
complex, and grouped according to the relevant section of each chapter.
Answers to selected odd-numbered end-of-chapter exercises are posted on
the book’s website at www.mhhe.com/haytdurbin8e.

Engineering is an intensive subject to study, and students often find them-
selves faced with deadlines and serious workloads. This does not mean that
textbooks have to be dry and pompous, however, or that coursework should
never contain any element of fun. In fact, successfully solving a problem of-
ten is fun, and learning how to do that can be fun as well. Determining how

The target audience colors everything about a book, being a major fac-
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to best accomplish this within the context of a textbook is an ongoing
process. The authors have always relied on the often very candid feedback
received from our own students at Purdue University; the California State
University, Fullerton; Fort Lewis College in Durango, the joint engineering
program at Florida A&M University and Florida State University, the Uni-
versity of Canterbury (New Zealand) and the University at Buffalo. We also
rely on comments, corrections, and suggestions from instructors and students
worldwide, and for this edition, consideration has been given to a new source
of comments, namely, semianonymous postings on various websites.

The first edition of Engineering Circuit Analysis was written by Bill
Hayt and Jack Kemmerly, two engineering professors who very much en-
joyed teaching, interacting with their students, and training generations of
future engineers. It was well received due to its compact structure, “to the
point” informal writing style, and logical organization. There is no timidity
when it comes to presenting the theory underlying a specific topic, or
pulling punches when developing mathematical expressions. Everything,
however, was carefully designed to assist students in their learning, present
things in a straightforward fashion, and leave theory for theory’s sake to
other books. They clearly put a great deal of thought into writing the book,
and their enthusiasm for the subject comes across to the reader.

KEY FEATURES OF THE EIGHTH EDITION |

We have taken great care to retain key features from the seventh edition
which were clearly working well. These include the general layout and se-
quence of chapters, the basic style of both the text and line drawings, the use
of four-color printing where appropriate, numerous worked examples and
related practice problems, and grouping of end-of-chapter exercises accord-
ing to section. Transformers continue to merit their own chapter, and com-
plex frequency is briefly introduced through a student-friendly extension of
the phasor technique, instead of indirectly by merely stating the Laplace
transform integral. We also have retained the use of icons, an idea first in-
troduced in the sixth edition:

A Provides a heads-up to common mistakes;

@ Indicates a point that’s worth noting;

Denotes a design problem to which there is no unique answer;

g Indicates a problem which requires computer-aided analysis.

The introduction of engineering-oriented analysis and design software in
the book has been done with the mind-set that it should assist, not replace,
the learning process. Consequently, the computer icon denotes problems
that are typically phrased such that the software is used to verify answers,
and not simply provide them. Both MATLAB® and PSpice® are used in this
context.
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SPECIFIC CHANGES FOR THE EIGHTH EDITION
INCLUDE:

* Anew section in Chapter 16 on the analysis and design of multistage
Butterworth filters

e Over 1000 new and revised end-of-chapter exercises

* A new overarching philosophy on end-of-chapter exercises, with each
section containing problems similar to those solved in worked
examples and practice problems, before proceeding to more complex
problems to test the reader’s skills

* Introduction of Chapter-Integrating Exercises at the end of each
chapter. For the convenience of instructors and students, end-of-
chapter exercises are grouped by section. To provide the opportunity
for assigning exercises with less emphasis on an explicit solution
method (for example, mesh or nodal analysis), as well as to give a
broader perspective on key topics within each chapter, a select number
of Chapter-Integrating Exercises appear at the end of each chapter.

* New photos, many in full color, to provide connection to the real world

* Updated screen captures and text descriptions of computer-aided
analysis software

* New worked examples and practice problems

* Updates to the Practical Application feature, introduced to help
students connect material in each chapter to broader concepts in
engineering. Topics include distortion in amplifiers, modeling
automotive suspension systems, practical aspects of grounding, the
relationship of poles to stability, resistivity, and the memristor,
sometimes called “the missing element”

* Streamlining of text, especially in the worked examples, to get to the
point faster

* Answers to selected odd-numbered end-of-chapter exercises are posted
on the book’s website at www.mhhe.com/haytdurbin8e.

I joined the book in 1999, and sadly never had the opportunity to speak
to either Bill or Jack about the revision process, although I count myself
lucky to have taken a circuits course from Bill Hayt while I was a student at
Purdue. It is a distinct privilege to serve as a coauthor to Engineering
Circuit Analysis, and in working on this book I give its fundamental philos-
ophy and target audience the highest priority. I greatly appreciate the many
people who have already provided feedback—both positive and negative—
on aspects of previous editions, and welcome others to do so as well, either
through the publishers (McGraw-Hill Higher Education) or to me directly
(durbin@ieee.org).

Of course, this project has been a team effort, as is the case with every
modern textbook. In particular I would like to thank Raghu Srinivasan
(Global Publisher), Peter Massar (Sponsoring Editor), Curt Reynolds (Mar-
keting Manager), Jane Mohr (Project Manager), Brittney-Corrigan-
McElroy (Project Manager), Brenda Rolwes (Designer), Tammy Juran
(Media Project Manager), and most importantly, Developmental Editor
Darlene Schueller, who helped me with many, many details, issues, deadlines,
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and questions. She is absolutely the best, and I'm very grateful for all the
support from the team at McGraw-Hill. I would also like to thank various
McGraw-Hill representatives, especially Nazier Hassan, who dropped by
whenever on campus to just say hello and ask how things were going. Spe-
cial thanks are also due to Catherine Shultz and Michael Hackett, former
editors who continue to keep in contact. Cadence® and The MathWorks
kindly provided assistance with software-aided analysis software, which
was much appreciated. Several colleagues have generously supplied or
helped with photographs and technical details, for which I'm very grateful:
Prof. Masakazu Kobayashi of Waseda University; Dr. Wade Enright, Prof.
Pat Bodger, Prof. Rick Millane, Mr. Gary Turner, and Prof. Richard Blaikie
of the University of Canterbury; and Prof. Reginald Perry and Prof. Jim
Zheng of Florida A&M University and the Florida State University. For the
eighth edition, the following individuals deserve acknowledgment and
a debt of gratitude for taking the time to review various versions of the
manuscript:

Chong Koo An, The University of Ulsan
Mark S. Andersland, The University of lowa
Marc Cahay, University of Cincinnati
Claudio Canizares, University of Waterloo

Teerapon Dachokiatawan, King Mongkut’s University of Technology North
Bangkok

John Durkin, The University of Akron

Lauren M. Fuentes, Durham College

Lalit Goel, Nanyang Technological University

Rudy Hofer, Conestoga College ITAL

Mark Jerabek, West Virginia University

Michael Kelley, Cornell University

Hua Lee, University of California, Santa Barbara
Georges Livanos, Humber College Institute of Technology
Ahmad Nafisi, Cal Poly State University

Arnost Neugroschel, University of Florida

Pravin Patel, Durham College

Jamie Phillips, The University of Michigan

Daryl Reynolds, West Virginia University

G.VKR. Sastry, Andhra University

Michael Scordilis, University of Miami

Yu Sun, University of Toronto, Canada

Chanchana Tangwongsan, Chulalongkorn University
Edward Wheeler, Rose-Hulman Institute of Technology
Xiao-Bang Xu, Clemson University

Tianyu Yang, Embry-Riddle Aeronautical University
Zivan Zabar, Polytechnic Institute of NYU
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I would also like to thank Susan Lord, University of San Diego, Archie
L. Holmes, Jr., University of Virginia, Arnost Neugroschel, University of
Florida, and Michael Scordilis, University of Miami, for their assistance in
accuracy checking answers to selected end-of-chapter exercises.

Finally, I would like to briefly thank a number of other people who have
contributed both directly and indirectly to the eighth edition. First and fore-
most, my wife, Kristi, and our son, Sean, for their patience, understanding,
support, welcome distractions, and helpful advice. Throughout the day it
has always been a pleasure to talk to friends and colleagues about what
should be taught, how it should be taught, and how to measure learning. In
particular, Martin Allen, Richard Blaikie, Alex Cartwright, Peter Cottrell,
Wade Enright, Jeff Gray, Mike Hayes, Bill Kennedy, Susan Lord, Philippa
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KEY CONCEPTS

PREAMBLE tiir:fjirtsversus Nonlinear
Although there are clear specialties within the field of engineering, ®
all engineers share a considerable amount of common ground, Four Main Categories of
particularly when it comes to problem solving. In fact, many prac- Circuit Analysis:
ticing engineers find it is possible to work in a large variety of . DC Analysis
settings and even outside their traditional specialty, as their skill set
is often transferrable to other environments. Today’s engineering * Transient Analysis
graduates are employed in a broad range of jobs, from design of « Sinusoidal Analysis
individual components and systems, to assisting in solving socio- + Frequency Response
economic problems such as air and water pollution, urban planning, ®
communication, mass transportation, power generation and distribu- Circuit Analysis Beyond
tion, and efficient use and conservation of natural resources. Circuits

Circuit analysis has long been a traditional introduction to the Ps
art of problem solving from an engineering perspective, even for Analysis and Design
those whose interests lie outside electrical engineering. There are Ps
many reasons for this, but one of the best is that in today’s world Use of Engineering Software
it’s extremely unlikely for any engineer to encounter a system that P
does not in some way include electrical circuitry. As circuits be- A Problem-Solving Strategy

come smaller and require less power, and power sources become
smaller and cheaper, embedded circuits are seemingly everywhere.
Since most engineering situations require a team effort at some
stage, having a working knowledge of circuit analysis therefore
helps to provide everyone on a project with the background needed
for effective communication.

Consequently, this book is not just about “circuit analysis” from
an engineering perspective, but is also about developing basic
problem-solving skills as they apply to situations an engineer is
likely to encounter. As part of this, we also find that we’re develop-
ing an intuitive understanding at a general level, and often we can




Not all electrical engineers routinely make use of circuit
analysis, but they often bring to bear analytical and
problem-solving skills learned early on in their careers.

A circuit analysis course is one of the first exposures to
such concepts. (Solar Mirrors: © Corbis; Skyline: © Getty
Images/PhotoLink; Oil Rig: © Getty Images, Dish:

© Getty Images/J. Luke/PhotoLink)

Television sets include many nonlinear circuits. A great
deal of them, however, can be understood and analyzed
with the assistance of linear models. (© Sony Electronics,
Inc.)

CHAPTER 1 INTRODUCTION

understand a complex system by its analogy to an electrical circuit. Before

launching into all this, however, we’ll begin with a quick preview of the
topics found in the remainder of the book, pausing briefly to ponder the
difference between analysis and design, and the evolving role computer
tools play in modern engineering.

1.1 , OVERVIEW OF TEXT

The fundamental subject of this text is linear circuit analysis, which some-
times prompts a few readers to ask,

“Is there ever any nonlinear circuit analysis?”

Sure! We encounter nonlinear circuits every day: they capture and decode
signals for our TVs and radios, perform calculations millions of times a
second inside microprocessors, convert speech into electrical signals for
transmission over phone lines, and execute many other functions outside
our field of view. In designing, testing, and implementing such nonlinear
circuits, detailed analysis is unavoidable.

“Then why study linear circuit analysis?”’
you might ask. An excellent question. The simple fact of the matter is that

no physical system (including electrical circuits) is ever perfectly linear.
Fortunately for us, however, a great many systems behave in a reasonably
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linear fashion over a limited range—allowing us to model them as linear
systems if we keep the range limitations in mind.
For example, consider the common function
fx)=e
A linear approximation to this function is
f)y~1+x

Let’s test this out. Table 1.1 shows both the exact value and the approx-
imate value of f(x) for a range of x. Interestingly, the linear approximation
is exceptionally accurate up to about x = 0.1, when the relative error is still
less than 1%. Although many engineers are rather quick on a calculator, it’s
hard to argue that any approach is faster than just adding 1.

TABLE 1.1 Comparison of a Linear Model for e*
to Exact Value

o
b'¢ f(x)* 1+x Relative error**
0.0001 1.0001 1.0001 0.0000005%
0.001 1.0010 1.001 0.00005%
0.01 1.0101 1.01 0.005%
0.1 1.1052 1.1 0.5%
1.0 2.7183 2.0 26%

*Quoted to four significant figures.

-1
#*Relative error 2 |100 x w
ox

Linear problems are inherently more easily solved than their nonlinear
counterparts. For this reason, we often seek reasonably accurate linear ap-
proximations (or models) to physical situations. Furthermore, the linear
models are more easily manipulated and understood—making design a
more straightforward process.

The circuits we will encounter in subsequent chapters all represent linear
approximations to physical electric circuits. Where appropriate, brief discus-
sions of potential inaccuracies or limitations to these models are provided, but
generally speaking we find them to be suitably accurate for most applications.
When greater accuracy is required in practice, nonlinear models are em-
ployed, but with a considerable increase in solution complexity. A detailed dis-
cussion of what constitutes a linear electric circuit can be found in Chap. 2.

Linear circuit analysis can be separated into four broad categories: (1)
dc analysis, where the energy sources do not change with time; (2) transient
analysis, where things often change quickly; (3) sinusoidal analysis, which
applies to both ac power and signals; and (4) frequency response, which is
the most general of the four categories, but typically assumes something is
changing with time. We begin our journey with the topic of resistive cir-
cuits, which may include simple examples such as a flashlight or a toaster.
This provides us with a perfect opportunity to learn a number of very pow-
erful engineering circuit analysis techniques, such as nodal analysis, mesh
analysis, superposition, source transformation, Thévenin’s theorem, Norton’s




Modern trains are powered by electric motors. Their
electrical systems are best analyzed using ac or phasor
analysis techniques. (Used with permission. Image
copyright © 2010 M. Kobayashi. All rights reserved.)
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Frequency-dependent circuits lie at the heart of many
electronic devices, and they can be a great deal of fun
to design. (© The McGraw-Hill Companies, Inc.)

CHAPTER 1 INTRODUCTION

theorem, and several methods for simplifying networks of components con-
nected in series or parallel. The single most redeeming feature of resistive
circuits is that the time dependence of any quantity of interest does not
affect our analysis procedure. In other words, if asked for an electrical quan-
tity of a resistive circuit at several specific instants in time, we do not need
to analyze the circuit more than once. As a result, we will spend most of our
effort early on considering only dc circuits—those circuits whose electrical
parameters do not vary with time.

Although dc circuits such as flashlights or automotive rear window de-
foggers are undeniably important in everyday life, things are often much
more interesting when something happens suddenly. In circuit analysis
parlance, we refer to transient analysis as the suite of techniques used to
study circuits which are suddenly energized or de-energized. To make such
circuits interesting, we need to add elements that respond to the rate of
change of electrical quantities, leading to circuit equations which include
derivatives and integrals. Fortunately, we can obtain such equations using
the simple techniques learned in the first part of our study.

Still, not all time-varying circuits are turned on and off suddenly. Air
conditioners, fans, and fluorescent lights are only a few of the many exam-
ples we may see daily. In such situations, a calculus-based approach for
every analysis can become tedious and time-consuming. Fortunately, there
is a better alternative for situations where equipment has been allowed
to run long enough for transient effects to die out, and this is commonly
referred to as ac or sinusoidal analysis, or sometimes phasor analysis.

The final leg of our journey deals with a subject known as frequency
response. Working directly with the differential equations obtained in time-
domain analysis helps us develop an intuitive understanding of the opera-
tion of circuits containing energy storage elements (e.g., capacitors and
inductors). As we shall see, however, circuits with even a relatively small
number of components can be somewhat onerous to analyze, and so much
more straightforward methods have been developed. These methods, which
include Laplace and Fourier analysis, allow us to transform differential
equations into algebraic equations. Such methods also enable us to design
circuits to respond in specific ways to particular frequencies. We make use
of frequency-dependent circuits every day when we dial a telephone, select
our favorite radio station, or connect to the Internet.

1.2 _ RELATIONSHIP OF CIRCUIT ANALYSIS
TO ENGINEERING

Whether we intend to pursue further circuit analysis at the completion of
this course or not, it is worth noting that there are several layers to the con-
cepts under study. Beyond the nuts and bolts of circuit analysis techniques
lies the opportunity to develop a methodical approach to problem solving,
the ability to determine the goal or goals of a particular problem, skill at
collecting the information needed to effect a solution, and, perhaps equally
importantly, opportunities for practice at verifying solution accuracy.
Students familiar with the study of other engineering topics such as fluid
flow, automotive suspension systems, bridge design, supply chain manage-
ment, or process control will recognize the general form of many of the
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equations we develop to describe the behavior of various circuits. We simply
need to learn how to “translate” the relevant variables (for example, replacing
voltage with force, charge with distance, resistance with friction coefficient,
etc.) to find that we already know how to work a new type of problem. Very
often, if we have previous experience in solving a similar or related problem,
our intuition can guide us through the solution of a totally new problem.

What we are about to learn regarding linear circuit analysis forms the
basis for many subsequent electrical engineering courses. The study of elec-
tronics relies on the analysis of circuits with devices known as diodes and
transistors, which are used to construct power supplies, amplifiers, and dig-
ital circuits. The skills which we will develop are typically applied in a
rapid, methodical fashion by electronics engineers, who sometimes can
analyze a complicated circuit without even reaching for a pencil! The
time-domain and frequency-domain chapters of this text lead directly into
discussions of signal processing, power transmission, control theory, and
communications. We find that frequency-domain analysis in particular is
an extremely powerful technique, easily applied to any physical system
subjected to time-varying excitation, and particularly helpful in the design
of filters.

1.3 _ ANALYSIS AND DESIGN

Engineers take a fundamental understanding of scientific principles, com-
bine this with practical knowledge often expressed in mathematical terms,
and (frequently with considerable creativity) arrive at a solution to a given
problem. Analysis is the process through which we determine the scope of
a problem, obtain the information required to understand it, and compute
the parameters of interest. Design is the process by which we synthesize
something new as part of the solution to a problem. Generally speaking,
there is an expectation that a problem requiring design will have no unique
solution, whereas the analysis phase typically will. Thus, the last step in
designing is always analyzing the result to see if it meets specifications.

- ©

A molecular beam epitaxy crystal growth facility. The
equations governing its operation closely resemble those
used to describe simple linear circuits.

An example of a robotic manipulator. The feedback control
system can be modeled using linear circuit elements to
determine situations in which the operation may become
unstable. (NVASA Marshall Space Flight Center.)



Two proposed designs for a next-generation space shuttle.
Although both contain similar elements, each is unique.
(NASA Dryden Flight Research Center.)
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Charles Babbage's “Difference Engine Number 2," as
completed by the Science Museum (London) in 1991.
(© Science MuseumyScience & Society Picture Library.)
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This text is focused on developing our ability to analyze and solve
problems because it is the starting point in every engineering situation. The
philosophy of this book is that we need clear explanations, well-placed ex-
amples, and plenty of practice to develop such an ability. Therefore, elements
of design are integrated into end-of-chapter problems and later chapters so as
to be enjoyable rather than distracting.

1.4 A COMPUTER-AIDED ANALYSIS

Solving the types of equations that result from circuit analysis can often be-
come notably cumbersome for even moderately complex circuits. This of
course introduces an increased probability that errors will be made, in addi-
tion to considerable time in performing the calculations. The desire to find
a tool to help with this process actually predates electronic computers, with
purely mechanical computers such as the Analytical Engine designed by
Charles Babbage in the 1880s proposed as possible solutions. Perhaps the
earliest successful electronic computer designed for solution of differential
equations was the 1940s-era ENIAC, whose vacuum tubes filled a large
room. With the advent of low-cost desktop computers, however, computer-
aided circuit analysis has developed into an invaluable everyday tool which
has become an integral part of not only analysis but design as well.

One of the most powerful aspects of computer-aided design is the rela-
tively recent integration of multiple programs in a fashion transparent to the
user. This allows the circuit to be drawn schematically on the screen, re-
duced automatically to the format required by an analysis program (such as
SPICE, introduced in Chap. 4), and the resulting output smoothly trans-
ferred to a third program capable of plotting various electrical quantities of
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An amplifier circuit drawn using a commercial schematic capture software package.

interest that describe the operation of the circuit. Once the engineer is satis-
fied with the simulated performance of the design, the same software can
generate the printed circuit board layout using geometrical parameters in
the components library. This level of integration is continually increasing,
to the point where soon an engineer will be able to draw a schematic, click
a few buttons, and walk to the other side of the table to pick up a manufac-
tured version of the circuit, ready to test!

The reader should be wary, however, of one thing. Circuit analysis soft-
ware, although fun to use, is by no means a replacement for good old-
fashioned paper-and-pencil analysis. We need to have a solid understanding of
how circuits work in order to develop an ability to design them. Simply going
through the motions of running a particular software package is a little like
playing the lottery: with user-generated entry errors, hidden default parame-
ters in the myriad of menu choices, and the occasional shortcoming of human-
written code, there is no substitute for having at least an approximate idea of
the expected behavior of a circuit. Then, if the simulation result does not agree
with expectations, we can find the error early, rather than after it’s too late.

Still, computer-aided analysis is a powerful tool. It allows us to vary pa-
rameter values and evaluate the change in circuit performance, and to con-
sider several variations to a design in a straightforward manner. The result
is a reduction of repetitive tasks, and more time to concentrate on engineer-
ing details.

1.5 , SUCCESSFUL PROBLEM-SOLVING STRATEGIES

As the reader might have picked up, this book is just as much about problem
solving as it is about circuit analysis. As a result, the expectation is that during
your time as an engineering student, you are learning how to solve problems—
so just at this moment, those skills are not yet fully developed. As you proceed
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Read the problem statement
slowly and carefully.

Y

Identify the goal
of the problem.

Y

Collect the known
information.

Devise a plan.

Construct an appropriate
set of equations.

Determine
if additional information
is required.

Yes

Attempt a solution.

Verity the
solution. Is it reasonable
or expected?

End.

CHAPTER 1 INTRODUCTION

through your course of study, you will pick up techniques that work for you,
and likely continue to do so as a practicing engineer. At this stage, then, we
should spend a few moments discussing some basic points.

The first point is that by far, the most common difficulty encountered by
engineering students is not knowing how to start a problem. This improves
with experience, but early on that’s of no help. The best advice we can give
is to adopt a methodical approach, beginning with reading the problem
statement slowly and carefully (and more than once, if needed). Since
experience usually gives us some type of insight into how to deal with a
specific problem, worked examples appear throughout the book. Rather
than just read them, however, it might be helpful to work through them with
a pencil and a piece of paper.

Once we’ve read through the problem, and feel we might have some use-
ful experience, the next step is to identify the goal of the problem—perhaps
to calculate a voltage or a power, or to select a component value. Knowing
where we’re going is a big help. The next step is to collect as much infor-
mation as we can, and to organize it somehow.

At this point we’re still not ready to reach for the calculator. It’s best
first to devise a plan, perhaps based on experience, perhaps based simply on
our intuition. Sometimes plans work, and sometimes they don’t. Starting
with our initial plan, it’s time to construct an initial set of equations. If they
appear complete, we can solve them. If not, we need to either locate more
information, modify our plan, or both.

Once we have what appears to be a working solution, we should not
stop, even if exhausted and ready for a break. No engineering problem is
solved unless the solution is tested somehow. We might do this by per-
forming a computer simulation, or solving the problem a different way, or
perhaps even just estimating what answer might be reasonable.

Since not everyone likes to read to learn, these steps are summarized in
the adjacent flowchart. This is just one particular problem-solving strategy,
and the reader of course should feel free to modify it as necessary. The real
key, however, is to try and learn in a relaxed, low-stress environment free of
distractions. Experience is the best teacher, and learning from our own mis-
takes will always be part of the process of becoming a skilled engineer.

READING FURTHER

This relatively inexpensive, best-selling book teaches the reader how to
develop winning strategies in the face of seemingly impossible problems:

G. Polya, How to Solve It. Princeton, N.J.: Princeton University
Press, 1971.



-
w
-
o
<
E=
o

Basic Components
and Electric Circuits

INTRODUCTION

In conducting circuit analysis, we often find ourselves seeking spe-
cific currents, voltages, or powers, so here we begin with a brief de-
scription of these quantities. In terms of components that can be
used to build electrical circuits, we have quite a few from which to
choose. We initially focus on the resistor, a simple passive compo-
nent, and a range of idealized active sources of voltage and current.
As we move forward, new components will be added to the inven-
tory to allow more complex (and useful) circuits to be considered.

A quick word of advice before we begin: Pay close attention to
the role of “+” and “—” signs when labeling voltages, and the sig-
nificance of the arrow in defining current; they often make the
difference between wrong and right answers.

2.1 _ UNITS AND SCALES

In order to state the value of some measurable quantity, we must
give both a number and a unit, such as “3 meters.” Fortunately, we
all use the same number system. This is not true for units, and a lit-
tle time must be spent in becoming familiar with a suitable system.
We must agree on a standard unit and be assured of its permanence
and its general acceptability. The standard unit of length, for exam-
ple, should not be defined in terms of the distance between two
marks on a certain rubber band; this is not permanent, and further-
more everybody else is using another standard.

The most frequently used system of units is the one adopted by
the National Bureau of Standards in 1964; it is used by all major
professional engineering societies and is the language in which to-
day’s textbooks are written. This is the International System of
Units (abbreviated ST in all languages), adopted by the General

KEY CONCEPTS

Basic Electrical Quantities
and Associated Units:
Charge, Current, Voltage,
and Power

Current Direction and
Voltage Polarity

The Passive Sign Convention
for Calculating Power

[
Ideal Voltage and Current
Sources

[
Dependent Sources
®

Resistance and Ohm’s Law
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There is some inconsistency regarding whether units
named after a person should be capitalized. Here, we
will adopt the most contemporary convention,? where

but abbreviated with an uppercase symbol (e.g, W, J).

such units are written out in lowercase (e.g., watt, joule),

(1) H. Barrell, Nature 220, 1968, p. 651.
(2) V. N. Krutikov, T. K. Kanishcheva, S. A. Kononogov, L. K. Isaev,
and N. I. Khanov, Measurement Techniques 51, 2008, p. 1045.

The “calorie” used with food, drink, and exercise is
really a kilocalorie, 4.187 J.

CHAPTER 2 BASIC COMPONENTS AND ELECTRIC CIRCUITS

Conference on Weights and Measures in 1960. Modified several times
since, the SI is built upon seven basic units: the meter, kilogram, second,
ampere, kelvin, mole, and candela (see Table 2.1). This is a “metric system,”
some form of which is now in common use in most countries of the world,
although it is not yet widely used in the United States. Units for other quan-
tities such as volume, force, energy, etc., are derived from these seven base
units.

TABLE . 2.1 Sl Base Units

Base Quantity Name Symbol
length meter m
mass kilogram kg
time second S
electric current ampere A
thermodynamic temperature kelvin K
amount of substance mole mol
luminous intensity candela cd

The fundamental unit of work or energy is the joule (J). One joule
(a kg m?s72 in SI base units) is equivalent to 0.7376 foot pound-force
(ft- Ibf). Other energy units include the calorie (cal), equal to 4.187 J;
the British thermal unit (Btu), which is 1055 J; and the kilowatthour (kWh),
equal to 3.6 x 10°J. Power is defined as the rate at which work is done
or energy is expended. The fundamental unit of power is the watt (W),
defined as 1 J/s. One watt is equivalent to 0.7376 ft - Ibf/s or, equivalently,
1/745.7 horsepower (hp).

The ST uses the decimal system to relate larger and smaller units to the
basic unit, and employs prefixes to signify the various powers of 10. A list
of prefixes and their symbols is given in Table 2.2; the ones most commonly
encountered in engineering are highlighted.

TABLE . 2.2 Sl Prefixes

Factor Name Symbol Factor Name Symbol
10~ yocto y 10%* yotta Y
102! zepto z 107! zetta 4
1018 atto a 108 exa E
10713 femto f 10% peta P
1012 pico P 102 tera T
107° nano n 10° giga G
1076 micro “ 10° mega M
1073 milli m 10° kilo k
1072 centi c 10? hecto h
107! deci d 10! deka da
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These prefixes are worth memorizing, for they will appear often both in
this text and in other technical work. Combinations of several prefixes, such
as the millimicrosecond, are unacceptable. It is worth noting that in terms
of distance, it is common to see “micron (um)” as opposed to “microme-
ter,” and often the angstrom (f\) is used for 10~'° meter. Also, in circuit
analysis and engineering in general, it is fairly common to see numbers ex-
pressed in what are frequently termed “engineering units.” In engineering
notation, a quantity is represented by a number between 1 and 999 and an
appropriate metric unit using a power divisible by 3. So, for example, it is
preferable to express the quantity 0.048 W as 48 mW, instead of 4.8 cW,
4.8 x 1072 W, or 48,000 ;L W.

PRACTICE "

2.1 Akrypton fluoride laser emits light at a wavelength of 248 nm.
This is the same as: (a) 0.0248 mm; (b) 2.48 um; (¢) 0.248 pm;
(d) 24,800 A.

2.2 A single logic gate in a prototype integrated circuit is found to be
capable of switching from the “on” state to the “off” state in 12 ps. This
corresponds to: (a) 1.2 ns; (b) 120 ns; (¢) 1200 ns; (d) 12,000 ns.

2.3 Atypical incandescent reading lamp runs at 60 W. If it is left on
constantly, how much energy (J) is consumed per day, and what is the
weekly cost if energy is charged at a rate of 12.5 cents per kilowatthour?

Ans: 2.1 (c); 2.2 (d); 2.3 5.18 MJ, $1.26.

2.2 A CHARGE, CURRENT, VOLTAGE, AND POWER
Charge

One of the most fundamental concepts in electric circuit analysis is that of
charge conservation. We know from basic physics that there are two types
of charge: positive (corresponding to a proton) and negative (corresponding
to an electron). For the most part, this text is concerned with circuits in
which only electron flow is relevant. There are many devices (such as bat-
teries, diodes, and transistors) in which positive charge motion is important
to understanding internal operation, but external to the device we typically
concentrate on the electrons which flow through the connecting wires.
Although we continuously transfer charges between different parts of a cir-
cuit, we do nothing to change the total amount of charge. In other words, we
neither create nor destroy electrons (or protons) when running electric
circuits.! Charge in motion represents a current.

In the SI system, the fundamental unit of charge is the coulomb (C).
It is defined in terms of the ampere by counting the total charge that
passes through an arbitrary cross section of a wire during an interval of one
second; one coulomb is measured each second for a wire carrying a current
of 1 ampere (Fig. 2.1). In this system of units, a single electron has a charge
of —1.602 x 107! C and a single proton has a charge of +1.602 x 10~!° C.

(1) Although the occasional appearance of smoke may seem to suggest otherwise. . .

As seen in Table 2.1, the base units of the Sl are not
derived from fundamental physical quantities. Instead,
they represent historically agreed upon measurements,
leading to definitions which occasionally seem
backward. For example, it would make more sense
physically to define the ampere based on electronic
charge.

Direction of
charge motion

Cross section
Individual charges
M FIGURE 2.1 The definition of current illustrated
using current flowing through a wire; 1 ampere
corresponds to 1 coulomb of charge passing through
the arbitrarily chosen cross section in 1 second.
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B FIGURE 2.2 A graph of the instantaneous value of
the total charge g(f) that has passed a given reference
point since t = 0.

i(n (A)

15—
1

B FIGURE 2.3 The instantaneous current / = dg/dt,
where g is given in Fig. 2.2.

CHAPTER 2 BASIC COMPONENTS AND ELECTRIC CIRCUITS

A quantity of charge that does not change with time is typically repre-
sented by Q. The instantaneous amount of charge (which may or may not be
time-invariant) is commonly represented by g(¢), or simply g. This conven-
tion is used throughout the remainder of the text: capital letters are reserved
for constant (time-invariant) quantities, whereas lowercase letters represent
the more general case. Thus, a constant charge may be represented by either
Q or g, but an amount of charge that changes over time must be represented
by the lowercase letter g.

Current

The idea of “transfer of charge” or “charge in motion” is of vital importance
to us in studying electric circuits because, in moving a charge from place to
place, we may also transfer energy from one point to another. The familiar
cross-country power-transmission line is a practical example of a device
that transfers energy. Of equal importance is the possibility of varying the
rate at which the charge is transferred in order to communicate or transfer
information. This process is the basis of communication systems such as
radio, television, and telemetry.

The current present in a discrete path, such as a metallic wire, has both a
numerical value and a direction associated with it; it is a measure of the rate
at which charge is moving past a given reference point in a specified direction.

Once we have specified a reference direction, we may then let g(7) be the
total charge that has passed the reference point since an arbitrary time r = 0,
moving in the defined direction. A contribution to this total charge will be
negative if negative charge is moving in the reference direction, or if posi-
tive charge is moving in the opposite direction. As an example, Fig. 2.2
shows a history of the total charge ¢ (¢) that has passed a given reference
point in a wire (such as the one shown in Fig. 2.1).

We define the current at a specific point and flowing in a specified direc-
tion as the instantaneous rate at which net positive charge is moving past
that point in the specified direction. This, unfortunately, is the historical de-
finition, which came into popular use before it was appreciated that current
in wires is actually due to negative, not positive, charge motion. Current is
symbolized by 7 or 7, and so
. _dq

T

The unit of current is the ampere (A), named after A. M. Ampere, a French
physicist. It is commonly abbreviated as an “amp,” although this is unofficial
and somewhat informal. One ampere equals 1 coulomb per second.

Using Eq. [1], we compute the instantaneous current and obtain Fig. 2.3.
The use of the lowercase letter i is again to be associated with an instantaneous
value; an uppercase / would denote a constant (i.e., time-invariant) quantity.

The charge transferred between time 7y and f may be expressed as a

definite integral:
q(1) t
/ dqg = / idt
q(to) fo

The total charge transferred over all time is thus given by

Q(t)=/ idt"+ q(to) (2]

[1]



SECTION 2.2 CHARGE, CURRENT, VOLTAGE, AND POWER

Several different types of current are illustrated in Fig. 2.4. A current
that is constant in time is termed a direct current, or simply dc, and is shown
by Fig. 2.4a. We will find many practical examples of currents that vary si-
nusoidally with time (Fig. 2.4b); currents of this form are present in normal
household circuits. Such a current is often referred to as alternating current,
or ac. Exponential currents and damped sinusoidal currents (Fig. 2.4¢ and d)
will also be encountered later.

We create a graphical symbol for current by placing an arrow next to the
conductor. Thus, in Fig. 2.5a the direction of the arrow and the value 3 A in-
dicate either that a net positive charge of 3 C/s is moving to the right or that a
net negative charge of —3 C/s is moving to the left each second. In Fig. 2.5b
there are again two possibilities: either —3 A is flowing to the left or +3 Ais
flowing to the right. All four statements and both figures represent currents
that are equivalent in their electrical effects, and we say that they are equal.
A nonelectrical analogy that may be easier to visualize is to think in terms of
a personal savings account: e.g., a deposit can be viewed as either a negative
cash flow out of your account or a positive flow into your account.

It is convenient to think of current as the motion of positive charge, even
though it is known that current flow in metallic conductors results from
electron motion. In ionized gases, in electrolytic solutions, and in some
semiconductor materials, however, positive charges in motion consti-
tute part or all of the current. Thus, any definition of current can agree with
the physical nature of conduction only part of the time. The definition and
symbolism we have adopted are standard.

It is essential that we realize that the current arrow does not indicate the
“actual” direction of current flow but is simply part of a convention that
allows us to talk about “the current in the wire” in an unambiguous manner.
The arrow is a fundamental part of the definition of a current! Thus, to talk
about the value of a current i (#) without specifying the arrow is to discuss
an undefined entity. For example, Fig. 2.6a and b are meaningless represen-
tations of i; (), whereas Fig. 2.6¢ is complete.

i)
i(0) ~ >

(@) (b) ()

B FIGURE 2.6 (g, b) Incomplete, improper, and incorrect definitions of a current.
(¢) The correct definition of 7(¢).

PRACTICE .

2.4 In the wire of Fig. 2.7, electrons are moving left to right to create
a current of 1 mA. Determine /; and /5.
L <—

B FIGURE 2.7

Ans: I} = —1 mA; L, = +1 mA.

L
SRR RY

(a) (b)
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(©) (d)
B FIGURE 2.4 Several types of current: (a) Direct
current (dc). (b) Sinusoidal current (ac).
(c) Exponential current. (@) Damped sinusoidal
current.

3A -3 A
— -
(@) (b)

B FIGURE 2.5 Two methods of representation for
the exact same current.



M FIGURE 2.8 A general two-terminal circuit element.

(a) )

() (d)

M FIGURE 2.9 (g, b) Terminal B is 5V positive with
respect to terminal A; (¢, d) terminal A is 5 V positive
with respect to terminal B.

v (1)

(@) (b)

(1)

(©)

M FIGURE 2.10 (g b) These are inadequate
definitions of a voltage. (c) A correct definition includes
both a symbol for the variable and a plus-minus
symbol pair.
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Voltage

We must now begin to refer to a circuit element, something best defined in
general terms to begin with. Such electrical devices as fuses, light bulbs, re-
sistors, batteries, capacitors, generators, and spark coils can be represented
by combinations of simple circuit elements. We begin by showing a very
general circuit element as a shapeless object possessing two terminals at
which connections to other elements may be made (Fig. 2.8).

There are two paths by which current may enter or leave the element. In
subsequent discussions we will define particular circuit elements by describ-
ing the electrical characteristics that may be observed at their terminals.

In Fig. 2.8, let us suppose that a dc current is sent into terminal A,
through the general element, and back out of terminal B. Let us also assume
that pushing charge through the element requires an expenditure of energy.
We then say that an electrical voltage (or a potential difference) exists be-
tween the two terminals, or that there is a voltage “across” the element.
Thus, the voltage across a terminal pair is a measure of the work required to
move charge through the element. The unit of voltage is the volt,” and 1 volt
is the same as 1 J/C. Voltage is represented by V or v.

Avoltage can exist between a pair of electrical terminals whether a current
is flowing or not. An automobile battery, for example, has a voltage of 12 V
across its terminals even if nothing whatsoever is connected to the terminals.

According to the principle of conservation of energy, the energy that is
expended in forcing charge through the element must appear somewhere
else. When we later meet specific circuit elements, we will note whether
that energy is stored in some form that is readily available as electric energy
or whether it changes irreversibly into heat, acoustic energy, or some other
nonelectrical form.

We must now establish a convention by which we can distinguish be-
tween energy supplied fo an element and energy that is supplied by the
element itself. We do this by our choice of sign for the voltage of terminal
A with respect to terminal B. If a positive current is entering terminal A of
the element and an external source must expend energy to establish this cur-
rent, then terminal A is positive with respect to terminal B. (Alternatively,
we may say that terminal B is negative with respect to terminal A.)

The sense of the voltage is indicated by a plus-minus pair of algebraic
signs. In Fig. 2.94, for example, the placement of the + sign at terminal A
indicates that terminal A is v volts positive with respect to terminal B. If we
later find that v happens to have a numerical value of —5 V, then we may say
either that A is —5 V positive with respect to B or that B is 5 V positive with
respect to A. Other cases are shown in Fig. 2.9b, ¢, and d.

Just as we noted in our definition of current, it is essential to realize that
the plus-minus pair of algebraic signs does not indicate the “actual” polarity
of the voltage but is simply part of a convention that enables us to talk unam-
biguously about “the voltage across the terminal pair.” The definition of any
voltage must include a plus-minus sign pair! Using a quantity v, (t) without
specifying the location of the plus-minus sign pair is using an undefined
term. Figure 2.10a and b do not serve as definitions of v (¢); Fig. 2.10c does.

(2) We are probably fortunate that the full name of the 18th century Italian physicist, Alessandro Giuseppe
Antonio Anastasio Volta, is not used for our unit of potential difference!
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PRACTICE -
2.5 For the element in Fig. 2.11, vy = 17 V. Determine v,.
O—
o -
1 v
- +
O—
B FIGURE 2.11

Ans: v, = —17 V.

Power

We have already defined power, and we will represent it by P or p. If one
joule of energy is expended in transferring one coulomb of charge through
the device in one second, then the rate of energy transfer is one watt. The
absorbed power must be proportional both to the number of coulombs trans-
ferred per second (current) and to the energy needed to transfer one
coulomb through the element (voltage). Thus,

p =i [3]
Dimensionally, the right side of this equation is the product of joules per
coulomb and coulombs per second, which produces the expected dimension
of joules per second, or watts. The conventions for current, voltage, and
power are shown in Fig. 2.12.

We now have an expression for the power being absorbed by a circuit
element in terms of a voltage across it and current through it. Voltage was
defined in terms of an energy expenditure, and power is the rate at which en-
ergy is expended. However, no statement can be made concerning energy
transfer in any of the four cases shown in Fig. 2.9, for example, until the
direction of the current is specified. Let us imagine that a current arrow is
placed alongside each upper lead, directed to the right, and labeled “42 A.”
First, consider the case shown in Fig. 2.9¢. Terminal A is 5 V positive with
respect to terminal B, which means that 5 J of energy is required to move
each coulomb of positive charge into terminal A, through the object, and out
terminal B. Since we are injecting 42 A (a current of 2 coulombs of positive
charge per second) into terminal A, we are doing (5 J/C) x (2 C/s) = 10 ] of
work per second on the object. In other words, the object is absorbing 10 W
of power from whatever is injecting the current.

We know from an earlier discussion that there is no difference between
Fig. 2.9¢ and Fig. 2.9d, so we expect the object depicted in Fig. 2.9 to also
be absorbing 10 W. We can check this easily enough: we are injecting 42 A
into terminal A of the object, so +2 A flows out of terminal B. Another way
of saying this is that we are injecting —2 A of current into terminal B. It
takes —5 J/C to move charge from terminal B to terminal A, so the object is
absorbing (=5 J/C) x (=2 C/s) = 410 W as expected. The only difficulty
in describing this particular case is keeping the minus signs straight, but
with a bit of care we see the correct answer can be obtained regardless of
our choice of positive reference terminal (terminal A in Fig. 2.9¢, and
terminal B in Fig. 2.9d).

M FIGURE 2.12 The power absorbed by the element
is given by the product p = vi. Alternatively, we
can say that the element generates or supplies a
power —vi.
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If the current arrow is directed into the “+" marked ter-
minal of an element, then p = v yields the absorbed
power. A negative value indicates that power is actually
being generated by the element.

If the current arrow is directed out of the “+" terminal
of an element, then p = vi yields the supplied power.
A negative value in this case indicates that power is
being absorbed.
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Now let’s look at the situation depicted in Fig. 2.9a, again with +2 A in-
jected into terminal A. Since it takes —5 J/C to move charge from terminal
A to terminal B, the object is absorbing (—5 J/C) x (2 C/s) = —10 W. What
does this mean? How can anything absorb negative power? If we think
about this in terms of energy transfer, —10 J is transferred to the object each
second through the 2 A current flowing into terminal A. The object is actu-
ally losing energy—at a rate of 10 J/s. In other words, it is supplying 10 J/s
(i.e., 10 W) to some other object not shown in the figure. Negative absorbed
power, then, is equivalent to positive supplied power.

Let’s recap. Figure 2.12 shows that if one terminal of the element is v volts
positive with respect to the other terminal, and if a current i is entering the
element through that terminal, then a power p = vi is being absorbed by
the element; it is also correct to say that a power p = vi is being delivered
to the element. When the current arrow is directed into the element at the
plus-marked terminal, we satisfy the passive sign convention. This conven-
tion should be studied carefully, understood, and memorized. In other words,
it says that if the current arrow and the voltage polarity signs are placed such
that the current enters that end of the element marked with the positive sign,
then the power absorbed by the element can be expressed by the product
of the specified current and voltage variables. If the numerical value of the
product is negative, then we say that the element is absorbing negative
power, or that it is actually generating power and delivering it to some exter-
nal element. For example, in Fig. 2.12 with v =5 V and i = —4 A, the
element may be described as either absorbing —20 W or generating 20 W.

Conventions are only required when there is more than one way to do
something, and confusion may result when two different groups try to
communicate. For example, it is rather arbitrary to always place “North” at
the top of a map; compass needles don’t point “up,” anyway. Still, if we
were talking to people who had secretly chosen the opposite convention of
placing “South” at the top of their maps, imagine the confusion that could
result! In the same fashion, there is a general convention that always draws
the current arrows pointing into the positive voltage terminal, regardless of
whether the element supplies or absorbs power. This convention is not in-
correct but sometimes results in counterintuitive currents labeled on circuit
schematics. The reason for this is that it simply seems more natural to refer
to positive current flowing out of a voltage or current source that is supply-
ing positive power to one or more circuit elements.

EXAMPLE 2.1

Compute the power absorbed by each part in Fig. 2.13.

3A S A

E—
e

(a) ) ()
M FIGURE 2.13 (g, b, c) Three examples of two-terminal elements.
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In Fig. 2.13a, we see that the reference current is defined consistent
with the passive sign convention, which assumes that the element is
absorbing power. With 4-3 A flowing into the positive reference termi-
nal, we compute

P=Q2V)3A) =6W

of power absorbed by the element.

Figure 2.13b shows a slightly different picture. Now, we have a cur-
rent of —3 A flowing into the positive reference terminal. This gives us
an absorbed power

P=(—2V)(-3A)=6W

Thus, we see that the two cases are actually equivalent: A current
of +3 A flowing into the top terminal is the same as a current of +3 A
flowing out of the bottom terminal, or, equivalently, a current of —3 A
flowing into the bottom terminal.

Referring to Fig. 2.13¢, we again apply the passive sign convention
rules and compute an absorbed power

P=(@V)(=5A)=—20W

Since we computed a negative absorbed power, this tells us that the
element in Fig. 2.13c¢ is actually supplying +20 W (i.e., it’s a source of
energy).

PRACTICE "

2.6 Determine the power being absorbed by the circuit element in
Fig. 2.14a.

+
+
220 mV = ge 1001y
- +
14 A
= —_—
- 7175 A 32A
(@) (b) (©
B FIGURE 2.14

2.7 Determine the power being generated by the circuit element in
Fig. 2.14b.

2.8 Determine the power being delivered to the circuit element in
Fig. 2.14c att = 5 ms.

Ans: 880 mW; 6.65 W; —15.53 W.

2.3 A VOLTAGE AND CURRENT SOURCES

Using the concepts of current and voltage, it is now possible to be more spe-
cific in defining a circuit element.

In so doing, it is important to differentiate between the physical device
itself and the mathematical model which we will use to analyze its behavior
in a circuit. The model is only an approximation.

(1)
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By definition, a simple circuit element is the
mathematical model of a two-terminal electrical
device, and it can be completely characterized by its
voltage-current relationship; it cannot be subdivided
into other two-terminal devices.

(a) (b) (©)
M FIGURE 2.15 Circuit symbol of the independent
voltage source.

If you've ever noticed the room lights dim when an

air conditioner kicks on, it's because the sudden large
current demand temporarily led to a voltage drop. After
the motor starts moving, it takes less current to keep it
in motion. At that point, the current demand is reduced,
the voltage returns to its original value, and the wall
outlet again provides a reasonable approximation of

an ideal voltage source.
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Let us agree that we will use the expression circuit element to refer to the
mathematical model. The choice of a particular model for any real device
must be made on the basis of experimental data or experience; we will usually
assume that this choice has already been made. For simplicity, we initially
consider circuits with idealized components represented by simple models.

All the simple circuit elements that we will consider can be classified ac-
cording to the relationship of the current through the element to the voltage
across the element. For example, if the voltage across the element is linearly
proportional to the current through it, we will call the element a resistor.
Other types of simple circuit elements have terminal voltages which are
proportional to the derivative of the current with respect to time (an induc-
tor), or to the integral of the current with respect to time (a capacitor). There
are also elements in which the voltage is completely independent of the cur-
rent, or the current is completely independent of the voltage; these are
termed independent sources. Furthermore, we will need to define special
kinds of sources for which either the source voltage or current depends upon
a current or voltage elsewhere in the circuit; such sources are referred to as
dependent sources. Dependent sources are used a great deal in electronics to
model both dc and ac behavior of transistors, especially in amplifier circuits.

Independent Voltage Sources

The first element we will consider is the independent voltage source. The
circuit symbol is shown in Fig. 2.15a; the subscript s merely identifies the
voltage as a “source” voltage, and is common but not required. An inde-
pendent voltage source is characterized by a terminal voltage which is
completely independent of the current through it. Thus, if we are given an
independent voltage source and are notified that the terminal voltage is 12V,
then we always assume this voltage, regardless of the current flowing.

The independent voltage source is an ideal source and does not repre-
sent exactly any real physical device, because the ideal source could theo-
retically deliver an infinite amount of energy from its terminals. This ideal-
ized voltage source does, however, furnish a reasonable approximation to
several practical voltage sources. An automobile storage battery, for exam-
ple, has a 12 V terminal voltage that remains essentially constant as long as
the current through it does not exceed a few amperes. A small current may
flow in either direction through the battery. If it is positive and flowing out
of the positively marked terminal, then the battery is furnishing power to the
headlights, for example; if the current is positive and flowing into the posi-
tive terminal, then the battery is charging by absorbing energy from the
alternator.> An ordinary household electrical outlet also approximates an
independent voltage source, providing a voltage v, = 115¢/2 cos 2760z V;
this representation is valid for currents less than 20 A or so.

A point worth repeating here is that the presence of the plus sign at the
upper end of the symbol for the independent voltage source in Fig. 2.15a
does not necessarily mean that the upper terminal is numerically positive
with respect to the lower terminal. Instead, it means that the upper terminal
is v, volts positive with respect to the lower. If at some instant v; happens
to be negative, then the upper terminal is actually negative with respect to
the lower at that instant.

(3) Or the battery of a friend’s car, if you accidentally left your headlights on. . .
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Consider a current arrow labeled “i”” placed adjacent to the upper conduc-
tor of the source as in Fig. 2.15b. The current i is entering the terminal at which
the positive sign is located, the passive sign convention is satisfied, and the
source thus absorbs power p = v,i. More often than not, a source is expected
to deliver power to a network and not to absorb it. Consequently, we might
choose to direct the arrow as in Fig. 2.15¢ so that v,i will represent the power
delivered by the source. Technically, either arrow direction may be chosen;
whenever possible, we will adopt the convention of Fig. 2.15c¢ in this text for
voltage and current sources, which are not usually considered passive devices.

An independent voltage source with a constant terminal voltage is often
termed an independent dc voltage source and can be represented by either of
the symbols shown in Fig. 2.16a and b. Note in Fig. 2.16b that when the
physical plate structure of the battery is suggested, the longer plate is placed
at the positive terminal; the plus and minus signs then represent redundant
notation, but they are usually included anyway. For the sake of complete-
ness, the symbol for an independent ac voltage source is shown in Fig. 2.16c¢.

Independent Current Sources

Another ideal source which we will need is the independent current
source. Here, the current through the element is completely independent of
the voltage across it. The symbol for an independent current source is
shown in Fig. 2.17. If i, is constant, we call the source an independent dc
current source. An ac current source is often drawn with a tilde through the
arrow, similar to the ac voltage source shown in Fig. 2.16¢.

Like the independent voltage source, the independent current source is
at best a reasonable approximation for a physical element. In theory it can
deliver infinite power from its terminals because it produces the same finite
current for any voltage across it, no matter how large that voltage may be. It
is, however, a good approximation for many practical sources, particularly
in electronic circuits.

Although most students seem happy enough with an independent volt-
age source providing a fixed voltage but essentially any current, it is a com-
mon mistake to view an independent current source as having zero voltage
across its terminals while providing a fixed current. In fact, we do not know
a priori what the voltage across a current source will be—it depends entirely
on the circuit to which it is connected.

Dependent Sources

The two types of ideal sources that we have discussed up to now are called
independent sources because the value of the source quantity is not affected
in any way by activities in the remainder of the circuit. This is in contrast
with yet another kind of ideal source, the dependent, or controlled, source,
in which the source quantity is determined by a voltage or current existing
at some other location in the system being analyzed. Sources such as these
appear in the equivalent electrical models for many electronic devices, such
as transistors, operational amplifiers, and integrated circuits. To distinguish
between dependent and independent sources, we introduce the diamond
symbols shown in Fig. 2.18. In Fig. 2.18a and ¢, K is a dimensionless scaling
constant. In Fig.2.18b, g is a scaling factor with units of A/V; in Fig. 2.184d,
r is a scaling factor with units of V/A. The controlling current i, and the
controlling voltage v, must be defined in the circuit.

al
V — v
(@) (b)

V.

K

(©)
M FIGURE 2.16 (a) DC voltage source symbol;
(b) battery symbol; (c) ac voltage source symbol.

Terms like dc voltage source and dc current source are
commonly used. Literally, they mean “direct-current
voltage source” and “direct-current current source,”
respectively. Although these terms may seem a little
odd or even redundant, the terminology is so widely
used there's no point in fighting it.

M FIGURE 2.17 Circuit symbol for the independent
current source.

A\

KiX# g%# Kuxé rixé
@ ®) © @

B FIGURE 2.18 The four different types of
dependent sources: () current-controlled current
source; (b) voltage-controlled current source;

() voltage-controlled voltage source; (d) current-
controlled voltage source.
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EXAMPLE 2.2
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It does seem odd at first to have a current source whose value depends
on a voltage, or a voltage source which is controlled by a current flowing
through some other element. Even a voltage source depending on a remote
voltage can appear strange. Such sources are invaluable for modeling com-
plex systems, however, making the analysis algebraically straightforward.
Examples include the drain current of a field effect transistor as a function
of the gate voltage, or the output voltage of an analog integrated circuit as a
function of differential input voltage. When encountered during circuit
analysis, we write down the entire controlling expression for the dependent
source just as we would if it was a numerical value attached to an indepen-
dent source. This often results in the need for an additional equation to
complete the analysis, unless the controlling voltage or current is already
one of the specified unknowns in our system of equations.

+

+
vy Sv, UL
(@)
+ +
vn,=3V 50, vy
(b)

M FIGURE 2.19 (a) An example circuit containing
a voltage-controlled voltage source. (b) The additional
information provided is included on the diagram.

In the circuit of Fig. 2.19aq, if v, is known to be 3V, find v;.

We have been provided with a partially labeled circuit diagram and the
additional information that v, = 3 V. This is probably worth adding to
our diagram, as shown in Fig. 2.19b.

Next we step back and look at the information collected. In examin-
ing the circuit diagram, we notice that the desired voltage v is the
same as the voltage across the dependent source. Thus,

v, = Suy

At this point, we would be done with the problem if only we knew v;!
Returning to our diagram, we see that we actually do know v,—it
was specified as 3 V. We therefore write

U2=3

We now have two (simple) equations in two unknowns, and solve
tofind v, =15 V.

An important lesson at this early stage of the game is that the time
it takes to completely label a circuit diagram is always a good invest-
ment. As a final step, we should go back and check over our work to
ensure that the result is correct.

PRACTICE .
2.9 Find the power absorbed by each element in the circuit in Fig. 2.20.
54 4 F
L]
+ + -12v+ + 0‘251))( +
7A<D8V [jsv 20V|::| <i>2ov
T2 Al - - ls A -

M FIGURE 2.20

Ans: (left to right) —56 W; 16 W; —60 W; 160 W; —60 W.
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Dependent and independent voltage and current sources are active ele-
ments; they are capable of delivering power to some external device. For
the present we will think of a passive element as one which is capable only
of receiving power. However, we will later see that several passive elements
are able to store finite amounts of energy and then return that energy later to
various external devices; since we still wish to call such elements passive, it
will be necessary to improve upon our two definitions a little later.

Networks and Circuits

The interconnection of two or more simple circuit elements forms an elec-
trical network. If the network contains at least one closed path, it is also an
electric circuit. Note: Every circuit is a network, but not all networks are
circuits (see Fig. 2.21)!

(a) (b)
M FIGURE 2.21 (a) A network that is not a circuit. (b) A network that is a circuit.

A network that contains at least one active element, such as an indepen-
dent voltage or current source, is an active network. A network that does not
contain any active elements is a passive network.

We have now defined what we mean by the term circuit element, and
we have presented the definitions of several specific circuit elements, the
independent and dependent voltage and current sources. Throughout the
remainder of the book we will define only five additional circuit elements:
the resistor, inductor, capacitor, transformer, and the ideal operational ampli-
fier (“op amp,” for short). These are all ideal elements. They are important
because we may combine them into networks and circuits that represent real
devices as accurately as we require. Thus, the transistor shown in Fig. 2.22a
and b may be modeled by the voltage terminals designated vy, and the single
dependent current source of Fig. 2.22¢. Note that the dependent current
source produces a current that depends on a voltage elsewhere in the circuit.
The parameter g,, commonly referred to as the transconductance, is
calculated using transistor-specific details as well as the operating point de-
termined by the circuit connected to the transistor. It is generally a small
number, on the order of 1072 to perhaps 10 A/V. This model works pretty well
as long as the frequency of any sinusoidal source is neither very large nor
very small; the model can be modified to account for frequency-dependent

(2)
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M FIGURE 2.22 The Metal Oxide Semiconductor Field Effect Transistor (MOSFET). (@) An IRF540 N-channel power MOSFET in a TO-220 package, rated at 100 V and
22 A; (b) cross-sectional view of a basic MOSFET (R. Jaeger, Microelectronic Circuit Design, McGraw-Hill, 1997); (c) equivalent circuit model for use in ac circuit analysis.

effects by including additional ideal circuit elements such as resistors and
capacitors.

Similar (but much smaller) transistors typically constitute only one
small part of an integrated circuit that may be less than 2 mm x 2 mm
square and 200 pm thick and yet contains several thousand transistors plus
various resistors and capacitors. Thus, we may have a physical device that
is about the size of one letter on this page but requires a model composed of
ten thousand ideal simple circuit elements. We use this concept of “circuit
modeling” in a number of electrical engineering topics covered in other
courses, including electronics, energy conversion, and antennas.

2.4 OHM'S LAW

So far, we have been introduced to both dependent and independent voltage
and current sources and were cautioned that they were idealized active ele-
ments that could only be approximated in a real circuit. We are now ready
to meet another idealized element, the linear resistor. The resistor is the sim-
plest passive element, and we begin our discussion by considering the work
of an obscure German physicist, Georg Simon Ohm, who published a pam-
phlet in 1827 that described the results of one of the first efforts to measure
currents and voltages, and to describe and relate them mathematically. One
result was a statement of the fundamental relationship we now call Ohm’s
law, even though it has since been shown that this result was discovered
46 years earlier in England by Henry Cavendish, a brilliant semirecluse.

Ohm’s law states that the voltage across conducting materials is directly
proportional to the current flowing through the material, or

v=Ri (4]

where the constant of proportionality R is called the resistance. The unit of
resistance is the ohm, which is 1 V/A and customarily abbreviated by a
capital omega, 2.



SECTION 2.4 OHM'S LAW

When this equation is plotted on i-versus-v axes, the graph is a straight
line passing through the origin (Fig. 2.23). Equation [4] is a linear equation,
and we will consider it as the definition of a linear resistor. Resistance is
normally considered to be a positive quantity, although negative resistances
may be simulated with special circuitry.

Again, it must be emphasized that the linear resistor is an idealized
circuit element; it is only a mathematical model of a real, physical device.
“Resistors” may be easily purchased or manufactured, but it is soon found
that the voltage-current ratios of these physical devices are reasonably con-
stant only within certain ranges of current, voltage, or power, and depend
also on temperature and other environmental factors. We usually refer to a
linear resistor as simply a resistor; any resistor that is nonlinear will always
be described as such. Nonlinear resistors should not necessarily be consid-
ered undesirable elements. Although it is true that their presence compli-
cates an analysis, the performance of the device may depend on or be greatly
improved by the nonlinearity. For example, fuses for overcurrent protection
and Zener diodes for voltage regulation are very nonlinear in nature, a fact
that is exploited when using them in circuit design.

Power Absorption

Figure 2.24 shows several different resistor packages, as well as the most
common circuit symbol used for a resistor. In accordance with the voltage,
current, and power conventions already adopted, the product of v and i
gives the power absorbed by the resistor. That is, v and i are selected to
satisfy the passive sign convention. The absorbed power appears physically

(© d)

M FIGURE 2.24 (a) Several common resistor packages. (b) A 560 2 power resistor rated at up to
50 W. () A 5% tolerance 10-teraohm (10,000,000,000,000 €2) resistor manufactured by Ohmcraft.
(d) Circuit symbol for the resistor, applicable to all of the devices in (a) through (c).
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M FIGURE 2.23 Current-voltage relationship for an
example 2 2 linear resistor. Note the slope of the line
is 0.5 A/V, or 500 me2 .
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as heat and/or light and is always positive; a (positive) resistor is a passive
element that cannot deliver power or store energy. Alternative expressions
for the absorbed power are

p=vi=i’R=v?/R (5]

One of the authors (who shall remain anonymous) had the unfortunate
experience of inadvertently connecting a 100 €2, 2 W carbon resistor across
a 110 V source. The ensuing flame, smoke, and fragmentation were rather
disconcerting, demonstrating clearly that a practical resistor has definite
limits to its ability to behave like the ideal linear model. In this case, the un-
fortunate resistor was called upon to absorb 121 W; since it was designed to
handle only 2 W, its reaction was understandably violent.

EXAMPLE 2.3

M FIGURE 2.25

The 560 2 resistor shown in Fig. 2.24b is connected to a circuit
which causes a current of 42.4 mA to flow through it. Calculate the
voltage across the resistor and the power it is dissipating.

The voltage across the resistor is given by Ohm’s law:
v = Ri =(560)(0.0424) =23.7V

The dissipated power can be calculated in several different ways. For
instance,

p = vi = (23.7)(0.0424) = 1.005 W
Alternatively,
p =v*/R = (23.7)%/560 = 1.003 W

or
p = i’R = (0.0424)2(560) = 1.007 W

We note several things.

First, we calculated the power in three different ways, and we seem
to have obtained three different answers!

In reality, however, we rounded our voltage to three significant
digits, which will impact the accuracy of any subsequent quantity we
calculate with it. With this in mind, we see that the answers show rea-
sonable agreement (within 1%).

The other point worth noting is that the resistor is rated to 50 W—
since we are only dissipating approximately 2% of this value, the resis-
tor is in no danger of overheating.

PRACTICE .
With reference to Fig. 2.25, compute the following:
210 Rifi = -2 puAandv =—44 V.

2.11 The power absorbed by the resistor if v =1 V and R = 2 kQ.
2.12 The power absorbed by the resistor if i = 3 nA and R = 4.7 MQ.

Ans: 22 MQ2; 500 ©W; 42.3 pW.
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( PRACTICAL APPLICATION )

Wire Gauge

Technically speaking, any material (except for a super-
conductor) will provide resistance to current flow. As in
all introductory circuits texts, however, we tacitly as-
sume that wires appearing in circuit diagrams have zero
resistance. This implies that there is no potential differ-
ence between the ends of a wire, and hence no power
absorbed or heat generated. Although usually not an
unreasonable assumption, it does neglect practical con-
siderations when choosing the appropriate wire diameter
for a specific application.

Resistance is determined by (1) the inherent resistiv-
ity of a material and (2) the device geometry. Resistivity,
represented by the symbol p, is a measure of the ease
with which electrons can travel through a certain mater-
ial. Since it is the ratio of the electric field (V/m) to the
areal density of current flowing in the material (A/m?),
the general unit of p is an €2 -m, although metric pre-
fixes are often employed. Every material has a different
inherent resistivity, which depends on temperature.
Some examples are shown in Table 2.3; as can be seen,
there is a small variation between different types of cop-
per (less than 1%) but a very large difference between
different metals. In particular, although physically
stronger than copper, steel wire is several times more
resistive. In some technical discussions, it is more
common to see the conductivity (symbolized by o) of a

material quoted, which is simply the reciprocal of the
resistivity.

The resistance of a particular object is obtained by
multiplying the resistivity by the length £ of the resistor
and dividing by the cross-sectional area (A) as in Eq. [6];
these parameters are illustrated in Fig. 2.26.

L

< € (cm) |

Cross-sectional /
— 2 P
area=A cm Resistivity = p (1-cm { -~
\

B FIGURE 2.26 Definition of geometrical parameters used to compute the
resistance of a wire. The resistivity of the material is assumed to be spatially
uniform.

Direction of
current flow

We determine the resistivity when we select the
material from which to fabricate a wire and measure the
temperature of the application environment. Since a
finite amount of power is absorbed by the wire due to its
resistance, current flow leads to the production of heat.
Thicker wires have lower resistance and also dissipate
heat more easily but are heavier, take up a larger volume,
and are more expensive. Thus, we are motivated by
practical considerations to choose the smallest wire that

TABLE . 2.3 Common Electrical Wire Materials and Resistivities*

Resistivity at 20°C
ASTM Specification** Temper and Shape (nR-cm)
B33 Copper, tinned soft, round 1.7654
B75 Copper, tube, soft, OF copper 1.7241
B188 Copper, hard bus tube, rectangular or square 1.7521
B189 Copper, lead-coated soft, round 1.7654
B230 Aluminum, hard, round 2.8625
B227 Copper-clad steel, hard, round, 4.3971
grade 40 HS
B355 Copper, nickel-coated soft, round 1.9592
Class 10
B415 Aluminum-clad steel, hard, round 8.4805

* C. B. Rawlins, “Conductor materials,” Standard Handbook for Electrical Engineering, 13th ed., D. G. Fink and H. W. Beaty, eds.

