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PREFACE

This book is intended for an introductory course in digital logic design, which is a basic
course in most electrical and computer engineering programs. A successful designer of
digital logic circuits needs a good understanding of basic concepts and a firm grasp of the
modern design approach that relies on computer-aided design (CAD) tools.

The main goals of the book are (1) to teach students the fundamental concepts in
classical manual digital design and (2) illustrate clearly the way in which digital circuits
are designed today, using CAD tools. Even though modern designers no longer use manual
techniques, except in rare circumstances, our motivation for teaching such techniques is
to give students an intuitive feeling for how digital circuits operate. Also, the manual
techniques provide an illustration of the types of manipulations performed by CAD tools,
giving students an appreciation of the benefits provided by design automation. Throughout
the book, basic concepts are introduced by way of examples that involve simple circuit
designs, which we perform using both manual techniques and modern CAD-tool-based
methods. Having established the basic concepts, more complex examples are then provided,
using the CAD tools. Thus our emphasis is on modern design methodology to illustrate
how digital design is carried out in practice today.

TECHNOLOGY

The book discusses modern digital circuit implementation technologies. The emphasis is on
programmable logic devices (PLDs), which is the most appropriate technology for use in a
textbook for two reasons. First, PLDs are widely used in practice and are suitable for almost
all types of digital circuit designs. In fact, students are more likely to be involved in PLD-
based designs at some point in their careers than in any other technology. Second, circuits
are implemented in PLDs by end-user programming. Therefore, students can be provided
with an opportunity, in a laboratory setting, to implement the book’s design examples in
actual chips. Students can also simulate the behavior of their designed circuits on their own
computers. We use the two most popular types of PLDs for targeting of designs: complex
programmable logic devices (CPLDs) and field-programmable gate arrays (FPGAs).

We emphasize the use of a hardware description language in specifying the logic cir-
cuits, because the HDL-based approach is the most efficient design method to use in practice.
We describe in detail the IEEE Standard Verilog HDL language and use it extensively in
examples.

vi



PREFACE

ScoPE oF THE BOOK

This edition of the book has been extensively restructured. All of the material that should
be covered in a one-semester course is now included in Chapters 1 to 6. More advanced
material is presented in Chapters 7 to 11.

Chapter 1 provides a general introduction to the process of designing digital systems.
It discusses the key steps in the design process and explains how CAD tools can be used
to automate many of the required tasks. It also introduces the representation of digital
information.

Chapter 2 introduces the logic circuits. It shows how Boolean algebra is used to
represent such circuits. Itintroduces the concepts of logic circuit synthesis and optimization,
and shows how logic gates are used to implement simple circuits. It also gives the reader
a first glimpse at Verilog, as an example of a hardware description language that may be
used to specify the logic circuits.

Chapter 3 concentrates on circuits that perform arithmetic operations. It discusses num-
bers and shows how they can be manipulated using logic circuits. This chapter illustrates
how Verilog can be used to specify the desired functionality and how CAD tools provide a
mechanism for developing the required circuits.

Chapter 4 presents combinational circuits that are used as building blocks. It includes
the encoder, decoder, and multiplexer circuits. These circuits are very convenient for
illustrating the application of many Verilog constructs, giving the reader an opportunity to
discover more advanced features of Verilog.

Storage elements are introduced in Chapter 5. The use of flip-flops to realize regular
structures, such as shift registers and counters, is discussed. Verilog-specified designs of
these structures are included.

Chapter 6 gives a detailed presentation of synchronous sequential circuits (finite state
machines). It explains the behavior of these circuits and develops practical design tech-
niques for both manual and automated design.

Chapter 7 is a discussion of a number of practical issues that arise in the design of real
systems. It highlights problems often encountered in practice and indicates how they can
be overcome. Examples of larger circuits illustrate a hierarchical approach in designing
digital systems. Complete Verilog code for these circuits is presented.

Chapter 8 deals with more advanced techniques for optimized implementation of logic
functions. It presents algorithmic techniques for optimization. It also explains how logic
functions can be specified using a cubical representation as well as using binary decision
diagrams.

Asynchronous sequential circuits are discussed in Chapter 9. While this treatment is
not exhaustive, it provides a good indication of the main characteristics of such circuits.
Even though the asynchronous circuits are not used extensively in practice, they provide
an excellent vehicle for gaining a deeper understanding of the operation of digital circuits
in general. They illustrate the consequences of propagation delays and race conditions that
may be inherent in the structure of a circuit.

Chapter 10 presents a complete CAD flow that the designer experiences when design-
ing, implementing, and testing a digital circuit.

vii
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PREFACE

Chapter 11 introduces the topic of testing. A designer of logic circuits has to be aware
of the need to test circuits and should be conversant with at least the most basic aspects of
testing.

Appendix A provides a complete summary of Verilog features. Although use of Verilog
is integrated throughout the book, this appendix provides a convenient reference that the
reader can consult from time to time when writing Verilog code.

The electronic aspects of digital circuits are presented in Appendix B. This appendix
shows how the basic gates are built using transistors and presents various factors that affect
circuit performance. The emphasis is on the latest technologies, with particular focus on
CMOS technology and programmable logic devices.

WHAT CAN BE COVERED IN A COURSE

Much of the material in the book can be covered in 2 one-quarter courses. A good coverage
of the most important material can be achieved in a single one-semester, or even a one-
quarter course. This is possible only if the instructor does not spend too much time teaching
the intricacies of Verilog and CAD tools. To make this approach possible, we organized
the Verilog material in a modular style that is conducive to self-study. Our experience in
teaching different classes of students at the University of Toronto shows that the instructor
may spend only three to four lecture hours on Verilog, describing how the code should be
structured, including the use of design hierarchy, using scalar and vector variables, and on
the style of code needed to specify sequential circuits. The Verilog examples given in the
book are largely self-explanatory, and students can understand them easily.

The book is also suitable for a course in logic design that does not include exposure to
Verilog. However, some knowledge of Verilog, even at a rudimentary level, is beneficial
to the students, and it is a great preparation for a job as a design engineer.

One-Semester Course

The following material should be covered in lectures:

e Chapter 1—all sections.
e Chapter 2—all sections.
e Chapter 3—Sections 3.1 to 3.5.
e Chapter 4—all sections.
e Chapter 5—all sections.

e  Chapter 6—all sections.

One-Quarter Course

In a one-quarter course the following material can be covered:

e Chapter 1—all sections.

e Chapter 2—all sections.



PREFACE

e  Chapter 3—Sections 3.1 to 3.3 and Section 3.5.
e  Chapter 4—all sections.

e Chapter 5—all sections.

e Chapter 6—Sections 6.1 to 6.4.

VERILOG

Verilog is a complex language, which some instructors feel is too hard for beginning students
to grasp. We fully appreciate this issue and have attempted to solve it. It is not necessary
to introduce the entire Verilog language. In the book we present the important Verilog
constructs that are useful for the design and synthesis of logic circuits. Many other language
constructs, such as those that have meaning only when using the language for simulation
purposes, are omitted. The Verilog material is introduced gradually, with more advanced
features being presented only at points where their use can be demonstrated in the design
of relevant circuits.

The book includes more than 120 examples of Verilog code. These examples illustrate
how Verilog is used to describe a wide range of logic circuits, from those that contain only
a few gates to those that represent digital systems such as a simple processor.

All of the examples of Verilog code presented in the book are provided on the Authors’
website at

www.eecg.toronto.edu/~brown/Verilog_3e

SOLVED PROBLEMS

The chapters include examples of solved problems. They show how typical homework
problems may be solved.

HOMEWORK PROBLEMS

More than 400 homework problems are provided in the book. Answers to selected problems
are given at the back of the book. Solutions to all problems are available to instructors in
the Solutions Manual that accompanies the book.

POWERPOINT SLIDES AND SOLUTIONS MANUAL

PowerPoint slides that contain all of the figures in the book are available on the Authors’
website. Instructors can request access to these slides, as well as access to the Solutions
Manual for the book, at:

www.mhhe.com/brownvranesic
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CAD TooLs

Modern digital systems are quite large. They contain complex logic circuits that would be
difficult to design without using good CAD tools. Our treatment of Verilog should enable the
reader to develop Verilog code that specifies logic circuits of varying degrees of complexity.
To gain proper appreciation of the design process, it is highly beneficial to implement the
designs using commercially-available CAD tools. Some excellent CAD tools are available
free of charge. For example, the Altera Corporation has its Quartus I CAD software, which
is widely used for implementing designs in programmable logic devices such as FPGAs.
The Web Edition of the Quartus II software can be downloaded from Altera’s website and
used free of charge, without the need to obtain a license. In previous editions of this
book a set of tutorials for using the Quartus II software was provided in the appendices.
Those tutorials can now be found on the Authors’ website. Another set of useful tutorials
about Quartus II can be found on Altera’s University Program website, which is located at
www.altera.com/education/univ.
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INTRODUCTION

CHAPTER OBJECTIVES

In this chapter you will be introduced to:

e Digital hardware components
e An overview of the design process
e Binary numbers

e Digital representation of information




2 CHAPTER 1 e INTRODUCTION

This book is about logic circuits—the circuits from which computers are built. Proper understanding of
logic circuits is vital for today’s electrical and computer engineers. These circuits are the key ingredient of
computers and are also used in many other applications. They are found in commonly-used products like
music and video players, electronic games, digital watches, cameras, televisions, printers, and many household
appliances, as well as in large systems, such as telephone networks, Internet equipment, television broadcast
equipment, industrial control units, and medical instruments. In short, logic circuits are an important part of
almost all modern products.

The material in this book will introduce the reader to the many issues involved in the design of logic
circuits. It explains the key ideas with simple examples and shows how complex circuits can be derived
from elementary ones. We cover the classical theory used in the design of logic circuits because it provides
the reader with an intuitive understanding of the nature of such circuits. But, throughout the book, we
also illustrate the modern way of designing logic circuits using sophisticated computer aided design (CAD)
software tools. The CAD methodology adopted in the book is based on the industry-standard design language
called the Verilog hardware description language. Design with Verilog is first introduced in Chapter 2, and
usage of Verilog and CAD tools is an integral part of each chapter in the book.

Logic circuits are implemented electronically, using transistors on an integrated circuit chip. Commonly
available chips that use modern technology may contain more than a billion transistors, as in the case of some
computer processors. The basic building blocks for such circuits are easy to understand, but there is nothing
simple about a circuit that contains billions of transistors. The complexity that comes with large circuits can
be handled successfully only by using highly-organized design techniques. We introduce these techniques in
this chapter, but first we briefly describe the hardware technology used to build logic circuits.

| 1.1 DiGITAL HARDWARE

Logic circuits are used to build computer hardware, as well as many other types of products.
All such products are broadly classified as digital hardware. The reason that the name digital
is used will be explained in Section 1.5—it derives from the way in which information is
represented in computers, as electronic signals that correspond to digits of information.

The technology used to build digital hardware has evolved dramatically over the past
few decades. Until the 1960s logic circuits were constructed with bulky components, such
as transistors and resistors that came as individual parts. The advent of integrated circuits
made it possible to place a number of transistors, and thus an entire circuit, on a single chip.
In the beginning these circuits had only a few transistors, but as the technology improved
they became more complex. Integrated circuit chips are manufactured on a silicon wafer,
such as the one shown in Figure 1.1. The wafer is cut to produce the individual chips,
which are then placed inside a special type of chip package. By 1970 it was possible to
implement all circuitry needed to realize a microprocessor on a single chip. Although early
microprocessors had modest computing capability by today’s standards, they opened the
door for the information processing revolution by providing the means for implementation
of affordable personal computers.
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Figure 1.1  Asilicon wafer (courtesy of Altera Corp.).

About 30 years ago Gordon Moore, chairman of Intel Corporation, observed that in-
tegrated circuit technology was progressing at an astounding rate, approximately doubling
the number of transistors that could be placed on a chip every two years. This phenomenon,
informally known as Moore’s law, continues to the present day. Thus in the early 1990s
microprocessors could be manufactured with a few million transistors, and by the late 1990s
it became possible to fabricate chips that had tens of millions of transistors. Presently, chips
can be manufactured containing billions of transistors.

Moore’s law is expected to continue to hold true for a number of years. A consortium
of integrated circuit associations produces a forecast of how the technology is expected
to evolve. Known as the International Technology Roadmap for Semiconductors (ITRS)
[1], this forecast discusses many aspects of technology, including the maximum number of
transistors that can be manufactured on a single chip. A sample of data from the ITRS is given
in Figure 1.2. It shows that chips with about 10 million transistors could be successfully
manufactured in 1995, and this number has steadily increased, leading to today’s chips with
over a billion transistors. The roadmap predicts that chips with as many as 100 billion
transistors will be possible by the year 2022. There is no doubt that this technology will
have a huge impact on all aspects of people’s lives.

The designer of digital hardware may be faced with designing logic circuits that can be
implemented on a single chip or designing circuits that involve a number of chips placed
on a printed circuit board (PCB). Frequently, some of the logic circuits can be realized
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Figure 1.2  An estimate of the maximum number of transistors per chip
over time.

in existing chips that are readily available. This situation simplifies the design task and
shortens the time needed to develop the final product. Before we discuss the design process
in detail, we should introduce the different types of integrated circuit chips that may be
used.

There exists a large variety of chips that implement various functions that are useful
in the design of digital hardware. The chips range from simple ones with low function-
ality to extremely complex chips. For example, a digital hardware product may require a
microprocessor to perform some arithmetic operations, memory chips to provide storage
capability, and interface chips that allow easy connection to input and output devices. Such
chips are available from various vendors.

For many digital hardware products, it is also necessary to design and build some logic
circuits from scratch. For implementing these circuits, three main types of chips may be
used: standard chips, programmable logic devices, and custom chips. These are discussed
next.

1.1.1 STANDARD CHIPS

Numerous chips are available that realize some commonly-used logic circuits. We will
refer to these as standard chips, because they usually conform to an agreed-upon standard
in terms of functionality and physical configuration. Each standard chip contains a small
amount of circuitry (usually involving fewer than 100 transistors) and performs a simple
function. To build a logic circuit, the designer chooses the chips that perform whatever
functions are needed and then defines how these chips should be interconnected to realize
a larger logic circuit.
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Standard chips were popular for building logic circuits until the early 1980s. However,
as integrated circuit technology improved, it became inefficient to use valuable space on
PCBs for chips with low functionality. Another drawback of standard chips is that the
functionality of each chip is fixed and cannot be changed.

1.1.2 PROGRAMMABLE LoGIic DEVICES

In contrast to standard chips that have fixed functionality, it is possible to construct chips
that contain circuitry which can be configured by the user to implement a wide range of
different logic circuits. These chips have a very general structure and include a collection
of programmable switches that allow the internal circuitry in the chip to be configured in
many different ways. The designer can implement whatever functions are required for a
particular application by setting the programmable switches as needed. The switches are
programmed by the end user, rather than when the chip is manufactured. Such chips are
known as programmable logic devices (PLDs).

PLDs are available in a wide range of sizes, and can be used to implement very large
logic circuits. The most commonly-used type of PLD is known as a field-programmable
gate array (FPGA). The largest FPGAs contain billions of transistors [2, 3], and support the
implementation of complex digital systems. An FPGA consists of a large number of small
logic circuit elements, which can be connected together by using programmable switches
in the FPGA. Because of their high capacity, and their capability to be tailored to meet the
requirements of a specific application, FPGAs are widely used today.

1.1.3 CustoM-DESIGNED CHIPS

FPGAs are available as off-the-shelf components that can be purchased from different sup-
pliers. Because they are programmable, they can be used to implement most logic circuits
found in digital hardware. However, they also have a drawback in that the programmable
switches consume valuable chip area and limit the speed of operation of implemented cir-
cuits. Thus in some cases FPGAs may not meet the desired performance or cost objectives.
In such situations it is possible to design a chip from scratch; namely, the logic circuitry that
must be included on the chip is designed first and then the chip is manufactured by a com-
pany that has the fabrication facilities. This approach is known as custom or semi-custom
design, and such chips are often called application-specific integrated circuits (ASICs).

The main advantage of a custom chip is that its design can be optimized for a specific
task; hence it usually leads to better performance. It is possible to include a larger amount
of logic circuitry in a custom chip than would be possible in other types of chips. The
cost of producing such chips is high, but if they are used in a product that is sold in large
quantities, then the cost per chip, amortized over the total number of chips fabricated, may
be lower than the total cost of off-the-shelf chips that would be needed to implement the
same function(s). Moreover, if a single chip can be used instead of multiple chips to achieve
the same goal, then a smaller area is needed on a PCB that houses the chips in the final
product. This results in a further reduction in cost.
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A disadvantage of the custom-design approach is that manufacturing a custom chip
often takes a considerable amount of time, on the order of months. In contrast, if an FPGA
can be used instead, then the chips are programmed by the end user and no manufacturing
delays are involved.

1.2 THE DESIGN PROCESS

The availability of computer-based tools has greatly influenced the design process in a wide
variety of environments. For example, designing an automobile is similar in the general
approach to designing a furnace or a computer. Certain steps in the development cycle must
be performed if the final product is to meet the specified objectives.

The flowchart in Figure 1.3 depicts a typical development process. We assume that
the process is to develop a product that meets certain expectations. The most obvious
requirements are that the product must function properly, that it must meet an expected
level of performance, and that its cost should not exceed a given target.

The process begins with the definition of product specifications. The essential features
of the product are identified, and an acceptable method of evaluating the implemented
features in the final product is established. The specifications must be tight enough to
ensure that the developed product will meet the general expectations, but should not be
unnecessarily constraining (that is, the specifications should not prevent design choices
that may lead to unforeseen advantages).

From a complete set of specifications, it is necessary to define the general structure of
an initial design of the product. This step is difficult to automate. It is usually performed by
a human designer because there is no clear-cut strategy for developing a product’s overall
structure—it requires considerable design experience and intuition.

After the general structure is established, CAD tools are used to work out the details.
Many types of CAD tools are available, ranging from those that help with the design
of individual parts of the system to those that allow the entire system’s structure to be
represented in a computer. When the initial design is finished, the results must be verified
against the original specifications. Traditionally, before the advent of CAD tools, this step
involved constructing a physical model of the designed product, usually including just the
key parts. Today it is seldom necessary to build a physical model. CAD tools enable
designers to simulate the behavior of incredibly complex products, and such simulations
are used to determine whether the obtained design meets the required specifications. If
errors are found, then appropriate changes are made and the verification of the new design
is repeated through simulation. Although some design flaws may escape detection via
simulation, usually all but the most subtle problems are discovered in this way.

When the simulation indicates that the design is correct, a complete physical prototype
of the product is constructed. The prototype is thoroughly tested for conformance with the
specifications. Any errors revealed in the testing must be fixed. The errors may be minor,
and often they can be eliminated by making small corrections directly on the prototype of
the product. In case of large errors, it is necessary to redesign the product and repeat the
steps explained above. When the prototype passes all the tests, then the product is deemed
to be successfully designed and it can go into production.
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1.3 STRUCTURE OF A COMPUTER

To understand the role that logic circuits play in digital systems, consider the structure of
a typical computer, as illustrated in Figure 1.4a. The computer case houses a number of
printed circuit boards (PCBs), a power supply, and (not shown in the figure) storage units,
like a hard disk and DVD or CD-ROM drives. Each unit is plugged into a main PCB, called
the motherboard. As indicated on the bottom of the figure, the motherboard holds several
integrated circuit chips, and it provides slots for connecting other PCBs, such as audio,
video, and network boards.

Figure 1.4b illustrates the structure of an integrated circuit chip. The chip comprises
a number of subcircuits, which are interconnected to build the complete circuit. Examples
of subcircuits are those that perform arithmetic operations, store data, or control the flow
of data. Each of these subcircuits is a logic circuit. As shown in the middle of the figure, a
logic circuit comprises a network of connected logic gates. Each logic gate performs a very
simple function, and more complex operations are realized by connecting gates together.
Logic gates are built with transistors, which in turn are implemented by fabricating various
layers of material on a silicon chip.

This book is primarily concerned with the center portion of Figure 1.4b—the design
of logic circuits. We explain how to design circuits that perform important functions, such
as adding, subtracting, or multiplying numbers, counting, storing data, and controlling the
processing of information. We show how the behavior of such circuits is specified, how
the circuits are designed for minimum cost or maximum speed of operation, and how the
circuits can be tested to ensure correct operation. We also briefly explain how transistors
operate, and how they are built on silicon chips.

1.4 Locic Circult DESIGN IN THIS BooOk

In this book we use a modern design approach based on the Verilog hardware description
language and CAD tools to illustrate many aspects of logic circuit design. We selected
this technology because it is widely used in industry and because it enables the readers to
implement their designs in FPGA chips, as discussed below. This technology is particularly
well-suited for educational purposes because many readers have access to facilities for using
CAD tools and programming FPGA devices.

To gain practical experience and a deeper understanding of logic circuits, we advise
the reader to implement the examples in this book using CAD software. Most of the ma-
jor vendors of CAD systems provide their software at no cost to university students for
educational use. Some examples are Altera, Cadence, Mentor Graphics, Synopsys, and
Xilinx. The CAD systems offered by any of these companies can be used equally well
with this book. Two CAD systems that are particularly well-suited for use with this book
are the Quartus II software from Altera and the ISE software from Xilinx. Both of these
CAD systems support all phases of the design cycle for logic circuits and are powerful
and easy to use. The reader is encouraged to visit the website for these companies, where
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Figure 1.4 A digital hardware system (Part b).

the software tools and tutorials that explain their use can be downloaded and installed onto

any personal computer.
To facilitate experimentation with logic circuits, some FPGA manufacturers provide

special PCBs that include one or more FPGA chips and an interface to a personal computer.
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Once a logic circuit has been designed using the CAD tools, the circuit can be programmed
into an FPGA on the board. Inputs can then be applied to the FPGA by way of switches
and other devices, and the generated outputs can be examined. An example of such a board
is depicted in Figure 1.5. This type of board is an excellent vehicle for learning about
logic circuits, because it provides a collection of simple input and output devices. Many
illustrative experiments can be carried out by designing and implementing logic circuits
using the FPGA chip on the board.

1.5 DIGITAL REPRESENTATION OF INFORMATION

In Section 1.1 we mentioned that information is represented in logic circuits as electronic
signals. Each of these signals can be thought of as representing one digiz of information. To
make the design of logic circuits easier, each digit is allowed to take on only two possible
values, usually denoted as 0 and 1. These logic values are implemented as voltage levels in
a circuit; the value O is usually represented as O V (ground), and the value 1 is the voltage
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level of the circuit’s power supply. As we discuss in Appendix B, typical power-supply
voltages in logic circuits range from 1 VDC to 5 V DC.

In general, all information in logic circuits is represented as combinations of 0 and 1
digits. Before beginning our discussion of logic circuits in Chapter 2, it will be helpful to
examine how numbers, alphanumeric data (text), and other information can be represented
using the digits 0 and 1.

1.5.1 BINARY NUMBERS

In the familiar decimal system, a number consists of digits that have 10 possible values,
from 0 to 9, and each digit represents a multiple of a power of 10. For example, the number
8547 represents 8 x 10° +5 x 10> +4 x 10" +7 x 10°. We do not normally write the
powers of 10 with the number, because they are implied by the positions of the digits. In
general, a decimal integer is expressed by an n-tuple comprising n decimal digits

D=d,_1d,—>---didy
which represents the value
VD) =dy x 10" +d,n x 1072+ +d; x 10" +dy x 10°

This is referred to as the positional number representation.

Because the digits have 10 possible values and each digit is weighted as a power of
10, we say that decimal numbers are base-10 numbers. Decimal numbers are familiar,
convenient, and easy to understand. However, since digital circuits represent information
using only the values 0 and 1, it is not practical to have digits that can assume ten values.
In these circuits it is more appropriate to use the binary, or base-2, system which has only
the digits 0 and 1. Each binary digit is called a biz. In the binary number system, the same
positional number representation is used so that

B =b, 1b, 5---biby
represents an integer that has the value

V(B) =bp_1 x2" ' 4 b,y x 2" 24 4+ by x 21 + by x 2° [1.1]
n—1
= Z b,’ X 2i
i=0
For example, the binary number 1101 represents the value

V=1x2+1x224+0x2"+1x2°

Because a particular digit pattern has different meanings for different bases, we will indicate
the base as a subscript when there is potential for confusion. Thus to specify that 1101 is
a base-2 number, we will write (1101),. Evaluating the preceding expression for V gives
V =844+ 1= 13. Hence

(1101)2 = (13)10
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Table 1.1 Numbers in decimal

and binary.
Decimal Binary
representation representation
00 0000
01 0001
02 0010
03 0011
04 0100
05 0101
06 0110
07 0111
08 1000
09 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

The range of integers that can be represented by a binary number depends on the number of
bits used. Table 1.1 lists the first 15 positive integers and shows their binary representations
using four bits. An example of a larger number is (10110111), = (183);,. In general, using
n bits allows representation of positive integers in the range 0 to 2" — 1.

In a binary number the right-most bit is usually referred to as the least-significant bit
(LSB). The left-most bit, which has the highest power of 2 associated with it, is called the
most-significant bit (MSB). In digital systems it is often convenient to consider several bits
together as a group. A group of four bits is called a nibble, and a group of eight bits is called
a byte.

1.5.2 CONVERSION BETWEEN DECIMAL AND BINARY SYSTEMS

A binary number is converted into a decimal number simply by applying Equation 1.1 and
evaluating it using decimal arithmetic. Converting a decimal number into a binary number
is not quite as straightforward, because we need to construct the number by using powers of
2. For example, the number (17) is 2% 4+ 29 = (10001)5, and the number (50)¢ is 2° +
2% 42! = (110010),. In general, the conversion can be performed by successively dividing
the decimal number by 2 as follows. Suppose that a decimal number D = di_; - - - d,dy,
with a value V, is to be converted into a binary number B = b,,_; - - - bob1by. Then, we can
write V in the form

V=bp x2" Vi by x 22+ by x 2! + by

13
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Convert (857) 19
Remainder

857+ 2 = 428 1 LSB
428+ 2 = 214 0
214+ 2 = 107 0
107+2 = 53 1
53+2 = 26 1
262 = 13 0
13+2 = 6 1
6+2 = 3 0
3+2 =1 1

1+2 =0 1 MSB

Resultis (1101011001),

Figure 1.6  Conversion from decimal to binary.

If we now divide V by 2, the result is

4 =by_ x2" 24 by x2! +b1+l2

2 2

The quotient of this integer division is b, X 2"=2 4 ... 4 by X 2 + by, and the remainder
is bp. If the remainder is O, then by = 0; if it is 1, then by = 1. Observe that the quotient
is just another binary number, which comprises n — 1 bits, rather than » bits. Dividing this
number by 2 yields the remainder b,. The new quotient is

by X 2" 3 4 4 by

Continuing the process of dividing the new quotient by 2, and determining one bit in each
step, will produce all bits of the binary number. The process continues until the quotient
becomes 0. Figure 1.6 illustrates the conversion process, using the example (857);, =
(1101011001),. Note that the least-significant bit (LSB) is generated first and the most-
significant bit (MSB) is generated last.

So far, we have considered only the representation of positive integers. In Chapter 3
we will complete the discussion of number representation by explaining how negative
numbers are handled and how fixed-point and floating-point numbers may be represented.
We will also explain how arithmetic operations are performed in computers.

1.5.3 ASCII CHARACTER CODE

Alphanumeric information, such as letters and numbers typed on a computer keyboard, is
represented as codes consisting of 0 and 1 digits. The most common code used for this type
of information is known as the ASCII code, which stands for the American Standard Code
for Information Interchange. The code specified by this standard is presented in Table 1.2.
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Table 1.2  The seven-bit ASCIl code.

Bit Bit positions 654

positions

3210 000 001 010 011 100 101 110 111
0000 NUL DLE SPACE 0 @ B ’

0001 SOH DCl1 ! 1 A Q a

0010 STX DC2 ” 2 B R b r
0011 ETX DC3 # 3 C S @ s
0100 EOT DC4 $ 4 D T d t
0101 ENQ NAK % 5 E} U @ u
0110 ACK SYN & 6 F \Y% f v
0111 BEL ETB ’ 7 G W g w
1000 BS CAN ( 8 H X h X
1001 HT EM ) 9 I Y i y
1010 LF SUB & J 4 ] z
1011 VT ESC + ; K [ k {
1100 ER FS R < IL, \ 1 |
1101 CR GS - = M ] m }
1110 SO RS > N - n -
1111 SI us / ? (0) — o DEL
NUL Null/Idle SI Shift in

SOH Start of header DLE Data link escape

STX Start of text DC1-DC4 Device control

ETX End of text NAK Negative acknowledgement
EOT End of transmission SYN Synchronous idle

ENQ Enquiry ETB End of transmitted block
ACQ Acknowledgement CAN Cancel (error in data)

BEL Audible signal EM End of medium

BS Back space SUB Special sequence

HT Horizontal tab ESC Escape

ILJ® Line feed FS File separator

VT Vertical tab GS Group separator

IFIE Form feed RS Record separator

CR Carriage return [N} Unit separator

SO Shift out DEL Delete/Idle

Bit positions ofcodeformat=| 6 | 5|4 | 3 | 2| 1 | 0|

15
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The ASCII code uses seven-bit patterns to denote 128 different characters. Ten of
the characters are decimal digits 0 to 9. As the table shows, the high-order bits have the
same pattern, bgbsbs = 011, for all 10 digits. Each digit is identified by the low-order
four bits, b3_, using the binary patterns for these digits. Capital and lowercase letters are
encoded in a way that makes sorting of textual information easy. The codes for A to Z are in
ascending numerical sequence, which means that the task of sorting letters (or words) can
be accomplished by a simple arithmetic comparison of the codes that represent the letters.

In addition to codes that represent characters and letters, the ASCII code includes
punctuation marks such as ! and ?, commonly used symbols such as & and %, and a
collection of control characters. The control characters are those needed in computer
systems to handle and transfer data among various devices. For example, the carriage
return character, which is abbreviated as CR in the table, indicates that the carriage, or
cursor position, of an output device, such as a printer or display, should return to the left-
most column.

The ASCII code is used to encode information that is handled as text. Itis not convenient
for representation of numbers that are used as operands in arithmetic operations. For this
purpose, it is best to convert ASCII-encoded numbers into a binary representation that we
discussed before.

The ASCII standard uses seven bits to encode a character. In computer systems a more
natural size is eight bits, or one byte. There are two common ways of fitting an ASCII-
encoded character into a byte. One is to set the eighth bit, b7, to 0. Another is to use this
bit to indicate the parity of the other seven bits, which means showing whether the number
of 1s in the seven-bit code is even or odd. We discuss parity in Chapter 4.

1.5.4 DIGITAL AND ANALOG INFORMATION

Binary numbers can be used to represent many types of information. For example, they
can represent music that is stored in a personal music player. Figure 1.7 illustrates a music
player, which contains an electronic memory for storing music files. A music file comprises
a sequence of binary numbers that represent tones. To convert these binary numbers into
sound, a digital-to-analog (D/A) converter circuit is used. It converts digital values into
corresponding voltage levels, which create an analog voltage signal that drives the speakers
inside the headphones. The binary values stored in the music player are referred to as digital
information, whereas the voltage signal that drives the speakers is analog information.

1.6 THEORY AND PRACTICE

Modern design of logic circuits depends heavily on CAD tools, but the discipline of logic
design evolved long before CAD tools were invented. This chronology is quite obvious
because the very first computers were built with logic circuits, and there certainly were no
computers available on which to design them!
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Figure 1.7  Using digital technology fo represent music.

Numerous manual design techniques have been developed to deal with logic circuits.
Boolean algebra, which we will introduce in Chapter 2, was adopted as a mathematical
means for representing such circuits. An enormous amount of “theory” was developed
showing how certain design issues may be treated. To be successful, a designer had to
apply this knowledge in practice.

CAD tools not only made it possible to design incredibly complex circuits but also
made the design work much simpler in general. They perform many tasks automatically,
which may suggest that today’s designer need not understand the theoretical concepts used
in the tasks performed by CAD tools. An obvious question would then be, Why should one
study the theory that is no longer needed for manual design? Why not simply learn how to
use the CAD tools?

There are three big reasons for learning the relevant theory. First, although the CAD
tools perform the automatic tasks of optimizing a logic circuit to meet particular design
objectives, the designer has to give the original description of the logic circuit. If the
designer specifies a circuit that has inherently bad properties, then the final circuit will also
be of poor quality. Second, the algebraic rules and theorems for design and manipulation
of logic circuits are directly implemented in today’s CAD tools. It is not possible for a user
of the tools to understand what the tools do without grasping the underlying theory. Third,
CAD tools offer many optional processing steps that a user can invoke when working on
a design. The designer chooses which options to use by examining the resulting circuit
produced by the CAD tools and deciding whether it meets the required objectives. The
only way that the designer can know whether or not to apply a particular option in a given
situation is to know what the CAD tools will do if that option is invoked—again, this
implies that the designer must be familiar with the underlying theory. We discuss the logic
circuit theory extensively in this book, because it is not possible to become an effective
logic circuit designer without understanding the fundamental concepts.

17
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There is another good reason to learn some logic circuit theory even if it were not
required for CAD tools. Simply put, it is interesting and intellectually challenging. In the
modern world filled with sophisticated automatic machinery, it is tempting to rely on tools as
a substitute for thinking. However, in logic circuit design, as in any type of design process,
computer-based tools are not a substitute for human intuition and innovation. Computer-
based tools can produce good digital hardware designs only when employed by a designer
who thoroughly understands the nature of logic circuits.

*1.1

1.2

1.3

*1.4

PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

Convert the following decimal numbers into binary, using the method shown in Figure 1.6.
(@) (20)19

(b) (10010

(©) (12910

(d) (260)10

(e) (10240)10

Convert the following decimal numbers into binary, using the method shown in Figure 1.6.
(@) (30)10

(b) (110)10

(©) (25910

(d) (50010

(e) (20480) 1o

Convert the following decimal numbers into binary, using the method shown in Figure 1.6.
(a) (1000)19

(b) (10000)10

(c) (100000)1

(c) (1000000) 10

In Figure 1.6 we show how to convert a decimal number into binary by successively dividing
by 2. Another way to derive the answer is to constuct the number by using powers of 2.
For example, if we wish to convert the number (23), then the largest power of 2 that is
not larger than 23 is 2* = 16. Hence, the binary number will have five bits and the most-
significant bit is b4 = 1. We then perform the subtraction 23 — 16 = 7. Now, the largest
power of 2 that is not larger than 7 is 2> = 4. Hence, b3 = 0 (because 2 = 8 is larger than
7) and b, = 1. Continuing this process gives

23=164+4+2+1
:24+22+21+2()
= 10000 4- 00100 + 00010 4 00001
= 10111
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Using this method, convert the following decimal numbers into binary.
(@ (1710

(®) 33)10

(©) (6710

(d) (130)10

(e) (2560)10

(f) (51200)9

1.5 Repeat Problem 3 using the method described in Problem 4.

*1.6 Convert the following binary numbers into decimal.
(a) (1001)>
(b) (11100),
() (111111),
(d) (101010101010),

1.7  Convert the following binary numbers into decimal.
(a) (110010),
(b) (1100100),
(c) (11001000),
(d) (110010000),

*1.8 What is the minimum number of bits needed to represent the following decimal numbers
in binary?
(a) (270)10
() (52010
(¢) (780)10
(d) (1029)19

1.9 Repeat Problem 8 for the following decimal numbers:
(a) (1110
() 333)10
(c) (555)10
(d) (1111)10
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INTRODUCTION TO LOGIC CIRCUITS

CHAPTER OBJECTIVES

In this chapter you will be introduced to:

e Logic functions and circuits

e Boolean algebra for dealing with logic functions

e Logic gates and synthesis of simple circuits

e CAD tools and the Verilog hardware description language

e  Minimization of functions and Karnaugh maps
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The study of logic circuits is motivated mostly by their use in digital computers. But such circuits also form
the foundation of many other digital systems, such as those that perform control applications or are involved in
digital communications. All such applications are based on some simple logical operations that are performed
on input information.

In Chapter 1 we showed that information in computers is represented as electronic signals that can have
two discrete values. Although these values are implemented as voltage levels in a circuit, we refer to them
simply as logic values, 0 and 1. Any circuit in which the signals are constrained to have only some number of
discrete values is called a logic circuit. Logic circuits can be designed with different numbers of logic values,
such as three, four, or even more, but in this book we deal only with the binary logic circuits that have two
logic values.

Binary logic circuits have the dominant role in digital technology. We hope to provide the reader with
an understanding of how these circuits work, how are they represented in mathematical notation, and how
are they designed using modern design automation techniques. We begin by introducing some basic concepts
pertinent to the binary logic circuits.

| 2.1 VARIABLES AND FUNCTIONS

The dominance of binary circuits in digital systems is a consequence of their simplicity,
which results from constraining the signals to assume only two possible values. The simplest
binary element is a switch that has two states. If a given switch is controlled by an input
variable x, then we will say that the switch is open if x = 0 and closed if x = 1, as illustrated
in Figure 2.1a. We will use the graphical symbol in Figure 2.1b to represent such switches
in the diagrams that follow. Note that the control input x is shown explicitly in the symbol.
In Appendix B we explain how such switches are implemented with transistors.

Consider a simple application of a switch, where the switch turns a small lightbulb on
or off. This action is accomplished with the circuit in Figure 2.2a. A battery provides the
power source. The lightbulb glows when a sufficient amount of current passes through it.

\
|

(a) Two states of a switch

S
|

X

(b) Symbol for a switch

Figure 2.1 A binary switch.
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S |

Battery Light

i : |

(a) Simple connection to a battery

Power J_ S I

L L

(b) Using a ground connection as the return path

Figure 2.2 A light controlled by a switch.

The current flows when the switch is closed, that is, when x = 1. In this example the input
that causes changes in the behavior of the circuit is the switch control x. The output is
defined as the state (or condition) of the light, which we will denote by the letter L. If the
light is on, we will say that L = 1. If the light is off, we will say that L = 0. Using this
convention, we can describe the state of the light as a function of the input variable x. Since
L=1ifx=1and L =0ifx =0, we can say that

Lx)=x

This simple logic expression describes the output as a function of the input. We say that
L(x) = x is a logic function and that x is an input variable.

The circuit in Figure 2.2a can be found in an ordinary flashlight, where the switch is a
simple mechanical device. In an electronic circuit the switch is implemented as a transistor
and the light may be a light-emitting diode (LED). An electronic circuit is powered by a
power supply of a certain voltage, usually in the range of 1 to 5 volts. One side of the power
supply provides the circuit ground, as illustrated in Figure 2.2b. The circuit ground is a
common reference point for voltages in the circuit. Rather than drawing wires in a circuit
diagram for all nodes that return to the circuit ground, the diagram can be simplified by
showing a connection to a ground symbol, as we have done for the bottom terminal of the
light L in the figure. In the circuit diagrams that follow we will use this convention, because
it makes the diagrams look simpler.

Consider now the possibility of using two switches to control the state of the light. Let
x1 and x; be the control inputs for these switches. The switches can be connected either
in series or in parallel as shown in Figure 2.3. Using a series connection, the light will be
turned on only if both switches are closed. If either switch is open, the light will be off.

23
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S S |
Power i [ |

Light

supply I X1 X2

(a) The logical AND function (series connection)

S
[
X
Power .
:|: S Light

supply
| T

X2

(b) The logical OR function (parallel connection)

Figure 2.3  Two basic functions.

This behavior can be described by the expression

L(x1,x2) =x1-%2
where L=1ifx;=1andx, =1,

L = 0 otherwise.

The “-” symbol is called the AND operator, and the circuit in Figure 2.3a is said to implement
a logical AND function.

The parallel connection of two switches is given in Figure 2.3b. In this case the light
will be on if either the x; or x, switch is closed. The light will also be on if both switches
are closed. The light will be off only if both switches are open. This behavior can be stated
as

L(x1,x0) = x1 + X2
where L=1ifx;=1orx, =1lorifx; =x =1,
L=Oifx1 =)C2=O.

The 4 symbol is called the OR operator, and the circuit in Figure 2.3 is said to implement
a logical OR function. It is important not to confuse the use of the 4+ symbol with its more
common meaning, which is for arithmetic addition. In this chapter the + symbol represents
the logical OR operation unless otherwise stated.

In the above expressions for AND and OR, the output L(xy, x,) is a logic function with
input variables x; and x,. The AND and OR functions are two of the most important logic
functions. Together with some other simple functions, they can be used as building blocks
for the implementation of all logic circuits. Figure 2.4 illustrates how three switches can be
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supply

S
I
X S
I
Power I S x3 Light

Figure 2.4 A series-parallel connection.

R
Power J_ 'W\l T |

supply I xS Light

Figure 2.5  An inverting circuit.

used to control the light in a more complex way. This series-parallel connection of switches
realizes the logic function

L(x1,x2,x3) = (x1 +x2) - X3

The light is on if x3 = 1 and, at the same time, at least one of the x; or x, inputs is equal
to 1.
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2.2 INVERSION

So far we have assumed that some positive action takes place when a switch is closed, such
as turning the light on. It is equally interesting and useful to consider the possibility that a
positive action takes place when a switch is opened. Suppose that we connect the light as
shown in Figure 2.5. In this case the switch is connected in parallel with the light, rather
than in series. Consequently, a closed switch will short-circuit the light and prevent the
current from flowing through it. Note that we have included an extra resistor in this circuit
to ensure that the closed switch does not short-circuit the power supply. The light will be
turned on when the switch is opened. Formally, we express this functional behavior as

Lx)=Xx
where L=1ifx=0,
L=0ifx=1
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The value of this function is the inverse of the value of the input variable. Instead of
using the word inverse, it is more common to use the term complement. Thus we say that
L(x) is a complement of x in this example. Another frequently used term for the same
operation is the NOT operation. There are several commonly used notations for indicating
the complementation. In the preceding expression we placed an overbar on top of x. This
notation is probably the best from the visual point of view. However, when complements
are needed in expressions that are typed using a computer keyboard, which is often done
when using CAD tools, it is impractical to use overbars. Instead, either an apostrophe is
placed after the variable, or an exclamation mark (!), the tilde character (~), or the word
NOT is placed in front of the variable to denote the complementation. Thus the following
are equivalent:

X=x =Ix =~x = NOT«x

The complement operation can be applied to a single variable or to more complex
operations. For example, if

S, x2) = x1+x2
then the complement of f is
fGx) =X +x

This expression yields the logic value 1 only when neither x; nor x;, is equal to 1, that is,
when x; = x, = 0. Again, the following notations are equivalent:

X +x = (@ +x) = 10x+x) = ~x +x) = NOT (x; +x,)

2.3 TrutH TABLES

We have introduced the three most basic logic operations—AND), OR, and complement—by
relating them to simple circuits built with switches. This approach gives these operations a
certain “physical meaning.” The same operations can also be defined in the form of a table,
called a truth table, as shown in Figure 2.6. The first two columns (to the left of the double
vertical line) give all four possible combinations of logic values that the variables x| and x,

X X || X oxp | X+ X,

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 1
AND OR

Figure 2.6 A truth table for the AND and OR operations.
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Xp o Xy Xy || XXy X3 | X4 X+ X
0O 0 O 0 0
0o 0 1 0 1
o 1 0 0 1
0o 1 1 0 1
1 0 O 0 1
I 0 1 0 1
I 1 0 0 1
1 1 1 1 1

Figure 2.7  Three-input AND and OR operations.

can have. The next column defines the AND operation for each combination of values of x;
and x,, and the last column defines the OR operation. Because we will frequently need to
refer to “combinations of logic values” applied to some variables, we will adopt a shorter
term, valuation, to denote such a combination of logic values.

The truth table is a useful aid for depicting information involving logic functions. We
will use it in this book to define specific functions and to show the validity of certain func-
tional relations. Small truth tables are easy to deal with. However, they grow exponentially
in size with the number of variables. A truth table for three input variables has eight rows
because there are eight possible valuations of these variables. Such a table is given in
Figure 2.7, which defines three-input AND and OR functions. For four input variables the
truth table has 16 rows, and so on. In general, for n input variables the truth table has 2"
TOWS.

The AND and OR operations can be extended to n variables. An AND function of
variables x1, xp, . . ., x, has the value 1 only if all n variables are equal to 1. An OR function
of variables x1, x», . .., x,, has the value 1 if one or more of the variables is equal to 1.
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The three basic logic operations introduced in the previous sections can be used to implement
logic functions of any complexity. A complex function may require many of these basic
operations for its implementation. Each logic operation can be implemented electronically
with transistors, resulting in a circuit element called a logic gate. A logic gate has one or
more inputs and one output that is a function of its inputs. It is often convenient to describe
a logic circuit by drawing a circuit diagram, or schematic, consisting of graphical symbols
representing the logic gates. The graphical symbols for the AND, OR, and NOT gates are
shown in Figure 2.8. The figure indicates on the left side how the AND and OR gates are
drawn when there are only a few inputs. On the right side it shows how the symbols are
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Xy —

X1
X, x . Xp Xyt X,
xz— e

(a) AND gates

X

X

X
1

i>—xl+x2 . Xp Xy H X,
Xy .

(b) OR gates

X 4>07 X
(c) NOT gate

Figure 2.8  The basic gates.

X
X2
=0 +x) x5

X3

Figure 2.9  The function from Figure 2.4.

augmented to accommodate a greater number of inputs. We show how logic gates are built
using transistors in Appendix B.

A larger circuit is implemented by a network of gates. For example, the logic function
from Figure 2.4 can be implemented by the network in Figure 2.9. The complexity of a
given network has a direct impact on its cost. Because it is always desirable to reduce
the cost of any manufactured product, it is important to find ways for implementing logic
circuits as inexpensively as possible. We will see shortly that a given logic function can
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be implemented with a number of different networks. Some of these networks are simpler
than others, hence searching for the solutions that entail minimum cost is prudent.

In technical jargon a network of gates is often called a logic network or simply a logic
circuit. We will use these terms interchangeably.

2.4.1 ANALYSIS OF A LoGgic NETWORK

A designer of digital systems is faced with two basic issues. For an existing logic network, it
must be possible to determine the function performed by the network. This task is referred
to as the analysis process. The reverse task of designing a new network that implements a
desired functional behavior is referred to as the synthesis process. The analysis process is
rather straightforward and much simpler than the synthesis process.

Figure 2.10a shows a simple network consisting of three gates. To analyze its functional
behavior, we can consider what happens if we apply all possible combinations of the input
signals to it. Suppose that we start by making x; = x, = 0. This forces the output of the
NOT gate to be equal to 1 and the output of the AND gate to be 0. Because one of the inputs
to the OR gate is 1, the output of this gate will be 1. Therefore, f = 1 ifx; =x, = 0. If we
then let x; = 0 and x, = 1, no change in the value of f will take place, because the outputs
of the NOT and AND gates will still be 1 and 0, respectively. Next, if we apply x; =1
and x, = 0, then the output of the NOT gate changes to 0 while the output of the AND gate
remains at 0. Both inputs to the OR gate are then equal to 0; hence the value of f will be 0.
Finally, let x; = x, = 1. Then the output of the AND gate goes to 1, which in turn causes
f tobe equal to 1. Our verbal explanation can be summarized in the form of the truth table
shown in Figure 2.10b.

Timing Diagram

We have determined the behavior of the network in Figure 2.10a by considering the four
possible valuations of the inputs x; and x,. Suppose that the signals that correspond to these
valuations are applied to the network in the order of our discussion; that is, (x;, x,) = (0, 0)
followed by (0, 1), (1, 0), and (1, 1). Then changes in the signals at various points in the
network would be as indicated in blue in the figure. The same information can be presented
in graphical form, known as a timing diagram, as shown in Figure 2.10c. The time runs
from left to right, and each input valuation is held for some fixed duration. The figure shows
the waveforms for the inputs and output of the network, as well as for the internal signals
at the points labeled A and B.