New York: McGraw-Hill, 1993, pp. 4-4 to 4-8.

#% American Society of Testing and Materials.

(Continued on next page)




can safely do the job, rather than simply choosing the diameter; an abbreviated table of common gauges is
largest-diameter wire available in an effort to minimize given in Table 2.4. Local fire and electrical safety codes
resistive losses. The American Wire Gauge (AWG) is a  typically dictate the required gauge for specific wiring

standard system of specifying wire size. In selecting a applications, based on the maximum current expected as
wire gauge, smaller AWG corresponds to a larger wire well as where the wires will be located.
TABLE 2.4 Some Common Wire Gauges and the Resistance of (Soft)
Solid Copper Wire*
Conductor Size (AWG) Cross-Sectional Area (mm?) Ohms per 1000 ft at 20°C
28 0.0804 65.3
24 0.205 25.7
22 0.324 16.2
18 0.823 6.39
14 2.08 2.52
12 3.31 1.59
6 13.3 0.3952
4 21.1 0.2485
2 33.6 0.1563

* C. B. Rawlins et al., Standard Handbook for Electrical Engineering, 13th ed., D. G. Fink and H. W. Beaty, eds. New York:
McGraw-Hill, 1993, p. 4-47.

EXAMPLE 2.4

A dc power link is to be made between two islands separated by a
distance of 24 miles. The operating voltage is 500 kV and the sys-
tem capacity is 600 MW. Calculate the maximum dc current flow,
and estimate the resistivity of the cable, assuming a diameter of
2.5 cm and a solid (not stranded) wire.

Dividing the maximum power (600 MW, or 600 x 10% W)
by the operating voltage (500 kV, or 500 x 10° V)

yields a maximum current of

600 x 10°

500 x 107 12004

The cable resistance is simply the ratio of the voltage to the current, or

500 x 103
Reaple = 71200 =417 Q2
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We know the length:

. 5280 ft 12 in 2.54 cm
£ = (24 miles) - - = 3,862,426 cm
1 mile 1 ft 1in

Given that most of our information appears to be valid to only two signif-
icant figures, we round this to 3.9 x 10° cm.

With the cable diameter specified as 2.5 cm, we know its cross-sectional
area is 4.9 cm>.

4.9

A
Thus, pcable = Rcablez =417 (W

):520u$2~cm

PRACTICE _

2.13 A 500 ft long 24 AWG soft copper wire is carrying a current of
100 mA. What is the voltage dropped across the wire?

Ans: 3.26 V.

Conductance
For a linear resistor the ratio of current to voltage is also a constant

i 1 G .
v R 7]
where G is called the conductance. The SI unit of conductance is the
siemens (S), 1 A/V. An older, unofficial unit for conductance is the mho,
which was often abbreviated as ¢5 and is still occasionally written as Q7.
You will occasionally see it used on some circuit diagrams, as well as in cat-
alogs and texts. The same circuit symbol (Fig. 2.244d) is used to represent
both resistance and conductance. The absorbed power is again necessarily
positive and may be expressed in terms of the conductance by
2
p=vi=0"G=12 8]
G
Thus a 2 Q resistor has a conductance of % S, and if a current of 5 A is
flowing through it, then a voltage of 10 V is present across the terminals and
a power of 50 W is being absorbed.
All the expressions given so far in this section were written in terms
of instantaneous current, voltage, and power, such as v = iR and p = vi.
We should recall that this is a shorthand notation for v(z) = Ri(t) and
p(t) =v(t)i(t). The current through and voltage across a resistor must
both vary with time in the same manner. Thus, if R =10 and
v = 2sin 1007 V, then i = 0.2sin 1007 A. Note that the power is given by
0.4sin> 100r W, and a simple sketch will illustrate the different nature of
its variation with time. Although the current and voltage are each negative
during certain time intervals, the absorbed power is never negative!
Resistance may be used as the basis for defining two commonly used
terms, short circuit and open circuit. We define a short circuit as a resistance
of zero ohms; then, since v = iR, the voltage across a short circuit must
be zero, although the current may have any value. In an analogous manner,

(a7)



Note that a current represented by / or i(¢) can be
constant (dc) or time-varying, but currents represented
by the symbol / must be non-time-varying.
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we define an open circuit as an infinite resistance. It follows from Ohm’s law
that the current must be zero, regardless of the voltage across the open circuit.
Although real wires have a small resistance associated with them, we always
assume them to have zero resistance unless otherwise specified. Thus, in all
of our circuit schematics, wires are taken to be perfect short circuits.

SUMMARY AND REVIEW

In this chapter, we introduced the topic of units — specifically those relevant
to electrical circuits—and their relationship to fundamental (SI) units. We
also discussed current and current sources, voltage and voltage sources, and
the fact that the product of voltage and current yields power (the rate of
energy consumption or generation). Since power can be either positive or
negative depending on the current direction and voltage polarity, the pas-
sive sign convention was described to ensure we always know if an element
is absorbing or supplying energy to the rest of the circuit. Four additional
sources were introduced, forming a general class known as dependent
sources. They are often used to model complex systems and electrical com-
ponents, but the actual value of voltage or current supplied is typically
unknown until the entire circuit is analyzed. We concluded the chapter with
the resistor—by far the most common circuit element—whose voltage and
current are linearly related (described by Ohm’s law). Whereas the resistiv-
ity of a material is one of its fundamental properties (measured in 2 - cm),
resistance describes a device property (measured in €2) and hence depends
not only on resistivity but on the device geometry (i.e., length and area)
as well.

We conclude with key points of this chapter to review, along with ap-
propriate examples.

Q The system of units most commonly used in electrical engineering is
the SI.

Q The direction in which positive charges are moving is the direction of
positive current flow; alternatively, positive current flow is in the
direction opposite that of moving electrons.

To define a current, both a value and a direction must be given.
Currents are typically denoted by the uppercase letter “I”” for constant
(dc) values, and either i () or simply i otherwise.

O To define a voltage across an element, it is necessary to label the
terminals with “+” and “—" signs as well as to provide a value (either
an algebraic symbol or a numerical value).

Q Any element is said to supply positive power if positive current flows
out of the positive voltage terminal. Any element absorbs positive
power if positive current flows into the positive voltage terminal.
(Example 2.1)

Q There are six sources: the independent voltage source, the independent
current source, the current-controlled dependent current source, the
voltage-controlled dependent current source, the voltage-controlled
dependent voltage source, and the current-controlled dependent voltage
source. (Example 2.2)
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Q Ohm’s law states that the voltage across a linear resistor is directly
proportional to the current flowing through it; i.e., v = Ri. (Example 2.3)

Q The power dissipated by a resistor (which leads to the production of
heat) is given by p = vi = i’R = v?/R. (Example 2.3)

0 Wires are typically assumed to have zero resistance in circuit analysis.
When selecting a wire gauge for a specific application, however, local
electrical and fire codes must be consulted. (Example 2.4)

READING FURTHER

A good book that discusses the properties and manufacture of resistors in
considerable depth:

Felix Zandman, Paul-René Simon, and Joseph Szwarc, Resistor Theory
and Technology. Raleigh, N.C.: SciTech Publishing, 2002.

A good all-purpose electrical engineering handbook:

Donald G. Fink and H. Wayne Beaty, Standard Handbook for Electrical
Engineers, 13th ed., New York: McGraw-Hill, 1993.

In particular, pp. 1-1 to 1-51, 2-8 to 2-10, and 4-2 to 4-207 provide an
in-depth treatment of topics related to those discussed in this chapter.

A detailed reference for the Sl is available on the Web from the National
Institute of Standards:

Ambler Thompson and Barry N. Taylor, Guide for the Use of the
International System of Units (SI), NIST Special Publication 811, 2008
edition, www.nist.gov.

EXERCISES

2.1 Units and Scales

1. Convert the following to engineering notation:

(a) 0.045 W (b) 2000 pJ
(c) 0.1 ns (d) 39,212 as
(e) 3% (f) 18,000 m

(g) 2,500,000,000,000 bits  (h) 10' atoms/cm?

2. Convert the following to engineering notation:

(a) 1230 fs (b) 0.0001 decimeter
(c) 1400 mK (d) 32nm
(e) 13,560 kHz (f) 2021 micromoles
(g) 13 deciliters (h) 1 hectometer

3. Express the following in engineering units:
(@) 1212 mV (b) 10" pA
(¢) 1000 yoctoseconds (d) 33.9997 zeptoseconds
(e) 13,100 attoseconds f) 10~ zettasecond
(g) 1073 second (h) 107° Gs

4. Expand the following distances in simple meters:
(a) 1Zm (b) 1Em (¢) 1 Pm

(d) 1 Tm (¢) 1Gm (f) 1 Mm
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5. Convert the following to SI units, taking care to employ proper engineering

notation:
(a) 212°F (b) O°F (¢c) OK
(d) 200 hp (e) 1yard (f) 1 mile
6. Convert the following to SI units, taking care to employ proper engineering
notation:
(a) 100°C (b) 0°C (c) 42K

(d) 150 hp (e) 500 Btu (f) 1001J/s

7. A certain krypton fluoride laser generates 15 ns long pulses, each of which
contains 550 mJ of energy. (a) Calculate the peak instantaneous output power
of the laser. (b) If up to 100 pulses can be generated per second, calculate the
maximum average power output of the laser.

8. When operated at a wavelength of 750 nm, a certain Ti:sapphire laser is capa-
ble of producing pulses as short as 50 fs, each with an energy content of
500 wJ. (a) Calculate the instantaneous output power of the laser. (b) If the
laser is capable of a pulse repetition rate of 80 MHz, calculate the maximum
average output power that can be achieved.

9. An electric vehicle is driven by a single motor rated at 40 hp. If the motor is
run continuously for 3 h at maximum output, calculate the electrical energy
consumed. Express your answer in SI units using engineering notation.

10. Under insolation conditions of 500 W/m? (direct sunlight), and 10% solar cell
efficiency (defined as the ratio of electrical output power to incident solar
power), calculate the area required for a photovoltaic (solar cell) array capable
of running the vehicle in Exer. 9 at half power.

11. A certain metal oxide nanowire piezoelectricity generator is capable of
producing 100 pW of usable electricity from the type of motion obtained from
a person jogging at a moderate pace. (a) How many nanowire devices are
required to operate a personal MP3 player which draws 1 W of power? (b) If
the nanowires can be produced with a density of 5 devices per square micron
directly onto a piece of fabric, what area is required, and would it be practical?

12. A particular electric utility charges customers different rates depending on their
daily rate of energy consumption: $0.05/kWh up to 20 kWh, and $0.10/kWh
for all energy usage above 20 kWh in any 24 hour period. (a) Calculate how
many 100 W light bulbs can be run continuously for less than $10 per week.
(b) Calculate the daily energy cost if 2000 kW of power is used continuously.

13. The Tilting Windmill Electrical Cooperative LLC Inc. has instituted a
differential pricing scheme aimed at encouraging customers to conserve
electricity use during daylight hours, when local business demand is at its
highest. If the price per kilowatthour is $0.033 between the hours of 9 p.m. and
6 a.m., and $0.057 for all other times, how much does it cost to run a 2.5 kW
portable heater continuously for 30 days?

14. Assuming a global population of 9 billion people, each using approximately
100 W of power continuously throughout the day, calculate the total land area
that would have to be set aside for photovoltaic power generation, assuming
800 W/m? of incident solar power and a conversion efficiency (sunlight to
electricity) of 10%.

2.2 Charge, Current, Voltage, and Power

15. The total charge flowing out of one end of a small copper wire and into an
unknown device is determined to follow the relationship ¢ () = 5e~"/? C,
where t is expressed in seconds. Calculate the current flowing into the device,
taking note of the sign.

16. The current flowing into the collector lead of a certain bipolar junction
transistor (BJT) is measured to be 1 nA. If no charge was transferred in or out
of the collector lead prior to r = 0, and the current flows for 1 min, calculate
the total charge which crosses into the collector.
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17. The total charge stored on a 1 cm diameter insulating plate is —10'3 C.
(a) How many electrons are on the plate? (b) What is the areal density of
electrons (number of electrons per square meter)? (c) If additional electrons are
added to the plate from an external source at the rate of 10° electrons per
second, what is the magnitude of the current flowing between the source and
the plate?

18. A mysterious device found in a forgotten laboratory accumulates charge at a
rate specified by the expression ¢ (#) =9 — 10t C from the moment it is
switched on. (a) Calculate the total charge contained in the device at t = 0.
(b) Calculate the total charge contained at # = 1 s. (¢) Determine the current
flowing into the device atr = 15,3 s, and 10 s.

19. A new type of device appears to accumulate charge according to the expression
q(t) =10t> — 22t mC (¢ in s). (@) In the interval 0 < t < 5 s, at what time does
the current flowing into the device equal zero? (b) Sketch ¢ (¢) and i(¢) over
the interval 0 <t < 5s.

20. The current flowing through a tungsten-filament light bulb is determined to
follow i(¢) = 114 sin(1007¢) A. (a) Over the interval defined by ¢+ = 0 and
t = 2 s, how many times does the current equal zero amperes? (b) How much
charge is transported through the light bulb in the first second?

21. The current waveform depicted in Fig. 2.27 is characterized by a period of 8 s.
(a) What is the average value of the current over a single period? (b) If
¢q(0) =0, sketch g(¢),0 <t < 20 s.

i)

12—
10—

8
6
41—
2

C L1 ! ,
1 23 45 6 7 8 910111213 14 15

t(s)

M FIGURE 2.27 An example of a time-varying current.

22. The current waveform depicted in Fig. 2.28 is characterized by a period of 4 s.
(a) What is the average value of the current over a single period? (b) Compute
the average current over the interval 1 <t < 3 s. (¢) If ¢(0) = 1 C, sketch
q(),0 <t <4s.

i(1)

47
3
zk
1%
‘ 1 (s)
1 1 2 3 4 5 |6 78
ol
3

B FIGURE 2.28 An example of a time-varying current.
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23. A path around a certain electric circuit has discrete points labeled A, B, C, and
D. To move an electron from points A to C requires 5 pJ. To move an electron
from B to C requires 3 pJ. To move an electron from A to D requires 8 pJ.

(a) What is the potential difference (in volts) between points B and C,
assuming a “+” reference at C? (b) What is the potential difference (in volts)
between points B and D, assuming a “+” reference at D? (¢) What is the
potential difference (in volts) between points A and B (again, in volts),
assuming a “+” reference at B?

24. Two metallic terminals protrude from a device. The terminal on the left is the
positive reference for a voltage called v, (the other terminal is the negative
reference). The terminal on the right is the positive reference for a voltage
called v, (the other terminal being the negative reference). If it takes 1 mJ of
energy to push a single electron into the left terminal, determine the voltages
vy and vy.

25. The convention for voltmeters is to use a black wire for the negative reference
terminal and a red wire for the positive reference terminal. (a) Explain why
two wires are required to measure a voltage. (b) If it is dark and the wires into
the voltmeter are swapped by accident, what will happen during the next
measurement?

26. Determine the power absorbed by each of the elements in Fig. 2.29.

N |1 o VAN 2A<D

6V

(a) ) (c)
M FIGURE 2.29 Elements for Exer. 26.

27. Determine the power absorbed by each of the elements in Fig. 2.30.

l 1A
B 8¢ mA +
o TN—0
2V 4+ ~16¢7V - 2V 10724,
(t =500 ms)
+ p—
(i; = 100 mA)

(a) (b) ()
M FIGURE 2.30 Elements for Exer. 27.

28. A constant current of 1 ampere is measured flowing into the positive reference
terminal of a pair of leads whose voltage we’ll call v,. Calculate the absorbed
poweratt = 1 sif v,(¢) equals (a) +1 V; (b) —1 V; (c) 2 + 5cos(5¢) V;
(d)4e 2V, (¢) Explain the significance of a negative value for absorbed
power.
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29. Determine the power supplied by the leftmost element in the circuit of
Fig. 2.31.

()
ZAT N

-~ NS A
NORLO ®
-3 A

—

- 10V +
M FIGURE 2.31

30. The current-voltage characteristic of a silicon solar cell exposed to direct
sunlight at noon in Florida during midsummer is given in Fig. 2.32. It is
obtained by placing different-sized resistors across the two terminals of the
device and measuring the resulting currents and voltages.

(a) What is the value of the short-circuit current?
(b) What is the value of the voltage at open circuit?
(c) Estimate the maximum power that can be obtained from the device.

Current (A)

3.0
2.5
2.0
1.5
1.0
0.5

| | |
0.125 0.250 0.375 0.500

M FIGURE 2.32

Voltage (V)

2.3 Voltage and Current Sources

31. Some of the ideal sources in the circuit of Fig. 2.31 are supplying positive
power, and others are absorbing positive power. Determine which are which,
and show that the algebraic sum of the power absorbed by each element
(taking care to preserve signs) is equal to zero.

32. By careful measurements it is determined that a benchtop argon ion laser is
consuming (absorbing) 1.5 kW of electric power from the wall outlet, but only
producing 5 W of optical power. Where is the remaining power going? Doesn’t
conservation of energy require the two quantities to be equal?

33. Refer to the circuit represented in Fig. 2.33, while noting that the same current
flows through each element. The voltage-controlled dependent source provides
a current which is 5 times as large as the voltage V,. (a) For Vg = 10 V and
Vy = 2V, determine the power absorbed by each element. (b) Is element A
likely a passive or active source? Explain.

M FIGURE 2.33
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34. Refer to the circuit represented in Fig. 2.33, while noting that the same current
flows through each element. The voltage-controlled dependent source provides
a current which is 5 times as large as the voltage V. (a) For Vg = 100 V and
Ve =92V, determine the power supplied by each element. (b) Verify that the
algebraic sum of the supplied powers is equal to zero.

35. The circuit depicted in Fig. 2.34 contains a dependent current source; the
magnitude and direction of the current it supplies are directly determined by
the voltage labeled v;. Note that therefore i, = —3v;. Determine the voltage
V1 if Uy = 33i2 and ip = 100 mA.

B FIGURE 2.34

36. To protect an expensive circuit component from being delivered too much
power, you decide to incorporate a fast-blowing fuse into the design.
Knowing that the circuit component is connected to 12 V, its minimum power
consumption is 12 W, and the maximum power it can safely dissipate is 100 W,
which of the three available fuse ratings should you select: 1 A, 4 A, or 10 A?
Explain your answer.

37. The dependent source in the circuit of Fig. 2.35 provides a voltage whose
value depends on the current i,,. What value of i, is required for the dependent
source to be supplying 1 W?

+
—2i, 23 I::I
M FIGURE 2.35

2.4 Ohm'’s Law

38. Determine the magnitude of the current flowing through a 4.7 k<2 resistor if the
voltage across it is (a) 1 mV; (b) 10V; (¢) 4e™" V; (d) 100 cos(5¢) V; (e) —7 V.

39. Real resistors can only be manufactured to a specific tolerance, so that in effect
the value of the resistance is uncertain. For example, a 1 €2 resistor specified as
5% tolerance could in practice be found to have a value anywhere in the range
of 0.95 to 1.05 2. Calculate the voltage across a 2.2 k2 10% tolerance resistor
if the current flowing through the element is (a) 1 mA; (b) 4 sin44t mA.

40. (a) Sketch the current-voltage relationship (current on the y-axis) of a 2 k2
resistor over the voltage range of —10 V < Viggisior < +10 V. Be sure to label

both axes appropriately. (b) What is the numerical value of the slope (express
your answer in siemens)?

41. Sketch the voltage across a 33 2 resistor over the range 0 < ¢ < 27 s, if the
current is given by 2.8 cos(t) A. Assume both the current and voltage are
defined according to the passive sign convention.

42. Figure 2.36 depicts the current-voltage characteristic of three different resistive
elements. Determine the resistance of each, assuming the voltage and current
are defined in accordance with the passive sign convention.
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B FIGURE 2.36

43. Determine the conductance (in siemens) of the following: (a) 0 ; (b) 100 M;
() 200 mL2.

44. Determine the magnitude of the current flowing through a 10 mS conductance
if the voltage across itis (@) 2 mV; (b) —1 V; (¢) 100e=2 V; (d) 5sin(5¢) V;
(e)O V.

45. A 1% tolerance 1 k€2 resistor may in reality have a value anywhere in the
range of 990 to 1010 2. Assuming a voltage of 9 V is applied across it,
determine (a) the corresponding range of current and (b) the corresponding
range of absorbed power. (c) If the resistor is replaced with a 10% tolerance
1 k2 resistor, repeat parts (a) and (b).

46. The following experimental data is acquired for an unmarked resistor, using a
variable-voltage power supply and a current meter. The current meter readout
is somewhat unstable, unfortunately, which introduces error into the
measurement.

Voltage (V) Current (mA)
-2.0 —0.89
-1.2 —0.47

0.0 0.01
1.0 0.44
1.5 0.70

(a) Plot the measured current-versus-voltage characteristic.
(b) Using a best-fit line, estimate the value of the resistance.
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47. Utilize the fact that in the circuit of Fig. 2.37, the total power supplied by the
voltage source must equal the total power absorbed by the two resistors to

Vg e R, show that
Ve, = Vg2
Ry = Vs~
: R+ Ry
W FIGURE 2.37 You may assume the same current flows through each element (a requirement

of charge conservation).

48. For each of the circuits in Fig. 2.38, find the current / and compute the power
absorbed by the resistor.

10 kQ 10 kQ

5V 5V

&
4

10 kQ 10 kQ

b

<
&

b

<
E

M FIGURE 2.38

49. Sketch the power absorbed by a 100 €2 resistor as a function of voltage over
the range —2 V < Viesistor < +2 V.

Chapter-Integrating Exercises

@ 50. So-called “n-type” silicon has a resistivity given by p = (—gNppu,)~", where
Np is the volume density of phosphorus atoms (atoms/cm?), i, is the electron
mobility (cm?V -s), and ¢ = —1.602 x 10~'? C is the charge of each electron.
Conveniently, a relationship exists between mobility and Np, as shown in

Fig. 2.39. Assume an 8 inch diameter silicon wafer (disk) having a thickness of
300 wm. Design a 10 2 resistor by specifying a phosphorus concentration in
the range of 2 x 10! cm™ < Np < 2 x 107 cm~3, along with a suitable
geometry (the wafer may be cut, but not thinned).

104

i, (cm?/Vs)
S

\

102
1014 1015 1016 ]017 1018 ]019
Np, (atoms/cm?)

M FIGURE 2.39

5

—_

. Figure 2.39 depicts the relationship between electron mobility u, and dopant
density Np for n-type silicon. With the knowledge that resistivity in this
material is given by p = Npu,/q, plot resistivity as a function of dopant
density over the range 10" cm™ < Np < 10" cm™3.
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il 52. Referring to the data of Table 2.4, design a resistor whose value can be varied
: mechanically in the range of 100 to 500 2 (assume operation at 20°C).

53. A 250 ft long span separates a dc power supply from a lamp which draws 25 A
of current. If 14 AWG wire is used (note that two wires are needed for a total
of 500 ft), calculate the amount of power wasted in the wire.

54. The resistance values in Table 2.4 are calibrated for operation at 20°C. They
may be corrected for operation at other temperatures using the relationship®
R, 234541

Ry 2345471,

where T; = reference temperature (20°C in present case)

T, = desired operating temperature

R, = resistance at 7}

R, = resistance at T»
A piece of equipment relies on an external wire made of 28 AWG soft copper,
which has a resistance of 50.0 2 at 20°C. Unfortunately, the operating
environment has changed, and it is now 110.5°F. (a) Calculate the length of
the original wire. (b) Determine by how much the wire should be shortened so
that it is once again 50.0 2.

. Your favorite meter contains a precision (1% tolerance) 10 €2 resistor.
Unfortunately, the last person who borrowed this meter somehow blew the
resistor, and it needs to be replaced. Design a suitable replacement, assuming
at least 1000 ft of each of the wire gauges listed in Table 2.4 is readily
available to you.

56. At a new installation, you specified that all wiring should conform to the
ASTM B33 specification (see Table 2.3). Unfortunately the subcontractor
misread your instructions and installed B415 wiring instead (but the same
gauge). Assuming the operating voltage is unchanged, (a) by how much will
the current be reduced, and (b) how much additional power will be wasted in
the lines? (Express both answers in terms of percentage.)

57.1f 1 mA of current is forced through a 1 mm diameter, 2.3 meter long piece of
hard, round, aluminum-clad steel (B415) wire, how much power is wasted as
a result of resistive losses? If instead wire of the same dimensions but
conforming to B75 specifications is used, by how much will the power wasted
due to resistive losses be reduced?

58. The network shown in Fig. 2.40 can be used to accurately model the behavior
of a bipolar junction transistor provided that it is operating in the forward
active mode. The parameter B is known as the current gain. If for this device

Ic
Collector
Bl
0.7V
Iy— >
Base
Emitter

B FIGURE 2.40 DC model for a bipolar junction transistor operating in forward active mode.

(4) D. G. Fink and H. W. Beaty, Standard Handbook for Electrical Engineers, 13th ed. New York:
McGraw-Hill, 1993, p. 2-9.
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B =100, and /p is determined to be 100 nA, calculate (a) /¢, the current
flowing into the collector terminal; and (b) the power dissipated by the base-
emitter region.

59. A 100 W tungsten filament light bulb functions by taking advantage of
resistive losses in the filament, absorbing 100 joules each second of energy
from the wall socket. How much optical energy per second do you expect it to
produce, and does this violate the principle of energy conservation?

60. Batteries come in a wide variety of types and sizes. Two of the most common
are called “AA” and “AAA.” A single battery of either type is rated to produce
a terminal voltage of 1.5 V when fully charged. So what are the differences
between the two, other than size? (Hint: Think about energy.)
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L Voltage and
¥ Current Laws

KEY CONCEPTS

New Circuit Terms: Node,

INTRODUCTION Path, Loop, and Branch

In Chap. 2 we were introduced to independent voltage and current Py

sources, dependent sources, and resistors. We discovered that Kirchhoff's Current Law (KCL)
dependent sources come in four varieties, and are controlled by a ®

voltage or current which exists elsewhere. Once we know the Kirchhoff's Voltage Law (KVL)
voltage across a resistor, we know its current (and vice versa); Py

this is not the case for sources, however. In general, circuits must Analysis of Basic Series and
be analyzed to determine a complete set of voltages and currents. Parallel Circuits

This turns out to be reasonably straightforward, and only two ®

simple laws are needed in addition to Ohm’s law. These new laws Combination of Series and
are Kirchhoff’s current law (KCL) and Kirchhoff’s voltage law Parallel Sources

(KVL), and they are simply restatements of charge and energy ®

conservation, respectively. They apply to any circuit we will ever Reduction of Series and
encounter, although in later chapters we will learn more efficient Parallel Resistor
techniques for specific types of situations. . Combinations

Voltage and Current Division

3.1 , NODES, PATHS, LOOPS, AND BRANCHES ®

We now focus our attention on the current-voltage relationships in
simple networks of two or more circuit elements. The elements will
be connected by wires (sometimes referred to as “leads”), which have
zero resistance. Since the network then appears as a number of sim-
ple elements and a set of connecting leads, it is called a lumped-
parameter network. A more difficult analysis problem arises when
we are faced with a distributed-parameter network, which contains
an essentially infinite number of vanishingly small elements. We will
concentrate on lumped-parameter networks in this text.

Ground Connections

39
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In circuits assembled in the real world, the wires will
always have finite resistance. However, this resistance
is typically so small compared to other resistances in
the circuit that we can neglect it without introducing
significant error. In our idealized circuits, we will
therefore refer to “zero resistance” wires from now on.

(@)

O 3

(b

M FIGURE 3.1 (a) A circuit containing three nodes
and five branches. (b) Node 1 is redrawn to look like
two nodes; it is still one node.
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A point at which two or more elements have a common connection is
called a node. For example, Fig. 3.1a shows a circuit containing three
nodes. Sometimes networks are drawn so as to trap an unwary student into
believing that there are more nodes present than is actually the case. This
occurs when a node, such as node 1 in Fig. 3.1q, is shown as two separate
junctions connected by a (zero-resistance) conductor, as in Fig. 3.15. How-
ever, all that has been done is to spread the common point out into a
common zero-resistance line. Thus, we must necessarily consider all of the
perfectly conducting leads or portions of leads attached to the node as part
of the node. Note also that every element has a node at each of its ends.

Suppose that we start at one node in a network and move through a sim-
ple element to the node at the other end. We then continue from that node
through a different element to the next node, and continue this movement
until we have gone through as many elements as we wish. If no node was
encountered more than once, then the set of nodes and elements that we
have passed through is defined as a path. If the node at which we started is
the same as the node on which we ended, then the path is, by definition, a
closed path or a loop.

For example, in Fig. 3.1a, if we move from node 2 through the current
source to node 1, and then through the upper right resistor to node 3, we
have established a path; since we have not continued on to node 2 again, we
have not made a loop. If we proceeded from node 2 through the current
source to node 1, down through the left resistor to node 2, and then up
through the central resistor to node 1 again, we do not have a path, since a
node (actually two nodes) was encountered more than once; we also do not
have a loop, because a loop must be a path.

Another term whose use will prove convenient is branch. We define a
branch as a single path in a network, composed of one simple element and
the node at each end of that element. Thus, a path is a particular collection
of branches. The circuit shown in Fig. 3.1a and b contains five branches.

3.2 KIRCHHOFF'S CURRENT LAW

We are now ready to consider the first of the two laws named for Gustav
Robert Kirchhoff (two 4’s and two f’s), a German university professor who
was born about the time Ohm was doing his experimental work. This
axiomatic law is called Kirchhoff’s current law (abbreviated KCL), and
it simply states that

The algebraic sum of the currents entering any node is zero.

This law represents a mathematical statement of the fact that charge
cannot accumulate at a node. A node is not a circuit element, and it certainly
cannot store, destroy, or generate charge. Hence, the currents must sum to
zero. A hydraulic analogy is sometimes useful here: for example, consider
three water pipes joined in the shape of a Y. We define three “currents” as
flowing into each of the three pipes. If we insist that water is always flow-
ing, then obviously we cannot have three positive water currents, or the
pipes would burst. This is a result of our defining currents independent of
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the direction that water is actually flowing. Therefore, the value of either
one or two of the currents as defined must be negative.

Consider the node shown in Fig. 3.2. The algebraic sum of the four cur-
rents entering the node must be zero:

ia+ip+ (—ic)+(=ip) =0

However, the law could be equally well applied to the algebraic sum of
the currents leaving the node:

(—ig) + (=ip) +ic+ip=0

We might also wish to equate the sum of the currents having reference
arrows directed into the node to the sum of those directed out of the node:

ia+ig=ic+ip
which simply states that the sum of the currents going in must equal the sum
of the currents going out.

M FIGURE 3.2 Example node to illustrate the applica-
tion of Kirchhoff's current law.

For the circuit in Fig. 3.3a, compute the current through resistor R;
if it is known that the voltage source supplies a current of 3 A.

Identify the goal of the problem.
The current through resistor R3, labeled as i on the circuit diagram.

Collect the known information.
The node at the top of Rj is connected to four branches.

Two of these currents are clearly labeled: 2 A flows out of the node
into R,, and 5 A flows into the node from the current source. We are
told the current out of the 10 V source is 3 A.

Devise a plan.
If we label the current through R, (Fig. 3.3b), we may write a KCL
equation at the top node of resistors R, and Rj.

Construct an appropriate set of equations.
Summing the currents flowing into the node:

i —2—i+5=0

The currents flowing into this node are shown in the expanded dia-
gram of Fig. 3.3c¢ for clarity.

Determine if additional information is required.

We have one equation but two unknowns, which means we need to
obtain an additional equation. At this point, the fact that we know the
10 V source is supplying 3 A comes in handy: KCL shows us that this
is also the current ig, .

Attempt a solution.
Substituting, we find thati =3 —24+5 =6 A.

Verify the solution. Is it reasonable or expected?
It is always worth the effort to recheck our work. Also, we can
attempt to evaluate whether at least the magnitude of the solution is

EXAMPLE
Rl
12A lz
10V R, Ry 5A
(@)
i
R, lZA 11
10V R, R; 5A
(b)
iRy (g1 —2A) SA
—NMN\
R, le Ji
R, R, 5A

(©)

M FIGURE 3.3 (a) Simple circuit for which the
current through resistor Rs is desired. (b) The current
through resistor R; is labeled so that a KCL equation
can be written. (c) The currents into the top node of
Rs are redrawn for clarity.

(Continued on next page)
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M FIGURE 3.5 The potential difference between
points A and B is independent of the path selected.
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reasonable. In this case, we have two sources—one supplies 5 A, and
the other supplies 3 A. There are no other sources, independent or
dependent. Thus, we would not expect to find any current in the
circuit in excess of 8 A.

PRACTICE .

3.1 Count the number of branches and nodes in the circuit in Fig. 3.4.
If i, =3 A and the 18 V source delivers 8 A of current, what is the
value of R, ? (Hint: You need Ohm’s law as well as KCL.)

13A

18V<j> §RA §69 (j)vx

M FIGURE 3.4

Ans: 5 branches, 3 nodes, 1.

A compact expression for Kirchhoff’s current law is

N
> i =0 (1]
n=1

which is just a shorthand statement for
i1 +ip+i3+---+iy=0 [2]

When Eq. [1] or Eq. [2] is used, it is understood that the N current
arrows are either all directed toward the node in question, or are all directed
away from it.

3.3 , KIRCHHOFF’'S VOLTAGE LAW

Current is related to the charge flowing through a circuit element, whereas
voltage is a measure of potential energy difference across the element.
There is a single unique value for any voltage in circuit theory. Thus, the en-
ergy required to move a unit charge from point A to point B in a circuit must
have a value independent of the path chosen to get from A to B (there is
often more than one such path). We may assert this fact through Kirchhoff’s
voltage law (abbreviated KVL):

The algebraic sum of the voltages around any closed path is zero.

In Fig. 3.5, if we carry a charge of 1 C from A to B through element 1,
the reference polarity signs for v; show that we do v; joules of work.! Now

(1) Note that we chose a 1 C charge for the sake of numerical convenience: therefore, we did
(1 C)(vy J/C) = vy joules of work.
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if, instead, we choose to proceed from A to B via node C, then we expend
(vy — v3) joules of energy. The work done, however, is independent of the
path in a circuit, and so any route must lead to the same value for the volt-
age. In other words,

V=1 — 3 [3]

It follows that if we trace out a closed path, the algebraic sum of the volt-
ages across the individual elements around it must be zero. Thus, we may
write

vi+uvtuvit---+oy=0

or, more compactly,

N
Z vy =0 [4]
n=1

We can apply KVL to a circuit in several different ways. One method
that leads to fewer equation-writing errors than others consists of moving
mentally around the closed path in a clockwise direction and writing down
directly the voltage of each element whose (+) terminal is entered, and
writing down the negative of every voltage first met at the (—) sign. Apply-
ing this to the single loop of Fig. 3.5, we have

—vi4+v,—1v3=0

which agrees with our previous result, Eq. [3].

@

EXAMPLE 3.2

In the circuit of Fig. 3.6, find v, and i,.

We know the voltage across two of the three elements in the circuit.
Thus, KVL can be applied immediately to obtain v,.

Beginning with the bottom node of the 5 V source, we apply KVL
clockwise around the loop:

—5—T74+v, =0

sov, =12 V.

KCL applies to this circuit, but only tells us that the same current
(i,) flows through all three elements. We now know the voltage across
the 100 2 resistor, however.

Invoking Ohm’s law,

Uy 12

ip=— =" A=120mA
100~ 100

PRACTICE _

3.2 Determine i, and v, in the circuit of Fig. 3.7.

Ans: v, = —4 V; i, = —400 mA.

M FIGURE 3.6 Asimple circuit with two voltage
sources and a single resistor.

M FIGURE 3.7
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EXAMPLE 3.3

In the circuit of Fig. 3.8 there are eight circuit elements. Find vg;
(the voltage across R;) and the voltage labeled v,.

The best approach for finding vg; is to look for a loop to which we can
apply KVL. There are several options, but the leftmost loop offers a
straightforward route, as two of the voltages are clearly specified. Thus,
we find vg, by writing a KVL equation around the loop on the left,
starting at point c:

4—-36+vg =0
which leads to vgy, = 32 V.
36V

+ 12V -

B FIGURE 3.8 Acircuit with eight elements for which we desire vg, and v;.

To find v,, we might think of this as the (algebraic) sum of the volt-
ages across the three elements on the right. However, since we do not
have values for these quantities, such an approach would not lead to a
numerical answer. Instead, we apply KVL beginning at point ¢, moving
up and across the top to a, through v, to b, and through the conducting
lead to the starting point:

+4-364+12+ 1440, =0

Points b and c, as well as the wire between them, are all
part of the same node.

so that
v, =6V
An alternative approach: Knowing vg,, we might have taken the
shortcut through R;:
—324+12+144v, =0
yielding v, = 6 V once again.

PRACTICE .
3.3 For the circuit of Fig. 3.9, determine (a) vg, and (b) v,, if vg; =1 V.

D

| v . -9V + s o
—8V§ R2§”R2 v, +
+ - Ry < vpy
c b
M FIGURE 3.9

Ans: (a)4V; (b) —8 V.
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As we have just seen, the key to correctly analyzing a circuit is to first me-
thodically label all voltages and currents on the diagram. This way, carefully
written KCL or KVL equations will yield correct relationships, and Ohm’s
law can be applied as necessary if more unknowns than equations are ob-
tained initially. We illustrate these principles with a more detailed example.

@

EXAMPLE 3.4

Determine v, in the circuit of Fig. 3.10a.

SA 40

(@)
5A 30 440
MN MN
+ 1 - + oy - .
+

()
M FIGURE 3.10 (a) A circuit for which v is to be determined using
KVL. (b) Circuit with voltages and currents labeled.

We begin by labeling voltages and currents on the rest of the elements
in the circuit (Fig. 3.10b). Note that v, appears across the 2 €2 resistor
and the source i, as well.

If we can obtain the current through the 2 €2 resistor, Ohm’s law will
yield v,. Writing the appropriate KCL equation, we see that

Ip =4+ iy

Unfortunately, we do not have values for any of these three quanti-
ties. Our solution has (temporarily) stalled.

Since we were given the current flowing from the 60 V source, per-
haps we should consider starting from that side of the circuit. Instead of
finding v, using iy, it might be possible to find v, directly using KVL.
We can write the following KVL equations:

—60 + vg +vip=0
and
—vip+vs+v, =0 [5]

This is progress: we now have two equations in four unknowns, an

improvement over one equation in which al/l terms were unknown. In

fact, we know that vg = 40V through Ohm’s law, as we were told that
5 A flows through the 8 €2 resistor. Thus, vig = 0+ 60 — 40 =20V,

(Continued on next page)
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M FIGURE 3.12 (a) Asingle-loop circuit with four
elements. (b) The circuit model with source voltages
and resistance values given. () Current and voltage
reference signs have been added to the circuit.
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so Eq. [5] reduces to
v, =20 — vy
If we can determine vy, the problem is solved.
The best route to finding a numerical value for the voltage vy in this
case is to employ Ohm’s law, which requires a value for i4. From KCL,

we see that
. . (1) 20
— 5= =5 =7
H 1o 10 10

so that vy = (4)(3) = 12 Vand hence v, =20 — 12 =8 V.

PRACTICE o
3.4 Determine v, in the circuit of Fig. 3.11.
2A 20
M\ M\
8Q "
30V<’j> §1on §29 vX(Dix
M FIGURE 3.11

Ans: v, = 12.8 V.

3.4 , THE SINGLE-LOOP CIRCUIT

We have seen that repeated use of KCL and KVL in conjunction with Ohm’s
law can be applied to nontrivial circuits containing several loops and a num-
ber of different elements. Before proceeding further, this is a good time to
focus on the concept of series (and, in the next section, parallel) circuits, as
they form the basis of any network we will encounter in the future.

All of the elements in a circuit that carry the same current are said to be
connected in series. As an example, consider the circuit of Fig. 3.10. The
60 V source is in series with the 8 Q2 resistor; they carry the same 5 A cur-
rent. However, the 8 €2 resistor is not in series with the 4 <2 resistor; they
carry different currents. Note that elements may carry equal currents and
not be in series; two 100 W light bulbs in neighboring houses may very well
carry equal currents, but they certainly do not carry the same current and are
not connected in series.

Figure 3.12a shows a simple circuit consisting of two batteries and
two resistors. Each terminal, connecting lead, and solder glob is assumed to
have zero resistance; together they constitute an individual node of the circuit
diagram in Fig. 3.12b. Both batteries are modeled by ideal voltage sources;
any internal resistances they may have are assumed to be small enough to
neglect. The two resistors are assumed to be ideal (linear) resistors.

We seek the current through each element, the voltage across each ele-
ment, and the power absorbed by each element. Our first step in the analy-
sis is the assumption of reference directions for the unknown currents.
Arbitrarily, let us select a clockwise current i which flows out of the upper
terminal of the voltage source on the left. This choice is indicated by an ar-
row labeled i at that point in the circuit, as shown in Fig. 3.12¢. A trivial
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application of Kirchhoff’s current law assures us that this same current must
also flow through every other element in the circuit; we emphasize this fact
this one time by placing several other current symbols about the circuit.

Our second step in the analysis is a choice of the voltage reference for each
of the tworesistors. The passive sign convention requires that the resistor cur-
rent and voltage variables be defined so that the current enters the terminal at
which the positive voltage reference is located. Since we already (arbitrarily)
selected the current direction, vg; and vg, are defined as in Fig. 3.12c¢.

The third step is the application of Kirchhoff’s voltage law to the only
closed path. Let us decide to move around the circuit in the clockwise
direction, beginning at the lower left corner, and to write down directly
every voltage first met at its positive reference, and to write down the nega-
tive of every voltage encountered at the negative terminal. Thus,

—Vs1 + Vg1 + V2 + Vg2 =0 [6]
We then apply Ohm'’s law to the resistive elements:

vr1 = Rii and vgy = Ryi
Substituting into Eq. [6] yields

—Vs1 + Rii + v+ Ri =0
Since i is the only unknown, we find that

Us1 — Us2

i:
R+ R,

The voltage or power associated with any element may now be obtained by
applying v = Ri, p = vi, or p = i’R.

PRACTICE .

3.5 In the circuit of Fig. 3.12b, vs; = 120 V, v, =30V, R} =30 2,
and R, = 15 Q. Compute the power absorbed by each element.

Ans: Pr2ov = —240 W; P3ov = +60 W; P3oo = 120 W; P15 = 60 W.

@

EXAMPLE 3.5

Compute the power absorbed in each element for the circuit shown
in Fig. 3.13a.

30 Q) 30 Q)
AMA—C S AN—C S
O AT 7
B 20y - . 20, -
=120V 1500 == 0y 15030,
- + _ +
@ ®)

M FIGURE 3.13 (a) A single-loop circuit containing a dependent source. (b) The current / and
voltage v are assigned.

(Continued on next page)
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We first assign a reference direction for the current i and a reference po-
larity for the voltage vsp as shown in Fig. 3.13b. There is no need to as-
sign a voltage to the 15 €2 resistor, since the controlling voltage v, for
the dependent source is already available. (It is worth noting, however,
that the reference signs for v,4 are reversed from those we would have
assigned based on the passive sign convention.)

This circuit contains a dependent voltage source, the value of which
remains unknown until we determine v4. However, its algebraic value
2v4 can be used in the same fashion as if a numerical value were avail-
able. Thus, applying KVL around the loop:

—120 4+ v30 +2v4 —v4 =0 [7]
Using Ohm’s law to introduce the known resistor values:
V3p = 30/ and Vy = —15i

Note that the negative sign is required since i flows into the negative
terminal of v4.
Substituting into Eq. [7] yields

—120430i —30i 4+ 15 =0
and so we find that
i=8A
Computing the power absorbed by each element:
pi2ov = (120)(=8) = —960 W
pan = (8)°(30) =1920 W
Pdep = (2v4)(8) = 2[(—=15)(8)]1(8)

=—1920 W
pisa = (8)2(15) =960 W

PRACTICE o

3.6 In the circuit of Fig. 3.14, find the power absorbed by each of the
five elements in the circuit.

Ans: (CW from left) 0.768 W, 1.92 W, 0.2048 W, 0.1792 W, —3.072 W.

M FIGURE 3.14 Asimple loop circuit.

In the preceding example and practice problem, we were asked to compute
the power absorbed by each element of a circuit. It is difficult to think of a
situation, however, in which all of the absorbed power quantities of a circuit
would be positive, for the simple reason that the energy must come from
<ﬂ‘/ somewhere. Thus, from simple conservation of energy, we expect that the
sum of the absorbed power for each element of a circuit should be zero. In
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other words, at least one of the quantities should be negative (neglecting the
trivial case where the circuit is not operating). Stated another way, the sum
of the supplied power for each element should be zero. More pragmatically,
the sum of the absorbed power equals the sum of the supplied power,
which seems reasonable enough at face value.

Let’s test this with the circuit of Fig. 3.13 from Example 3.5, which
consists of two sources (one dependent and one independent) and two
resistors. Adding the power absorbed by each element, we find

Z Pabsorbed = —960 + 1920 — 1920 4 960 = 0

all elements

In reality (our indication is the sign associated with the absorbed power)
the 120 V source supplies +960 W, and the dependent source supplies
41920 W. Thus, the sources supply a total of 960 + 1920 = 2880 W. The
resistors are expected to absorb positive power, which in this case sums to a
total of 1920 + 960 = 2880 W. Thus, if we take into account each element

of the circuit,
E Pabsorbed = E Psupplied
as we expect.

Turning our attention to Practice Problem 3.6, the solution to which
the reader might want to verify, we see that the absorbed powers sum
t0 0.768 + 1.92 4 0.2048 + 0.1792 — 3.072 = 0. Interestingly enough, the
12 V independent voltage source is absorbing 4-1.92 W, which means it is
dissipating power, not supplying it. Instead, the dependent voltage source
appears to be supplying all the power in this particular circuit. Is such a
thing possible? We usually expect a source to supply positive power, but
since we are employing idealized sources in our circuits, it is in fact possi-
ble to have a net power flow into any source. If the circuit is changed in
some way, the same source might then be found to supply positive power.
The result is not known until a circuit analysis has been completed.

3.5 , THE SINGLE-NODE-PAIR CIRCUIT

The companion of the single-loop circuit discussed in Sec. 3.4 is the single-
node-pair circuit, in which any number of simple elements are connected
between the same pair of nodes. An example of such a circuit is shown in
Fig. 3.15a. KVL forces us to recognize that the voltage across each branch
is the same as that across any other branch. Elements in a circuit having a
common voltage across them are said to be connected in parallel.

<

@

EXAMPLE 3.6

Find the voltage, current, and power associated with each element
in the circuit of Fig. 3.15a.

We first define a voltage v and arbitrarily select its polarity as shown in
Fig. 3.15b. Two currents, flowing in the resistors, are selected in con-
formance with the passive sign convention, as shown in Fig. 3.15b.

(Continued on next page)
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+
1 L 1 1
120 A QR 30A Q2R 120A v 3502 <R 30A 502 R,
_ lil fzi
(@) )
M FIGURE 3.15 (a) Asingle-node-pair circuit. (b) A voltage and two currents are assigned.

Determining either current i; or i will enable us to obtain a value
for v. Thus, our next step is to apply KCL to either of the two nodes in
the circuit. Equating the algebraic sum of the currents leaving the upper
node to zero:

—120+i; +30+i, =0
Writing both currents in terms of the voltage v using Ohm’s law
iip=30v and i, = 15v
we obtain
—120+30v + 30+ 150 =0
Solving this equation for v results in
v=2V
and invoking Ohm’s law then gives
ij=60A and i, =30A

The absorbed power in each element can now be computed. In the
two resistors,

pri =302 =120W and pgo = 152> =60 W
and for the two sources,
P120A = 120(—2) = —-240W and P30A = 30(2) =60W

Since the 120 A source absorbs negative 240 W, it is actually supplying
power to the other elements in the circuit. In a similar fashion, we find
that the 30 A source is actually absorbing power rather than supplying it.

PRACTICE _

3.7 Determine v in the circuit of Fig. 3.16.

SA ol 1A 10 6A

M FIGURE 3.16

Ans: 50 V.
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(s1)

EXAMPLE 3.7

Determine the value of v and the power supplied by the
independent current source in Fig. 3.17.

iﬁl +
6kQ§ 2ix<T> s 24mA D §2kﬂ

M FIGURE 3.17 Avoltage v and a current /g are assigned in a
single-node-pair circuit containing a dependent source.

By KCL, the sum of the currents leaving the upper node must be zero,
so that

ig —2iy, —0.024—i, =0
Again, note that the value of the dependent source (2i,) is treated the
same as any other current would be, even though its exact value is not
known until the circuit has been analyzed.
We next apply Ohm’s law to each resistor:
—v

=—— and i, =
6000 2000

U o2 ) —o0024— (L) =0
6000 2000 2000

and so v = (600)(0.024) = 14.4 V.

Any other information we may want to find for this circuit is now eas-
ily obtained, usually in a single step. For example, the power supplied by
the independent source is pyy = 14.4(0.024) = 0.3456 W (345.6 mW).

is

Therefore,

PRACTICE "

3.8 For the single-node-pair circuit of Fig. 3.18, find i4, ip, and ic.

iAl iﬁl iCl
56A D % 180§ 0.17, T> 9Q§ Q 2A

M FIGURE 3.18

Ans: 3A; —54A;6A.

3.6 , SERIES AND PARALLEL CONNECTED SOURCES

It turns out that some of the equation writing that we have been doing for
series and parallel circuits can be avoided by combining sources. Note,
however, that all the current, voltage, and power relationships in the
remainder of the circuit will be unchanged. For example, several voltage
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" (O

%) e = vty —13 X X X
I ) ¢ I3

5 ()

© (@)

[¢]

(b)

= ij—iy+13

B FIGURE 3.19 (a) Series-connected voltage sources can be replaced by a single source. (b) Parallel current

sources can be replaced by a single source.

sources in series may be replaced by an equivalent voltage source having a
voltage equal to the algebraic sum of the individual sources (Fig. 3.19a).
Parallel current sources may also be combined by algebraically adding the
individual currents, and the order of the parallel elements may be rearranged

as desired (Fig. 3.19b).

EXAMPLE 3.8

Determine the current i in the circuit of Fig. 3.20a by first combin-
ing the sources into a single equivalent voltage source.

To be able to combine the voltage sources, they must be in series. Since
the same current (7) flows through each, this condition is satisfied.
Starting from the bottom left-hand corner and proceeding clockwise,

-3-9-5+1=-16V

so we may replace the four voltage sources with a single 16 V source
having its negative reference as shown in Fig. 3.20b.
KVL combined with Ohm’s law then yields

—16 + 100i + 220i =0

or
16

i=—=50mA

T 320

We should note that the circuit in Fig. 3.20c¢ is also equivalent, a fact

easily verified by computing i.

100 O 100 0 100 0

MW\ NV NN
ov ()

U G)sv 16VC> U U C 16V
3v ()

o0 o0 o0

(a) ) ()

M FIGURE 3.20
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PRACTICE .

3.9 Determine the current i in the circuit of Fig. 3.21 after first replac-
ing the four sources with a single equivalent source.

B FIGURE 3.21

Ans: —54 A.

EXAMPLE 3.9

Determine the voltage v in the circuit of Fig. 3.22a by first combin-
ing the sources into a single equivalent current source.

The sources may be combined if the same voltage appears across each
one, which we can easily verify is the case. Thus, we create a new
source, arrow pointing upward into the top node, by adding the currents
that flow into that node:

25-25-3=-3A

One equivalent circuit is shown in Fig. 3.22b.
KCL then allows us to write

34-42=0
5 5

Solving, we find v = 7.5 V.
Another equivalent circuit is shown in Fig. 3.22¢.

+
25A 502 v 25A 50 3A
(a)
+ +
3A 5020 5Q 5020 3A 50
(b) (©

B FIGURE 3.22
(Continued on next page)
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PRACTICE .

3.10 Determine the voltage v in the circuit of Fig. 3.23 after first
replacing the three sources with a single equivalent source.

SA 10 Q v 1A 10Q 6 A

B FIGURE 3.23

Ans: 50 V.

To conclude the discussion of parallel and series source combinations,

we should consider the parallel combination of two voltage sources and the
series combination of two current sources. For instance, what is the equiva-
lent of a 5 V source in parallel with a 10 V source? By the definition of a
voltage source, the voltage across the source cannot change; by Kirchhoff’s
voltage law, then, 5 equals 10 and we have hypothesized a physical impos-
sibility. Thus, ideal voltage sources in parallel are permissible only when
each has the same terminal voltage at every instant. In a similar way, two
current sources may not be placed in series unless each has the same cur-
rent, including sign, for every instant of time.

Determine which of the circuits of Fig. 3.24 are valid.

The circuit of Fig. 3.24a consists of two voltage sources in parallel. The
value of each source is different, so this circuit violates KVL. For exam-
ple, if aresistor is placed in parallel with the 5 V source, it is also in paral-
lel with the 10 V source. The actual voltage across it is therefore ambigu-
ous, and clearly the circuit cannot be constructed as indicated. If we
attempt to build such a circuit in real life, we will find it impossible to
locate “ideal” voltage sources—all real-world sources have an internal
resistance. The presence of such resistance allows a voltage difference
between the two real sources. Along these lines, the circuit of Fig. 3.24b
is perfectly valid.

@ ® O WO 03

(@) ) (©)
M FIGURE 3.24 (a) to (c) Examples of circuits with multiple sources, some of which violate
Kirchhoff's laws.
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The circuit of Fig. 3.24¢ violates KCL: it is unclear what current
actually flows through the resistor R.

PRACTICE .

3.11 Determine whether the circuit of Fig. 3.25 violates either of
Kirchhoff’s laws.

5A 3A<D R

B FIGURE 3.25

Ans: No. If the resistor were removed, however, the resulting circuit would.

3.7 , RESISTORS IN SERIES AND PARALLEL

It is often possible to replace relatively complicated resistor combinations
with a single equivalent resistor. This is useful when we are not specifically
interested in the current, voltage, or power associated with any of the indi-
vidual resistors in the combinations. All the current, voltage, and power rela-
tionships in the remainder of the circuit will be unchanged.

Consider the series combination of N resistors shown in Fig. 3.26a. We
want to simplify the circuit with replacing the N resistors with a single resistor
Req so that the remainder of the circuit, in this case only the voltage source,
does not realize that any change has been made. The current, voltage, and
power of the source must be the same before and after the replacement.

First, apply KVL:

Vg =V + U+ Uy
and then Ohm’s law:
vs=R1i+R2i+"'+RNi=(R1+R2+"'+RN)i

Now compare this result with the simple equation applying to the equiv-
alent circuit shown in Fig. 3.26b:

Uy = Regl

o \ .

LR Ry Ry ‘ L
— VW NW—---- } }
}+v1—+v2— + ooy - | |

|
2 | ‘ vs Reg |
‘ \
|
| |
|
T ___________ J I __ |
(@) (b)

M FIGURE 3.26 (a) Series combination of A resistors. (b) Electrically equivalent circuit.

Helpful Tip: Inspection of the KVL equation for any

()

series circuit will show that the order in which elements

are placed in such a circuit makes no difference.
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Thus, the value of the equivalent resistance for N series resistors is

Req:R1+R2+"'+RN [8]

We are therefore able to replace a two-terminal network consisting of N
series resistors with a single two-terminal element Req that has the same
v-i relationship.

It should be emphasized again that we might be interested in the current,
voltage, or power of one of the original elements. For example, the voltage
of a dependent voltage source may depend upon the voltage across Rj.
Once Rj is combined with several series resistors to form an equivalent re-
sistance, then it is gone and the voltage across it cannot be determined until
R3 is identified by removing it from the combination. In that case, it would
have been better to look ahead and not make R a part of the combination
initially.

EXAMPLE 3.11

Use resistance and source combinations to determine the current i
in Fig. 3.27a and the power delivered by the 80 V source.

We first interchange the element positions in the circuit, being careful
to preserve the proper sense of the sources, as shown in Fig. 3.27b. The

100 | 70 50
AN II| NN
- 30V +
80V 20V
80
AN
(@)
20V
i I 100 7Q
- 30V +
80V 50
80
NN
(b)
i
—_—
90V 300

(©)
M FIGURE 3.27 (a) A series circuit with several sources and resistors.
(b) The elements are rearranged for the sake of clarity. (c) A simpler
equivalent.
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next step is to then combine the three voltage sources into an equivalent
90 V source, and the four resistors into an equivalent 30 2 resistance,
as in Fig. 3.27¢. Thus, instead of writing

—80+10i —30+7i +5i +20+8i =0
we have simply
—90+30i =0
and so we find that
i=3A
In order to calculate the power delivered to the circuit by the 80 V
source appearing in the given circuit, it is necessary to return to
Fig. 3.27a with the knowledge that the current is 3 A. The desired
power isthen80V x 3A = 240 W.

It is interesting to note that no element of the original circuit remains
in the equivalent circuit.

PRACTICE _

3.12 Determine i in the circuit of Fig. 3.28.

B FIGURE 3.28

Ans: —333 mA.

Similar simplifications can be applied to parallel circuits. A circuit

containing N resistors in parallel, as in Fig. 3.29a, leads to the KCL + ii l[ ii
equation : : :
] ) R
iy =i +ir+--+iy ’s(D L §R1 §R2 N
or _
T T (@
Ls R + R + + Ry
"
_ v
Req i (D v §Req
Thus,
1 _ 1 1 1 )
R_eq "R * R, Tt Ry 1 mFIGURE 3.29 (@) Adircuitwith V resistors in
parallel. (b) Equivalent circuit.




()

CHAPTER 3 VOLTAGE AND CURRENT LAWS

which can be written as
-1 _ p-1 —1 —1
Req =R +R, +---+Ry
or, in terms of conductances, as
Geq=G1 +G2++GN

The simplified (equivalent) circuit is shown in Fig. 3.295.
A parallel combination is routinely indicated by the following shorthand
notation:

Req =R ||R2||R3

The special case of only two parallel resistors is encountered fairly of-
ten, and is given by

Req =R ”RZ
B 1
1 1
R, R
Or, more simply,
R Rk [10]
“T R+ R,

The last form is worth memorizing, although it is a common error to
attempt to generalize Eq. [10] to more than two resistors, e.g.,

RiRyR;

R - - -
eq><R1-I—R2+R3

A quick look at the units of this equation will immediately show that the
expression cannot possibly be correct.

PRACTICE o

3.13 Determine v in the circuit of Fig. 3.30 by first combining the three
current sources, and then the two 10 2 resistors.

SA 10 Q v 1A 10 Q 6A

M FIGURE 3.30

Ans: 50 V.
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(s0)

EXAMPLE 3.12

Calculate the power and voltage of the dependent source in Fig. 3.31a.

i3l 15Q

NOE 3Q§ 99§ 0.9i3 T> (D4

60 6Q

(@)

(b)

+ i31
0.9i3<T> v 2AQ 3Q§ §6Q

(©
M FIGURE 3.31 (a) A multinode circuit. (b) The two independent current sources are
combined into a 2 A source, and the 15 €2 resistor in series with the two parallel 6 2
resistors are replaced with a single 18 2 resistor. (c) A simplified equivalent circuit.

We will seek to simplify the circuit before analyzing it, but take care
not to include the dependent source since its voltage and power charac-
teristics are of interest.

Despite not being drawn adjacent to one another, the two indepen-
dent current sources are in fact in parallel, so we replace them with
a2 A source.

The two 6 2 resistors are in parallel and can be replaced with a
single 3 2 resistor in series with the 15 €2 resistor. Thus, the two 6 2
resistors and the 15 2 resistor are replaced by an 18 €2 resistor
(Fig. 3.31D).

No matter how tempting, we should not combine the remaining three
resistors; the controlling variable i3 depends on the 3 €2 resistor and so
that resistor must remain untouched. The only further simplification,
then, is 9 Q|18 2 = 6 2, as shown in Fig. 3.31c.

(Continued on next page)
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Applying KCL at the top node of Fig. 3.31¢, we have

—O.9i3—2+i3+%=0

Employing Ohm’s law,
V= 3i3
which allows us to compute

. 10
l3=?A

Thus, the voltage across the dependent source (which is the same as
the voltage across the 3 2 resistor) is

v=3i3=10V

The dependent source therefore furnishes v x 0.9i; =
10(0.9)(10/3) = 30 W to the remainder of the circuit.

Now if we are later asked for the power dissipated in the 15 €2 resis-
tor, we must return to the original circuit. This resistor is in series with
an equivalent 3 €2 resistor; a voltage of 10 V is across the 18 2 total;
therefore, a current of 5/9 A flows through the 15 2 resistor and the
power absorbed by this element is (5/ 9)2(15) or 4.63 W.

PRACTICE .
3.14 For the circuit of Fig. 3.32, calculate the voltage v, .

i3l 30 30

3Q 30

M FIGURE 3.32

Ans: 2.819 V.
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—A\W
Rl
R,
R3
AMAN—
Vs R
R,
e 2w
yS
Ry R
—\W NN
(a) ()
’\2\/\(
A
if .
—AM——— AW —
Z‘T Rp Rc

(©)
M FIGURE 3.33 These two circuit elements are both in series and in parallel.
(b) R, and Ry are in parallel, and Ry and R are in series. (c) There are no circuit
elements either in series or in parallel with one another.

Three final comments on series and parallel combinations might be
helpful. The first is illustrated by referring to Fig. 3.33a and asking, “Are vy
and R in series or in parallel?” The answer is “Both.” The two elements
carry the same current and are therefore in series; they also enjoy the same
voltage and consequently are in parallel.

The second comment is a word of caution. Circuits can be drawn in such
a way as to make series or parallel combinations difficult to spot. In
Fig. 3.33b, for example, the only two resistors in parallel are R, and R3,
while the only two in series are R; and Rg.

The final comment is simply that a simple circuit element need not be in
series or parallel with any other simple circuit element in a circuit. For exam-
ple, R4 and Rs in Fig. 3.33b are not in series or parallel with any other simple
circuit element, and there are no simple circuit elements in Fig. 3.33¢ that
are in series or parallel with any other simple circuit element. In other words,
we cannot simplify that circuit further using any of the techniques discussed
in this chapter.

3.8 _ VOLTAGE AND CURRENT DIVISION

By combining resistances and sources, we have found one method of short-
ening the work of analyzing a circuit. Another useful shortcut is the appli-
cation of the ideas of voltage and current division. Voltage division is used
to express the voltage across one of several series resistors in terms of the

(a1)
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voltage across the combination. In Fig. 3.34, the voltage across R, is found
via KVL and Ohm’s law:

v=v;+vy =IiR +iR, = i(R; 4+ R»)

SO
M FIGURE 3.34 Anillustration of voltage division. i = v
Ri+R;
Thus,
iR S
V= =\ 5 2
R+ R,
or
Ry
V= —"—0V
Ri+ R

and the voltage across R; is, similarly,

R,

V= ——V
Ri + R,

If the network of Fig. 3.34 is generalized by removing R, and replacing
it with the series combination of Ry, R3, ..., Ry, then we have the general
result for voltage division across a string of N series resistors

Ry

= v (11]
Ri+Ry+---+ Ry

Uk

which allows us to compute the voltage vy that appears across an arbitrary
resistor R; of the series.

EXAMPLE 3.13

Determine v, in the circuit of Fig. 3.35a.

40 i3 'No)
—_—
+ +
12sintV 60 3027 lZsintV o,
(a) (b)

M FIGURE 3.35 A numerical example illustrating resistance combination and voltage
division. (a) Original circuit. (b) Simplified circuit.

We first combine the 6 €2 and 3 €2 resistors, replacing them with
6)(3)/(6+3) =2 Q.

Since v, appears across the parallel combination, our simplification
has not lost this quantity. However, further simplification of the circuit
by replacing the series combination of the 4 2 resistor with our new
2 Q resistor would.
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Thus, we proceed by simply applying voltage division to the circuit
in Fig. 3.35b:

2
v, = (12 sint)4_|_—2 =4sint volts

PRACTICE .
3.15 Use voltage division to determine v, in the circuit of Fig. 3.36.
+ % -
20 30
10V 10 Q) 10 Q
M FIGURE 3.36

Ans: 2 V.

The dual® of voltage division is current division. We are now given a

total current supplied to several parallel resistors, as shown in the circuit of

Fig. 3.37.
The current flowing through R, is

v _iRR) i RiRy

12:R2_ R, Ry R +R
or
R,
)y = ————— 12
i2 1R1+R2 [12]
and, similarly,
R,
| =— 13
"SRR 1]

Nature has not smiled on us here, for these last two equations have a
factor which differs subtly from the factor used with voltage division, and
some effort is going to be needed to avoid errors. Many students look on the
expression for voltage division as “obvious” and that for current division as
being “different.” It helps to realize that the larger of two parallel resistors
always carries the smaller current.