The timing diagram in Figure 2.10c shows that changes in the waveforms at points A
and B and the output f take place instantaneously when the inputs x; and x, change their
values. These idealized waveforms are based on the assumption that logic gates respond
to changes on their inputs in zero time. Such timing diagrams are useful for indicating
the functional behavior of logic circuits. However, practical logic gates are implemented
using electronic circuits which need some time to change their states. Thus, there is a delay
between a change in input values and a corresponding change in the output value of a gate.
In chapters that follow we will use timing diagrams that incorporate such delays.
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. 0-50—>1—1 >Ol—>1%0—>0
] °
A

 \ 050501 |B
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0->1-50->1

l1->1->0->1

%y
(a) Network that implements f = x| +x; - x,
X, X, | f(x,x) |A|B
0 0 1 10
0 1 1 110
1 0 0 010
11 1 011
(b) Truth table
1
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(c) Timing diagram

0-50->1—1 >01—>140—>0
X
1

0->1-50->1

(d) Network that implements g = x, +x,

Figure 2.10  An example of logic networks.
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Timing diagrams are used for many purposes. They depict the behavior of a logic
circuit in a form that can be observed when the circuit is tested using instruments such as
logic analyzers and oscilloscopes. Also, they are often generated by CAD tools to show
the designer how a given circuit is expected to behave before it is actually implemented
electronically. We will introduce the CAD tools later in this chapter and will make use of
them throughout the book.

Functionally Equivalent Networks

Now consider the network in Figure 2.10d. Going through the same analysis procedure,
we find that the output g changes in exactly the same way as f does in part (@) of the figure.
Therefore, g(x;, x2) = f(x1, x2), which indicates that the two networks are functionally
equivalent; the output behavior of both networks is represented by the truth table in Figure
2.10b. Since both networks realize the same function, it makes sense to use the simpler
one, which is less costly to implement.

In general, a logic function can be implemented with a variety of different networks,
probably having different costs. This raises an important question: How does one find the
best implementation for a given function? We will discuss some of the main approaches
for synthesizing logic functions later in this chapter. For now, we should note that some
manipulation is needed to transform the more complex network in Figure 2.10a into the
network in Figure 2.10d. Since f (x|, x) = X| + x1 - xp and g(x1, xp) = X + x,, there must
exist some rules that can be used to show the equivalence

X1+ XX =X +x

We have already established this equivalence through detailed analysis of the two circuits
and construction of the truth table. But the same outcome can be achieved through algebraic
manipulation of logic expressions. In Section 2.5 we will introduce a mathematical approach
for dealing with logic functions, which provides the basis for modern design techniques.
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As an example of a logic function, consider the diagram in Figure 2.11a. It includes two
toggle switches that control the values of signals x and y. Each toggle switch can be pushed
down to the bottom position or up to the top position. When a toggle switch is in the bottom
position it makes a connection to logic value 0 (ground), and when in the top position it
connects to logic value 1 (power supply level). Thus, these toggle switches can be used to
set x and y to either O or 1.

The signals x and y are inputs to a logic circuit that controls a light L. The required
behavior is that the light should be on only if one, but not both, of the toggle switches
is in the top position. This specification leads to the truth table in part (b) of the figure.
Since L =1 whenx =0andy = 1 or whenx = 1 and y = 0, we can implement this logic
function using the network in Figure 2.11c.

The reader may recognize the behavior of our light as being similar to that over a set of
stairs in a house, where the light is controlled by two switches: one at the top of the stairs,
and the other at the bottom. The light can be turned on or off by either switch because

Example 2.1
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R
X
0 Logic 0 0 0
.o —— L
circuit 0 1 1
1
! Y 1 0 1
0
(a) Two switches that control a light (b) Truth table
x ,
X
{ ; L L
% y
y
(c) Logic network (d) XOR gate symbol
Figure 2.11 An example of a logic circuit.
it follows the truth table in Figure 2.115. This logic function, which differs from the OR
function only when both inputs are equal to 1, is useful for other applications as well. It is
called the exclusive-OR (XOR) function and is indicated in logic expressions by the symbol
®. Thus, rather than writing L =X - y 4+ x - y, we can write L = x & y. The XOR function
has the logic-gate symbol illustrated in Figure 2.11d.
Example 2.2 In Chapter 1 we showed how numbers are represented in computers by using binary digits.

As another example of logic functions, consider the addition of two one-digit binary numbers
a and b. The four possible valuations of a, b and the resulting sums are given in Figure 2.12a
(in this figure the 4 operator signifies addition). The sum S = 5150 has to be a two-digit
binary number, because when a = b = 1 then S = 10.

Figure 2.12b gives a truth table for the logic functions s; and so. From this table we
can see that s; = a - b and 5o = a @ b. The corresponding logic network is given in part
(c) of the figure. This type of logic circuit, which adds binary numbers, is referred to as an
adder circuit. We discuss circuits of this type in Chapter 3.
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a 0 0 1
+b +0 +1 +0 +
S150 00 01 O 10

pe D
b %0
0 0 0 O /
0 1 0 1
1 0 0 1
11 1 0 } 51
(b) Truth table (c) Logic network

Figure 2.12  Addition of binary numbers.
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In 1849 George Boole published a scheme for the algebraic description of processes involved
in logical thought and reasoning [1]. Subsequently, this scheme and its further refinements
became known as Boolean algebra. It was almost 100 years later that this algebra found
application in the engineering sense. In the late 1930s Claude Shannon showed that Boolean
algebra provides an effective means of describing circuits built with switches [2]. The
algebra can, therefore, be used to describe logic circuits. We will show that this algebra
is a powerful tool that can be used for designing and analyzing logic circuits. The reader
will come to appreciate that it provides the foundation for much of our modern digital
technology.

Axioms of Boolean Algebra

Like any algebra, Boolean algebra is based on a set of rules that are derived from a
small number of basic assumptions. These assumptions are called axioms. Let us assume
that Boolean algebra involves elements that take on one of two values, 0 and 1. Assume
that the following axioms are true:
la. 0-0=0
. 14+1=1
2a. 1-1=1
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2b. 0+0=0

3c. 0-1=1-0=0
3. 1+40=0+1=1
4. Ifx=0,thenx =1
4b. Ifx=1,thenx =0

Single-Variable Theorems

From the axioms we can define some rules for dealing with single variables. These
rules are often called theorems. If x is a Boolean variable, then the following theorems
hold:

Sa. x-0=0
5b. x+1=1
6a. x-1=x
6b. x+0=x
Ta. x-x=x
Tb. x+x=x
8a. x-x=0
8. x+x=1
9. X=x

It is easy to prove the validity of these theorems by perfect induction, that is, by substituting
the values x = 0 and x = 1 into the expressions and using the axioms given above. For
example, in theorem 5a, if x = 0, then the theorem states that 0 - 0 = 0, which is true
according to axiom la. Similarly, if x = 1, then theorem 5a states that 1 - 0 = 0, which
is also true according to axiom 3a. The reader should verify that theorems 5a to 9 can be
proven in this way.

Duality

Notice that we have listed the axioms and the single-variable theorems in pairs. This
is done to reflect the important principle of duality. Given a logic expression, its dual is
obtained by replacing all 4 operators with - operators, and vice versa, and by replacing
all Os with 1s, and vice versa. The dual of any true statement (axiom or theorem) in
Boolean algebra is also a true statement. At this point in the discussion, the reader might
not appreciate why duality is a useful concept. However, this concept will become clear
later in the chapter, when we will show that duality implies that at least two different ways
exist to express every logic function with Boolean algebra. Often, one expression leads to
a simpler physical implementation than the other and is thus preferable.

Two- and Three-Variable Properties

To enable us to deal with a number of variables, it is useful to define some two- and
three-variable algebraic identities. For each identity, its dual version is also given. These
identities are often referred to as properties. They are known by the names indicated below.
If x, y, and z are Boolean variables, then the following properties hold:
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10a. x-y=y-x Commutative
10b. x4+y=y+x

Ha. x-(y-2)=x-y)-z Associative
11b. x+(y+2)=x+y) +z2

12a. x-(y+2)=x-y+x-2 Distributive
12b. x+y-z=x+y) - (x+2)

13a. x+x-y=x Absorption
13b. x-(x+y) =x

14a. x-y+x-y=x Combining
14b. (x+y)-x+y) =x

15a. xy=x+ DeMorgan’s theorem

y
15. x+y=Xx-y
X X

16a. x+Xx-y=x+y
16b. x-x+y)=x-y
17a. x-y+y-z+x-z=x-y+X-2 Consensus

17b. (x+y)- 0+2)-G+2)=x+y)-&G+2)

Again, we can prove the validity of these properties either by perfect induction or by
performing algebraic manipulation. Figure 2.13 illustrates how perfect induction can be
used to prove DeMorgan’s theorem, using the format of a truth table. The evaluation of
left-hand and right-hand sides of the identity in 15a gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are
necessary to define Boolean algebra. For example, assuming that the 4+ and - operations
are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These
are sometimes referred to as Huntington’s basic postulates [3]. The other identities can be
derived from these postulates.

The preceding axioms, theorems, and properties provide the information necessary for
performing algebraic manipulation of more complex expressions.

X Y|lx-y|x-y|x|Yy|x+Yy

0O O 0 1 1|1 1

0 1 0 | 110 1

1 O 0 1 011 1

1 1 1 0 00 0
LHS RHS

Figure 2.13  Proof of DeMorgan’s theorem in 15a.
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Example 2.3

Let us prove the validity of the logic equation
(1 +x3) - (X1 +X3) =x1 - X3 + X1 - X3

The left-hand side can be manipulated as follows. Using the distributive property, 12a,
gives

LHS = (x1 +x3) - X1 + (X1 + x3) - X3
Applying the distributive property again yields
LHS =x; - X1 +x3 - X1 +x1 - X3 + X3 - X3

Note that the distributive property allows ANDing the terms in parenthesis in a way analo-
gous to multiplication in ordinary algebra. Next, according to theorem 8a, the terms x; - X;
and x3 - X3 are both equal to 0. Therefore,

LHS=0+x3-x1+x-x3+0
From 60 it follows that
LHS = x3 - X1 +x1 - X3
Finally, using the commutative property, 10a and 10b, this becomes
LHS =x1 - X3 + X1 - x3

which is the same as the right-hand side of the initial equation.

Example 2.4

Consider the logic equation
X1 -X3+X2-X3+X1 X3+ X2 X3 =X1 - X2+ X1 - X+ X1 X2
The left-hand side can be manipulated as follows

LHS =x; - X3+ x1 -x3+X2 - X3+ X2 -x3 using 10b

=x1 - (X3 +x3) + X2 - (X3 + x3) using 12a
=x1-14+x-1 using 8b
=x1+X using 6a

The right-hand side can be manipulated as

RHS =X; - Xy +x; - (x +X) using 12a

=X -X+x -1 using 8D
=X X +Xx; using 6a
=x;1+X X using 10b

=x +% using 16a
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Being able to manipulate both sides of the initial equation into identical expressions estab-
lishes the validity of the equation. Note that the same logic function is represented by either
the left- or the right-hand side of the above equation; namely

SO, x0,x3) =X1 - X3+ X2 - X3+ X1 - X3 +X2 - X3

Xp X2+ x1-x+ X1 X
As a result of manipulation, we have found a much simpler expression
F (1, x2,x3) = X1 + X2

which also represents the same function. This simpler expression would result in a lower-
cost logic circuit that could be used to implement the function.

Examples 2.3 and 2.4 illustrate the purpose of the axioms, theorems, and properties
as a mechanism for algebraic manipulation. Even these simple examples suggest that it is
impractical to deal with highly complex expressions in this way. However, these theorems
and properties provide the basis for automating the synthesis of logic functions in CAD
tools. To understand what can be achieved using these tools, the designer needs to be aware
of the fundamental concepts.

2.5.1 THE VENN DIAGRAM

We have suggested that perfect induction can be used to verify the theorems and properties.
This procedure is quite tedious and not very informative from the conceptual point of view.
A simple visual aid that can be used for this purpose also exists. It is called the Venn
diagram, and the reader is likely to find that it provides for a more intuitive understanding
of how two expressions may be equivalent.

The Venn diagram has traditionally been used in mathematics to provide a graphical
illustration of various operations and relations in the algebra of sets. A set s is a collection
of elements that are said to be the members of s. In the Venn diagram the elements of
a set are represented by the area enclosed by a contour such as a square, a circle, or an
ellipse. For example, in a universe N of integers from 1 to 10, the set of even numbers is
E ={2,4,6,8, 10}. Acontour representing E encloses the even numbers. The odd numbers
form the complement of E; hence the area outside the contour represents E= {1,3,5,7,9}.

Since in Boolean algebra there are only two values (elements) in the universe, B =
{0, 1}, we will say that the area within a contour corresponding to a set s denotes that s = 1,
while the area outside the contour denotes s = 0. In the diagram we will shade the area
where s = 1. The concept of the Venn diagram is illustrated in Figure 2.14. The universe B
is represented by a square. Then the constants 1 and O are represented as shown in parts (a)
and (b) of the figure. A variable, say, x, is represented by a circle, such that the area inside
the circle corresponds to x = 1, while the area outside the circle corresponds to x = 0.
This is illustrated in part (¢). An expression involving one or more variables is depicted by
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(a) Constant 1 (b) Constant 0

=1
=1

(c) Variable x (d) x
€) x-y M x+y
(9 x-y (h) x-y+z

Figure 2.14  The Venn diagram representation.

shading the area where the value of the expression is equal to 1. Part (d) indicates how the
complement of x is represented.

To represent two variables, x and y, we draw two overlapping circles. Then the area
where the circles overlap represents the case where x = y = 1, namely, the AND of x and
¥, as shown in part (e). Since this common area consists of the intersecting portions of x
and y, the AND operation is often referred to formally as the infersection of x and y. Part
(f) illustrates the OR operation, where x 4 y represents the total area within both circles,
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(a) x (d) x-y

(b) y+z (e) x-z

AQ I
NN /NN
e, .

(©) x-(y+2) ) x-y+x-z

Figure 2.15  Verification of the distributive property x - (y +2) =x-y +x - z.

namely, where at least one of x or y is equal to 1. Since this combines the areas in the
circles, the OR operation is formally often called the union of x and y.

Part (g) depicts the term x - y, which is represented by the intersection of the area for x
with that for y. Part (k) gives a three-variable example; the expression x - y + z is the union
of the area for z with that of the intersection of x and y.

To see how we can use Venn diagrams to verify the equivalence of two expressions,
let us demonstrate the validity of the distributive property, 12a, in Section 2.5. Figure 2.15
gives the construction of the left and right sides of the identity that defines the property

x-(y+z)=x-y+x-2

Part (a) shows the area where x = 1. Part (b) indicates the area for y + z. Part (c) gives the
diagram for x - (y + z), the intersection of shaded areas in parts (a) and (b). The right-hand
side is constructed in parts (d), (e), and (f). Parts (d) and (e) describe the terms x - y and
X - z, respectively. The union of the shaded areas in these two diagrams then corresponds
to the expression x - y + x - z, as seen in part (f). Since the shaded areas in parts (c¢) and
(f) are identical, it follows that the distributive property is valid.
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As another example, consider the identity
X-y+x-z+y-z=x-y+x-2

which is illustrated in Figure 2.16. Notice that this identity states that the term y - z is fully
covered by the terms x - y and X - z; therefore, this term can be omitted. This identity, which
we listed earlier as property 17a, is often referred to as consensus.

The reader should use the Venn diagram to prove some other identities. The examples
below prove the distributive property 12b, and DeMorgan’s theorem, 15a.

FEE
(5

.y+x.Z

<
™
=

S
(o D>
B ‘D

Figure 2.16  Verificationof x -y +X-z4+y-z=x-y+x-z.
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The distributive property 12a in Figure 2.15 will look familiar to the reader, becauseitis valid ~Example 2.5
both for Boolean variables and for variables that are real numbers. In the case of real-number

variables, the operations involved would be multiplication and addition, rather than logical

AND and OR. However, the dual form 124 of this property, x +y -z = (x +y) - (x + 2),

does not hold for real-number variables involving multiplication and addition operations.

To prove that this identity is valid in Boolean algebra we can use the Venn diagrams in

Figure 2.17. Parts (a) and (b) of the figure depict the terms x and y - z, respectively, and

part (c¢) gives the union of parts (a) and (). Parts (d) and (e) depict the sum terms (x + y)

and (x + z), and part (f) shows the intersection of (d) and (e). Since the diagrams in (c)

and (f) are the same, this proves the identity.

AVA

(@ x (d) x+y
(b) y-z (€) x+z
(©) x+y-z (f) G+ (+2)

Figure 2.17  Proof of the distributive property 12b.
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(@ x-y () x
(b) x-y (d) vy
(e) x+y

Figure 2.18  Proof of DeMorgan’s theorem 15a.

Example 2.6

A proof of DeMorgan’s theorem 15a by using Venn diagrams is illustrated in Figure 2.18.
The diagram in part (b) of the figure, which is the complement of x - y, is the same as the
diagram in part (e), which is the union of part (c¢) with part (d), thus proving the theorem.
We leave it as an exercise for the reader to prove the dual form of DeMorgan’s theorem,
15b.

2.5.2 NOTATION AND TERMINOLOGY

Boolean algebra is based on the AND and OR operations, for which we have adopted
the symbols - and +, respectively. These are also the standard symbols for the familiar
arithmetic multiplication and addition operations. Considerable similarity exists between
the Boolean operations and the arithmetic operations, which is the main reason why the



2.6 SYNTHESIS USING AND, OR, AND NOT GATES

same symbols are used. In fact, when single digits are involved there is only one significant
difference; the result of 1 + 1 is equal to 2 in ordinary arithmetic, whereas it is equal to 1
in Boolean algebra as defined by theorem 75 in Section 2.5.

Because of the similarity with the arithmetic addition and multiplication operations,
the OR and AND operations are often called the logical sum and product operations. Thus
X1 + x is the logical sum of x; and x,, and x; - x, is the logical product of x; and x,. Instead
of saying “logical product” and “logical sum,” it is customary to say simply “product” and
“sum.” Thus we say that the expression

X1 X2 X3+ X1 X4+ X2 - X3 X4
is a sum of three product terms, whereas the expression
(41 +x3) - (1 +33) - (2 + 43 + x3)

is a product of three sum terms.

2.5.3 PRECEDENCE OF OPERATIONS

Using the three basic operations—AND, OR, and NOT—it is possible to construct an infinite
number of logic expressions. Parentheses can be used to indicate the order in which the
operations should be performed. However, to avoid an excessive use of parentheses, another
convention defines the precedence of the basic operations. It states that in the absence of
parentheses, operations in a logic expression must be performed in the order: NOT, AND,
and then OR. Thus in the expression

X1 X2+ X1 X

it is first necessary to generate the complements of x; and x,. Then the product terms x; - x;
and X - X, are formed, followed by the sum of the two product terms. Observe that in the
absence of this convention, we would have to use parentheses to achieve the same effect as
follows:

(x1 - x2) + ((x1) - (x2))

Finally, to simplify the appearance of logic expressions, it is customary to omit the -
operator when there is no ambiguity. Therefore, the preceding expression can be written as

X1x2 + X1X2

We will use this style throughout the book.

43
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Armed with some basic ideas, we can now try to implement arbitrary functions using the
AND, OR, and NOT gates. Suppose that we wish to design a logic circuit with two inputs,
x1 and x,. Assume that x; and x; represent the states of two switches, either of which may
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xpo X || flxpsxp)

—_——O O
_— 0 = O
—_O = =

Figure 2.19 A function to be synthesized.

produce a 0 or 1. The function of the circuit is to continuously monitor the state of the
switches and to produce an output logic value 1 whenever the switches (xi, x;) are in states
(0, 0), (0, 1), or (1, 1). If the state of the switches is (1, 0), the output should be 0. We can
express the required behavior using a truth table, as shown in Figure 2.19.

A possible procedure for designing a logic circuit that implements this truth table is to
create a product term that has a value of 1 for each valuation for which the output function
f has to be 1. Then we can take a logical sum of these product terms to realize f. Let us
begin with the fourth row of the truth table, which corresponds to x; = x, = 1. The product
term that is equal to 1 for this valuation is x; - xp, which is just the AND of x; and x,. Next
consider the first row of the table, for which x; = x, = 0. For this valuation the value 1 is
produced by the product term X; - X,. Similarly, the second row leads to the term X - x;.
Thus f may be realized as

fx1, x) = x1x + X% + X120

The logic network that corresponds to this expression is shown in Figure 2.20a.

Although this network implements f correctly, it is not the simplest such network. To
find a simpler network, we can manipulate the obtained expression using the theorems and
properties from Section 2.5. According to theorem 7b, we can replicate any term in a logical
sum expression. Replicating the third product term, the above expression becomes

Fx1,x0) = x1x0 + X1 X2 + X1 X2 + XX

Using the commutative property 10b to interchange the second and third product terms
gives

S (x1, x2) = x1x0 + X102 + X1X2 + X102
Now the distributive property 12a allows us to write

SO, x2) = (e +X)x2 + X1 (2 + x2)
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X

X

00 %
5

(a) Canonical sum-of-products

T >

(b) Minimal-cost realization

Figure 2.20  Two implementations of the function in Figure 2.19.

Applying theorem 8b we get
FOnx)=1-x+x-1
Finally, theorem 6a leads to
Fxa,x) =x+X

The network described by this expression is given in Figure 2.20b. Obviously, the cost of
this network is much less than the cost of the network in part (a) of the figure.

This simple example illustrates two things. First, a straightforward implementation of
a function can be obtained by using a product term (AND gate) for each row of the truth
table for which the function is equal to 1. Each product term contains all input variables, and
it is formed such that if the input variable x; is equal to 1 in the given row, then x; is entered
in the term; if x; = 0 in that row, then X; is entered. The sum of these product terms realizes
the desired function. Second, there are many different networks that can realize a given
function. Some of these networks may be simpler than others. Algebraic manipulation can
be used to derive simplified logic expressions and thus lower-cost networks.

The process whereby we begin with a description of the desired functional behavior
and then generate a circuit that realizes this behavior is called synthesis. Thus we can
say that we “synthesized” the networks in Figure 2.20 from the truth table in Figure 2.19.
Generation of AND-OR expressions from a truth table is just one of many types of synthesis
techniques that we will encounter in this book.

45
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Example 2.7

Figure 2.21a depicts a part of a factory that makes bubble gumballs. The gumballs travel
on a conveyor that has three associated sensors sy, s, and s3. The sensor s; is connected
to a scale that weighs each gumball, and if a gumball is not heavy enough to be acceptable
then the sensor sets s; = 1. Sensors s, and s3 examine the diameter of each gumball. If
a gumball is too small to be acceptable, then s, = 1, and if it is too large, then s3 = 1.
If a gumball is of an acceptable weight and size, then the sensors give s; = s, = 53 = 0.
The conveyor pushes the gumballs over a “trap door” that it used to reject the ones that
are not properly formed. A gumball should be rejected if it is too large, or both too small
and too light. The trap door is opened by setting the logic function f to the value 1. By
inspection, we can see that an appropriate logic expression is f = s15> + s3. We will use
Boolean algebra to derive this logic expression from the truth table.

The truth table for f is given in Figure 2.21b. It sets f to 1 for each row in the table
where s3 has the value 1 (too large), as well as for each row where s; = s, = 1 (too light and
too small). As described previously, a logic expression for f can be formed by including a
product term for each row where f = 1. Thus, we can write

[ =515283 + 515253 + 515283 + 515253 + 515283

Sy 83

'/gumball '{/
— 0 O 0O O O —

N

S

f = “reject”

(a) Conveyor and sensors

19
—_
9%
¥
9%
)
-

—_—— == OO OO
—_—— O O == OO
— O = O = O = O
—_—— = O = O = O

(b) Truth table

Figure 2.21 A bubble gumbaill factory.
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We can use algebraic manipulation to simplify this expression in a number of ways. For
example, as shown below, we can first use rule 7b to repeat the term s;s,53, and then use
the distributive property 12a and rule 8b to simplify the expression
S = 515283 + 515253 + 515253 + $15253 + 515253 + 515253
= 5153(52 + 52) + 5153(52 + 52) + 5152(53 + 53)

= 5153 + 5153 + 515
Now, using the combining property 14a on the first two product terms gives
f=s3+s18

The observant reader will notice that using the combining property 14a is really just a short
form of first using the distributive property 12a and then applying rule 8b, as we did in the
previous step. Our simplified expression for f is the same as the one that we determined
earlier, by inspection.

47

There are different ways in which we can simplify the logic expression produced from the
truth table in Figure 2.21b. Another approach is to first repeat the term s;5,53, as we did in
Example 2.7, and then proceed as follows

f =515283 + 515253 + 8152853 + 515283 + 515253 + 515253
= 53(8152 + 5152 + 5152 + 5152) + 5152(53 + 53)
=s3-14 5185
=53+ 5152
Here, we used the distributive property 12a to produce the expression (515 + 5152 + 5152 +

s152). Since this expression includes all possible valuations of sy, 55, itis equal to 1, leading
to the same expression for f that we derived before.

Example 2.8

Yet another way of producing the symplified logic expression is shown below.

S = 515253 + 515283 + 515283 + $15253 + 515253
= 515283 + 515283 + §15253 + 515283 + §15253 + 515253
= 5153(52 + 52) + S253(s51 +51) + 5152(53 + 53)
= 5153 + 5283 + 5152
= 53(51 +52) + 5152
= 53(5152) + 5152
=53 + 5152
In this solution, we first repeat the term 515,53, and then symplify to generate the expression

s3(51 + 52) + s5152. Using DeMorgan’s theorem 15a we can replace (s; + 5,) with (5752),
which can then be deleted by applying property 16a.

Example 2.9



48

CHAPTER 2 ¢ INTRODUCTION TO LoGIic CIRCUITS

As illustrated by Examples 2.7 to 2.9, there are multiple ways in which a logic expres-
sion can be minimized by using Boolean algebra. This process can be daunting, because it
is not obvious which rules, identities, and properties should be applied, and in what order.
Later in this chapter, in Section 2.11, we will introduce a graphical technique, called the
Karnaugh map, that clarifies this process by providing a systematic way of generating a
minimal-cost logic expression for a function.

2.6.1 SuM-oF-ProbpuUCTS AND PRODUCT-OF-SUMS FORMS

Having introduced the synthesis process by means of simple examples, we will now present
it in more formal terms using the terminology that is encountered in the technical literature.
We will also show how the principle of duality, which was introduced in Section 2.5, applies
broadly in the synthesis process.

If a function f is specified in the form of a truth table, then an expression that realizes
f can be obtained by considering either the rows in the table for which f = 1, as we have
already done, or by considering the rows for which f = 0, as we will explain shortly.

Minterms

For a function of n variables, a product term in which each of the » variables appears
once is called a minterm. The variables may appear in a minterm either in uncomplemented
or complemented form. For a given row of the truth table, the minterm is formed by
including x; if x; = 1 and by including ¥; if x; = 0.

To illustrate this concept, consider the truth table in Figure 2.22. We have numbered the
rows of the table from 0 to 7, so that we can refer to them easily. From the discussion of the
binary number representation in Section 1.5, we can observe that the row numbers chosen
are just the numbers represented by the bit patterns of variables xj, x,, and x3. The figure
shows all minterms for the three-variable table. For example, in the first row the variables

Row
number | x; X, X3 Minterm Maxterm
0 0 0 0 || my=xxx3 | My= x;+ x5+ X3
1 0 0 1 || m=xxx3 | Mjy=x;+x,+ X3
2 0 1 0 | my=2xx05 | My= X+ X5+ X3
3 0 1 1 || mg=2X1xx3 | My=x;+ X5+ X3
4 I 0 0| my=xxX3 | My= X+ x5+ x3
5 1 0 1 || msg=xXx3 | Ms= X, + xp+ X3
6 1 1 0 || mg=x1x3%3 | Mg=X,+ X+ X3
7 I 1 1 || my=xxx; | My= X+ X+ X3

Figure 2.22  Three-variable minterms and maxterms.
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have the values x; = x, = x3 = 0, which leads to the minterm x;x,x3. In the second row
x1 = x, = 0 and x3 = 1, which gives the minterm X;X,x3, and so on. To be able to refer to
the individual minterms easily, it is convenient to identify each minterm by an index that
corresponds to the row numbers shown in the figure. We will use the notation m; to denote
the minterm for row number i. Thus my = X1x,Xx3, m; = X;X»x3, and so on.

Sum-of-Products Form

A function f can be represented by an expression that is a sum of minterms, where each
minterm is ANDed with the value of f for the corresponding valuation of input variables. For
example, the two-variable minterms are my = XX2, m; = XX, My = X1 X3, and m3 = x;xp.
The function in Figure 2.19 can be represented as

f=mo-14+m-1+m-04+ms-1
=my+my +m3
= X1X2 + X1X2 + X1X2

which is the form that we derived in the previous section using an intuitive approach. Only
the minterms that correspond to the rows for which f = 1 appear in the resulting expression.

Any function f* can be represented by a sum of minterms that correspond to the rows
in the truth table for which f = 1. The resulting implementation is functionally correct and
unique, but it is not necessarily the lowest-cost implementation of . A logic expression
consisting of product (AND) terms that are summed (ORed) is said to be in the sum-of-
products (SOP) form. If each product term is a minterm, then the expression is called a
canonical sum-of-products for the functionf. As we have seen in the example of Figure 2.20,
the first step in the synthesis process is to derive a canonical sum-of-products expression
for the given function. Then we can manipulate this expression, using the theorems and
properties of Section 2.5, with the goal of finding a functionally equivalent sum-of-products
expression that has a lower cost.

As another example, consider the three-variable function f (x1, x,, x3), specified by the
truth table in Figure 2.23. To synthesize this function, we have to include the minterms m;,

Row
number | x; X, X3 || f(x;, x5, x3)
0 0 0 O 0
1 0 O 1 1
2 o 1 o0 0
3 0o 1 1 0
4 1 0 O 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Figure 2.23 A three-variable function.
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my, ms, and mg. Copying these minterms from Figure 2.22 leads to the following canonical
sum-of-products expression for f

J (X1, %2, X3) = X1X23 + X1X2X3 + X1X2X3 + X1X2X3
This expression can be manipulated as follows

=G+ x)X2x3 + X1 (%2 + Xx2)%3

=1-Xx3+x1-1-Xx3

= XoX3 + X1X3
This is the minimum-cost sum-of-products expression for f. It describes the circuit shown
in Figure 2.24a. A good indication of the cost of a logic circuit is the total number of gates
plus the total number of inputs to all gates in the circuit. Using this measure, the cost of
the network in Figure 2.24a is 13, because there are five gates and eight inputs to the gates.
By comparison, the network implemented on the basis of the canonical sum-of-products
would have a cost of 27; from the preceding expression, the OR gate has four inputs, each
of the four AND gates has three inputs, and each of the three NOT gates has one input.

Minterms, with their row-number subscripts, can also be used to specify a given func-
tion in a more concise form. For example, the function in Figure 2.23 can be specified

X, 4>o_
>

(a) A minimal sum-of-products realization

- Dal
> )
>

(b) A minimal product-of-sums realization

X3

X

Figure 2.24  Two realizations of the function in Figure 2.23.
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as
S, x5 x3) = Z(ml,m4, ms, M)
or even more simply as
fOx,x5) =Y m(1,4,5,6)

The Y sign denotes the logical sum operation. This shorthand notation is often used in
practice.

Consider the function Example 2.10
[ x,x5) =) m(2,3,4,6,7)
The canonical SOP expression for the function is derived using minterms

S =my+m3 +my+mg +my

= X1X00X3 + X1X0X3 + X1X0X3 + X1 X00X3 + X1 X0X3
This expression can be simplified using the identities in Section 2.5 as follows
f =X1x2(x3 + x3) + X1 (X2 + x2)X3 + X102 (X3 + x3)
= XX + X1X3 + X1 X2

= (X1 +x1)x2 + x1X3

=Xy + X1 X3

Suppose that a four-variable function is defined by Example 2.11
fOnx. x5, %) =Y m(3,7.9.12, 13,14, 15)
The canonical SOP expression for this function is
S = X1Xox3x4 + X1X2X3X4 + X1X2X3X4 + X1X2X3X4 + X1X0X3X4 + X1X0X3X4 + X1X2X3X4
A simpler SOP expression can be obtained as follows

[ =x1(2 4 x2)x3x4 4+ x1 (X2 + X2)X3x4 + X100X3 (X4 + X4) + X1x2X3 (X4 + X4)
= X1X3X4 + X1 X3X4 + X1X2X3 + X1 X0X3
= X1X3X4 + X1X3X4 + X1x2(X3 + X3)

= X1X3X4 + X1 X3X4 + X1 X2
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Maxterms

The principle of duality suggests that if it is possible to synthesize a function f by
considering the rows in the truth table for which f = 1, then it should also be possible to
synthesize f by considering the rows for which f = 0. This alternative approach uses the
complements of minterms, which are called maxterms. All possible maxterms for three-
variable functions are listed in Figure 2.22. We will refer to a maxterm M; by the same row
number as its corresponding minterm »2; as shown in the figure.

Product-of-Sums Form

If a given function f is specified by a truth table, then its complement f can be rep-
resented by a sum of minterms for which f = 1, which are the rows where f = 0. For
example, for the function in Figure 2.19

fx,x) =m

= )Cl)_Cz
If we complement this expression using DeMorgan’s theorem, the result is
f=f=xx
=X +x

Note that we obtained this expression previously by algebraic manipulation of the canonical
sum-of-products form for the function f. The key point here is that

f=nn=M

where M5 is the maxterm for row 2 in the truth table.
As another example, consider again the function in Figure 2.23. The complement of
this function can be represented as

F (X1, %2, X3) = mg + may + my + my

= X1X2X3 + X1 X2X3 + X1 X2X3 + X1X2X3

Then f can be expressed as

f =mo+my+m3+my
=Ty - Ty - Tils - T
=My - M, -M;-M;
= (x1 +x2 +x3)(x1 + X2 + x3) (X1 + X2 + X3) (X1 + X2 + X3)

This expression represents f* as a product of maxterms.

Alogic expression consisting of sum (OR) terms that are the factors of a logical product
(AND) is said to be of the product-of-sums (POS) form. If each sum term is a maxterm, then
the expression is called a canonical product-of-sums for the given function. Any function
f can be synthesized by finding its canonical product-of-sums. This involves taking the
maxterm for each row in the truth table for which f = 0 and forming a product of these
maxterms.
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Returning to the preceding example, we can attempt to reduce the complexity of the
derived expression that comprises a product of maxterms. Using the commutative property
10b and the associative property 115 from Section 2.5, this expression can be written as

J = (G +x3) +x2) (0 +x3) +X2) (61 + (X2 +X3)) (X1 + (%2 + X3))
Then, using the combining property 14b, the expression reduces to
f= 0 +x3)Fx +x3)

The corresponding network is given in Figure 2.24b. The cost of this network is 13. While
this cost happens to be the same as the cost of the sum-of-products version in Figure 2.24aq,
the reader should not assume that the cost of a network derived in the sum-of-products form
will in general be equal to the cost of a corresponding circuit derived in the product-of-sums
form.

Using the shorthand notation, an alternative way of specifying our sample function is

S, x2, x3) = TH(Mo, Mz, M3, M7)
or more simply
f @, x,x3) =TIM(0,2,3,7)

The IT sign denotes the logical product operation.

The preceding discussion has shown how logic functions can be realized in the form
of logic circuits, consisting of networks of gates that implement basic functions. A given
function may be realized with various different circuit structures, which usually implies
a difference in cost. An important objective for a designer is to minimize the cost of the
designed circuit. We will discuss strategies for finding minimum-cost implementations in
Section 2.11.
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Consider again the function in Example 2.10. Instead of using the minterms, we can specify Example 2.12

this function as a product of maxterms for which f = 0, namely
fx1,x2,x3) =TIM (0, 1, 5)
Then, the canonical POS expression is derived as
f=My-M, -Ms
= (X1 +x2 +x3)(x1 + x2 + X3) (X1 +x2 + X3)
A simplified POS expression can be derived as
f= 0+ x4 x3) (0o +x2 + X3) (01 + X2 +X3) (X1 +x2 +X3)
= ((x1 +x2) +x3) ((x1 + x2) +X3)(x1 + (2 +X3)) (X1 + (x2 + X3))

= ((x1 + x2) + x3%3) (1 X1 + (x2 +X3))
= (x1 +x2)(x2 +X3)
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Another way of deriving this product-of-sums expression is to use the sum-of-products form
of f. Thus,

[, x,x3) =Y m(0,1,5)
= X1X2X3 + X1 X2X3 + X1X2X3
= X1X2X3 + X1 Xox3 + X1 X0x3 + X1 X2X3
= X1%2(X3 + x3) + Xx3(X1 + x1)

= X1X2 + Xox3

Now, first applying DeMorgan’s theorem 15b, and then applying 15a (twice) gives

f=r
= (X1X2 + X2x3)
= (X1%2) (X2x3)
= (%1 +x2)(x2 + X3)
To see that this product-of-sums expression for f is equivalent to the sum-of-products
expression that we derived in Example 2.10, we can slightly rearrange our expression as

f = (x2 + x1)(x2 + x3). Now, recognizing that this expression has the form of the righthand
side of the distributive property 125, we have the sum-of-products expressionf = x, + x;X3.

2.7 NAND AnND NOR LoGic NETWORKS

We have discussed the use of AND, OR, and NOT gates in the synthesis of logic circuits.
There are other basic logic functions that are also used for this purpose. Particularly useful
are the NAND and NOR functions which are obtained by complementing the output gener-
ated by AND and OR operations, respectively. These functions are attractive because they
are implemented with simpler electronic circuits than the AND and OR functions, as we
discuss in Appendix B. Figure 2.25 gives the graphical symbols for the NAND and NOR
gates. A bubble is placed on the output side of the AND and OR gate symbols to represent
the complemented output signal.

If NAND and NOR gates are realized with simpler circuits than AND and OR gates,
then we should ask whether these gates can be used directly in the synthesis of logic circuits.
In Section 2.5 we introduced DeMorgan’s theorem. Its logic gate interpretation is shown in
Figure 2.26. Identity 15a is interpreted in part (a) of the figure. It specifies that a NAND of
variables x; and x; is equivalent to first complementing each of the variables and then ORing
them. Notice on the far-right side that we have indicated the NOT gates simply as bubbles,
which denote inversion of the logic value at that point. The other half of DeMorgan’s
theorem, identity 15b, appears in part (b) of the figure. It states that the NOR function is
equivalent to first inverting the input variables and then ANDing them.
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Figure 2.25  NAND and NOR gates.
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Figure 2.26  DeMorgan’s theorem in terms of logic gates.
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In Section 2.6 we explained how any logic function can be implemented either in sum-
of-products or product-of-sums form, which leads to logic networks that have either an
AND-OR or an OR-AND structure, respectively. We will now show that such networks
can be implemented using only NAND gates or only NOR gates.

Consider the network in Figure 2.27 as a representative of general AND-OR networks.
This network can be transformed into a network of NAND gates as shown in the figure.
First, each connection between the AND gate and an OR gate is replaced by a connection
that includes two inversions of the signal: one inversion at the output of the AND gate and
the other at the input of the OR gate. Such double inversion has no effect on the behavior
of the network, as stated formally in theorem 9 in Section 2.5. According to Figure 2.26a,
the OR gate with inversions at its inputs is equivalent to a NAND gate. Thus we can redraw
the network using only NAND gates, as shown in Figure 2.27. This example shows that
any AND-OR network can be implemented as a NAND-NAND network having the same
topology.

Figure 2.28 gives a similar construction for a product-of-sums network, which can be
transformed into a circuit with only NOR gates. The procedure is exactly the same as the
one described for Figure 2.27 except that now the identity in Figure 2.26b is applied. The
conclusion is that any OR-AND network can be implemented as a NOR-NOR network
having the same topology.

Example 2.13

Let us implement the function

[, x,03) = ) m(2,3,4,6,7)

using NOR gates only. In Example 2.12 we showed that the function can be represented
by the POS expression

f= 01 +x2)(0 +X3)

An OR-AND circuit that corresponds to this expression is shown in Figure 2.29a. Using
the same structure of the circuit, a NOR-gate version is given in Figure 2.29b. Note that x3
is inverted by a NOR gate that has its inputs tied together.

Example 2.14

Let us now implement the function

fOnx.x) =) m(2,3,4,6,7)
using NAND gates only. In Example 2.10 we derived the SOP expression
[ =x+xx3

which is realized using the circuit in Figure 2.30a. We can again use the same structure
to obtain a circuit with NAND gates, but with one difference. The signal x, passes only
through an OR gate, instead of passing through an AND gate and an OR gate. If we simply
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Figure 2.29  NOR-gate realization of the function in Example 2.13.
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Figure 2.30  NAND-gate realization of the function in Example 2.10.



2.8 DESIGN EXAMPLES

replace the OR gate with a NAND gate, this signal would be inverted which would result
in a wrong output value. Since x, must either not be inverted, or it can be inverted twice,
we can pass it through two NAND gates as depicted in Figure 2.30b. Observe that for this
circuit the output fis

f =% x1X3
Applying DeMorgan’s theorem, this expression becomes

f=x+xx

2.8 DESIGN EXAMPLES

Logic circuits provide a solution to a problem. They implement functions that are needed to
carry out specific tasks. Within the framework of a computer, logic circuits provide complete
capability for execution of programs and processing of data. Such circuits are complex and
difficult to design. But regardless of the complexity of a given circuit, a designer of logic
circuits is always confronted with the same basic issues. First, it is necessary to specify the
desired behavior of the circuit. Second, the circuit has to be synthesized and implemented.
Finally, the implemented circuit has to be tested to verify that it meets the specifications.
The desired behavior is often initially described in words, which then must be turned into
a formal specification. In this section we give three simple examples of design.

2.8.1 THREE-WAY LiGHT CONTROL

Assume that a large room has three doors and that a switch near each door controls a light
in the room. It has to be possible to turn the light on or off by changing the state of any one
of the switches.

As a first step, let us turn this word statement into a formal specification using a truth
table. Let xj, x», and x3 be the input variables that denote the state of each switch. Assume
that the light is off if all switches are open. Closing any one of the switches will turn the
light on. Then turning on a second switch will have to turn off the light. Thus the light
will be on if exactly one switch is closed, and it will be off if two (or no) switches are
closed. If the light is off when two switches are closed, then it must be possible to turn
it on by closing the third switch. If f (x|, x,, x3) represents the state of the light, then the
required functional behavior can be specified as shown in the truth table in Figure 2.31.
The canonical sum-of-products expression for the specified function is

f=m +my+my+m

= X[X2X3 + X1 X2X3 + X1 X2X3 + X1 X2X3

This expression cannot be simplified into a lower-cost sum-of-products expression. The
resulting circuit is shown in Figure 2.32a.
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Figure 2.31  Truth table for the three-way light
control.

An alternative realization for this function is in the product-of-sums form. The canon-
ical expression of this type is

f=My-M;-Ms - Mg
= (X1 +x2 +x3) 001 + X2 +X3) 1 +x2 + X3) (61 + X2 + x3)

The resulting circuit is depicted in Figure 2.32b. It has the same cost as the circuit in part
(a) of the figure.

When the designed circuit is implemented, it can be tested by applying the various
input valuations to the circuit and checking whether the output corresponds to the values
specified in the truth table. A straightforward approach is to check that the correct output
is produced for all eight possible input valuations.

2.8.2 MULTIPLEXER CIRCUIT

In computer systems it is often necessary to choose data from exactly one of a number
of possible sources. Suppose that there are two sources of data, provided as input signals
x1 and x,. The values of these signals change in time, perhaps at regular intervals. Thus
sequences of Os and 1s are applied on each of the inputs x; and x,. We want to design a
circuit that produces an output that has the same value as either x; or x;, dependent on the
value of a selection control signal s. Therefore, the circuit should have three inputs: xi,
X2, and s. Assume that the output of the circuit will be the same as the value of input x; if
s = 0, and it will be the same as x, if s = 1.

Based on these requirements, we can specify the desired circuit in the form of a truth
table given in Figure 2.33a. From the truth table, we derive the canonical sum of products

F (8, X1, X2) = Sx1Xp + SX1X2 + SX1 X2 + SX1X2
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Figure 2.32  Implementation of the function in Figure 2.31.

Using the distributive property, this expression can be written as
f =512+ x2) + 51 +x1)x2
Applying theorem 8b yields
f=sx1-14+s-1-x
Finally, theorem 6a gives

f =35x1 +sx
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s xy Xy || f(s,x7,x)
000 0
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(a) Truth table
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(d) More compact truth-table representation

Figure 2.33  Implementation of a multiplexer.

A circuit that implements this function is shown in Figure 2.33b. Circuits of this type are
used so extensively that they are given a special name. A circuit that generates an output
that exactly reflects the state of one of a number of data inputs, based on the value of one
or more selection control inputs, is called a multiplexer. We say that a multiplexer circuit

“multiplexes” input signals onto a single output.
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In this example we derived a multiplexer with two data inputs, which is referred to
as a “2-to-1 multiplexer.” A commonly used graphical symbol for the 2-to-1 multiplexer
is shown in Figure 2.33c. The same idea can be extended to larger circuits. A 4-to-1
multiplexer has four data inputs and one output. In this case two selection control inputs
are needed to choose one of the four data inputs that is transmitted as the output signal. An
8-to-1 multiplexer needs eight data inputs and three selection control inputs, and so on.

Note that the statement “f = x; if s =0, and f = x, if s = 1” can be presented in a
more compact form of a truth table, as indicated in Figure 2.33d. In later chapters we will
have occasion to use such representation.

We showed how a multiplexer can be built using AND, OR, and NOT gates. The same
circuit structure can be used to implement the multiplexer using NAND gates, as explained
in Section 2.7. In Appendix B we will show other possibilities for constructing multiplexers.
In Chapter 4 we will discuss the use of multiplexers in considerable detail.

2.8.3 NUMBER DISPLAY

In Example 2.2 we designed an adder circuit that generates the arithmetic sum S = a + b,
where a and b are one-bit numbers and S = s;5¢ provides the resulting two-bit sum, which
is either 00, 01, or 10. In this design example we wish to create a logic circuit that drives
a familiar seven-segment display, as illustrated in Figure 2.34a. This display allows us to
show the value of S as a decimal number, either 0, 1, or 2. The display includes seven

a
b a
c
b
Sy — Llogi.c d fl_l
5 ———— circuit e. el g lc
f ]
2 d

d 0 1111 0

i o 1 0 1 0 0 0 0

c 0 10 1 0 1
(b) Truth table

Figure 2.34  Display of numbers.
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segments, labeled a, b, ..., g in the figure, where each segment is a light-emitting diode
(LED). Our logic circuit has the two inputs s; and sy. It produces seven outputs, one for
each segment in the display. Setting an output to the value 1 illuminates the corresponding
segment in the display. By illuminating specific segments for each valuation of 5159 we can
make the display’s appearance correspond to the shape of the appropriate decimal digit.

Part (b) of Figure 2.34 shows a truth table for the possible valuations of s;sy and
indicates on the lefthand side how the display should appear in each case. The truth table
specifies the logic values needed for each of the seven functions. For example, segment a
in the 7-segment display needs to be turned on when S has the decimal values O or 2, but
has to be off when S has the value 1. Hence, the corresponding logic function is set to 1 for
minterms mg and m,, giving a = 5,59 + 5150 = Sp. Logic expressions for each of the seven
functions are:

a=d=e=7%
b=1

c=135

f =515

8 = 5150

Designers of logic circuits rely heavily on CAD tools. We want to encourage the reader
to become familiar with CAD tools as soon as possible. We have reached a point where
an introduction to these tools is useful. The next section presents some basic concepts that
are needed to use these tools. We will also introduce, in Section 2.10, a special language
for describing logic circuits, called Verilog. This language is used to describe the circuits
as an input to the CAD tools, which then proceed to derive a suitable implementation.

2.9 InTrRODUCTION TO CAD TOOLS

The preceding sections introduced a basic approach for synthesis of logic circuits. A de-
signer could use this approach manually for small circuits. However, logic circuits found
in complex systems, such as today’s computers, cannot be designed manually—they are
designed using sophisticated CAD tools that automatically implement the synthesis tech-
niques.

To design alogic circuit, a number of CAD tools are needed. They are usually packaged
together into a CAD system, which typically includes tools for the following tasks: design
entry, logic synthesis and optimization, simulation, and physical design. We will introduce
some of these tools in this section and will provide additional discussion in later chapters.