For a parallel combination of N resistors, the current through resistor Ry is

1
o Ry
ik =i . I . B I [14]
R R Ry

(2) The principle of duality is encountered often in engineering. We will consider the topic briefly in
Chap. 7 when we compare inductors and capacitors.

B FIGURE 3.37 Anillustration of current division.
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Written in terms of conductances,

. G
i
Gi+Gy+---+Gy

iy =

which strongly resembles Eq. [11] for voltage division.

40 i3
—
+
12sintV 60 3020,

M FIGURE 3.38 Adcircuit used as an example of
current division. The wavy line in the voltage source
symbol indicates a sinusoidal variation with time.

Write an expression for the current through the 3 €2 resistor in the
circuit of Fig. 3.38.

The total current flowing into the 3 -6 €2 combination is

. 12 sin ¢ 12 sin¢
i(t) = =
4+3l6  4+2

= 2sint A
and thus the desired current is given by current division:

. . 6 4 .
l3(t) = (2 Slnl) m = g sin ¢ A

Unfortunately, current division is sometimes applied when it is not
applicable. As one example, let us consider again the circuit shown in
Fig. 3.33¢, a circuit that we have already agreed contains no circuit ele-
ments that are in series or in parallel. Without parallel resistors, there is no
way that current division can be applied. Even so, there are too many stu-
dents who take a quick look at resistors R4 and Rp and try to apply current
division, writing an incorrect equation such as

A Rp
i jg——
A SRat Ry

Remember, parallel resistors must be branches between the same pair of
nodes.

PRACTICE _

3.16 In the circuit of Fig. 3.39, use resistance combination methods
and current division to find iy, i, and v3.

i £

—_— ST
ANN—
20 40 Q +
120 mA 12502 500 240 Q 20024

B FIGURE 3.39

Ans: 100 mA; 50 mA; 0.8 V.
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( PRACTICAL APPLICATION )

Not the Earth Ground from Geology

Up to now, we have been drawing circuit schematics in a
fashion similar to that of the one shown in Fig. 3.40,
where voltages are defined across two clearly marked
terminals. Special care was taken to emphasize the fact
that voltage cannot be defined at a single point—it is by
definition the difference in potential between two points.
However, many schematics make use of the convention
of taking the earth as defining zero volts, so that all other
voltages are implicitly referenced to this potential. The
concept is often referred to as earth ground, and is fun-
damentally tied to safety regulations designed to prevent
fires, fatal electrical shocks, and related mayhem. The
symbol for earth ground is shown in Fig. 3.41a.

Since earth ground is defined as zero volts, it is often
convenient to use this as a common terminal in schemat-
ics. The circuit of Fig. 3.40 is shown redrawn in this
fashion in Fig. 3.42, where the earth ground symbol rep-
resents a common node. It is important to note that the
two circuits are equivalent in terms of our value for v,
(4.5 V in either case), but are no longer exactly the same.
The circuit in Fig. 3.40 is said to be “floating” in that it
could for all practical purposes be installed on a circuit
board of a satellite in geosynchronous orbit (or on its
way to Pluto). The circuit in Fig. 3.42, however, is some-
how physically connected to the ground through a
conducting path. For this reason, there are two other
symbols that are occasionally used to denote a common
terminal. Figure 3.41b shows what is commonly referred
to as signal ground; there can be (and often is) a large
voltage between earth ground and any terminal tied to
signal ground.

The fact that the common terminal of a circuit may or
may not be connected by some low-resistance pathway
to earth ground can lead to potentially dangerous situa-
tions. Consider the diagram of Fig. 3.43a, which depicts
an innocent bystander about to touch a piece of equip-
ment powered by an ac outlet. Only two terminals have
been used from the wall socket; the round ground pin

4.7 kO

M FIGURE 3.40 Asimple circuit with a voltage v, defined between two
terminals.

of the receptacle was left unconnected. The common
terminal of every circuit in the equipment has been tied
together and electrically connected to the conducting
equipment chassis; this terminal is often denoted using
the chassis ground symbol of Fig. 3.41c. Unfortunately,
a wiring fault exists, due to either poor manufacturing or
perhaps just wear and tear. At any rate, the chassis is not
“grounded,” so there is a very large resistance between
chassis ground and earth ground. A pseudo-schematic
(some liberty was taken with the person’s equivalent re-
sistance symbol) of the situation is shown in Fig. 3.43b.
The electrical path between the conducting chassis and
ground may in fact be the table, which could represent a
resistance of hundreds of megaohms or more. The resis-
tance of the person, however, is many orders of magni-
tude lower. Once the person taps on the equipment to see
why it isn’t working properly . . . well, let’s just say not
all stories have happy endings.

The fact that “ground” is not always “earth ground”
can cause a wide range of safety and electrical noise
problems. One example is occasionally encountered in
older buildings, where plumbing originally consisted of
electrically conducting copper pipes. In such buildings,
any water pipe was often treated as a low-resistance
path to earth ground, and therefore used in many
electrical connections. However, when corroded pipes
are replaced with more modern and cost-effective

T v
(®) ()

(a)

B FIGURE 3.41 Three different symbols used to represent a ground or
common terminal: (a) earth ground; (b) signal ground; (c) chassis ground.

4.7kQ

9V

i

B FIGURE 3.42 The circuit of Fig. 3.40, redrawn using the earth ground
symbol. The rightmost ground symbol is redundant; it is only necessary to
label the positive terminal of v,; the negative reference is then implicitly
ground, or zero volts.

(Continued on next page)




nonconducting PVC piping, the low-resistance path to “earth grounds” are not equal, and current can flow as a
earth ground no longer exists. A related problem occurs result.

when the composition of the earth varies greatly over a Within this text, the earth ground symbol will be used
particular region. In such situations, it is possible to ac- exclusively. It is worth remembering, however, that not
tually have two separated buildings in which the two all grounds are created equal in practice.

‘Wall outlet

@ Requipmem 115V
§ Rto ground

(@)

L 1

(b)

B FIGURE 3.43 (a) A sketch of an innocent person about to touch an improperly grounded piece of
equipment. It's not going to be pretty. (b) A schematic of an equivalent circuit for the situation as it is
about to unfold; the person has been represented by an equivalent resistance, as has the equipment. A
resistor has been used to represent the nonhuman path to ground.

SUMMARY AND REVIEW

We began this chapter by discussing connections of circuit elements, and
introducing the terms node, path, loop, and branch. The next two topics
could be considered the two most important in the entire textbook, namely,
Kirchhoft’s current law (KCL) and Kirchhoff’s voltage law. The first is
derived from conservation of charge, and can be thought of in terms of
“what goes in (current) must come out.” The second is based on
conservation of energy, and can be viewed as “what goes up (potential)
must come down.” These two laws allow us to analyze any circuit, linear or
otherwise, provided we have a way of relating the voltage and current
associated with passive elements (e.g., Ohm’s law for the resistor). In the
case of a single-loop circuit, the elements are connected in series and hence
each carries the same current. The single-node-pair circuit, in which
elements are connected in parallel with one another, is characterized by a
single voltage common to each element. Extending these concepts allowed
us to develop a means of simplifying voltage sources connected in series, or
current sources in parallel; subsequently we obtained classic expressions
for series and parallel connected resistors. The final topic, that of voltage
and current division, finds considerable use in the design of circuits where a
specific voltage or current is required but our choice of source is limited.

Let’s conclude with key points of this chapter to review, highlighting
appropriate examples.
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Q Kirchhoff’s current law (KCL) states that the algebraic sum of the
currents entering any node is zero. (Examples 3.1, 3.4)

Q Kirchhoff’s voltage law (KVL) states that the algebraic sum of the
voltages around any closed path in a circuit is zero. (Examples 3.2, 3.3)

Q All elements in a circuit that carry the same current are said to be
connected in series. (Example 3.5)

Q Elements in a circuit having a common voltage across them are said to
be connected in parallel. (Examples 3.6, 3.7)

Q Voltage sources in series can be replaced by a single source, provided
care is taken to note the individual polarity of each source.
(Examples 3.8, 3.10)

Q@ Current sources in parallel can be replaced by a single source,
provided care is taken to note the direction of each current arrow.
(Examples 3.9, 3.10)

Q A series combination of N resistors can be replaced by a single resistor
having the value Req = R; + Ry + - -- + Ry . (Example 3.11)

Q A parallel combination of N resistors can be replaced by a single
resistor having the value

(Example 3.12)

QO Voltage division allows us to calculate what fraction of the total
voltage across a series string of resistors is dropped across any one
resistor (or group of resistors). (Example 3.13)

Q Current division allows us to calculate what fraction of the total current
into a parallel string of resistors flows through any one of the resistors.
(Example 3.14)

READING FURTHER

A discussion of the principles of conservation of energy and conservation of
charge, as well as Kirchhoff's laws, can be found in

R. Feynman, R. B. Leighton, and M. L. Sands, The Feynman Lectures on

Physics. Reading, Mass.: Addison-Wesley, 1989, pp. 4-1, 4-7, and 25-9.
Detailed discussions of numerous aspects of grounding practices consistent
with the 2008 National Electrical Code® can be found throughout

J. E. McPartland, B. J. McPartland, and F. P. Hartwell, McGraw-Hill’s

National Electrical Code® 2008 Handbook, 26th ed. New York,
McGraw-Hill, 2008.

1.5Q 20 50
NN
EXERCISES
5A 140 40

3.1 Nodes, Paths, Loops, and Branches

1. Referring to the circuit depicted in Fig. 3.44, count the number of (a) nodes;
(b) elements; (c¢) branches. M FIGURE 3.44
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2. Referring to the circuit depicted in Fig. 3.45, count the number of (a) nodes;
(b) elements; (c) branches.

1.50Q 20 50
M ‘
2A 4Q 4Q SA
B FIGURE 3.45
B C F 3. For the circuit of Fig. 3.46:
AMA—1 G

(a) Count the number of nodes.
(b) In moving from A to B, have we formed a path? Have we formed a loop?

(¢) In moving from C to F to G, have we formed a path? Have we formed a
E D loop?
4. For the circuit of Fig. 3.46:

(a) Count the number of circuit elements.

(b) If we move from B to C to D, have we formed a path? Have we formed a
loop?

(¢) If we move from E to D to C to B, have we formed a path? Have we
formed a loop?

A ¢ 5. Refer to the circuit of Fig. 3.47, and answer the following:
(a) How many distinct nodes are contained in the circuit?
(b) How many elements are contained in the circuit?
B E (c) How many branches does the circuit have?
D (d) Determine if each of the following represents a path, a loop, both, or
B FIGURE 3.47 neither:

(i) AtoB

(ii) BtoDtoCtoE

(iiiy CtoEtoDtoBtoAto C
(iv) CtoDtoBtoAtoCto E

3.2 Kirchhoff's Current Law

6. A local restaurant has a neon sign constructed from 12 separate bulbs; when
a bulb fails, it appears as an infinite resistance and cannot conduct current. In
wiring the sign, the manufacturer offers two options (Fig. 3.48). From what
you’ve learned about KCL, which one should the restaurant owner select?
Explain.

EAT AT RALDS

B FIGURE 3.48
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7. Referring to the single node diagram of Fig. 3.49, compute:
((1) iB,ifiAzlA,iD=—2A,iC=3A,andiE=0;
(b) iE,ifiAZ*IA,I.BZ*1A,ic=*1A,andl’D=*lA.

B FIGURE 3.49

8. Determine the current labeled 7 in each of the circuits of Fig. 3.50.

TA I

— — 1Q

1.5VC> §l6A 2A<D § gil § 9A<D §19 §59

(a) ) (©)

-
W
>

B FIGURE 3.50

9. In the circuit shown in Fig. 3.51, the resistor values are unknown, but the 2 V
source is known to be supplying a current of 7 A to the rest of the circuit.
Calculate the current labeled i5.

2V R, R; 3A

R,
B FIGURE 3.51

10. The voltage source in the circuit of Fig. 3.52 has a current of 1 A flowing out l’:
of its positive terminal into resistor R;. Calculate the current labeled i,. -2V R, R;

11. In the circuit depicted in Fig. 3.53, i, is determined to be 1.5 A, and the 9 V
source supplies a current of 7.6 A (that is, a current of 7.6 A leaves the positive
reference terminal of the 9 V source). Determine the value of resistor Ry. B FIGURE 3.52

12. For the circuit of Fig. 3.54 (which is a model for the dc operation of a bipolar
junction transistor biased in forward active region), /5 is measured to be I
100 A. Determine /¢ and /.

9V RA 6 (2 Ux

B FIGURE 3.53 B FIGURE 3.54
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13. Determine the current labeled /3 in the circuit of Fig. 3.55.

2 mA 47kQ 2V, 5V, 30

B FIGURE 3.55

14. Study the circuit depicted in Fig. 3.56, and explain (in terms of KCL) why the
voltage labeled V, must be zero.

R + V-
NN NMN—o0
R
Vi R
B FIGURE 3.56

15. In many households, multiple electrical outlets within a given room are often
all part of the same circuit. Draw the circuit for a four-walled room which has
a single electrical outlet per wall, with a lamp (represented by a 1 2 resistor)
connected to each outlet.

3.3 Kirchoff's Voltage Law

16. For the circuit of Fig. 3.57:
(a) Determine the voltage v; if v, =0and v3 = —17 V.
(b) Determine the voltage vy if v, = —2Vandv; = +2 V.
(c) Determine the voltage v, if vy =7 Vand vz =9 V.
(d) Determine the voltage v3 if vy = —2.33 Vand v, = —1.70 V.

4
" + v - B
Z/] 7}3
- +
5

B FIGURE 3.57

17. For each of the circuits in Fig. 3.58, determine the voltage v, and the current i,.

B FIGURE 3.58
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18. Use KVL to obtain a numerical value for the current labeled i in each circuit
depicted in Fig. 3.59.

2V 15V 15V

20 20 20

M FIGURE 3.59

19. In the circuit of Fig. 3.60, it is determined that v; = 3 V and v3 = 1.5 V. Calcu-
late vk and v,.

23V

+ B -

+oQ

/N
)
_ + - n+ 15V

4V § R, § Up v, +

+ R, v

c b
B FIGURE 3.60
20. In the circuit of Fig. 3.60, a voltmeter is used to measure the following: v =2V
and v3 = — 1.5 V. Calculate v,.

21. Determine the value of v, as labeled in the circuit of Fig. 3.61.

500 mA 20
NV MW\
730 .
23V C) § 10 § 20 %(D iy
B FIGURE 3.61
22. Consider the simple circuit shown in Fig. 3.62. Using KVL, derive the + oy -
expressions
Ry Ry +
v =vy;—— and v, = v;———
R+ Ry R+ Ry ”

23. (a) Determine a numerical value for each current and voltage (ij, vy, etc.) in -
the circuit of Fig. 3.63. (b) Calculate the power absorbed by each element and
verity that they sum to zero. B FIGURE 3.62

l‘T + bi + 5y ’4i + ’si +
n . +
2V (ﬁ) v 60 » S5 D 50

B FIGURE 3.63
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24. The circuit shown in Fig. 3.64 includes a device known as an op amp. This
device has two unusual properties in the circuit shown: (1) V; =0V, and
(2) no current can flow into either input terminal (marked “—"" and “+” inside
the symbol), but it can flow through the output terminal (marked “OUT”).
This seemingly impossible situation—in direct conflict with KCL—is a result
of power leads to the device that are not included in the symbol. Based on this
information, calculate V. (Hint: two KVL equations are required, both
involving the 5 V source.)

470 Q)
ANV
100 Q
AN - OP AMP
Va OUT ———
5V B -
+ Vout
B FIGURE 3.64

3.4 The Single-Loop Circuit

25. The circuit of Fig. 3.12b is constructed with the following: vs; = =8V,
R =18, v =16V, and R, = 4.7 Q. Calculate the power absorbed by each
element. Verify that the absorbed powers sum to zero.

26. Obtain a numerical value for the power absorbed by each element in the circuit
shown in Fig. 3.65.

20
AN <>
1 8uy -
45V = 5030,
- +
B FIGURE 3.65

27. Compute the power absorbed by each element of the circuit of Fig. 3.66.

28. Compute the power absorbed by each element in the circuit of Fig. 3.67 if the
mysterious element X is (a) a 13 Q resistor; (b) a dependent voltage source
labeled 4v;, “+” reference on top; (c¢) a dependent voltage source labeled 4i,,
“+” reference on top.

+ v -

S

270
3
500 Q Q &
12\/ 2v

22kQ ’-‘T

M FIGURE 3.66
B FIGURE 3.67

29. Kirchhoff’s laws apply whether or not Ohm’s law applies to a particular
element. The /-V characteristic of a diode, for example, is given by

ID = IS (EVD/VT - 1)
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where V7 = 27 mV at room temperature and /5 can vary from 1072 to

1073 A. In the circuit of Fig. 3.68, use KVL/KCL to obtain Vp if Iy = 29 pA.
(Note: This problem results in a transcendental equation, requiring an iterative
approach to obtaining a numerical solution. Most scientific calculators will
perform such a function.)

3.5 The Single-Node-Pair Circuit

30.

31.

32.

33.

34.

Referring to the circuit of Fig. 3.69, (a) determine the two currents i; and is;
(b) compute the power absorbed by each element.

+
3A v 4O2R, TA 202 R,
i Ji 1)
B FIGURE 3.69

Determine a value for the voltage v as labeled in the circuit of Fig. 3.70, and
compute the power supplied by the two current sources.

+
2A v 10Q0ZR, 3A 60 R,
_ wl izi
B FIGURE 3.70
Referring to the circuit depicted in Fig. 3.71, determine the value of the voltage v.
+
1A 5020 Q SA 50 2A
B FIGURE 3.71

Determine the voltage v as labeled in Fig. 3.72, and calculate the power
supplied by each current source.

Although drawn so that it may not appear obvious at first glance, the circuit
of Fig. 3.73 is in fact a single-node-pair circuit. (¢) Determine the power
absorbed by each resistor. (b) Determine the power supplied by each current
source. (¢) Show that the sum of the absorbed power calculated in (@) is equal
to the sum of the supplied power calculated in (c).

100
+
VO )y
B FIGURE 3.68

i, 1kQ 3mA
-
T 2.8k
3
IQ§ l*<> . 2A<D §3Q 5mA 47%Q
M FIGURE 3.72 M FIGURE 3.73
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3.6 Series and Parallel Connected Sources

O
" e 35. Determine the numerical value for veq in Fig. 3.74a, if (@) vi =0, v, = =3V,
andvs=143V,D)vy=v,=v3=1V;(c)vy=-9V,1p=45V,v3 =1V.

36. Determine the numerical value for iy in Fig. 3.74b, if (a) iy = 0, i, = —3 A,

7,2 - g and iz = +3A; (B) iy =ih =iz =1 A; () iy = —9A,ir=45A, is= 1 A.
37. For the circuit presented in Fig. 3.75, determine the current labeled i by first
combining the four sources into a single equivalent source.
i e 38. Determine the value of v; required to obtain a zero value for the current la-
beled i in the circuit of Fig. 3.76.
© (@)
o NN AN

@D QoD - On O O

M) M 79
! @), &
(b) M FIGURE 3.75 M FIGURE 3.76
M FIGURE 3.74

39. (a) For the circuit of Fig. 3.77, determine the value for the voltage labeled v,
after first simplifying the circuit to a single current source in parallel with two
resistors. (b) Verify that the power supplied by your equivalent source is equal to
the sum of the supplied powers of the individual sources in the original circuit.

7A 202 Q 5A 30 8A

B FIGURE 3.77

40. What value of Iy in the circuit of Fig. 3.78 will result in a zero voltage v?

+

1.28 A 1Q v g (D 1Q —2.57TA

B FIGURE 3.78

41. (a) Determine the values for /x and Vy in the circuit shown in Fig. 3.79.
(b) Are those values necessarily unique for that circuit? Explain. (c¢) Simplify
the circuit of Fig. 3.79 as much as possible and still maintain the values for v
and i. (Your circuit must contain the 1 €2 resistor.)

-3A 3A
€ e

Iy Q —4AJ; 10 (;)4\/ C)vy 3V

-Tui

B FIGURE 3.79
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3.7 Resistors in Series and Parallel

42. Determine the equivalent resistance of each of the networks shown in Fig. 3.80.

10

’ 0 40

(a) (b)
M FIGURE 3.80

43. For each network depicted in Fig. 3.81, determine a single equivalent resistance.

1Q

20 4Q 1Q 30

o—— o——
(@) )
B FIGURE 3.81

44. (a) Simplify the circuit of Fig. 3.82 as much as possible by using source and
resistor combinations. (b) Calculate 7, using your simplified circuit. (¢) To what
voltage should the 1 V source be changed to reduce i to zero? (d) Calculate the
power absorbed by the 5 €2 resistor.

_i20 70 50
MWV NW— WV
~O O
W
1Q
B FIGURE 3.82
45. (a) Simplify the circuit of Fig. 3.83, using appropriate source and resistor com- 3 l

binations. (b) Determine the voltage labeled v, using your simplified circuit.
(c) Calculate the power provided by the 2 A source to the rest of the circuit.

2A 50 SAQ 50 : 1A IACDH‘ §3Q §59

M FIGURE 3.83

46. Making appropriate use of resistor combination techniques, calculate i3 in the
circuit of Fig. 3.84 and the power provided to the circuit by the single current

30

30

source. B FIGURE 3.84
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47. Calculate the voltage labeled v, in the circuit of Fig. 3.85 after first simplify-
ing, using appropriate source and resistor combinations.

| 00

2A<D; §3Q §159 4i |

60 60

B FIGURE 3.85

48. Determine the power absorbed by the 15 €2 resistor in the circuit of Fig. 3.86.

30 150 ii
4A<D | >2i 3a D §6Q gﬁﬂ Q 9A
60
B FIGURE 3.86

49. Calculate the equivalent resistance R of the network shown in Fig. 3.87 if
R] = 2R2 = 3R3 = 4R4 etc. and R]] =3 Q.
R, Rs Ry
o MV MV MV

Ry — R, Ry R, Rig ZRy

o AN AN AN
Ry Rg Ry

B FIGURE 3.87

50. Show how to combine four 100 €2 resistors to obtain an equivalent resistance
of (a) 25 Q; (b) 60 2; (¢) 40 Q.

3.8 Voltage and Current Division

51. In the voltage divider network of Fig. 3.88, calculate (a) v, if v =9.2 V and
v =3V;b)vifvry,=1Vandv=2V;(c)vifvy=3Vandv, =6V,
(d)R/Ryif vy = vp;(e) vy if v=3.5Vand Ry =2Ry; (f) vy if v =18,
Ry =1k, and R, = 4.7 k2.

52.In the current divider network represented in Fig. 3.89, calculate (a) i if
i=8Aandi,=1A; (b)vif Ry = 100k, R, = 100 k2, and i = 1 mA;
@ pifti=20mA,Ri=1Q,and R, =4 Q;(d) i1 if i=10A,Ri =R, =9 Q;

B FIGURE 3.88 (e)irifi=10A, Ry = 100 M2, and R, =1Q.

* iil liz

M FIGURE 3.89
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53. Choose a voltage v < 2.5 V and values for the resistors R, Ry, R3, and R4 in I - -
the circuit of Fig. 3.90 so thati; =1 A, i, =1.2 A, i3 =8 A, and iy = 3.1 A. i’l l
54. Employ voltage division to assist in the calculation of the voltage labeled v, in ” R R R
the circuit of Fig. 3.91. ! 2 3
55. A network is constructed from a series connection of five resistors having val-
ues 1 2,30Q,5Q2,7R2,and 9 Q. If 9 V is connected across the terminals of the =
network, employ voltage division to calculate the voltage across the 3 €2 resis- B FIGURE 3.90
tor, and the voltage across the 7 €2 resistor.

W35
-~
S

56. Employing resistance combination and current division as appropriate, deter- ton T
mine values for i, i>, and v3 in the circuit of Fig. 3.92.
20 30
, 0 3V 202 100
3] ;»
MV
5Q 4Q +
B FIGURE 3.91
25A 10 20 40 40235

B FIGURE 3.92

57. In the circuit of Fig. 3.93, only the voltage v, is of interest. Simplify the circuit
using appropriate resistor combinations and iteratively employ voltage division
to determine v,.

3V<j) §4kﬂ

3kQ

B FIGURE 3.93

Chapter-Integrating Exercises

58. The circuit shown in Fig. 3.94 is a linear model of a bipolar junction transistor
biased in the forward active region of operation. Explain why voltage division
is not a valid approach for determining the voltage across either 10 k<2 resistor.

e

10 kQ 1kQ

B FIGURE 3.94
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59. A common midfrequency model for a field effect—based amplifier circuit is
shown in Fig. 3.95. If the controlling parameter g,, (known as the transconduc-
tance) is equal to 1.2 mS, employ current division to obtain the current through
the 1 k€2 resistor, and then calculate the amplifier output voltage voyt.

30 Q)

+

+

12 cos 1000t mV 15kQ v, & Var 10 kQ 1kQ < Vout

B FIGURE 3.95
60. The circuit depicted in Fig. 3.96 is routinely employed to model the midfre-

quency operation of a bipolar junction transistor—based amplifier. Calculate the
amplifier output v, if the transconductance g,, is equal to 322 mS.

1 kQ)
+ +
6 cos 2300 WV 15 kQ 3kQ Uy 8mVr 3.3kQ < You

M FIGURE 3.96

6

ity

. With regard to the circuit shown in Fig. 3.97, compute (a) the voltage across
the two 10 € resistors, assuming the top terminal is the positive reference;
(b) the power dissipated by the 4 2 resistor.

20 Q 40 Q 20Q
: A
2V 10Q 10Q 50 Q 40
M FIGURE 3.97

62. Delete the leftmost 10 €2 resistor in the circuit of Fig. 3.97, and compute
(a) the current flowing into the left-hand terminal of the 40 2 resistor; (b) the
power supplied by the 2 V source; (c) the power dissipated by the 4 €2
resistor.

63. Consider the seven-element circuit depicted in Fig. 3.98. (a) How many nodes,
loops, and branches does it contain? (b) Calculate the current flowing through
each resistor. (c) Determine the voltage across the current source, assuming the
top terminal is the positive reference terminal.

10
20
A% —\W\
20
20
2A(D §50
50

M FIGURE 3.98
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Basic Nodal an
Mesh Analysis

KEY CONCEPTS

Nodal Analysis

INTRODUCTION °

Armed with the trio of Ohm’s and Kirchhoff’s laws, analyzing The Supernode Technique
a simple linear circuit to obtain useful information such as the ®

current, voltage, or power associated with a particular element is Mesh Analysis

perhaps starting to seem a straightforward enough venture. Still, ®

for the moment at least, every circuit seems unique, requiring (to The Supermesh Technique

some degree) a measure of creativity in approaching the analysis. ®

In this chapter, we learn two basic circuit analysis techniques— Choosing Between Nodal

nodal analysis and mesh analysis—both of which allow us to and Mesh Analysis
investigate many different circuits with a consistent, methodical ®

approach. The result is a streamlined analysis, a more uniform Computer-Aided Analysis,
level of complexity in our equations, fewer errors and, perhaps Including PSpice and
most importantly, a reduced occurrence of “I don’t know how MATLAB

to even start!”

Most of the circuits we have seen up to now have been rather
simple and (to be honest) of questionable practical use. Such
circuits are valuable, however, in helping us to learn to apply
fundamental techniques. Although the more complex circuits
appearing in this chapter may represent a variety of electrical
systems including control circuits, communication networks,
motors, or integrated circuits, as well as electric circuit models
of nonelectrical systems, we believe it best not to dwell on such
specifics at this early stage. Rather, it is important to initially focus
on the methodology of problem solving that we will continue to
develop throughout the book.

79
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CHAPTER 4 BASIC NODAL AND MESH ANALYSIS

4.1 . NODAL ANALYSIS

We begin our study of general methods for methodical circuit analysis by
considering a powerful method based on KCL, namely nodal analysis. In
Chap. 3 we considered the analysis of a simple circuit containing only two
nodes. We found that the major step of the analysis was obtaining a single
equation in terms of a single unknown quantity—the voltage between the
pair of nodes.

We will now let the number of nodes increase and correspondingly pro-
vide one additional unknown quantity and one additional equation for each
added node. Thus, a three-node circuit should have two unknown voltages
and two equations; a 10-node circuit will have nine unknown voltages and
nine equations; an N-node circuit will need (N — 1) voltages and (N — 1)
equations. Each equation is a simple KCL equation.

To illustrate the basic technique, consider the three-node circuit shown
in Fig. 4.1a, redrawn in Fig. 4.1b to emphasize the fact that there are only
three nodes, numbered accordingly. Our goal will be to determine the volt-
age across each element, and the next step in the analysis is critical. We des-
ignate one node as a reference node; it will be the negative terminal of our
N — 1 = 2 nodal voltages, as shown in Fig. 4.1c.

A little simplification in the resultant equations is obtained if the node
connected to the greatest number of branches is identified as the reference
node. If there is a ground node, it is usually most convenient to select it as
the reference node, although many people seem to prefer selecting the bot-
tom node of a circuit as the reference, especially if no explicit ground is
noted.

The voltage of node 1 relative to the reference node is named vy, and v,
is defined as the voltage of node 2 with respect to the reference node. These

1 50 2
50 A%,
NN
20 1Q
20 1Q -14A
31A -14 A
3
(a) (b)
1 5Q 2 v 50 0
AN AAAY
2019 20 18
31a(0) (¥)-14a 31A “L4A
Reference node Ref.

() (d)
B FIGURE 4.1 (a) Asimple three-node circuit. (b) Circuit redrawn to emphasize nodes. (c) Reference
node selected and voltages assigned. (¢) Shorthand voltage references. If desired, an appropriate
ground symbol may be substituted for “Ref.”
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two voltages are all we need, as the voltage between any other pair of nodes
may be found in terms of them. For example, the voltage of node 1 with
respect to node 2 is v; — v,. The voltages v, and v, and their reference signs
are shown in Fig. 4.1c. It is common practice once a reference node has
been labeled to omit the reference signs for the sake of clarity; the node
labeled with the voltage is taken to be the positive terminal (Fig. 4.1d). This
is understood to be a type of shorthand voltage notation.

We now apply KCL to nodes 1 and 2. We do this by equating the total
current leaving the node through the several resistors to the total source
current entering the node. Thus,

U1 vy — U2

> + 5 = 3.1 [1]
or
0.7v; — 0.2v, = 3.1 [2]
At node 2 we obtain
R 3]
or
—02v; +1.2v, =14 [4]

Equations [2] and [4] are the desired two equations in two unknowns, and
they may be solved easily. The results are vy =5 Vand v, =2 V.

From this, it is straightforward to determine the voltage across the 5 2
resistor: vsg = v; — v, = 3 V. The currents and absorbed powers may also
be computed in one step.

We should note at this point that there is more than one way to write the
KCL equations for nodal analysis. For example, the reader may prefer to
sum all the currents entering a given node and set this quantity to zero.
Thus, for node 1 we might have written

or

—U U2 — Vg
3.1+ > + 5
either of which is equivalent to Eq. [1].

Is one way better than any other? Every instructor and every student
develop a personal preference, and at the end of the day the most important
thing is to be consistent. The authors prefer constructing KCL equations for
nodal analysis in such a way as to end up with all current source terms on
one side and all resistor terms on the other. Specifically,

=0

> currents entering the node from current sources
= ) currents leaving the node through resistors

There are several advantages to such an approach. First, there is never any
confusion regarding whether a term should be “v; — v,” or “v, — vy;” the

The reference node in a schematic is implicitly defined
as zero volts. However, it is important to remember
that any terminal can be designated as the reference
terminal. Thus, the reference node is at zero volts with
respect to the other defined nodal voltages, and not
necessarily with respect to earth ground.
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first voltage in every resistor current expression corresponds to the node for
which a KCL equation is being written, as seen in Egs. [1] and [3]. Second,
it allows a quick check that a term has not been accidentally omitted. Sim-
ply count the current sources connected to a node and then the resistors;
grouping them in the stated fashion makes the comparison a little easier.

EXAMPLE 4.1

Determine the current flowing left to right through the 15 @
resistor of Fig. 4.2a.

v 150 o
—MV\
7Q n 15Q 4
2A (D 5 Q§ Q 4A IV&
l
30 2A 10Q 50 4 A
Ref. Ref.

(a) )

B FIGURE 4.2 (a) A four-node circuit containing two independent current sources. (b) The two
resistors in series are replaced with a single 10 2 resistor, reducing the circuit to three nodes.

Nodal analysis will directly yield numerical values for the nodal volt-
ages v; and vy, and the desired current is given by i = (v; — vp)/15.

Before launching into nodal analysis, however, we first note that no
details regarding either the 7 €2 resistor or the 3 2 resistor are of inter-
est. Thus, we may replace their series combination with a 10 €2 resistor
as in Fig. 4.2b. The result is a reduction in the number of equations to
solve.

Writing an appropriate KCL equation for node 1,

U1 Uy — U2

=t Bl
and for node 2,
4=2 42 [6]
Rearranging, we obtain
Sv; — 2v, = 60
and
—v; + 4vy, = 60

Solving, we find that v = 20 V and v, = 20 V so that v; — v, = 0.
In other words, zero current is flowing through the 15 € resistor in this
circuit!
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PRACTICE "

4.1 For the circuit of Fig. 4.3, determine the nodal voltages v; and v,.

v 15Q v
: A

20

SACD 4Q§ Q 2A

B FIGURE 4.3

Ans: vy = —145/8 V, v, =5/2 V.

Now let us increase the number of nodes so that we may use this tech-
nique to work a slightly more difficult problem.

EXAMPLE 4.2

Determine the nodal voltages for the circuit of Fig. 4.4a, as refer-
enced to the bottom node.

Identify the goal of the problem.

There are four nodes in this circuit. With the bottom node as our refer-
ence, we label the other three nodes as shown in Fig. 4.4b. The circuit
has been redrawn for clarity, taking care to identify the two relevant
nodes for the 4 €2 resistor.

Collect the known information.
‘We have three unknown voltages, vy, vy, and v3. All current sources and
resistors have designated values, which are marked on the schematic.

Devise a plan.

This problem is well suited to nodal analysis, as three independent
KCL equations may be written in terms of the current sources and the
current through each resistor.

Construct an appropriate set of equations.
We begin by writing a KCL equation for node 1:

—U2 U] — U3
3 4

_g_3=2

or
0.5833v; —0.3333v; — 0.25v3 = —11 [7]

At node 2:
V) — V1 (%) Uy — U3
3 + 1 + 7

—(=3) =

40 59§
-8 A 10 ¢
25A

Reference node

(b)
M FIGURE 4.4 (a) Afour-node circuit. (b) Redrawn

circuit with reference node chosen and voltages
labeled.

(Continued on next page)
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or

—0.3333v; + 1.4762v, — 0.1429v3 = 3 [8]

And, at node 3:
V3 V3 — Up U3 — Vg
—(=25) = —
( ) 5 + 7 4

or, more simply,

—0.25v; — 0.1429v, + 0.5929v3 = 25 [9]

Determine if additional information is required.
We have three equations in three unknowns. Provided that they are
independent, this is sufficient to determine the three voltages.

Attempt a solution.

Equations [7] through [9] can be solved using a scientific calculator
(Appendix 5), software packages such as MATLAB, or more tradi-
tional “plug-and-chug” techniques such as elimination of variables,
matrix methods, or Cramer’s rule. Using the latter method, described
in Appendix 2, we have

—11 —0.3333 —0.2500
‘ 3 1.4762 —0.1429
25 —0.1429  0.5929 1.714

v = = =5412V
‘ 0.5833 —0.3333 —0.2500 0.3167

—0.3333 1.4762 —0.1429
—0.2500 —0.1429  0.5929

Similarly,
0.5833 —11 —0.2500
’ —0.3333 3 —0.1429
—0.2500 25 0.5929 2.450
= = =7.736 V
2 0.3167 0.3167
and
0.5833 —0.3333 -—11
’ —0.3333 1.4762 3
— — 14.67
o 0.2500 0.1429 25 _ 4630V
0.3167 0.3167

Verify the solution. Is it reasonable or expected?

Substituting the nodal voltages into any of our three nodal equations
is sufficient to ensure we made no computational errors. Beyond that,
is it possible to determine whether these voltages are “reasonable”
values? We have a maximum possible current of 3 + 8 4+ 25 = 36
amperes anywhere in the circuit. The largest resistor is 7 €2, so we do
not expect any voltage magnitude greater than7 x 36 = 252 V.

There are, of course, numerous methods available for the solution of
linear systems of equations, and we describe several in Appendix 2 in detail.
Prior to the advent of the scientific calculator, Cramer’s rule as seen in
Example 4.2 was very common in circuit analysis, although occasionally
tedious to implement. It is, however, straightforward to use on a simple
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four-function calculator, and so an awareness of the technique can be
valuable. MATLAB, on the other hand, although not likely to be available
during an examination, is a powerful software package that can greatly sim-
plify the solution process; a brief tutorial on getting started is provided in
Appendix 6.

For the situation encountered in Example 4.2, there are several options
available through MATLAB. First, we can represent Egs. [7] to [9] in matrix
Jorm:

0.5833 —0.3333 —0.25 o —11
03333 14762 —0.1429 | | v, | = 3
—025  —0.1429 05929 | | vs 25
so that
ul 0.5833 —03333 —025 1 ' [-11
v | =1 —03333 14762 —0.1429 3
V3 —025  —0.1429  0.5929 25

In MATLAB, we write

>> a = [0.5833 -0.3333 -0.25; -0.3333 1.4762 -0.1429;
>> ¢ = [-11; 3; 25];
>> b = a"-1 * c
b =
5.4124
7.7375
46.3127

>>

where spaces separate elements along rows, and a semicolon separates
rows. The matrix named b, which can also be referred to as a vector as it has
only one column, is our solution. Thus, v; = 5.412 V, v, = 7.738 V, and
v3 = 46.31 V (some rounding error has been incurred).

We could also use the KCL equations as we wrote them initially if we
employ the symbolic processor of MATLAB.

-0.25 -0.1429 0.5929];

>> eqnl = '-8 -3 = (vl - v2)/ 3 + (vl - v3)/ 4';

>> eqn2 = '-(-3) = (v2 - vl)/ 3 + v2/ 1 + (v2 - v3)/ 7';
>> eqn3 = '-(-25) = v3/ 5 + (v3 - v2)/ 7 + (v3 - vl)/ 4';
>> answer = solve(egnl, eqn2, egn3, 'vl', 'v2', 'v3');

>> answer.vl
ans =
720/133

>> answer.v2
ans =
147/19

>> answer.v3
ans =
880/19

>>

(s5)
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EXAMPLE 4.3
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which results in exact answers, with no rounding errors. The solve() routine
is invoked with the list of symbolic equations we named eqnl, eqn2, and
eqn3, but the variables v1, v2 and v3 must also be specified. If solve() is
called with fewer variables than equations, an algebraic solution is returned.
The form of the solution is worth a quick comment; it is returned in what is
referred to in programming parlance as a structure; in this case, we called
our structure “answer.” Each component of the structure is accessed sepa-
rately by name as shown.

PRACTICE .

4.2 For the circuit of Fig. 4.5, compute the voltage across each current
source.

20
2'A'A%
10 40

Reference node
B FIGURE 4.5

Ans: v3a = 5.235 V; v = 11.47 V.

The previous examples have demonstrated the basic approach to nodal
analysis, but it is worth considering what happens if dependent sources are
present as well.

Determine the power supplied by the dependent source of Fig. 4.6a.

g

30 30
15A D »—m—< 15A D v »—:\/l}/\i—<
D D

Ref.

(a) (b)
M FIGURE 4.6 (a) A four-node circuit containing a dependent current source. (b) Circuit labeled
for nodal analysis.
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We choose the bottom node as our reference, since it has a large
number of branch connections, and proceed to label the nodal voltages
v; and v, as shown in Fig. 4.6b. The quantity labeled v, is actually
equal to v,.

At node 1, we write
UV — 02 V1

1 + > [10]

15 =

and at node 2
Uy — Vg 1%}
1 3

Unfortunately, we have only two equations but three unknowns; this
is a direct result of the presence of the dependent current source, since
it is not controlled by a nodal voltage. Thus, we need an additional
equation that relates #; to one or more nodal voltages.

In this case, we find that

3i; = [11]

U1

i1 = 5 [12]
which upon substitution into Eq. [11] yields (with a little rearranging)
3v; —2vy =30 [13]
and Eq. [10] simplifies to
—15v; +8u; =0 [14]

Solving, we find that v; = —40 V, v, = =75 V, and i} = 0.5v; =
—20 A. Thus, the power supplied by the dependent source is equal to
(3i1)(v2) = (—60)(—=75) = 4.5 kW.

We see that the presence of a dependent source will create the need for
an additional equation in our analysis if the controlling quantity is not a
nodal voltage. Now let’s look at the same circuit, but with the controlling
variable of the dependent current source changed to a different quantity—
the voltage across the 3 €2 resistor, which is in fact a nodal voltage. We will
find that only two equations are required to complete the analysis.

=

(7)

EXAMPLE 4.4

Determine the power supplied by the dependent source of Fig. 4.7a.

We select the bottom node as our reference and label the nodal voltages
as shown in Fig. 4.7b. We have labeled the nodal voltage v, explicitly
for clarity. Note that our choice of reference node is important in this
case; it led to the quantity v, being a nodal voltage.

Our KCL equation for node 1 is
Ul — Uy U1

+ = [15]

15 =
1 2

(Continued on next page)
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Y

19§ iligzﬂ IQ§ iligzﬂ

30 30
15A D »—:\/y\/\,_—< 15A D vx—m—<
<T>3”x <T>3”x

Ref.
(@) )
M FIGURE 4.7 (a) A four-node circuit containing a dependent current source. (b) Circuit labeled
for nodal analysis.
and for node x is
Uy — Vg U2
1 3

Grouping terms and solving, we find that v; = %) Vand v, = — % V.
Thus, the dependent source in this circuit generates (3v,)(vy) = 55.1 W.

3v, =

[16]

PRACTICE o

4.3 For the circuit of Fig. 4.8, determine the nodal voltage v; if A is
(a) 2i; (b) 2vy.

Ans: (a) 2 V; () -10 V.

Summary of Basic Nodal Analysis Procedure

1. Count the number of nodes (V).

2. Designate a reference node. The number of terms in your nodal
equations can be minimized by selecting the node with the great-
est number of branches connected to it.

3. Label the nodal voltages (there are N — 1 of them).

Write a KCL equation for each of the nonreference nodes.
Sum the currents flowing info a node from sources on one side of
the equation. On the other side, sum the currents flowing out of
the node through resistors. Pay close attention to “— signs.

5. Express any additional unknowns such as currents or voltages
other than nodal voltages in terms of appropriate nodal
voltages. This situation can occur if voltage sources or dependent
sources appear in our circuit.

Organize the equations. Group terms according to nodal voltages.

Solve the system of equations for the nodal voltages (there will
be N — 1 of them).
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These seven basic steps will work on any circuit we ever encounter,
although the presence of voltage sources will require extra care. Such situ-
ations are discussed next.

4.2  THE SUPERNODE

As an example of how voltage sources are best handled when performing
nodal analysis, consider the circuit shown in Fig. 4.9a. The original four-
node circuit of Fig. 4.4 has been changed by replacing the 7 €2 resistor be-
tween nodes 2 and 3 with a 22 V voltage source. We still assign the same
node-to-reference voltages vy, v, and vs. Previously, the next step was the
application of KCL at each of the three nonreference nodes. If we try to do
that once again, we see that we will run into some difficulty at both nodes 2
and 3, for we do not know what the current is in the branch with the voltage
source. There is no way by which we can express the current as a function
of the voltage, for the definition of a voltage source is exactly that the volt-
age is independent of the current.

There are two ways out of this dilemma. The more difficult approach is to
assign an unknown current to the branch which contains the voltage source,
proceed to apply KCL three times, and then apply KVL (v3 — v, =22) once
between nodes 2 and 3; the result is then four equations in four unknowns.

The easier method is to treat node 2, node 3, and the voltage source to-
gether as a sort of supernode and apply KCL to both nodes at the same time;
the supernode is indicated by the region enclosed by the broken line in
Fig. 4.9a. This is okay because if the total current leaving node 2 is zero and
the total current leaving node 3 is zero, then the total current leaving the
combination of the two nodes is zero. This concept is represented graphi-
cally in the expanded view of Fig. 4.9b.

Reference node

(@)

®)

M FIGURE 4.9 (a) The circuit of Example 4.2 with a
22 V source in place of the 7 € resistor. (b) Expanded
view of the region defined as a supernode; KCL
requires that all currents flowing into the region sum to
zero, or we would pile up or run out of electrons.

Determine the value of the unknown node voltage v; in the circuit
of Fig. 4.9a.

The KCL equation at node 1 is unchanged from Example 4.2:

— Uy V1 — U3
3 4

—g-3="

or
0.5833v; — 0.3333v, — 0.2500v3 = —11 [17]

Next we consider the 2-3 supernode. Two current sources are con-
nected, and four resistors. Thus,

I e
25 — =4 2=
3425 Tt ts
or
—0.5833v; + 1.3333v; + 0.45v; = 28 (18]

(Continued on next page)

EXAMPLE 4.5
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Since we have three unknowns, we need one additional equation,
and it must utilize the fact that there is a 22 V voltage source between
nodes 2 and 3:

Uy — U3 = —22 [19]
Solving Eqgs. [17] to [19], the solution for v; is 1.071 V.

PRACTICE 5

4.4 For the circuit of Fig. 4.10, compute the voltage across each
current source.

Ans: 5375V, 375 mV.

The presence of a voltage source thus reduces by 1 the number of
nonreference nodes at which we must apply KCL, regardless of whether the
voltage source extends between two nonreference nodes or is connected
between a node and the reference. We should be careful in analyzing circuits
such as that of Practice Problem 4.4. Since both ends of the resistor are part
of the supernode, there must technically be two corresponding current terms
in the KCL equation, but they cancel each other out. We can summarize the
supernode method as follows:

Summary of Supernode Analysis Procedure

Count the number of nodes (V).

2. Designate a reference node. The number of terms in your nodal
equations can be minimized by selecting the node with the greatest
number of branches connected to it.

3. Label the nodal voltages (there are N — 1 of them).

If the circuit contains voltage sources, form a supernode about
each one. This is done by enclosing the source, its two terminals,
and any other elements connected between the two terminals
within a broken-line enclosure.

5. Write a KCL equation for each nonreference node and for
each supernode that does not contain the reference node. Sum
the currents flowing into a node/supernode from current sources
on one side of the equation. On the other side, sum the currents
flowing out of the node/supernode through resistors. Pay close
attention to “—"’ signs.

6. Relate the voltage across each voltage source to nodal voltages.
This is accomplished by simple application of KVL; one such
equation is needed for each supernode defined.

7. Express any additional unknowns (i.e., currents or voltages other
than nodal voltages) in terms of appropriate nodal voltages. This
situation can occur if dependent sources appear in our circuit.

8. Organize the equations. Group terms according to nodal voltages.

9. Solve the system of equations for the nodal voltages (there will
be N — 1 of them).
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We see that we have added two additional steps from our general nodal
analysis procedure. In reality, however, application of the supernode tech-
nique to a circuit containing voltage sources not connected to the reference
node will result in a reduction in the number of KCL equations required.
With this in mind, let’s consider the circuit of Fig. 4.11, which contains all
four types of sources and has five nodes.

EXAMPLE 4.6
Determine the node-to-reference voltages in the circuit of Fig. 4.11.

After establishing a supernode about each voltage source, we see that
we need to write KCL equations only at node 2 and at the supernode
containing the dependent voltage source. By inspection, it is clear that
V] = —12 V.
At node 2,
Vg =V U2 — U3
0.5 2

while at the 3-4 supernode,

=14 [20]

V3 — U V4 Vg — V1

0.5v, = 21
! 1 2.5 A
We next relate the source voltages to the node voltages:
V3 — vy = 0.2v, [22] N
and B FIGURE 4.11 Afive-node circuit with four different
0.2vy = 0.2(vs — v1) [23] types of sources.

Finally, we express the dependent current source in terms of the
assigned variables:

0.5v, = 0.5(v, — vy) [24]

Five nodes requires four KCL equations in general nodal analysis,
but we have reduced this requirement to only two, as we formed two
separate supernodes. Each supernode required a KVL equation (Eq. [22]
and v; = —12, the latter written by inspection). Neither dependent
source was controlled by a nodal voltage, so two additional equations
were needed as a result.

With this done, we can now eliminate v, and v, to obtain a set of
four equations in the four node voltages:

—2v; +2.5v, — 0.513 = 14
0.lvy — v, +05v3+14v,= O

vy =—12
0.2v; + vz—12v14= 0

Solving, vi=—12V,v,=—4V,v3=0V,and vy = -2 V.

PRACTICE .
4.5 Determine the nodal voltages in the circuit of Fig. 4.12.

Ans:v; =3V,vp = —2.33V,u3 = —1.91V, vy = 0.945 V.

B FIGURE 4.12
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We should mention that mesh-type analysis can be
applied to nonplanar circuits, but since it is not possible
to define a complete set of unique meshes for such
circuits, assignment of unique mesh currents is not
possible.
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4.3 _ MESH ANALYSIS

As we have seen, nodal analysis is a straightforward analysis technique when
only current sources are present, and voltage sources are easily accommo-
dated with the supernode concept. Still, nodal analysis is based on KCL, and
the reader might at some point wonder if there isn’t a similar approach based
on KVL. There is—it’s known as mesh analysis—and although only strictly
speaking applicable to what we will shortly define as a planar circuit, it can in
many cases prove simpler to apply than nodal analysis.

If it is possible to draw the diagram of a circuit on a plane surface in such
a way that no branch passes over or under any other branch, then that circuit
is said to be a planar circuit. Thus, Fig. 4.13a shows a planar network,
Fig. 4.13b shows a nonplanar network, and Fig. 4.13¢ also shows a planar
network, although it is drawn in such a way as to make it appear nonplanar
at first glance.

(a) (b) (©)
M FIGURE 4.13 Examples of planar and nonplanar networks; crossed wires without a solid dot are not
in physical contact with each other.

In Sec. 3.1, the terms path, closed path, and loop were defined. Before
we define a mesh, let us consider the sets of branches drawn with heavy
lines in Fig. 4.14. The first set of branches is not a path, since four branches
are connected to the center node, and it is of course also not a loop. The sec-
ond set of branches does not constitute a path, since it is traversed only by
passing through the central node twice. The remaining four paths are all
loops. The circuit contains 11 branches.

The mesh is a property of a planar circuit and is undefined for a nonpla-
nar circuit. We define a mesh as a loop that does not contain any other loops
within it. Thus, the loops indicated in Fig. 4.14¢ and d are not meshes,
whereas those of parts e and f are meshes. Once a circuit has been drawn
neatly in planar form, it often has the appearance of a multipaned window;
the boundary of each pane in the window may be considered to be a mesh.

If a network is planar, mesh analysis can be used to accomplish the
analysis. This technique involves the concept of a mesh current, which we
introduce by considering the analysis of the two-mesh circuit of Fig. 4.15a.

As we did in the single-loop circuit, we will begin by defining a current
through one of the branches. Let us call the current flowing to the right
through the 6 2 resistor i;. We will apply KVL around each of the two
meshes, and the two resulting equations are sufficient to determine two un-
known currents. We next define a second current i, flowing to the right in
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paienlad
ENae

(e) (@8]

B FIGURE 4.14 (a) The set of branches identified by the heavy lines is neither a path nor a loop.
(b) The set of branches here is not a path, since it can be traversed only by passing through the
central node twice. (c) This path is a loop but not a mesh, since it encloses other loops. (d) This
path is also a loop but not a mesh. (¢, f) Each of these paths is both a loop and a mesh.

the 4 Q resistor. We might also choose to call the current flowing downward
through the central branch i3, but it is evident from KCL that i3 may be ex-
pressed in terms of the two previously assumed currents as (i1 — i2). The
assumed currents are shown in Fig. 4.15b.

Following the method of solution for the single-loop circuit, we now ap-
ply KVL to the left-hand mesh,

—42 4 6i; +3(@(; —i2) =0
or
9i; —3i, =42 [25]
Applying KVL to the right-hand mesh,
—3(i1 — i) +4i, —10=0
or
=3iy +7i, =10 [26]
Equations [25] and [26] are independent equations; one cannot be de-

rived from the other. With two equations and two unknowns, the solution is
easily obtained:

ii=6A ih=4A and (ij—i)=2A

If our circuit contains M meshes, then we expect to have M mesh cur-
rents and therefore will be required to write M independent equations.

Now let us consider this same problem in a slightly different manner by
using mesh currents. We define a mesh current as a current that flows only
around the perimeter of a mesh. One of the greatest advantages in the use of
mesh currents is the fact that Kirchhoff's current law is automatically satis-
fied. If a mesh current flows into a given node, it flows out of it also.

()

60 40
42V 3Q§ 10V
(@)

i iy
— AN AN—

60 40
42V(ﬁ> 3Q§ C v

i(z‘l—zg)

(b)

M FIGURE 4.15 (a, b) A simple circuit for which

currents are required.

@
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60 4Q

O W) £ D) Quy
30

B FIGURE 4.16 The same circuit considered in
Fig. 4.15b, but viewed a slightly different way.

A mesh current may often be identified as a branch
current, as /; and i, have been identified in this

ation of a square nine-mesh network soon shows that
the central mesh current cannot be identified as the
current in any branch.

example. This is not always true, however, for consider-

CHAPTER 4 BASIC NODAL AND MESH ANALYSIS

If we call the left-hand mesh of our problem mesh 1, then we may es-
tablish a mesh current i; flowing in a clockwise direction about this mesh.
A mesh current is indicated by a curved arrow that almost closes on itself
and is drawn inside the appropriate mesh, as shown in Fig. 4.16. The mesh
current i, is established in the remaining mesh, again in a clockwise direc-
tion. Although the directions are arbitrary, we will always choose clockwise
mesh currents because a certain error-minimizing symmetry then results in
the equations.

We no longer have a current or current arrow shown directly on each
branch in the circuit. The current through any branch must be determined by
considering the mesh currents flowing in every mesh in which that branch
appears. This is not difficult, because no branch can appear in more than two
meshes. For example, the 3 Q2 resistor appears in both meshes, and the cur-
rent flowing downward through it is i} — i,. The 6 €2 resistor appears only
in mesh 1, and the current flowing to the right in that branch is equal to the
mesh current 7.

For the left-hand mesh,

—42 4+ 6i; +3(i1 — i) =0
while for the right-hand mesh,
3(i—i1)+4i,—10=0

and these two equations are equivalent to Eqs. [25] and [26].

EXAMPLE 4.7

Determine the power supplied by the 2 V source of Fig. 4.17a.

40

(a) (b)
M FIGURE 4.17 (a) Atwo-mesh circuit containing three sources. (b) Circuit labeled for
mesh analysis.

We first define two clockwise mesh currents as shown in Fig. 4.17b.
Beginning at the bottom left node of mesh 1, we write the following
KVL equation as we proceed clockwise through the branches:

—5+4i1+2G(; —ip)—2=0
Doing the same for mesh 2, we write

+2 42, —i1))+5i+1=0
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Rearranging and grouping terms,
6iy —2i =17
and
—2i1 +7i, = =3
s, A . 2
Solving,i; = 8 =1.132 Aand i, = T = —0.1053 A.

The current flowing out of the positive reference terminal of the 2 V
source is i; — ip. Thus, the 2 V source supplies (2)(1.237) = 2.474 W.

PRACTICE =

4.6 Determine i; and i, in the circuit in Fig. 4.18.

14 Q) 10 Q
50
O D) 1 DO
50
M FIGURE 4.18

Ans: +184.2 mA; —157.9 mA.

Let us next consider the five-node, seven-branch, three-mesh circuit
shown in Fig. 4.19. This is a slightly more complicated problem because of
the additional mesh.

()

EXAMPLE 4.8
Use mesh analysis to determine the three mesh currents in the
circuit of Fig. 4.19.
i
The three required mesh currents are assigned as indicated in Fig. 4.19, 10 q 20

and we methodically apply KVL about each mesh:
=T+ 13 —i2) +6+2(;—i3) =0
L — i) +2i+ 332 —i3) =0
2(i3 —i1) —6+3@3 —i) + liz=0
Simplifying,
3ip—ip—2i3=1
—i; +6i, —3i3=0
—2i1 —3i +6i3 =06

and solving, we obtain iy =3 A, i =2 A, and iz =3 A.

30

O ) B

M FIGURE 4.19 Afive-node, seven-branch, three-

mesh circuit.
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(o)

PRACTICE .
4.7 Determine i; and i, in the circuit of Fig 4.20.
50
4Q 90

10V(’j) Q
v () L

B FIGURE 4.20

Ans: 2.220 A, 470.0 mA.

The previous examples dealt with circuits powered exclusively by inde-
pendent voltage sources. If a current source is included in the circuit, it may
either simplify or complicate the analysis, as discussed in Sec. 4.4. As seen
in our study of the nodal analysis technique, dependent sources generally
require an additional equation besides the M mesh equations, unless the
controlling variable is a mesh current (or sum of mesh currents). We explore
this in the following example.

EXAMPLE 4.9
-
£
(@)
4i,

—m
5V 3V

(b)
M FIGURE 4.21 (a) A two-mesh circuit containing
a dependent source. (b) Circuit labeled for mesh
analysis.

Determine the current #; in the circuit of Fig. 4.21a.

The current #; is actually a mesh current, so rather than redefine it we
label the rightmost mesh current i; and define a clockwise mesh current
ip for the left mesh, as shown in Fig. 4.21b.

For the left mesh, KVL yields

—5—4i; +43G, — i) +4i, =0 [27]
and for the right mesh we find
4G — i) +2i1 +3=0 [28]
Grouping terms, these equations may be written more compactly as
—8i1 +8ir =5
and
6i; —4i, =-3

Solving, i, = 375 mA, so i; = —250 mA.

Since the dependent source of Fig. 4.21 is controlled by a mesh current
(i1), only two equations—Eqs. [27] and [28]—were required to analyze the
two-mesh circuit. In the following example, we explore the situation that
arises if the controlling variable is not a mesh current.
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EXAMPLE 4.10
Determine the current #; in the circuit of Fig. 4.22a.
20, 20,
' 20 ' 20
(@) ®)
M FIGURE 4.22 (a) A circuit with a dependent source controlled by a voltage. (b) Circuit labeled
for mesh analysis.
In order to draw comparisons to Example 4.9 we use the same mesh
current definitions, as shown in Fig. 4.22b.
For the left mesh, KVL now yields
—5—2v, +4(i, —i1) +4i, =0 [29]
and for the right mesh we find the same as before, namely,
4@y — i) +2i1 +3=0 [30]
Since the dependent source is controlled by the unknown voltage
vy, we are faced with fwo equations in three unknowns. The way out of
our dilemma is to construct an equation for v, in terms of mesh cur-
rents, such as
vy =42 —i1) [31]
We simplify our system of equations by substituting Eq. [31] into
Eq. [29], resulting in
4i1 =5
Solving, we find thati; = 1.25 A. In this particular instance, Eq. [30]
is not needed unless a value for i, is desired.
20 30
N\ M\
PRACTICE
° . + .
4.8 Determine i; in the circuit of Fig. 4.23 if the controlling quantity A zv @ % SRt 6V
is equal to (a) 2iy; (b) 2vy. A AMA,
N 40
Ans: (a) 1.35 A; (b) 546 mA. A
B FIGURE 4.23

The mesh analysis procedure can be summarized by the seven basic
steps that follow. It will work on any planar circuit we ever encounter, al-
though the presence of current sources will require extra care. Such situa-

tions are discussed in Sec. 4.4.
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Summary of Basic Mesh Analysis Procedure

1. Determine if the circuit is a planar circuit. If not, perform nodal
analysis instead.

2. Count the number of meshes (M). Redraw the circuit if
necessary.

3. Label each of the M mesh currents. Generally, defining all mesh
currents to flow clockwise results in a simpler analysis.

4. Write a KVL equation around each mesh. Begin with a conve-
nient node and proceed in the direction of the mesh current. Pay
close attention to “— signs. If a current source lies on the periph-
ery of a mesh, no KVL equation is needed and the mesh current is
determined by inspection.

5. Express any additional unknowns such as voltages or currents
other than mesh currents in terms of appropriate mesh cur-
rents. This situation can occur if current sources or dependent
sources appear in our circuit.

Organize the equations. Group terms according to mesh currents.

Solve the system of equations for the mesh currents (there will
be M of them).

4.4 A THE SUPERMESH

How must we modify this straightforward procedure when a current source
is present in the network? Taking our lead from nodal analysis, we should
feel that there are two possible methods. First, we could assign an unknown
voltage across the current source, apply KVL around each mesh as before,
and then relate the source current to the assigned mesh currents. This is gen-
erally the more difficult approach.

A better technique is one that is quite similar to the supernode approach
in nodal analysis. There we formed a supernode, completely enclosing
the voltage source inside the supernode and reducing the number of non-
reference nodes by 1 for each voltage source. Now we create a kind of
“supermesh” from two meshes that have a current source as a common
element; the current source is in the interior of the supermesh. We thus
reduce the number of meshes by 1 for each current source present. If the
current source lies on the perimeter of the circuit, then the single mesh in
which it is found is ignored. Kirchhoff’s voltage law is thus applied only to
those meshes or supermeshes in the reinterpreted network.

EXAMPLE 4.11

Determine the three mesh currents in Fig. 4.24a.

We note that a 7 A independent current source is in the common bound-
ary of two meshes, which leads us to create a supermesh whose interior
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is that of meshes 1 and 3 as shown in Fig. 4.24b. Applying KVL about
this loop,

7+ 131 —iz) +3(i3 — i) +1i3 =0
or
iy —4ir +4i3 =17 [32]
and around mesh 2,
(2 — i) +2i + 332 —i3) =0
or
—i1 +6ip —3i3=0 [33]

Finally, the independent source current is related to the
mesh currents,

i1—i3 =17 [34]
Solving Egs. [32] through [34], we find i} =9 A, i, = 2.5 A, and
iz =2A.

PRACTICE .

4.9 Determine the current #; in the circuit of Fig. 4.25.

Ans: —1.93 A.

The presence of one or more dependent sources merely requires each of
these source quantities and the variable on which it depends to be expressed
in terms of the assigned mesh currents. In Fig. 4.26, for example, we note
that both a dependent and an independent current source are included in the
network. Let’s see how their presence affects the analysis of the circuit and
actually simplifies it.

10 /12) 20

. 10
20 3

(b)

M FIGURE 4.24 (a) A three-mesh circuit with
an independent current source. (b) A supermesh is
defined by the colored line.

50

40 90

M FIGURE 4.25

Evaluate the three unknown currents in the circuit of Fig. 4.26.

The current sources appear in meshes 1 and 3. Since the 15 A source is
located on the perimeter of the circuit, we may eliminate mesh 1 from
consideration—it is clear that i; = 15 A.

We find that because we now know one of the two mesh currents
relevant to the dependent current source, there is no need to write a
supermesh equation about meshes 1 and 3. Instead, we simply relate i;
and i3 to the current from the dependent source using KCL:

Ve . . 3(i3—1id)
L=
9 9

(Continued on next page)

EXAMPLE 4.12

B FIGURE 4.26 A three-mesh circuit with one
dependent and one independent current source.
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which can be written more compactly as

'+l'+2'—0 l'+2'—15 [35]
—_— —_— —_— —_— r —_— —_— —_—
T3t ah © 32730

With one equation in two unknowns, all that remains is to write a
KVL equation about mesh 2:

1(ip —iy) + 2ip + 3@, —i3) =0
or
6i, — 3i3 =15 [36]

Solving Eqgs. [35] and [36], we find thati; = 11 Aandiz = 17 A;
we already determined that i; = 15 A by inspection.

PRACTICE n
4.10 Determine v3 in the circuit of Fig. 4.27.
100
20 Q 30V
15i,
0v (D) A
400 Y.
30 Q 5
B FIGURE 4.27
Ans: 104.2 V

We can now summarize the general approach to writing mesh equations,
whether or not dependent sources, voltage sources, and/or current sources

are present, provided that the circuit can be drawn as a planar circuit:

Summary of Supermesh Analysis Procedure

1. Determine if the circuit is a planar circuit. If not, perform nodal
analysis instead.

2. Count the number of meshes (/). Redraw the circuit if necessary.
3. Label each of the M mesh currents. Generally, defining all mesh
currents to flow clockwise results in a simpler analysis.

4. If the circuit contains current sources shared by two meshes,
form a supermesh to enclose both meshes. A highlighted enclo-
sure helps when writing KVL equations.

5. Write a KVL equation around each mesh/supermesh. Begin
with a convenient node and proceed in the direction of the mesh
current. Pay close attention to “—" signs. If a current source lies
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on the periphery of a mesh, no KVL equation is needed and the
mesh current is determined by inspection.