2.9.1 DEsSIGN ENTRY

The starting point in the process of designing a logic circuit is the conception of what the
circuit is supposed to do and the formulation of its general structure. This step is done
manually by the designer because it requires design experience and intuition. The rest
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of the design process is done with the aid of CAD tools. The first stage of this process
involves entering into the CAD system a description of the circuit being designed. This
stage is called design entry. We will describe two design entry methods: using schematic
capture and writing source code in a hardware description language.

Schematic Capture

A logic circuit can be defined by drawing logic gates and interconnecting them with
wires. A CAD tool for entering a designed circuit in this way is called a schematic capture
tool. The word schematic refers to a diagram of a circuit in which circuit elements, such
as logic gates, are depicted as graphical symbols and connections between circuit elements
are drawn as lines.

A schematic capture tool uses the graphics capabilities of a computer and a computer
mouse to allow the user to draw a schematic diagram. To facilitate inclusion of gates
in the schematic, the tool provides a collection of graphical symbols that represent gates
of various types with different numbers of inputs. This collection of symbols is called a
library. The gates in the library can be imported into the user’s schematic, and the tool
provides a graphical way of interconnecting the gates to create a logic network.

Any subcircuits that have been previously created can be represented as graphical
symbols and included in the schematic. In practice it is common for a CAD system user to
create a circuit that includes within it other smaller circuits. This methodology is known
as hierarchical design and provides a good way of dealing with the complexities of large
circuits.

The schematic-capture method is simple to use, but becomes awkward when large
circuits are involved. A better method for dealing with large circuits is to write source code
using a hardware description language to represent the circuit.

Hardware Description Languages

A hardware description language (HDL) is similar to a typical computer programming
language except that an HDL is used to describe hardware rather than a program to be
executed on a computer. Many commercial HDLs are available. Some are proprietary,
meaning that they are provided by a particular company and can be used to implement
circuits only in the technology offered by that company. We will not discuss the proprietary
HDLs in this book. Instead, we will focus on a language that is supported by virtually
all vendors that provide digital hardware technology and is officially endorsed as an Insti-
tute of Electrical and Electronics Engineers (IEEE) standard. The IEEE is a worldwide
organization that promotes technical activities to the benefit of society in general. One of
its activities involves the development of standards that define how certain technological
concepts can be used in a way that is suitable for a large body of users.

Two HDLs are IEEE standards: Verilog HDL and VHDL (Very High Speed Integrated
Circuit Hardware Description Language). Both languages are in widespread use in the
industry. We use Verilog in this book, but a VHDL version of the book is also available
from the same publisher [4]. Although the two languages differ in many ways, the choice
of using one or the other when studying logic circuits is not particularly important, because
both offer similar features. Concepts illustrated in this book using Verilog can be directly
applied when using VHDL.
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In comparison to performing schematic capture, using Verilog offers anumber of advan-
tages. Because it is supported by most organizations that offer digital hardware technology,
Verilog provides design portability. A circuit specified in Verilog can be implemented in dif-
ferent types of chips and with CAD tools provided by different companies, without having
to change the Verilog specification. Design portability is an important advantage because
digital circuit technology changes rapidly. By using a standard language, the designer can
focus on the functionality of the desired circuit without being overly concerned about the
details of the technology that will eventually be used for implementation.

Design entry of a logic circuit is done by writing Verilog code. Signals in the circuit
can be represented as variables in the source code, and logic functions are expressed by
assigning values to these variables. Verilog source code is plain text, which makes it easy
for the designer to include within the code documentation that explains how the circuit
works. This feature, coupled with the fact that Verilog is widely used, encourages sharing
and reuse of Verilog-described circuits. This allows faster development of new products in
cases where existing Verilog code can be adapted for use in the design of new circuits.

Similar to the way in which large circuits are handled in schematic capture, Verilog
code can be written in a modular way that facilitates hierarchical design. Both small and
large logic circuit designs can be efficiently represented in Verilog code.

Verilog design entry can be combined with other methods. For example, a schematic-
capture tool can be used in which a subcircuit in the schematic is described using Verilog.
We will introduce Verilog in Section 2.10.

2.9.2 LoGIC SYNTHESIS

Synthesis is the process of generating a logic circuit from an initial specification that may
be given in the form of a schematic diagram or code written in a hardware description
language. Synthesis CAD tools generate efficient implementations of circuits from such
specifications.

The process of translating, or compiling, Verilog code into a network of logic gates is
part of synthesis. The output is a set of logic expressions that describe the logic functions
needed to realize the circuit.

Regardless of what type of design entry is used, the initial logic expressions produced by
the synthesis tools are not likely to be in an optimal form because they reflect the designer’s
input to the CAD tools. It is impossible for a designer to manually produce optimal results
for large circuits. So, one of the important tasks of the synthesis tools is to manipulate the
user’s design to automatically generate an equivalent, but better circuit.

The measure of what makes one circuit better than another depends on the particular
needs of a design project and the technology chosen for implementation. Earlier in this
chapter we suggested that a good circuit might be one that has the lowest cost. There are other
possible optimization goals, which are motivated by the type of hardware technology used
for implementation of the circuit. We discuss implementation technologies in Appendix B.

The performance of a synthesized circuit can be assessed by physically constructing
the circuit and testing it. But, its behavior can also be evaluated by means of simulation.
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2.9.3 FUNCTIONAL SIMULATION

A circuit represented in the form of logic expressions can be simulated to verify that it
will function as expected. The tool that performs this task is called a functional simulator.
It uses the logic expressions (often referred to as equations) generated during synthesis,
and assumes that these expressions will be implemented with perfect gates through which
signals propagate instantaneously. The simulator requires the user to specify valuations
of the circuit’s inputs that should be applied during simulation. For each valuation, the
simulator evaluates the outputs produced by the expressions. The results of simulation are
usually provided in the form of a timing diagram which the user can examine to verify that
the circuit operates as required.

2.9.4 PuHYSICAL DESIGN

After logic synthesis the next step in the design flow is to determine exactly how to imple-
ment the circuit on a given chip. This step is often called physical design. As we discuss in
Appendix B, there are several different technologies that may be used to implement logic
circuits. The physical design tools map a circuit specified in the form of logic expressions
into a realization that makes use of the resources available on the target chip. They deter-
mine the placement of specific logic elements, which are not necessarily simple gates of
the type we have encountered so far. They also determine the wiring connections that have
to be made between these elements to implement the desired circuit.

2.9.5 TIMING SIMULATION

Logic gates and other logic elements are implemented with electronic circuits, and these
circuits cannot perform their function with zero delay. When the values of inputs to the
circuit change, it takes a certain amount of time before a corresponding change occurs at
the output. This is called a propagation delay of the circuit. The propagation delay consists
of two kinds of delays. Each logic element needs some time to generate a valid output
signal whenever there are changes in the values of its inputs. In addition to this delay, there
is a delay caused by signals that must propagate along wires that connect various logic
elements. The combined effect is that real circuits exhibit delays, which has a significant
impact on their speed of operation.

A timing simulator evaluates the expected delays of a designed logic circuit. Its results
can be used to determine if the generated circuit meets the timing requirements of the
specification for the design. If the requirements are not met, the designer can ask the
physical design tools to try again by indicating specific timing constraints that have to be
met. If this does not succeed, then the designer has to try different optimizations in the
synthesis step, or else improve the initial design that is presented to the synthesis tools.
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2.9.6 CircuiT IMPLEMENTATION

Having ascertained that the designed circuit meets all requirements of the specification, the
circuit is implemented on an actual chip. If a custom-manufactured chip is created for this
design, then this step is called chip fabrication. But if a programmable hardware device
is used, then this step is called chip configuration or programming. Various types of chip
technologies are described in Appendix B.

2.9.7 CoMPLETE DESIGN FLowW

The CAD tools discussed above are the essential parts of a CAD system. The complete
design flow that we discussed is illustrated in Figure 2.35. This has been just a brief
introductory discussion. A full presentation of the CAD tools is given in Chapter 10.

At this point the reader should have some appreciation for what is involved when using
CAD tools. However, the tools can be fully appreciated only when they are used firsthand.
We strongly encourage the reader to obtain access to suitable CAD tools and implement
some examples of circuits by using these tools. Two examples of commonly-used CAD
tools are the Quartus II tools available from Altera Corporation and the ISE tools provided
by Xilinx Corporation. Both of these CAD systems can be obtained free-of-charge for
educational use from their respective corporations’ websites.

2.10 INTRODUCTION TO VERILOG

In the 1980s rapid advances in integrated circuit technology lead to efforts to develop
standard design practices for digital circuits. Verilog was produced as a part of that effort.
The original version of Verilog was developed by Gateway Design Automation, which was
later acquired by Cadence Design Systems. In 1990 Verilog was put into the public domain,
and it has since become one of the most popular languages for describing digital circuits.
In 1995 Verilog was adopted as an official IEEE Standard, called 1364-1995. An enhanced
version of Verilog, called Verilog 2001, was adopted as IEEE Standard 1364-2001 in 2001.
While this version introduced a number of new features, it also supports all of the features
in the original Verilog standard.

Verilog was originally intended for simulation and verification of digital circuits. Sub-
sequently, with the addition of synthesis capability, Verilog has also become popular for
use in design entry in CAD systems. The CAD tools are used to synthesize the Verilog
code into a hardware implementation of the described circuit. In this book our main use of
Verilog will be for synthesis.

Verilog is a complex, sophisticated language. Learning all of its features is a daunting
task. However, for use in synthesis only a subset of these features is important. To simplify
the presentation, we will focus the discussion on the features of the Verilog language that
are actually used in the examples in the book. The material presented is sufficient to allow
the reader to design a wide range of circuits. The reader who wishes to learn the complete
Verilog language can refer to one of the specialized texts [5-11].
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Figure 2.35 A typical CAD system.
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Verilog is introduced in several stages throughout the book. Our general approach will
be to introduce particular features only when they are relevant to the design topics covered
in that part of the text. In Appendix A we provide a concise summary of the Verilog features
covered in the book. The reader will find it convenient to refer to that material from time to
time. In the remainder of this chapter we discuss the most basic concepts needed to write
simple Verilog code.

Representation of Digital Circuits in Verilog

When using CAD tools to synthesize a logic circuit, the designer can provide the initial
description of the circuit in several different ways, as we explained in the previous section.
One efficient way is to write this description in the form of Verilog source code. The Verilog
compiler translates this code into a logic circuit.

Verilog allows the designer to describe a desired circuit in a number of ways. One
possibility is to use Verilog constructs that describe the structure of the circuit in terms
of circuit elements, such as logic gates. A larger circuit is defined by writing code that
connects such elements together. This approach is referred to as the structural representation
of logic circuits. Another possibility is to describe a circuit more abstractly, by using
logic expressions and Verilog programming constructs that define the desired behavior of
the circuit, but not its actual structure in terms of gates. This is called the behavioral
representation.

2.10.1 STRUCTURAL SPECIFICATION OF LocGic CIRCUITS

Verilog includes a set of gate-level primitives that correspond to commonly-used logic gates.
A gate is represented by indicating its functional name, output, and inputs. For example, a
two-input AND gate, with output y and inputs x; and x,, is denoted as

and (y, x1, x2);
A four-input OR gate is specified as
or (y, x1, x2, x3, x4);

The keywords nand and nor are used to define the NAND and NOR gates in the same way.
The NOT gate given by

not (Ys X)7

implements y = x. The gate-level primitives can be used to specify larger circuits. All of
the available Verilog gate-level primitives are listed in Table A.2 in Appendix A.

A logic circuit is specified in the form of a module that contains the statements that
define the circuit. A module has inputs and outputs, which are referred to as its ports.
The word port is a commonly-used term that refers to an input or output connection to an
electronic circuit. Consider the multiplexer circuit from Figure 2.33b, which is reproduced
in Figure 2.36. This circuit can be represented by the Verilog code in Figure 2.37. The
first statement gives the module a name, examplel, and indicates that there are four port
signals. The next two statements declare that x;, x,, and s are to be treated as input signals,
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Figure 2.36  The logic circuit for a multiplexer.

module examplel (x1, x2, s, f);
input x1,x2,s;
output f;

not (k, s);
and (g, k, x1);
and (h, s, x2);
or (f, g, h);

endmodule

Figure 2.37  Verilog code for the circuit in Figure 2.36.

while fis the output. The actual structure of the circuit is specified in the four statements
that follow. The NOT gate gives k = 5. The AND gates produce g = 5x; and & = sx,. The
outputs of AND gates are combined in the OR gate to form

f=g+h
= 5x1 + sx»

The module ends with the endmodule statement. We have written the Verilog keywords
in bold type to make the text easier to read. We will continue this practice throughout the
book.

A second example of Verilog code is given in Figure 2.38. It defines a circuit that has
four input signals, x1, x,, x3, and x4, and three output signals, f, g, and &. It implements the
logic functions

g = X1x3 + x4
h= (1 +X3) (X2 + x4)
f=g+h
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module example2 (x1, x2, x3, x4, f, g, h);
input x1, x2, x3, x4;
output f, g, h;

and (z1, x1, x3);
and (z2, x2, x4);
or (g, z1, z2);

or (z3, x1, ~x3);
or (z4,~x2, x4);
and (h, z3, z4);
or (f, g, h);

endmodule

Figure 2.38  Verilog code for a four-input circuit.

Instead of using explicit NOT gates to define X, and X3, we have used the Verilog operator

~ (tilde character on the keyboard) to denote complementation. Thus, X, is indicated as
~x2 in the code. The circuit produced by the Verilog compiler for this example is shown
in Figure 2.39.

Verilog Syntax

The names of modules and signals in Verilog code follow two simple rules: the name
must start with a letter, and it can contain any letter or number plus the “_” underscore
and “$” characters. Verilog is case sensitive. Thus, the name k is not the same as K and
Examplel is not the same as examplel. The Verilog syntax does not enforce a particular
style of code. For example, multiple statements can appear on a single line. White space
characters, such as SPACE and TAB, and blank lines are ignored. As a matter of good
style, code should be formatted in such a way that it is easy to read. Indentation and blank
lines can be used to make separate parts of the code easily recognizable, as we have done in
Figures 2.37 and 2.38. Comments may be included in the code to improve its readability.
A comment begins with the double slash “//”” and continues to the end of the line.

2.10.2 BEHAVIORAL SPECIFICATION OF LoGic CIRCUITS

Using gate-level primitives can be tedious when large circuits have to be designed. An
alternative is to use more abstract expressions and programming constructs to describe the
behavior of a logic circuit. One possibility is to define the circuit using logic expressions.
Figure 2.40 shows how the circuit in Figure 2.36 can be defined with the expression

f =5x1 + 5%

The AND and OR operations are indicated by the “&”” and “|” Verilog operators, respectively.
The assign keyword provides a continuous assignment for the signal f'. The word continuous
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Figure 2.39  Logic circuit for the code in Figure 2.38.

module example3 (x1, x2, s, f);
input x1, x2, s;
output f;
assign f=(~s & x1)| (s & x2);

endmodule

Figure 2.40  Using the continuous assignment fo specify the
circuit in Figure 2.36.

stems from the use of Verilog for simulation; whenever any signal on the right-hand side
changes its state, the value of f will be re-evaluated. The effect is equivalent to using the
gate-level primitives in Figure 2.37. Following this approach, the circuit in Figure 2.39 can
be specified as shown in Figure 2.41.

Using logic expressions makes it easier to write Verilog code. But even higher levels
of abstraction can often be used to advantage. Consider again the multiplexer circuit of
Figure 2.36. The circuit can be described in words by saying that f = x; ifs = Oandf = x,
if s = 1. In Verilog, this behavior can be defined with the if-else statement

if s==0)
f=x1;
else

f=x2;
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module example4 (x1, x2, x3, x4, f, g, h);
input x1, x2, x3, x4;
output f, g, h;

assign g=(x1 & x3) | (x2 & x4);
assign h = (x1 | ~x3) & (~x2 | x4);
assign f=g | h;

endmodule

Figure 2.41  Using the continuous assignment to specify the
circuit in Figure 2.39.

// Behavioral specification
module example5 (x1, x2, s, f);
input x1, x2, s;
output f;
reg f;

always @(x1 or x2 or s)

if s==0)
f=x1;
else
f=x2;
endmodule

Figure 2.42  Behavioral specification of the circuit in
Figure 2.36.

The complete code is given in Figure 2.42. The first line illustrates how a comment can be
inserted. The if-else statement is an example of a Verilog procedural statement. We will
introduce other procedural statements, such as loop statements, in Chapters 3 and 4.

Verilog syntax requires that procedural statements be contained inside a construct called
an always block, as shown in Figure 2.42. An always block can contain a single statement,
as in this example, or it can contain multiple statements. A typical Verilog design module
may include several always blocks, each representing a part of the circuit being modeled.
An important property of the always block is that the statements it contains are evaluated
in the order given in the code. This is in contrast to the continuous assignment statements,
which are evaluated concurrently and hence have no meaningful order.

The part of the always block after the @ symbol, in parentheses, is called the sensitivity
list. This list has its roots in the use of Verilog for simulation. The statements inside
an always block are executed by the simulator only when one or more of the signals in
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the sensitivity list changes value. In this way, the complexity of a simulation process is
simplified, because it is not necessary to execute every statement in the code at all times.
When Verilog is being employed for synthesis of circuits, as in this book, the sensitivity list
simply tells the Verilog compiler which signals can directly affect the outputs produced by
the always block.

If a signal is assigned a value using procedural statements, then Verilog syntax requires
thatitbe declared as a variable; this is accomplished by using the keyword reg in Figure 2.42.
This term also derives from the simulation jargon: It means that, once a variable’s value
is assigned with a procedural statement, the simulator “registers” this value and it will not
change until the always block is executed again. We will discuss this issue in detail in
Chapter 3.

Instead of using a separate statement to declare that the variable f is of reg type in
Figure 2.42, we can alternatively use the syntax

output reg f;
which combines these two statements. Also, Verilog 2001 adds the ability to declare a
signal’s direction and type directly in the module’s list of ports. This style of code is
illustrated in Figure 2.43. In the sensitivity list of the always statement we can use commas
instead of the word or, which is also illustrated in Figure 2.43. Moreover, instead of listing
the relevant signals in the sensitivity list, it is possible to write simply

always @ (x)
or even more simply

always @x
assuming that the compiler will figure out which signals need to be considered.
Behavioral specification of a logic circuit defines only its behavior. CAD synthesis

tools use this specification to construct the actual circuit. The detailed structure of the
synthesized circuit will depend on the technology used.

/I Behavioral specification
module example5 (input x1, x2, s, output reg f);

always @(x1, x2, s)

if s==0)
f=x1;
else
f=x2;
endmodule

Figure 2.43 A more compact version of the code in Figure 2.42.
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2.10.3 HiIERARCHICAL VERILOG CODE

The examples of Verilog code given so far include just a single module. For larger designs,
it is often convenient to create a hierarchical structure in the Verilog code, in which there
is a fop-level module that includes multiple instances of lower-level modules. To see how
hierarchical Verilog code can be written consider the circuit in Figure 2.44. This circuit
comprises two lower-level modules: the adder module that we described in Figure 2.12, and
the module that drives a 7-segment display which we showed in Figure 2.34. The purpose
of the circuit is to generate the arithmetic sum of the two inputs x and y, using the adder
module, and then to show the resulting decimal value on the 7-segment display.

Verilog code for the adder module from Figure 2.12 and the display module from
Figure 2.34 is given in Figures 2.45 and 2.46, respectively. For the adder module con-
tinuous assignment statements are used to specify the two-bit sum s;59. The assignment
statement for s uses the Verilog XOR operator, which is specified as so = a * b. The code
for the display module includes continuous assignment statements that correspond to the

Top-level module

Adder module Display module
a a
SO WO SO b b a—
X a ¢ c | |
d d )
o T
5 5 f f -
wy <
8

Figure 2.44 A logic circuit with two modules.

// An adder module

module adder (a, b, s1, s0);
input a, b;
output s1, s0;

assignsl =a & b;
assigns0=a " b;

endmodule

Figure 2.45  Verilog specification of the circuit in
Figure 2.12.
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/I A module for driving a 7-segment display
module display (s1, s0, a, b, c, d, e, f, g);
input s1, s0;
outputa,b,c,d, e, f, g;

assign a = ~s0;
assignb = 1;

assign ¢ = ~sl;
assign d =~s0;
assign e = ~s0;
assign f = ~s1 & ~s0;
assign g = sl & ~s0;

endmodule

Figure 2.46  Verilog specification of the circuit in Figure 2.34.

module adder_display (x, y, a, b, c, d, e, f, g);
input x, y;
outputa,b,c,d, e, f, g;
wire wl, w0;

adder Ul (x, y, wl, w0);
display U2 (w1, w0, a, b, c, d, e, f, g);

endmodule

Figure 2.47  Hierarchical Verilog code for the circuit in
Figure 2.44.

logic expressions for each of the seven outputs of the display circuit, which are given in
Section 2.8.3. The statement
assign b = 1;

assigns the output b of the display module to have the constant value 1. We discuss the
specification of numbers in Verilog code in Chapter 3.

The top-level Verilog module, named adder_display, is given in Figure 2.47. This
module has the inputs x and y, and the outputs a, . .., g. The statement

wire w1, w0;

is needed because the signals w; and wy are neither inputs nor outputs of the circuit in
Figure 2.44. Since these signals cannot be declared as input or output ports in the Verilog
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code, they have to be declared as (internal) wires. The statement
adder Ul (x, y, wl, w0);

instantiates the adder module from Figure 2.45 as a submodule. The submodule is given
a name, Ul, which can be any valid Verilog name. In this instantiation statement the
signals attached to the ports of the adder submodule are listed in the same order as those
in Figure 2.45. Thus, the input ports x and y of the top-level module in Figure 2.47 are
connected to the first two ports of adder, which are named a and b. The order in which
signals are listed in the instantiation statement determines which signal is connected to each
port in the submodule. The instantiation statement also attaches the last two ports of the
adder submodule, which are its outputs, to the wires w1 and w0 in the top-level module.
The statement

display U2 (w1, w0, a, b, c, d, e, f, g);

instantiates the other submodule in our circuit. Here, the wires w1l and w0, which have
already been connected to the outputs of the adder submodule, are attached to the corre-
sponding input ports of the display submodule. The display submodule’s output ports are
attached to the a, . . ., g output ports of the top-level module.

2.10.4 How Nor 1o WRITE VERILOG CODE

When learning how to use Verilog or other hardware description languages, the tendency for
the novice is to write code that resembles a computer program, containing many variables
and loops. It is difficult to determine what logic circuit the CAD tools will produce when
synthesizing such code. This book contains more than 100 examples of complete Verilog
code that represent a wide range of logic circuits. In these examples the code is easily
related to the described logic circuit. The reader is advised to adopt the same style of code.
A good general guideline is to assume that if the designer cannot readily determine what
logic circuit is described by the Verilog code, then the CAD tools are not likely to synthesize
the circuit that the designer is trying to model.

Once complete Verilog code is written for a particular design, the reader is encouraged
to analyze the resulting circuit produced by the CAD synthesis tools; typical CAD systems
provide graphical viewing tools that can display a logic circuit that corresponds to the output
produced by the Verilog compiler. Much can be learned about Verilog, logic circuits, and
logic synthesis through this process. We provide additional guidelines for writing Verilog
code in Appendix A.

2.11 MINIMIZATION AND KARNAUGH MAPS

In a number of our examples we have used algebraic manipulation to find a reduced-cost
implementation of a function in either sum-of-products or product-of-sums form. In these
examples, we made use of the rules, theorems, and properties of Boolean algebra that
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Row
number | x; X, X3 f
0 0 0 O 1
1 0O 0 1 0
2 0O 1 0 1
3 0 1 1 0
4 1 0 O 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Figure 2.48  The function f (x|, x,, x3) = 3 m(0,2,4, 5, 6).

were introduced in Section 2.5. For example, we often used the distributive property,
DeMorgan’s theorem, and the combining property. In general, it is not obvious when
to apply these theorems and properties to find a minimum-cost circuit, and it is often
tedious and impractical to do so. This section introduces a more manageable approach, call
the Karnaugh map, which provides a systematic way of producing a minimum-cost logic
expression.

The key to the Karnaugh map approach is that it allows the application of the combining
property 14a, or 14b, as judiciously as possible. To understand how it works consider the
function f in Figure 2.48. The canonical sum-of-products expression for f consists of
minterms mg, my, my, ms, and mg, so that

[ =X1X0X3 + X1x0X3 + X1 X0X3 + X1X2X3 + X1 X0X3

The combining property 14a allows us to replace two minterms that differ in the value of
only one variable with a single product term that does not include that variable at all. For
example, both mg and m; include X; and X3, but they differ in the value of x, because my
includes x, while m, includes x,. Thus
X1X2X3 + X100X3 = X1 (X2 + X2)X3

=X-1-x;

= X1X3
Hence mgy and m; can be replaced by the single product term x;X3. Similarly, m4 and mg
differ only in the value of x, and can be combined using

X1X2X3 + X1X0X3 = X1 (X2 + X2)X3
= X1 - 1 ~)_C3

= x1)73
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Now the two newly-generated terms, X;X3 and x; X3, can be combined further as

X1X3 +x1X3 = (X1 + x1)X3
— 1.5

These optimization steps indicate that we can replace the four minterms my, m,, my4, and
mg with the single product term Xx3. In other words, the minterms my, m,, ms, and mg are
all included in the term X3. The remaining minterm in f is ms. It can be combined with my,
which gives

X1X2X3 + X1X2X3 = X[ X
Recall that theorem 756 in Section 2.5 indicates that
my = My + my

which means that we can use the minterm m,4 twice—to combine with minterms myg, m,,
and mg to yield the term X3 as explained above and also to combine with ms to yield the
term xx;.

We have now accounted for all the minterms in f; hence all five input valuations for
which f = 1 are covered by the minimum-cost expression

f=x+xx

The expression has the product term X3 because f = 1 when x3 = O regardless of the values
of x; and x,. The four minterms my, m,, m4, and mg represent all possible minterms for
which x3 = 0; they include all four valuations, 00, 01, 10, and 11, of variables x; and x;.
Thus if x3 = 0, then it is guaranteed that f = 1. This may not be easy to see directly from
the truth table in Figure 2.48, but it is obvious if we write the corresponding valuations
grouped together:

X1 X2 X3
mo 0 0
my 1 0
my 1 0 0
me 1 1 0

X1 X2 X3
my 1 0
ms 1

it is clear that when x; = 1 and x, = 0, then f = 1 regardless of the value of x3.
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xl x2 xl

0 0 | m N0 1

0 1 my 0] my|m

1 0O my

11| my B

(a) Truth table (b) Karnaugh map

Figure 2.49  Location of two-variable minterms.

The preceding discussion suggests that it would be advantageous to devise a method
that allows easy discovery of groups of minterms for which f = 1 that can be combined
into single terms. The Karnaugh map is a useful vehicle for this purpose.

The Karnaugh map [1] is an alternative to the truth-table form for representing a
function. The map consists of cells that correspond to the rows of the truth table. Consider
the two-variable example in Figure 2.49. Part (a) depicts the truth-table form, where each
of the four rows is identified by a minterm. Part (b) shows the Karnaugh map, which has
four cells. The columns of the map are labeled by the value of x;, and the rows are labeled
by x;. This labeling leads to the locations of minterms as shown in the figure. Compared
to the truth table, the advantage of the Karnaugh map is that it allows easy recognition of
minterms that can be combined using property 14a from Section 2.5. Minterms in any two
cells that are adjacent, either in the same row or the same column, can be combined. For
example, the minterms m, and m3 can be combined as

my + m3 = XXy + X1X2

= x1(X2 +x2)
=X - 1
:xl

The Karnaugh map is not just useful for combining pairs of minterms. As we will see in
several larger examples, the Karnaugh map can be used directly to derive a minimum-cost
circuit for a logic function.

Two-Variable Map

A Karnaugh map for a two-variable function is given in Figure 2.50. It corresponds to
the function f of Figure 2.19. The value of f for each valuation of the variables x; and x,
is indicated in the corresponding cell of the map. Because a 1 appears in both cells of the
bottom row and these cells are adjacent, there exists a single product term that can cause
f to be equal to 1 when the input variables have the values that correspond to either of
these cells. To indicate this fact, we have circled the cell entries in the map. Rather than
using the combining property formally, we can derive the product term intuitively. Both of
the cells are identified by x, = 1, but x; = 0 for the left cell and x; = 1 for the right cell.
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xxl
2 0 1

f=x+x

@D

Figure 2.50  The function of Figure 2.19.

Thus if x, = 1, then f = 1 regardless of whether x; is equal to O or 1. The product term
representing the two cells is simply x;.

Similarly, f = 1 for both cells in the first column. These cells are identified by x; = 0.
Therefore, they lead to the product term X;. Since this takes care of all instances where
f =1, it follows that the minimum-cost realization of the function is

f=x+Xx

Evidently, to find a minimum-cost implementation of a given function, it is necessary
to find the smallest number of product terms that produce a value of 1 for all cases where
f = 1. Moreover, the cost of these product terms should be as low as possible. Note that a
product term that covers two adjacent cells is cheaper to implement than a term that covers
only a single cell. For our example once the two cells in the bottom row have been covered
by the product term x,, only one cell (top left) remains. Although it could be covered by
the term XX, it is better to combine the two cells in the left column to produce the product
term X because this term is cheaper to implement.

Three-Variable Map

A three-variable Karnaugh map is constructed by placing 2 two-variable maps side
by side. Figure 2.51a lists all of the three-variable minterms, and part (b) of the figure
indicates the locations of these minterms in the Karnaugh map. In this case each valuation
of x; and x, identifies a column in the map, while the value of x; distinguishes the two
rows. To ensure that minterms in the adjacent cells in the map can always be combined
into a single product term, the adjacent cells must differ in the value of only one variable.
Thus the columns are identified by the sequence of (x;, x,) values of 00, 01, 11, and 10,
rather than the more obvious 00, 01, 10, and 11. This makes the second and third columns
different only in variable x;. Also, the first and the fourth columns differ only in variable
X1, which means that these columns can be considered as being adjacent. The reader may
find it useful to visualize the map as a rectangle folded into a cylinder where the left and the
right edges in Figure 2.51b are made to touch. (A sequence of codes, or valuations, where
consecutive codes differ in one variable only is known as the Gray code. This code is used
for a variety of purposes, some of which will be encountered later in the book.)

Figure 2.52a represents the function of Figure 2.23 in Karnaugh-map form. To synthe-
size this function, it is necessary to cover the four 1s in the map as efficiently as possible.
It is not difficult to see that two product terms suffice. The first covers the 1s in the top row,
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X1 X X3
XX
00 01 m BN 00 01 11 10
0 0 1 m;
0 my| my| mg | my
0 0| my
0 1 1 ms 1| m | mg| my| ms
I 0 0| my
1 0 1 | mg (b) Karnaugh map
11 0| mg
111 | m
(a) Truth table
Figure 2.51  Location of three-variable minterms.
X1X2
X3

00 01 11 10

olo]o|G]D ——

f = xX3+xpx3

it Do oG] L

[
(a) The function of Figure 2.23
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(b) The function of Figure 2.48

Figure 2.52  Examples of three-variable Karnaugh maps.

which are represented by the term x;x3. The second term is X,x3, which covers the 1s in
the bottom row. Hence the function is implemented as
f=x1%+Xx;

which describes the circuit obtained in Figure 2.24a.
In a three-variable map it is possible to combine cells to produce product terms that
correspond to a single cell, two adjacent cells, or a group of four adjacent cells. Realization
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of a group of four adjacent cells using a single product term is illustrated in Figure 2.52b,
using the function from Figure 2.48. The four cells in the top row correspond to the
(x1, x2, x3) valuations 000, 010, 110, and 100. As we discussed before, this indicates that if
x3 = 0, then f = 1 for all four possible valuations of x; and x,, which means that the only
requirement is that x3 = 0. Therefore, the product term X3 represents these four cells. The
remaining 1, corresponding to minterm mis, is best covered by the term x;x;, obtained by
combining the two cells in the right-most column. The complete realization of f is

f=x+xx

It is also possible to have a group of eight 1s in a three-variable map. This is the trivial case
of a function where f = 1 for all valuations of input variables; in other words, f is equal to
the constant 1.

The Karnaugh map provides a simple mechanism for generating the product terms that
should be used to implement a given function. A product term must include only those
variables that have the same value for all cells in the group represented by this term. If the
variable is equal to 1 in the group, it appears uncomplemented in the product term; if it is
equal to 0, it appears complemented. Each variable that is sometimes 1 and sometimes O
in the group does not appear in the product term.

Four-Variable Map

A four-variable map is constructed by placing 2 three-variable maps together to create
four rows in the same fashion as we used 2 two-variable maps to form the four columns
in a three-variable map. Figure 2.53 shows the structure of the four-variable map and
the location of minterms. We have included in this figure another frequently used way of
designating the rows and columns. As shown in blue, it is sufficient to indicate the rows
and columns for which a given variable is equal to 1. Thus x; = 1 for the two right-most
columns, x, = 1 for the two middle columns, x3 = 1 for the bottom two rows, and x4 = 1
for the two middle rows.

Figure 2.54 gives four examples of four-variable functions. The function f] has a group
of four 1s in adjacent cells in the bottom two rows, for which x, = 0 and x3 = 1—they are

X4

XXy —_—
x3x4

00| mq | my | M| mg

01| my | ms | my3| Mg

Xy

X3

10 | My | Mg | My | My

X5

Figure 2.53 A four-variable Karnaugh map.
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Figure 2.54  Examples of four-variable Karnaugh maps.

represented by the product term x,x3. This leaves the two 1s in the second row to be covered,
which can be accomplished with the term x;X3x4. Hence the minimum-cost implementation
of the function is

1 = Xox3 + x1X3%4

The function f, includes a group of eight 1s that can be implemented by a single term, x3.
Again, the reader should note that if the remaining two 1s were implemented as a group
of two, the result would be the product term x;X3x4. Implementing these 1s as a part of a
group of four 1s, as shown in the figure, gives the less expensive product term x;x4.

Just as the left and the right edges of the map are adjacent in terms of the assignment
of the variables, so are the top and the bottom edges. Indeed, the four corners of the map
are adjacent to each other and thus can form a group of four 1s, which may be implemented
by the product term x,X4. This case is depicted by the function f3. In addition to this group
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of 1s, there are four other 1s that must be covered to implement f3. This can be done as
shown in the figure.

In all examples that we have considered so far, a unique solution exists that leads to
a minimum-cost circuit. The function f; provides an example where there is some choice.
The groups of four 1s in the top-left and bottom-right corners of the map are realized by the
terms x;x3 and x;x3, respectively. This leaves the two 1s that correspond to the term x;x,X3.
But these two 1s can be realized more economically by treating them as a part of a group
of four 1s. They can be included in two different groups of four, as shown in the figure.
One choice leads to the product term x;x,, and the other leads to x,x3. Both of these terms
have the same cost; hence it does not matter which one is chosen in the final circuit. Note
that the complement of x3 in the term x,x3 does not imply an increased cost in comparison
with xx,, because this complement must be generated anyway to produce the term X X3,
which is included in the implementation.

Five-Variable Map

We can use 2 four-variable maps to construct a five-variable map. It is easy to imagine
a structure where one map is directly behind the other, and they are distinguished by x5 = 0
for one map and xs = 1 for the other map. Since such a structure is awkward to draw, we
can simply place the two maps side by side as shown in Figure 2.55. For the logic function
given in this example, two groups of four 1s appear in the same place in both four-variable
maps; hence their realization does not depend on the value of xs. The same is true for the
two groups of two 1s in the second row. The 1 in the top-right corner appears only in the
right map, where x5 = 1; it is a part of the group of two 1s realized by the term x;X,x3xs.
Note that in this map we left blank those cells for which f = 0, to make the figure more
readable. We will do likewise in a number of maps that follow.

Using a five-variable map is obviously more awkward than using maps with fewer
variables. Extending the Karnaugh map concept to more variables is not useful from

XX XX
X3X4

00 | 00 : q
01 ED 01 G )

111 1 1| 11] 1 1|

X3Xy

0] 1 II 10] 1 II

Sl = X x3+xX30, + X X X3 X5

Figure 2.55 A five-variable Karnaugh map.
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the practical point of view. This is not troublesome, because practical synthesis of logic
functions is done with CAD tools that perform the necessary minimization automatically.
Although Karnaugh maps are occasionally useful for designing small logic circuits, our main
reason for introducing the Karnaugh maps is to provide a simple vehicle for illustrating the
ideas involved in the minimization process.
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For the examples in the preceding section, we used an intuitive approach to decide how the 1s
in a Karnaugh map should be grouped together to obtain the minimum-cost implementation
of a given function. Our intuitive strategy was to find as few as possible and as large as
possible groups of 1s that cover all cases where the function has a value of 1. Each group
of 1s has to comprise cells that can be represented by a single product term. The larger
the group of 1s, the fewer the number of variables in the corresponding product term. This
approach worked well because the Karnaugh maps in our examples were small. For larger
logic functions, which have many variables, such intuitive approach is unsuitable. Instead,
we must have an organized method for deriving a minimum-cost implementation. In this
section we will introduce a possible method, which is similar to the techniques that are
automated in CAD tools. To illustrate the main ideas, we will use Karnaugh maps.

2.12.1 TERMINOLOGY

A huge amount of research work has gone into the development of techniques for synthesis
of logic functions. The results of this research have been published in numerous papers.
To facilitate the presentation of the results, certain terminology has evolved that avoids
the need for using highly descriptive phrases. We define some of this terminology in the
following paragraphs because it is useful for describing the minimization process.

Literal

A given product term consists of some number of variables, each of which may appear
either in uncomplemented or complemented form. Each appearance of a variable, either
uncomplemented or complemented, is called a literal. For example, the product term x;X,.x3
has three literals, and the term x;x3x4x¢ has four literals.

Implicant

A product term that indicates the input valuation(s) for which a given function is equal
to 1 is called an implicant of the function. The most basic implicants are the minterms,
which we introduced in Section 2.6.1. For an n-variable function, a minterm is an implicant
that consists of n literals.

Consider the three-variable function in Figure 2.56. There are 11 implicants for this
function. This includes the five minterms: X;X»X3, X;X2X3, X{X2X3, X1X2X3, and xjxx3.
Then there are the implicants that correspond to all possible pairs of minterms that can be
combined, namely, XX, (mg and m ), X1X3 (mo and my), X1x3 (m; and m3), X1x, (my and ms),
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X1X2

'3 00 01 11 10
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X1 X2X3

Figure 2.56  Three-variable function f (x, x,, x3) =
S m(, 1,2, 3, 7).

and x,x3 (m3 and my). Finally, there is one implicant that covers a group of four minterms,
which consists of a single literal x;.

Prime Implicant

Animplicant is called a prime implicant if it cannot be combined into another implicant
that has fewer literals. Another way of stating this definition is to say that it is impossible
to delete any literal in a prime implicant and still have a valid implicant.

In Figure 2.56 there are two prime implicants: x; and x,x3. It is not possible to delete
a literal in either of them. Doing so for x; would make it disappear. For x,x3, deleting
a literal would leave either x, or x3. But x; is not an implicant because it includes the
valuation (xy, x5, x3) = 110 for which f = 0, and x3 is not an implicant because it includes
(x1, x2, x3) = 101 for which f = 0. Another way of thinking about prime implicants is that
they represent “the largest groups of 1s” that can be circled in the Karnaugh map.

Cover

A collection of implicants that account for all valuations for which a given function is
equal to 1 is called a cover of that function. A number of different covers exist for most
functions. Obviously, a set of all minterms for which f = 1 is a cover. It is also apparent
that a set of all prime implicants is a cover.

A cover defines a particular implementation of the function. In Figure 2.56 a cover
consisting of minterms leads to the expression

f = X1X2X3 + X1X2X3 + X1X2X3 + X1X2X3 + X1 X2X3
Another valid cover is given by the expression
[ =X1X +X1x2 + x0x3
The cover comprising the prime implicants is
f=%1+xx

While all of these expressions represent the function f correctly, the cover consisting of
prime implicants leads to the lowest-cost implementation.
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Cost

In Section 2.6.1 we suggested that a good indication of the cost of a logic circuit is the
number of gates plus the total number of inputs to all gates in the circuit. We will use this
definition of cost throughout the book. But we will assume that primary inputs, namely,
the input variables, are available in both true and complemented forms at zero cost. Thus
the expression

[ =x1%2 +x3%4

has a cost of nine because it can be implemented using two AND gates and one OR gate,
with six inputs to the AND and OR gates.

If an inversion is needed inside a circuit, then the corresponding NOT gate and its input
are included in the cost. For example, the expression

g = (x1%2 + x3) (X4 + x5)

is implemented using two AND gates, two OR gates, and one NOT gate to complement
(x1x2 + x3), with nine inputs. Hence the total cost is 14.

2.12.2 MINIMIZATION PROCEDURE

We have seen that it is possible to implement a given logic function with various circuits.
These circuits may have different structures and different costs. When designing a logic
circuit, there are usually certain criteria that must be met. One such criterion is likely to
be the cost of the circuit, which we considered in the previous discussion. In general, the
larger the circuit, the more important the cost issue becomes. In this section we will assume
that the main objective is to obtain a minimum-cost circuit.

In the previous subsection we concluded that the lowest-cost implementation is
achieved when the cover of a given function consists of prime implicants. The ques-
tion then is how to determine the minimum-cost subset of prime implicants that will cover
the function. Some prime implicants may have to be included in the cover, while for others
there may be a choice. If a prime implicant includes a minterm for which f = 1 that is not
included in any other prime implicant, then it must be included in the cover and is called
an essential prime implicant. In the example in Figure 2.56, both prime implicants are
essential. The term x,x3 is the only prime implicant that covers the minterm m7, and X
is the only one that covers the minterms m, m;, and m,. Notice that the minterm mjs is
covered by both of these prime implicants. The minimum-cost realization of the function
is

f =X+ xx3

We will now present several examples in which there is a choice as to which prime
implicants to include in the final cover. Consider the four-variable function in Figure 2.57.
There are five prime implicants: X;x3, XoXx3, X3X4, X|X2X4, and x,X3x4. The essential ones
(highlighted in blue) are X,x3 (because of m1), x3x4 (because of my4), and x,X3x4 (because of
my3). They must be included in the cover. These three prime implicants cover all minterms
for which f = 1 except my. It is clear that m; can be covered by either X;x3 or X;xx4.
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Figure 2.57 Four-variable function f(xi, ..., xs) =
Zm(Z, 3,5,6,7,10, 11, 13, 14).

Because xx3 has a lower cost, it is chosen for the cover. Therefore, the minimum-cost
realization is

S = Xox3 + x3X4 + X2X3%4 + X1X3

From the preceding discussion, the process of finding a minimum-cost circuit involves
the following steps:

Generate all prime implicants for the given function f.
Find the set of essential prime implicants.

3. If the set of essential prime implicants covers all valuations for which f = 1, then
this set is the desired cover of f. Otherwise, determine the nonessential prime
implicants that should be added to form a complete minimum-cost cover.

The choice of nonessential prime implicants to be included in the cover is governed by the
cost considerations. This choice is often not obvious. Indeed, for large functions there may
exist many possibilities, and some heuristic approach (i.e., an approach that considers only
a subset of possibilities but gives good results most of the time) has to be used. One such
approach is to arbitrarily select one nonessential prime implicant and include it in the cover
and then determine the rest of the cover. Next, another cover is determined assuming that
this prime implicant is not in the cover. The costs of the resulting covers are compared, and
the less-expensive cover is chosen for implementation.

We can illustrate the process by using the function in Figure 2.58. Of the six prime
implicants, only x3X, is essential. Consider next x;x,x3 and assume first that it will be
included in the cover. Then the remaining three minterms, mjg, m,, and m;s, will require
two more prime implicants to be included in the cover. A possible implementation is

[ = X3x4 + x1x0X3 + X1X3%4 + X1X2X3

The second possibility is that x;x,X3 is not included in the cover. Then x;x;x4 becomes
essential because there is no other way of covering m3. Because x;x,x4 also covers m;s,
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Figure 2.58  The function f(x|,...,xy) =
> m(0,4,8,10, 11, 12, 13, 15).

only m and m;; remain to be covered, which can be achieved with x;X,x3. Therefore, the
alternative implementation is

[ =X3%4 + x1x0%4 + X1%2%3

Clearly, this implementation is a better choice.

Sometimes there may not be any essential prime implicants at all. An example is given
in Figure 2.59. Choosing any of the prime implicants and first including it, then excluding
it from the cover leads to two alternatives of equal cost. One includes the prime implicants
indicated in black, which yields

[ =X1X3X%4 + X2X3X4 + X1X3X4 + X2X3X4
The other includes the prime implicants indicated in blue, which yields
[ = X1X0X4 + X1x2X3 + X1X0X4 + X1 X2X3

This procedure can be used to find minimum-cost implementations of both small and
large logic functions. For our small examples it was convenient to use Karnaugh maps
to determine the prime implicants of a function and then choose the final cover. Other
techniques based on the same principles are much more suitable for use in CAD tools; we
will introduce such techniques in Chapter 8.

The previous examples have been based on the sum-of-products form. We will next
illustrate that the same concepts apply for the product-of-sums form.
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Now that we know how to find the minimum-cost sum-of-products (SOP) implementations
of functions, we can use the same techniques and the principle of duality to obtain minimum-
cost product-of-sums (POS) implementations. In this case it is the maxterms for which
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Figure 2.59  The function f(x,...,xy) =
Zm(O, 2,4,5,10, 11, 13, 15).
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Figure 2.60 POS minimization of f (x;, x2, x3) = TIM (4, 5, 6).

f = 0 that have to be combined into sum terms that are as large as possible. Again, a sum
term is considered larger if it covers more maxterms, and the larger the term, the less costly
it is to implement.

Figure 2.60 depicts the same function as Figure 2.56 depicts. There are three maxterms
that must be covered: My, M5, and Mg. They can be covered by two sum terms shown in
the figure, leading to the following implementation:

=01 +x)& +x3)

A circuit corresponding to this expression has two OR gates and one AND gate, with two
inputs for each gate. Its cost is greater than the cost of the equivalent SOP implementation
derived in Figure 2.56, which requires only one OR gate and one AND gate.

The function from Figure 2.57 is reproduced in Figure 2.61. The maxterms for which
f = 0 can be covered as shown, leading to the expression

[ =2 +x3) (3 +x9) (X1 + X2 + X3+ X4)
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Figure 2.61 POS minimization of f(xy, ..., x) =
MM (0, 1,4,8,9, 12, 15).

This expression represents a circuit with three OR gates and one AND gate. Two of the
OR gates have two inputs, and the third has four inputs; the AND gate has three inputs.
Assuming that both the complemented and uncomplemented versions of the input variables
X1 to x4 are available at no extra cost, the cost of this circuit is 15. This compares favorably
with the SOP implementation derived from Figure 2.57, which requires five gates and 13
inputs at a total cost of 18.

In general, as we already know from Section 2.6.1, the SOP and POS implementations
of a given function may or may not entail the same cost. The reader is encouraged to find
the POS implementations for the functions in Figures 2.58 and 2.59 and compare the costs
with the SOP forms.

We have shown how to obtain minimum-cost POS implementations by finding the
largest sum terms that cover all maxterms for which f = 0. Another way of obtaining
the same result is by finding a minimum-cost SOP implementation of the complement of
f. Then we can apply DeMorgan’s theorem to this expression to obtain the simplest POS

realization because f = f. For example, the simplest SOP implementation of f in Figure
2.60 is

f=xi% +x1x3

Complementing this expression using DeMorgan’s theorem yields

f=f=x%+x%

= X1)_Cz . .X1)_C3

= (X1 +x2)(x1 +x3)

which is the same result as obtained above.
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Using this approach for the function in Figure 2.61 gives
[ =0%; + X3Xy + X120x3x4

Complementing this expression produces

f =1 =%X3 + X3X4 + X1X2X3%4
= )_62)_63 . )_63)_64 * X1X2X3X4
= (x2 +x3)(x3 + x4) (X1 + X2 + X3 + X4)

which matches the previously-derived implementation.

2.14 INCOMPLETELY SPECIFIED FUNCTIONS

In digital systems it often happens that certain input conditions can never occur. For
example, suppose that x; and x, control two interlocked switches such that both switches
cannot be closed at the same time. Thus the only three possible states of the switches
are that both switches are open or that one switch is open and the other switch is closed.
Namely, the input valuations (x, x,) = 00, 01, and 10 are possible, but 11 is guaranteed
not to occur. Then we say that (x|, x,) = 11 is a don t-care condition, meaning that a circuit
with x; and x, as inputs can be designed by ignoring this condition. A function that has
don’t-care condition(s) is said to be incompletely specified.