6. Relate the current flowing from each current source to mesh
currents. This is accomplished by simple application of KCL;
one such equation is needed for each supermesh defined.

7. Express any additional unknowns such as voltages or currents
other than mesh currents in terms of appropriate mesh cur-
rents. This situation can occur if dependent sources appear in
our circuit.

8. Organize the equations. Group terms according to nodal voltages.

9. Solve the system of equations for the mesh currents (there will
be M of them).

4.5 . NODAL VS. MESH ANALYSIS: A COMPARISON

Now that we have examined two distinctly different approaches to circuit
analysis, it seems logical to ask if there is ever any advantage to using one
over the other. If the circuit is nonplanar, then there is no choice: only nodal
analysis may be applied.

Provided that we are indeed considering the analysis of a planar circuit,
however, there are situations where one technique has a small advantage
over the other. If we plan to use nodal analysis, then a circuit with N nodes
will lead to at most (N — 1) KCL equations. Each supernode defined will
further reduce this number by 1. If the same circuit has M distinct meshes,
then we will obtain at most M KVL equations; each supermesh will reduce
this number by 1. Based on these facts, we should select the approach that
will result in the smaller number of simultaneous equations.

If one or more dependent sources are included in the circuit, then each
controlling quantity may influence our choice of nodal or mesh analysis.
For example, a dependent voltage source controlled by a nodal voltage does
not require an additional equation when we perform nodal analysis. Like-
wise, a dependent current source controlled by a mesh current does not re-
quire an additional equation when we perform mesh analysis. What about
the situation where a dependent voltage source is controlled by a current?
Or the converse, where a dependent current source is controlled by a volt-
age? Provided that the controlling quantity can be easily related to mesh
currents, we might expect mesh analysis to be the more straightforward
option. Likewise, if the controlling quantity can be easily related to nodal
voltages, nodal analysis may be preferable. One final point in this regard is
to keep in mind the location of the source; current sources which lie on the
periphery of a mesh, whether dependent or independent, are easily treated
in mesh analysis; voltage sources connected to the reference terminal are
easily treated in nodal analysis.

When either method results in essentially the same number of equations,
it may be worthwhile to also consider what quantities are being sought.
Nodal analysis results in direct calculation of nodal voltages, whereas mesh
analysis provides currents. If we are asked to find currents through a set of
resistors, for example, after performing nodal analysis, we must still invoke
Ohm’s law at each resistor to determine the current.

101
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8 A
)
iy -/
8Q —
A% NNV
20 100

100V 40 %30 %SQ

M FIGURE 4.28 A planar circuit with five nodes and four meshes.

As an example, consider the circuit in Fig. 4.28. We wish to determine
the current i,.

‘We choose the bottom node as the reference node, and note that there are
four nonreference nodes. Although this means that we can write four dis-
tinct equations, there is no need to label the node between the 100 V source
and the 8 2 resistor, since that node voltage is clearly 100 V. Thus, we label
the remaining node voltages vy, vy, and v3 as in Fig. 4.29.

8 A
()
i, N
8Q vy - v
AN AN v
20 10 Q)

100 V 4Q %SQ %SQ

B FIGURE 4.29 The circuit of Fig. 4.28 with node voltages labeled.
Note that an earth ground symbol was chosen to designate the
reference terminal.

We write the following three equations:

vy — 100 v v — U2

8 4 2

=0 or 0.875v; —0.5v, =125 [37]

Uy — V) v UV — U3

—8=0 or —0.5v; —0.9333v, —0.1v3 =8 [38]

2 3 10
v3 l_ovz + % + 8§=0 or —0.11)2 + 0.31)3 =-38 [39]

Solving, we find that v; = 25.89 V and v, = 20.31 V. We determine the
current i, by application of Ohm’s law:

. vV — U2
== =279A [40]
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8 A
)
/

iy iy

3Q) —
— W\ AN
20 10Q
100 V @ 49@%39@%59

1) i3

M FIGURE 4.30 The circuit of Fig. 4.28 with mesh currents labeled.

Next, we consider the same circuit using mesh analysis. We see in
Fig. 4.30 that we have four distinct meshes, although it is obvious that
iy = —8 A; we therefore need to write three distinct equations.

Writing a KVL equation for meshes 1, 2, and 3:

—100 + 8i1 +4(i; — i) =0 or 12i; — 4iy =100  [41]
4(i2 — il) + 2i2 + 3(12 — i3) =0 or —4i1 + 9i2 — 3i3 =0 [42]
3(i3 — i) + 103+ 8) +5i3 =0 or —3i, + 18i3 = —80  [43]

Solving, we find that i, (=i,) = 2.79 A. For this particular problem,
mesh analysis proved to be simpler. Since either method is valid, however,
working the same problem both ways can also serve as a means to check our
answers.

4.6 L COMPUTER-AIDED CIRCUIT ANALYSIS

We have seen that it does not take many components at all to create a cir-
cuit of respectable complexity. As we continue to examine even more
complex circuits, it will become obvious rather quickly that it is easy to
make errors during the analysis, and verifying solutions by hand can be
time-consuming. A powerful computer software package known as PSpice
is commonly employed for rapid analysis of circuits, and the schematic
capture tools are typically integrated with either a printed circuit board or
integrated circuit layout tool. Originally developed in the early 1970s at the
University of California at Berkeley, SPICE (Simulation Program with
Integrated Circuit Emphasis) is now an industry standard. MicroSim Cor-
poration introduced PSpice in 1984, which built intuitive graphical inter-
faces around the core SPICE program. Depending on the type of circuit
application being considered, there are now several companies offering
variations of the basic SPICE package.

Although computer-aided analysis is a relatively quick means of deter-
mining voltages and currents in a circuit, we should be careful not to allow
simulation packages to completely replace traditional “paper and pencil”
analysis. There are several reasons for this. First, in order to design we must
be able to analyze. Overreliance on software tools can inhibit the develop-
ment of necessary analytical skills, similar to introducing calculators too early
in grade school. Second, it is virtually impossible to use a complicated
software package over a long period of time without making some type of
data-entry error. If we have no basic intuition as to what type of answer to
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B FIGURE 4.31 (a) Circuit of Fig. 4.15a drawn using Orcad schematic capture software. (b) Current,
voltage, and power display buttons. (c) Circuit after simulation run, with current display enabled.

expect from a simulation, then there is no way to determine whether or not
it is valid. Thus, the generic name really is a fairly accurate description:
computer-aided analysis. Human brains are not obsolete. Not yet, anyway.

As an example, consider the circuit of Fig. 4.15b, which includes two dc
voltage sources and three resistors. We wish to simulate this circuit using
PSpice so that we may determine the currents i; and i,. Figure 4.31a shows
the circuit as drawn using a schematic capture program.'

(1) Refer to Appendix 4 for a brief tutorial on PSpice and schematic capture.
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In order to determine the mesh currents, we need only run a bias point sim-
ulation. Under PSpice, select New Simulation Profile, type in a name (such
as Example), and click on Create. Under the Analysis type: pull-down menu,
select Bias Point, then click on OK. Returning to the original schematic win-
dow, under PSpice select Run (or use either of the two shortcuts: pressing the
F11 key or clicking on the blue “Play” symbol). To see the currents calculated
by PSpice, make sure the current button is selected (Fig. 4.315). The results of
our simulation are shown in Fig. 4.31c. We see that the two currents i; and i,
are 6 A and 4 A, respectively, as we found previously.

As a further example, consider the circuit shown in Fig. 4.32a. It contains
a dc voltage source, a dc current source, and a voltage-controlled current
source. We are interested in the three nodal voltages, which from either nodal
or mesh analysis are found to be 82.91V, 69.9 V, and 59.9 V, respectively, as
we move from left to right across the top of the circuit. Figure 4.32b shows
this circuit after the simulation was performed. The three nodal voltages are
indicated directly on the schematic. Note that in drawing a dependent source
using the schematic capture tool, we must explicitly link two terminals of
the source to the controlling voltage or current.

+V, - |
-
330 0V

SACD 189§ 209§ <T> 02V,

(@)
0086 m 2K ° CH 8 AR ®UTE . SR n R e
| SCMMATICS Tt + (5 BOBAAAAG1S1 0

o ST e
=
I
=1
+4
R1 =+
AM | W=
3 [
Ix %
Bk
)1 :2 R2 &
e e Q%

TRAN = )
DC=5 GAIN=02 P

g
JH

(b)

M FIGURE 4.32 (a) Circuit with dependent current source. (b) Circuit drawn using a schematic
capture tool, with simulation results presented directly on the schematic.
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Node-Based PSpice Schematic Creation

The most common method of describing a circuit in con-
junction with computer-aided circuit analysis is with
some type of graphical schematic drawing package, an
example output of which was shown in Fig. 4.32.
SPICE, however, was written before the advent of such
software, and as such requires circuits to be described in
a specific text-based format. The format has its roots in
the syntax used for punch cards, which gives it a some-
what distinct appearance. The basis for circuit de-
scription is the definition of elements, each terminal of
which is assigned a node number. So, although we have
just studied two different generalized circuit analysis
methods—the nodal and mesh techniques—it is interest-
ing that SPICE and PSpice were written using a clearly
defined nodal analysis approach.

Even though modern circuit analysis is largely done
using graphics-oriented interactive software, when errors
are generated (usually due to a mistake in drawing the
schematic or in selecting a combination of analysis op-
tions), the ability to read the text-based “input deck”
generated by the schematic capture tool can be invalu-
able in tracking down the specific problem. The easiest
way to develop such an ability is to learn how to run
PSpice directly from a user-written input deck.

Consider, for example, the sample input deck below
(lines beginning with an asterisk are comments, and are
skipped by SPICE).

* Example SPICE input deck for simple voltage divider circuit.

.OP (Requests dc operating point)

R1 1 2 1k
R2 2 0 1k
Vi 1 0 DC 5

* End of input deck.

We can create the input deck by using the Notepad pro-
gram from Windows or our favorite text editor. Saving the
file under the name example.cir, we next invoke PSpice
A/D (see Appendix. 4). Under File, we choose Open, lo-
cate the directory in which we saved our file example.cir,
and for Files of type: select Circuit Files (*.cir). After se-
lecting our file and clicking Open, we see the PSpice A/D
window with our circuit file loaded (Fig. 4.33a). A netlist
such as this, containing instructions for the simulation to be
performed, can be created by schematic capture software
or created manually as in this example.

We run the simulation by either clicking the green
“play” symbol at the top right, or selecting Run under
Simulation.

(Locates R1 between nodes 1 and 2; value is 1 k2)
(Locates R2 between nodes 2 and 0; also 1 kS2)
(Locates 5 V source between nodes 1 and 0)

To view the results, we select Output File from un-
der the View menu, which provides the window shown
in Fig. 4.33b. Here it is worth noting that the output pro-
vides the expected nodal voltages (5 V at node 1, 2.5 V
across resistor R2), but the current is quoted using the
passive sign convention (i.e., —2.5 mA).

Text-based schematic entry is reasonably straightfor-
ward, but for complex (large number of elements) cir-
cuits, it can quickly become cumbersome. It is also easy
to misnumber nodes, an error that can be difficult to iso-
late. However, reading the input and output files is often
helpful when running simulations, so some experience
with this format is useful.

At this point, the real power of computer-aided analysis begins to be
apparent: Once you have the circuit drawn in the schematic capture program, it
is easy to experiment by simply changing component values and observing the
effect on currents and voltages. To gain a little experience at this point, try sim-
ulating any of the circuits shown in previous examples and practice problems.
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M FIGURE 4.33 (a) PSpice A/D window after the input deck describing our voltage divider is loaded.
(b) Output window, showing nodal voltages and current from the source (but quoted using the passive sign
convention). Note that the voltage across R1 requires post-simulation subtraction.

SUMMARY AND REVIEW

Although Chap. 3 introduced KCL and KVL, both of which are sufficient to
enable us to analyze any circuit, a more methodical approach proves help-
ful in everyday situations. Thus, in this chapter we developed the nodal
analysis technique based on KCL, which results in a voltage at each node
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(with respect to some designated “reference” node). We generally need to
solve a system of simultaneous equations, unless voltage sources are con-
nected so that they automatically provide nodal voltages. The controlling
quantity of a dependent source is written down just as we would write down
the numerical value of an “independent” source. Typically an additional
equation is then required, unless the dependent source is controlled by a
nodal voltage. When a voltage source bridges two nodes, the basic tech-
nique can be extended by creating a supernode; KCL dictates that the sum
of the currents flowing into a group of connections so defined is equal to the
sum of the currents flowing out.

As an alternative to nodal analysis, the mesh analysis technique was de-
veloped through application of KVL,; it yields the complete set of mesh cur-
rents, which do not always represent the net current flowing through any
particular element (for example, if an element is shared by two meshes).
The presence of a current source will simplify the analysis if it lies on the
periphery of a mesh; if the source is shared, then the supermesh technique
is best. In that case, we write a KVL equation around a path that avoids
the shared current source, then algebraically link the two corresponding
mesh currents using the source.

A common question is: “Which analysis technique should I use?” We dis-
cussed some of the issues that might go into choosing a technique for a given
circuit. These included whether or not the circuit is planar, what types of
sources are present and how they are connected, and also what specific infor-
mation is required (i.e., a voltage, current, or power). For complex circuits, it
may take a greater effort than it is worth to determine the “optimum” approach,
in which case most people will opt for the method with which they feel most
comfortable. We concluded the chapter by introducing PSpice, a common cir-
cuit simulation tool, which is very useful for checking our results.

At this point we wrap up by identifying key points of this chapter to re-
view, along with relevant example(s).

Q Start each analysis with a neat, simple circuit diagram. Indicate all
element and source values. (Example 4.1)

Q For nodal analysis,
Q@ Choose one node as the reference node. Then label the node

voltages vy, vy, ..., vy—i. Each is understood to be measured with
respect to the reference node. (Examples 4.1, 4.2)

Q If the circuit contains only current sources, apply KCL at each
nonreference node. (Examples 4.1, 4.2)

Q If the circuit contains voltage sources, form a supernode about each
one, and then apply KCL at all nonreference nodes and supernodes.
(Examples 4.5, 4.6)

O For mesh analysis, first make certain that the network is a planar network.

O Assign a clockwise mesh current in each mesh: iy, iz, ..., iy.
(Example 4.7)

Q If the circuit contains only voltage sources, apply KVL around
each mesh. (Examples 4.7, 4.8, 4.9)

Q If the circuit contains current sources, create a supermesh for each
one that is common to two meshes, and then apply KVL around
each mesh and supermesh. (Examples 4.11, 4.12)
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Q Dependent sources will add an additional equation to nodal analysis
if the controlling variable is a current, but not if the controlling variable is
anodal voltage. (Conversely, a dependent source will add an additional
equation to mesh analysis if the controlling variable is a voltage, but not
if the controlling variable is a mesh current). (Examples 4.3, 4.4, 4.6, 4.9,
4.10,4.12)

Q Indeciding whether to use nodal or mesh analysis for a planar circuit, a
circuit with fewer nodes/supernodes than meshes/supermeshes will
result in fewer equations using nodal analysis.

0 Computer-aided analysis is useful for checking results and analyzing
circuits with large numbers of elements. However, common sense must
be used to check simulation results.

READING FURTHER

A detailed treatment of nodal and mesh analysis can be found in:

R. A. DeCarlo and P. M. Lin, Linear Circuit Analysis, 2nd ed. New York:
Oxford University Press, 2001.

A solid guide to SPICE is

P. Tuinenga, SPICE: A Guide to Circuit Simulation and Analysis Using
PSPICE, 3rd ed. Upper Saddle River, N.J.: Prentice-Hall, 1995.

EXERCISES
4.1 Nodal Analysis

1. Solve the following systems of equations:

(a) 2vy —4v; =9 and v| — Sv; = 4;

(b) —v; +2v3=38; 2v; + vy — Sv3=-7; 4v; +5v;, + 8v3 =6.
2. Evaluate the following determinants:

0 2 11
(a) _i ;' b6 4 1].
3 -1 5

3. Employ Cramer’s rule to solve for v in each part of Exercise 1.

4. (a) Solve the following system of equations:

v vy — Vg V] — U3
5 22 3
2_1:1)2—111 Uy — U3
22 14

025 U3 — V| V3 — 2
10 3 14

(b) Verity your solution using MATLAB.
5.(a) Solve the following system of equations:

! vy — V] vVp — U3
2 12 19
15:1)2—1)1 V2 — U3
12 2
422 V3 — V] V3 — U2
7 19 2

(b) Verity your solution using MATLAB.
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6. Correct (and verify by running) the following MATLAB code:

>> el = '3 =v/7 - (v2 - v1)/2 + (vl - v3)/3;
>> e2 = ‘2 = (v2 - v1)/2 + (v2 - v3)/14";

>> e ‘0 = v3/10 + (v3 - v1)/3 + (v3 - v2)/14";
>>

>> a = sove(e e2 e3, ‘vl’, v2, ‘v3’)

7. 1dentify the obvious errors in the following complete set of nodal equations if
the last equation is known to be correct:
V1 UV —V V1 — U3

4 1 9
Ozvz—vl vy — U3
2 2
422 V3 — Vg V3 — 2
7 19 2

8. In the circuit of Fig. 4.34, determine the current labeled i with the assistance of
nodal analysis techniques.

) 5Q )
MWV—
i
5A 10 20 4 A
M FIGURE 4.34

9. Calculate the power dissipated in the 1 €2 resistor of Fig. 4.35.

20
NV

3A 30 1Q 2A

M FIGURE 4.35

10. With the assistance of nodal analysis, determine v; — v; in the circuit shown in
Fig. 4.36.

v 1Q vy

2A<D ZQ§ Q 15A

40

M FIGURE 4.36
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11. For the circuit of Fig. 4.37, determine the value of the voltage labeled v, and
the current labeled ;.

+ U - —>

M —VW\—

1Q 20
30 2A 60 60 4 A

M FIGURE 4.37

12. Use nodal analysis to find vp in the circuit shown in Fig. 4.38.

100
40 Q 500 ;if\
NN NN ~
R O/
10 A 200 51000 25A (I)SA 200 0
B FIGURE 4.38

13. Using the bottom node as reference, determine the voltage across the 5
resistor in the circuit of Fig. 4.39, and calculate the power dissipated by the
7 2 resistor.

— WAV,
30
4A
30 10
A%
NG Q SA 70
50
M FIGURE 4.39

14. For the circuit of Fig. 4.40, use nodal analysis to determine the current is.

1Q§ §39 §4Q

;Q 70
O AMN— (T 2A

203 gfi.ﬂ Son

M FIGURE 4.40
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15. Determine a numerical value for each nodal voltage in the circuit of Fig. 4.41.

U3 »
6Q§ §ZQ §SQ 4Q§ §ZQ §IOQ
;q 100 ;q 40
9 @ ” ANN— %4 (T 1A vs O % ANN— % (T 6 A
wE Sea g wg S i
B FIGURE 4.41

M FIGURE 4.43
1Q
Ry vERN O
% %
SA
Ref.
M FIGURE 4.44

16. Determine the current i, as labeled in the circuit of Fig. 4.42, with the
assistance of nodal analysis.

1) 50
2
Y%
— y3 +
30 20
-y o+
0.020, (D 0V 020
B FIGURE 4.42

17. Using nodal analysis as appropriate, determine the current labeled 7; in the
circuit of Fig. 4.43.

4.2 The Supernode
18. Determine the nodal voltages as labeled in Fig. 4.44, making use of the
supernode technique as appropriate.

19. For the circuit shown in Fig. 4.45, determine a numerical value for the voltage
labeled v .

20. For the circuit of Fig. 4.46, determine all four nodal voltages.

10Q

6

3A T 50 90 5A

M FIGURE 4.45 M FIGURE 4.46
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21. Employing supernode/nodal analysis techniques as appropriate, determine the
power dissipated by the 1 Q resistor in the circuit of Fig. 4.47.

B FIGURE 4.47

22. Referring to the circuit of Fig. 4.48, obtain a numerical value for the power
supplied by the 1 V source.

4A<D §SQ

B FIGURE 4.48

23. Determine the voltage labeled v in the circuit of Fig. 4.49.
24. Determine the voltage vy in the circuit of Fig. 4.50, and the power supplied by
the 1 A source.

20,
N

80 8 A

+

M FIGURE 4.50
25. Consider the circuit of Fig. 4.51. Determine the current labeled i;.

0.5,

O——m
3v ” 4v

B FIGURE 4.51

M FIGURE 4.49
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26. Determine the value of & that will result in v, being equal to zero in the
circuit of Fig. 4.52.

1Q

: 4Q vy 30
ANN—
2V 1Q (# 1A ko,
Ref.

M FIGURE 4.52

27. For the circuit depicted in Fig. 4.53, determine the voltage labeled v; across
the 3 2 resistor.

+ v -
30
NN

20 50

B FIGURE 4.53

28. For the circuit of Fig. 4.54, determine all four nodal voltages.

L4

B FIGURE 4.54
4.3 Mesh Analysis

29. Determine the currents flowing out of the positive terminal of each voltage
source in the circuit of Fig. 4.55.

4Q 50

1V lﬂg 2V

B FIGURE 4.55
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30. Obtain numerical values for the two mesh currents i; and i, in the circuit
shown in Fig. 4.56.

B FIGURE 4.56

31. Use mesh analysis as appropriate to determine the two mesh currents labeled in

Fig. 4.57.
90 90
A% %A%
10
15VC) /D q C 21V
1V
M FIGURE 4.57

32. Determine numerical values for each of the three mesh currents as labeled in
the circuit diagram of Fig. 4.58.

B FIGURE 4.58

33. Calculate the power dissipated by each resistor in the circuit of Fig. 4.58.

34. Employing mesh analysis as appropriate, obtain (a) a value for the current i,
and (b) the power dissipated by the 220 €2 resistor in the circuit of Fig. 4.59.

35. Choose nonzero values for the three voltage sources of Fig. 4.60 so that no
current flows through any resistor in the circuit.

1kQ

B FIGURE 4.59 M FIGURE 4.60
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36. Calculate the current i, in the circuit of Fig. 4.61.

10A
D
_/
80 120 200
NN NN
i, —
3V 40 80 50

M FIGURE 4.61

37. Employing mesh analysis procedures, obtain a value for the current labeled i in
the circuit represented by Fig. 4.62.

30
4Q 10

i

2v<j> —
1fo )x 40

B FIGURE 4.62

38. Determine the power dissipated in the 4 €2 resistor of the circuit shown in
Fig. 4.63.

24,
' 50
4V~1V

B FIGURE 4.63

39. (a) Employ mesh analysis to determine the power dissipated by the 1
resistor in the circuit represented schematically by Fig. 4.64. (b) Check your
answer using nodal analysis.

40. Define three clockwise mesh currents for the circuit of Fig. 4.65, and employ
mesh analysis to obtain a value for each.

1Q 50 20
AN~ ——
l\’
4 A 20 5i, 20 1A 2V
30
AV

B FIGURE 4.64 M FIGURE 4.65
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41. Employ mesh analysis to obtain values for i, and v, in the circuit of Fig. 4.66.

0.24,

<O

70 70

40
1Q

=<

0.1,

M FIGURE 4.66

4.4 The Supermesh
42. Determine values for the three mesh currents of Fig. 4.67.

10 Q 50

M FIGURE 4.67
WO )

43. Through appropriate application of the supermesh technique, obtain a numerical
value for the mesh current i3 in the circuit of Fig. 4.68, and calculate the power 5A a
dissipated by the 1 €2 resistor.
44. For the circuit of Fig. 4.69, determine the mesh current i; and the power
dissipated by the 1 €2 resistor.
) - . M FIGURE 4.68
45. Calculate the three mesh currents labeled in the circuit diagram of Fig. 4.70.

40

4.7kO

A% (’) —VW\

9A<D §19 3A 22k0)

B FIGURE 4.69 M FIGURE 4.70
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46. Employing the supermesh technique to best advantage, obtain numerical val-
ues for each of the mesh currents identified in the circuit depicted in Fig. 4.71.

H FIGURE 4.71

47. Through careful application of the supermesh technique, obtain values for all
three mesh currents as labeled in Fig. 4.72.

120 + v —
e A'AY AN ;
130 40
110 30 8V
50,
v(®) &
10 20
B FIGURE 4.72 M FIGURE 4.73

48. Determine the power supplied by the 1 V source in Fig. 4.73.

49. Define three clockwise mesh currents for the circuit of Fig. 4.74, and employ
the supermesh technique to obtain a numerical value for each.

50. Determine the power absorbed by the 10 €2 resistor in Fig. 4.75.

10
40 5V la 100
. AN
.Z/3 SA
30 40
()
_/
4v 2i, 50 6A

B FIGURE 4.74 M FIGURE 4.75
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4.5 Nodal vs. Mesh Analysis: A Comparison

51.

52.

53.

54.

For the circuit represented schematically in Fig. 4.76: (a) How many nodal
equations would be required to determine is? (b) Alternatively, how many
mesh equations would be required? (c) Would your preferred analysis method
change if only the voltage across the 7 2 resistor were needed? Explain.

IQ§ §3Q §4Q

Ot D
205 Ssa Sen

B FIGURE 4.76

The circuit of Fig. 4.76 is modified such that the 3 A source is replaced by a

3 V source whose positive reference terminal is connected to the 7 €2 resistor.
(a) Determine the number of nodal equations required to determine is. (b) Al-
ternatively, how many mesh equations would be required? (c) Would your pre-
ferred analysis method change if only the voltage across the 7 2 resistor were
needed? Explain.

The circuit of Fig. 4.77 contains three sources. (a) As presently drawn, would
nodal or mesh analysis result in fewer equations to determine the voltages v
and v, ? Explain. (b) If the voltage source were replaced with current sources,
and the current source replaced with a voltage source, would your answer to
part (a) change? Explain?

10 A
S
30 6 12Q
MWV
+ v - + v -
240V 300 60 V

M FIGURE 4.77

Solve for the voltage v, as labeled in the circuit of Fig. 4.78 using (a) mesh
analysis. (b) Repeat using nodal analysis. (¢) Which approach was easier,
and why?

22V

+
20 11A<D 902,

B FIGURE 4.78

119




120 L] CHAPTER 4 BASIC NODAL AND MESH ANALYSIS

55. Consider the five-source circuit of Fig. 4.79. Determine the total number of
simultaneous equations that must be solved in order to determine v; using
(a) nodal analysis; (b) mesh analysis. (c¢) Which method is preferred, and does
it depend on which side of the 40 2 resistor is chosen as the reference node?
Explain your answer.

B FIGURE 4.79

56. Replace the dependent voltage source in the circuit of Fig. 4.79 with a depen-
dent current source oriented such that the arrow points upward. The controlling
expression 0.1 v; remains unchanged. The value V; is zero. (a) Determine the
total number of simultaneous equations required to obtain the power dissipated
by the 40 2 resistor if nodal analysis is employed. (b) Is mesh analysis pre-
ferred instead? Explain.

57. After studying the circuit of Fig. 4.80, determine the total number of simulta-
neous equations that must be solved to determine voltages v; and v3 using
(a) nodal analysis; (b) mesh analysis.

i 50 Q
NN
-+
450 30Q 200
NN
- v+

Siy 10,020 C)]oov 0205

B FIGURE 4.80

. From the perspective of determining voltages and currents associated with all
components, (a) design a five-node, four-mesh circuit that is analyzed more
easily using nodal techniques. (b) Modify your circuit by replacing only one
component such that it is now more easily analyzed using mesh techniques.

4.6 Computer-Aided Circuit Analysis

59. Employ PSpice (or similar CAD tool) to verify the solution of Exercise 8.
Submit a printout of a properly labeled schematic with the answer highlighted,
along with your hand calculations.

g 60. Employ PSpice (or similar CAD tool) to verify the solution of Exercise 10.

Submit a printout of a properly labeled schematic with the two nodal voltages
highlighted, along with your hand calculations solving for the same quantities.

g 61. Employ PSpice (or similar CAD tool) to verify the voltage across the 5 €2
resistor in the circuit of Exercise 13. Submit a printout of a properly labeled
schematic with the answer highlighted, along with your hand calculations.




g 62.

EXERCISES

Verify numerical values for each nodal voltage in Exercise 15 by employing
PSpice or a similar CAD tool. Submit a printout of an appropriately labeled
schematic with the nodal voltages highlighted, along with your hand
calculations.

. Verify the numerical values for i} and v, as indicated in the circuit accompany-

ing Exercise 17, using PSpice or a similar CAD tool. Submit a printout of a
properly labeled schematic with the answers highlighted, along with hand
calculations.

. (a) Generate an input deck for SPICE to determine the voltage vg as labeled

in Fig. 4.81. Submit a printout of the output file with the solution highlighted.
(b) Verity your answer by hand.

30 20

40V

B FIGURE 4.81

Chapter-Integrating Exercises

3 65

68.

(a) Design a circuit employing only 9 V batteries and standard 5% tolerance
value resistors that provide voltages of 1.5 V, 4.5V, and 5 V and at least
one mesh current of 1 mA. (b) Verify your design using PSpice or similar
CAD tool.

A decorative string of multicolored outdoor lights is installed on a home in a
quiet residential area. After plugging the 12 V ac adapter into the electrical
socket, the homeowner immediately notes that two bulbs are burned out.

(a) Are the individual lights connected in series or parallel? Explain. (b) Simulate
the string by writing a SPICE input deck, assuming 44 lights, 12 V dc power
supply, 24 AWG soft solid copper wire, and individual bulbs rated at 10 mW
each. Submit a printout of the output file, with the power supplied by the 12 V
supply highlighted. (¢) Verify your simulation with hand calculations.

. Consider the circuit depicted in Fig. 4.82. Employ either nodal or mesh analy-

sis as a design tool to obtain a value of 200 mA for i}, if elements A, B, C, D,
E, and F must be either current or voltage sources with nonzero values.

T

B FIGURE 4.82

(a) Under what circumstances does the presence of an independent voltage
source greatly simplify nodal analysis? Explain. (b) Under what circumstances
does the presence of an independent current source significantly simplify mesh
analysis? Explain. (¢) On which fundamental physical principle do we base
nodal analysis? (d) On which fundamental physical principle do we base mesh
analysis?

121
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69. Referring to Fig. 4.83, (a) determine whether nodal or mesh analysis is more
appropriate in determining i, if element A is replaced with a short circuit, then
carry out the analysis. (b) Verify your answer with an appropriate PSpice simu-
lation. Submit a properly labeled schematic along with the answer highlighted.

M FIGURE 4.83

70. The element marked A in the circuit of Fig. 4.83 is replaced by a 2.5 V inde-
pendent voltage source with the positive reference terminal connected to the
common node of the 20 €2 and 30 €2 resistors. (a) Determine whether mesh or
nodal analysis is more straightforward for determining the voltage marked vs3.
(b) Verity your answer using PSpice. (¢) Would your conclusion for part (a)
change if the current i, were required as well? Explain.
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Handy Circuit
Analysis Techniques

KEY CONCEPTS

Superposition: Determining

INTRODUCTION the Individual Contributions
The techniques of nodal and mesh analysis described in Chap. 4 of Different Sources to Any
are reliable and extremely powerful methods. However, both Current or Voltage
require that we develop a complete set of equations to describe ®
a particular circuit as a general rule, even if only one current, Source Transformation as a
voltage, or power quantity is of interest. In this chapter, we Means of Simplifying Circuits
investigate several different techniques for isolating specific parts L4
of a circuit in order to simplify the analysis. After examining each Thévenin's Theorem
of these techniques, we focus on how one might go about selecting L4
one method over another. Norton's Theorem

[ 4

Thévenin and Norton
5.1 , LINEARITY AND SUPERPOSITION Fauivlent Networke
All of the circuits which we plan to analyze can be classified as lin- ¢
ear circuits, so this is a good time to be more specific in defining
exactly what we mean by that. Having done this, we can then con-
sider the most important consequence of linearity, the principle of
superposition. This principle is very basic and will appear repeat-
edly in our study of linear circuit analysis. As a matter of fact, the
nonapplicability of superposition to nonlinear circuits is the very @

Maximum Power Transfer
[

A <Y Transformations for
Resistive Networks

reason they are so difficult to analyze! Selecting a Particular
The principle of superposition states that the response (a desired Combination of Analysis
current or voltage) in a linear circuit having more than one indepen- Techniques

dent source can be obtained by adding the responses caused by the g
separate independent sources acting alone.

Performing dc Sweep
Simulations Using PSpice
Linear Elements and Linear Circuits

We define a linear element as a passive element that has a linear
voltage-currentrelationship. By a “linear voltage-current relationship™
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The dependent voltage source v; = 0.6/, — 1415 is
linear, but v; = 0.6/% and v; = 0.6/, are not.

4] 5 Q 1%}
NV

20 10 iy

B FIGURE 5.1 A circuit with two independent current
sources.

CHAPTER 5 HANDY CIRCUIT ANALYSIS TECHNIQUES

we simply mean that multiplication of the current through the element by a
constant K results in the multiplication of the voltage across the element by
the same constant K. At this time, only one passive element has been defined
(the resistor), and its voltage-current relationship

v(t) = Ri(t)

is clearly linear. As a matter of fact, if v(¢) is plotted as a function of i (¢),
the result is a straight line.

We define a linear dependent source as a dependent current or voltage
source whose output current or voltage is proportional only to the first
power of a specified current or voltage variable in the circuit (or to the sum
of such quantities).

We now define a linear circuit as a circuit composed entirely of inde-
pendent sources, linear dependent sources, and linear elements. From this
definition, it is possible to show' that “the response is proportional to the
source,” or that multiplication of all independent source voltages and cur-
rents by a constant K increases all the current and voltage responses by the
same factor K (including the dependent source voltage or current outputs).

The Superposition Principle
The most important consequence of linearity is superposition.

Let us explore the superposition principle by considering first the circuit
of Fig. 5.1, which contains two independent sources, the current generators
that force the currents i, and i, into the circuit. Sources are often called forc-
ing functions for this reason, and the nodal voltages that they produce can be
termed response functions, or simply responses. Both the forcing functions
and the responses may be functions of time. The two nodal equations for this
circuit are

0.71)1 — 0.2112 = iu [1]
—0.2v +1.2v, =10 [2]

Now let us perform experiment x. We change the two forcing functions
to iy, and iy ; the two unknown voltages will now be different, so we will
call them vy, and v,,. Thus,

0.77)1x — O.Q,sz = iax [3]
—0.2U1x + 1.2U2x = ibx [4]

We next perform experiment y by changing the source currents to i,
and i;, and measure the responses vy, and vy,:

O.7U1y — O.2U2y = ia), [5]
—0.2U|y + 1.21)2); = l.by [6]

(1) The proof involves first showing that the use of nodal analysis on the linear circuit can produce only
linear equations of the form

ajvy +avy + -+ +ayvoy =b

where the a; are constants (combinations of resistance or conductance values, constants appearing in
dependent source expressions, 0, or +1), the v; are the unknown node voltages (responses), and b is an
independent source value or a sum of independent source values. Given a set of such equations, if we
multiply all the b’s by K, then it is evident that the solution of this new set of equations will be the node
voltages Kvy, Kvy, ..., Kvy.
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These three sets of equations describe the same circuit with three differ-
ent sets of source currents. Let us add or “superpose” the last two sets of
equations. Adding Egs. [3] and [5],

(0.7v1 + 0.7U1y) —(0.2vy, + 0.21)2),) =g + iay [71]
0.71)1 — 0.21)2 = l.a []]

and adding Eqgs. [4] and [6],

—(0.201 + 0.2v1,) + (1202, 4 1.205y) = ipy + iny 8]
—0.2v; + 1.2v = g 2]

where Eq. [1] has been written immediately below Eq. [7] and Eq. [2] below
Eq. [8] for easy comparison.

The linearity of all these equations allows us to compare Eq. [7] with
Eq. [1] and Eq. [8] with Eq. [2] and draw an interesting conclusion. If we
select iy, and i, such that their sum is i, and select i;,, and i, such that their
sum is ip, then the desired responses v; and v, may be found by adding v,
to vy, and vo, to vy, respectively. In other words, we can perform experi-
ment x and note the responses, perform experiment y and note the
responses, and finally add the two sets of responses. This leads to the fun-
damental concept involved in the superposition principle: to look at each
independent source (and the response it generates) one at a time with the
other independent sources “turned off™ or “zeroed out.”

If we reduce a voltage source to zero volts, we have effectively created
a short circuit (Fig. 5.2a). If we reduce a current source to zero amps, we
have effectively created an open circuit (Fig. 5.2b). Thus, the superposition
theorem can be stated as:

In any linear resistive network, the voltage across or the current through any re-
sistor or source may be calculated by adding algebraically all the individual
voltages or currents caused by the separate independent sources acting alone,
with all other independent voltage sources replaced by short circuits and all
other independent current sources replaced by open circuits.

Thus, if there are N independent sources, we must perform N experi-
ments, each having only one of the independent sources active and the
others inactive/turned off/zeroed out. Note that dependent sources are in
general active in every experiment.

There is also no reason that an independent source must assume only its
given value or a zero value in the several experiments; it is necessary only
for the sum of the several values to be equal to the original value. An inac-
tive source almost always leads to the simplest circuit, however.

The circuit we have just used as an example should indicate that a much
stronger theorem might be written; a group of independent sources may be
made active and inactive collectively, if we wish. For example, suppose
there are three independent sources. The theorem states that we may find a
given response by considering each of the three sources acting alone and
adding the three results. Alternatively, we may find the response due to the
first and second sources operating with the third inactive, and then add to
this the response caused by the third source acting alone. This amounts to
treating several sources collectively as a sort of “supersource.”

! T No voltage drop
across terminals, . T
ov but current can
flow

(a)

No current
+ flows, buta +
voltage can
0A(})r SN
appear across
— the terminals *I

()
M FIGURE 5.2 (a) A voltage source set to zero acts
like a short circuit. (b) A current source set to zero acts
like an open circuit.

%
%
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EXAMPLE 5.1

For the circuit of Fig. 5.3a, use superposition to determine the
unknown branch current i,.

60

(@)

(b)

B FIGURE 5.3 (a) An example circuit with two independent sources for which the branch current
Iy is desired; (b) same circuit with current source open-circuited; (c) original circuit with voltage
source short-circuited.

First set the current source equal to zero and redraw the circuit

as shown in Fig. 5.3b. The portion of i, due to the voltage source
has been designated | to avoid confusion and is easily found to be
0.2 A.

Next set the voltage source in Fig. 5.3a to zero and again redraw the
circuit, as shown in Fig. 5.3¢. Current division lets us determine that i/
(the portion of i, due to the 2 A current source) is 0.8 A.

Now compute the total current i, by adding the two individual

components:
Ix = lxjyy T ixps = l; + i,/r/
or
3 6
ix = 2 =024+08=10A
=y T (6 n 9) *

Another way of looking at Example 5.1 is that the 3 V source and the
2 A source are each performing work on the circuit, resulting in a total cur-
rent i, flowing through the 9 €2 resistor. However, the contribution of the 3 V
source to i, does not depend on the contribution of the 2 A source, and vice
versa. For example, if we double the output of the 2 A source to 4 A, it will
now contribute 1.6 A to the total current i, flowing through the 9 €2 resistor.
However, the 3 V source will still contribute only 0.2 A to i,, for a new total
current of 0.2 + 1.6 = 1.8 A.
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PRACTICE "

5.1 For the circuit of Fig. 5.4, use superposition to compute the current i,.

AN
15Q
70
2A(D SQ§ Cj) 35V
30
M FIGURE 5.4
Ans: 660 mA.

As we will see, superposition does not generally reduce our workload
when considering a particular circuit, since it leads to the analysis of several
new circuits to obtain the desired response. However, it is particularly use-
ful in identifying the significance of various parts of a more complex circuit.
It also forms the basis of phasor analysis, which is introduced in Chap. 10.
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EXAMPLE 5.2

Referring to the circuit of Fig. 5.5a, determine the maximum positive
current to which the source I, can be set before any resistor exceeds
its power rating and overheats.

"
1100 O
—_—

100

a 6V 640 liﬁm

(c)

M FIGURE 5.5 (a) A circuit with two resistors each rated at & W. (b) Circuit
with only the 6 V source active. (c) Circuit with the source /, active.

Identify the goal of the problem.

Each resistor is rated to a maximum of 250 mW. If the circuit allows
this value to be exceeded (by forcing too much current through
either resistor), excessive heating will occur—possibly leading to

(Continued on next page)
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an accident. The 6 V source cannot be changed, so we are looking for an
equation involving I, and the maximum current through each resistor.

Collect the known information.
Based on its 250 mW power rating, the maximum current the 100 €2

resistor can tolerate is
Prax 0.250
R V100 o

and, similarly, the current through the 64 €2 resistor must be less than
62.5 mA.

Devise a plan.

Either nodal or mesh analysis may be applied to the solution of this
problem, but superposition may give us a slight edge, since we are
primarily interested in the effect of the current source.

Construct an appropriate set of equations.
Using superposition, we redraw the circuit as in Fig. 5.5b and find that
the 6 V source contributes a current
, 6
1002 = 700 1 64
to the 100 €2 resistor and, since the 64 2 resistor is in series, ié4 o=
36.59 mA as well.
Recognizing the current divider in Fig. 5.5¢, we note that i, o, will
add to ig, o, butij, o is opposite in direction to i{, . Therefore,
Ix can safely contribute 62.5 — 36.59 = 25.91 mA to the 64 €2 resistor
current, and 50 — (—36.59) = 86.59 mA to the 100 2 resistor current.
The 100 €2 resistor therefore places the following constraint on /,:
100 + 64
o)

= 36.59 mA

I, < (86.59 x 107?) (
and the 64 2 resistor requires that
100 + 64
I < (2591 x 107) [ ———
x < (@391 107 ( 100 )

Attempt a solution.

Considering the 100 €2 resistor first, we see that I, is limited to /, <
221.9 mA. The 64 2 resistor limits /, such that 7, < 42.49 mA. In
order to satisfy both constraints, /, must be less than 42.49 mA. If the
value is increased, the 64 €2 resistor will overheat long before the
100 €2 resistor does.

Verify the solution. Is it reasonable or expected?

One particularly useful way to evaluate our solution is to perform a dc
sweep analysis in PSpice as described after the next example. An in-
teresting question, however, is whether we would have expected the
64 2 resistor to overheat first.

Originally we found that the 100 €2 resistor has a smaller
maximum current, so it might be reasonable to expect it to limit /.
However, because I, opposes the current sent by the 6 V source
through the 100 €2 resistor but adds to the 6 V source’s contribution
to the current through the 64 € resistor, it turns out to work the other
way—it’s the 64 €2 resistor that sets the limit on .
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EXAMPLE 5.3

In the circuit of Fig. 5.6a, use the superposition principle to deter-
mine the value of i,.

) (c)

M FIGURE 5.6 (a) An example circuit with two independent sources and one
dependent source for which the branch current s, is desired. (b) Circuit with the 3 A
source open-circuited. (c) Original circuit with the 10 V source short-circuited.

First open-circuit the 3 A source (Fig. 5.60). The single mesh equation
is
—10+2i, +i, +2i, =0
so that
iL=2A
Next, short-circuit the 10 V source (Fig. 5.6¢) and write the single-
node equation

" 7 S
v v’ —2i;

— + =3
2 1
and relate the dependent-source-controlling quantity to v”:
v =2(—i)
Solving, we find
il =—0.6A
and, thus,
iy =i, +il =24+ (-06)=14A
Note that in redrawing each subcircuit, we are always careful to
use some type of notation to indicate that we are not working with the A
original variables. This prevents the possibility of rather disastrous
errors when we add the individual results. s 159 4
NN
PRACTICE !
o 7Q
5.2 For the circuit of Fig. 5.7, use superposition to obtain the voltage 2A (T) § 50 <T> 4i
across each current source. 3V
Ans: Vljpp = 9.180 V, V2p = —1.148 V, Vijzy = 1.967 V, V2|3y = —0.246 V; —L

vy =11.147 V, v, = —1.394 V.
B FIGURE 5.7
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Summary of Basic Superposition Procedure

1. Select one of the independent sources. Set all other indepen-
dent sources to zero. This means voltage sources are replaced
with short circuits and current sources are replaced with open
circuits. Leave dependent sources in the circuit.

2. Relabel voltages and currents using suitable notation (e.g.,
v’, i5). Be sure to relabel controlling variables of dependent
sources to avoid confusion.

3. Analyze the simplified circuit to find the desired currents
and/or voltages.

4. Repeat steps 1 through 3 until each independent source has
been considered.

5. Add the partial currents and/or voltages obtained from the
separate analyses. Pay careful attention to voltage signs and
current directions when summing.

6. Do not add power quantities. If power quantities are required,
calculate only after partial voltages and/or currents have been
summed.

Note that step 1 may be altered in several ways. First, independent
sources can be considered in groups as opposed to individually if it simpli-
fies the analysis, as long as no independent source is included in more than
one subcircuit. Second, it is technically not necessary to set sources to zero,
although this is almost always the best route. For example, a 3 V source may
appear in two subcircuits as a 1.5 V source, since 1.5+ 1.5 =3 V just as
0+ 3 = 3 V. Because it is unlikely to simplify our analysis, however, there
is little point to such an exercise.

COMPUTER-AIDED ANALYSIS

Although PSpice is extremely useful in verifying that we have analyzed
a complete circuit correctly, it can also assist us in determining the
contribution of each source to a particular response. To do this, we
employ what is known as a dc parameter sweep.

Consider the circuit presented in Example 5.2, when we were asked
to determine the maximum positive current that could be obtained from
the current source without exceeding the power rating of either resistor
in the circuit. The circuit is shown redrawn using the Orcad Capture
CIS schematic tool in Fig. 5.8. Note that no value has been assigned
to the current source.

After the schematic has been entered and saved, the next step is
to specify the dc sweep parameters. This option allows us to specify
arange of values for a voltage or current source (in the present case,
the current source Iy ), rather than a specific value. Selecting New
Simulation Profile under PSpice, we provide a name for our profile
and are then provided with the dialog box shown in Fig. 5.9.



SECTION 5.1 LINEARITY AND SUPERPOSITION

Bl A0 Gaptaen OB —
] cadence
L de Rt e SRR AR ® ¥ Euyeq | - M
i = ARAA ] s,
R Y ‘
0N Y ]
> T - £
b e
st =4 %;&m;m
WA g b [IEE
100 TV | R e—
AV L. ‘ g =
DC=86 £y R2 I L -
g O zx o 5N
TRAN = TRAN = G % Futay
i ae_ R
285 Flmem
’ -
0 pemliian
M FIGURE 5.8 The circuit from Example 5.2.
Simulation Settings - Figure3_8 [ = |
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M FIGURE 5.9 DC Sweep dialog box shown with I, selected as the sweep variable.

Under Analysis Type, we pull down the DC Sweep option, specify
the “sweep variable” as Current Source, and then type in I in the
Name box. There are several options under Sweep Type: Linear,
Logarithmic, and Value List. The last option allows us to specify each
value to assign to I. In order to generate a smooth plot, however, we
choose to perform a Linear sweep, with a Start Value of 0 mA, an
End Value of 50 mA, and a value of 0.01 mA for the Increment.

After we perform the simulation, the graphical output package Probe
is automatically launched. When the window appears, the horizontal
axis (corresponding to our variable, Iy) is displayed, but the vertical
axis variable must be chosen. Selecting Add Trace from the Trace
menu, we click on I(R1), then type an asterisk in the Trace Expression
box, click on I(R1) once again, insert yet another asterisk, and finally
type in 100. This asks Probe to plot the power absorbed by the 100 €2
resistor. In a similar fashion, we repeat the process to add the power

(Continued on next page)
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M FIGURE 5.10 (a) Probe output with text labels identifying the power absorbed by the two
resistors individually. A horizontal line indicating 250 mW has also been included, as well as text
labels to improve clarity. (b) Cursor dialog box.

absorbed by the 64 2 resistor, resulting in a plot similar to that shown
in Fig. 5.10a. A horizontal reference line at 250 mW was also added to
the plot by typing 0.250 in the Trace Expression box after selecting
Add Trace from the Trace menu a third time.

We see from the plot that the 64 2 resistor does exceed its 250 mW
power rating in the vicinity of Iy = 43 mA. In contrast, however, we
also see that regardless of the value of the current source I (provided
that it is between 0 and 50 mA), the 100 €2 resistor will never dissipate
250 mW; in fact, the absorbed power decreases with increasing current
from the current source. If we desire a more precise answer, we can make
use of the cursor tool, which is invoked by selecting Trace, Cursor,
Display from the menu bar. Figure 5.10b shows the result of dragging
cursor 1 to 42.52 A, where the 64 2 resistor is dissipating just over its
maximum rated power of 250 mW. Increased precision can be obtained
by decreasing the increment value used in the dc sweep.

This technique is very useful in analyzing electronic circuits, where
we might need, for example, to determine what input voltage is required
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to a complicated amplifier circuit in order to obtain a zero output
voltage. We also notice that there are several other types of parameter
sweeps that we can perform, including a dc voltage sweep. The ability to
vary temperature is useful only when dealing with component models
that have a temperature parameter built in, such as diodes and transistors.

Unfortunately, it usually turns out that little if any time is saved in ana-
lyzing a circuit containing one or more dependent sources by use of the
superposition principle, for there must always be at least two sources in
operation: one independent source and all the dependent sources.

We must constantly be aware of the limitations of superposition. It is
applicable only to linear responses, and thus the most common nonlinear
response—power—is not subject to superposition. For example, consider
two 1 V batteries in series with a 1 €2 resistor. The power delivered to the re-
sistor is 4 W, but if we mistakenly try to apply superposition, we might say
that each battery alone furnished 1 W and thus the calculated power is only
2 W. This is incorrect, but a surprisingly easy mistake to make.

5.2  SOURCE TRANSFORMATIONS

Practical Voltage Sources

So far, we’ve only worked with ideal sources—elements whose terminal
voltage is independent of the current flowing through them. To see the
relevance of this fact, consider a simple independent (“ideal”) 9 V source
connected to a 1 €2 resistor. The 9 volt source will force a current of 9 amperes
through the 1 €2 resistor (perhaps this seems reasonable enough), but the same
source would apparently force 9,000,000 amperes through a 1 mS2 resistor
(which hopefully does not seem reasonable). On paper, there's nothing to stop
us from reducing the resistor value all the way to 0 €2 ... but that would lead
to a contradiction, as the source would be “trying” to maintain 9 V across a
dead short, which Ohm’s law tells us can’t happen (V =9 = RI = 0?).

What happens in the real world when we do this type of experiment? For
example, if we try to start a car with the headlights already on, we most likely
notice the headlights dim as the battery is asked to supply a large (~100 A or
more) starter current in parallel with the current running to the headlights. If
we model the 12 V battery with an ideal 12 V source as in Fig. 5.11a, our
observation cannot be explained. Another way of saying this is that our model
breaks down when the load draws a large current from the source.

To better approximate the behavior of a real device, the ideal voltage
source must be modified to account for the lowering of its terminal voltage
when large currents are drawn from it. Let us suppose that we observe ex-
perimentally that our car battery has a terminal voltage of 12 V when no
current is flowing through it, and a reduced voltage of 11 V when 100 A is
flowing. How could we model this behavior? Well, a more accurate model
might be an ideal voltage source of 12 V in series with a resistor across
which 1 V appears when 100 A flows through it. A quick calculation shows
that the resistor must be 1 V/100 A = 0.01 €2, and the ideal voltage source
and this series resistor constitute a practical voltage source (Fig. 5.11b).

® 1888

12V

(a)
0.01Q

12V

)

B FIGURE 5.11 (a) Anideal 12 V dc voltage source
used to model a car battery. (b) A more accurate
model that accounts for the observed reduction in
terminal voltage at large currents.
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M FIGURE 5.12 (a) A practical source, which
approximates the behavior of a certain 12 V
automobile battery, is shown connected to a load
resistor R;. (b) The relationship between /; and V/;
is linear.
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M FIGURE 5.13 (a) A general practical voltage

source connected to a load resistor R;. (b) The terminal

voltage of a practical voltage source decreases as i
increases and R, = v, /i; decreases. The terminal
voltage of an ideal voltage source (also plotted)
remains the same for any current delivered to a load.
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Thus, we are using the series combination of two ideal circuit elements, an
independent voltage source and a resistor, to model a real device.

We do not expect to find such an arrangement of ideal elements inside
our car battery, of course. Any real device is characterized by a certain
current-voltage relationship at its terminals, and our problem is to develop
some combination of ideal elements that can furnish a similar current-voltage
characteristic, at least over some useful range of current, voltage, or power.

In Fig. 5.12a, we show our two-piece practical model of the car battery
now connected to some load resistor R;. The terminal voltage of the practical
source is the same as the voltage across Ry and is marked? V. Figure 5.12b
shows a plot of load voltage V; as a function of the load current 7}, for this
practical source. The KVL equation for the circuit of Fig. 5.12a may be
written in terms of /; and V.

12 =0.011; + V;,
and thus
V., =-0.011; + 12

This is a linear equation in /; and V;, and the plotin Fig. 5.12b is a straight
line. Each point on the line corresponds to a different value of R;. For exam-
ple, the midpoint of the straight line is obtained when the load resistance is
equal to the internal resistance of the practical source, or R;, = 0.01 2. Here,
the load voltage is exactly one-half the ideal source voltage.

When R; = oo and no current whatsoever is being drawn by the
load, the practical source is open-circuited and the terminal voltage, or
open-circuit voltage, is Vo = 12 V. If, on the other hand, R; = 0, thereby
short-circuiting the load terminals, then a load current or short-circuit cur-
rent, I = 1200 A, would flow. (In practice, such an experiment would
probably result in the destruction of the short circuit, the battery, and any
measuring instruments incorporated in the circuit!)

Since the plot of V versus Iy is a straight line for this practical voltage
source, we should note that the values of V. and /4 uniquely determine
the entire V;—I; curve.

The horizontal broken line of Fig. 5.12b represents the V,—I; plot for an
ideal voltage source; the terminal voltage remains constant for any value of
load current. For the practical voltage source, the terminal voltage has a value
near that of the ideal source only when the load current is relatively small.

Let us now consider a general practical voltage source, as shown in
Fig. 5.13a. The voltage of the ideal source is vy, and a resistance R;, called
an internal resistance or output resistance, is placed in series with it. Again,
we must note that the resistor is not really present as a separate component
but merely serves to account for a terminal voltage that decreases as the
load current increases. Its presence enables us to model the behavior of a
physical voltage source more closely.

The linear relationship between v, and iy is

VUV, = Vg — RSiL [9]

(2) From this point on we will endeavor to adhere to the standard convention of referring to strictly dc
quantities using capital letters, whereas lowercase letters denote a quantity that we know to possess some
time-varying component. However, in describing general theorems which apply to either dc or ac, we will
continue to use lowercase to emphasize the general nature of the concept.
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and this is plotted in Fig. 5.13b. The open-circuit voltage (R; = 00, so
ipr =0)1is
ULoc = Us [10]

and the short-circuit current (R; = 0, so v;, = 0) is
. Us (1]
1 = —
Lsc Rs

Once again, these values are the intercepts for the straight line in Fig. 5.13b,
and they serve to define it completely.

Practical Current Sources

An ideal current source is also nonexistent in the real world; there is no
physical device that will deliver a constant current regardless of the load re-
sistance to which it is connected or the voltage across its terminals. Certain
transistor circuits will deliver a constant current to a wide range of load re-
sistances, but the load resistance can always be made sufficiently large that
the current through it becomes very small. Infinite power is simply never
available (unfortunately).

A practical current source is defined as an ideal current source in paral-
lel with an internal resistance R,,. Such a source is shown in Fig. 5.14a, and
the current iy, and voltage vy, associated with a load resistance R; are indi-
cated. Application of KCL yields

. . UL

ip =1y R, [12]
which is again a linear relationship. The open-circuit voltage and the short-
circuit current are

Ve = Ryis [13]
and
iLsc = is [14]

The variation of load current with changing load voltage may be inves-
tigated by changing the value of R; as shown in Fig. 5.14b. The straight line
is traversed from the short-circuit, or “northwest,”” end to the open-circuit
termination at the “southeast” end by increasing R; from zero to infinite
ohms. The midpoint occurs for R;, = R,,. The load current i; and the ideal
source current are approximately equal only for small values of load volt-
age, which are obtained with values of Ry, that are small compared to R,

Equivalent Practical Sources

It may be no surprise that we can improve upon models to increase their
accuracy; at this point we now have a practical voltage source model and
also a practical current source model. Before we proceed, however, let’s
take a moment to compare Fig. 5.13b and Fig. 5.14b. One is for a circuit
with a voltage source and the other, with a current source, but the graphs are
indistinguishable!

It turns out that this is no coincidence. In fact, we are about to show that
a practical voltage source can be electrically equivalent to a practical cur-
rent source—meaning that a load resistor R, connected to either will have

(a)

Ideal source

Practical
source

UL
VLoc = Rpl.r

)
B FIGURE 5.14 (a) A general practical current
source connected to a load resistor R;. (b) The load

current provided by the practical current source is
shown as a function of the load voltage.
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(@)

M FIGURE 5.15 () A given practical
voltage source connected to a load R;.
(b) The equivalent practical current source
connected to the same load.

£
(@)
20

6V ( ’
(b

B FIGURE 5.16 (a) A given practical

current source. (b) The equivalent practical
voltage source.

EXAMPLE 5.4

A\
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the same v, and i;. This means we can replace one practical source with the
other and the rest of the circuit will not know the difference.

Consider the practical voltage source and resistor Ry shown in Fig. 5.15a,
and the circuit composed of a practical current source and resistor R; shown
in Fig. 5.15b. A simple calculation shows that the voltage across the load R,
of Fig. 5.15a is

Ry

= 15
R TR, [15]

VU = VU
A similar calculation shows that the voltage across the load R, in
Fig. 5.15b is

The two practical sources are electrically equivalent, then, if

R =R, [16]

and
[17]

where we now let R, represent the internal resistance of either practical
source, which is the conventional notation.

Let’s try this with the practical current source shown in Fig. 5.16a. Since
its internal resistance is 2 €2, the internal resistance of the equivalent practi-
cal voltage source is also 2 €2; the voltage of the ideal voltage source con-
tained within the practical voltage source is (2)(3) = 6 V. The equivalent
practical voltage source is shown in Fig. 5.16b.

To check the equivalence, let us visualize a 4 €2 resistor connected to
each source. In both cases a current of 1 A, a voltage of 4 V, and a power of
4 W are associated with the 4 2 load. However, we should note very care-
fully that the ideal current source is delivering a total power of 12 W, while
the ideal voltage source is delivering only 6 W. Furthermore, the internal
resistance of the practical current source is absorbing 8 W, whereas the in-
ternal resistance of the practical voltage source is absorbing only 2 W. Thus
we see that the two practical sources are equivalent only with respect to
what transpires at the load terminals; they are not equivalent internally!

v, = Ryiy = Ryl

Compute the current through the 4.7 kQ resistor in Fig. 5.17a after
transforming the 9 mA source into an equivalent voltage source.

It’s not just the 9 mA source at issue, but also the resistance in parallel
with it (5 k€2). We remove these components, leaving two terminals “dan-
gling.” We then replace them with a voltage source in series with a 5 k2
resistor. The value of the voltage source must be (0.09)(5000) = 45 V.

Redrawing the circuit as in Fig. 5.17b, we can write a simple KVL
equation

—45 + 5000/ + 4700/ + 3000/ + 3 =0

which is easily solved to yield 7 = 3.307 mA.
We can check our answer of course by analyzing the circuit of
Fig. 5.17a using either nodal or mesh techniques.
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47kQ  3kQO 5k 47kQ 3kO

e
9 mA 5kQ 3V e 45V 3V c
L
(a) ()

B FIGURE 5.17 (a) A circuit with both a voltage source and a current source. (b) The circuit
after the 9 mA source is transformed into an equivalent voltage source.

PRACTICE .

5.3 For the circuit of Fig. 5.18, compute the current Iy through the 47 k2
resistor after performing a source transformation on the voltage source.
5kQ

5V ’xl 47 kO 1 mA

B FIGURE 5.18

Ans: 192 LA.
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EXAMPLE 5.5

Calculate the current through the 2 € resistor in Fig. 5.19a by
making use of source transformations to first simplify the circuit.

We begin by transforming each current source into a voltage source
(Fig. 5.19b), the strategy being to convert the circuit into a simple loop.
‘We must be careful to retain the 2 2 resistor for two reasons: first, the
dependent source controlling variable appears across it, and second, we
desire the current flowing through it. However, we can combine the 17
and 9 Q resistors, since they appear in series. We also see that the 3 2 and
4 Q resistors may be combined into a single 7 €2 resistor, which can then
be used to transform the 15 V source into a 15/7 A source as in Fig. 5.19c.
Finally, we note that the two 7 2 resistors can be combined into a
single 3.5 2 resistor, which may be used to transform the 15/7 A
current source into a 7.5 V voltage source. The result is a simple
loop circuit, shown in Fig. 5.194.
The current / can now be found using KVL:

—754+351 =51V, +281+9=0
where
V., =21
Thus,
I =21.28 mA

(Continued on next page)
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17 Q
40 V-
A, ) AAAY
I 2Q
3V,
5A 30 70 90 1A
(@)

(d)
B FIGURE 5.19 (a) A circuit with two independent current sources and one
dependent source. (b) The circuit after each source is transformed into a voltage
source. (c) The circuit after further combinations. (d) The final circuit.

PRACTICE _

5.4 For the circuit of Fig. 5.20, compute the voltage V across the 1 M2
resistor using repeated source transformations.

M FIGURE 5.20

Ans: 27.2 V.



SECTION 5.2 SOURCE TRANSFORMATIONS

Several Key Points

We conclude our discussion of practical sources and source transformations
with a few observations. First, when we transform a voltage source, we
must be sure that the source is in fact in series with the resistor under con-
sideration. For example, in the circuit of Fig. 5.21, it is perfectly valid to
perform a source transformation on the voltage source using the 10 €2 resis-
tor, as they are in series. However, it would be incorrect to attempt a source
transformation using the 60 V source and the 30 2 resistor—a very common
type of error.

In a similar fashion, when we transform a current source and resistor
combination, we must be sure that they are in fact in parallel. Consider the
current source shown in Fig. 5.22a. We may perform a source transforma-
tion including the 3 2 resistor, as they are in parallel, but after the transfor-
mation there may be some ambiguity as to where to place the resistor. In
such circumstances, it is helpful to first redraw the components to be trans-
formed as in Fig. 5.22b. Then the transformation to a voltage source in
series with a resistor may be drawn correctly as shown in Fig. 5.22¢; the
resistor may in fact be drawn above or below the voltage source.

It is also worthwhile to consider the unusual case of a current source in
series with a resistor, and its dual, the case of a voltage source in parallel

=
=)
<

10 O

4A (D %go Q 30 O § %? 0.4i

B FIGURE 5.21 An example circuit to illustrate how to determine if a source
transformation can be performed.

2
©

7Q 7Q

5V 20 Q 1A 230 kRY 5V 20

70

5V 29§ (j)3v

(©
B FIGURE 5.22 (a) A circuit with a current source to be transformed to a voltage source. (b) Circuit
redrawn so as to avoid errors. () Transformed source/resistor combination.

3V
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with a resistor. Let’s start with the simple circuit of Fig. 5.23a, where we are
interested only in the voltage across the resistor marked R,. We note that re-
gardless of the value of resistor Ry, Vg, = I R,. Although we might be
tempted to perform an inappropriate source transformation on such a cir-
cuit, in fact we may simply omit resistor R, (provided that it is of no interest
to us itself). A similar situation arises with a voltage source in parallel with
aresistor, as depicted in Fig. 5.23b. Again, if we are only interested in some
quantity regarding resistor R,, we may find ourselves tempted to perform
some strange (and incorrect) source transformation on the voltage source
and resistor R;. In reality, we may omit resistor R; from our circuit as far as
resistor R, is concerned—its presence does not alter the voltage across, the
current through, or the power dissipated by resistor R,.

Ry
(@) (b)

B FIGURE 5.23 (a) Circuit with a resistor R; in series with a current
source. (b) A voltage source in parallel with two resistors.

Summary of Source Transformation

1. A common goal in source transformation is to end up with
either all current sources or all voltage sources in the circuit.
This is especially true if it makes nodal or mesh analysis easier.

2. Repeated source transformations can be used to simplify a
circuit by allowing resistors and sources to eventually be
combined.

3. The resistor value does not change during a source transfor-
mation, but it is not the same resistor. This means that currents
or voltages associated with the original resistor are irretrievably
lost when we perform a source transformation.

4. If the voltage or current associated with a particular resistor is
used as a controlling variable for a dependent source, it should
not be included in any source transformation. The original
resistor must be retained in the final circuit, untouched.

5. If the voltage or current associated with a particular element is
of interest, that element should not be included in any source
transformation. The original element must be retained in the final
circuit, untouched.