Don’t-care conditions, or don t-cares for short, can be used to advantage in the design
of logic circuits. Since these input valuations will never occur, the designer may assume that
the function value for these valuations is either 1 or 0, whichever is more useful in trying
to find a minimum-cost implementation. Figure 2.62 illustrates this idea. The required
function has a value of 1 for minterms my, my, ms, mg, and mjo. Assuming the above-
mentioned interlocked switches, the x; and x, inputs will never be equal to 1 at the same
time; hence the minterms m 2, mi3, m4, and m;5 can all be used as don’t-cares. The don’t-
cares are denoted by the letter d in the map. Using the shorthand notation, the function f
is specified as

f@r . ox) =Y m2,4,5.6,10) + D(12, 13, 14, 15)

where D is the set of don’t-cares.

Part (a) of the figure indicates the best sum-of-products implementation. To form
the largest possible groups of 1s, thus generating the lowest-cost prime implicants, it is
necessary to assume that the don’t-cares Dy, D3, and D4 (corresponding to minterms
my,, m3, and my4) have the value of 1 while D5 has the value of 0. Then there are only
two prime implicants, which provide a complete cover of f. The resulting implementation
is

f = xX3 +x3%4
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Figure 2.62  Two implementations of the function £ (x|, ..., x) =
> m(2,4,5,6,10) + D(12, 13, 14, 15).

Part (b) shows how the best product-of-sums implementation can be obtained. The
same values are assumed for the don’t cares. The result is

=0 +x3)X3+X4)

The freedom in choosing the value of don’t-cares leads to greatly simplified realizations. If
we were to naively exclude the don’t-cares from the synthesis of the function, by assuming
that they always have a value of 0, the resulting SOP expression would be

f = X1x2X3 + X1X3%4 + X2X3X4
and the POS expression would be
f = (2 +x3) (X3 + X2) (X1 +X2)

Both of these expressions have higher costs than the expressions obtained with a more
appropriate assignment of values to don’t-cares.

Although don’t-care values can be assigned arbitrarily, an arbitrary assignment may
not lead to a minimum-cost implementation of a given function. If there are k don’t-cares,
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then there are 2* possible ways of assigning 0 or 1 values to them. In the Karnaugh map
we can usually see how best to do this assignment to find the simplest implementation.

In the example above, we chose the don’t-cares D1, D3, and D4 to be equal to 1 and
D5 equal to O for both the SOP and POS implementations. Thus the derived expressions
represent the same function, which could also be specifiedas Y m(2, 4, 5, 6, 10, 12, 13, 14).
Assigning the same values to the don’t-cares for both SOP and POS implementations is not
always a good choice. Sometimes it may be advantageous to give a particular don’t-care
the value 1 for SOP implementation and the value 0 for POS implementation, or vice versa.
In such cases the optimal SOP and POS expressions will represent different functions,
but these functions will differ only for the valuations that correspond to these don’t-cares.
Example 2.26 in Section 2.17 illustrates this possibility.

Using interlocked switches to illustrate how don’t-care conditions can occur in a real
system may seem to be somewhat contrived. A more practical example is shown below,
and in future chapters we will encounter many examples of don’t-cares that occur in the
course of practical design of digital circuits.

Example 2.15

In Section 2.8.3 we designed a logic circuit that displays the decimal value of a two-bit
number on a seven-segment display. In this example we will design a similar circuit,
except that the input will be a four-bit number X = x3x,x;xo that represents the decimal
values 0, 1, ..., 9. Using four bits to represent decimal digits in this way is often referred
to as the binary coded decimal (BCD) representation. We discuss BCD numbers in detail in
Chapter 3. The circuit is depicted in Figure 2.63a. Part (b) of the figure gives a truth table
for each of the seven outputs a, b, . . ., g, that control the display. It also indicates how the
display should appear for each value of X. Since X is restricted to decimal digits, then the
values of X from 1010 to 1111 are not used. These entries are omitted from the truth table
in Figure 2.63b, and can be treated as don’t cares in the design of the circuit.

To derive logic expressions for the outputs a to g, it is useful to draw Karnaugh maps.
Figure 2.63¢ gives Karnaugh maps for the functions a and e. For the function a, the best
result is obtained by setting all six don’t-care cells in the map to the value of 1, which
gives a = XpXo + X1 + x2x0 + x3. However, for the function e a better choice is to set only
two of the don’t-care cells, corresponding to x3xx1x9 = 1010 and x3xx;x9 = 1110, to 1.
The other don’t-care cells should be set to O for this function to yield the minimum-cost
expression e = X,Xg + X1 Xg.

2.15 MuLTIPLE-OuTPUT CIRCUITS

Asillustrated in Example 2.15, in practical digital systems it is often necessary to implement
a number of functions that are part of a larger logic circuit. Instead of implementing each
of these functions separately, it may be possible to share some of the gates needed in the
implementation of individual functions. For example, in Figure 2.63 the AND gate that
produces X,X could be shared for use in both functions a and e.
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Figure 2.63  Using don’t-care minterms when displaying BCD numbers.
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Example 2.16

An example of gate sharing is given in Figure 2.64. Two functions, fi and f>, of the same
variables are to be implemented. The minimum-cost implementations for these functions
are obtained as shown in parts (a) and (b) of the figure. This results in the expressions

fi = x1X3 + X1x3 + X2X3%4
fo = x1X3 + X1x3 + X234

The cost of f; is four gates and 10 inputs, for a total of 14. The cost of f, is the same. Thus
the total cost is 28 if both functions are implemented by separate circuits. A less-expensive
realization is possible if the two circuits are combined into a single circuit with two outputs.
Because the first two product terms are identical in both expressions, the AND gates that

XX XX
x3x4

1110
00 1_1 00 Fﬂ
01 (1 1)_1J 01 Q_IJ

1 Fﬂ 1 (1_(1 D
o1 oL

X3Xy

(a) Function f; (b) Function f,
x2 —|_
X3 —
x, 1 ;
1
x1 —

-
=D

h

X3 —

x, I

(c) Combined circuit for f; and f,

Figure 2.64  An example of multiple-output synthesis.
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implement them need not be duplicated. The combined circuit is shown in Figure 2.64c.
Its cost is six gates and 16 inputs, for a total of 22.

In this example we reduced the overall cost by finding minimum-cost realizations of f
and f, and then sharing the gates that implement the common product terms. This strategy
does not necessarily always work the best, as the next example shows.
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Figure 2.65 shows two functions to be implemented by a single circuit. Minimum-cost
realizations of the individual functions f; and f; are obtained from parts (a) and (b) of the
figure.

f3 = X1x4 + x0x4 + X123
Ja = x1x4 + Xox4 + X1 x0%3%4

None of the AND gates can be shared, which means that the cost of the combined circuit
would be six AND gates, two OR gates, and 21 inputs, for a total of 29.

But several alternative realizations are possible. Instead of deriving the expressions for
/3 and f; using only prime implicants, we can look for other implicants that may be shared
advantageously in the combined realization of the functions. Figure 2.65¢ shows the best
choice of implicants, which yields the realization

f3 = x1x0x4 + X1x00x3%4 + X1X4
fa = x1x0X4 + X1 X0X3%4 + XoX4

The first two implicants are identical in both expressions. The resulting circuit is given in
Figure 2.65d. It has the cost of six gates and 17 inputs, for a total of 23.

Example 2.17

In Example 2.16 we sought the best SOP implementation for the functions f; and f; in
Figure 2.64. We will now consider the POS implementation of the same functions. The
minimum-cost POS expressions for f; and f, are

Si= & +X3) (1 4+ 20 + x3) (X1 +x3 + x4)
o= +x3)&E +x0 +X3)( + X3+ x4)

There are no common sum terms in these expressions that could be shared in the imple-
mentation. Moreover, from the Karnaugh maps in Figure 2.64, it is apparent that there is
no sum term (covering the cells where f; = f> = 0) that can be profitably used in realizing
both fi and f>. Thus the best choice is to implement each function separately, according to
the preceding expressions. Each function requires three OR gates, one AND gate, and 11
inputs. Therefore, the total cost of the circuit that implements both functions is 30. This
realization is costlier than the SOP realization derived in Example 2.16.

Example 2.18
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(a) Optimal realization of f,

XX

3% 00 01 11 10

00

lano

oD

10 (D)

00 01 11 10

10 (D)

(b) Optimal realization of f,
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(c) Optimal realization of f; and f, together
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(d) Combined circuit for f3 and f,

Figure 2.65  Another example of multiple-output synthesis.
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Consider now the POS realization of the functions f; and f; in Figure 2.65. The minimum-
cost POS expressions for f3 and f; are

S5 =03+ x1) (2 + xa) (X1 + x2) (X1 + x2)
Jo = (3 +x4) (002 + x4) (X7 + x4) (X1 + X2 + X4)

The first three sum terms are the same in both f; and f4; they can be shared in a combined
circuit. These terms require three OR gates and six inputs. In addition, one 2-input OR
gate and one 4-input AND gate are needed for f3, and one 3-input OR gate and one 4-input
AND gate are needed for f;. Thus the combined circuit comprises five OR gates, two AND
gates, and 19 inputs, for a total cost of 26. This cost is slightly higher than the cost of the
circuit derived in Example 2.17.

Example 2.19

These examples show that the complexities of the best SOP or POS implementations
of given functions may be quite different. For the functions in Figures 2.64 and 2.65, the
SOP form gives better results. But if we are interested in implementing the complements
of the four functions in these figures, then the POS form would be less costly.

Sophisticated CAD tools used to synthesize logic functions will automatically perform
the types of optimizations illustrated in the preceding examples.

2.16 CoONCLUDING REMARKS

In this chapter we introduced the concept of logic circuits. We showed that such circuits can
be implemented using logic gates and that they can be described using a mathematical model
called Boolean algebra. Because practical logic circuits are often large, it is important to
have good CAD tools to help the designer. We introduced the Verilog hardware description
language that can be used to specify circuits for use in a CAD tool. We urge the reader to
start using CAD software for the design of logic circuits as soon as possible.

This chapter has attempted to provide the reader with an understanding of some aspects
of synthesis and optimization for logic functions. Now that the reader is comfortable with
the fundamental concepts, we can examine digital circuits of a more sophisticated nature.
The next chapter describes circuits that perform arithmetic operations, which are a key part
of computers.

2.17 EXAMPLES OF SOLVED PROBLEMS

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.
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Example 2.20

Problem: Determine if the following equation is valid
X1X3 + Xox3 + X1X2 = X1X2 + X1X3 + X2X3

Solution: The equation is valid if the expressions on the left- and right-hand sides represent
the same function. To perform the comparison, we could construct a truth table for each
side and see if the truth tables are the same. An algebraic approach is to derive a canonical
sum-of-products form for each expression.

Using the fact that x + X = 1 (theorem 8b), we can manipulate the left-hand side as
follows:

LHS = X1X3 + xx3 4+ x1X
= X1(x2 +X2)X3 + (X1 + X1)x2x3 + X1 X2 (X3 + X3)
= )_Cl)CQJ_Cg, + )_C])_Cz)_C3 + X1X2X3 + )_C]X2X3 + X])_C2X3 + xl)_Cz)_C3
These product terms represent the minterms 2, 0, 7, 3, 5, and 4, respectively.
For the right-hand side we have
RHS = X1x + x1x3 + XoX3
= X1x02(x3 + X3) + X1 (x2 +X2)x3 + (X1 + X1)X2X3
= X1X2X3 + X1 X2X3 4 X1X2X3 + X1 X2X3 4+ X1X2X3 + X1 X2X3
These product terms represent the minterms 3, 2, 7, 5, 4, and 0, respectively. Since both

expressions specify the same minterms, they represent the same function; therefore, the
equation is valid. Another way of representing this function is by »_m(0, 2, 3,4, 5, 7).

Example 2.21

Problem: Design the minimum-cost product-of-sums expression for the function
F &, x,x3,x4) =Y m(0,2,4,5,6,7,8,10, 12, 14, 15).

Solution: The function is defined in terms of its minterms. To find a POS expression we
should start with the definition in terms of maxterms, which is f = 1M (1, 3,9, 11, 13).
Thus,

f =M -M;5-My-My - M3
= (x1 +x2 +x3 +Xg) (X1 + X2 + X3 +X4) (X1 + X2 + X3 + X2) (X1 + X2 + X3 + X4) (X1 + X2 + X3 + Xg)

We can rewrite the product of the first two maxterms as

My - M3 = (x; + X2 + X4 + x3) (X + X2 + X4 +X3) using commutative property 10b

= X1 + X2 + X4 + X3X3 using distributive property 12b
=x1+x+x4+0 using theorem 8a
=X+ X2+ X4 using theorem 6b

Similarly, My - My} = X| + x» + X4. Now, we can use My again, according to property 7a,
to derive My - M3 = x; + x3 + x4. Hence

=01 +x+x)E +x0+ X)) +x3 +X4)



Applying 12b again, we get the final answer

2.17 EXAMPLES OF SOLVED PROBLEMS

S =00 +X) 1 +x3 +X4)
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Problem: A circuit that controls a given digital system has three inputs: xj, x,, and x3. It Example 2.22

has to recognize three different conditions:

° Condition A is true if x3 is true and either x; is true or x; is false

° Condition B is true if x; is true and either x, or x;3 is false

° Condition C is true if x; is true and either x; is true or x3 is false

The control circuit must produce an output of 1 if at least two of the conditions A, B, and C
are true. Design the simplest circuit that can be used for this purpose.

Solution: Using 1 for true and O for false, we can express the three conditions as follows:

A = x3(x1 +X2)
B =x1(X2 +X3)
C =x(x1 +X3)

X3X1 + X3X2
X1X2 + X1X3

XoX1 + X2X3

Then, the desired output of the circuit can be expressed as f = AB + AC + BC. These

product terms can be determined as:

AB = (x3x1 + x3%2) (x1X2 + x1X3)

= X3X1X1X2 + X3X1X1X3 + X3X2X1 X2 + X3X0X1X3

= x3x1X%2 + 0+ x3xx1 + 0

= X1X2X3

AC = (x3x1 + x3%2) (x2x1 + X2X3)

= X3X1X2X] + X3X1X2X3 + X3X2X0X| + X3X2X2X3

=x3x1x+0+0+4+0

= X1X2X3

BC = (x1x2 + x1X3) (x2x1 + x2X3)

= X[ X2X2X| + X1 X2X2X3 + X1X3X2X] + X1X3X2X3

=040+ x1x3x + x1X3X2

= X1X2X3

Therefore, f can be written as

f = x1%2x3 + X103 + X1X2X3

= x1 (X2 + x2)x3 + x1x2(x3 + X3)

= X1X3 + X1X2

= x1(x3 + x2)




104 CHAPTER 2 ¢ INTRODUCTION TO LoGIic CIRCUITS
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(c) Function C (d) Function f

Figure 2.66  The Venn diagrams for Example 2.23.

Example 2.23 Problem: Solve the problem in Example 2.22 by using Venn diagrams.

Solution: The Venn diagrams for functions A, B, and C in Example 2.22 are shown in parts
a to c of Figure 2.66. Since the function f has to be true when two or more of A, B, and C
are true, then the Venn diagram for f is formed by identifying the common shaded areas in
the Venn diagrams for A, B, and C. Any area that is shaded in two or more of these diagrams
is also shaded in f, as shown in Figure 2.66d. This diagram corresponds to the function

[ =x1x0 4+ x1x3 = x1 (02 + x3)

Example 2.24 Problem: Use algebraic manipulation to derive the simplest sum-of-products expression
for the function

f = Xx0X3X4 + X1X3X4 + X1X2X4
Solution: Applying the consensus property 17a to the first two terms yields

[ = X0X3x4 + X1X3X4 + XoX4X1X4 + X1X2X4

= XpX3X4 + X1X3X4 + X1X2X4 + X1X2X4
Now, using the combining property 14a for the last two terms gives
[ = X0X3x4 + X1x3%4 + X1X4
Finally, using the absorption property 13a produces

[ = xX3x4 + x1%4
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Problem: Use algebraic manipulation to derive the simplest product-of-sums expression Example 2.25
for the function

f= G +x+x3)*x0 + X2+ Xa) (X1 + x5 + x4)
Solution: Applying the consensus property 175 to the first two terms yields
f=0C1+x2+x3)& + X2+ X)X +x3 + X1 +X0) (X1 + x3 + x4)
= (01 +x2 +x3) (X1 + X2 + X)) (X1 + X3 + Xa) (1 +x3 + Xx4)
Now, using the combining property 145 for the last two terms gives
f=G +x2+x3)( + X2 + X)X + x3)
Finally, using the absorption property 135 on the first and last terms produces

=01 +x+x) 1 +x3)

Problem: Determine the minimum-cost SOP and POS expressions for the function Example 2.26
G, x2,x3,x4) = ) m(4,6,8,10, 11, 12,15) + D(3,5,7,9).

Solution: The function can be represented in the form of a Karnaugh map as shown in
Figure 2.67a. Note that the location of minterms in the map is as indicated in Figure 2.53.
To find the minimum-cost SOP expression, it is necessary to find the prime implicants that
cover all 1s in the map. The don’t-cares may be used as desired. Minterm g is covered
only by the prime implicant Xx,, hence this prime implicant is essential and it must be
included in the final expression. Similarly, the prime implicants x;X, and x3x4 are essential
because they are the only ones that cover my and m;s, respectively. These three prime
implicants cover all minterms for which f = 1 except m;,. This minterm can be covered
in two ways, by choosing either x;X3X4 or x,X3X4. Since both of these prime implicants
have the same cost, we can choose either of them. Choosing the former, the desired SOP
expression is

[ =X1x +x1%2 + x3x4 + X1 X34

These prime implicants are encircled in the map.

The desired POS expression can be found as indicated in Figure 2.64b. In this case,
we have to find the sum terms that cover all Os in the function. Note that we have written
Os explicitly in the map to emphasize this fact. The term (x; + x») is essential to cover the
0Os in squares 0 and 2, which correspond to maxterms M, and M;. The terms (x3 + X4) and
(X1 + X + X3 + x4) must be used to cover the Os in squares 13 and 14, respectively. Since
these three sum terms cover all Os in the map, the POS expression is

f=00+x)0s +x) G + X + X3+ x4)

The chosen sum terms are encircled in the map.

Observe the use of don’t-cares in this example. To get a minimum-cost SOP expression
we assumed that all four don’t-cares have the value 1. But, the minimum-cost POS expres-
sion becomes possible only if we assume that don’t-cares 3, 5, and 9 have the value 0 while
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Figure 2.67  Karnaugh maps for Example 2.26.

the don’t-care 7 has the value 1. This means that the resulting SOP and POS expressions are
not identical in terms of the functions they represent. They cover identically all valuations
for which f is specified as 1 or 0, but they differ in the valuations 3, 5, and 9. Of course,
this difference does not matter, because the don’t-care valuations will never be applied as
inputs to the implemented circuits.

Example 2.27

Problem: Use Karnaugh maps to find the minimum-cost SOP and POS expressions for the
function

S, ooy Xq) = X1X3X4 + X3X4 + X1 X2X4 + X1 X0X3X4

assuming that there are also don’t-cares defined as D = ) (9, 12, 14).
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Solution: The Karnaugh map that represents this function is shown in Figure 2.68a. The
map is derived by placing 1s that correspond to each product term in the expression used
to specify f. The term X;x3X4 corresponds to minterms 0 and 4. The term x3x4 represents
the third row in the map, comprising minterms 3, 7, 11, and 15. The term X Xx,x4 specifies
minterms 1 and 3. The fourth product term represents the minterm 13. The map also
includes the three don’t-care conditions.

To find the desired SOP expression, we must find the least-expensive set of prime
implicants that covers all 1s in the map. The term x3x4 is a prime implicant which must
be included because it is the only prime implicant that covers the minterm 7; it also covers
minterms 3, 11, and 15. Minterm 4 can be covered with either x;x3X4 or x,x3x4. Both of
these terms have the same cost; we will choose Xx1x3x4 because it also covers the minterm Q.
Minterm 1 may be covered with either xX,X3 or X,x4; we should choose the latter because
its cost is lower. This leaves only the minterm 13 to be covered, which can be done with

’LI’C3/\4
XX
BN 00 {01 11 10
00|(1 1) d
or| 1 pffa T s,
1|1 1 1 g—xm
10 d
X2X4

(a) Determination of the SOP expression

XX
BEN 0 o 1110
0] 1|1 @ 0
ol 3 @ ] —d () + Xy + x5+ Xy)
1N R O U
10]Co [ o [[a _0) (X3+xy)
(X, +xy)

(b) Determination of the POS expression

Figure 2.68  Karnaugh maps for Example 2.27.

107



108

CHAPTER 2 ¢ INTRODUCTION TO LoGIic CIRCUITS

either xjx4 or x1x; at equal costs. Choosing x;x4, the minimum-cost SOP expression is
S = x3%4 + X1X3%4 + Xox4 + X1X4

Figure 2.68b shows how we can find the POS expression. The sum term (X3 + x4)
covers the Os in the bottom row. To cover the 0 in square 8§ we must include (x| + x4). The
remaining 0, in square 5, must be covered with (x; + X, + x3 + x4). Thus, the minimum-
cost POS expression is

=G+ x) 1 4+ x4) (1 + X2 + X3 + X4)

Example 2.28

Problem: Consider the expression
[ =501 +352) + 5152
Derive a minimum-cost SOP expression for f.
Solution: Applying the distributive property 12a we can write
f =518+ 5283 + 5152

Now, it is easy to see how f can be represented in the form of a Karnaugh map, as depicted
in Figure 2.69. The figure shows that minterms from each of the above three product terms
cover the bottom row of the Karnaugh map, leading to the minimum-cost expression

[ =s3+515

Example 2.29

Write Verilog code that represents the logic circuit in Figure 2.70. Use only continuous
assignment statements to specify the required functions.

Solution: An example of the required Verilog code is shown in Figure 2.71.

S157
%3 00 01 11 10

0 (1)

() WG ?753
T
\

I 1 I 1T 1

§2s3 §1s3 515,

Figure 2.69 A Karnaugh map that represents the function in
Example 2.28.
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> f
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Figure 2.70  The logic circuit for Example 2.29.

module f_g (x,y,z,f, g);

input x, y, z;
output f, g;
wire k;

assignk=y " z;
assigng=k " x;
assign f = (~k & 7) | (k & x);

endmodule

Figure 2.71  Verilog code for Example 2.29.

Consider the circuit shown in Figure 2.72. It includes two copies of the 2-to-1 multiplexer Example 2.30
circuit from Figure 2.33, and the adder circuit from Figure 2.12. If the multiplexers’ select

input m = 0, then this circuit produces the sum § = a + b. But if m = 1, then the circuit

produces S = ¢ + d. By using multiplexers, we are able to share one adder for generating

the two different sums a + b and ¢ + d. Sharing a subcircuit for multiple purposes is

commonly-used in practice, although usually with larger subcircuits than our one-bit adder.

Write Verilog code for the circuit in Figure 2.72. Use the hierarchical style of Verilog

code illustrated in Figure 2.47, including two instances of a Verilog module for the 2-to-1

multiplexer subcircuit, and one instance of the adder subcircuit.

Solution: An example of the required Verilog code is shown in Figure 2.73. We should
mention that both the shared module and the adder module have input ports named a and b.
This does not cause any conflict because the name of a signal declared in a Verilog module
is limited to the scope of that module.
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Figure 2.72  The circuit for Example 2.30.

module shared (a, b, ¢, d, m, s1, s0);
input a, b, c,d, m;
output s1, s0;
wire wl, w2;
mux2tol Ul (a, ¢, m, wl);
mux2tol U2 (b, d, m, w2);
adder U3 (w1, w2, s1, s0);
endmodule

module mux2tol (x1, x2, s, f);
input x1, x2, s;
output f;
assign f = (~s & x1) | (s & x2);
endmodule

module adder (a, b, s1, sO);
input a, b;
output s1, s0;
assignsl =a & b;
assignsO=a " b;
endmodule

Figure 2.73  Verilog code for Example 2.30.