6. In a source transformation, the head of the current source
arrow corresponds to the “+” terminal of the voltage source.

7. A source transformation on a current source and resistor
requires that the two elements be in parallel.

8. A source transformation on a voltage source and resistor
requires that the two elements be in series.
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5.3, THEVENIN AND NORTON EQUIVALENT CIRCUITS

Now that we have been introduced to source transformations and the super-
position principle, it is possible to develop two more techniques that will
greatly simplify the analysis of many linear circuits. The first of these theo-
rems is named after L. C. Thévenin, a French engineer working in telegra-
phy who published the theorem in 1883; the second may be considered a
corollary of the first and is credited to E. L. Norton, a scientist with the Bell
Telephone Laboratories.

Let us suppose that we need to make only a partial analysis of a circuit.
For example, perhaps we need to determine the current, voltage, and power
delivered to a single “load” resistor by the remainder of the circuit, which
may consist of a sizable number of sources and resistors (Fig. 5.24a). Or,
perhaps we wish to find the response for different values of the load resis-
tance. Thévenin’s theorem tells us that it is possible to replace everything
except the load resistor with an independent voltage source in series with a
resistor (Fig. 5.24b); the response measured at the load resistor will be un-
changed. Using Norton’s theorem, we obtain an equivalent composed of an
independent current source in parallel with a resistor (Fig. 5.24c).

I

I

I I

I I

I I
Complex | e R | “ R
network Ry | L | L

I I

I I

I |

(a) (b) ()
B FIGURE 5.24 (a) A complex network including a load resistor R;. (b) A Thévenin equivalent
network connected to the load resistor R;. (c) A Norton equivalent network connected to the load
resistor R;.

Thus, one of the main uses of Thévenin’s and Norton’s theorems is the
replacement of a large part of a circuit, often a complicated and uninter-
esting part, with a very simple equivalent. The new, simpler circuit
enables us to make rapid calculations of the voltage, current, and power
which the original circuit is able to deliver to a load. It also helps us to
choose the best value of this load resistance. In a transistor power
amplifier, for example, the Thévenin or Norton equivalent enables us to
determine the maximum power that can be taken from the amplifier and
delivered to the speakers.
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EXAMPLE 5.6

Consider the circuit shown in Fig. 5.25a. Determine the Thévenin
equivalent of network A, and compute the power delivered to the
load resistor R;.

The dashed regions separate the circuit into networks A and B; our main
interest is in network B, which consists only of the load resistor R . Net-
work A may be simplified by making repeated source transformations.

(Continued on next page)
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M FIGURE 5.26
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\ ANN— | }
L osen [ e [
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Network A Network B Network A
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| | | |
,,,,,,,,,,,, ] [
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(©) (d)
DY
‘ \
} 90 }
(ODsv 3R
\
| \
[ ———
Network A

(@)
M FIGURE 5.25 (a) A circuit separated into two networks. (b)-(d) Intermediate steps to simplifying
network A. (€) The Thévenin equivalent circuit.

We first treat the 12 V source and the 3 €2 resistor as a practical volt-
age source and replace it with a practical current source consisting of a
4 A source in parallel with 3 €2 (Fig. 5.25b). The parallel resistances are
then combined into 2 €2 (Fig. 5.25¢), and the practical current source that
results is transformed back into a practical voltage source (Fig. 5.25d).
The final result is shown in Fig. 5.25e¢.

From the viewpoint of the load resistor Ry, this network A (the
Thévenin equivalent) is equivalent to the original network A; from our
viewpoint, the circuit is much simpler, and we can now easily compute
the power delivered to the load:

8 2
P, = R
L <9+RL> L

Furthermore, we can see from the equivalent circuit that the maxi-
mum voltage that can be obtained across Ry is 8 V and corresponds to
R; = 00. A quick transformation of network A to a practical current
source (the Norton equivalent) indicates that the maximum current that
may be delivered to the load is 8/9 A, which occurs when R; = 0.
Neither of these facts is readily apparent from the original circuit.

PRACTICE _

5.5 Using repeated source transformations, determine the Norton
equivalent of the highlighted network in the circuit of Fig. 5.26.

Ans: 1 A,5 Q.
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Thévenin’'s Theorem

Using the technique of source transformation to find a Thévenin or Norton
equivalent network worked well enough in Example 5.6, but it can rapidly
become impractical in situations where dependent sources are present or
the circuit is composed of a large number of elements. An alternative is to
employ Thévenin’s theorem (or Norton’s theorem) instead. We will state
the theorem?® as a somewhat formal procedure and then consider various
ways to make the approach more practical depending on the situation

we face.

A Statement of Thévenin’s Theorem

1. Given any linear circuit, rearrange it in the form of two
networks, A and B, connected by two wires. Network A is
the network to be simplified; B will be left untouched.

2. Disconnect network B. Define a voltage v, as the voltage now
appearing across the terminals of network A.

3. Turn off or “zero out” every independent source in network A
to form an inactive network. Leave dependent sources
unchanged.

4. Connect an independent voltage source with value v, in series
with the inactive network. Do not complete the circuit; leave the
two terminals disconnected.

5. Connect network B to the terminals of the new network A.
All currents and voltages in B will remain unchanged.

Note that if either network contains a dependent source, its control
variable must be in the same network.

Let us see if we can apply Thévenin’s theorem successfully to the circuit
we considered in Fig. 5.25. We have already found the Thévenin equivalent
of the circuit to the left of R; in Example 5.6, but we want to see if there is
an easier way to obtain the same result.

A\
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EXAMPLE 5.7

Use Thévenin’s theorem to determine the Thévenin equivalent for
that part of the circuit in Fig. 5.25a to the left of R;.

We begin by disconnecting R;, and note that no current flows through
the 7 €2 resistor in the resulting partial circuit shown in Fig. 5.27a.
Thus, V. appears across the 6 Q2 resistor (with no current through the
7 Q resistor there is no voltage drop across it), and voltage division
enables us to determine that

6
Ve =12 —— | =8V
- =12(5¢)

(3) A proof of Thévenin’s theorem in the form in which we have stated it is rather lengthy, and therefore it
has been placed in Appendix 3, where the curious may peruse it.
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30 70 70
12V 60 v, <30 Z60 Ry
O O
(a) (b)

M FIGURE 5.27 (a) The circuit of Fig. 5.25a with network B (the resistor
R;) disconnected and the voltage across the connecting terminals labeled
as Vyc. (b) The independent source in Fig. 5.25a has been killed, and we
look into the terminals where network B was connected to determine the
effective resistance of network A.

Turning off network A (i.e., replacing the 12 V source with a short
circuit) and looking back into the dead network, we see a 7 €2 resistor
connected in series with the parallel combination of 6 2 and 3 2
(Fig. 5.27b).

Thus, the inactive network can be represented here by a 9 2 resistor,
referred to as the Thévenin equivalent resistance of network A. The
Thévenin equivalent then is V. in series with a 9 Q2 resistor, which
agrees with our previous result.

4Q 5Q
| 20 PRACTICE
9V e 20 5.6 Use Thévenin’s theorem to find the current through the 2 €2 resistor
in the circuit of Fig. 5.28. (Hint: Designate the 2 Q2 resistor as network B.)
M FIGURE 5.28 Ans: Vi =2.571V, Rry = 7.857 2, I g = 260.8 mA.

A Few Key Points

The equivalent circuit we have learned how to obtain is completely inde-
pendent of network B: we have been instructed to first remove network B and
then measure the open-circuit voltage produced by network A, an operation
that certainly does not depend on network B in any way. The B network is
mentioned only to indicate that an equivalent for A may be obtained no mat-
ter what arrangement of elements is connected to the A network; the B net-
work represents this general network.
There are several points about the theorem which deserve emphasis.

e The only restriction that we must impose on A or B is that all
dependent sources in A have their control variables in A, and similarly
for B.

* No restrictions are imposed on the complexity of A or B; either one
may contain any combination of independent voltage or current
sources, linear dependent voltage or current sources, resistors, or any
other circuit elements which are linear.

* The dead network A can be represented by a single equivalent resis-
tance Rry, which we will call the Thévenin equivalent resistance.
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This holds true whether or not dependent sources exist in the inactive
A network, an idea we will explore shortly.

* A Thévenin equivalent consists of two components: a voltage source
in series with a resistance. Either may be zero, although this is not
usually the case.

Norton’s Theorem

Norton’s theorem bears a close resemblance to Thévenin’s theorem and
may be stated as follows:

A Statement of Norton’s Theorem

1. Given any linear circuit, rearrange it in the form of two
networks, A and B, connected by two wires. Network A is the
network to be simplified; B will be left untouched. As before, if
either network contains a dependent source, ifs controlling
variable must be in the same network.

2. Disconnect network B, and short the terminals of A. Define
a current iy as the current now flowing through the shorted
terminals of network A.

3. Turn off or “zero out” every independent source in network
A to form an inactive network. Leave dependent sources
unchanged.

4. Connect an independent current source with value iy, in
parallel with the inactive network. Do not complete the circuit;
leave the two terminals disconnected.

5. Connect network B to the terminals of the new network A.
All currents and voltages in B will remain unchanged.

The Norton equivalent of a linear network is the Norton current source
isc in parallel with the Thévenin resistance Ryy. Thus, we see that in fact it
is possible to obtain the Norton equivalent of a network by performing a
source transformation on the Thévenin equivalent. This results in a direct
relationship between vqc, isc, and Ryy:

Voc = Rryisc [18]

In circuits containing dependent sources, we will often find it more con-
venient to determine either the Thévenin or Norton equivalent by finding
both the open-circuit voltage and the short-circuit current and then deter-
mining the value of Ryy as their quotient. It is therefore advisable to be-
come adept at finding both open-circuit voltages and short-circuit currents,
even in the simple problems that follow. If the Thévenin and Norton equiv-
alents are determined independently, Eq. [18] can serve as a useful check.

Let’s consider three different examples of the determination of a
Thévenin or Norton equivalent circuit.
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EXAMPLE 5.8

CHAPTER 5 HANDY CIRCUIT ANALYSIS TECHNIQUES

Find the Thévenin and Norton equivalent circuits for the network
faced by the 1 kQ resistor in Fig. 5.29a.

( ; ; ; % % RTH
sv #)1.@1‘« %sm
(d)

<% D2

M FIGURE 5.29 (a) A given circuit in which the 1 kS2 resistor is identified as network B.
(b) Network A with all independent sources killed. (c) The Thévenin equivalent is shown for
network A. (d) The Norton equivalent is shown for network A. (e) Circuit for determining /s..

From the wording of the problem statement, network B is the 1 k2
resistor, so network A is everything else.

Choosing to find the Thévenin equivalent of network A first, we
apply superposition, noting that no current flows through the 3 k<2
resistor once network B is disconnected. With the current source set
to zero, V|, = 4 V. With the voltage source set to zero,

Ve = (0.002)(2000) = 4 V. Thus, Vo. = 4 + 4 = 8 V.

To find Ry, set both sources to zero as in Fig. 5.29b. By inspection,
Ry = 2k + 3 kQ = 5 kQ. The complete Thévenin equivalent, with
network B reconnected, is shown in Fig. 5.29¢.

The Norton equivalent is found by a simple source transformation of
the Thévenin equivalent, resulting in a current source of 8/5000 = 1.6 mA
in parallel with a 5 k2 resistor (Fig. 5.29d).

Check: Find the Norton equivalent directly from Fig. 5.29a. Re-
moving the 1 k€2 resistor and shorting the terminals of network A, we
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find I as shown in Fig. 5.29¢ by superposition and current division:

4 2
Isc = Isclyy + Isc|2mA = m + (Z)m
=0.840.8=1.6 mA

which completes the check.

PRACTICE "

5.7 Determine the Thévenin and Norton equivalents of the circuit of
Fig. 5.30.

2kQ 1 kQ
3V 7 mA 5k
O
B FIGURE 5.30

Ans: —7.857 'V, -3.235 mA, 2.429 kQ.

When Dependent Sources Are Present

Technically speaking, there does not always have to be a “network B” for us
to invoke either Thévenin’s theorem or Norton’s theorem; we could instead
be asked to find the equivalent of a network with two terminals not yet con-
nected to another network. If there is a network B that we do not want to in-
volve in the simplification procedure, however, we must use a little caution
if it contains dependent sources. In such situations, the controlling variable
and the associated element(s) must be included in network B and excluded
from network A. Otherwise, there will be no way to analyze the final circuit
because the controlling quantity will be lost.

If network A contains a dependent source, then again we must ensure
that the controlling variable and its associated element(s) cannot be in net-
work B. Up to now, we have only considered circuits with resistors and in-
dependent sources. Although technically speaking it is correct to leave a
dependent source in the “inactive” network when creating a Thévenin or
Norton equivalent, in practice this does not result in any kind of simplifica-
tion. What we really want is an independent voltage source in series with a
single resistor, or an independent current source in parallel with a single
resistor—in other words, a two-component equivalent. In the following
examples, we consider various means of reducing networks with dependent
sources and resistors into a single resistance.
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EXAMPLE 5.9
100 V
+
0.01V, 20kQ Vv,
M FIGURE 5.32

Determine the Thévenin equivalent of the circuit in Fig. 5.31a.

2kQ 3kQ

2kQ 3kQ

(@) (b)

10 kQ
8V

(©
M FIGURE 5.31 (a) A given network whose Thévenin equivalent is desired. (b) A possible,
but rather useless, form of the Thévenin equivalent. (c) The best form of the Thévenin
equivalent for this linear resistive network.

To find V. we note that v, = V,. and that the dependent source current
must pass through the 2 k€2 resistor, since no current can flow through
the 3 k€2 resistor. Using KVL around the outer loop:

Ux
4000

—4+2x1o3(— >+3x103(0)+vx=0

and
v, =8V =V,

By Thévenin’s theorem, then, the equivalent circuit could be formed
with the inactive A network in series with an 8 V source, as shown in
Fig. 5.31b. This is correct, but not very simple and not very helpful;
in the case of linear resistive networks, we really want a simpler
equivalent for the inactive A network, namely, Ry .

The dependent source prevents us from determining Ryy directly for
the inactive network through resistance combination; we therefore seek
I;.. Upon short-circuiting the output terminals in Fig. 5.31a, it is
apparent that V, = 0 and the dependent current source is not active.
Hence, Iy = 4/(5 x 10*) = 0.8 mA. Thus,

Voo 8
Ie  08x1073

and the acceptable Thévenin equivalent of Fig. 5.31c¢ is obtained.

Ry = = 10 k2

PRACTICE >

5.8 Find the Thévenin equivalent for the network of Fig. 5.32. (Hint:
a quick source transformation on the dependent source might help.)

Ans: —502.5 mV, —100.5 2.

Note: a negative resistance might seem strange—and it is! Such a thing is physically
possible only if, for example, we do a bit of clever electronic circuit design to create
something that behaves like the dependent current source we represented in Fig. 5.32.
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As another example, let us consider a network having a dependent
source but no independent source.

EXAMPLE 5.10

Find the Thévenin equivalent of the circuit shown in Fig. 5.33a.

30 i 30 i
AN NN

+

1.5 20 1.5i 2Q Yoy 1A

(@) ()

0.6 Q

(©)

M FIGURE 5.33 (a) A network with no independent sources. (b) A hypothetical measurement to
obtain Rry. () The Thévenin equivalent to the original circuit.

The rightmost terminals are already open-circuited, hence i = 0.
Consequently, the dependent source is inactive, SO Vo = 0.

We next seek the value of Ryy represented by this two-terminal
network. However, we cannot find v, and i, and take their quotient,
for there is no independent source in the network and both v, and iy
are zero. Let us, therefore, be a little tricky.

We apply a 1 A source externally, measure the voltage vie that
results, and then set Ryy = vies /1. Referring to Fig. 5.33b, we see
thati = —1 A. Applying nodal analysis,

Viest — 1.5(=1) + Utest

3 2 !
so that

Veest = 0.6 V
and thus

Ry =0.6Q

The Thévenin equivalent is shown in Fig. 5.33c.

A Quick Recap of Procedures

We have now looked at three examples in which we determined a Thévenin
or Norton equivalent circuit. The first example (Fig. 5.29) contained only
independent sources and resistors, and several different methods could have
been applied to it. One would involve calculating Ryy for the inactive
network and then V. for the live network. We could also have found Ry
and I, or V. and ..



( PRACTICAL APPLICATION )

The Digital Multimeter

One of the most common pieces of electrical test equip- 1 kQ
ment is the DMM, or digital multimeter (Fig. 5.34),

which is designed to measure voltage, current, and resis-

tance values. oV

DMM
1kQ % V/Q  COM
° 7

B FIGURE 5.35 A DMM connected to measure voltage.

Thévenin equivalent resistance. This Thévenin equivalent
resistance will appear in parallel with our circuit, and its
value can affect the measurement (Fig. 5.36). The DMM
does not supply power to the circuit to measure voltage,
so its Thévenin equivalent consists of only a resistance,
which we will name Rpym.

1kQ
+

9V 1k VvV

R,
M FIGURE 5.34 A handheld digital multimeter. - pum

In a voltage measurement, two leads from the DMM
are connected across the appropriate circuit element, as
depicted in Fig. 5.35. The positive reference terminal of

M FIGURE 5.36 DMM in Fig. 5.35 shown as its Thévenin equivalent
resistance, Rpw.-

the meter is typically marked “V/S2,” and the negative
reference terminal—often referred to as the common
terminal—is typically designated by “COM.” The
convention is to use a red lead for the positive reference
terminal and a black lead for the common terminal.

The input resistance of a good DMM is typically
10 M2 or more. The measured voltage V thus appears
across 1 k2|10 M2 = 999.9 Q. Using voltage division,
we find that V = 4.4998 volts, slightly less than the ex-
pected value of 4.5 volts. Thus, the finite input resistance

of the voltmeter introduces a small error in the measured
value.

From our discussion of Thévenin and Norton equiva-
lents, it may now be apparent that the DMM has its own

In the second example (Fig. 5.31), both independent and dependent
sources were present, and the method we used required us to find V,. and
I.. We could not easily find Ryy for the inactive network because the
dependent source could not be made inactive.

The last example did not contain any independent sources, and therefore
the Thévenin and Norton equivalents do not contain an independent source.
We found Ryy by applying 1 A and finding vy = 1 X Ry . We could also
apply 1 V and determine i = 1/Ryy. These two related techniques can be
applied to any circuit with dependent sources, as long as all independent
sources are set to zero first.

Two other methods have a certain appeal because they can be used for
any of the three types of networks considered. In the first, simply replace
network B with a voltage source vy, define the current leaving its positive
terminal as 7, analyze network A to obtain 7, and put the equation in the form
v =ai +b. Then,a = Ryy and b = v,..



To measure current, the DMM must be placed in se-
ries with a circuit element, generally requiring that we
cut a wire (Fig. 5.37). One DMM lead is connected to the
common terminal of the meter, and the other lead is
placed in a connector usually marked “A” to signify cur-
rent measurement. Again, the DMM does not supply
power to the circuit in this type of measurement.

1 kQ
4.500 mA
I
ORI | e
A COM
g ?

M FIGURE 5.37 A DMM connected to measure current.

We see that the Thévenin equivalent resistance
(Rpmm) of the DMM is in series with our circuit, so its
value can affect the measurement. Writing a simple KVL
equation around the loop,

—9+ 1000/ + Rpmm! + 10007 =0

Note that since we have reconfigured the meter to
perform a current measurement, the Thévenin equivalent
resistance is not the same as when the meter is config-
ured to measure voltages. In fact, we would ideally like
Rpywm to be 0 2 for current measurements, and oo for
voltage measurements. If Rpyy is now 0.1 €2, we see
that the measured current / is 4.4998 mA, which is only
slightly different from the expected value of 4.5 mA. De-
pending on the number of digits that can be displayed by

the meter, we may not even notice the effect of nonzero
DMM resistance on our measurement.

The same meter can be used to determine resistance,
provided no independent sources are active during the
measurement. Internally, a known current is passed
through the resistor being measured, and the voltmeter
circuitry is used to measure the resulting voltage. Re-
placing the DMM with its Norton equivalent (which now
includes an active independent current source to gener-
ate the predetermined current), we see that Rpyv ap-
pears in parallel with our unknown resistor R (Fig. 5.38).

R V' < Rpym Iy

M FIGURE 5.38 DMM in resistance measurement configuration replaced by
its Norton equivalent, showing Rpww in parallel with the unknown resistor R
to be measured.

As aresult, the DMM actually measures R|| Rpym. If
Rpyv = 10 MQ and R = 10 2, Ryeasured = 9.99999 €2,
which is more than accurate enough for most purposes.
However, if R = 10 M2, Rieasured = 5 M. The input
resistance of a DMM therefore places a practical upper
limit on the values of resistance that can be measured,
and special techniques must be used to measure larger
resistances. We should note that if a digital multimeter
is programmed with knowledge of Rpp, it is pos-
sible to compensate and allow measurement of larger
resistances.

We could also apply a current source i, let its voltage be v, and then de-
termine iy = cv — d, where ¢ = 1 /Ry and d = i (the minus sign arises
from assuming both current source arrows are directed into the same node).
Both of these last two procedures are universally applicable, but some other

method can usually be found that is easier and more rapid.

Although we are devoting our attention almost entirely to the analysis of
linear circuits, it is good to know that Thévenin’s and Norton’s theorems are

both valid if network B is nonlinear; only network A must be linear.

10 Q 50

PRACTICE -

g

5.9 Find the Thévenin equivalent for the network of Fig. 5.39. (Hint: 204 300

Try a 1 V test source.)

Ans: Iiese = 50 mA so Ry = 20 Q.

M FIGURE 5.39 See Practice
Problem 5.9.
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M FIGURE 5.40 A practical voltage source connected

to a load resistor R;.

CHAPTER 5 HANDY CIRCUIT ANALYSIS TECHNIQUES

5.4 , MAXIMUM POWER TRANSFER

A very useful power theorem may be developed with reference to a practi-
cal voltage or current source. For the practical voltage source (Fig. 5.40),
the power delivered to the load Ry is

U? RL
(Rx + RL)2

To find the value of R; that absorbs maximum power from the given
practical source, we differentiate with respect to R :

dpr (R, + Rp)*v? —v?R(2)(Ry + Ry)
dR; (Ry + Rp)*

pL=iiR, = [19]

and equate the derivative to zero, obtaining

2R.(R; + Ry) = (R + Rp)?
or
R, = R,

Since the values R; = 0 and R;, = oo both give a minimum (p;, = 0),
and since we have already developed the equivalence between practical
voltage and current sources, we have therefore proved the following
maximum power transfer theorem:

An independent voltage source in series with a resistance Rj, or an independent
current source in parallel with a resistance Ry, delivers maximum power to a
load resistance R; such that R; = R;.

An alternative way to view the maximum power theorem is possible in
terms of the Thévenin equivalent resistance of a network:

A network delivers maximum power to a load resistance R; when R is equal
to a the Thévenin equivalent resistance of the network.

Thus, the maximum power transfer theorem tells us that a 2 €2 resistor
draws the greatest power (4.5 W) from either practical source of Fig. 5.16,
whereas a resistance of 0.01 Q2 receives the maximum power (3.6 kW) in
Fig. 5.11.

There is a distinct difference between drawing maximum power from a
source and delivering maximum power to a load. If the load is sized such
that its Thévenin resistance is equal to the Thévenin resistance of the net-
work to which it is connected, it will receive maximum power from that
network. Any change to the load resistance will reduce the power delivered
to the load. However, consider just the Thévenin equivalent of the network
itself. We draw the maximum possible power from the voltage source by
drawing the maximum possible current—which is achieved by shorting the
network terminals! However, in this extreme example we deliver zero
power to the “load”—a short circuit in this case—as p = i>R, and we just
set R = 0 by shorting the network terminals.

A minor amount of algebra applied to Eq. [19] coupled with the maxi-
mum power transfer requirement that Ry = R; = Ry will provide

2 2

Prmax | delivered to load = % _ TH
max elivere 0 loat - -
4R, 4Ry
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where vry and Rpy recognize that the practical voltage source of Fig. 5.40
can also be viewed as a Thévenin equivalent of some specific source.
It is also not uncommon for the maximum power theorem to be misin-
terpreted. It is designed to help us select an optimum load in order to maxi- A
mize power absorption. If the load resistance is already specified, however,
the maximum power theorem is of no assistance. If for some reason we can
affect the size of the Thévenin equivalent resistance of the network con-
nected to our load, setting it equal to the load does not guarantee maximum
power transfer to our predetermined load. A quick consideration of the
power lost in the Thévenin resistance will clarify this point.

EXAMPLE 5.11

The circuit shown in Fig. 5.41 is a model for the common-emitter
bipolar junction transistor amplifier. Choose a load resistance so
that maximum power is transferred to it from the amplifier, and

calculate the actual power absorbed.

300 2

oY +
2.5 sin 440t mV 17kQ 5kQ2 4, <D 0.030, S1kQ R,

M FIGURE 5.41 A small-signal model of the common-emitter amplifier, with the load resistance
unspecified.

Since it is the load resistance we are asked to determine, the maximum
power theorem applies. The first step is to find the Thévenin equivalent
of the rest of the circuit.

We first determine the Thévenin equivalent resistance, which
requires that we remove R, and short-circuit the independent source
as in Fig. 5.42a.

300 Q

: T

17kQ 5k0S 0.032, S1kQ Rpy

— |

(@)

300 Q)

003, S1kQ

oc

2.5 sin 440t mV 17 kQ 5kQ v

(b)
M FIGURE 5.42 (a) Circuit with R, removed and independent source short-circuited. (b) Circuit

for determining vr.
(Continued on next page)
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Since v, = 0, the dependent current source is an open circuit, and
Rry = 1 k€. This can be verified by connecting an independent 1 A
current source across the 1 k€2 resistor; v, will still be zero, so the
dependent source remains inactive and hence contributes nothing
to Rry.

In order to obtain maximum power delivered into the load, R;,
should be set to Ry = 1 kS2.

To find vy we consider the circuit shown in Fig. 5.42b, which is
Fig. 5.41 with R; removed. We may write

Voo = —0.03v,, (1000) = —300,

where the voltage v, may be found from simple voltage division:

vy = (2.5 x 1073 sin440¢) 3864
T 300 + 3864
so that our Thévenin equivalent is a voltage —69.6 sin 440t mV in
series with 1 k€.
The maximum power is given by

2
P = —TH_ — 1,211 sin® 440 uW

PRACTICE '
5.10 Consider the circuit of Fig. 5.43.
20V 40V
(Dxov
2kQ Rout
2kQ
B FIGURE 5.43

(a) If Roy = 3 k€2, find the power delivered to it.
(b) What is the maximum power that can be delivered to any R?

(c) What two different values of R, will have exactly 20 mW
delivered to them?

Ans: 230 mW; 306 mW; 59.2 k2 and 16.88 2.

5.5 , DELTA-WYE CONVERSION

We saw previously that identifying parallel and series combinations of re-
sistors can often lead to a significant reduction in the complexity of a circuit.
In situations where such combinations do not exist, we can often make use
of source transformations to enable such simplifications. There is another
useful technique, called A-Y (delta-wye) conversion, that arises out of net-
work theory.

Consider the circuits in Fig. 5.44. There are no series or parallel combi-
nations that can be made to further simplify any of the circuits (note that
5.44a and 5.44b are identical, as are 5.44c and 5.44d), and without any
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a b
a o AN ob ao ANV ob a b R, R
Ry Ry R, Ry 2
Ry Re Ry Re Ry R
3
c o od ¢ o od c¢o od ¢ O o d
(@) ) (c) (d)

B FIGURE 5.44 (a) IT network consisting of three resistors and three unique connections. (b) Same network drawn as a A network. (c) A T network consisting
of three resistors. (d) Same network drawn as a Y network.

sources present, no source transformations can be performed. However, it is Ry
possible to convert between these two types of networks. o AN o
We first define two voltages v, and vy, and three currents i, i», and i3 * *
as depicted in Fig. 5.45. If the two networks are equivalent, then the terminal
voltages and currents must be equal (there is no current i, in the T-connected Yac @ § Ry Re § q Yhe
network). A set of relationships between R4, Rp, Rc and Ry, R,, and R3 can q
now be defined simply by performing mesh analysis. For example, for the - 5 o
network of Fig. 5.45a we may write @
Ryiy — Ryl = Vg [20]
—Rait + (Ra + Ry + Re)ia — Reis = 0 21] A Ao
—Rci +Reiz = —vpe [22] " "
and for the network of Fig. 5.45b we have Ve q § Ry @ e
(R1 + R3)iy — Rsiz = Vgc (23]
—R3ii + (R + R3)is = —pe [24] - © o
. . L (b)
W t from Eqgs. [20] and [22 Eq. [21], It
e next remove i from Eqgs. [20] and [22] using Eq. [21], resulting in M FIGURE 5.45 (q) Labeled IT network; (b) labeled
RE& . RaRc . T network.
A= 5 T T 513 = Vac [25]
RA+RB+RC RA+RB+RC
and
RaRc ) R} ) .
- i1+ (R ———F—F—— )iz =—V 26
Ri+Rs+Rc ( T RatRotRe)P T e B
Comparing terms between Eq. [25] and Eq. [23], we see that
RAR
Ry = ARc
R4+ Rp + Rc

In a similar fashion, we may find expressions for R; and R, in terms of
Ra, Rp, and R, as well as expressions for R4, Rp, and R¢ in terms of Ry, Ry,
and Rj; we leave the remainder of the derivations as an exercise for the
reader. Thus, to convert from a Y network to a A network, the new resistor
values are calculated using

RiR; + RoR3 + R3R,
A =
R,
RiRy + RoR; + R3Ry
Rp =
R3
Ri{Ry + RoR; + R3R;
Rc = R
i
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and to convert from a A network to a Y network,

RAsRp
Ri=—278
Ra+ Rp + Rc

RgR
Ry= — ~87€C
R4+ Rp + Rc

RcR
R3:#
R4+ Rp + Rc

Application of these equations is straightforward, although identifying
the actual networks sometimes requires a little concentration.

EXAMPLE 5.12

(a) ®)

159
71 Q

(d)

B FIGURE 5.46 (a) A given resistive network whose
input resistance is desired. (b) The upper A network
is replaced by an equivalent Y network. (¢, ) Series
and parallel combinations result in a single
resistance value.

Use the technique of A-Y conversion to find the Thévenin
equivalent resistance of the circuit in Fig. 5.46a.

We see that the network in Fig. 5.46a is composed of two A-connected
networks that share the 3 €2 resistor. We must be careful at this point
not to be too eager, attempting to convert both A-connected networks
to two Y-connected networks. The reason for this may be more obvious
after we convert the top network consisting of the 1 €2, 4 2, and 3 2
resistors into a Y-connected network (Fig. 5.46b).

Note that in converting the upper network to a Y-connected network,
we have removed the 3 €2 resistor. As a result, there is no way to con-
vert the original A-connected network consisting of the 2 €2, 5 2, and
3 Q resistors into a Y-connected network.

We proceed by combining the % 2 and 2 Q2 resistors and the % Q
and 5 2 resistors (Fig. 5.46¢). We now have a 1279 2 resistor in parallel
with a % Q resistor, and this parallel combination is in series with the
% Q resistor. Thus, we can replace the original network of Fig. 5.46a
with a single 22 Q resistor (Fig. 5.46d).

PRACTICE _

5.11 Use the technique of Y-A conversion to find the Thévenin
equivalent resistance of the circuit of Fig. 5.47.

—> 0 NV

Rin §

—> o AN
Each Ris 10 Q
B FIGURE 5.47

Ans: 11.43 Q.
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5.6 , SELECTING AN APPROACH: A SUMMARY
OF VARIOUS TECHNIQUES

In Chap. 3, we were introduced to Kirchhoff’s current law (KCL) and
Kirchhoff’s voltage law (KVL). These two laws apply to any circuit we will
ever encounter, provided that we take care to consider the entire system that
the circuits represent. The reason for this is that KCL and KVL enforce
charge and energy conservation, respectively, which are fundamental prin-
ciples. Based on KCL, we developed the very powerful method of nodal
analysis. A similar technique based on KVL (unfortunately only applicable
to planar circuits) is known as mesh analysis and is also a useful circuit
analysis approach.

For the most part, this text is concerned with developing analytical skills
that apply to linear circuits. If we know a circuit is constructed of only lin-
ear components (in other words, all voltages and currents are related by
linear functions), then we can often simplify circuits prior to employing
either mesh or nodal analysis. Perhaps the most important result that comes
from the knowledge that we are dealing with a completely linear system is
that the principle of superposition applies: given a number of independent
sources acting on our circuit, we can add the contribution of each source
independently of the other sources. This technique is extremely pervasive
throughout the field of engineering, and we will encounter it often. In many
real situations, we will find that although several “sources” are acting
simultaneously on our “system,”” typically one of them dominates the system
response. Superposition allows us to quickly identify that source, provided
that we have a reasonably accurate linear model of the system.

However, from a circuit analysis standpoint, unless we are asked to find
which independent source contributes the most to a particular response, we
find that rolling up our sleeves and launching straight into either nodal or
mesh analysis is often a more straightforward tactic. The reason for this is
that applying superposition to a circuit with 12 independent sources will
require us to redraw the original circuit 12 times, and often we will have to
apply nodal or mesh analysis to each partial circuit, anyway.

The technique of source transformations, on the other hand, is often a
very useful tool in circuit analysis. Performing source transformations can
allow us to consolidate resistors or sources that are not in series or parallel
in the original circuit. Source transformations may also allow us to convert
all or at least most of the sources in the original circuit to the same type
(either all voltage sources or all current sources), so nodal or mesh analysis
is more straightforward.

Thévenin’s theorem is extremely important for a number of reasons. In
working with electronic circuits, we are always aware of the Thévenin
equivalent resistance of different parts of our circuit, especially the input
and output resistances of amplifier stages. The reason for this is that match-
ing of resistances is frequently the best route to optimizing the performance
of a given circuit. We have seen a small preview of this in our discussion of
maximum power transfer, where the load resistance should be chosen to
match the Thévenin equivalent resistance of the network to which the load
is connected. In terms of day-to-day circuit analysis, however, we find that
converting part of a circuit to its Thévenin or Norton equivalent is almost as
much work as analyzing the complete circuit. Therefore, as in the case of

157
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superposition, Thévenin’s and Norton’s theorems are typically applied only
when we require specialized information about part of our circuit.

SUMMARY AND REVIEW

Although we asserted in Chap. 4 that nodal analysis and mesh analysis are
sufficient to analyze any circuit we might encounter (provided we have the
means to relate voltage and current for any passive element, such as Ohm’s
law for resistors), the simple truth is that often we do not really need all
voltages, or all currents. Sometimes, it is simply one element, or a small
portion of a larger circuit, that has our attention. Perhaps there is some un-
certainty in the final value of a particular element, and we’d like to see how
the circuit performs over the range of expected values. In such instances, we
can exploit the fact that at the moment we have confined ourselves to linear
circuits. This allows the development of other tools: superposition, where
individual contributions of sources can be identified; source transforma-
tions, where a voltage source in series with a resistor can be replaced with a
current source in parallel with a resistor; and the most powerful of all—
Thévenin (and Norton) equivalents.

An interesting offshoot of these topics is the idea of maximum power
transfer. Assuming we can represent our (arbitrarily complex) circuit by
two networks, one passive and one active, maximum power transfer to the
passive network is achieved when its Thévenin resistance is equal to the
Thévenin resistance of the active network. Finally, we introduced the con-
cept of delta-wye conversion, a process that allows us to simplify some re-
sistive networks which at face value are not reducible using standard series-
parallel combination techniques.

We are still faced with the perpetual question, “Which tool should I use
to analyze this circuit?” The answer typically lies in the type of information
required about our circuit. Experience will eventually guide us a bit, but it
is not always true that there is one “best” approach. Certainly one issue to
focus on is whether one or more components might be changed—this can
suggest whether superposition, a Thévenin equivalent, or a partial simplifi-
cation such as can be achieved with source or delta-wye transformation is
the most practical route.

We conclude this chapter by reviewing key points, along with identify-
ing relevant example(s).

Q The principle of superposition states that the response in a linear
circuit can be obtained by adding the individual responses caused
by the separate independent sources acting alone. (Examples 5.1,
5.2,5.3)

Q Superposition is most often used when it is necessary to determine the
individual contribution of each source to a particular response.
(Examples 5.2, 5.3)

QO A practical model for a real voltage source is a resistor in series with an
independent voltage source. A practical model for a real current source
is a resistor in parallel with an independent current source.

Q@ Source transformations allow us to convert a practical voltage source
into a practical current source, and vice versa. (Example 5.4)
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0 Repeated source transformations can greatly simplify analysis of a
circuit by providing the means to combine resistors and sources.
(Example 5.5)

Q@ The Thévenin equivalent of a network is a resistor in series with an
independent voltage source. The Norton equivalent is the same resistor
in parallel with an independent current source. (Example 5.6)

Q There are several ways to obtain the Thévenin equivalent resistance,
depending on whether or not dependent sources are present in the
network. (Examples 5.7, 5.8, 5.9, 5.10)

Q Maximum power transfer occurs when the load resistor matches the
Thévenin equivalent resistance of the network to which it is connected.
(Example 5.11)

Q When faced with a A-connected resistor network, it is straightforward
to convert it to a Y-connected network. This can be useful in simplify-
ing the network prior to analysis. Conversely, a Y-connected resistor
network can be converted to a A-connected network to assist in
simplification of the network. (Example 5.12)

READING FURTHER
A book about battery technology, including characteristics of built-in resistance:
D. Linden, Handbook of Batteries, 2nd ed. New York: McGraw-Hill, 1995.

An excellent discussion of pathological cases and various circuit analysis
theorems can be found in:

R. A. DeCarlo and P. M. Lin, Linear Circuit Analysis, 2nd ed. New York:
Oxford University Press, 2001.

EXERCISES

5.1 Linearity and Superposition

1. Linear systems are so easy to work with that engineers often construct linear
models of real (nonlinear) systems to assist in analysis and design. Such mod-
els are often surprisingly accurate over a limited range. For example, consider
the simple exponential function e*. The Taylor series representation of this
function is

2 x3

A R
2 6
(a) Construct a linear model for this function by truncating the Taylor series
expansion after the linear term. (b) Evaluate your model function at
x = 0.000001, 0.0001, 0.01, 0.1, and 1.0. (¢) For which values of x does
your model yield a “reasonable” approximation to e*? Explain your
reasoning.

2. Construct a linear approximation to the function y(#) = 4 sin2¢. (a) Evaluate
your approximation at ¢ = 0, 0.001, 0.01, 0.1, and 1.0. (b) For which values
of ¢ does your model provide a “reasonable” approximation to the actual
(nonlinear) function y(t)? Explain your reasoning.

3. Considering the circuit of Fig. 5.48, employ superposition to determine the two
components of ig arising from the action of the two independent sources,
respectively.
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30
A%

6 A 80 2V

P

B FIGURE 5.48

4. (a) Employ superposition to determine the current labeled 7 in the circuit of
Fig. 5.49. (b) Express the contribution the 1 V source makes to the total current
i in terms of a percentage. (¢) Changing only the value of the 10 A source,
adjust the circuit of Fig. 5.49 so that the two sources contribute equally to the

current i.
90
NN
10 A 40 i 1V
i
M FIGURE 5.49

5. (a) Employ superposition to obtain the individual contributions each of the two
sources in Fig. 5.50 makes to the current labeled i, . (b) Adjusting only the
value of the rightmost current source, alter the circuit so that the two sources
contribute equally to i,.

Iy

AN
50
120
3A<D 59§ G 5A
20
B FIGURE 5.50

6. (a) Determine the individual contributions of each of the two current sources
in the circuit of Fig. 5.51 to the nodal voltage v;. (b) Determine the percentage
contribution of each of the two sources to the power dissipated by the 2 Q2
resistor.

|||—<

M FIGURE 5.51
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7. (a) Determine the individual contributions of each of the two current sources
g shown in Fig. 5.52 to the nodal voltage labeled v;. (b) Instead of performing
two separate PSpice simulations, verify your answer by using a single dc
sweep. Submit a labeled schematic, relevant Probe output, and a short descrip-
tion of the results.

s 1Q 4
MV
50 10
7A<D G 2A
20 40
M FIGURE 5.52

8. After studying the circuit of Fig. 5.53, change both voltage source values such
that (a) i1 doubles; (b) the direction of i; reverses, but its magnitude is un-
changed; (c) both sources contribute equally to the power dissipated by the
6 Q2 resistor.

40 30
MW\ N\

4v 602 10V

M FIGURE 553

9. Consider the three circuits shown in Fig. 5.54. Analyze each circuit, and demon-
strate that V., = V! + V' (i.e., superposition is most useful when sources are set
to zero, but the principle is in fact much more general than that).

1kQ 2kQ 1kQ 2kQ

-15V -10V

1 kQ 2kQ

B FIGURE 5.54

10. (a) Using superposition, determine the voltage labeled v, in the circuit repre-
sented in Fig. 5.55. (b) To what value should the 2 A source be changed to re-
duce v, by 10%? (¢) Verity your answers by performing three dc sweeps in
PSpice (one for each source). Submit a labeled schematic, relevant Probe out-
put, and a short description of the results.
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11.

30 10 20
N
+ Uy —
4v (DzA 50 4v
M FIGURE 5.55

Employ superposition principles to obtain a value for the current /, as labeled
in Fig. 5.56.

0.21,

5kQ /\
D

v 1127k 2kQ 2A

M FIGURE 5.56

. (@) Employ superposition to determine the individual contribution from each

independent source to the voltage v as labeled in the circuit shown in Fig. 5.57.
(b) Compute the power absorbed by the 2 2 resistor.

10
W

()
-/ +
6A

4A izﬂ 30 § v <T> 0.4i)

70

M FIGURE 5.57

5.2 Source Transformations

13.

Perform an appropriate source transformation on each of the circuits depicted
in Fig. 5.58, taking care to retain the 4 2 resistor in each final circuit.

10Q
6V%4Q h ! h
50 1Q

M FIGURE 5.58
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14. For the circuit of Fig. 5.59, plot iz, versus v, corresponding to the range of

15.

16.

g 17.

18.

19.

0 <R < 0.

Determine the current labeled 7 in the circuit of Fig. 5.60 by first performing
source transformations and parallel-series combinations as required to reduce
the circuit to only two elements.

70 40

B FIGURE 5.60

Verify that the power absorbed by the 7 2 resistor in Fig. 5.22a remains the
same after the source transformation illustrated in Fig. 5.22c.

(a) Determine the current labeled 7 in the circuit of Fig. 5.61 after first trans-
forming the circuit such that it contains only resistors and voltage sources.
(b) Simulate each circuit to verify the same current flows in both cases.

3MQ 13 MQ
M\
i
v Q 5pA Z2MQ A%
M FIGURE 5.61

(a) Using repeated source transformations, reduce the circuit of Fig. 5.62 to a
voltage source in series with a resistor, both of which are in series with the

6 M resistor. (b) Calculate the power dissipated by the 6 M2 resistor using
your simplified circuit.

3.5 MQ
aA'%A%
1.2MQ
27MA<D §750kﬂ §7MQ gemn
15V

1

M FIGURE 5.62

(a) Using as many source transformations and element combination techniques
as required, simplify the circuit of Fig. 5.63 so that it contains only the 7 V
source, a single resistor, and one other voltage source. (b) Verify that the 7 V
source delivers the same amount of power in both circuits.

30

A% 1Q Q 2A 30 5A

M FIGURE 5.63

® 163

5kQ ip

3V u R

B FIGURE 5.59
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21.

g 22.

23.
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g 20.

(a) Making use of repeated source transformations, reduce the circuit of Fig. 5.64
such that it contains a single voltage source, the 17 €2 resistor, and one other resis-
tor. (b) Calculate the power dissipated by the 17 2 resistor. (c¢) Verify your results
by simulating both circuits with PSpice or another suitable CAD tool.

470 10 Q 70 20
A% M\
Ji
12V 20 70 90 170
B FIGURE 5.64

Make use of source transformations to first convert all three sources in

Fig. 5.65 to voltage sources, then simplify the circuit as much as possible and
calculate the voltage V, which appears across the 4 Q2 resistor. Be sure to draw
and label your simplified circuit.

10 Q
20 4Q
NW —~—)——WV
+ V-
SVy
3A 1Q 7Q 9Q 9A

B FIGURE 5.65

(a) With the assistance of source transformations, alter the circuit of Fig. 5.66
such that it contains only current sources. (b) Simplify your new circuit as
much as possible, and calculate the power dissipated in the 7 €2 resistor.

(c) Verify your solution by simulating both circuits with PSpice or another
appropriate CAD tool.

M FIGURE 5.66

Transform the dependent source in Fig. 5.67 to a voltage source, then calculate Vj.

20

() AA—o
U + +
07V
12V, 60 702V, A
_ o

60

B FIGURE 5.67
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EXERCISES

With regard to the circuit represented in Fig. 5.68, first transform both voltage
sources to current sources, reduce the number of elements as much as possible,
and determine the voltage v3.

60

M FIGURE 5.68

5.3 Thévenin and Norton Equivalent Circuits

25.

26.

27.
28.

29.

30.

g 31.

Referring to Fig. 5.69, determine the Thévenin equivalent of the network con-
nected to Ry . (b) Determine vy, for Ry, = 1 Q, 3.5 2, 6.257 2, and 9.8 Q.

(a) With respect to the circuit depicted in Fig. 5.69, obtain the Norton equiva-
lent of the network connected to Ry . (b) Plot the power dissipated in resistor
R/, as a function of i corresponding to the range of 0 < R, < 5 Q. (¢) Using
your graph, estimate at what value of R; does the dissipated power reach its
maximum value.

(a) Obtain the Norton equivalent of the network connected to Ry in Fig. 5.70.
(b) Obtain the Thévenin equivalent of the same network. (¢) Use either to
calculate i; for Ry, =0, 1 ,4.923 @, and 8.107 Q.

(a) Determine the Thévenin equivalent of the circuit depicted in Fig. 5.71 by
first finding V. and /. (defined as flowing into the positive reference terminal
of Vo). (b) Connect a 4.7 k€2 resistor to the open terminals of your new
network and calculate the power it dissipates.

Referring to the circuit of Fig. 5.71: (a) Determine the Norton equivalent of the
circuit by first finding V. and /. (defined as flowing into the positive reference
terminal of V). (b) Connect a 1.7 k2 resistor to the open terminals of your
new network and calculate the power supplied to that resistor.

(a) Employ Thévenin’s theorem to obtain a simple two-component equivalent
of the circuit shown in Fig. 5.72. (b) Use your equivalent circuit to determine
the power delivered to a 100 €2 resistor connected to the open terminals.

(c¢) Verify your solution by analyzing the original circuit with the same 100
resistor connected across the open terminals.

75Q 2200
A% AN\—o
45 Q)
§1229 D 03 A
07V
O
M FIGURE 5.72

(a) Employ Thévenin’s theorem to obtain a two-component equivalent for the
network shown in Fig. 5.73. (b) Determine the power supplied to a 1 M2
resistor connected to the network if ij = 19 uA, Ry = R, = 1.6 MQ2,

Ry, =3 MQ, and Ry = Rs = 1.2 MQ. (¢) Verity your solution by simulating
both circuits with PSpice or another appropriate CAD tool.

M\
20 1Q .
9 VC) §3 QO R 2y
M FIGURE 5.69
3 Q iL
MN
50
LA 0.80Q 20 Ry,
M FIGURE 5.70
1.1kQ
1.8kQ 23k
NN o
+
42V 2.5k 2.5kQ Ve
O
M FIGURE 5.71

B FIGURE 5.73
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32. Determine the Thévenin equivalent of the network shown in Fig. 5.74 as seen
looking into the two open terminals.

o o
20 50 30
N\ MV MV
+ v -
2VG> (DZA glﬂ C)w

B FIGURE 5.74

33. (a) Determine the Norton equivalent of the circuit depicted in Fig. 5.74 as seen
looking into the two open terminals. (b) Compute power dissipated in a 5 2
resistor connected in parallel with the existing 5 €2 resistor. (¢) Compute the
current flowing through a short circuit connecting the two terminals.

g 34. For the circuit of Fig. 5.75: (@) Employ Norton’s theorem to reduce the net-
work connected to R, to only two components. (b) Calculate the downward-
directed current flowing through R, if it is a 3.3 k€2 resistor. (¢) Verify your
answer by simulating both circuits with PSpice or a comparable CAD tool.

5kQ
AN\
1kQ
300mA<D §7m §6k(2 §RL
25V

M FIGURE 5.75

35. (a) Obtain a value for the Thévenin equivalent resistance seen looking into the
open terminals of the circuit in Fig. 5.76 by first finding V. and Is. (b) Con-
nect a 1 A test source to the open terminals of the original circuit after shorting
the voltage source, and use this to obtain Ryy. (¢) Connect a 1 V test source to
the open terminals of the original circuit after again zeroing the 2 V source,
and use this now to obtain Ryy.

100 20 Q 30Q
NW—r—VW—o0

2V 7Q 70

O

M FIGURE 5.76

36. Refer to the circuit depicted in Fig. 5.77. (a) Obtain a value for the Thévenin
equivalent resistance seen looking into the open terminals by first finding V.
and /. (b) Connect a 1 A test source to the open terminals of the original

NN—3—VN—o0
10 30
1A 20 40
O

M FIGURE 5.77
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circuit after deactivating the other current source, and use this to obtain Ryy.
(c) Connect a 1 V test source to the open terminals of the original circuit, once
again zeroing out the original source, and use this now to obtain Ryy.

37. Obtain a value for the Thévenin equivalent resistance seen looking into the
open terminals of the circuit in Fig. 5.78 by (a) finding V. and I, and then
taking their ratio; () setting all independent sources to zero and using resistor
combination techniques; (c) connecting an unknown current source to the
terminals, deactivating (zero out) all other sources, finding an algebraic expres-
sion for the voltage that develops across the source, and taking the ratio of the
two quantities.

AMA——AW - ‘ o
17Q 90
222 A 60 20V 4Q 33A 20
O

M FIGURE 5.78

38. With regard to the network depicted in Fig. 5.79, determine the Thévenin
g equivalent as seen by an element connected to terminals (a) a and b; (b) a
and c; (¢) b and c. (d) Verify your answers using PSpice or other suitable CAD
tool. (Hint: Connect a test source to the terminals of interest.)

11Q 40
a
210
10 Q
b
120
c
B FIGURE 5.79
O
+

39. Determine the Thévenin and Norton equivalents of the circuit represented in
Fig. 5.80 from the perspective of the open terminals. (There should be no 10V, 200V,
dependent sources in your answer.)

40. Determine the Norton equivalent of the circuit drawn in Fig. 5.81 as seen by o
terminals @ and b. (There should be no dependent sources in your answer.) B FIGURE 5.80

41. With regard to the circuit of Fig. 5.82, determine the power dissipated by (a) a
1 k2 resistor connected between a and b; (b) a 4.7 k2 resistor connected
between a and b; (c) a 10.54 k<2 resistor connected between a and b.

oa

1V
1.5kQ +
10kQ < v 20k 0.027,
o b -

b o

B FIGURE 5.81 M FIGURE 5.82
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M FIGURE 5.83

1kQ

12V

B FIGURE 5.87
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42. Determine the Thévenin and Norton equivalents of the circuit shown in
Fig. 5.83, as seen by an unspecified element connected between terminals a
and b.

43. Referring to the circuit of Fig. 5.84, determine the Thévenin equivalent resis-
tance of the circuit to the right of the dashed line. This circuit is a common-
source transistor amplifier, and you are calculating its input resistance.

3009‘ + Y —
} O O
|
v, | 1MQ 0120, ZI3kQ R,
|
|
|
M FIGURE 5.84

44. Referring to the circuit of Fig. 5.85, determine the Thévenin equivalent
resistance of the circuit to the right of the dashed line. This circuit is a
common-collector transistor amplifier, and you are calculating its input
resistance.

|
;
|
} 2 MQ 0.02V,, 1kQ 2kQ
|
|
T
|

M FIGURE 5.85

45. The circuit shown in Fig. 5.86 is a reasonably accurate model of an operational
amplifier. In cases where R; and A are very large and R, ~ 0, a resistive load
(such as a speaker) connected between ground and the terminal labeled vy
will see a voltage — Ry /R times larger than the input signal v;,. Find the
Thévenin equivalent of the circuit, taking care to label voy.

A Uq Yout

ik ANV
M FIGURE 5.86

5.4 Maximum Power Transfer

46. (a) For the simple circuit of Fig. 5.87, graph the power dissipated by the resis-
tor R as a function of R/Rg, if 0 < R < 3000 2. (b) Graph the first derivative
of the power versus R/Rg, and verify that maximum power is transferred to R
when it is equal to Ry.
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47. For the circuit drawn in Fig. 5.88, (@) determine the Thévenin equivalent con- 4V
nected to Ryy. (b) Choose Ry such that maximum power is delivered to it.

48. Study the circuit of Fig. 5.89. (a) Determine the Norton equivalent connected
to resistor Roye. (b) Select a value for Roy such that maximum power will be
delivered to it.

3V

+ -

B FIGURE 5.88

1kQ Ry
2kQ

4A (D

MWV

B FIGURE 5.89

49. Assuming that we can determine the Thévenin equivalent resistance of our
wall socket, why don’t toaster, microwave oven, and TV manufacturers match
each appliance’s Thévenin equivalent resistance to this value? Wouldn’t it per-
mit maximum power transfer from the utility company to our household
appliances?

50. For the circuit of Fig. 5.90, what value of R, will ensure it absorbs the maxi-
mum possible amount of power?

30

3V 20 Ry 5Q 1A

M FIGURE 5.90

51. With reference to the circuit of Fig. 5.91, (a) calculate the power absorbed by
the 9 Q resistor; (b) adjust the size of the 5 €2 resistor so that the new network
delivers maximum power to the 9 €2 resistor.

N\
90

9A 50 30 2A

B FIGURE 5.91

52. Referring to the circuit of Fig. 5.92, (a) determine the power absorbed by the
3.3 Q resistor; (b) replace the 3.3 €2 resistor with another resistor such that it
absorbs maximum power from the rest of the circuit.

0.1V,

M FIGURE 5.92
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53. Select a value for Ry in Fig. 5.93 such that it is ensured to absorb maximum
power from the circuit.

50 R;
NV
+
4V 8Oy 100 0.2y
M FIGURE 5.93

54. Determine what value of resistance would absorb maximum power from the
circuit of Fig. 5.94 when connected across terminals a and b.

20,
20 Q)
a
+
900 mA 100Q 0.1 Uyb 50 Q) 10 Q) Vab
ob

M FIGURE 5.94

5.5 Delta-Wye Conversion

55. Derive the equations required to convert from a Y-connected network to a
A-connected network.

56. Convert the A- (or “I1-") connected networks in Fig. 5.95 to Y-connected

networks.
ao AN ob ao AN ob
17Q 4.7 kQ
330 21 Q 1.1kQ 2.1kQ
co od c¢o od
B FIGURE 5.95

57. Convert the Y- (or “T-"") connected networks in Fig. 5.96 to A-connected

networks.
a b
330 210
17 Q
c O o d
M FIGURE 5.96

58. For the network of Fig. 5.97, select a value of R such that the network has an
B FIGURE 5.97 equivalent resistance of 9 2. Round your answer to two significant figures.
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59. For the network of Fig. 5.98, select a value of R such that the network has an
equivalent resistance of 70.6 €.

100 Q2 R
420 68 ()
O
B FIGURE 5.98

60. Determine the effective resistance R;, of the network exhibited in Fig. 5.99.

=

—> O

L > o

2

Each R is 2.2 k)
M FIGURE 5.99

61. Calculate Ry, as indicated in Fig. 5.100.

610
VWA
46 Q 550 250

VWA VWA O~—‘

110
630 % R,

B FIGURE 5.100

62. Employ A /Y conversion techniques as appropriate to determine R;, as labeled
in Fig. 5.101.

7Q 60
— 0 AWV AM—
50 4Q
10Q
X 60
i 20 Q
: W g00 2

§9Q 30
_»C

B FIGURE 5.101

171




172

L ] CHAPTER 5 HANDY CIRCUIT ANALYSIS TECHNIQUES

63. (a) Determine the two-component Thévenin equivalent of the network in
Fig. 5.102. (b) Calculate the power dissipated by a 1 €2 resistor connected
between the open terminals.

M FIGURE 5.102

64. (a) Use appropriate techniques to obtain both the Thévenin and Norton equiva-
lents of the network drawn in Fig. 5.103. (b) Verify your answers by simulating
each of the three circuits connected to a 1 €2 resistor.

4Q 6

8AQ 20§

M FIGURE 5.103
65. (a) Replace the network in Fig. 5.104 with an equivalent three-resistor
A network.

(b) Perform a PSpice analysis to verify that your answer is in fact equivalent.
(Hint: Try adding a load resistor.)

20 20
o A% M\ 0
10 30
10 10 10
o N\ NN\ 0
20 20

M FIGURE 5.104

5.6 Selecting an Approach: A Summary of Various Techniques

66. Determine the power absorbed by a resistor connected between the open termi-
nal of the circuit shown in Fig. 5.105 if it has a value of (a) 1 €2; (b) 100 2;
(c) 2.65k2; (d) 1.13 MQ.

10 kQ

10 Q
oa 4 mA 2.2k

M FIGURE 5.105

50 e 10V 67.1t is known that a load resistor of some type will be connected between termi-

nals a and b of the network of Fig. 5.106. (a) Change the value of the 25 V
source such that both voltage sources contribute equally to the power delivered
to the load resistor, assuming its value is chosen such that it absorbs maximum
B FIGURE 5.106 power. (b) Calculate the value of the load resistor.




68.

69.

70.

EXERCISES

A 2.57 Q2 load is connected between terminals a and b of the network drawn in
Fig. 5.106. Unfortunately, the power delivered to the load is only 50% of the
required amount. Altering only voltage sources, modify the circuit so that the
required power is delivered and both sources contribute equally.

A load resistor is connected across the open terminals of the circuit shown in
Fig. 5.107, and its value was chosen carefully to ensure maximum power trans-
fer from the rest of the circuit. (¢) What is the value of the resistor? (b) If the
power absorbed by the load resistor is three times as large as required, modify
the circuit so that it performs as desired, without losing the maximum power
transfer condition already enjoyed.

180
AN o
540
12 A D 0.8 A D §59 Q 0.1 A
30
O

M FIGURE 5.107

A backup is required for the circuit depicted in Fig. 5.107. It is unknown what
will be connected to the open terminals, or whether it will be purely linear. If a
simple battery is to be used, what no-load (“open circuit”) voltage should it
have, and what is the maximum tolerable internal resistance?

Chapter-Integrating Exercises

72.

g 73.

jit P 7.

Three 45 W light bulbs originally wired in a Y network configuration with a
120 V ac source connected across each port are rewired as a A network. The
neutral, or center, connection is not used. If the intensity of each light is pro-
portional to the power it draws, design a new 120 V ac power circuit so that
the three lights have the same intensity in the A configuration as they did
when connected in a Y configuration. Verify your design using PSpice by
comparing the power drawn by each light in your circuit (modeled as an
appropriately chosen resistor value) with the power each would draw in

the original Y-connected circuit.

(a) Explain in general terms how source transformation can be used to simplify
a circuit prior to analysis. (b) Even if source transformations can greatly sim-
plify a particular circuit, when might it not be worth the effort? (¢) Multiplying
all the independent sources in a circuit by the same scaling factor results in all
other voltages and currents being scaled by the same amount. Explain why we
don’t scale the dependent sources as well. (d) In a general circuit, if we set an
independent voltage source to zero, what current can flow through it? (e) In a
general circuit, if we set an independent current source to zero, what voltage
can be sustained across its terminals?

The load resistor in Fig. 5.108 can safely dissipate up to 1 W before overheating
and bursting into flame. The lamp can be treated as a 10.6 €2 resistor if less than
1 A flows through it and a 15 €2 resistor if more than 1 A flows through it. What
is the maximum permissible value of /;? Verify your answer with PSpice.

200 Q
AN ;
v o Indicator Load Resis
X lamp ROd_ esistor
I 200 Q Sy | 1L<(_)
X

M FIGURE 5.108
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# 74. A certain red LED has a maximum current rating of 35 mA, and if this value
is exceeded, overheating and catastrophic failure will result. The resistance
of the LED is a nonlinear function of its current, but the manufacturer war-
rants a minimum resistance of 47 © and a maximum resistance of 117 €.
Only 9 V batteries are available to power the LED. Design a suitable circuit
to deliver the maximum power possible to the LED without damaging it.
Use only combinations of the standard resistor values given in the inside
front cover.

. As part of a security system, a very thin 100 € wire is attached to a window
using nonconducting epoxy. Given only a box of 12 rechargeable 1.5 V AAA
batteries, one thousand 1 €2 resistors, and a 2900 Hz piezo buzzer that draws
15 mA at 6 V, design a circuit with no moving parts that will set off the
buzzer if the window is broken (and hence the thin wire as well). Note that
the buzzer requires a dc voltage of at least 6 V (maximum 28 V) to operate.




CHAPTER

The Operational

8@ Amplifier

INTRODUCTION

At this point we have a good set of circuit analysis tools at our dis-
posal, but have focused primarily on somewhat general circuits
composed of only sources and resistors. In this chapter, we intro-
duce a new component which, although technically nonlinear, can
be treated effectively with linear models. This element, known as
the operational amplifier or op amp for short, finds daily usage in a
large variety of electronic applications. It also provides us a new
element to use in building circuits, and another opportunity to test
out our developing analytical skills.

6.1 , BACKGROUND

The origins of the operational amplifier date to the 1940s, when
basic circuits were constructed using vacuum tubes to perform
mathematical operations such as addition, subtraction, multiplica-
tion, division, differentiation, and integration. This enabled the con-
struction of analog (as opposed to digital) computers tasked with the
solution of complex differential equations. The first commercially
available op amp device is generally considered to be the K2-W,
manufactured by Philbrick Researches, Inc. of Boston from about
1952 through the early 1970s (Fig. 6.1a). These early vacuum
tube devices weighed 3 oz (85 g), measured 133/s4 in X 2%4 in X
47/e4 in (3.8 cm x 5.4 cm x 10.4 c¢cm), and sold for about US$22.
In contrast, integrated circuit (IC) op amps such as the Fairchild
KA741 weigh less than 500 mg, measure 5.7 mm x 4.9 mm x
1.8 mm, and sell for approximately US$0.22.

Compared to op amps based on vacuum tubes, modern IC op
amps are constructed using perhaps 25 or more transistors all on the
same silicon “chip,” as well as resistors and capacitors needed to ob-
tain the desired performance characteristics. As a result, they run at

KEY CONCEPTS
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[
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Amplifiers
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[

Basic Comparator and
Instrumentation Amplifier
Circuits

175



176 @

CHAPTER 6 THE OPERATIONAL AMPLIFIER

Offset null vV~

Input { Output

Offset null V*
(a)

()
M FIGURE 6.2 (a) Electrical symbol for the op amp.
(b) Minimum required connections to be shown on a
circuit schematic.

B FIGURE 6.1 (a) A Philbrick K2-W op amp, based on a matched pair of 12AX7A vacuum tubes.

(b) LMV321 op amp, used in a variety of phone and game applications. (c) LMC6035 operational amplifier,
which packs 114 transistors into a package so small that it fits on the head of a pin.

(b—¢) Copyright © 2011 National Semiconductor Corporation (www.national.com). All rights reserved.
Used with permission.

much lower dc supply voltages (£18 V, for example, as opposed to £300 V
for the K2-W), are more reliable, and considerably smaller (Fig. 6.1b,c). In
some cases, the IC may contain several op amps. In addition to the output pin
and the two inputs, other pins enable power to be supplied to run the transis-
tors, and for external adjustments to be made to balance and compensate the
op amp. The symbol commonly used for an op amp is shown in Fig. 6.2a. At
this point, we are not concerned with the internal circuitry of the op amp or the
IC, but only with the voltage and current relationships that exist between the
input and output terminals. Thus, for the time being we will use a simpler elec-
trical symbol, shown in Fig. 6.2b. Two input terminals are shown on the left,
and a single output terminal appears at the right. The terminal marked by a
“+” is referred to as the noninverting input, and the “—"" marked terminal is
called the inverting input.

6.2 THE IDEAL OP AMP: A CORDIAL INTRODUCTION

In practice, we find that most op amps perform so well that we can often
make the assumption that we are dealing with an “ideal” op amp. The char-
acteristics of an ideal op amp form the basis for two fundamental rules that
at first may seem somewhat unusual:

Ideal Op Amp Rules
1. No current ever flows into either input terminal.

2. There is no voltage difference between the two input terminals.

In a real op amp, a very small leakage current will flow into the input
(sometimes as low as 40 femtoamperes). It is also possible to obtain a very
small voltage across the two input terminals. However, compared to other
voltages and currents in most circuits, such values are so small that includ-
ing them in the analysis does not typically affect our calculations.

When analyzing op amp circuits, we should keep one other point in mind.
As opposed to the circuits that we have studied so far, an op amp circuit al-
ways has an output that depends on some type of input. Therefore, we will an-
alyze op amp circuits with the goal of obtaining an expression for the output
in terms of the input quantities. We will find that it is usually a good idea to
begin the analysis of an op amp circuit at the input, and proceed from there.
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SECTION 6.2 THE IDEAL OP AMP: A CORDIAL INTRODUCTION

The circuit shown in Fig. 6.3 is known as an inverting amplifier. We
choose to analyze this circuit using KVL, beginning with the input voltage
source. The current labeled i flows only through the two resistors Ry and Ry,
ideal op amp rule 1 states that no current flows into the inverting input
terminal. Thus, we can write

—vin + Ryi + Rfi + Vout = 0

which can be rearranged to obtain an equation that relates the output to the
input:

Vout = Vin — (Rl + Rf)l [1]

Given vy, = 5sin3t mV, Ry = 4.7 k2, and Ry = 47 k2, we require one
additional equation that expresses i only in terms of vVou, Vin, R1, and/or Ry.

This is a good time to mention that we have not yet made use of ideal
op amp rule 2. Since the noninverting input is grounded, it is at zero volts.
By ideal op amp rule 2, the inverting input is therefore also at zero volts!
This does not mean that the two inputs are physically shorted together, and
we should be careful not to make such an assumption. Rather, the two input
voltages simply track each other: if we try to change the voltage at one pin,
the other pin will be driven by internal circuitry to the same value. Thus, we
can write one more KVL equation:

—Vin+Rii+0=0
or

. Vin
-1 2
! R, (2]

Combining Eq. [2] with Eq. [1], we obtain an expression for vqy in
terms of vj,:

Vout = — %~ Vin [3]
1

Substituting v, = 5sin3t mV, R = 4.7 kQ, and Ry = 47 k<,
Vout = —50 sin 3¢ mV

Since Ry > Ry, this circuit amplifies the input voltage signal v;,. If we
choose Ry < Ry, the signal will be attenuated instead. We also note that the
output voltage has the opposite sign of the input voltage,' hence the name
“inverting amplifier.” The output is sketched in Fig. 6.4, along with the in-
put waveform for comparison.

At this point, it is worth mentioning that the ideal op amp seems to be
violating KCL. Specifically, in the above circuit no current flows into or out
of either input terminal, but somehow current is able to flow into the output
pin! This would imply that the op amp is somehow able to either create elec-
trons out of nowhere or store them forever (depending on the direction of
current flow). Obviously, this is not possible. The conflict arises because we
have been treating the op amp the same way we treated passive elements

(1) Or, “the output is 180° out of phase with the input,” which sounds more impressive.

Ry i
R]
—_—
i + +

in

B 1

M FIGURE 6.3 An op amp used to construct an
inverting amplifier circuit. The current / flows to ground
through the output pin of the op amp.

A\

The fact that the inverting input terminal finds itself at
zero volts in this type of circuit configuration leads to
what is often referred to as a “virtual ground.” This does
not mean that the pin is actually grounded, which is
sometimes a source of confusion for students. The

op amp makes whatever internal adjustments are
necessary to prevent a voltage difference between the
input terminals. The input terminals are not shorted
together.

Voltage (mV)

-60 —

M FIGURE 6.4 Input and output waveforms of the
inverting amplifier circuit.
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25V

+
Yout

1

M FIGURE 6.5 An inverting amplifier circuit with a

2.5V input.

EXAMPLE 6.1

CHAPTER 6 THE OPERATIONAL AMPLIFIER

such as the resistor. In reality, however, the op amp cannot function unless
it is connected to external power sources. It is through those power sources
that we can direct current flow through the output terminal.

Although we have shown that the inverting amplifier circuit of Fig. 6.3
can amplify an ac signal (a sine wave in this case having a frequency of
3 rad/s and an amplitude of 5 mV), it works just as well with dc inputs. We
consider this type of situation in Fig. 6.5, where values for R; and Ry are to
be selected to obtain an output voltage of —10 V.

This is the same circuit as shown in Fig. 6.3, but with a 2.5 V dc input.
Since no other change has been made, the expression we presented as Eq. [3]
is valid for this circuit as well. To obtain the desired output, we seek a ratio
of Reto Ry of 10/2.5, or 4. Since it is only the ratio that is important here, we
simply need to pick a convenient value for one resistor, and the other resis-
tor value is then fixed at the same time. For example, we could choose
R; =100 €2 (so Ry =400 €2), or even Ry =8 MQ (so R =2MQ). In
practice, other constraints (such as bias current) may limit our choices.

This circuit configuration therefore acts as a convenient type of voltage
amplifier (or attenuator, if the ratio of Ry to R; is less than 1), but does
have the sometimes inconvenient property of inverting the sign of the input.
There is an alternative, however, which is analyzed just as easily—the non-
inverting amplifier shown in Fig. 6.6. We examine such a circuit in the
following example.

M FIGURE 6.6 (a) An op amp used to construct a

(b)

Yout

i

noninverting amplifier circuit. (b) Circuit with the

current through R, and Ry defined, as well as both

input voltages labeled.

Sketch the output waveform of the noninverting amplifier circuit in
Fig. 6.6a. Use vj, = 5 sin 3t mV, Ry = 4.7 kQ, and Ry = 47 kQ.

Identify the goal of the problem.
We require an expression for vy that only depends on the known
quantities viy, R, and Ry.

Collect the known information.

Since values have been specified for the resistors and the input
waveform, we begin by labeling the current i and the two input
voltages as shown in Fig. 6.6b. We will assume that the op amp is
an ideal op amp.

Devise a plan.

Although mesh analysis is a favorite technique of students, it turns out
to be more practical in most op amp circuits to apply nodal analysis,
since there is no direct way to determine the current flowing out of the
Oop amp output.

Construct an appropriate set of equations.

Note that we are using ideal op amp rule 1 implicitly by defining the
same current through both resistors: no current flows into the invert-
ing input terminal. Employing nodal analysis to obtain our expression
for voy in terms of vy,, we thus find that
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At node a:
0= Va | Va — Vout [4]
R Ry
At node b:
Up = Vin [5]

Determine if additional information is required.
Our goal is to obtain a single expression that relates the input and
output voltages, although neither Eq. [4] nor Eq. [5] appears to do so.
However, we have not yet employed ideal op amp rule 2, and we will
find that in almost every op amp circuit both rules need to be invoked
in order to obtain such an expression.

Thus, we recognize that v, = v, = vy, and Eq. [4] becomes

0= & Vin — Vout
R, Ry

Attempt a solution.
Rearranging, we obtain an expression for the output voltage in terms
of the input voltage vjy:

R
Vout = (1 + R—f) Vin = 11Uin =55sin3t mV
1

Verify the solution. Is it reasonable or expected?

The output waveform is sketched in Fig. 6.7, along with the input
waveform for comparison. In contrast to the output waveform of the
inverting amplifier circuit, we note that the input and output are in
phase for the noninverting amplifier. This should not be entirely
unexpected: it is implicit in the name “noninverting amplifier.”

PRACTICE -

6.1 Derive an expression for v, in terms of v;, for the circuit shown in
Fig. 6.8.

Ans: voy = vin. The circuit is known as a “voltage follower,” since the output
voltage tracks or “follows” the input voltage.

Just like the inverting amplifier, the noninverting amplifier works with
dc as well as ac inputs, but has a voltage gain of vou/vin = 1+ (Ry/Ry).
Thus, if we set Ry =9 Q and R; = 1 2, we obtain an output vy, which is
10 times larger than the input voltage v;,. In contrast to the inverting ampli-
fier, the output and input of the noninverting amplifier always have the same
sign, and the output voltage cannot be less than the input; the minimum gain
is 1. Which amplifier we choose depends on the application we are consid-
ering. In the special case of the voltage follower circuit shown in Fig. 6.8,

® 179

Voltage (mV)

M FIGURE 6.7 Input and output waveforms for the
noninverting amplifier circuit.

M FIGURE 6.8
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which represents a noninverting amplifier with Ry set to oo and Ry set to
zero, the output is identical to the input in both sign and magnitude. This
may seem rather pointless as a general type of circuit, but we should keep in
mind that the voltage follower draws no current from the input (in the ideal
case)—it therefore can act as a buffer between the voltage vj, and some re-
sistive load R connected to the output of the op amp.

We mentioned earlier that the name “operational amplifier” originates
from using such devices to perform arithmetical operations on analog (i.e.,
nondigitized, real-time, real-world) signals. As we see in the following two
circuits, this includes both addition and subtraction of input voltage signals.

EXAMPLE 6.2

Obtain an expression for v, in terms of v;, v, and v for the
op amp circuit in Fig. 6.9, also known as a summing amplifier.

U

M FIGURE 6.9 Basic summing amplifier circuit with three inputs.

We first note that this circuit is similar to the inverting amplifier circuit
of Fig. 6.3. Again, the goal is to obtain an expression for vy, (Which
in this case appears across a load resistor R;) in terms of the inputs
(U], U, and U3).

Since no current can flow into the inverting input terminal, we can
write

I =i +i2+i3
Therefore, we can write the following equation at the node labeled v,:

Va — Vout Vg — Vg Vg — U2 Vg — U3
0=
Ry TR TR TR

This equation contains both v, and the input voltages, but unfortu-
nately it also contains the nodal voltage v,. To remove this unknown
quantity from our expression, we need to write an additional equation
that relates v, to vou, the input voltages, Ry, and/or R. At this point, we
remember that we have not yet used ideal op amp rule 2, and that we
will almost certainly require the use of both rules when analyzing an
op amp circuit. Thus, since v, = v, = 0, we can write the following:
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Rearranging, we obtain the following expression for vgy:
Ry
Vout = _?(Ul + v + U3) [6]

In the special case where v, = v3 = 0, we see that our result agrees
with Eq. [3], which was derived for essentially the same circuit.

There are several interesting features about the result we have just de-
rived. First, if we select Ry so that it is equal to R, then the output is the (neg-
ative of the) sum of the three input signals vy, v,, and vs. Further, we can select
the ratio of Ry to R to multiply this sum by a fixed constant. So, for exam-
ple, if the three voltages represented signals from three separate scales cal-
ibrated so that —1 V = 1 1b, we could set Ry = R/2.205 to obtain a voltage
signal that represented the combined weight in kilograms (to within about
1 percent accuracy due to our conversion factor).

Also, we notice that R; did not appear in our final expression. As long as its
value is not too low, the operation of the circuit will not be affected; at present,
we have not considered a detailed enough model of an op amp to predict such
an occurrence. This resistor represents the Thévenin equivalent of whatever we
use to monitor the amplifier output. If our output device is a simple voltmeter,
then R;, represents the Thévenin equivalent resistance seen looking into the
voltmeter terminals (typically 10 M2 or more). Or, our output device might
be a speaker (typically 8 €2), in which case we hear the sum of the three sepa-
rate sources of sound; vy, v, and v3 might represent microphones in that case.

One word of caution: It is frequently tempting to assume that the current
labeled i in Fig. 6.9 flows not only through R,but through R; also. Not true!
It is very possible that current is flowing through the output terminal of the
op amp as well, so that the currents through the two resistors are not the
same. It is for this reason that we almost universally avoid writing KCL
equations at the output pin of an op amp, which leads to the preference of
nodal over mesh analysis when working with most op amp circuits.

For convenience, we summarize the most common op amp circuits in
Table 1.

PRACTICE "

6.2 Derive an expression for vy in terms of v and v, for the circuit
shown in Fig. 6.10, also known as a difference amplifier.
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B FIGURE 6.10

Ans: voy = v2 — v;. Hint: Use voltage division to obtain vj.
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TABLE _ 6.1 Summary of Basic Op Amp Circuits
Name Circuit Schematic Input-Output Relation
Rf ! Vout = _&vin
Ry

Inverting Amplifier «
Rl
—_—
i aF
Yout

Noninverting Amplifier

VUout = Vin

Voltage Follower
(also known as a
Unity Gain Amplifier)

1/()1“

Rf
Vout = _?(Ul + vz + v3)

Summing Amplifier

41

Vout = V2 — V]

Difference Amplifier
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( PRACTICAL APPLICATION )

A Fiber Optic Intercom

A point-to-point intercom system can be constructed
using a number of different approaches, depending on
the intended application environment. Low-power radio
frequency (RF) systems work very well and are gener-
ally cost-effective, but are subject to interference from
other RF sources and are also prone to eavesdropping.
Use of a simple wire to connect the two intercom sys-
tems instead can eliminate a great deal of the RF inter-
ference as well as increase privacy. However, wires are
subject to corrosion and short circuits when the plastic
insulation wears, and their weight can be a concern in
aircraft and related applications (Fig. 6.11).

M FIGURE 6.11 The application environment often dictates design
constraints. (© Michael Melford/Riser/Getty Images.)

An alternative design would be to convert the electri-
cal signal from the microphone to an optical signal,
which could then be transmitted through a thin (~50 wm
diameter) optical fiber. The optical signal is then con-
verted back to an electrical signal, which is amplified
and delivered to a speaker. A schematic diagram of such
a system is shown in Fig. 6.12; two such systems would
be needed for two-way communication.

) Light
Microphone source /\ttodetector
Amplifier Optical fiber Amgliticr Speaker

B FIGURE 6.12 Schematic diagram of one-half of a simple fiber optic
intercom.

We can consider the design of the transmission and
reception circuits separately, since the two circuits are in
fact electrically independent. Figure 6.13 shows a simple

by
N\
R
+
LED /’_—f;
Microphone

B FIGURE 6.13 Circuit used to convert the electrical microphone signal
into an optical signal for transmission through a fiber.

signal generation circuit consisting of a microphone, a
light-emitting diode (LED), and an op amp used in a
noninverting amplifier circuit to drive the LED; not
shown are the power connections required for the op
amp itself. The light output of the LED is roughly pro-
portional to its current, although less so for very small
and very large values of current.
We know the gain of the amplifier is given by

Vin Ry

which is independent of the resistance of the LED. In or-
der to select values for Ry and R, we need to know the
input voltage from the microphone and the necessary
output voltage to power the LED. A quick measurement
indicates that the typical voltage output of the micro-
phone peaks at 40 mV when someone is using a normal
speaking voice. The LED manufacturer recommends op-
erating at approximately 1.6 V, so we design for a gain of
1.6/0.04 = 40. Arbitrarily choosing R; = 1 k<2 leads to
arequired value of 39 k<2 for Ry.

The circuit of Fig. 6.14 is the receiver part of our one-
way intercom system. It converts the optical signal from
the fiber into an electrical signal, amplifying it so that an
audible sound emanates from the speaker.

Ry

Speaker
Photodetector

M FIGURE 6.14 Receiver circuit used to convert the optical signal into
an audio signal.

(Continued on next page)




After coupling the LED output of the transmitting
circuit to the optical fiber, a signal of approximately
10 mV is measured from the photodetector. The speaker
is rated for a maximum of 100 mW and has an equivalent
resistance of 8 €2. This equates to a maximum speaker
voltage of 894 mV, so we need to select values of R, and

selection of R, = 10 k€2, we find that a value of 884 k2
completes our design.

This circuit will work in practice, although the non-
linear characteristics of the LED lead to a noticeable dis-
tortion of the audio signal. We leave improved designs
for more advanced texts.

R; to obtain a gain of 894/10 = 89.4. With the arbitrary

6.3 , CASCADED STAGES

Although the op amp is an extremely versatile device, there are numerous
applications in which a single op amp will not suffice. In such instances, it
is often possible to meet application requirements by cascading several in-
dividual op amps together in the same circuit. An example of this is shown
in Fig. 6.15, which consists of the summing amplifier circuit of Fig. 6.9 with
only two input sources, and the output fed into a simple inverting amplifier.
The result is a two-stage op amp circuit.

41

B FIGURE 6.15 A two-stage op amp circuit consisting of a summing amplifier cascaded
with an inverting amplifier circuit.

We have already analyzed each of these op amp circuits separately.
Based on our previous experience, if the two op amp circuits were discon-
nected, we would expect

B2 w0 7]
vy =——(; +v
R 1 2
and
_ B (8]
Uout = R, Ux

In fact, since the two circuits are connected at a single point and the
voltage v, is not influenced by the connection, we can combine Egs. [7] and
[8] to obtain

R> R f

RR (1 +v2) (9]

Vout =
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which describes the input-output characteristics of the circuit shown in
Fig. 6.15. We may not always be able to reduce such a circuit to familiar
stages, however, so it is worth seeing how the two-stage circuit of Fig. 6.15
can be analyzed as a whole.

When analyzing cascaded circuits, it is sometimes helpful to begin with
the last stage and work backward toward the input stage. Referring to ideal
op amp rule 1, the same current flows through R; and R,. Writing the appro-
priate nodal equation at the node labeled v, yields

Ve — Uy Ve — Vout
0= 10
R + % [10]

Applying ideal op amp rule 2, we can set v, = 0 in Eq. [10], resulting in

0= 4 tou [11]
R R
Since our goal is an expression for v,y in terms of vy and v,, we proceed
to the first op amp in order to obtain an expression for v, in terms of the two
input quantities.
Applying ideal op amp rule 1 at the inverting input of the first op amp,

Vg — Uy Vg — V1 Vg — V2
Ry R R

[12]

Ideal op amp rule 2 allows us to replace v, in Eq. [12] with zero, since
v, = vp = 0. Thus, Eq. [12] becomes

Uy V1 1%)
O0=—+4+—+4+—= 13
Rt R [13]

We now have an equation for vqy in terms of v, (Eq. [11]), and an equa-
tion for v, in terms of v; and v, (Eq. [13]). These equations are identical to
Egs. [7] and [8], respectively, which means that cascading the two separate
circuits as in Fig. 6.15 did not affect the input-output relationship of either
stage. Combining Eqgs. [11] and [13], we find that the input-output relation-
ship for the cascaded op amp circuit is

Vout = & &(Ul +v2) [14]
Ry R

which is identical to Eq. [9].

Thus, the cascaded circuit acts as a summing amplifier, but without a
phase reversal between the input and output. By choosing the resistor val-
ues carefully, we can either amplify or attenuate the sum of the two input
voltages. If we select R, = Ry and Ry = R, we can also obtain an amplifier
circuit where vy, = v; + va, if desired.

185
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EXAMPLE 6.3

A multiple-tank gas propellant fuel system is installed in a small
lunar orbit runabout. The amount of fuel in any tank is monitored
by measuring the tank pressure (in psia).? Technical details for
tank capacity as well as sensor pressure and voltage range are
given in Table 6.2. Design a circuit which provides a positive dc
voltage signal proportional to the total fuel remaining, such that
1V = 100 percent.

TABLE 6.2 Technical Data for Tank
Pressure Monitoring System

@
Tank 1 Capacity 10,000 psia
Tank 2 Capacity 10,000 psia
Tank 3 Capacity 2000 psia
Sensor Pressure Range 0 to 12,500 psia
Sensor Voltage Output 0to5 Vde

We see from Table 6.2 that the system has three separate gas tanks,
requiring three separate sensors. Each sensor is rated up to 12,500 psia,
with a corresponding output of 5 V. Thus, when tank 1 is full, its sensor
will provide a voltage signal of 5 x (10,000/12,500) = 4 V; the

same is true for the sensor monitoring tank 2. The sensor connected

to tank 3, however, will only provide a maximum voltage signal of

5 x (2000/12,500) = 800 mV.

One possible solution is the circuit shown in Fig. 6.16a, which em-
ploys a summing amplifier stage with vy, vy, and v3 representing the
three sensor outputs, followed by an inverting amplifier to adjust the
voltage sign and magnitude. Since we are not told the output resistance
of the sensor, we employ a buffer for each one as shown in Fig. 6.16b;
the result is (in the ideal case) no current flow from the sensor.

To keep the design as simple as possible, we begin by choosing
Ry, Ry, R3, and R4 to be 1 k2; any value will do as long as all four
resistors are equal. Thus, the output of the summing stage is

vy = —(v1 + v2 +v3)

The final stage must invert this voltage and scale it such that the
output voltage is 1 V when all three tanks are full. The full condition
results in v, = —(4 + 4 + 0.8) = —8.8 V. Thus, the final stage needs
a voltage ratio of Rg/Rs = 1/8.8. Arbitrarily choosing Rg = 1 k2, we
find that a value of 8.8 k€2 for Rs completes the design.

(2) Pounds per square inch, absolute. This is a differential pressure measurement relative to a vacuum
reference.
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R, Ry Ry
Ry
AN
Ry
v ) v3
(a)
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v
)

M FIGURE 6.16 (a) A proposed circuit to provide a total fuel remaining readout. (b) Buffer design
to avoid errors associated with the internal resistance of the sensor and limitations on its ability to
provide current. One such buffer is used for each sensor, providing the inputs vy, v5, and vs to
the summing amplifier stage.

PRACTICE |

6.3 An historic bridge is showing signs of deterioration. Until renova-
tions can be performed, it is decided that only cars weighing less than
1600 kg will be allowed across. To monitor this, a four-pad weighing
system is designed. There are four independent voltage signals, one from
each wheel pad, with 1 mV = 1 kg. Design a circuit to provide a positive
voltage signal to be displayed on a DMM (digital multimeter) that repre-
sents the total weight of a vehicle, such that 1 mV = 1 kg. You may as-
sume there is no need to buffer the wheel pad voltage signals.

Ans: See Fig. 6.17.

S

M FIGURE 6.17 One possible solution to Practice Problem 6.3; all resistors are 10 k2 (although
any value will do as long as they are all equal). Input voltages vy, v, vs, and v, represent the voltage
signals from the four wheel pad sensors, and Ve, is the output signal to be connected to the positive
input terminal of the DMM. All five voltages are referenced to ground, and the common terminal of
the DMM should be connected to ground as well.
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6.4 _ CIRCUITS FOR VOLTAGE AND CURRENT SOURCES

In this and previous chapters we have often made use of ideal current and volt-
age sources, which we assume provide the same value of current or voltage, re-
spectively, regardless of how they are connected in a circuit. Our assumption
of independence has its limits, of course, as mentioned in Sec. 5.2 when we
discussed practical sources which included a “built-in” or inherent resistance.
The effect of such a resistance was a reduction of the voltage output of a volt-
age source as more current was demanded, or a diminished current output as
more voltage was required from a current source. As discussed in this section, it
is possible to construct circuits with more reliable characteristics using op amps.

A Reliable Voltage Source

One of the most common means of providing a stable and consistent refer-
ence voltage is to make use of a nonlinear device known as a Zener diode.
Its symbol is a triangle with a Z-like line across the top of the triangle, as
shown for a IN750 in the circuit of Fig. 6.18a. Diodes are characterized by

= Iener Example (active)

5.0

+

DI

Vo
DIN750 ref

o o
'.'.::ou
ouip1:2)
u_ud
(@) (b)

= Iener Example (active)

200mn

.80, 75.77n
-08, -11.1E-18
20, LR

B G e

10AmA

Eouy

(©
M FIGURE 6.18 (a) PSpice schematic of a simple voltage reference circuit based on the 1N750 Zener
diode. (b) Simulation of the circuit showing the diode voltage Vref as a function of the driving voltage V1.
(c) Simulation of the diode current, showing that its maximum rating is exceeded when V1 exceeds
12.3 V. (Note that performing this calculation assuming an ideal Zener diode yields 12.2 V.)
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a strongly asymmetric current-voltage relationship. For small voltages, they
either conduct essentially zero current—or experience an exponentially in-
creasing current—depending on the voltage polarity. In this way, they dis-
tinguish themselves from the simple resistor, where the magnitude of the
current is the same for either voltage polarity and hence the resistor current-
voltage relationship is symmetric. Consequently, the terminals of a diode
are not interchangeable, and have unique names: the anode (the flat part of
the triangle) and the cathode (the point of the triangle).

A Zener diode is a special type of diode designed to be used with a positive
voltage at the cathode with respect to the anode; when connected this way, the
diode is said to be reverse biased. For low voltages, the diode acts like a resis-
tor with a small linear increase in current flow as the voltage is increased. Once
acertain voltage (Vpr) is reached, however—known as the reverse breakdown
voltage or Zener voltage of the diode—the voltage does not significantly in-
crease further, but essentially any current can flow up to the maximum rating
of the diode (75 mA for a 1IN750, whose Zener voltage is 4.7 V).

Let’s consider the simulation result presented in Fig. 6.18b, which shows
the voltage V..t across the diode as the voltage source V1 is swept from 0 to
20 V. Provided V1 remains above 5V, the voltage across our diode is es-
sentially constant. Thus, we could replace V1 with a 9 V battery, and not be
too concerned with changes in our voltage reference as the battery voltage
begins to drop as it discharges. The purpose of R1 in this circuit is simply to
provide the necessary voltage drop between the battery and the diode; its
value should be chosen to ensure that the diode is operating at its Zener volt-
age but below its maximum rated current. For example, Fig. 6.18c shows
that the 75 mA rating is exceeded in our circuit if the source voltage V1 is
much greater than 12 V. Thus, the value of resistor R1 should be sized cor-
responding to the source voltage available, as we explore in Example 6.4.

189

EXAMPLE 6.4

Design a circuit based on the IN750 Zener diode that runs on a
single 9 V battery and provides a reference voltage of 4.7 V.

The 1N750 has a maximum current rating of 75 mA, and a Zener volt-
age of 4.7 V. The voltage of a 9 V battery can vary slightly depending
on its state of charge, but we neglect this for the present design.

A simple circuit such as the one shown in Fig. 6.19a is adequate
for our purposes; the only issue is determining a suitable value for the
resistor Rief.

If 4.7 V is dropped across the diode, then 9 — 4.7 = 4.3 V must be
dropped across Ri¢. Thus,

9 — Vier 4.3

Rref =
I ref I, ref

We determine Ry¢ by specifying a current value. We know that /,.¢
should not be allowed to exceed 75 mA for this diode, and large currents
will discharge the battery more quickly. However, as seen in Fig. 6.19b,
we cannot simply select /¢ arbitrarily; very low currents do not allow

(Continued on next page)
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B FIGURE 6.19 (a) A voltage reference circuit based
on the TN750 Zener diode. (b) Diode /-V/ relationship.
(c) PSpice simulation of the final design.
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the diode to operate in the Zener breakdown region. In the absence of a
detailed equation for the diode’s current-voltage relationship (which is
clearly nonlinear), we design for 50 percent of the maximum rated cur-
rent as a rule of thumb. Thus,

4.3

Ryt = —— =115 Q
'~ 0.0375

Detailed “tweaking” can be obtained by performing a PSpice simu-
lation of the final circuit, although we see from Fig. 6.19¢ that our first
pass is reasonably close (within 1 percent) to our target value.

The basic Zener diode voltage reference circuit of Fig. 6.18a works very
well in many situations, but we are limited somewhat in the value of the volt-
age depending on which Zener diodes are available. Also, we often find that
the circuit shown is not well suited to applications requiring more than a few
milliamperes of current. In such instances, we may use the Zener reference
circuit in conjunction with a simple amplifier stage, as shown in Fig. 6.20.
The result is a stable voltage that can be controlled by adjusting the value of
either R; or Ry, without having to switch to a different Zener diode.

Ry

+

yOlll
M FIGURE 6.20 An op amp-based voltage source
using on a Zener voltage reference.

PRACTICE >

6.4 Design a circuit to provide a reference voltage of 6 V using a
IN750 Zener diode and a noninverting amplifier.

Ans: Using the circuit topology shown in Fig. 6.20, choose Vi =9V,
Rier =115 Q, Ry = 1k, and Ry = 268 Q.

A Reliable Current Source

Consider the circuit shown in Fig. 6.21a, where V¢ is provided by a regu-
lated voltage source such as the one shown in Fig. 6.19a. The reader may
recognize this circuit as a simple inverting amplifier configuration, assum-
ing we tap the output pin of the op amp. We can also use this circuit as a cur-
rent source, however, where R, represents a resistive load.

The input voltage Vi appears across reference resistor Ry, since the
noninverting input of the op amp is connected to ground. With no current
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Rt Ig l R.of Ig l R,

Vier —AAN—— p Vier —AAN—— p

(©
M FIGURE 6.21 (a) An op amp-based current source, controlled by the reference voltage V.

(b) Circuit redrawn to highlight load. (c) Circuit model. Resistor R; represents the Norton equivalent of
an unknown passive load circuit.

flowing into the inverting input, the current flowing through the load resistor
Ry is simply

Vref
Rref

In other words, the current supplied to R; does not depend on its
resistance—the primary attribute of an ideal current source. It is also worth
noting that we are not tapping the output voltage of the op amp here as a quan-
tity of interest. Instead, we may view the load resistor R; as the Norton (or
Thévenin) equivalent of some unknown passive load circuit, which receives
power from the op amp circuit. Redrawing the circuit slightly as in Fig. 6.21b,
we see that it has a great deal in common with the more familiar circuit of
Fig. 6.21c. In other words, we may use this op amp circuit as an independent
current source with essentially ideal characteristics, up to the maximum rated
output current of the op amp selected.

I, =

EXAMPLE 6.5

Design a current source that will deliver 1 mA to an arbitrary
resistive load.

Basing our design on the circuits of Fig. 6.20 and Fig. 6.21a, we know
that the current through our load R; will be given by
Vref

. =
’ Rref

where values for Vit and R;.¢ must be selected, and a circuit to provide Vie¢
must also be designed. If we use a IN750 Zener diode in series witha 9 V

(Continued on next page)
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Ry

oV — IN750

M FIGURE 6.22 One possible design for the desired

current source. Note the change in current direction
from Fig. 6.21b.

M FIGURE 6.24 A more detailed model for the
op amp.
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battery and a 100 € resistor, we know from Fig. 6.18b that a voltage of
4.9V will exist across the diode. Thus, Vs = 4.9V, dictating a value of
4.9/1073 = 4.9 kQ for Ryer. The complete circuit is shown in Fig. 6.22.

Note that if we had assumed a diode voltage of 4.7 V instead, the
error in our designed current would only be a few percent, well within
the typical 5 to 10 percent tolerance in resistor values we might expect.

The only issue remaining is whether 1 mA can in fact be provided to
any value of R;. For the case of R, = 0, the output of the op amp will
be 4.9 V, which is not unreasonable. As the load resistor is increased,
however, the op amp output voltage increases. Eventually we must
reach some type of limit, as discussed in Sec. 6.5.

PRACTICE _

6.5 Design a current source capable of providing 500 (A to a resistive
load.

Ans: See Fig. 6.23 for one possible solution.
Ry

9

8kQ
AN =
.
* 100 Q
9V T IN750

M FIGURE 6.23 One possible solution to Practice
Problem 6.5.

6.5  PRACTICAL CONSIDERATIONS
A More Detailed Op Amp Model

Reduced to its essentials, the op amp can be thought of as a voltage-
controlled dependent voltage source. The dependent voltage source provides
the output of the op amp, and the voltage on which it depends is applied to the
input terminals. A schematic diagram of a reasonable model for a practical
op amp is shown in Fig. 6.24; it includes a dependent voltage source with
voltage gain A, an output resistance R,, and an input resistance R;. Table 6.3
gives typical values for these parameters for several types of commercially
available op amps.

The parameter A is referred to as the open-loop voltage gain of the op amp,
and is typically in the range of 10° to 10°. We notice that all of the op amps
listed in Table 6.3 have extremely large open-loop voltage gain, especially
compared to the voltage gain of 11 that characterized the noninverting
amplifier circuit of Example 6.1. It is important to remember the distinction




SECTION 6.5 PRACTICAL CONSIDERATIONS ® 193

TABLE _ 6.3 Typical Parameter Values for Several Types of Op Amps

Part Number 1A741 LM324 LF411 AD549K OPA690
Description General Low-power Low-offset, low- Ultralow input Wideband video
purpose quad drift JFET input bias current frequency op amp
Open loop gain A 2 x 10° V/V 103 V/V 2 x 10° VIV 108 V/V 2800 V/V
Input resistance 2 MQ & 1 TR 10 TQ 190 k2
Output resistance 75 Q < ~1Q ~15Q S
Input bias current 80 nA 45 nA 50 pA 75 fA 3 uA
Input offset voltage 1.0 mV 2.0 mV 0.8 mV 0.150 mV +1.0 mV
CMRR 90 dB 85 dB 100 dB 100 dB 65 dB
Slew rate 0.5 V/us & 15 Vius 3 Vius 1800 V/us
PSpice Model v v v

* Not provided by manufacturer.

v Indicates that a PSpice model is included in Orcad Capture CIS Lite Edition 16.3.

between the open-loop voltage gain of the op amp itself, and the closed-
loop voltage gain that characterizes a particular op amp circuit. The “loop”
in this case refers to an external path between the output pin and the invert-
ing input pin; it can be a wire, a resistor, or another type of element, de-
pending on the application.

The tA741 is a very common op amp, originally produced by Fairchild
Corporation in 1968. It is characterized by an open-loop voltage gain of
200,000, an input resistance of 2 M€2, and an output resistance of 75 €2. In
order to evaluate how well the ideal op amp model approximates the be-
havior of this particular device, let’s revisit the inverting amplifier circuit of
Fig. 6.3.

EXAMPLE 6.6

Using the appropriate values for the tA741 op amp in the model of
Fig. 6.24, reanalyze the inverting amplifier circuit of Fig. 6.3.

We begin by replacing the ideal op amp symbol of Fig. 6.3 with the
detailed model, resulting in the circuit shown in Fig. 6.25.
Note that we can no longer invoke the ideal op amp rules, since we are

not using the ideal op amp model. Thus, we write two nodal equations: A
0= —V4 — Vin —VU4 — VUout —Vd
R, Ry R;
0= Vout + Va Vout — Avg
Ry R,

Performing some straightforward but rather lengthy algebra, we elimi-
nate vy and combine these two equations to obtain the following

(Continued on next page)
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vOLlI

Ry

M FIGURE 6.25 Inverting amplifier circuit drawn using detailed op amp model.

expression for vy in terms of vj,:

R,+Ry (1 1 1 177" i
w=l——+—+—=—| - = — 15
fou [RO_ARf (R1+Rf+Ri> } ol
Substituting v, = 5sin3trmV,R; = 4.7kQ, Ry =47TkQ,R, =75 Q,
R; =2MQ,and A = 2 x 10°, we obtain

Vout = —9.999448vi, = —49.99724 sin 3¢ mV

Upon comparing this to the expression found assuming an ideal op
amp (Vour = —10v;, = —50sin 3t mV), we see that the ideal op amp is
indeed a reasonably accurate model. Further, assuming an ideal op amp
leads to a significant reduction in the algebra required to perform the
circuit analysis. Note that if we allow A — oo, R, — 0, and R; — o0,
Eq. [15] reduces to

Ry

Uout = — Vin

which is what we derived earlier for the inverting amplifier when
assuming the op amp was ideal.

PRACTICE .

6.6 Assuming a finite open-loop gain (A), a finite input resistance (R)),
and zero output resistance (R,), derive an expression for vgy in terms of
iy for the op amp circuit of Fig. 6.3.

Ans: vy /Vip = —ARfRi/[(l + AR\ R; + R]Rf + R([R[].

Derivation of the Ideal Op Amp Rules

We have seen that the ideal op amp can be a reasonably accurate model for
the behavior of practical devices. However, using our more detailed model
which includes a finite open-loop gain, finite input resistance, and nonzero
output resistance, it is actually straightforward to derive the two ideal op
amp rules.

Referring to Fig. 6.24, we see that the open circuit output voltage of a
practical op amp can be expressed as

Vout = Avy [16]
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Rearranging this equation, we find that v,, sometimes referred to as the
differential input voltage, can be written as

Vout

A

Vg = [17]

As we might expect, there are practical limits to the output voltage voy
that can be obtained from a real op amp. As described in the next section, we
must connect our op amp to external dc voltage supplies in order to power the
internal circuitry. These external voltage supplies represent the maximum
value of vy, and are typically in the range of 5 to 24 V. If we divide 24 V by
the open-loop gain of the uA741 (2 x 10°), we obtain vy = 120 uV.
Although this is not the same as zero volts, such a small value compared to
the output voltage of 24 V is practically zero. Anideal op amp would have in-
finite open-loop gain, resulting in v; = Oregardless of vyy; this leads to ideal
op amp rule 2.

Ideal op amp rule 1 states that “No current ever flows into either input
terminal.” Referring to Fig. 6.23, the input current of an op amp is simply

Vd
lm - Rl

We have just determined that v, is typically a very small voltage. As we
can see from Table 6.3, the input resistance of an op amp is very large, rang-
ing from the megaohms to the teraohms! Using the value of v; = 120 uV
from above and R; = 2 M2, we compute an input current of 60 pA. This is
an extremely small current, and we would require a specialized ammeter
(known as a picoammeter) to measure it. We see from Table 6.3 that the typ-
ical input current (more accurately termed the input bias current) of a
1AT41 is 80 nA, three orders of magnitude larger than our estimate. This is
a shortcoming of the op amp model we are using, which is not designed to
provide accurate values for input bias current. Compared to the other cur-
rents flowing in a typical op amp circuit, however, either value is essentially
zero. More modern op amps (such as the AD549) have even lower input
bias currents. Thus, we conclude that ideal op amp rule 1 is a fairly reason-
able assumption.

From our discussion, it is clear that an ideal op amp has infinite open-
loop voltage gain, and infinite input resistance. However, we have not yet
considered the output resistance of the op amp and its possible effects on
our circuit. Referring to Fig. 6.24, we see that

Vout = Avg — Ryloy

where i, flows from the output pin of the op amp. Thus, a nonzero value of
R, acts to reduce the output voltage, an effect which becomes more pro-
nounced as the output current increases. For this reason, an ideal op amp
has an output resistance of zero ohms. The £tA741 has a maximum output
resistance of 75 2, and more modern devices such as the AD549 have even
lower output resistance.

Common-Mode Rejection

The op amp is occasionally referred to as a difference amplifier; since the
output is proportional to the voltage difference between the two input
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M FIGURE 6.26 An op amp connected as a
difference amplifier.
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terminals. This means that if we apply identical voltages to both input
terminals, we expect the output voltage to be zero. This ability of the op
amp is one of its most attractive qualities, and is known as common-mode
rejection. The circuit shown in Fig. 6.26 is connected to provide an output
voltage

Uout = V2 — V]

If vy = 2 4 3sin 3¢ volts and v, = 2 volts, we would expect the output
to be —3 sin 3¢ volts; the 2 V component common to v; and v, would not
be amplified, nor does it appear in the output.

For practical op amps, we do in fact find a small contribution to the out-
put in response to common-mode signals. In order to compare one op amp
type to another, it is often helpful to express the ability of an op amp to reject
common-mode signals through a parameter known as the common-mode
rejection ratio, or CMRR. Defining v, as the output obtained when both
inputs are equal (v; = vy = vcm), we can determine Acy, the common-
mode gain of the op amp

We then define CMRR in terms of the ratio of differential-mode gain A
to the common-mode gain Acy, or

A
CMRR = [— [18]
Acm
although this is often expressed in decibels (dB), a logarithmic scale:
A
CMRRgp) = 20log,, |——| dB [19]
Acm

Typical values for several different op amps are provided in Table 6.3;
a value of 100 dB corresponds to an absolute ratio of 10° for A to Acw.

Negative Feedback

We have seen that the open-loop gain of an op amp is very large, ideally in-
finite. In practical situations, however, its exact value can vary from the
value specified by the manufacturer as typical. Temperature, for example,
can have a number of significant effects on the performance of an op amp,
so that the operating behavior in —20°C weather may be significantly dif-
ferent from the behavior observed on a warm sunny day. Also, there are
typically small variations between devices fabricated at different times. If
we design a circuit in which the output voltage is the open-loop gain times
the voltage at one of the input terminals, the output voltage could therefore
be difficult to predict with a reasonable degree of precision, and might be
expected to change depending on the ambient temperature.

A solution to such potential problems is to employ the technique of
negative feedback, which is the process of subtracting a small portion of
the output from the input. If some event changes the characteristics of the
amplifier such that the output tries to increase, the input is decreasing at the
same time. Too much negative feedback will prevent any useful amplifica-
tion, but a small amount provides stability. An example of negative
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feedback is the unpleasant sensation we feel as our hand draws near a
flame. The closer we move toward the flame, the larger the negative signal
sent from our hand. Overdoing the proportion of negative feedback, how-
ever, might cause us to abhor heat, and eventually freeze to death. Positive
Jfeedback is the process where some fraction of the output signal is added
back to the input. A common example is when a microphone is directed to-
ward a speaker—a very soft sound is rapidly amplified over and over until
the system “screams.” Positive feedback generally leads to an unstable
system.

All of the circuits considered in this chapter incorporate negative feed-
back through the presence of a resistor between the output pin and the
inverting input. The resulting loop between the output and the input reduces
the dependency of the output voltage on the actual value of the open-loop
gain (as seen in Example 6.6). This obviates the need to measure the precise
open-loop gain of each op amp we use, as small variations in A will not sig-
nificantly impact the operation of the circuit. Negative feedback also pro-
vides increased stability in situations where A is sensitive to the op amp’s
surroundings. For example, if A suddenly increases in response to a change
in the ambient temperature, a larger feedback voltage is added to the
inverting input. This acts to reduce the differential input voltage vy, and
therefore the change in output voltage Av, is smaller. We should note that the
closed-loop circuit gain is always less than the open-loop device gain;
this is the price we pay for stability and reduced sensitivity to parameter
variations.

Saturation

So far, we have treated the op amp as a purely linear device, assuming that
its characteristics are independent of the way in which it is connected in a cir-
cuit. In reality, it is necessary to supply power to an op amp in order to run
the internal circuitry, as shown in Fig. 6.27. A positive supply, typically in the
range of 5 to 24 V dc, is connected to the terminal marked V™, and a nega-
tive supply of equal magnitude is connected to the terminal marked V.
There are also a number of applications where a single voltage supply is
acceptable, as well as situations where the two voltage magnitudes may be
unequal. The op amp manufacturer will usually specify a maximum power
supply voltage, beyond which damage to the internal transistors will occur.
The power supply voltages are a critical choice when designing an op
amp circuit, because they represent the maximum possible output voltage of
the op amp.? For example, consider the op amp circuit shown in Fig. 6.26,
now connected as a noninverting amplifier having a gain of 10. As shown in
the PSpice simulation in Fig. 6.28, we do in fact observe linear behavior
from the op amp, but only in the range of £1.71 V for the input voltage.
Outside of this range, the output voltage is no longer proportional to the
input, reaching a peak magnitude of 17.6 V. This important nonlinear effect
is known as saturation, which refers to the fact that further increases in the
input voltage do not result in a change in the output voltage. This phenom-
enon refers to the fact that the output of a real op amp cannot exceed its

(3) In practice, we find the maximum output voltage is slightly less than the supply voltage by as much as
a volt or so.
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Offset null e 18V

Offset null

M FIGURE 6.27 Op amp with positive and negative
voltage supplies connected. Two 18 V supplies are used
as an example; note the polarity of each source.
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Offset null -10V

Offset null

B FIGURE 6.29 Suggested external circuitry for
obtaining a zero output voltage. The +10 V supplies
are shown as an example; the actual supply voltages
used in the final circuit would be chosen in practice.
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B FIGURE 6.28 Simulated input-output characteristics of a ;1A741 connected as a
noninverting amplifier with a gain of 10, and powered by £18 V supplies.

supply voltages. For example, if we choose to run the op amp with a +9 V
supply and a —5 V supply, then our output voltage will be limited to the
range of —5 to 49 V. The output of the op amp is a linear response bounded
by the positive and negative saturation regions, and as a general rule, we try
to design our op amp circuits so that we do not accidentally enter the satu-
ration region. This requires us to select the operating voltage carefully
based on the closed-loop gain and maximum expected input voltage.

Input Offset Voltage

As we are discovering, there are a number of practical considerations to
keep in mind when working with op amps. One particular nonideality worth
mentioning is the tendency for real op amps to have a nonzero output even
when the two input terminals are shorted together. The value of the output
under such conditions is known as the offset voltage, and the input voltage
required to reduce the output to zero is referred to as the input offset
voltage. Referring to Table 6.3, we see that typical values for the input offset
voltage are on the order of a few millivolts or less.

Most op amps are provided with two pins marked either “offset null” or
“balance.” These terminals can be used to adjust the output voltage by con-
necting them to a variable resistor. A variable resistor is a three-terminal de-
vice commonly used for such applications as volume controls on radios.
The device comes with a knob that can be rotated to select the actual value
of resistance, and has three terminals. Measured between the two extreme
terminals, its resistance is fixed regardless of the position of the knob. Us-
ing the middle terminal and one of the end terminals creates a resistor
whose value depends on the knob position. Figure 6.29 shows a typical cir-
cuit used to adjust the output voltage of an op amp; the manufacturer’s data
sheet may suggest alternative circuitry for a particular device.
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Slew Rate

Up to now, we have tacitly assumed that the op amp will respond equally
well to signals of any frequency, although perhaps we would not be sur-
prised to find that in practice there is some type of limitation in this regard.
Since we know that op amp circuits work well at dc, which is essentially
zero frequency, it is the performance as the signal frequency is increased
that we must consider. One measure of the frequency performance of an op
amp is its slew rate, which is the rate at which the output voltage can
respond to changes in the input; it is most often expressed in V/us. The
typical slew rate specification for several commercially available devices is
provided in Table 6.3, showing values on the order of a few volts per
microsecond. One notable exception is the OPA690, which is designed as a
high-speed op amp for video applications requiring operation at several
hundred MHz. As can be seen, a respectable slew rate of 1800 V/us is not
unrealistic for this device, although its other parameters, particularly input
bias current and CMRR, suffer somewhat as a result.

The PSpice simulations shown in Fig. 6.30 illustrate the degradation in
performance of an op amp due to slew rate limitations. The circuit simu-
lated is an LF411 configured as a noninverting amplifier with a gain of 2 and
powered by 15 V supplies. The input waveform is shown in green, and has
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M FIGURE 6.30 Simulated performance of an LF411 op amp connected as a noninverting amplifier having a gain of 2, with +15 V supplies and a pulsed input waveform.

2.0us 2.5us d.0us

Time

(b)

(@) Rise and fall times = 1 s, pulse width = 5 ss; (b) rise and fall times = 100 ns, pulse width = 500 ns; (c) rise and fall times = 50 ns, pulse width = 250 ns.
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a peak voltage of 1 V; the output voltage is shown in red. The simulation of
Fig. 6.30a corresponds to a rise and fall time of 1 us which, although a
short time span for humans, is easily coped with by the LF411. As the rise
and fall times are decreased by a factor of 10 to 100 ns (Fig. 6.30b), we
begin to see that the LF411 is having a small difficulty in tracking the input.
In the case of a 50 ns rise and fall time (Fig. 6.30c), we see that not only is
there a significant delay between the output and the input, but the waveform
is noticeably distorted as well—not a good feature of an amplifier. This ob-
served behavior is consistent with the typical slew rate of 15 V/us specified
in Table 6.3, which indicates that the output might be expected to require
roughly 130 ns to change from 0 to 2V (or2 Vto 0 V).

Packaging

Modern op amps are available in a number of different types of packages.
Some styles are better suited to high temperatures, and there are a variety
of different ways to mount ICs on printed-circuit boards. Figure 6.31
shows several different styles of the LM741, manufactured by National
Semiconductor. The label “NC” next to a pin means “no connection.” The
package styles shown in the figure are standard configurations, and are used
for a large number of different integrated circuits; occasionally there are
more pins available on a package than required.

Dual-In-Line or 5.0. Package

OFFSET NULL —{1 8 =HC Ceramic Flatpak
e e
INVERTING INPUT = 2 7=t LS TN — —
NI LMT4IW v
LT — ——douteur
hCN-iNVEﬁEE‘?— 3 & = OUIET: v-— il OFFSET NULL
v 4 5 F—=OFFSET NULL
) ()

M FIGURE 6.31 Several different package styles for the LM741 op amp: (@) metal can; (b) dual-in-line package; (c) ceramic flatpak.
(Copyright © 2011 National Semiconductor Corporation (www.national.com). All rights reserved. Used with permission.)

COMPUTER-AIDED ANALYSIS

N

As we have just seen, PSpice can be enormously helpful in predicting
the output of an op amp circuit, especially in the case of time-varying
inputs. We will find, however, that our ideal op amp model agrees fairly
well with PSpice simulations as a general rule.

When performing a PSpice simulation of an op amp circuit, we must
be careful to remember that positive and negative dc supplies must be
connected to the device (with the exception of the LM324, which is de-
signed to be a single-supply op amp). Although the model shows the
offset null pins used to zero the output voltage, PSpice does not build in
any offset, so these pins are typically left floating (unconnected).

Table 6.3 shows the different op amp part numbers available in the
Evaluation version of PSpice; other models are available in the com-
mercial version of the software and from some manufacturers.
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EXAMPLE 6.7

Simulate the circuit of Fig. 6.3 using PSpice. Determine the point(s)
at which saturation begins if £15 V dc supplies are used to power
the device. Compare the gain calculated by PSpice to what was
predicted using the ideal op amp model.

We begin by drawing the inverting amplifier circuit of Fig. 6.3 using
the schematic capture tool as shown in Fig. 6.32. Note that two separate
15 V dc supplies are required to power the op amp.

u1

3 [~ 5
= gt L0052+ R2
" i O A A A
Rt 0 out> WA
2 P a7k
,——"-,-"u“-,— ¥ - 308+
AT pazar ‘_I
Vs 47y
N v
) DC=-15 (7
=0 |
)

J-
B FIGURE 6.32 The inverting amplifier of Fig. 6.3 drawn using a ;tA741 op amp.

Our previous analysis using an ideal op amp model predicted a gain
of —10. With an input of 5 sin 3t mV, this led to an output voltage of
—50 sin 3r mV. However, an implicit assumption in the analysis was
that any voltage input would be amplified by a factor of —10. Based on
practical considerations, we expect this to be true for small input volt-
ages, but the output will eventually saturate to a value comparable to
the corresponding power supply voltage.

We perform a dc sweep from —2 to 42 volts, as shown in Fig. 6.33;
this is a slightly larger range than the supply voltage divided by the
gain, so we expect our results to include the positive and negative
saturation regions.

Using the cursor tool on the simulation results shown in
Fig. 6.34a, the input-output characteristic of the amplifier is indeed
linear over a wide input range, corresponding approximately to
—1.45 < Vs < +1.45 V (Fig. 6.34b): This range is slightly less than
the range defined by dividing the positive and negative supply voltages
by the gain. Outside this range, the output of the op amp saturates, with
only a slight dependence on the input voltage. In the two saturation re-
gions, then, the circuit does not perform as a linear amplifier.

Increasing the number of cursor digits (Tools, Options, Number of
Cursor Digits) to 10, we find that at an input voltage of Vs = 1.0V, the

(Continued on next page)
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M FIGURE 6.34 (a) Output voltage of the inverting amplifer circuit, with the onset of saturation
identified with the cursor tool. (b) Close-up of the cursor window.

output voltage is —9.99548340, slightly less than the value of —10
predicted from the ideal op amp model, and slightly different from the
value of —9.999448 obtained in Example 6.6 using an analytical model.
Still, the results predicted by the PSpice tA741 model are within a few
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hundredths of a percent of either analytical model, demonstrating that
the ideal op amp model is indeed a remarkably accurate approximation
for modern operational amplifier integrated circuits.

PRACTICE .

6.7 Simulate the remaining op amp circuits described in this chapter,
and compare the results to those predicted using the ideal op amp model.

6.6 . COMPARATORS AND THE INSTRUMENTATION
AMPLIFIER

The Comparator

Every op amp circuit we have discussed up to now has featured an electri-
cal connection between the output pin and the inverting input pin. This is
known as closed-loop operation, and is used to provide negative feedback
as discussed previously. Closed loop is the preferred method of using an
op amp as an amplifier, as it serves to isolate the circuit performance from
variations in the open-loop gain that arise from changes in temperature or
manufacturing differences. There are a number of applications, however,
where it is advantageous to use an op amp in an open-loop configuration.
Devices intended for such applications are frequently referred to as
comparators, as they are designed slightly differently from regular op amps
in order to improve their speed in open-loop operation.

Figure 6.35a shows a simple comparator circuit where a 2.5 V refer-
ence voltage is connected to the noninverting input, and the voltage being
compared (vy,) is connected to the inverting input. Since the op amp has a
very large open-loop gain A (10° or greater, typically, as seen in Table 6.3),
it does not take a large voltage difference between the input terminals
to drive it into saturation. In fact, a differential input voltage as small as
the supply voltage divided by A is required—approximately £120 1V in the
case of the circuit in Fig. 6.35a and A = 10°. The distinctive output of
the comparator circuit is shown in Fig. 6.35b, where the response swings

Your (V)

%in

~a2py
L) 1.00 2.00 a.m

v (V)
(a) ()

M FIGURE 6.35 (a) An example comparator circuit with a 2.5 V reference voltage. (b) Graph of input-output characteristic.
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EXAMPLE 6.8
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between positive and negative saturation, with essentially no linear
“amplification” region. Thus, a positive 12 V output from the comparator
indicates that the input voltage is less than the reference voltage, and a
negative 12 V output indicates an input voltage greater than the reference.
Opposite behavior is obtained if we connect the reference voltage to the
inverting input instead.

Usignal

M FIGURE 6.36 One possible design for the required
circuit.

Design a circuit that provides a “logic 1’ 5 V output if a certain
voltage signal drops below 3 V, and zero volts otherwise.

Since we want the output of our comparator to swing between 0 and
5V, we will use an op amp with a single-ended +5 V supply, connected
as shown in Fig. 6.36. We connect a 43 V reference voltage to the
noninverting input, which may be provided by two 1.5 V batteries in
series, or a suitable Zener diode reference circuit. The input voltage
signal (designated vgjgna) is then connected to the inverting input. In
reality, the saturation voltage range of a comparator circuit will be
slightly less than that of the supply voltages, so that some adjustment
may be required in conjunction with simulation or testing.

PRACTICE .

6.8 Design a circuit that provides a 12 V output if a certain voltage
(Vsigna) exceeds 0V, and a —2 'V output otherwise.

Ans: One possible solution is shown in Fig. 6.37.

y

Usignal

M FIGURE 6.37 One possible solution to
Practice Problem 6.8.

The Instrumentation Amplifier

The basic comparator circuit acts on the voltage difference between the two
input terminals to the device, although it does not technically amplify sig-
nals as the output is not proportional to the input. The difference amplifier
of Fig. 6.10 also acts on the voltage difference between the inverting and
noninverting inputs, and as long as care is taken to avoid saturation, does
provide an output directly proportional to this difference. When dealing
with a very small input voltage, however, a better alternative is a device
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known as an instrumentation amplifier, which is actually three op amp
devices in a single package.

An example of the common instrumentation amplifier configuration is
shown in Fig. 6.38a, and its symbol is shown in Fig. 6.38b. Each input is fed
directly into a voltage follower stage, and the output of both voltage fol-
lowers is fed into a difference amplifier stage. It is particularly well suited
to applications where the input voltage signal is very small (for example, on
the order of millivolts), such as that produced by thermocouples or strain
gauges, and where a significant common-mode noise signal of several volts
may be present.

74 R¢
Z}()u‘
B NN . '\N\/—_L
I: Ry, R, =

(a) )
M FIGURE 6.38 (a) The basic instrumentation amplifier. () Commonly used symbol.

If components of the instrumentation amplifier are fabricated all on the
same silicon “chip,” then it is possible to obtain well-matched device char-
acteristics and to achieve precise ratios for the two sets of resistors. In order
to maximize the CMRR of the instrumentation amplifier, we expect
R4/R3 = R,/ Ry, so that equal amplification of common-mode components
of the input signals is obtained. To explore this further, we identify the volt-
age at the output of the top voltage follower as “v_,” and the voltage at the
output of the bottom voltage follower as “v;.” Assuming all three op amps
are ideal and naming the voltage at either input of the difference stage v,,
we may write the following nodal equations:

Uy — U Ux — Vout

=0 20
Ry + R, [20]
and
Uy — U4 Uy
— =0 21
R + R4 [21]
Solving Eq. [21] for v, we find that
U4
= 22
Ox 1 + R3/R4 [ ]

and upon substituting into Eq. [20], obtain an expression for voy in terms of
the input:

R 1+ R)/R R
4( + R,/ 1>+ 2, 23]

V, = — — — 0V
7 Ry \1 + Ry/R; R

From Eq. [23] it is clear that the general case allows amplification of
common-mode components to the two inputs. In the specific case where
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R4/ R3 = R/ Ry = K, however, Eq. [23] reduces to K(vy — v_) = Kvy, SO
that (asssuming ideal op amps) only the difference is amplified and the gain
is set by the resistor ratio. Since these resistors are internal to the instru-
mentation amplifier and not accessible to the user, devices such as the
ADG622 allow the gain to be set anywhere in the range of 1 to 1000 by con-
necting an external resistor between two pins (shown as R in Fig. 6.38b).

SUMMARY AND REVIEW

In this chapter we introduced a new circuit element—a three-terminal
device—called the operational amplifier (or more commonly, the op amp).
In many circuit analysis situations it is approximated as an ideal device,
which leads to two rules that are applied. We studied several op amp circuits
in detail, including the inverting amplifier with gain R/ R, the noninverting
amplifer with gain 1 + R¢/R;, and the summing amplifier. We were also
introduced to the voltage follower and the difference amplifier, although the
analysis of these two circuits was left for the reader. The concept of cas-
caded stages was found to be particularly useful, as it allows a design to be
broken down into distinct units, each of which has a specific function. We
took a slight detour and introduced briefly a two-terminal nonlinear circuit
element, the Zener diode, as it provides a practical and straightforward volt-
age reference. We then used this element to contruct practical voltage and
current sources using op amps, removing some of the mystery as to their
origins.

Modern op amps have nearly ideal characteristics, as we found when we
opted for a more detailed model based on a dependent source. Still, nonide-
alities are encountered occasionally, so we considered the role of negative
feedback in reducing the effect of temperature and manufacturing-related
variations in various parameters, common-mode rejection, and saturation.
One of the most interesting nonideal characteristics of any op amp is slew
rate. By simulating three different cases, we were able to see how the out-
put voltage can struggle to follow the form of the input voltage signal once
its frequency becomes high enough. We concluded the chapter with two
special cases: the comparator, which intentionally makes use of our ability
to saturate a practical (nonideal) op amp, and the instrumentation amplifier,
which is routinely used to amplify very small voltages.

This is a good point to pause, take a breath, and recap some of the key
points. At the same time, we will highlight relevant examples as an aid to
the reader.

Q There are two fundamental rules that must be applied when analyzing
ideal op amp circuits:

1. No current ever flows into either input terminal. (Example 6.1)
2. No voltage ever exists between the input terminals.

Q Op amp circuits are usually analyzed for an output voltage in terms of
some input quantity or quantities. (Examples 6.1, 6.2)

O Nodal analysis is typically the best choice in analyzing op amp
circuits, and it is usually better to begin at the input, and work toward
the output. (Examples 6.1, 6.2)
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Q The output current of an op amp cannot be assumed; it must be
found after the output voltage has been determined independently.
(Example 6.2)

Q The gain of an inverting op amp circuit is given by the equation
Ry

Vout = — 5 Vin

R

Q The gain of a noninverting op amp circuit is given by the equation

Ry
out — 1 = in
Vout ( + R1>v
(Example 6.1)

QO Cascaded stages may be analyzed one stage at a time to relate the
output to the input. (Example 6.3)

Q Zener diodes provide a convenient voltage reference. They are not
symmetric, however, meaning the two terminals are not
interchangeable. (Example 6.4)

@ Op amps can be used to construct current sources which are
independent of the load resistance over a specific current range.
(Example 6.5)

Q Aresistor is almost always connected from the output pin of an op amp
to its inverting input pin, which incorporates negative feedback into
the circuit for increased stability.

Q The ideal op amp model is based on the approximation of infinite
open-loop gain A, infinite input resistance R;, and zero output
resistance R,. (Example 6.6)

Q In practice, the output voltage range of an op amp is limited by the
supply voltages used to power the device. (Example 6.7)

0 Comparators are op amps designed to be driven into saturation. These
circuits operate in open loop, and hence have no external feedback
resistor. (Example 6.8)

READING FURTHER

Two very readable books which deal with a variety of op amp applications are:

R. Mancini (ed.), Op Amps Are For Everyone, 2nd ed. Amsterdam: Newnes,
2003. Also available on the Texas Instruments website (Www.ti.com).

W. G. Jung, Op Amp Cookbook, 3rd ed. Upper Saddle River, N.J.: Prentice-
Hall, 1997.

Characteristics of Zener and other types of diodes are covered in Chapter 1 of
W. H. Hayt, Jr., and G. W. Neudeck, Electronic Circuit Analysis and
Design, 2nd ed. New York: Wiley, 1995.

One of the first reports of the implementation of an “operational amplifier” can

be found in

J. R. Ragazzini, R. M. Randall, and F. A. Russell, “Analysis of problems
in dynamics by electronic circuits,” Proceedings of the IRE 35(5), 1947,
pp. 444-452.
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And an early applications guide for the op amp can be found on the Analog
Devices, Inc. website (Wwww.analog.com):

George A. Philbrick Researches, Inc., Applications Manual for Computing
Amplifiers for Modelling, Measuring, Manipulating & Much Else.
Norwood, Mass.: Analog Devices, 1998.

EXERCISES
6.2 The Ideal Op Amp

1. For the op amp circuit shown in Fig. 6.39, calculate vqy if (@) R} = Ry =
100 2 and v, =5 V; (b) R, = 200R; and vy, = 1 V; (¢) R} = 4.7 k2,
R, = 47k, and v;, = 20 sin 5¢ V.

Ry

Yout

B FIGURE 6.39

2. Determine the power dissipated by a 100 €2 resistor connected between ground
R, and the output pin of the op amp of Fig. 6.39 if vj, =4 V and (a) R| = 2Ry;
(b) Ry =1k and R, =22kQ; (¢) Ry =100 2 and R, = 101 Q.
} Yout 3. Connect a 1 €2 resistor between ground and the output terminal of the op amp
of Fig. 6.39, and sketch vy (?) if (@) Ry = R, = 10 2 and v, = 5 sin 107 V;
R (b) Ry = 0.2R, = 1k, and vy, = 5 cos 10 V; (¢) Ry = 10 2, R, = 200 €2, and
Yin o L Vip = 1.5+ 5S¢~ V.
4. For the circuit of Fig. 6.40, calculate vy if (a) Ry = Ry, = 100 k2, R, = 100 €,
= = and v;, =5 V; (b) R = 0.1Ry, R, = 00, and v;, =2 V; (¢) R = 1 kQ, R, =0,
B FIGURE 6.40 Ry =1Q,and vy, =43.5V.

5. (a) Design a circuit which converts a voltage v(f) =9 cos 5¢ V into 9 sin 5¢ V.
(b) Verity your design by analyzing the final circuit.

6. A certain load resistor requires a constant 5 V dc supply. Unfortunately, its
resistance value changes with temperature. Design a circuit which supplies
the requisite voltage if only 9 V batteries and standard 10% tolerance resistor
values are available.

7. For the circuit of Fig. 6.40, R} = R, = 50 Q2. Calculate the value of R, required
to deliver 5 W to Ry if Vi, equals (a) 5 V; (b) 1.5 V. (¢) Repeat parts (a) and (b)
4 if Ry is reduced to 22 2.
8. Calculate vy, as labeled in the schematic of Fig. 6.41 if (a) ij, = 1 mA, R, =
= = = 2.2k, and R3 = 1 k2; (b) ijn=2A, R, = 1.1 ©, and R3 = 8.5 Q. (c) For each
case, state whether the circuit is wired as a noninverting or an inverting ampli-
B FIGURE 6.41 fier. Explain your reasoning.

Vout

9. (a) Design a circuit using only a single op amp which adds two voltages v,
and v, and provides an output voltage twice their sum (i.e., Vo = 2v; + 2v7).
(b) Verity your design by analyzing the final circuit.

? 10. (a) Design a circuit that provides a current i which is equal in magnitude to
the sum of three input voltages vy, v,, and v3. (Compare volts to amperes.)
(b) Verity your design by analyzing the final circuit.
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# 11. (a) Design a circuit that provides a voltage v, Which is equal to the difference
between two voltages v, and v; (i.e., Voy = V2 — V1), if you have only the
following resistors from which to choose: two 1.5 k€2 resistors, four 6 k2
resistors, or three 500 €2 resistors. (b) Verify your design by analyzing the final
circuit.

12. Analyze the circuit of Fig. 6.42 and determine a value for V;, which is refer-
enced to ground.

850 Q)

B FIGURE 6.42

13. Derive an expression for v,y as a function of v; and v, for the circuit repre-
sented in Fig. 6.43.

Ry

Yout

B FIGURE 6.43

14. Explain what is wrong with each diagram in Fig. 6.44 if the two op amps are
known to be perfectly ideal.

1kQ
! +
12
1 mA out Y 5V e 10 kQ Yout
(b)

(@)
B FIGURE 6.44

15. For the circuit depicted in Fig. 6.45, calculate vy if Iy = 2 mA, Ry = 4.7 k2,
Ry =1k, and Ry = 500 Q.

16. Consider the amplifier circuit shown in Fig. 6.45. What value of R, will yield
Vour = 2 V when I; = 10 mA and Ry = 2Ry = 500 Q?

M FIGURE 6.45
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17. With respect to the circuit shown in Fig. 6.46, calculate v, if v, equals
(a) 2 cos 100t mV; (b) 2 sin(4t + 19°) V.

3kQ

100

v
out
+ +

2 1 kQ Uy 1073, 1kQ

L

B FIGURE 6.46

6.3 Cascaded Stages
18. Calculate v,y as labeled in the circuit of Fig. 6.47 if R, = 1 kQ.

5Q 2kQ

B FIGURE 6.47

19. For the circuit of Fig. 6.47, determine the value of R, that will result in a value
of voy = 10 V.

20. Referring to Fig. 6.48, sketch v,y as a function of (a) vi, over the range of
=2V < vy <42V, if Ry =2kQ; (b) Ry over the range of 1 k2 < Ry < 10 k€2,
if v;, = 300 mV.

15Q 5kQ

B FIGURE 6.48

21. Obtain an expression for v, as labeled in the circuit of Fig. 6.49 if v; equals
(a@)0V; (b)1V;(c) —5V;(d)2sin 100z V.

1.5 kQ 5kQ

500 2
5kQ

Yout

! 5kQ

B FIGURE 6.49
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22.The 1.5 V source of Fig. 6.49 is disconnected, and the output of the circuit
shown in Fig. 6.48 is connected to the left-hand terminal of the 500 €2 resistor
instead. Calculate vy if R4 =2 kQ and (@) vi, =2V, v1 =1V, (b)) vji, =1,
v=0;)v=1V,uyy=—1V.

23. For the circuit shown in Fig. 6.50, compute voy if (@) vi = 2v; =0.5v3 =2.2V
ande =R2=R3 = SOkQ; (b) ] =0, V) = —SV, U3 =9V, ande =0.5R2=

0.4R; = 100 k<2.
200 kQ
R,
I\/\/\/ ’ o - —O Vout
R, +
Ry

B FIGURE 6.50

# 24. (a) Design a circuit which will add the voltages produced by three separate
pressure sensors, each in the range of 0 < vgepsor < 5 V, and produce a positive
voltage vy linearly correlated to the voltage sum such that ve, = 0 when all
three voltages are zero, and vy = 2 V when all three voltages are at their max-
imum. (b) Verify your design by analyzing the final circuit.

. (a) Design a circuit which produces an output voltage v, proportional to the
difference of two positive voltages v; and v, such that v, = 0 when both volt-
ages are equal, and voy = 10 V when vy — v, = 1 V. (b) Verify your design by
analyzing the final circuit.

. (a) Three pressure-sensitive sensors are used to double-check the weight read-
ings obtained from the suspension systems of a long-range jet airplane. Each
sensor is calibrated such that 10 'V corresponds to 1 kg. Design a circuit
which adds the three voltage signals to produce an output voltage calibrated
such that 10 V corresponds to 400,000 kg, the maximum takeoff weight of the
aircraft. (b) Verify your design by analyzing the final circuit.

. (a) The oxygen supply to a particular bathysphere consists of four separate
tanks, each equipped with a pressure sensor capable of measuring between
0 (corresponding to O V output) and 500 bar (corresponding to 5 V output).
Design a circuit which produces a voltage proportional to the total pressure in
all tanks, such that 1.5 V corresponds to 0 bar and 3 V corresponds to 2000 bar.
(b) Verity your design by analyzing the final circuit.

28. For the circuit shown in Fig. 6.51, let v;, = 8 V, and select values for Ry, R,
and Rj3 to ensure an output voltage vy = 4 V.

Ry 200 kQ

50 kQ
} —O Yout

() Ry

B FIGURE 6.51
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29. For the circuit of Fig. 6.52, derive an expression for vy in terms of vi,.

M FIGURE 6.52

6.4 Circuits for Voltage and Current Sources

@ 30. Construct a circuit based on the 1N4740 diode which provides a reference volt-
age of 10 V if only 9 V batteries are available. Note that the breakdown voltage
of this diode is equal to 10 V at a current of 25 mA.

# 31. Employ a 1N4733 Zener diode to construct a circuit which provides a 4 V ref-
erence voltage to a 1 k€2 load, if only 9 V batteries are available as sources.
Note that the Zener breakdown voltage of this diode is 5.1 V at a current of
76 mA.

g 32. (a) Design a circuit which provides a 5 V dc reference voltage to an unknown
(nonzero resistance) load, if only a 9 V battery is available as a supply.

(b) Verify your design with an appropriate simulation. As part of this, deter-

mine the acceptable range for the load resistor.

33. A particular passive network can be represented by a Thévenin equivalent re-
g sistance between 10 2 and 125 Q2 depending on the operating temperature.
(a) Design a circuit which provides a constant 2.2 V to this network regardless
of temperature. (b) Verify your design with an appropriate simulation (resis-
tance can be varied from within a single simulation, as described in Chap. 8).

rated at Vpay equal to (@) 9 V; (b) 12 V. (c) Verify your solutions with appropri-

g 34. Calculate the voltage V| as labeled in the circuit of Fig. 6.53 if the battery is
ate simulations, commenting on the possible origin of any discrepancies.

1.1kQ
890 O
AA%AY -
V3
.
* 400 O
Viatt i IN750
B FIGURE 6.53

35. (a) Design a current source based on the 1N750 diode which is capable of
g providing a dc current of 750 A to aload Ry, such that 1 k2 < R < 50 k€.
(b) Verity your design with an appropriate simulation (note that resistance can
it be varied within a single simulation, as described in Chap. 8).

36. (a) Design a current source able to provide a dc current of 50 mA to an
g unspecified load. Use a 1N4733 diode (V,, = 5.1 V at 76 mA). (b) Use an
appropriate simulation to determine the permissible range of load resistance
for your design.
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37. (a) Design a current source able to provide a dc current of 10 mA to an unspec-
ified load. Use a 1N4747 diode (V},, = 20 V at 12.5 mA). (b) Use an appropri-
ate simulation to determine the permissible range of load resistance for your
design.

38. The circuit depicted in Fig. 6.54 is known as a Howland current source. Derive
expressions for vy, and Iy, respectively as a function of V| and V,.

39. For the circuit depicted in Fig. 6.54, known as a Howland current source, set
V, =0, R; = R3, and R, = Ry; then solve for the current /;, when Ry = 2R, =
1 k2 and R, = 100 Q2.

6.5 Practical Considerations

40. (a) Employ the parameters listed in Table 6.3 for the ;tA741 op amp to analyze
the circuit of Fig. 6.55 and compute a value for v,y (b) Compare your result to
what is predicted using the ideal op amp model.

1.4kQ

} O I/()llt

250 Q

450 mV e

M FIGURE 6.55

4

—

. (a) Employ the parameters listed in Table 6.3 for the ;tA741 op amp to analyze
the circuit of Fig. 6.10if R = 1.5k, vy =2V, and v, = 5 V. (b) Compare
your solution to what is predicted using the ideal op amp model.

42. Define the following terms, and explain when and how each can impact the
performance of an op amp circuit: (a) common-mode rejection ratio; (b) slew
rate; (c¢) saturation; (d) feedback.

(@] 43. For the circuit of Fig. 6.56, replace the 470 Q2 resistor with a short circuit, and
= compute v,y using (a) the ideal op amp model; (b) the parameters listed in
Table 6.3 for the A741 op amp; (c) an appropriate PSpice simulation.
(d) Compare the values obtained in parts (a) to (¢) and comment on the possi-
ble origin of any discrepancies.

44.1f the circuit of Fig. 6.55 is analyzed using the detailed model of an op amp
(as opposed to the ideal op amp model), calculate the value of open-loop gain
A required to achieve a closed-loop gain within 2% of its ideal value.

45. Replace the 2 V source in Fig. 6.56 with a sinusoidal voltage source having a
g magnitude of 3 V and radian frequency w = 2xf. (a) Which device, a nA741
op amp or an LF411 op amp, will track the source frequency better over the
range 1 Hz < f < 10 MHz? Explain. (b) Compare the frequency performance
of the circuit over the range 1 Hz < f < 10 MHz using appropriate PSpice
simulations, and compare the results to your prediction in part (a).

46. (a) For the circuit of Fig. 6.56, if the op amp (assume LF411) is powered by
g matched 9 V supplies, estimate the maximum value to which the 470 <2 resis-
tor can be increased before saturation effects become apparent. (b) Verify your
prediction with an appropriate simulation.

47. For the circuit of Fig. 6.55, calculate the differential input voltage and the
input bias current if the op amp is a(n) (a) ©A741; (b) LF411; (c) AD549K;
(d) OPA690.

48. Calculate the common-mode gain for each device listed in Table 6.3. Express
your answer in units of V/V, not dB.

@

R, R,
V2 o—A\VN—

Z}OU]

Vi o—AAN—

Ry Ry

R, i/L
M FIGURE 6.54
470 Q)

O Vout

M FIGURE 6.56
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6.6 Comparators and the Instrumentation Amplifier

# 49. Human skin, especially when damp, is a reasonable conductor of electricity.
If we assume a resistance of less than 10 M2 for a fingertip pressed

across two terminals, design a circuit which provides a +1 V output if this
nonmechanical switch is “closed” and —1 V if it is “open.”

50. Design a circuit which provides an output voltage v, based on the behavior of
another voltage viy, such that

S +25V vin > 1V
out = 12V otherwise

Vref
Yactive 51. For the instrumentation amplifier shown in Fig. 6.38a, assume that the three
internal op amps are ideal, and determine the CMRR of the circuit if

(a) Ry = R3 and R, = Ry; (b) all four resistors have different values.

B FIGURE 6.57 52. For the circuit depicted in Fig. 6.57, sketch the expected output voltage vy
as a function of vVyeiive for =5 V < vciive < +5 V, if veris equal to (a) =3 V;
(b) +3 V.

5V . For the circuit depicted in Fig. 6.58, (a) sketch the expected output voltage

Voue as a function of vy for =5V < vy < 45V, if vy = 42 V; (b) sketch the
Ul C’%
)

expected output voltage vy as a function of v, for =5V < vy < 45V, if
B FIGURE 6.58

vy =+4+2V.

. For the circuit depicted in Fig. 6.59, sketch the expected output voltage vou
as a function of vyctive, if =2 V < vyciive < +2 V. Verity your solution using
a wA741 (although it is slow compared to op amps designed specifically
for use as comparators, its PSpice model works well, and as this is a dc appli-
cation speed is not an issue). Submit a properly labeled schematic with your
results.

|

Vactive

B FIGURE 6.59

. In digital logic applications, a +5 V signal represents a logic “1” state, and a
0 V signal represents a logic “0” state. In order to process real-world informa-
tion using a digital computer, some type of interface is required, which typi-
cally includes an analog-to-digital (A/D) converter—a device that converts
analog signals into digital signals. Design a circuit that acts as a simple 1-bit
A/D, with any signal less than 1.5 V resulting in a logic “0” and any signal
greater than 1.5 V resulting in a logic “1.”

. A common application for instrumentation amplifiers is to measure
voltages in resistive strain gauge circuits. These strain sensors work by
exploiting the changes in resistance that result from geometric distortions, as
in Eq. [6] of Chap. 2. They are often part of a bridge circuit, as shown in
Fig. 6.60a, where the strain gauge is identified as R¢. (a) Show that

Vour = Vin [ﬁ - ﬁ;ﬂge]. (b) Verify that Vo, = 0 when the three

fixed-value resistors Ry, R», and Rj are all chosen to be equal to the unstrained
gauge resistance Rgayge. (¢) For the intended application, the gauge selected
has an unstrained resistance of 5 k2, and a maximum resistance increase of
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50 m€2 is expected. Only 12 V supplies are available. Using the instrumenta-
tion amplifier of Fig. 6.60b, design a circuit that will provide a voltage signal
of +1 V when the strain gauge is at its maximum loading.

ADG622 Specifications

Amplifier gain G can be varied from
2 to 1000 by connecting a resistor
between pins 1 and 8 with a value

50.5
calculated by R = re k.

Rg II ° EI Rg
(*) N[22 7] +vs
Viet \ = + Vou - +IN Iz + EI OUTPUT

R R, ~Vs[4| Ape22  [5]REF

(a) (b)
B FIGURE 6.60 © Analog Devices.

Chapter-Integrating Exercises

# 57.(a) You’re given an electronic switch which requires 5 V at 1 mA in order to
close; it is open with no voltage present at its input. If the only microphone
available produces a peak voltage of 250 mV, design a circuit which will ener-
gize the switch when someone speaks into the microphone. Note that the audio
level of a general voice may not correspond to the peak voltage of the micro-
phone. (b) Discuss any issues that may need to be addressed if your circuit
were to be implemented.

. You’ve formed a band, despite advice to the contrary. Actually, the band is
pretty good except for the fact that the lead singer (who owns the drum set, the
microphones, and the garage where you practice) is a bit tone-deaf. Design a
circuit that takes the output from each of the five microphones your band uses,
and adds the voltages to create a single voltage signal which is fed to the am-
plifer. Except not all voltages should be equally amplified. One microphone
output should be attenuated such that its peak voltage is 10% of any other
microphone’s peak voltage.

. Cadmium sulfide (CdS) is commonly used to fabricate resistors whose value
depends on the intensity of light shining on the surface. In Fig. 6.61 a CdS
“photocell” is used as the feedback resistor Ry. In total darkness, it has a
resistance of 100 k€2, and a resistance of 10 k€2 under a light intensity of
6 candela. R, represents a circuit that is activated when a voltage of 1.5 V
or less is applied to its terminals. Choose R; and V so that the circuit
represented by R, is activated by a light of 2 candela or brighter.

B FIGURE 6.61
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i 60. A fountain outside a certain office building is designed to reach a maximum
height of 5 meters at a flow rate of 100 1/s. A variable position valve in line
with the water supply to the fountain can be controlled electrically, such that
0V applied results in the valve being fully open, and 5 V results in the valve
being closed. In adverse wind conditions the maximum height of the fountain
needs to be adjusted; if the wind velocity exceeds 50 km/h, the height cannot
exceed 2 meters. A wind velocity sensor is available which provides a voltage
calibrated such that 1 V corresponds to a wind velocity of 25 km/h. Design a
circuit which uses the velocity sensor to control the fountain according to
specifications.

61. For the circuit of Fig. 6.43, let all resistor values equal 5 k2. Sketch vy, as a
function of time if (a) v; = 5 sin 5¢ V and v, = 5 cos 5¢ V; (b) v; = 4e~ "V and
v, =5¢"2V;(c)vy=2Vand v, =e ' V.
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Capacitors and

KEY CONCEPTS

The Voltage-Current

INTRODUCTION Relationship of an Ideal
In this chapter we introduce two new passive circuit elements, the Capacitor

capacitor and the inductor, each of which has the ability to both ®

store and deliver finite amounts of energy. They differ from ideal The Current-Voltage
sources in this respect, since they cannot sustain a finite average Relationship of an Ideal

power flow over an infinite time interval. Although they are classed Inductor

as linear elements, the current-voltage relationships for these new L4
Calculating Energy Stored in

elements are time-dependent, leading to many interesting circuits. .
Capacitors and Inductors

The range of capacitance and inductance values we might encounter

can be huge, so that at times they may dominate circuit behavior, * )

. . L . . Response of Capacitors and
and at other times be essentially insignificant. Such issues continue . .

. o o ] Inductors to Time-Varying
to be relevant in modern circuit applications, particularly as com- Waveforms
puter and communication systems move to increasingly higher ®
operating frequencies and component densities. Series and Parallel
Combinations

7.1 _ THE CAPACITOR °
Ideal Capacitor Model Op Amp Circuits with
Previously, we termed independent and dependent sources active Capacitors
elements, and the linear resistor a passive element, although our de- @
finitions of active and passive are still slightly fuzzy and need to be PSpice Modeling of Energy
brought into sharper focus. We now define an active element as an Storage Elements

element that is capable of furnishing an average power greater than
zero to some external device, where the average is taken over an
infinite time interval. Ideal sources are active elements, and the
operational amplifier is also an active device. A passive element,
however, is defined as an element that cannot supply an average
power that is greater than zero over an infinite time interval. The
resistor falls into this category; the energy it receives is usually
transformed into heat, and it never supplies energy.
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B FIGURE 7.1 Electrical symbol and current-voltage
conventions for a capacitor.

CHAPTER 7 CAPACITORS AND INDUCTORS

We now introduce a new passive circuit element, the capacitor. We
define capacitance C by the voltage-current relationship

i:CE [1]

where v and i satisfy the conventions for a passive element, as shown in
Fig. 7.1. We should bear in mind that v and i are functions of time; if
needed, we can emphasize this fact by writing v(¢) and i(¢) instead. From
Eq. [1], we may determine the unit of capacitance as an ampere-second per
volt, or coulomb per volt. We will now define the farad' (F) as one coulomb
per volt, and use this as our unit of capacitance.

The ideal capacitor defined by Eq. [1] is only a mathematical model of a
real device. A capacitor consists of two conducting surfaces on which
charge may be stored, separated by a thin insulating layer that has a very
large resistance. If we assume that this resistance is sufficiently large that it
may be considered infinite, then equal and opposite charges placed on the
capacitor “plates” can never recombine, at least by any path within the ele-
ment. The construction of the physical device is suggested by the circuit
symbol shown in Fig. 7.1.

Let us visualize some external device connected to this capacitor and
causing a positive current to flow into one plate of the capacitor and out of
the other plate. Equal currents are entering and leaving the two terminals,
and this is no more than we expect for any circuit element. Now let us ex-
amine the interior of the capacitor. The positive current entering one plate
represents positive charge moving toward that plate through its terminal
lead; this charge cannot pass through the interior of the capacitor, and it
therefore accumulates on the plate. As a matter of fact, the current and the
increasing charge are related by the familiar equation

. dq
1= —
dt

Now let us consider this plate as an overgrown node and apply Kirchhoff’s
current law. It apparently does not hold; current is approaching the plate
from the external circuit, but it is not flowing out of the plate into the
“internal circuit.” This dilemma bothered a famous Scottish scientist, James
Clerk Maxwell, more than a century ago. The unified electromagnetic the-
ory that he subsequently developed hypothesizes a “displacement current”
that is present wherever an electric field or a voltage is varying with time.
The displacement current flowing internally between the capacitor plates is
exactly equal to the conduction current flowing in the capacitor leads;
Kirchhoff’s current law is therefore satisfied if we include both conduction
and displacement currents. However, circuit analysis is not concerned with
this internal displacement current, and since it is fortunately equal to the
conduction current, we may consider Maxwell’s hypothesis as relating the
conduction current to the changing voltage across the capacitor.

A capacitor constructed of two parallel conducting plates of area A,
separated by a distance d, has a capacitance C = ¢ A /d, where ¢ s the permit-
tivity, a constant of the insulating material between the plates; this assumes

(1) Named in honor of Michael Faraday.



SECTION 7.1 THE CAPACITOR

'y

“mum‘u T o

(a) &)

@ 219

(c)

B FIGURE 7.2 Several examples of commercially available capacitors. (a) Left to right: 270 pF ceramic, 20 wF tantalum, 15 nF polyester, 150 nF polyester.
(b) Left: 2000 1«F 40 VDC rated electrolytic, 25,000 F 35 VDC rated electrolytic. (¢) Clockwise from smallest: 100 1F 63 VDC rated electrolytic, 2200 F 50 VDC
rated electrolytic, 55 F 2.5 VDC rated electrolytic, and 4800 . F 50 VDC rated electrolytic. Note that generally speaking larger capacitance values require larger packages,

with one notable exception above. What was the tradeoff in that case?

the linear dimensions of the conducting plates are all very much greater
than d. For air or vacuum, ¢ = gy = 8.854 pF/m. Most capacitors employ a
thin dielectric layer with a larger permittivity than air in order to minimize the
device size. Examples of various types of commercially available capacitors
are shown in Fig. 7.2, although we should remember that any two conducting
surfaces not in direct contact with each other may be characterized by a
nonzero (although probably small) capacitance. We should also note that a
capacitance of several hundred microfarads (uF) is considered “large.”

Several important characteristics of our new mathematical model can be
discovered from the defining equation, Eq. [1]. A constant voltage across a
capacitor results in zero current passing through it; a capacitor is thus an
“open circuit to dc.” This fact is pictorially represented by the capacitor
symbol. It is also apparent that a sudden jump in the voltage requires an in-
finite current. Since this is physically impossible, we will therefore prohibit
the voltage across a capacitor to change in zero time.

<
<

EXAMPLE 7.1

Determine the current i flowing through the capacitor of Fig. 7.1
for the two voltage waveforms of Fig. 7.3if C =2 F.

v (V) v (V)

8 6

Z B 4

5

0 2

3 -

3 0 - - t(s)
T =

t
T 01 2 3 4 s © a4
) -6 —
(a) (b)

M FIGURE 7.3 (a) A dc voltage applied to the terminals of the capacitor. (b) A sinusoidal voltage
waveform applied to the capacitor terminals.

(Continued on next page)
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The current i is related to the voltage v across the capacitor by Eq. [1]:

i=C=—

dt

For the voltage waveform depicted in Fig. 7.3a, dv/dt = 0, so
i = 0; the result is plotted in Fig. 7.4a. For the case of the sinusoidal
waveform of Fig. 7.3b, we expect a cosine current waveform to flow in
response, having the same frequency and twice the magnitude (since

C = 2 F). The result is plotted in Fig. 7.4b.
i(A) i(A)
2~ 10
1.5
1= 5
O3 b b ol
_0.(5)7—1 0 1 2 3 4 5 o o2 (345 '@
= =S
-1.5—
2 -10 —
(@) )

M FIGURE 7.4 (a) /= 0as the voltage applied is dc. (b) The current has a cosine form in response
to a sine wave voltage.

PRACTICE 5

7.1 Determine the current flowing through a 5 mF capacitor in
response to a voltage v equal to: (a) —20 V; (b) 2¢™>" V.

Ans: 0 A; —50¢ > mA.

Integral Voltage-Current Relationships

The capacitor voltage may be expressed in terms of the current by integrat-
ing Eq. [1]. We first obtain

1
= Ei(t)dz

dv

and then integrate? between the times fy and ¢ and between the correspond-
ing voltages v(fy) and v(t):

1 t
w0 =% / i) dr' + v(ty) 2]

to

Equation [2] may also be written as an indefinite integral plus a constant
of integration:

1
v(t):E/idt+k

(2) Note that we are employing the mathematically correct procedure of defining a dummy variable t' in
situations where the integration variable ¢ is also a limit.
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Finally, in many situations we will find that v(#y), the voltage initially
across the capacitor, is not able to be discerned. In such instances it is
mathematically convenient to set 7y = —oo and v(—o00) = 0, so that

1 t
1) = — i dt’
v(1) C/,ool

Since the integral of the current over any time interval is the correspond-
ing charge accumulated on the capacitor plate into which the current is
flowing, we may also define capacitance as

q(t) = Cu(r)

where ¢(¢) and v(¢) represent instantaneous values of the charge on either
plate and the voltage between the plates, respectively.

Find the capacitor voltage that is associated with the current shown
graphically in Fig. 7.5a. The value of the capacitance is 5 uF.

v(1) (V)
i(f) (mA)

20

t (ms) t (ms)

(a) ()
M FIGURE 7.5 (a) The current waveform applied to a 5 F capacitor. (b) The resultant voltage
waveform obtained by graphical integration.

Equation [2] is the appropriate expression here:

t
v(t) = l/ i(t") dt’ + v(1p)
C Ji
but now it needs to be interpreted graphically. To do this, we note that
the difference in voltage between times ¢ and 7y is proportional to the
area under the current curve defined by the same two times. The con-
stant of proportionality is 1/C.

From Fig. 7.5a, we see three separate intervals: r < 0,0 <t <2 ms,
and ¢ > 2 ms. Defining the first interval more specifically as between
—oo and 0, so that 7y = —o0o, we note two things, both a consequence
of the fact that the current has always been zero up to ¢ = 0: First,

v(ty) = v(—o0) =0

Second, the integral of the current between #y) = —oo and 0 is simply
zero, since i = 0 in that interval. Thus,

v() =0+ v(—00) —00<t=<0
or
v() =0 t<0

(Continued on next page)

EXAMPLE 7.2
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v() (V)

2

-1 0 1

M FIGURE 7.6

t (ms)

CHAPTER 7 CAPACITORS AND INDUCTORS

If we now consider the time interval represented by the rectangular
pulse, we obtain

1 t
H=——— [ 20x 10734t 0
v() 5x10—6/0 x +v0)

Since v(0) = 0,
v(t) = 4000z 0<t<2ms

For the semi-infinite interval following the pulse, the integral of i (¢)
is once again zero, so that

v(t) =8 t > 2 ms

The results are expressed much more simply in a sketch than by
these analytical expressions, as shown in Fig. 7.5b.

PRACTICE _

7.2 Determine the current through a 100 pF capacitor if its voltage as a
function of time is given by Fig. 7.6.

Ans: 0A, —00 <t <1ms;200nA, Ims <7 <2ms;0A, > 2 ms.

Energy Storage

To determine the energy stored in a capacitor, we begin with the power
delivered to it:

—C dv
=vi =Cv—
P dt

The change in energy stored in its electric field is simply
t tdu v(t) 1
/ pdt = C/ v— dt’ = cf vdv' = -C{[vO] = [v(t)]*}
fo fo dr’ v(to) 2

and thus

we(t) — welty) = 2C {v)* = [v(t0)1*} 3]

where the stored energy is wc¢ (%) in joules (J) and the voltage at £ is v(#).
If we select a zero-energy reference at fy, implying that the capacitor volt-
age is also zero at that instant, then

we(t) = 3Cv? (4]

Let us consider a simple numerical example. As sketched in Fig. 7.7, a
sinusoidal voltage source is in parallel with a 1 M resistor and a 20 uF
capacitor. The parallel resistor may be assumed to represent the finite resis-
tance of the dielectric between the plates of the physical capacitor (an ideal
capacitor has infinite resistance).
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EXAMPLE 7.3

Find the maximum energy stored in the capacitor of Fig. 7.7 and
the energy dissipated in the resistor over the interval 0 < ¢ < 0.5 s.

Identify the goal of the problem.

The energy stored in the capacitor varies with time; we are asked for l’R l’c

the maximum value over a spec1ﬁc t'1me interval. Wg are also ask.ed' to 100 sin 20t V 3) R §1 MO 2 20 uF
find the fotal amount of energy dissipated by the resistor over this in-

terval. These are actually two completely different questions. .

Collect the known information. M FIGURE 7.7 Asinusoidal voltage source is applied

to a parallel RC network. The 1 MS2 resistor might
represent the finite resistance of the “real” capacitor's
dielectric layer.

The only source of energy in the circuit is the independent voltage
source, which has a value of 100 sin 2wr¢ V. We are only interested in
the time interval of 0 < ¢# < 0.5 s. The circuit is properly labeled.

Devise a plan.
Determine the energy in the capacitor by evaluating the voltage. To

find the energy dissipated in the resistor during the same time interval,

integrate the dissipated power, pr = i% - R.

Construct an appropriate set of equations.
The energy stored in the capacitor is simply

we(t) = $Cv? = 0.1sin* 2t ]

We obtain an expression for the power dissipated by the resistor in
terms of the current i:
. v 4.
ip =— =10""sin2mt A
R
and so we(®) = 0.1 sin® 27t (J)

pr = i3R = (107*)(10°) sin’ 27t

0.10
so that the energy dissipated in the resistor between 0 and 0.5 s is 0.08
0.5 0.5 0.06
wg = /0 prdt = /0 107 %sin’ 2t dt - J o
g o g g g o o 0.02
Determine if additional information is required.
We have an expression for the energy stored in the capacitor; a sketch B £(s)
is shown in Fig. 7.8. The expression derived for the energy dissipated 0 01 02 03 04 05
by the resistor does not involve any unknown quantities, and so may B FIGURE 7.8 Asketch of the energy stored in the
also be readily evaluated. capacitor as a function of time.

Attempt a solution.

From our sketch of the expression for the energy stored in the capaci-
tor, we see that it increases from zero at = 0 to a maximum of

100 mJ at ¢t = ‘]—‘ s, and then decreases to zero in another % s. Thus,
we,,. = 100 mJ. Evaluating our integral expression for the energy
dissipated in the resistor, we find that wg = 2.5 mJ.

(Continued on next page)
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Verify the solution. Is it reasonable or expected?

We do not expect to calculate a negative stored energy, which is borne out
in our sketch. Further, since the maximum value of sin 277 is 1, the maxi-
mum energy expected anywhere would be (1/2)(20 x 107%)(100)? =
100 mlJ.

The resistor dissipated 2.5 mJ in the period of 0 to 500 ms,
although the capacitor stored a maximum of 100 mJ at one point
during that interval. What happened to the “other” 97.5 mJ? To
answer this, we compute the capacitor current

d
ic=20x1076 d—’; — 0.0047 cos 27t

and the current i; defined as flowing into the voltage source

Iy = —ic — IR

both of which are plotted in Fig. 7.9. We observe that the current flow-
ing through the resistor is a small fraction of the source current, not
entirely surprising as 1 M2 is a relatively large resistance value. As
current flows from the source, a small amount is diverted to the
resistor, with the rest flowing into the capacitor as it charges. After

t = 250 ms, the source current is seen to change sign; current is now
flowing from the capacitor back into the source. Most of the energy
stored in the capacitor is being returned to the ideal voltage source,
except for the small fraction dissipated in the resistor.

0.015 —
, = 0.10
0010 <
—0.08
0.005 — _
— \ <
< BR\— 006 £
=} =]
3 o004 B
~0.005 |- ~/ e
~0.010 |- —0.02
D5 N R N NN N R B B

0 005 0.1 0.15 02 025 03 035 04 045 0.50
t(s)
M FIGURE 7.9 Plot of the resistor, capacitor, and source currents during the interval of
0to 500 ms.

PRACTICE o

7.3 Calculate the energy stored in a 1000 wF capacitor at t = 50 us if
the voltage across it is 1.5 cos 10°¢ volts.

Ans: 90.52 wJ.
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Important Characteristics of an Ideal Capacitor

1. There is no current through a capacitor if the voltage across it is not
changing with time. A capacitor is therefore an open circuit to dc.

2. A finite amount of energy can be stored in a capacitor even if the
current through the capacitor is zero, such as when the voltage
across it is constant.

3. [Itis impossible to change the voltage across a capacitor by a finite
amount in zero time, as this requires an infinite current through the
capacitor. (A capacitor resists an abrupt change in the voltage
across it in a manner analogous to the way a spring resists an
abrupt change in its displacement.)

4. A capacitor never dissipates energy, but only stores it. Although
this is true for the mathematical model, it is not true for a physical
capacitor due to finite resistances associated with the dielectric as
well as the packaging.

7.2 . THE INDUCTOR
Ideal Inductor Model

In the early 1800s the Danish scientist Oersted showed that a current-
carrying conductor produced a magnetic field (compass needles were
affected in the presence of a wire when current was flowing). Shortly there-
after, Ampere made some careful measurements which demonstrated that
this magnetic field was linearly related to the current which produced it.
The next step occurred some 20 years later when the English experimental-
ist Michael Faraday and the American inventor Joseph Henry discovered
almost simultaneously? that a changing magnetic field could induce a volt-
age in a neighboring circuit. They showed that this voltage was proportional
to the time rate of change of the current producing the magnetic field. The
constant of proportionality is what we now call the inductance, symbolized
by L, and therefore

v=1L— [5]

where we must realize that v and i are both functions of time. When we wish
to emphasize this, we may do so by using the symbols v(¢) and i (7).

The circuit symbol for the inductor is shown in Fig. 7.10, and it should
be noted that the passive sign convention is used, just as it was with the re-
sistor and the capacitor. The unit in which inductance is measured is the
henry (H), and the defining equation shows that the henry is just a shorter
expression for a volt-second per ampere.

(3) Faraday won.

@ 225

il_
N/
o vy o
+ oy -

M FIGURE 7.10 Electrical symbol and current-voltage
conventions for an inductor.
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The inductor whose inductance is defined by Eq. [5] is a mathematical
model; it is an ideal element which we may use to approximate the behavior
of a real device. A physical inductor may be constructed by winding a
length of wire into a coil. This serves effectively to increase the current that
is causing the magnetic field and also to increase the “number” of neigh-
boring circuits into which Faraday’s voltage may be induced. The result of
this twofold effect is that the inductance of a coil is approximately propor-
tional to the square of the number of complete turns made by the conduc-
tor out of which it is formed. For example, an inductor or “coil” that has the
form of a long helix of very small pitch is found to have an inductance of
wN?A/s, where A is the cross-sectional area, s is the axial length of the he-
lix, N is the number of complete turns of wire, and  (mu) is a constant of
the material inside the helix, called the permeability. For free space (and
very closely for air), & = jo = 47 x 1077 H/m = 47 nH/cm. Several ex-
amples of commercially available inductors are shown in Fig. 7.11.

Let us now scrutinize Eq. [5] to determine some of the electrical charac-
teristics of the mathematical model. This equation shows that the voltage
across an inductor is proportional to the time rate of change of the current
through it. In particular, it shows that there is no voltage across an inductor
carrying a constant current, regardless of the magnitude of this current.
Accordingly, we may view an inductor as a short circuit to dc.

Another fact that can be obtained from Eq. [5] is that a sudden or dis-
continuous change in the current must be associated with an infinite voltage
across the inductor. In other words, if we wish to produce an abrupt change
in an inductor current, we must apply an infinite voltage. Although an
infinite-voltage forcing function might be amusing theoretically, it can
never be a part of the phenomena displayed by a real physical device. As we

B i R e

g
1] . |1

(a) (b)

M FIGURE 7.11 (a) Several different types of commercially available inductors, sometimes also referred to as “chokes.” Clockwise, starting from far left:
287 uH ferrite core toroidal inductor, 266 p«H ferrite core cylindrical inductor, 215 1H ferrite core inductor designed for VHF frequencies, 85 z«H iron
powder core toroidal inductor, 10 wH bobbin-style inductor, 100 1H axial lead inductor, and 7 H lossy-core inductor used for RF suppression. (b) An
11 H inductor, measuring 10 cm (tall) X 8 cm (wide) X 8 cm (deep).
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shall see shortly, an abrupt change in the inductor current also requires an
abrupt change in the energy stored in the inductor, and this sudden change
in energy requires infinite power at that instant; infinite power is again not a
part of the real physical world. In order to avoid infinite voltage and infinite
power, an inductor current must not be allowed to jump instantaneously
from one value to another.

If an attempt is made to open-circuit a physical inductor through which
a finite current is flowing, an arc may appear across the switch. This is use-
ful in the ignition system of some automobiles, where the current through
the spark coil is interrupted by the distributor and the arc appears across the
spark plug. Although this does not occur instantaneously, it happens in a
very short timespan, leading to the creation of a large voltage. The pres-
ence of a large voltage across a short distance equates to a very large
electric field; the stored energy is dissipated in ionizing the air in the path
of the arc.

Equation [5] may also be interpreted (and solved, if necessary) by
graphical methods, as seen in Example 7.4.

227

EXAMPLE 7.4

Given the waveform of the current in a 3 H inductor as shown in
Fig. 7.12a, determine the inductor voltage and sketch it.

i(t) (A) (1) (V)

1

‘ ‘ 1) — ‘ 1(s)

3
(@) (b)

M FIGURE 7.12 (a) The current waveform in a 3 H inductor. (b) The corresponding voltage
waveform, v = 3 di/dt.

Defining the voltage v and the current i to satisfy the passive sign con-
vention, we may obtain v from Fig. 7.12a using Eq. [5]:

v=3—
dt
Since the current is zero for t < —1 s, the voltage is zero in this inter-
val. The current then begins to increase at the linear rate of 1 A/s, and
thus a constant voltage of L di/dt = 3 V is produced. During the
following 2 s interval, the current is constant and the voltage is there-
fore zero. The final decrease of the current results in di /dt = —1 Als,
yielding v = —3 V. For ¢t > 3 s, i(¢) is a constant (zero), so that
v(t) = O for that interval. The complete voltage waveform is sketched
in Fig. 7.12b.
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PRACTICE -

7.4 The current through a 200 mH inductor is shown in Fig. 7.13.
Assume the passive sign convention, and find vy at f equal to
(a) 0; (b) 2 ms; (c) 6 ms.

i; (mA)

B FIGURE 7.13

Ans: 0.4 V;0.2V; —0.267 V.

Let us now investigate the effect of a more rapid rise and decay of the
current between the 0 and I A values.

EXAMPLE 7.5

Find the inductor voltage that results from applying the current
waveform shown in Fig. 7.14a to the inductor of Example 7.4.

i(1) (A) () (V)

1 30—

| | | | | | | |
3 t(s) = 1(s)

=30
(a) (b)
M FIGURE 7.14 (a) The time required for the current of Fig. 712a to change from 0 to 1 and from
1to 0is decreased by a factor of 10. (b) The resultant voltage waveform. The pulse widths are
exaggerated for clarity.

Note that the intervals for the rise and fall have decreased to 0.1 s.
Thus, the magnitude of each derivative will be 10 times larger; this
condition is shown in the current and voltage sketches of Fig. 7.14a
and b. In the voltage waveforms of Fig. 7.13b and 7.14b, it is interest-
ing to note that the area under each voltage pulse is 3 V - s.

Just for curiosity’s sake, let’s continue in the same vein for a moment. A
further decrease in the rise and fall times of the current waveform will pro-
duce a proportionally larger voltage magnitude, but only within the interval
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in which the current is increasing or decreasing. An abrupt change in the
current will cause the infinite voltage “spikes” (each having an area of
3 V-s) that are suggested by the waveforms of Fig. 7.15a and b; or, from
the equally valid but opposite point of view, these infinite voltage spikes are
required to produce the abrupt changes in the current.

PRACTICE "

7.5 The current waveform of Fig. 7.14a has equal rise and fall times of
duration 0.1 s (100 ms). Calculate the maximum positive and negative
voltages across the same inductor if the rise and fall times, respectively,
are changed to (a) 1 ms, 1 ms; (b) 12 us, 64 us; (¢) 1's, 1 ns.

Ans: 3kV, =3 kV; 250kV, —46.88 kV; 3V, =3 GV.

Integral Voltage-Current Relationships
We have defined inductance by a simple differential equation,

v=1L o
and we have been able to draw several conclusions about the characteristics
of an inductor from this relationship. For example, we have found that we
may consider an inductor to be a short circuit to direct current, and we have
agreed that we cannot permit an inductor current to change abruptly from
one value to another, because this would require that an infinite voltage and
power be associated with the inductor. The simple defining equation for
inductance contains still more information, however. Rewritten in a slightly
different form,
di = l vdt
L

it invites integration. Let us first consider the limits to be placed on the two
integrals. We desire the current i at time ¢, and this pair of quantities there-
fore provides the upper limits on the integrals appearing on the left and right
sides of the equation, respectively; the lower limits may also be kept general
by merely assuming that the current is i (#) at time #y. Thus,

it 1 rt
/ dV:-i/vﬂﬁm’
i(10) L J,

which leads to the equation

i(t) —i(h) = %/ vdt

Iy

or

i(t) = %/ vdt' +i(t) [6]

fo

Equation [5] expresses the inductor voltage in terms of the current,
whereas Eq. [6] gives the current in terms of the voltage. Other forms are
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i(®) (A)

| | | t (s)

(a)
o(t) (V)

(to o)

\ L .
Zi |o 1 2 3 ®

(to —o0)

)

M FIGURE 7.15 (a) The time required for the current
of Fig. 714a to change from 0 to 1 and from 1to 0 is
decreased to zero; the rise and fall are abrupt. (b) The
resultant voltage across the 3 H inductor consists of a
positive and a negative infinite spike.
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also possible for the latter equation. We may write the integral as an indefi-
nite integral and include a constant of integration k:

i(t):%/vdt+k [7]

We also may assume that we are solving a realistic problem in which the
selection of 7y as —oo ensures no current or energy in the inductor. Thus, if
i(ty) = i(—00) =0, then

i(t)=%/_OO vdt’ [8]

Let us investigate the use of these several integrals by working a simple
example where the voltage across an inductor is specified.

EXAMPLE 7.6

The voltage across a 2 H inductor is known to be 6 cos 5¢ V.
Determine the resulting inductor current if i(f = —z/2) = 1 A.

From Eq. [6],

1 t
i(t) = 5/ 6.cos 5t dt’ +i(ty)

o

'(t)—l 6 sin 5¢ Lo sin 5ty + i (tp)
TN 2 \5) it

= 0.6sin5¢ — 0.6 sin 5ty + i (ty)

or

The first term indicates that the inductor current varies sinusoidally;
the second and third terms together represent a constant which becomes
known when the current is numerically specified at some instant of
time. Using the fact that the currentis 1 A at# = —m/2 s, we identify 7
as —m /2 with i (fp) = 1, and find that

i(t) =0.6sin5f — 0.6sin(—2.57) + 1

or

i(t) =0.6sin57 + 1.6

Alternatively, from Eq. [6],
i(t) =0.6sin57 + k

and we establish the numerical value of k by forcing the current to be
1Aatt = —m/2:

1 =0.6sin(—2.57) + k
or

k=14+06=1.6

and so, as before,

i(t) =0.6sin5r + 1.6
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Equation [8] is going to cause trouble with this particular voltage.
We based the equation on the assumption that the current was zero
when t = —oo. To be sure, this must be true in the real, physical world,
but we are working in the land of the mathematical model; our ele-
ments and forcing functions are all idealized. The difficulty arises after
we integrate, obtaining

i(t) = 0.6sin 5¢'|"
and attempt to evaluate the integral at the lower limit:
i(t) = 0.6sin5¢ — 0.6 sin(—o0)

The sine of +00¢ is indeterminate, and therefore we cannot evaluate
our expression. Equation [8] is only useful if we are evaluating func-
tions which approach zero as t — —oo.

PRACTICE _

7.6 A 100 mH inductor has voltage v; = 2¢~¥ V across its terminals.
Determine the resulting inductor current if i (—0.5) = 1 A.

Ans: —Ze™¥ +30.9A.

We should not make any snap judgments, however, as to which single
form of Eqs. [6], [7], and [8] we are going to use forever after; each has its
advantages, depending on the problem and the application. Equation [6]
represents a long, general method, but it shows clearly that the constant of
integration is a current. Equation [7] is a somewhat more concise expression
of Eq. [6], but the nature of the integration constant is suppressed. Finally,
Eq. [8] is an excellent expression, since no constant is necessary; however,
it applies only when the current is zero at t = —oo and when the analytical
expression for the current is not indeterminate there.

Energy Storage
Let us now turn our attention to power and energy. The absorbed power is
given by the current-voltage product

. L.di
=Vl = Ll —
P dt

The energy w; accepted by the inductor is stored in the magnetic field
around the coil. The change in this energy is expressed by the integral of the
power over the desired time interval:

t todi i(r)
/ pdt’:L/ i—/dt’:Lf i’ di’
fo 0} dt i(1)

1
= SL{liOF ~ 1))
Thus,

wr () — wi(to) = LTI — [i (10)1*} [9]

231
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where we have again assumed that the current is i (#p) at time fy. In using the
energy expression, it is customary to assume that a value of 1y is selected at
which the current is zero; it is also customary to assume that the energy is
zero at this time. We then have simply

wy (1) = 1Li? [10]

where we now understand that our reference for zero energy is any time at
which the inductor current is zero. At any subsequent time at which the cur-
rent is zero, we also find no energy stored in the coil. Whenever the current
is not zero, and regardless of its direction or sign, energy is stored in the in-
ductor. It follows, therefore, that energy may be delivered to the inductor for
a part of the time and recovered from the inductor later. All the stored
energy may be recovered from an ideal inductor; there are no storage
charges or agent’s commissions in the mathematical model. A physical coil,
however, must be constructed out of real wire and thus will always have a
resistance associated with it. Energy can no longer be stored and recovered
without loss.

These ideas may be illustrated by a simple example. In Fig. 7.16,a3 H
inductor is shown in series with a 0.1 Q resistor and a sinusoidal current
source, iy = 12sin %’ A. The resistor should be interpreted as the resistance
of the wire which must be associated with the physical coil.

EXAMPLE 7.7

M FIGURE 7.16 Asinusoidal current is applied as a
forcing function to a series RL circuit. The 0.1 ©
represents the inherent resistance of the wire from
which the inductor is fabricated.

Find the maximum energy stored in the inductor of Fig. 7.16, and
calculate how much energy is dissipated in the resistor in the time
during which the energy is being stored in, and then recovered
from, the inductor.

The energy stored in the inductor is

ey

1 t
w; = —Li%> = 216sin® il
2 6

and this energy increases from zero at t = 0 to 216 J att = 3 s. Thus,
the maximum energy stored in the inductor is 216 J.

After reaching its peak value at ¢t = 3 s, the energy has completely
left the inductor 3 s later. Let us see what price we have paid in this coil
for the privilege of storing and removing 216 J in these 6 seconds. The
power dissipated in the resistor is easily found as

2 . o Tt
pr =1"R = 14.4sin 3 W

and the energy converted into heat in the resistor within this 6 s interval

is therefore
6 6 .
wR:/ det=/ 14.4 sin®> =1 dt
0 0 6
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or

& 1 i
Wrp = 14.4 (—) 1—cos—t)dt =43.2]
[ 144(5) (1-e0s3)

Thus, we have expended 43.2 J in the process of storing and then re-
covering 216 J in a 6 s interval. This represents 20 percent of the maxi-
mum stored energy, but it is a reasonable value for many coils having
this large an inductance. For coils having an inductance of about
100 nH, we might expect a figure closer to 2 or 3 percent.

PRACTICE "

7.7 Let L = 25 mH for the inductor of Fig. 7.10. (a) Find v, at
t=12msifi; = 10te™ 1% A. (b) Find iy att = 0.1 sif v, = 6e ' V
and i; (0) = 10 A. If i;, = 8(1 — e*%") mA, find (c) the power being
delivered to the inductor at # = 50 ms and (d) the energy stored in the
inductor at ¢ = 40 ms.

Ans: —15.06 mV; 24.0 A; 7.49 uW; 0.510 pJ.

We summarize by listing four key characteristics of an inductor which
result from its defining equation v = L di/dt:

Important Characteristics of an Ideal Inductor

1. There is no voltage across an inductor if the current through it is
not changing with time. An inductor is therefore a short circuit
to dc.

2. A finite amount of energy can be stored in an inductor even if
the voltage across the inductor is zero, such as when the current
through it is constant.

3. It is impossible to change the current through an inductor by a
finite amount in zero time, for this requires an infinite voltage
across the inductor. (An inductor resists an abrupt change in the
current through it in a manner analogous to the way a mass resists
an abrupt change in its velocity.)

4. The inductor never dissipates energy, but only stores it. Although
this is true for the mathematical model, it is not true for a physical
inductor due to series resistances.

It is interesting to anticipate our discussion of duality in Sec. 7.6 by
rereading the previous four statements with certain words replaced by their
“duals.” If capacitor and inductor, capacitance and inductance, voltage and
current, across and through, open circuit and short circuit, spring and mass,
and displacement and velocity are interchanged (in either direction), the
four statements previously given for capacitors are obtained.

283



( PRACTICAL APPLICATION )

In Search of the Missing Element

So far, we have been introduced to three different two-
terminal passive elements: the resistor, the capacitor,
and the inductor. Each has been defined in terms of
its current-voltage relationship (v = Ri,i = Cdv/dt,
and v = L di/dt, respectively). From a more fundamen-
tal perspective, however, we can view these three ele-
ments as part of a larger picture relating four basic
quantities, namely, charge ¢, current i, voltage v, and flux
linkage ¢. Charge, current, and voltage are discussed in
Chap. 2. Flux linkage is the product of magnetic flux and
the number of turns of conducting wire linked by the flux,
and it can be expressed in terms of the voltage v across
the coilas ¢ = [vdr orv =dg/dt.

()=
S
Resistor |T Capacitor
dv = Rdi 5 dg = Cdv
<=
Y Y
O~ (=)
A A
i ——
Inductor Memristor
do = Ldi do = Mdq
Y

>( ¢ )=

M FIGURE 7.17 A graphical representation of the four basic two-
terminal passive elements (resistor, capacitor, inductor, and
memristor) and their interrelationships. Note that flux linkage is more
commonly represented by the Greek letter A to distinguish it from
flux: then A = Ng where N is the number of turns and ¢ is the flux.
(Reprinted by permission from Macmillan Publishers Ltd. Nature
Publishing Group, “Electronics: The Fourth Element,” Volume 453,
pg. 42,2008.)

Figure 7.17 graphically represents how these four
quantities are interrelated. First, apart from any circuit
elements and their characteristics, we have dqg =i dt
(Chap. 2) and now d¢ = vdt. Charge is related to volt-
age in the context of a capacitor, since C = dq/dv or
dg = Cdv. The element we call a resistor provides a

direct relationship between voltage and current, which for
consistency can be expressed as dv = R di. Continuing
our counterclockwise journey around the perimeter of
Fig. 7.17, we note that our original expression connecting
the voltage and current associated with an inductor can be
written in terms of current i and flux linkage ¢, since
rearranging yields vdt = L di, and we know dg = v dt.
Thus, for the inductor, we can write dgp = L di.

So far, we have traveled from ¢ to v with the aid of a
capacitor, v to i using the resistor, and i to ¢ using the
inductor. However, we have not yet used any element to
connect ¢ and ¢, although symmetry suggests such a
thing should be possible. In the early 1970s, Leon Chua
found himself thinking along these lines, and postulated a
new device—a “missing” two-terminal circuit element—
and named it the memristor.! He went on to demonstrate
that the electrical characteristics of a memristor should
be nonlinear, and depend on its history—in other words,
a memristor might be characterized by having a memory
(hence its name). Independent of his work, others had
proposed a similar device, not so much for its practical
use in real circuits, but for its potential in device model-
ing and signal processing.

Not a great deal was heard of this hypothetical
element afterward, at least until Dmitri Strukov and
coworkers at HP Labs in Palo Alto published a short
paper in 2008 claiming to have “found” the memristor.”
They offer several reasons why it took almost four
decades to realize the general type of device Chua
hypothesized in 1971, but one of the most interesting has
to do with size. In making their prototype memristor,
nanotechnology (the art of fabricating devices with at
least one dimension less than 1000 nm, which is approx-
imately 1% of the diameter of human hair) played a key
role. A 5 nm thick oxide layer sandwiched between
platinum electrodes comprises the entire device. The
nonlinear electrical characteristics of the prototype
immediately generated considerable excitement, most
notably for its potential applications in integrated cir-
cuits, where devices are already approaching their small-
est realistic size; and many believe new types of devices
will be required to further extend integrated circuit
density and functionality. Whether the memristor is the
circuit element that will allow this remains to be seen—
despite the report of a prototype, there remains much
work to be done before it becomes practical.

(1) L. O. Chua, “Memristor—The missing circuit element,” IEEE Transactions on Circuit Theory CT-18 (5), 1971, p. 507.
(2) D. B. Strukov, G. S. Snider, D. R. Stewart, and R. S. Williams, “The missing memristor found,” Nature 453, 2008, p. 80.
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1.3 . INDUCTANCE AND CAPACITANCE
COMBINATIONS

Now that we have added the inductor and capacitor to our list of passive cir-
cuit elements, we need to decide whether or not the methods we have de-
veloped for resistive circuit analysis are still valid. It will also be convenient
to learn how to replace series and parallel combinations of either of these
elements with simpler equivalents, just as we did with resistors in Chap. 3.

We look first at Kirchhoff’s two laws, both of which are axiomatic.
However, when we hypothesized these two laws, we did so with no restric-
tions as to the types of elements constituting the network. Both, therefore,
remain valid.

Inductors in Series

Now we may extend the procedures we have derived for reducing various
combinations of resistors into one equivalent resistor to the analogous cases
of inductors and capacitors. We shall first consider an ideal voltage source
applied to the series combination of N inductors, as shown in Fig. 7.18a.
We desire a single equivalent inductor, with inductance L.q, which may re-
place the series combination so that the source current i(¢) is unchanged.
The equivalent circuit is sketched in Fig. 7.18b. Applying KVL to the orig-
inal circuit,
Vg =V +vy+ -+ vN
I di L di I di
= ldt+ 2dt+-~-+ N

di
— (L + Lo+ +Ly) —
(L, 2 N)dt

or, written more concisely,

Y Y [ di_di Y .
I
n=l1 n=1 n=1
But for the equivalent circuit we have
di
Vg = Leq E

and thus the equivalent inductance is

Leq:L1+L2+"'+LN

i L, L, i
A1k A1k
+ oy - 4+ v - N
Vg Lyvy ¥ Leg
(@) (b)

M FIGURE 7.18 (g) A circuit containing NV inductors in series. (b) The desired equivalent
circuit, inwhich Leq = Ly 4+ Ly ++ -+ + Ly.
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(b)

B FIGURE 7.19 (a) The parallel combination of
N inductors. (b) The equivalent circuit, where
Leq = []/L] + 1+ + ]/L/\/]A.

\|
]

()
M FIGURE 7.20 (a) A circuit containing N capacitors
in series. (b) The desired equivalent circuit, where
Coa =[G+ G+ + G

CHAPTER 7 CAPACITORS AND INDUCTORS

or N
Leg = ZL" [11]
n=1

The inductor which is equivalent to several inductors connected in series
is one whose inductance is the sum of the inductances in the original circuit.
This is exactly the same result we obtained for resistors in series.

Inductors in Parallel

The combination of a number of parallel inductors is accomplished by writ-
ing the single nodal equation for the original circuit, shown in Fig. 7.19a,

R .
lS:lenZZ[L—/ vdt +1,,(t0)]

n=1 n Jiy
>or) [y
= — vdt' + in ()
n=1 L, fo n=1
and comparing it with the result for the equivalent circuit of Fig. 7.19b,

1 /t
iy = vdt +iy(t)
L f

eq

Since Kirchhoff’s current law demands that i, (fy) be equal to the sum of
the branch currents at 7, the two integral terms must also be equal; hence,

1
Loy = 12
4T 1JLy+1/Ly+---+1/Ly [12]

For the special case of two inductors in parallel,
LiL,
Leyg= ——— 13
“= T 1L, [13]

and we note that inductors in parallel combine exactly as do resistors in
parallel.

Capacitors in Series

In order to find a capacitor that is equivalent to N capacitors in series, we
use the circuit of Fig. 7.20a and its equivalent in Fig. 7.20b to write

N N 1 t
Vg = v, = Z [C—/ idt + Un(l‘())i|

n=1 n=1 n Jio

N 1 t N
= — idt + N (!
> & / > o)

and
t

1
g = — i dt’ s (t
Vs =5 idt” + v,(to)

eq Ji1y
However, Kirchhoff’s voltage law establishes the equality of v,(#)) and
the sum of the capacitor voltages at #y; thus
1
Ceq =
1/Ci+1/Cy+---+1/Cy

[14]
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and capacitors in series combine as do conductances in series, or resistors in
parallel. The special case of two capacitors in series, of course, yields

G,

Cog = ————
4T 0+

[15]

Capacitors in Parallel

Finally, the circuits of Fig. 7.21 enable us to establish the value of the ca-
pacitor which is equivalent to N parallel capacitors as

CquC1+C2+"'+CN [16]

and it is no great source of amazement to note that capacitors in parallel
combine in the same manner in which we combine resistors in series, that
is, by simply adding all the individual capacitances.

These formulas are well worth memorizing. The formulas applying to se-
ries and parallel combinations of inductors are identical to those for resistors,
so they typically seem “obvious.” Care should be exercised, however, in the
case of the corresponding expressions for series and parallel combinations of
capacitors, as they are opposite those of resistors and inductors, frequently
leading to errors when calculations are made too hastily.
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(b)

M FIGURE 7.21 (a) The parallel combination of
N capacitors. (b) The equivalent circuit, where
Ceqzcl +G+- -+ G

A\

Simplify the network of Fig. 7.22a using series-parallel
combinations.

The 6 nF and 3 uF series capacitors are first combined into a 2 uF
equivalent, and this capacitor is then combined with the 1 ©F element
with which it is in parallel to yield an equivalent capacitance of 3 uF.
In addition, the 3 H and 2 H inductors are replaced by an equivalent
1.2 H inductor, which is then added to the 0.8 H element to give a total
equivalent inductance of 2 H. The much simpler (and probably less
expensive) equivalent network is shown in Fig. 7.22b.

PRACTICE -
7.8 Find Cq for the network of Fig. 7.23.
i i
O 1€ 1€
0.4 uF 1 uF
-~ 7 uF
Coq—> =~ 12 uF =<5 uF
-~ 5 uF
0.8 uF 2 uF
i i
® g 1€
M FIGURE 7.23

Ans: 3.18 uF.

EXAMPLE 7.8
0.8 H
[¢ A11R
2H 6 uE
N =~ 1 uF :|:
3 uF
3H
[¢ A11R T
(@)
2H
o——TITN—
-~ 3 uF
O—
)

M FIGURE 7.22 (a) A given LC network. (b) A
simpler equivalent circuit.
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The network shown in Fig. 7.24 contains three inductors and three
capacitors, but no series or parallel combinations of either the inductors or
the capacitors can be achieved. Simplification of this network cannot be
accomplished using the techniques presented here.

1H
T 3H 5H
o— A11R 411%
¢
A
2 uF =<4 uF =6 uF

O

B FIGURE 7.24 An LC network in which no series or parallel combinations
of either the inductors or the capacitors can be made.

7.4 CONSEQUENCES OF LINEARITY

Next let us turn to nodal and mesh analysis. Since we already know that we
may safely apply Kirchhoff’s laws, we can apply them in writing a set of
equations that are both sufficient and independent. They will be constant-
coefficient linear integrodifferential equations, however, which are hard
enough to pronounce, let alone solve. Consequently, we shall write them
now to gain familiarity with the use of Kirchhoff’s laws in RLC circuits and
discuss the solution of the simpler cases in subsequent chapters.

EXAMPLE 7.9
Write appropriate nodal equations for the circuit of Fig. 7.25.

" Node voltages are already chosen, so we sum currents leaving the cen-
A tral node:

Cl

1 g V] — Uy dv;
L R - _ Iy it S
., = Hyl " L/to(vl vs)dt' +ip(t) + C; T =0

il‘

M FIGURE 7.25 A four-node RLC circuit with node
voltages assigned.

where iy (tp) is the value of the inductor current at the time the integra-
tion begins. At the right-hand node,

d(vy — vy )
C1(2 )+2 1

dt —i4=0
Rewriting these two equations, we have
t t
%—FCza;l—Utl—‘r%/to Uldl/— % = %/,0 Usdl‘/—l'L(lo)
Uyt dy,
R R dt dt

These are the promised integrodifferential equations, and we note
several interesting points about them. First, the source voltage v; happens
to enter the equations as an integral and as a derivative, but not simply
as v;. Since both sources are specified for all time, we should be able to
evaluate the derivative or integral. Second, the initial value of the induc-
tor current, iy, (fy), acts as a (constant) source current at the center node.
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PRACTICE . 2 mH
7.9 If ve(t) = 4cos 107t V in the circuit in Fig. 7.26, find v, (z). .
Ans: —2.4cos 10°1 V. v,(t) 80 nF =< 7¢

We will not attempt the solution of integrodifferential equations here. It is M FIGURE 7.26
worthwhile pointing out, however, that when the voltage forcing functions are
sinusoidal functions of time, it will be possible to define a voltage-current
ratio (called impedance) or a current-voltage ratio (called admittance) for
each of the three passive elements. The factors operating on the two node
voltages in the preceding equations will then become simple multiplying fac-
tors, and the equations will be linear algebraic equations once again. These we
may solve by determinants or a simple elimination of variables as before.

We may also show that the benefits of linearity apply to RLC circuits as
well. In accordance with our previous definition of a linear circuit, these
circuits are also linear because the voltage-current relationships for the
inductor and capacitor are linear relationships. For the inductor, we have

v=L—
dt
and multiplication of the current by some constant K leads to a voltage that
is also greater by a factor K. In the integral formulation,

1 t
i(t) = Z/zo vdt' +i(ty)

it can be seen that, if each term is to increase by a factor of K, then the ini-
tial value of the current must also increase by this same factor.

A corresponding investigation of the capacitor shows that it, too, is lin-
ear. Thus, a circuit composed of independent sources, linear dependent
sources, and linear resistors, inductors, and capacitors is a linear circuit.

In this linear circuit the response is again proportional to the forcing
function. The proof of this statement is accomplished by first writing a
general system of integrodifferential equations. Let us place all the terms
having the form of Ri, L di/dt, and l/Cfidt on the left side of each
equation, and keep the independent source voltages on the right side. As a
simple example, one of the equations might have the form

R'+Ldi+1/t'dt’+ (to)
i — 4+ — i v = v
ai ¢, cllo :

If every independent source is now increased by a factor K, then the
right side of each equation is greater by the factor K. Now each term on the
left side is either a linear term involving some loop current or an initial
capacitor voltage. In order to cause all the responses (loop currents) to in-
crease by a factor K, it is apparent that we must also increase the initial
capacitor voltages by a factor K. That is, we must treat the initial capacitor
voltage as an independent source voltage and increase it also by a factor K.
In a similar manner, initial inductor currents appear as independent source
currents in nodal analysis.

The principle of proportionality between source and response can thus
be extended to the general RLC circuit, and it follows that the principle of
superposition also applies. It should be emphasized that initial inductor
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M FIGURE 7.27 An ideal op amp connected as

an integrator.
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currents and capacitor voltages must be treated as independent sources in
applying the superposition principle; each initial value must take its turn
in being rendered inactive. In Chap. 5 we learned that the principle of
superposition is a natural consequence of the linear nature of resistive
circuits. The resistive circuits are linear because the voltage-current rela-
tionship for the resistor is linear and Kirchhoff’s laws are linear.

Before we can apply the superposition principle to RLC circuits, how-
ever, it is first necessary to develop methods of solving the equations
describing these circuits when only one independent source is present. At
this time we should feel convinced that a linear circuit will possess a re-
sponse whose amplitude is proportional to the amplitude of the source. We
should be prepared to apply superposition later, considering an inductor
current or capacitor voltage specified at t = #; as a source that must be
deactivated when its turn comes.

Thévenin’s and Norton’s theorems are based on the linearity of the ini-
tial circuit, the applicability of Kirchhoff’s laws, and the superposition prin-
ciple. The general RLC circuit conforms perfectly to these requirements,
and it follows, therefore, that all linear circuits that contain any combina-
tions of independent voltage and current sources, linear dependent voltage
and current sources, and linear resistors, inductors, and capacitors may be
analyzed with the use of these two theorems, if we wish.

1.5 , SIMPLE OP AMP CIRCUITS WITH CAPACITORS

In Chap. 6 we were introduced to several different types of amplifier circuits
based on the ideal op amp. In almost every case, we found that the output was
related to the input voltage by some combination of resistance ratios. If we
replace one or more of these resistors with a capacitor, it is possible to obtain
some interesting circuits in which the output is proportional to either the
derivative or integral of the input voltage. Such circuits find widespread use
in practice. For example, a velocity sensor can be connected to an op amp cir-
cuit that provides a signal proportional to the acceleration, or an output signal
can be obtained that represents the total charge incident on a metal electrode
during a specific period of time by simply integrating the measured current.

To create an integrator using an ideal op amp, we ground the noninvert-
ing input, install an ideal capacitor as a feedback element from the output
back to the inverting input, and connect a signal source v; to the inverting
input through an ideal resistor as shown in Fig. 7.27.

Performing nodal analysis at the inverting input,

Vg — Us
Ry
We can relate the current i to the voltage across the capacitor,
d Ve '
dt

0= +i

i=Cy

resulting in

dUC
0= Cy J
R, ¢ dt

Invoking ideal op amp rule 2, we know that v, = v, = 0, so

— Vs dUC/
+C
R; f dt

0=
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Integrating and solving for vy, we obtain
1 ! ,
Ve, = Vg — Vout = 0 — vou = Fcf /(; vy dt’ + UCf(O)

or
1
R\ Cy

We therefore have combined a resistor, a capacitor, and an op amp to form
an integrator. Note that the first term of the output is 1/ RC times the negative
of the integral of the input from ¢ = 0 to 7, and the second term is the nega-
tive of the initial value of v¢,. The value of (RC )~! can be made equal to
unity, if we wish, by choosing R = 1 MQ and C = 1 uF, for example; other
selections may be made that will increase or decrease the output voltage.

Before we leave the integrator circuit, we might anticipate a question
from an inquisitive reader, “Could we use an inductor in place of the capaci-
tor and obtain a differentiator?” Indeed we could, but circuit designers usu-
ally avoid the use of inductors whenever possible because of their size,
weight, cost, and associated resistance and capacitance. Instead, it is possi-
ble to interchange the positions of the resistor and capacitor in Fig. 7.27 and
obtain a differentiator.

Vout = —

/ vy dt’ — v, (0) [17]
0
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EXAMPLE 7.10

Derive an expression for the output voltage of the op amp circuit
shown in Fig. 7.28.

We begin by writing a nodal equation at the inverting input pin, with
A
Ve, = Vg — Vst

de] Vg — Vout

0=C— +
! dt Rf
Invoking ideal op amp rule 2, v, = v, = 0. Thus,
c dvc, _ Vou
dt Rf
Solving for vy,
dvc
Vout = RfCI d—l‘l
Since v, = v, — vy = — Vs,
dv,
Vout = _Rf Ci dt

So, simply by swapping the resistor and capacitor in the circuit of
Fig. 7.27, we obtain a differentiator instead of an integrator.

PRACTICE "

7.10 Derive an expression for vy in terms of v, for the circuit shown
in Fig. 7.29.

Ans: voy = —Ly /Ry dvg/dt.

B FIGURE 7.28 An ideal op amp connected as a
differentiator.

|||—0| &

B FIGURE 7.29
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30 8F

+ U —

2 cos 61V /’_‘) 4Hq 5Q
i

M FIGURE 7.30 A given circuit to which the definition
of duality may be applied to determine the dual circuit.
Note that v(0) = 10 V.

Ref.

M FIGURE 7.31 The exact dual of the circuit of
Fig. 7.30.
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1.6 | DUALITY

The concept of duality applies to many fundamental engineering concepts.
In this section, we shall define duality in terms of the circuit equations. Two
circuits are “duals” if the mesh equations that characterize one of them have
the same mathematical form as the nodal equations that characterize the
other. They are said to be exact duals if each mesh equation of one circuit is
numerically identical with the corresponding nodal equation of the other;
the current and voltage variables themselves cannot be identical, of course.
Duality itself merely refers to any of the properties exhibited by dual
circuits.

Let us use the definition to construct an exact dual circuit by writing the
two mesh equations for the circuit shown in Fig. 7.30. Two mesh currents i;
and i, are assigned, and the mesh equations are

di; di,
3i 4——4—=2 6t 18
I+ ar ar cos [18]
di; di, 1 ['
—4 — 44—+ - i>dt’ + 5i; = —10 19
7 + 7 + 8,/0 irdt’ + 5ip [19]

We may now construct the two equations that describe the exact dual
of our circuit. We wish these to be nodal equations, and thus begin by re-
placing the mesh currents i; and i, in Eqgs. [18] and [19] by the two nodal
voltages vy and v, respectively. We obtain

dl}] dU2
v, 44— 472 = 2cos6r 20
vy + ar a7 cos [20]
4 v +4d”2+1/t dr' +5 10 [21]
-4 — — + - v vy = —
dt dr 8, ° ’

and we now seek the circuit represented by these two nodal equations.

Let us first draw a line to represent the reference node, and then we may
establish two nodes at which the positive references for v; and v, are lo-
cated. Equation [20] indicates that a current source of 2cos6f A is con-
nected between node 1 and the reference node, oriented to provide a current
entering node 1. This equation also shows that a 3 S conductance appears
between node 1 and the reference node. Turning to Eq. [21], we first con-
sider the nonmutual terms, i.e., those terms which do not appear in Eq. [20],
and they instruct us to connect an 8§ H inductor and a 5 S conductance
(in parallel) between node 2 and the reference. The two similar terms in
Egs. [20] and [21] represent a 4 F capacitor present mutually at nodes 1 and
2; the circuit is completed by connecting this capacitor between the two
nodes. The constant term on the right side of Eq. [21] is the value of the
inductor current at = 0; in other words, i; (0) = 10 A. The dual circuit is
shown in Fig. 7.31; since the two sets of equations are numerically identi-
cal, the circuits are exact duals.

Dual circuits may be obtained more readily than by this method, for the
equations need not be written. In order to construct the dual of a given cir-
cuit, we think of the circuit in terms of its mesh equations. With each mesh
we must associate a nonreference node, and, in addition, we must supply the
reference node. On a diagram of the given circuit we therefore place a
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node in the center of each mesh and supply the reference node as a line near
the diagram or a loop enclosing the diagram. Each element that appears
jointly in two meshes is a mutual element and gives rise to identical terms,
except for sign, in the two corresponding mesh equations. It must be re-
placed by an element that supplies the dual term in the two corresponding
nodal equations. This dual element must therefore be connected directly be-
tween the two nonreference nodes that are within the meshes in which the
given mutual element appears.

The nature of the dual element itself is easily determined; the mathe-
matical form of the equations will be the same only if inductance is replaced
by capacitance, capacitance by inductance, conductance by resistance, and
resistance by conductance. Thus, the 4 H inductor which is common to
meshes 1 and 2 in the circuit of Fig. 7.30 appears as a 4 F capacitor con-
nected directly between nodes 1 and 2 in the dual circuit.

Elements that appear only in one mesh must have duals that appear be-
tween the corresponding node and the reference node. Referring again to
Fig. 7.30, the voltage source 2 cos 6¢ V appears only in mesh 1; its dual is a
current source 2 cos 6t A, which is connected only to node 1 and the refer-
ence node. Since the voltage source is clockwise-sensed, the current source
must be into-the-nonreference-node-sensed. Finally, provision must be
made for the dual of the initial voltage present across the 8 F capacitor in the
given circuit. The equations have shown us that the dual of this initial volt-
age across the capacitor is an initial current through the inductor in the dual
circuit; the numerical values are the same, and the correct sign of the initial
current may be determined most readily by considering both the initial volt-
age in the given circuit and the initial current in the dual circuit as sources.
Thus, if v¢ in the given circuit is treated as a source, it would appear as —v¢
on the right side of the mesh equation; in the dual circuit, treating the cur-
rent iz as a source would yield a term —iy, on the right side of the nodal equa-
tion. Since each has the same sign when treated as a source, then, if
ve(0) = 10V, iz (0) must be 10 A.

The circuit of Fig. 7.30 is repeated in Fig. 7.32, and its exact dual is con-
structed on the circuit diagram itself by merely drawing the dual of each
given element between the two nodes that are inside the two meshes that are
common to the given element. A reference node that surrounds the given
circuit may be helpful. After the dual circuit is redrawn in more standard
form, it appears as shown in Fig. 7.31.

30 8

T~

2 cos 6tV 4H 50

M FIGURE 7.32 The dual of the circuit of Fig. 730 is constructed directly from the circuit diagram.
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(a) )
M FIGURE 7.33 (a) The dual (in gray) of a given circuit (in black) is constructed on the given circuit.
(b) The dual circuit is drawn in more conventional form for comparison to the original.

An additional example of the construction of a dual circuit is shown in
Fig. 7.33a and b. Since no particular element values are specified, these two
circuits are duals, but not necessarily exact duals. The original circuit may
be recovered from the dual by placing a node in the center of each of the five
meshes of Fig. 7.33b and proceeding as before.

The concept of duality may also be carried over into the language by which
we describe circuit analysis or operation. For example, if we are given a volt-
age source in series with a capacitor, we might wish to make the important
statement, “The voltage source causes a current to flow through the capacitor.”
The dual statement is, “The current source causes a voltage to exist across the
inductor.” The dual of a less carefully worded statement, such as “The current
goes round and round the series circuit,” may require a little inventiveness.*

Practice in using dual language can be obtained by reading Thévenin’s
theorem in this sense; Norton’s theorem should result.

We have spoken of dual elements, dual language, and dual circuits.
What about a dual network? Consider a resistor R and an inductor L in
series. The dual of this two-terminal network exists and is most readily
obtained by connecting some ideal source to the given network. The dual
circuit is then obtained as the dual source in parallel with a conductance G
with the same magnitude as R, and a capacitance C having the same magni-
tude as L. We consider the dual network as the two-terminal network that is
connected to the dual source; it is thus a pair of terminals between which G
and C are connected in parallel.

Before leaving the definition of duality, we should point out that duality
is defined on the basis of mesh and nodal equations. Since nonplanar
circuits cannot be described by a system of mesh equations, a circuit that
cannot be drawn in planar form does not possess a dual.

We shall use duality principally to reduce the work that we must do to
analyze the simple standard circuits. After we have analyzed the series RL
circuit, the parallel RC circuit requires less attention, not because it is less
important, but because the analysis of the dual network is already known.
Since the analysis of some complicated circuit is not apt to be well known,
duality will usually not provide us with any quick solution.

(4) Someone suggested, “The voltage is across all over the parallel circuit.”
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PRACTICE _

7.11 Write the single nodal equation for the circuit of Fig. 7.34a, and
show, by direct substitution, that v = —80e~1°" mV is a solution.
Knowing this, find (@) v;; (b) va; and (c) i for the circuit of Fig. 7.34b.

8¢710 mA v 100 =<02uF

(b)

M FIGURE 7.34

Ans: —8e~10% mV; 16e=10% mV; —80e~ 1% mA.

1.7 , MODELING CAPACITORS AND INDUCTORS
WITH PSPICE

When using PSpice to analyze circuits containing inductors and capacitors, it

is frequently necessary to be able to specify the initial condition of each

element [i.e., v¢(0) and iy (0)]. This is achieved by double-clicking on the

element symbol, resulting in the dialog box shown in Fig. 7.35a. At the far

right (not shown), we find the value of the capacitance, which defaults to 1 nF.

We can also specify the initial condition (IC), set to 2 V in Fig. 7.35a. Click-

ing on the right mouse button and selecting Display results in the dialog box

shown in Fig. 7.35b, which allows the initial condition to be displayed on the

schematic. The procedure for setting the initial condition of an inductor is es-

sentially the same. We should also note that when a capacitor is first placed in

the schematic, it appears horizontally; the positive reference terminal for the @
initial voltage is the left terminal. '

Display Properties % |
Fant
| wre Mame: IC Arial 7
[ = s e | Yalue: 2
:_:_.. sty | (D] (D Pty e e [3 Gt pti < o . Usze Default
I_T'_' S S F W W S N Y L3 A I Display Forrmat
£ Calar
) Do Mot Dizplay
) Value Only Default -
@ Mame and Value Fitatin
7 Name Only @0 ) 180°
) Bath if Walue Exists - o270
™ [ 0k I I Cancel I I Help

(a) o)

M FIGURE 7.35 (a) Capacitor property editor window. (b) Display Properties dialog box, obtained by right-clicking in the IC box.
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EXAMPLE 7.11

Simulate the output voltage waveform of the circuit in Fig. 7.36 if

tore - vy =1.5sin 100t V, Ry = 10 kR, Cr = 4.7 uF, and vc(0) =2 V.
We begin by drawing the circuit schematic, making sure to set the ini-
C
f

tial voltage across the capacitor (Fig. 7.37). Note that we had to convert
the frequency from 100 rad/s to 100/27 = 15.92 Hz.

+

Yout L I = z]
_ ;g._'.::-laaﬁ By 0 FRGAQenE b ANERBOE@ i - A
i i 2205 ARAALO WO 0

M FIGURE 7.36 An integrating op amp circuit.

BT B Ao
&g [ (ld-a.-iu-h-gg

& 4
b A

VOFF=Q
VAMPL =15
FREQ = 1552

=
<

B FIGURE 7.37 The schematic representation of the circuit shown in Fig. 7.36, with the
initial capacitor voltage setto 2 V.

In order to obtain time-varying voltages and currents, we need to per-
form what is referred to as a transient analysis. Under the PSpice menu,
we create a New Simulation Profile named op amp integrator, which
leads to the dialog box recreated in Fig. 7.38. Run to time represents the

Simulation Settings - op amp integrator [TE

| General | Analysis | Configuration Files | Options | Data Collection | Frobe Window |

Analysis type: .
T S e Burita time: 0& zecands [TSTOF)
Options: Start saving data after: 0 SEEE

General Settings Tranzient options

[7]Morte Caro Worst Case Mazimum step size: 0.5m * seconds

[ Parametric Swesp : o E : ; ;

[ Temperature (Sweep) [T] Skip the iriitial transient bias point calculation (SKIPEP)

[]5ave Bias Point

Els-oad g?:;:g'tﬁ [C] Bun in resume mads Output File Options. .
ave aints

[|Restart Simulation

(TS = B

M FIGURE 7.38 Dialog box for setting up a transient analysis. We choose a final time of
0.5 s to obtain several periods of the output waveform (1/15.92 = 0.06 S).
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time at which the simulation is terminated; PSpice will select its own
discrete times at which to calculate the various voltages and currents.
Occasionally we obtain an error message stating that the transient solu-
tion could not converge, or the output waveform does not appear as
smooth as we would like. In such situations, it is useful to set a value for
Maximum step size, which has been set to 0.5 ms in this example.
From our earlier analysis and Eq. [17], we expect the output to be
proportional to the negative integral of the input waveform, i.e.,
Vout = 0.319 cos 100t — 2.319 V, as shown in Fig. 7.39. The initial
condition of 2 V across the capacitor has combined with a constant
term from the integration to result in a nonzero average value for the
output, unlike the input which has an average value of zero.

(B8 SCHEMATIC1-0p amp Integrater PSpice A/D Dem - lop amp misgrator actvell | ISiETaT

I Ele Edt Wew Simulstion Trece Plot Tools Window Help B cadence - % X
A A N - § =l § SCHEMATIC op anp ite (+]
iQ Q& & Yien @ X @2l E i
@ 200 -
4 \
\ [
Er &0 \ B B!
" VY
) j
Vout : i
Cnaeud—i ¢
5 100ms 200ms auuns P Suoms
ULUA:0UT) - U(Us:e)
Time
.oomnn...l
ﬁ &
. Kl
Trace Cursort | Cursor?
X Value
Tosestops BOEDE  Tines 5
4 il v |-
1+ N nalysis fWaich J Devces / s = !
Time= 5 100% s BN

M FIGURE 7.39 Probe output for the simulated integrator circuit along with the input waveform
for comparison.

SUMMARY AND REVIEW

A large number of practical circuits can be effectively modeled using only
resistors and voltage/current sources. However, most interesting everyday
occurrences somehow involve something changing with time, and in such
cases intrinsic capacitances and/or inductances can become important. We
employ such energy storage elements consciously as well, for example, in the
design of frequency-selective filters, capacitor banks, and electric vehicle mo-
tors. An ideal capacitor is modeled as having infinite shunt resistance, and a
current which depends on the time rate of change of the terminal voltage.
Capacitance is measured in units of farads (F). Conversely, an ideal inductor
is modeled as having zero series resistance, and a terminal voltage which de-
pends on the time rate of change of the current. Inductance is measured in
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units of henrys (H). Either element can store energy, the amount of energy
present in a capacitor (stored in its electric field) is proportional to the square
of the terminal voltage, and the amount of energy present in an inductor
(stored in its magnetic field) is proportional to the square of its current.

As we found for resistors, we can simplify some connections of capaci-
tors (or inductors) using series/parallel combinations. The validity of such
equivalents arises from KCL and KVL. Once we have simplified a circuit as
much as possible (taking care not to “combine away”’ a component which is
used to define a current or voltage of interest to us), nodal and mesh analy-
sis can be applied to circuits with capacitors and inductors. However, the
resulting integrodifferential equations are often nontrivial to solve, and so
we will consider some practical approaches in the next two chapters. Simple
circuits, however, such as those which involve a single operational ampli-
fier, can be analyzed easily. We found (to our surprise) that such circuits can
be used as signal integrators or differentiators. Consequently, they provide
an output signal that tells us how some input quantity (accumulating charge
during ion implantation into a silicon wafer, for example) varies with time.

As a final note, capacitors and inductors provide a particularly strong
example of the concept known as duality. KCL and KVL, mesh and nodal
analysis are other examples. Circuits are rarely analyzed using this idea, but
it is nevertheless important, since the implication is that we only need to
learn roughly “half” of the complete set of concepts, and then determine
how to translate the remainder. Some people find this helpful; others don’t.
Regardless, capacitors and inductors are straightforward to model in PSpice
and other circuit simulation tools, allowing us to check our answers. The
difference between those elements and resistors in such software packages
is that we must take care to set the initial condition properly.

As an additional review aid, here we list some key points from the
chapter, and identify relevant example(s).

Q The current through a capacitor is given by i = C dv/dt. (Example 7.1)
O The voltage across a capacitor is related to its current by

v(t) = é/ it dt + v(t)

(Example 7.2)
Q A capacitor is an open circuit to dc voltages. (Example 7.1)

Q The voltage across an inductor is given by v = L di /dt.
(Examples 7.4, 7.5)

Q The current through an inductor is related to its voltage by

i(t) = %/ vdt' +i(tp)

fp
(Example 7.6)
Q An inductor is a short circuit to dc currents. (Examples 7.4, 7.5)

QO The energy presently stored in a capacitor is given by %Cvz, whereas
the energy presently stored in an inductor is given by % Li?; both are
referenced to a time at which no energy was stored. (Examples 7.3, 7.7)

O Series and parallel combinations of inductors can be combined using
the same equations as for resistors. (Example 7.8)
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Q Series and parallel combinations of capacitors work the opposite way
as they do for resistors. (Example 7.8)

Q Since capacitors and inductors are linear elements, KVL, KCL,
superposition, Thévenin’s and Norton’s theorems, and nodal and
mesh analysis apply to their circuits as well. (Example 7.9)

Q A capacitor as the feedback element in an inverting op amp leads to
an output voltage proportional to the integral of the input voltage.
Swapping the input resistor and the feedback capacitor leads to an
output voltage proportional to the derivative of the input voltage.
(Example 7.10)

@ PSpice allows us to set the initial voltage across a capacitor, and the
initial current through an inductor. A transient analysis provides details
of the time-dependent response of circuits containing these types of
elements. (Example 7.11)

READING FURTHER

A detailed guide to characteristics and selection of various capacitor and
inductor types can be found in:

H. B. Drexler, Passive Electronic Component Handbook, 2nd ed., C. A.
Harper, ed. New York: McGraw-Hill, 2003, pp. 69-203.

C. J. Kaiser, The Inductor Handbook, 2nd ed. Olathe, Kans.: C.J. Publish-
ing, 1996.

Two books that describe capacitor-based op amp circuits are:

R. Mancini (ed.), Op Amps Are For Everyone, 2nd ed. Amsterdam:
Newnes, 2003.

W. G. Jung, Op Amp Cookbook, 3rd ed. Upper Saddle River, N.J.:
Prentice-Hall, 1997.

EXERCISES

7.1 The Capacitor

1. Making use of the passive sign convention, determine the current flowing
through a 220 nF capacitor for ¢+ > 0 if its voltage v (¢) is given by (a) —3.35'V;
(b) 16.2¢7% V; (¢) 8 c0s 0.01t mV; (d) 5 + 9sin 0.08¢ V.

2. Sketch the current flowing through a 13 pF capacitor for # > 0 as a result of the
waveforms shown in Fig. 7.40. Assume the passive sign convention.

v (V) v (V)
s 4
67
= 2
4
N Y T T T T Y
T vo\l/z\3/4 |
= 2+
\ Y N N R IO
-1 0 1 2 3 4 5 b

(@) (b)
M FIGURE 7.40

t(s)
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3. (a) If the voltage waveform depicted in Fig. 7.41 is applied across the termi-
nals of a 1 uF electrolytic capacitor, graph the resulting current, assuming the
passive sign convention. (b) Repeat part (a) if the capacitor is replaced with a
17.5 pF capacitor.

2 (V)

4

3

Q’X

1
I T P
1 2 3 4 5 6 ®

B FIGURE 741

4. A capacitor is constructed from two copper plates, each measuring 1 mm x
2.5 mm and 155 pm thick. The two plates are placed such that they face each
other and are separated by a 1 um gap. Calculate the resulting capacitance if
(a) the intervening dielectric has a permittivity of 1.35¢y; (b) the intervening
dielectric has a permittivity of 3.5¢; (¢) the plate separation is increased by
3.5 pm and the gap is filled with air; (d) the plate area is doubled and the
1 pum gap is filled with air.

5. Two pieces of gadolinium, each measuring 100 um x 750 um and 604 nm
thick, are used to construct a capacitor. The two plates are arranged such that
they face each other and are separated by a 100 nm gap. Calculate the resulting
capacitance if (a) the intervening dielectric has a permittivity of 13.8&¢; (b) the
intervening dielectric has a permittivity of 500gy; (c) the plate separation is
increased by 100 nm and the gap is filled with air; (d) the plate area is quadru-
pled and the 100 nm gap is filled with air.

6. Design a 100 nF capacitor constructed from 1 pm thick gold foil, and which
fits entirely within a volume equal to that of a standard AAA battery, if the only
dielectric available has a permittivity of 3.1¢.

7. Design a capacitor whose capacitance can be varied mechanically with a
simple vertical motion, between the values of 100 nF and 300 nF.

8. Design a capacitor whose capacitance can be varied mechanically over the
range of 50 nF and 100 nF by rotating a knob 90°.

9. Assilicon pn junction diode is characterized by a junction capacitance defined as

K, 80A
o5

where K; = 11.8 for silicon, & is the vacuum permittivity, A = the cross-
sectional area of the junction, and W is known as the depletion width of the
junction. Width W depends not only on how the diode is fabricated, but also on
the voltage applied to its two terminals. It can be computed using

ZKSS()
W= (Voi — Va)
gN

Thus, diodes are frequently used in electronic circuits, since they can be
thought of as voltage-controlled capacitors. Assuming parameter values of

N =10"% cm™3, Vi,; = 0.57V, and using ¢ = 1.6 x 10719 C, calculate the
capacitance of a diode with cross-sectional area A = 1 um x 1 um at applied
voltages of V4 = —1, —5, and —10 volts.

10. Assuming the passive sign convention, sketch the voltage which develops
across the terminals of a 2.5 F capacitor in response to the current waveforms
shown in Fig. 7.42.




11.

12.

13.

EXERCISES

i(t) (A) i(1) (A)

I () — \

(@) (b)

i(n) (A)

| | £(s)

(©
B FIGURE 7.42
The current flowing through a 33 mF capacitor is shown graphically in Fig. 7.43.
(a) Assuming the passive sign convention, sketch the resulting voltage waveform

across the device. (b) Compute the voltage at 300 ms, 600 ms, and 1.1 s.

i(A)

\ \ \ \ ')
0 02 04 06 08 10 12 14

B FIGURE 7.43

Calculate the energy stored in a capacitor at time ¢ = 1 s if (a) C = 1.4 F and
ve=8V,t>0;()C=235pFand vc =08V, > 0;(c) C =17 nF,
ve(l) =12V, ve(0) =2V, and we (0) = 295 nl.

A 137 pF capacitor is connected to a voltage source such that ve(r) = 12e=2'V,
t > 0and ve(r) = 12 V,t < 0. Calculate the energy stored in the capacitor at
t equal to (a) 0; (b) 200 ms; (c) 500 ms; (d) 1 s.

14. Calculate the power dissipated in the 40 €2 resistor and the voltage labeled v¢

in each of the circuits depicted in Fig. 7.44.

40 Q + v -

|1

11

9.8 mF

—=98mF 12V 22Q 40 Q

12V

(a) (b)
B FIGURE 7.44

1(s)
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15. For each circuit shown in Fig. 7.45, calculate the voltage labeled vc.

100 - v o+ 100 130
ANN— 1 ANN—
3 mF +
45nA 130 7Q 50 4.5nA 3mF==vc 7Q 50
(@) (b)

B FIGURE 7.45

7.2 The Inductor

# 16. Design a 30 nH inductor using 29 AWG solid soft copper wire. Include a
sketch of your design and label geometrical parameters as necessary for clarity.
Assume the coil is filled with air only.

17.If the current flowing through a 75 mH inductor has the waveform shown in
Fig. 7.46, (a) sketch the voltage which develops across the inductor terminals
for + > 0, assuming the passive sign convention; and (b) calculate the voltage
att =1s,2.9s, and 3.1 s.

i1) (A)

L ,
T 0o 1 2 3 ©

i(r) (A) M FIGURE 7.46

18. The current through a 17 nH aluminum inductor is shown in Fig. 7.47. Sketch

S the resulting voltage waveform for # > 0, assuming the passive sign convention.
4 \ 19. Determine the voltage for # > 0 which develops across the terminals of a 4.2 mH
3 inductor, if the current (defined consistent with the passive sign convention) is
- (@) —10mA; (b) 3sin 61 A; (¢) 11 + 11542 cos(1007t — 9°) A; (d) 13e™ nA;
[ I B N N £ (us) (e)3+1e WA
23 4567 20. Determine the voltage for # > 0 which develops across the terminals of an
B FIGURE 747 8 pH inductor, if the current (defined consistent with the passive sign

convention) is (a) 8 mA; (b) 800 mA; (¢) 8 A; (d) 4e™" A; (e) =3+ te " A.
21. Calculate v, and i; for each of the circuits depicted in Fig. 7.48, if iy = 1 mA

and vy = 2.1 V.
47kQ IL 14kQ
Ji “ W~

+ +

3 o = UL Ly 12nH = %L

- 47k0 N

(a) (b)
L 14kQ L
. —_—

+ +
v, 47kQ 2aHI %y 47kQ0S 12nHS 4

(c) (d)
M FIGURE 7.48
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22. The current waveform shown in Fig. 7.14 has a rise time of 0.1 (100 ms) and a
fall time of the same duration. If the current is applied to the “+” voltage refer-
ence terminal of a 200 nH inductor, sketch the expected voltage waveform if
the rise and fall times are changed, respectively, to (a) 200 ms, 200 ms;

(b) 10 ms, 50 ms; (c¢) 10 ns, 20 ns.

23. Determine the inductor voltage which results from the current waveform
shown in Fig. 7.49 (assuming the passive sign convention) at ¢ equal to
(a)—1s;(b)0s;(c) 1.5s;(d)2.5s;(e)4s;(f)Ss.

i, (mA)
37
27
17
L1 N L L L
3 2 -l 1 2 3 4 5.% 71
-1+
) .
B FIGURE 7.49

24. Determine the current flowing through a 6 mH inductor if the voltage (defined
such that it is consistent with the passive sign convention) is given by (a) 5 V;
(b) 100sin 1207r¢,t > 0 and 0, t < O.

25. The voltage across a 2 H inductor is given by v, = 4.3¢,0 <t < 50 ms. With
the knowledge that i; (—0.1) = 100 A, calculate the current (assuming it
is defined consistent with the passive sign convention) at ¢ equal to (a) 0;
(b) 1.5 ms; (c) 45 ms.

26. Calculate the energy stored in a 1 nH inductor if the current flowing through it
is (@) 0 mA; (b) 1 mA; (c) 20 A; (d) 5sin6t mA, t > 0.

27. Determine the amount of energy stored in a 33 mH ipductor atr =1msasa
result of a current i; given by (a) 7 A; (b) 3 — 9¢~'0" mA.

28. Making the assumption that the circuits in Fig. 7.50 have been connected for a
very long time, determine the value for each current labeled i, .

A11R AN
l6kQ  2pH 6 uH
10V §4.7 kQ
(a)
10A
4%Q ~ SkQ
N\ ) MV

(3]
>
(D)
-/
(98]

=
1
)|
7
A%
o
=}
A%
(3]
~
2
NIy
S~
=
=

®)
M FIGURE 7.50
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29. Calculate the voltage labeled v, in Fig. 7.51, assuming the circuit has been
running a very long time, if (a) a 10 2 resistor is connected between terminals
x and y; (b) a 1 H inductor is connected between terminals x and y; (c)a 1 F
capacitor is connected between terminals x and y; (d) a 4 H inductor in parallel
with a 1 Q resistor is connected between terminals x and y.

3H SF
RTIR ¢
Y
2H
SH 200 I¢ 150
L A d VAVAY NW—
X
’ 20 F +
N
1V (t) ’ 5 A<¢> 12 Q§ v,
20 Q) -
10 kQ
B FIGURE 7.51
4V Q 30. For the circuit shown in Fig. 7.52, (a) compute the Thévenin equivalent seen
S0 mH 4Tk by the inductor; (b) determine the power being dissipated by both resistors;
(c) calculate the energy stored in the inductor.
B FIGURE 7.52 7.3 Inductance and Capacitance Combinations
31.If each capacitor has a value of 1 F, determine the equivalent capacitance of the
network shown in Fig. 7.53.
32. Determine an equivalent inductance for the network shown in Fig. 7.54 if each
inductor has value L.
o
A <:i§
B FIGURE 7.53
o W o
B FIGURE 7.54

# 33. Using as many 1 nH inductors as you like, design two networks, each of which
has an equivalent inductance of 1.25 nH.

34. Compute the equivalent capacitance Ceq as labeled in Fig. 7.55.

0 L I( I(

\ [AY [AY

7F 4F 2F
—~ 8F

Coqy—> =< 5F - 12F

—~S5F

1F 2F

I( I(

o Ay Ay

M FIGURE 7.55
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35. Determine the equivalent capacitance Ceq of the network shown in Fig. 7.56.

12F
l’ceq—l iZF
=+ o——i
10F a b 12F
_‘,7F ——4F —=S5F — 1F
B FIGURE 7.56

36. Apply combinatorial techniques as appropriate to obtain a value for the equiva-
lent inductance Leq as labeled on the network of Fig. 7.57.

12H
vrLﬁqv 2H
O O
10H a b 12H
7H 4H 5H 1H
M FIGURE 7.57

37. Reduce the circuit depicted in Fig. 7.58 to as few components as possible.

—AM—
AM—

VO

B FIGURE 7.58

38. Refer to the network shown in Fig. 7.59 and find (a) Req if each element is a
10 €2 resistor; (b) Leq if each element is a 10 H inductor; and (¢) Ceq if each
element is a 10 F capacitor.

39. Determine the equivalent inductance seen looking into the terminals marked a
and b of the network represented in Fig. 7.60.

M FIGURE 7.60

(e

M FIGURE 7.59
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40. Reduce the circuit represented in Fig. 7.61 to the smallest possible number of

components.
A1k
oo DLl 1
c
R L
L
iy (D R§ L
L
c
: T
T
W FIGURE 7.61

41. Reduce the network of Fig. 7.62 to the smallest possible number of compo-
nents if each inductor is 1 nH and each capacitor is 1 mF.

I(
I\

11
T T

\

1
\|
Al

— T —
o 411% T T
B FIGURE 7.62

42. For the network of Fig. 7.63, Ly = 1H, L, = L3 =2H, Ly = Ls = L¢ = 3H.
(a) Find the equivalent inductance. (b) Derive an expression for a general
network of this type having N stages, assuming stage N is composed of N
inductors, each having inductance N henrys.

L
3 L

Ly
Ly
L, Ls
2112 o

M FIGURE 7.63

43. Extend the concept of A-Y transformations to simplify the network of Fig. 7.64
if each element is a 2 pF capacitor.
44. Extend the concept of A-Y transformations to simplify the network of Fig. 7.64
—] if each element is a 1 nH inductor.

B FIGURE 7.64 7.4 Consequences of Linearity

45. With regard to the circuit represented in Fig. 7.65, (a) write a complete set of
nodal equations and (b) write a complete set of mesh equations.

L
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M FIGURE 7.65
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46. (a) Write nodal equations for the circuit of Fig. 7.66. (b) Write mesh equations i
for the same circuit. — AN AN .
47.1n the circuit shown in Fig. 7.67, let iy = 60e~2% mA with i;(0) = 20 mA. 200 100 l’L
(a) Find v(¢) for all z. (b) Find i, (¢) for ¢t > 0. (c¢) Find i, (¢) for ¢t > 0. + +
48. Let v, = 100" V and v; (0) = 20 V in the circuit of Fig. 7.68. (a) Findi(t) (") 5 uF = 1 o % 8 mH
for all 7. (b) Find v (¢) for t > 0. (¢) Find v, (¢) for ¢t > 0. _ _
+
" —L | uF 0c(0)=12V,i(0)=2 A
" . B FIGURE 7.66
v (_) i i) ==2uF
N 3H
%) 4 uF i ig
ST Ji . J

B FIGURE 7.68 i.VCD §6H V(t>§4H

49. If it is assumed that all the sources in the circuit of Fig. 7.69 have been con-
nected and operating for a very long time, use the superposition principle to

find ve (7) and vy (1). B FIGURE 7.67
20 mA
€
200 60 mH
AN e
+ v -
+
30 mA D =X 5uF —9V Q 40 cos 10% mA
M FIGURE 7.69

50. For the circuit of Fig. 7.70, assume no energy is stored at r = 0, and write a
complete set of nodal equations.

100 ©

B FIGURE 7.70

7.5 Simple Op Amp Circuits with Capacitors

51. Interchange the location of R; and Cyin the circuit of Fig. 7.27, and assume
that R; = oo, R, = 0, and A = oo for the op amp. (a) Find v, () as a
function of v, (#). (b) Obtain an equation relating v, (¢) and v, (#) if A is not
assumed to be infinite.

52. For the integrating amplifier circuit of Fig. 7.27, Ry = 100 k2, Cy = 500 uF,
and vy = 20sin 540r mV. Calculate vy if (a) A = 00, R; = 00, and R, = 0;
(b) A =5000, R; =1MQ,and R, =3 Q.




258 L ] CHAPTER 7 CAPACITORS AND INDUCTORS

53. Derive an expression for vey in terms of vy for the amplifier circuit shown in
Fig. 7.71.

54. In practice, circuits such as those depicted in Fig. 7.27 may not function
correctly unless there is a conducting pathway between the output and input
terminals of the op amp. (@) Analyze the modified integrating amplifier
circuit shown in Fig. 7.72 to obtain an expression for vy in terms of vy, and
(b) compare this expression to Eq. [17].

. A new piece of equipment designed to make crystals from molten constituents
is experiencing too many failures (cracked products). The production manager
wants to monitor the cooling rate to see if this is related to the problem. The
system has two output terminals available, where the voltage across them is
linearly proportional to the crucible temperature such that 30 mV corresponds

{1 to 30°C and 1 V corresponds to 1000°C. Design a circuit whose voltage output

R, represents the cooling rate, calibrated such that 1 V = 1°C/s.

@l 56. A confectionary company has decided to increase the production rate of its

milk chocolate bars to compensate for a recent increase in the cost of raw

materials. However, the wrapping unit cannot accept more than 1 bar per sec-

—0 ond, or it drops bars. A 200 mV peak-to-peak sinusoidal voltage signal is avail-
+ - . . - .

able from the bar-making system which feeds into the wrapping unit, such that

_ its frequency matches the bar production frequency (i.e., 1 Hz = 1 bar/s).

j’_ Design a circuit that provides a voltage output sufficient to power a 12 V audi-

= ble alarm when the production rate exceeds the capacity of the wrapping unit.

B FIGURE 7.72

. One problem satellites face is exposure to high-energy particles, which can
cause damage to sensitive electronics as well as solar arrays used to provide
power. A new communications satellite is equipped with a high-energy proton
detector measuring 1 cm x 1 cm. It provides a current directly equal to the
number of protons impinging the surface per second. Design a circuit whose
output voltage provides a running total of the number of proton hits, calibrated
such that 1 V = 1 million hits.

. The output of a velocity sensor attached to a sensitive piece of mobile equip-
ment is calibrated to provide a signal such that 10 mV corresponds to linear
motion at 1 m/s. If the equipment is subjected to sudden shock, it can be dam-
aged. Since force = mass x acceleration, monitoring of the rate of change of
velocity can be used to determine if the equipment is transported improperly.
(a) Design a circuit to provide a voltage proportional to the linear acceleration
such that 10 mV = 1 m/s%. (b) How many sensor-circuit combinations does
this application require?

# 59. A floating sensor in a certain fuel tank is connected to a variable resistor (often
called a potentiometer) such that a full tank (100 liters) corresponds to 1 €2 and
an empty tank corresponds to 10 €2. (a) Design a circuit that provides an output
voltage which indicates the amount of fuel remaining, so that 1 V = empty and
5V = full. (b) Design a circuit to indicate the rate of fuel consumption by
providing a voltage output calibrated to yield 1 V=1 I/s.

7.6 Duality

IR 60. (@) Draw the exact dual of the circuit depicted in Fig. 7.73. (b) Label the new
liz (dual) variables. (c) Write nodal equations for both circuits.

+ 61. (a) Draw the exact dual of the simple circuit shown in Fig. 7.74. (b) Label the
; (TD % 6H ) % AH new (dual) variables. (¢) Write mesh equations for both circuits.

[59)
jan
-—

iy

_ 10

B FIGURE 7.73 2V 4H 7Q

B FIGURE 7.74
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62. (a) Draw the exact dual of the simple circuit shown in Fig. 7.75. (b) Label the
new (dual) variables. (¢) Write mesh equations for both circuits.

B
Z{YCD §100 Q §IOH —~ 10 uF

B FIGURE 7.75

63. (a) Draw the exact dual of the simple circuit shown in Fig. 7.76. (b) Label the
new (dual) variables. (¢) Write nodal and mesh equations for both circuits.

2173 211A ,
20 1H 2H 80 Q l’x

IOOVT §169 §209 3H

B FIGURE 7.76

64. Draw the exact dual of the circuit shown in Fig. 7.77. Keep it neat!

2H
A1IX

1H

— NV M AN—
30 40 50
i =6F =<7F =<8F
1072V
M FIGURE 7.77

7.7 Modeling Capacitors and Inductors with PSpice

65. Taking the bottom node in the circuit of Fig. 7.78 as the reference terminal,
calculate (a) the current through the inductor and (b) the power dissipated
by the 7 2 resistor. (c¢) Verify your answers with an appropriate PSpice
simulation.

66. For the four-element circuit shown in Fig. 7.79, (a) calculate the power
g absorbed in each resistor; (b) determine the voltage across the capacitor;
(c) compute the energy stored in the capacitor; and (d) verify your answers
with an appropriate PSpice simulation. (Recall that calculations can be
performed in Probe.)

80 k)
A% 6 mH 46 k)
M FIGURE 7.78

80 k)

AY = 10 uF 46 kQ

\|

M FIGURE 7.79
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67.

&

o3
i

68.
§ 46 kQ g
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(a) Compute i;, and v, as indicated in the circuit of Fig. 7.80. (b) Determine
the energy stored in the inductor and in the capacitor. (¢) Verity your answers
with an appropriate PSpice simulation.

2 H
I
—_—
ip +
6 mA 810 Q) 120 Q 440 kQ) % =< 1 uF
M FIGURE 7.80

For the circuit depicted in Fig. 7.81, the value of i; (0) = 1 mA. (a) Compute
the energy stored in the element at ¢ = 0. (b) Perform a transient simulation of
the circuit over the range of 0 < ¢ < 500 ns. Determine the value of i, at

t =0, 130 ns, 260 ns, and 500 ns. (c¢) What fraction of the initial energy
remains in the inductor at t = 130 ns? At = 500 ns?

Assume an initial voltage of 9 V across the 10 uF capacitor shown in Fig. 7.82
(i.e., v(0) = 9 V). (a) Compute the initial energy stored in the capacitor.

(b) Fort > 0, do you expect the energy to remain in the capacitor? Explain.

(c) Perform a transient simulation of the circuit over the range of 0 <t <2.5s
and determine v(¢) at t = 460 ms, 920 ms, and 2.3 s. (¢) What fraction of the
initial energy remains stored in the capacitor at t = 460 ms? At = 2.3 s?
Referring to the circuit of Fig. 7.83, (a) calculate the energy stored in each

energy storage element; (b) verify your answers with an appropriate PSpice
simulation.

Chapter-Integrating Exercises

B FIGURE 7.81 g 69.
+
10 uF =< v(r) § 46 kQ)
- g 70.
B FIGURE 7.82
71.
Sv,
/\ 2 mH
N4 v
10 72.
MV
+ v, —
4V(:P luF== 2Q (PZmA
B FIGURE 7.83

g 73.

g 74.

For the circuit of Fig. 7.28, (a) sketch vq,; over the range of 0 <t < 5 ms if
Ry =1k, C; = 100 mF, and vy is a 1 kHz sinusoidal source having a peak
voltage of 2 V. (b) Verify your answer with an appropriate transient simulation,
plotting both v and v,y in Probe. (Hint: Between plotting traces, add a second
y axis using Plot, Add Y Axis. This allows both traces to be seen clearly.)

(a) Sketch the output function v,y of the amplifier circuit in Fig. 7.29 over the
range of 0 < ¢ < 100 ms if v; is a 60 Hz sinusoidal source having a peak
voltage of 400 mV, R; is 1 k€2, and L is 80 nH. (b) Verify your answer with
an appropriate transient simulation, plotting both vy and vy, in Probe. (Hint:
Between plotting traces, add a second y axis using Plot, Add Y Axis. This
allows both traces to be seen clearly.)

For the circuit of Fig. 7.71, (a) sketch voy over the range of 0 < < 2.5 ms if
Ry =100k, L1 = 100 mH, and vy is a 2 kHz sinusoidal source having a
peak voltage of 5 V. (b) Verify your answer with an appropriate transient simu-
lation, plotting both v and voy in Probe. (Hint: Between plotting traces, add a
second y axis using Plot, Add Y Axis. This allows both traces to be seen
clearly.)

Consider the modified integrator depicted in Fig. 7.72. Take R; = 100 €2,

Ry =10 MQ, and C; = 10 mF. The source v, provides a 10 Hz sinusoidal
voltage having a peak amplitude of 0.5 V. (a) Sketch vy over the range of

0 <t <500 ms. (b) Verity your answer with an appropriate transient simula-
tion, plotting both vs and vey in Probe. (Hint: Between plotting traces, add a
second y axis using Plot, Add Y Axis. This allows both traces to be seen
clearly.)
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KEY CONCEPTS

RL and RC Time Constants

INTRODUCTION
. . . .
In Chap. 7 we wrote equations for the response of several circuits Natural and Forced Response
containing both inductance and capacitance, but we did not solve ®
any of them. Now we are ready to proceed with the solution of the Calculating the Time-
simpler circuits, namely, those which contain only resistors and Dependent Response to DC
inductors, or only resistors and capacitors. Excitation
Although the circuits we are about to consider have a very O
elementary appearance, they are also of practical importance. How to Determine Initial
Networks of this form find use in electronic amplifiers, automatic Conditions and Their Effect
control systems, operational amplifiers, communications equip- on the Circuit Response
ment, and many other applications. Familiarity with these simple L4
circuits will enable us to predict the accuracy with which the Analyglng Circuits W'th Step
. . . . . Function Input and with
output of an amplifier can follow an input that is changing rapidly Switches
with time, or to predict how quickly the speed of a motor will ¢
change in response to a change in its field current. Our understand- .
) . o ) Construction of Pulse
ing of simple RL and RC circuits will also enable us to suggest Waveforms Using Unit-Step
modifications to the amplifier or motor in order to obtain a more Functions
desirable response. Ps

The Response of Sequentially

8.1  THE SOURCE-FREE RL CIRCUIT Switched Circuts

The analysis of circuits containing inductors and/or capacitors is de-
pendent upon the formulation and solution of the integrodifferential
equations that characterize the circuits. We will call the special type
of equation we obtain a homogeneous linear differential equation,
which is simply a differential equation in which every term is of the
first degree in the dependent variable or one of its derivatives. A
solution is obtained when we have found an expression for the
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M FIGURE 8.1 Aseries RL circuit for which i(f) is to
be determined, subject to the initial condition that
i(0) = lo.

[t may seem pretty strange to discuss a time-varying
current flowing in a circuit with no sources! Keep in
mind that we only know the current at the time speci-
fied as t = 0; we don't know the current prior to that
time. In the same vein, we don't know what the circuit
looked like prior to t = 0, either. In order for a current
to be flowing, a source had to have been present at
some point, but we are not privy to this information.
Fortunately, it is not required in order to analyze the
circuit we are given.

CHAPTER 8 BASICRL AND RC CIRCUITS

dependent variable that satisfies both the differential equation and also the
prescribed energy distribution in the inductors or capacitors at a prescribed
instant of time, usually # = 0.

The solution of the differential equation represents a response of the
circuit, and it is known by many names. Since this response depends upon
the general “nature” of the circuit (the types of elements, their sizes, the
interconnection of the elements), it is often called a natural response.
However, any real circuit we construct cannot store energy forever; the
resistances intrinsically associated with inductors and capacitors will even-
tually convert all stored energy into heat. The response must eventually die
out, and for this reason it is frequently referred to as the transient response.
Finally, we should also be familiar with the mathematicians’ contribution to
the nomenclature; they call the solution of a homogeneous linear differen-
tial equation a complementary function.

When we consider independent sources acting on a circuit, part of the re-
sponse will resemble the nature of the particular source (or forcing function)
used; this part of the response, called the particular solution, the steady-state
response, or the forced response, will be “complemented” by the comple-
mentary response produced in the source-free circuit. The complete response
of the circuit will then be given by the sum of the complementary function
and the particular solution. In other words, the complete response is the sum
of the natural response and the forced response. The source-free response may
be called the natural response, the transient response, the free response, or
the complementary function, but because of its more descriptive nature, we
will most often call it the natural response.

We will consider several different methods of solving these differential
equations. The mathematical manipulation, however, is not circuit analysis.
Our greatest interest lies in the solutions themselves, their meaning, and
their interpretation, and we will try to become sufficiently familiar with the
form of the response that we are able to write down answers for new circuits
by just plain thinking. Although complicated analytical methods are needed
when simpler methods fail, a well-developed intuition is an invaluable
resource in such situations.

We begin our study of transient analysis by considering the simple series
RL circuit shown in Fig. 8.1. Let us designate the time-varying current as i (¢);
we will represent the value of i () att = Oas Ip; in other words, i (0) = I,. We
therefore have

. . di
Ri+vi=Ri+L—=0
dt
or
di R
40 =0 1
dt+Ll o

Our goal is an expression for i(f) which satisfies this equation and also
has the value [ at = 0. The solution may be obtained by several different
methods.

A Direct Approach

One very direct method of solving a differential equation consists of writ-
ing the equation in such a way that the variables are separated, and then
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integrating each side of the equation. The variables in Eq. [1] are i and 7, and
it is apparent that the equation may be multiplied by dt, divided by i, and
arranged with the variables separated:

di R

— =——dt 2

i L [21

Since the current is Iy at = 0 and i(¢) at time 7, we may equate the two

definite integrals which are obtained by integrating each side between the

corresponding limits:
i(r) di’ t R
[ = [ -far
L ! o L

Performing the indicated integration,

1
/

lni’|’10 = —Zt

0
which results in

. R
Ini —Inly = —Z(t -0

After a little manipulation, we find that the current i() is given by
i(t) = Iye ®/E [3]

We check our solution by first showing that substitution of Eq. [3] in
Eq. [1] yields the identity O = 0, and then showing that substitution of t = 0
in Eq. [3] produces i (0) = Iy. Both steps are necessary; the solution must
satisfy the differential equation which characterizes the circuit, and it must
also satisfy the initial condition.

® 263
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EXAMPLE 8.1

If the inductor of Fig. 8.2 has a current iy, =2 A at ¢t = 0, find an
expression for i;(¢) valid for £ > 0, and its value at # = 200 us.

This is the identical type of circuit just considered, so we expect an
inductor current of the form

ip = Ioe_Rt/L
where R = 200 2, L = 50 mH and I is the initial current flowing
through the inductor at # = 0. Thus,
iL (t) - 26740001‘
Substituting ¢ = 200 x 107° s, we find that i, (r) = 898.7 mA, less
than half the initial value.

PRACTICE .

8.1 Determine the current i through the resistor of Fig. 8.3 at# = 1 ns
ifig(0) =6 A.

Ans: 812 mA.

50 mH
11

§ZOOQ

B FIGURE 8.2 Asimple RL circuit in which energy is
stored in the inductor at ¢ = 0.

500 nH
ALIN

iklgndz

M FIGURE 8.3 Circuit for Practice Problem 8.1.
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An Alternative Approach

The solution may also be obtained by a slight variation of the method we
just described. After separating the variables, we now also include a con-

stant of integration. Thus,
e[ fark
i L

and integration gives us

mi— R4k (4]
nyE=——
L

The constant K cannot be evaluated by substitution of Eq. [4] in the orig-
inal differential equation [1]; the identity O = O will result, because Eq. [4]
is a solution of Eq. [1] for any value of K (try it out on your own). The con-
stant of integration must be selected to satisfy the initial condition
i(0) = Iy. Thus, at t = 0, Eq. [4] becomes

1111() =K

and we use this value for K in Eq. [4] to obtain the desired response

Ini Rt—H I
ni =—— n
7 0

or
i(t) = Ipe ®/E

as before.

A More General Solution Approach

Either of these methods can be used when the variables are separable, but
this is not always the situation. In the remaining cases we will rely on a very
powerful method, the success of which will depend upon our intuition or
experience. We simply guess or assume a form for the solution and then test
our assumptions, first by substitution in the differential equation, and then
by applying the given initial conditions. Since we cannot be expected to
guess the exact numerical expression for the solution, we will assume a so-
lution containing several unknown constants and select the values for these
constants in order to satisfy the differential equation and the initial condi-
tions. Many of the differential equations encountered in circuit analysis
have a solution which may be represented by the exponential function or by
the sum of several exponential functions. Let us assume a solution of Eq. [1]
in exponential form,

i(t) = Ae'’ [5]
where A and s; are constants to be determined. After substituting this as-

sumed solution in Eq. [1], we have

R
Asje’ + Azes" =0
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or
R sit
s1+— A’ =0 [6]
L
In order to satisfy this equation for all values of time, it is necessary that
A=0,o0rs; =—oo,ors; =—R/L.Butif A =0ors; =—o0,then every

response is zero; neither can be a solution to our problem. Therefore, we
must choose

Si=-—7 (7]

and our assumed solution takes on the form
i(1) = Ae R1/E

The remaining constant must be evaluated by applying the initial condi-
tion i (0) = Iy. Thus, A = Iy, and the final form of the assumed solution is
(again)

i(t) = Iype R/E

A summary of the basic approach is outlined in Fig. 8.4.

A Direct Route: The Characteristic Equation

In fact, there is a more direct route that we can take. In obtaining Eq. [7], we
solved

+ R 0 [8]
S — =
"L
which is known as the characteristic equation. We can obtain the charac-
teristic equation directly from the differential equation, without the need for
substitution of our trial solution. Consider the general first-order differential
equation

df

a—+bf =0

dt f
where a and b are constants. We substitute s' for df/dt and s° for f, result-
ing in

df

aE—i—bf:(as—i-b)f:O

From this we may directly obtain the characteristic equation

as+b=0
which has the single root s = —b/a. The solution to our differential equa-
tion is then

f — Ae—bt/a

This basic procedure is easily extended to second-order differential equa-
tions, as we will explore in Chap. 9.

S~

A

~

Assume a general solution
with appropriate constants.

J

L

A

Substitute the trial solution
into the differential
equation and simplify the

result.

J

s

A

~
Determine the value for
one constant that does not

result in a trivial solution.

J

L

Invoke the initial
condition(s) to determine
values for the remaining

constant(s).

J

M FIGURE 8.4 Flowchart for the general approach

L

End.
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to solution of first-order differential equations where,

based on experience, we can guess the form of the

solution.
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EXAMPLE 8.2

100
N
1 il
+
409§v 1=0 QSH
B 24V
(a)
10Q
N
bie
+
409§v §5H
; 24V
t=0
(b)
100
bie
+
4007 §5H

()
M FIGURE 8.5 (a) Asimple RL circuit with a switch
thrown at time ¢t = 0. (b) The circuit as it exists prior to
t = 0. (c) The circuit after the switch is thrown, and the
24V source is removed.

VAN

For the circuit of Fig. 8.5a, find the voltage labeled v at # = 200 ms.

CHAPTER 8 BASICRL AND RC CIRCUITS

Identify the goal of the problem.

The schematic of Fig. 8.5a actually represents two different circuits: one
with the switch closed (Fig. 8.5b) and one with the switch open
(Fig. 8.5¢). We are asked to find v(0.2) for the circuit shown in Fig. 8.5¢.

Collect the known information.

Both new circuits are drawn and labeled correctly. We next make the
assumption that the circuit in Fig. 8.5 has been connected for a long
time, so that any transients have dissipated. We may make such an as-
sumption as a general rule unless instructed otherwise. This circuit de-
termines i;(0).

Devise a plan.

The circuit of Fig. 8.5¢ may be analyzed by writing a KVL equation.
Ultimately we want a differential equation with only v and # as vari-
ables; we will then solve the differential equation for v ().

Construct an appropriate set of equations.
Referring to Fig. 8.5¢, we write

.
—v+10i, +58E — 9
dt

Substituting i; = —v/40, we find that

5dv+ 10_'_1 0
= 27 e 0=
40 dt 40

or, more simply,

dv
— +10v=0 9
dl‘+ v 1

Determine if additional information is required.

From previous experience, we know that a complete expression for v
will require knowledge of v at a specific instant of time, with = 0
being the most convenient. We might be tempted to look at Fig. 8.5
and write v(0) = 24 V, but this is only true just before the switch
opens. The resistor voltage can change to any value in the instant
that the switch is thrown; only the inductor current must remain
unchanged.

In the circuit of Fig. 8.5b,i; = 24/10 = 2.4 A since the inductor
acts like a short circuit to a dc current. Therefore, i; (0) = 2.4 Ain the
circuit of Fig. 8.5¢, as well—a key point in analyzing this type of cir-
cuit. Therefore, in the circuit of Fig. 8.5¢, v(0) = (40)(—2.4) = —96 V.

Attempt a solution.
Any of the three basic solution techniques can be brought to bear; let’s
start by writing the characteristic equation corresponding to Eq. [9]:

s+10=0



SECTION 8.1 THE SOURCE-FREE RL CIRCUIT

Solving, we find that s = —10, so
v(t) = Ae 1" [10]
(which, upon substitution into the left-hand side of Eq. [9], results in
—10Ae™"" + 104" =0

as expected.)
We find A by setting = 0 in Eq. [10] and employing the fact that
v(0) = —96 V. Thus,
v(t) = —96¢ ' [11]
and so v(0.2) = —12.99 V, down from a maximum of —96 V.
Verify the solution. Is it reasonable or expected?

Instead of writing a differential equation in v, we could have written
our differential equation in terms of i.:

: : dip,
40i; +10i; +5— =0
dt
or

diy
— +10i, =0
dt + 10

which has the solution i; = Be™'%. With i;(0) = 2.4, we find that
ir(f) = 2.4¢7 %, Since v = —40i;, we once again obtain Eq. [11]. We
should note: it is no coincidence that the inductor current and the
resistor voltage have the same exponential dependence!

PRACTICE "

8.2 Determine the inductor voltage v in the circuit of Fig. 8.6 for ¢ > 0.

Ans: —25¢"2V.

Accounting for the Energy

Before we turn our attention to the interpretation of the response, let us re-
turn to the circuit of Fig. 8.1, and check the power and energy relationships.
The power being dissipated in the resistor is

pr =i’R = IfRe *R/L

and the total energy turned into heat in the resistor is found by integrating
the instantaneous power from zero time to infinite time:

o0 o0
WR = f prdt = IOZR/ e R gt
0 0

zlzR _ e—th/L :_L12
0 ( 2R ) o 277

This is the result we expect, because the total energy stored initially in
the inductor is %ng, and there is no longer any energy stored in the induc-
tor at infinite time since its current eventually drops to zero. All the initial
energy therefore is accounted for by dissipation in the resistor.

40
i
6Q§ i;j :ZQSH

M FIGURE 8.6 Circuit for Practice Problem 8.2.
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8.2 _ PROPERTIES OF THE EXPONENTIAL RESPONSE

Let us now consider the nature of the response in the series RL circuit. We
have found that the inductor current is represented by

i(t) = Iye R/E

Att = 0, the current has value Iy, but as time increases, the current decreases
and approaches zero. The shape of this decaying exponential is seen by the
plotofi(¢)/1y versus t shown in Fig. 8.7. Since the function we are plotting is
e R/L the curve will not change if R/L remains unchanged. Thus, the same
curve must be obtained for every series RL circuit having the same L/R
ratio. Let us see how this ratio affects the shape of the curve.

0
M FIGURE 8.7 Aplot of e versus ¢.

If we double the ratio of L to R, the exponent will be unchanged only if
t is also doubled. In other words, the original response will occur at a later
time, and the new curve is obtained by moving each point on the original
curve twice as far to the right. With this larger L /R ratio, the current takes
longer to decay to any given fraction of its original value. We might have a
tendency to say that the “width” of the curve is doubled, or that the width is
proportional to L/R. However, we find it difficult to define our term width,
because each curve extends from ¢ = 0 to co! Instead, let us consider the
time that would be required for the current to drop to zero if it continued to
drop at its initial rate.

The initial rate of decay is found by evaluating the derivative at zero time:

d i

R
4 R Ry
dt I

t=0 L

t=0 L

We designate the value of time it takes for i / [ to drop from unity to zero, as-
suming a constant rate of decay, by the Greek letter t (tau). Thus,

()

L
T= [12]

or
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The ratio L /R has the units of seconds, since the exponent —R¢/L must
be dimensionless. This value of time t is called the time constant and is
shown pictorially in Fig. 8.8. The time constant of a series RL circuit may
be found graphically from the response curve; it is necessary only to draw
the tangent to the curve at + = 0 and determine the intercept of this tangent
line with the time axis. This is often a convenient way of approximating the
time constant from the display on an oscilloscope.

t

B FIGURE 8.8 The time constant 7 is L /R for a series RL circuit. It is the time required for the response
curve to drop to zero if it decays at a constant rate equal to its initial rate of decay.

An equally important interpretation of the time constant t is obtained by
determining the value of i (t)/[y at t = t. We have

i _

7 e '=03679 or  i(r) =0.36791,
0

Thus, in one time constant the response has dropped to 36.8 percent of
its initial value; the value of T may also be determined graphically from this
fact, as indicated by Fig. 8.9. It is convenient to measure the decay of the
current at intervals of one time constant, and recourse to a hand calculator
shows that i () /1y is 0.3679 att = 7, 0.1353 att = 27, 0.04979 at t = 37,
0.01832 at t = 41, and 0.006738 at + = 5t. At some point three to five
time constants after zero time, most of us would agree that the current is a

13
T 2T 37

M FIGURE 8.9 The current in a series RL circuit is reduced to 37 percent of its
initial value at t = 7, 14 percent at t = 2t, and 5 percent at t = 3t.
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negligible fraction of its former self. Thus, if we are asked, “How long does
it take for the current to decay to zero?” our answer might be, “About
five time constants.” At that point, the current is less than 1 percent of its
original value!

PRACTICE _

8.3 In a source-free series RL circuit, find the numerical value of the
ratio: () i(27)/i(t); (b) i(0.57)/i(0); (c) t/T ifi(t)/i(0) = 0.2;
d)t/rifi(0) —i(t) =i(0)In2.

Ans: 0.368; 0.607; 1.609; 1.181.

COMPUTER-AIDED ANALYSIS

The transient analysis capability of PSpice is very useful when consider-
ing the response of source-free circuits. In this example, we make use of
a special feature that allows us to vary a component parameter, similar to
the way we varied the dc voltage in other simulations. We do this by
adding the component PARAM to our schematic; it may be placed any-
where, as we will not wire it into the circuit. Our complete RL circuit is
shown in Fig. 8.10, which includes an initial inductor current of 1 mA.
In order to relate our resistor value to the proposed parameter
sweep, we must perform three tasks. First, we provide a name for our
parameter, which we choose to call Resistance for the sake of simplic-
ity. This is accomplished by double-clicking on the PARAMETERS:
label in the schematic, which opens the Property Editor for this pseudo-
component. Clicking on New Column results in the dialog box shown
in Fig. 8.11a, in which we enter Resistance under Name and a place-
holder value of 1 under Value. Our second task consists of linking the
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M FIGURE 8.10 Simple RL circuit drawn using the schematic capture tool.



SECTION 8.2 PROPERTIES OF THE EXPONENTIAL RESPONSE

value of R1 to our parameter sweep, which we accomplish by double-
clicking on the default value of R1 on the schematic, resulting in the
dialog box of Fig. 8.11b. Under Value, we simply enter {Resistance}.
(Note the curly brackets are required.)
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M FIGURE 8.11 (a) Add New Column dialog box in the Property Editor for PARAM. (b) Resistor
value dialog box.

Our third task consists of setting up the simulation, which includes
setting transient analysis parameters as well as the values we desire for
R1. Under PSpice we select New Simulation Profile (Fig. 8.12a), in
which we select Time Domain (Transient) for Analysis type, 300 ns
for Run to time, and tick the Parametric Sweep box under Options.
This last action results in the dialog box shown in Fig. 8.12b, in which
we select Global parameter for Sweep variable and enter Resistance
for Parameter name. The final setup step required is to select
Logarithmic under Sweep type, a Start value of 10, an End value
of 1000, and 1 Points/Decade; alternatively we could list the desired
resistor values using Value list.

After running the simulation, the notification box shown in Fig. 8.13
appears, listing the available data sets for plotting (Resistance = 10,
100, and 1000 in this case). A particular data set is selected by high-
lighting it; we select all three for this example. Upon selecting the
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La JI

M FIGURE 8.13 Available data sections dialog box.

Nore ] [ 0K ] ’ 7 Cancel ]

(Continued on next page)

® 271
Simulation Settings - Exsmphe FiL Sweep B
|G | Arlrss | Corbuamnon i [ Option [ Dot Coiection | Probes Wide |

{nalysia type: 7
T Do aneert) =] B Whas seconds (TSTOR)
g Stout saning clata adier 01 e
Teansient cptions
atimum stop sive: smconds

[ ] &hp the iniel trangient bias point cakculstion [SKIPEP)

17 B i et e

Dhastpust e Diplicres
Ok ][ Cocl |[ ook |[ Hee |
(a)
Simulation Settings - Exampte AL =]
Analysts type: St vassble
Ture Domain (Trarmerd) = Vokege source
Cusierd snace
2
Moxded paramater
Temosatue Faamelsi name. Rendancs
Sy bype
) Lt Flalvave. 10
i i Endwaie 1000
PortaDecads: 1
Vahos itk

)
M FIGURE 8.12 () Simulation dialog box.
(b) Parameter sweep dialog box.



272

CHAPTER 8 BASICRL AND RC CIRCUITS

inductor current from our Trace variable choices in Probe, we obtain
three graphs at once, as shown (after labeling by hand) in Fig. 8.14.
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B FIGURE 8.14 Probe output for the three resistances.

Why does a larger value of the time constant L/R produce a
response curve that decays more slowly? Let us consider the effect of
each element.

In terms of the time constant 7, the response of the series RL circuit
may be written simply as

i(t) = Ipe "/

An increase in L allows a greater energy storage for the same initial
current, and this larger energy requires a longer time to be dissipated in
the resistor. We may also increase L /R by reducing R. In this case, the
power flowing into the resistor is less for the same initial current; again,
a greater time is required to dissipate the stored energy. This effect is
seen clearly in our simulation result of Fig. 8.14.

8.3 , THE SOURCE-FREE RC CIRCUIT

Circuits based on resistor-capacitor combinations are more common than
their resistor-inductor analogs. The principal reasons for this are the smaller
losses present in a physical capacitor, lower cost, better agreement between
the simple mathematical model and the actual device behavior, and also
smaller size and lighter weight, both of which are particularly important for
integrated-circuit applications.
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Let us see how closely the analysis of the parallel (or is it series?) RC
circuit shown in Fig. 8.15 corresponds to that of the RL circuit. We will as-
sume an initial stored energy in the capacitor by selecting

U(O) = V()

The total current leaving the node at the top of the circuit diagram must
be zero, so we may write

C—+—-—=0
dt + R
Division by C gives us
dv v
— 4+ —=0 13
dt + RC L13]
Equation [13] has a familiar form; comparison with Eq. [1]
di R
—+—i=0 1
ot 8

shows that the replacement of i by v and L/R by RC produces the identical
equation we considered previously. It should, for the RC circuit we are now
analyzing is the dual of the RL circuit we considered first. This duality
forces v(t) for the RC circuit and i(¢) for the RL circuit to have identical
expressions if the resistance of one circuit is equal to the reciprocal of the
resistance of the other circuit, and if L is numerically equal to C. Thus, the
response of the RL circuit

i(t) = i(0)e R/ = [pe RI/E
enables us to immediately write
v(t) = v(0)e /RC = Ve~ t/RC [14]

for the RC circuit.
Suppose instead that we had selected the current i as our variable in the
RC circuit, rather than the voltage v. Applying Kirchhoff’s voltage law,

1 t
—/ idt' —vo(ty) + Ri =0
CJi

we obtain an integral equation as opposed to a differential equation. How-
ever, taking the time derivative of both sides of this equation,

il + R di =0 [15]
C dt
and replacing i with v/ R, we obtain Eq. [13] again:
v dv
[T

Equation [15] could have been used as our starting point, but the application
of duality principles would not have been as natural.

Let us discuss the physical nature of the voltage response of the RC circuit
as expressed by Eq. [14]. At = 0 we obtain the correct initial condition, and
as t becomes infinite, the voltage approaches zero. This latter result agrees
with our thinking that if there were any voltage remaining across the capaci-
tor, then energy would continue to flow into the