PROBLEMS

In Chapter 1 we said that several types of integrated circuit chips are available for imple-
mentation of logic circuits, and that field-programmable gate arrays (FPGAs) are commonly
used. In an FPGA, logic functions are not implemented directly using AND, OR, and NOT
gates. Instead, an FPGA implements logic functions by using a type of circuit element
called lookup tables (LUTs). A LUT can be programmed by the user to implement any
logic function of its inputs. Thus, if a LUT has three inputs, then it can implement any
logic function of these three inputs. We describe FPGAs and lookup tables in detail in
Appendix B. Consider the four-input function

[ = xix0x4 + X2x3X4 + X1X2X3
Show how this function can be implemented in an FPGA that has three-input LUTs.
Solution: A straightforward implementation requires four 3-input LUTs. Three of these
LUTs are used for the three-input AND operations, and the final LUT implements the three-

input OR operation. It is also possible to apply logic synthesis techniques that result in
fewer LUTs. We discuss these techniques in Chapter 8 (see Example 8.19).

Example 2.31

PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

2.1 Use algebraic manipulation to prove that x + yz = (x +y) - (x + z). Note that this is the

distributive rule, as stated in identity 125 in Section 2.5.

2.2  Use algebraic manipulation to prove that (x +y) - (x +7) = x.

2.3 Use algebraic manipulation to prove that xy + yz + Xz = xy + xz. Note that this is the

consensus property 17a in Section 2.5.

2.4 Use the Venn diagram to prove the identity in Problem 2.3.

2.5 Use the Venn diagram to prove DeMorgan’s theorem, as given in expression 15b in Sec-

tion 2.5.

2.6 Use the Venn diagram to prove that
(1 +x2+x3) - (1 +x2 +33) = X1 + X2

*2.7 Determine whether or not the following expressions are valid, i.e., whether the left- and

right-hand sides represent the same function.

() X1x3 + x1X2X3 + XX + X1X2 = XoX3 + X1 X3 + XoX3 + X[ XX3

(b) x1X3 + x2x3 + XoX3 = (X1 + X2 + x3)(x1 +x2 +X3)(X] + X2 + X3)
(©) (1 +x3) (X1 + X2 +X3) (X1 +x2) = (x1 + x2)(x2 + x3) (X1 + X3)

2.8 Draw a timing diagram for the circuit in Figure 2.24a. Show the waveforms that can be

observed on all wires in the circuit.

2.9 Repeat Problem 2.8 for the circuit in Figure 2.24b.
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Use algebraic manipulation to show that for three input variables x;, x,, and x3
> m(1,2,3,4,5,6,7) =x1 +x+ x5
Use algebraic manipulation to show that for three input variables x1, x,, and x3
M (0, 1,2,3,4,5,6) = x1x2X3

Use algebraic manipulation to find the minimum sum-of-products expression for the func-
tion f = x1x3 + XX + X1x2X3 + X1X2X3.

Use algebraic manipulation to find the minimum sum-of-products expression for the func-
tion f = x1X2X3 + X1X2X4 + X1 X2X3X4.

Use algebraic manipulation to find the minimum product-of-sums expression for the func-
tion f = (x; +x3 +x4) - (X1 +X2 + x3) - (X1 +X2 + X3 + x4).

Use algebraic manipulation to find the minimum product-of-sums expression for the func-
tionf = (x; +x2 + x3) - (01 + X2 +x3) - (X1 + X2 +x3) - (x1 +x2 + X3).

(a) Show the location of all minterms in a three-variable Venn diagram.
(b) Show a separate Venn diagram for each product term in the function f = x;Xox3 +
x1x2 + x1x3. Use the Venn diagram to find the minimal sum-of-products form of f.

Represent the function in Figure 2.23 in the form of a Venn diagram and find its minimal
sum-of-products form.

Figure P2.1 shows two attempts to draw a Venn diagram for four variables. For parts (a)
and () of the figure, explain why the Venn diagram is not correct. (Hint: The Venn diagram
must be able to represent all 16 minterms of the four variables.)

G

(a) (b)

Figure P2.1  Two attempts to draw a four-variable Venn diagram.

Figure P2.2 gives a representation of a four-variable Venn diagram and shows the location
of minterms my, m;, and m,. Show the location of the other minterms in the diagram.
Represent the function f = X;X>x3X4 + X1X2x3X4 + XX on this diagram.
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Figure P2.2 A four-variable Venn diagram.

Design the simplest sum-of-products circuit that implements the function f (x|, x2, x3) =
> m(3,4,6,7).

Design the simplest sum-of-products circuit that implements the function f (x|, x2, x3) =
> m(1,3,4,6,7).

Design the simplest product-of-sums circuit that implements the function f (x, x», x3) =
I1M (0,2, 5).

Design the simplest product-of-sums expression for the function f (x;, x5, x3) = I[IM (0, 1,
5,7).

Derive the simplest sum-of-products expression for the function f(x, xp,x3,x4) =
X1X3X4 + X2X3X4 + X1X2X3.

Use algebraic manipulation to derive the simplest sum-of-products expression for the func-
tion f (x1, X2, X3, X4, X5) = X1X3X5 + X1 X3X4 + X1X4X5 + X1 X2X3X5. (Hint: Use the consensus
property 17a.)

Use algebraic manipulation to derive the simplest product-of-sums expression for the func-
tion f(x1,x2, X3, X4) = (X1 + X3 + X4) (X2 + X3 + x4) (X1 + X2 +X3). (Hint: Use the con-
sensus property 17b.)

Use algebraic manipulation to derive the simplest product-of-sums expression for the
function f (x1, X2, X3, X4, X5) = (X2 + X3 + x5) (x1 + X3 + x5) (X1 + X2 + X5) (X1 + X4 + Xs5).
(Hint: Use the consensus property 17b.)

Design the simplest circuit that has three inputs, x;, x, and x3, which produces an output
value of 1 whenever two or more of the input variables have the value 1; otherwise, the
output has to be 0.

Design the simplest circuit that has three inputs, xi, x,, and x3, which produces an output
value of 1 whenever exactly one or two of the input variables have the value 1; otherwise,
the output has to be 0.

Design the simplest circuit that has four inputs, x1, x», x3, and x4, which produces an output
value of 1 whenever three or more of the input variables have the value 1; otherwise, the
output has to be 0.
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For the timing diagram in Figure P2.3, synthesize the function f (x;, x2, x3) in the simplest
sum-of-products form.

xl(l) I

1

2y ] | |

sy LI LI LI
0

fl

] I L

— Time

(=)

Figure P2.3 A timing diagram representing a logic function.

For the timing diagram in Figure P2.3, synthesize the function f (x, x5, x3) in the simplest
product-of-sums form.

For the timing diagram in Figure P2.4, synthesize the function f (x;, x,, x3) in the simplest
sum-of-products form.

xl(l) |
0o ] | —
wo LT LTI 11

ol [ | |_

— Time

=]

Figure P2.4 A timing diagram representing a logic function.

For the timing diagram in Figure P2.4, synthesize the function f (x1, x», x3) in the simplest
product-of-sums form.

Design a circuit with output f and inputs x;, xo, y1, and yo. Let X = x1xp and Y = y;yp
represent two 2-digit binary numbers. The output f should be 1 if the numbers represented
by X and Y are equal. Otherwise, f should be 0.
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(a) Show the truth table for f.
(b) Synthesize the simplest possible product-of-sums expression for f.

Repeat Problem 2.35 for the case where f should be 1 only if X > Y.
(a) Show the truth table for f.

(b) Show the canonical sum-of-products expression for f.

(c) Show the simplest possible sum-of-products expression for f.

Find the minimum-cost SOP and POS forms for the function f (x;, x2, x3) = Y_m(1, 2,3, 5).
Repeat Problem 2.37 for the function f (x;, xp, x3) = Y_m(1,4,7) + D(2,5).

Repeat Problem 2.37 for the function f(xy,...,xs) =TIM (0, 1, 2,4, 5,7, 8,9, 10, 12,
14, 15).

Repeat Problem 2.37 for the function f(x1,...,xs) = Y m(0, 2, 8,9, 10, 15) + D(1, 3,
6,7).

Repeat Problem 2.37 for the function f (xy, ..., xs) = [IM (1,4, 6,7, 9, 12,15, 17, 20, 21,
22,23,28,31).

Repeat Problem 2.37 for the function f (x,...,x5) = > m(0, 1, 3,4, 6, 8,9, 11, 13, 14,
16, 19, 20, 21, 22, 24,25) + D(5,7, 12, 15, 17, 23).

Repeat Problem 2.37 for the function f (xj, ..., x5) = Y m(1,4,6,7,9, 10, 12, 15,17, 19,
20, 23, 25, 26, 27, 28, 30, 31) + D(8, 16, 21, 22).

Find 5 three-variable functions for which the product-of-sums form has lower cost than the
sum-of-products form.

A four-variable logic function that is equal to 1 if any three or all four of its variables are
equal to 1 is called a majority function. Design a minimum-cost SOP circuit that implements
this majority function.

Derive a minimum-cost realization of the four-variable function that is equal to 1 if exactly
two or exactly three of its variables are equal to 1; otherwise it is equal to 0.

Prove or show a counter-example for the statement: If a function f has a unique minimum-
cost SOP expression, then it also has a unique minimum-cost POS expression.

A circuit with two outputs has to implement the following functions

fOnx) =) m(0,2,4,6,7,9) + D(10, 11)

gxy,....xq) = Zm(Z, 4,9,10, 15) + D(0, 13, 14)

Design the minimum-cost circuit and compare its cost with combined costs of two circuits
that implement f and g separately. Assume that the input variables are available in both
uncomplemented and complemented forms.

Repeat Problem 2.48 for the following functions
S, ..,xs) => m(1,4,5,11,27,28) + D(10, 12, 14, 15, 20, 31)
glxr, ..., x5) = m(0,1,2,4,5,8, 14, 15, 16, 18, 20, 24, 26, 28, 31) + D(10, 11, 12, 27)
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Consider the function f = x3xs5 + X1X2X4 + X1X2X4 + X1X3X4 + X1X3X4 + X1X2X5 + X[ X2X5.
Derive a minimum-cost POS expression for this function.

Implement the function in Figure 2.31 using only NAND gates.
Implement the function in Figure 2.31 using only NOR gates.
Implement the circuit in Figure 2.39 using NAND and NOR gates.

Design the simplest circuit that implements the function f (x, x2, x3) = Y_m(3,4,6,7)
using NAND gates.

Design the simplest circuit that implements the function f (x;, X, x3) = Y m(1,3,4,6,7)
using NAND gates.

Repeat Problem 2.54 using NOR gates.
Repeat Problem 2.55 using NOR gates.

(a) Use a schematic capture tool (which can be downloaded from the Internet; for example,
from www.altera.com) to draw schematics for the following functions

Ji = X0X3X4 + X1X2X4 + X1X0X3 + X1X0X3
Jfo = xX4 + X120 + X2X3
(b) Use functional simulation to prove that f; = f5.
(a) Use a schematic capture tool to draw schematics for the following functions
fi=G+x+X) 02 +x3+X4) - (1 +x3 +X4) - (41 + X3+ X4)
Jfo= (2 +X4) - (03 +Xq) - (X1 + Xa)
(b) Use functional simulation to prove that f; = f>.
Write Verilog code to implement the circuit in Figure 2.32a using the gate-level primitives.
Repeat Problem 2.60 for the circuit in Figure 2.32b.

Write Verilog code to implement the function f (x;, x2, x3) = Y _m(1, 2, 3,4, 5, 6) using the
gate-level primitives. Ensure that the resulting circuit is as simple as possible.

Write Verilog code to implement the function f (x;, x2, x3) = Y m(0, 1, 3, 4, 5, 6) using the
continuous assignment.

(a) Write Verilog code to describe the following functions

fi = x1%3 + x0X3 + X3%4 + x1%0 + X174
o= +x3) - (x1 +x2+X4) - 02 + X3 +X4)

(b) Use functional simulation to prove that f; = f5.
Consider the following Verilog statements
fl = (x1 & x3) | (~x1 & ~x3) | (x2 & x4) | (~x2 & ~x4);

2 =(x1 &x2 & ~x3 & ~x4) | (~x1 & ~x2 & x3 & x4) |
x1 & ~x2 & ~x3 & x4) | (~x1 & x2 & x3 & ~x4);
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(a) Write complete Verilog code to implement f1 and 2.
(b) Use functional simulation to prove that f1 = 2.

Consider the logic expressions
f = X1X2X5 + X1X2X4X5 + X1 X2X4X5 + X1 X2X3X4 + X1X2X3X5 + X2X3X4X5 + X1 X2 X3X4X5
8 = X2X3X4 + XpX3X4Xs5 + X1X3X4X5 + X1X2X4X5 + X1 X3X4X5 + X1 X2X3X5 + X1 X2 X3X4X5

Prove or disprove that f = g.

Repeat Problem 2.66 for the following expressions
[ = x1%0X3 + Xox4 + X1 X0X4 + XoX3X4 + X1X2X3
g = (%2 +x3 +xa) (1 + X2 + xa) (02 + X3 +Xa) (X1 + 22 + X3) (X1 + X2 + Xa4)
Repeat Problem 2.66 for the following expressions
[ = X0X3X4 + Xox3 + X2X4 + X1X2X4 + X[ X2X3X5
g = (x2 +x3 +x4) (X2 + X4 + x5)(x1 + X2 + X3) (X2 + X3 + X4 + Xs5)
A circuit with two outputs is defined by the logic functions
[ = X1X2X3 4+ XXy + XoX3x4 + X1 X2X3X4
8 = X1X3X4 + X1X0X4 + X1 X3X4 + XX3X4

Derive a minimum-cost implementation of this circuit. What is the cost of your circuit?

Repeat Problem 2.69 for the functions

=01 +x +x3)(x1 +x3 +X4) (X1 + X2 +x3) (X1 + X2 +x4) (X1 + X2+ X4)
g = (X1 +x2+X3)(X1 + X2+ X4) (X2 + X3 + X4) (X1 + X2 + X3 + x4)

A given system has four sensors that can produce an output of O or 1. The system operates
properly when exactly one of the sensors has its output equal to 1. An alarm must be raised
when two or more sensors have the output of 1. Design the simplest circuit that can be used
to raise the alarm.

Repeat Problem 2.71 for a system that has seven sensors.

Find the minimum-cost circuit consisting only of two-input NAND gates for the function
fQr, o, xa) =>"m(0,1,2,3,4,6,8,9, 12). Assume that the input variables are avail-
able in both uncomplemented and complemented forms. (Hint: Consider the complement
of the function.)

Repeat Problem 2.73 for the function f (xy, ..., xs) =Y m(2,3,6,8,9, 12).

Find the minimum-cost circuit consisting only of two-input NOR gates for the function
S, xq) =Y m(6,7,8, 10, 12, 14, 15). Assume that the input variables are available
in both uncomplemented and complemented forms. (Hint: Consider the complement of
the function.)

Repeat Problem 2.75 for the function f (xy, ..., x4) = > m(2,3,4,5,9, 10, 11, 12, 13, 15).
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Consider the circuit in Figure P2.5, which implements functions f and g. What is the cost of
this circuit, assuming that the input variables are available in both true and complemented
forms? Redesign the circuit to implement the same functions, but at as low a cost as
possible. What is the cost of your circuit?

X1
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Figure P2.5  Circuit for Problem 2.78.
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2.78 Repeat Problem 2.78 for the circuit in Figure P2.6. Use only NAND gates in your circuit.

X

X2

X2

X3

-
-

X2 —
X4 —
X —

Xy —

X1 —

X3 —

X2 —

X3 —

Y7 ] 7

Figure P2.6  Circuit for Problem 2.79.
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3

NUMBER REPRESENTATION
AND ARITHMETIC CIRCUITS

CHAPTER OBJECTIVES

In this chapter you will learn about:

e Representation of numbers in computers
e  Circuits used to perform arithmetic operations
e Performance issues in large circuits

e Use of Verilog to specify arithmetic circuits
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In this chapter we will discuss logic circuits that perform arithmetic operations. We will explain how numbers
can be added, subtracted, and multiplied. We will also show how to write Verilog code to describe the
arithmetic circuits. These circuits provide an excellent platform for illustrating the power and versatility of
Verilog in specifying complex logic-circuit assemblies. The concepts involved in the design of arithmetic
circuits are easily applied to a wide variety of other circuits.

Before tackling the design of arithmetic circuits, it is necessary to discuss how numbers are repre-
sented in digital systems. In Chapter 1 we introduced binary numbers and showed how they can be expressed
using the positional number representation. We also discussed the conversion process between decimal and
binary number systems. In Chapter 2 we dealt with logic variables in a general way, using variables to
represent either the states of switches or some general conditions. Now we will use the variables to represent
numbers. Several variables are needed to specify a number, with each variable corresponding to one digit of
the number.

‘ 3.1 PosITIONAL NUMBER REPRESENTATION

When dealing with numbers and arithmetic operations, it is convenient to use standard
symbols. Thus to represent addition we use the plus (+) symbol, and for subtraction we use
the minus (—) symbol. In Chapter 2 we used the 4+ symbol mostly to represent the logical
OR operation. Even though we will now use the same symbols for two different purposes,
the meaning of each symbol will usually be clear from the context of the discussion. In
cases where there may be some ambiguity, the meaning will be stated explicitly.

3.1.1 UNSIGNED INTEGERS

The simplest numbers to consider are the integers. We will begin by considering positive
integers and then expand the discussion to include negative integers. Numbers that are
positive only are called unsigned, and numbers that can also be negative are called signed.
Representation of numbers that include a radix point (real numbers) is discussed later in
the chapter.

As explained in Section 1.5.1, an n-bit unsigned number

B =b, 1b, 2---b1by
represents an integer that has the value

V(B) = by x 2" 4+ bya x 27 4+ by x 20+ by x 2° [3.1]

n—1
= bix2
i=0
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3.1.2 OcTAL AND HEXADECIMAL REPRESENTATIONS

The positional number representation can be used for any radix. If the radix is r, then the
number

K =ky_1kn_2---kiko

has the value

n—1

V(K) = Z ki x rt

i=0
Our interest is limited to those radices that are most practical. We will use decimal numbers
because they are used by people, and we will use binary numbers because they are used by
computers. In addition, two other radices are useful—S8 and 16. Numbers represented with
radix 8 are called octal numbers, while radix-16 numbers are called hexadecimal numbers.
In octal representation the digit values range from 0 to 7. In hexadecimal representation
(often abbreviated as hex), each digit can have one of 16 values. The first ten are denoted
the same as in the decimal system, namely, O to 9. Digits that correspond to the decimal
values 10, 11, 12, 13, 14, and 15 are denoted by the letters, A, B, C, D, E, and F. Table 3.1
gives the first 18 integers in these number systems.

In computers the dominant number system is binary. The reason for using the octal and

hexadecimal systems is that they serve as a useful shorthand notation for binary numbers.
One octal digit represents three bits. Thus a binary number is converted into an octal number

Table 3.1  Numbers in different systems.

Decimal Binary Octal Hexadecimal
00 00000 00 00
01 00001 01 01
02 00010 02 02
03 00011 03 03
04 00100 04 04
05 00101 05 05
06 00110 06 06
07 00111 07 07
08 01000 10 08
09 01001 11 09
10 01010 12 0A
11 01011 13 0B
12 01100 14 0C
13 01101 15 0D
14 01110 16 OE
15 01111 17 OF
16 10000 20 10
17 10001 21 11

18 10010 22 12
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by taking groups of three bits, starting from the least-significant bit, and replacing them
with the corresponding octal digit. For example, 101011010111 is converted as

101 011 010 111
Ne—— ~—— ~—— ——
5 3 2 7

which means that (101011010111), = (5327)g. If the number of bits is not a multiple of
three, then we add Os to the left of the most-significant bit. For example, (10111011), =
(273)g because of the grouping

Conversion from octal to binary is just as straightforward; each octal digit is simply replaced
by three bits that denote the same value.

Similarly, a hexadecimal digit represents four bits. For example, a 16-bit number is
represented by four hex digits, as in

(1010111100100101), = (AF25) ¢

using the grouping

1010 1111 0010 0101
S—— —— ~—— ~——
A F 2 5

Zeros are added to the left of the most-significant bit if the number of bits is not a multiple
of four. For example, (1101101000), = (368) 6 because of the grouping

0011 0110 1000
~—— ~—— ~——
3 6 8

Conversion from hexadecimal to binary involves straightforward substitution of each hex
digit by four bits that denote the same value.

Binary numbers used in modern computers often have 32 or 64 bits. Written as binary
n-tuples (sometimes called bit vectors), such numbers are awkward for people to deal with.
It is much simpler to deal with them in the form of 8- or 16-digit hex numbers. Because
the arithmetic operations in a digital system usually involve binary numbers, we will focus
on circuits that use such numbers. We will sometimes use the hexadecimal representation
as a convenient shorthand description.

We have introduced the simplest numbers—unsigned integers. It is necessary to be
able to deal with several other types of numbers. We will discuss the representation of
signed numbers, fixed-point numbers, and floating-point numbers later in this chapter. But
first we will examine some simple circuits that operate on numbers to give the reader a
feeling for digital circuits that perform arithmetic operations and to provide motivation for
further discussion.



3.2 ADDITION OF UNSIGNED NUMBERS

125

3.2 ApbDITION OF UNSIGNED NUMBERS

Binary addition is performed in the same way as decimal addition except that the values
of individual digits can be only O or 1. In Chapter 2, we already considered the addition
of 2 one-bit numbers, as an example of a simple logic circuit. Now, we will consider this
task in the context of general adder circuits. The one-bit addition entails four possible
combinations, as indicated in Figure 3.1a. Two bits are needed to represent the result of the
addition. The right-most bit is called the sum, s. The left-most bit, which is produced as
a carry-out when both bits being added are equal to 1, is called the carry, c. The addition
operation is defined in the form of a truth table in part (b) of the figure. The sum bit s is
the XOR function. The carry c is the AND function of inputs x and y. A circuit realization
of these functions is shown in Figure 3.1¢. This circuit, which implements the addition of
only two bits, is called a half-adder.

0 0 1 1
+y +0 +1 +0 +1
00 01 01 10

cs
Carry —T T— Sum

(a) The four possible cases

Carry Sum
Xy c s
0 0 0 0
0 1 0 1
1 0 0 1
11 1 0

(b) Truth table

X —» l——»
HA
y — ——»
D
(c) Circuit (d) Graphical symbol

Figure 3.1 Half-adder.
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Generated carries —= 1110

Civ1 G

X = x4x3xyxX, 01111 (15)4q X;

+Y =y y392 915 +01010 + (10), Vi

S = 548535,58) 11001 (25)49 8;
(a) An example of addition (b) Bit position i

Figure 3.2  Addition of multibit numbers.

A more interesting case is when larger numbers that have multiple bits are involved.
Then it is still necessary to add each pair of bits, but for each bit position i, the addition
operation may include a carry-in from bit position i — 1.

Figure 3.2a presents an example of the addition operation. The two operands are X =
(01111), = (15)49 and Y = (01010), = (10),o. Five bits are used to represent X and
Y, making it possible to represent integers in the range from 0 to 31; hence the sum
S =X +Y = (25),gcanalsobe denoted as a five-bitinteger. Note the labeling of individual
bits, such that X = x4x3xx1x0 and ¥ = y4y3y2y1y0. The figure shows, in a blue color, the
carries generated during the addition process. For example, a carry of 0 is generated when
X and yy are added, a carry of 1 is produced when x; and y, are added, and so on.

In Chapter 2 we designed logic circuits by first specifying their behavior in the form
of a truth table. This approach is impractical in designing an adder circuit that can add the
five-bit numbers in Figure 3.2. The required truth table would have 10 input variables, 5
for each number X and Y. It would have 2'° = 1024 rows! A better approach is to consider
the addition of each pair of bits, x; and y;, separately.

For bit position 0, there is no carry-in, and hence the addition is the same as for
Figure 3.1. For each other bit position i, the addition involves bits x; and y;, and a carry-in
¢;, as illustrated in Figure 3.2b. This observation leads to the design of a logic circuit that
has three inputs x;, y;, and ¢;, and produces the two outputs s; and c;;;. The required truth
table is shown in Figure 3.3a. The sum bit, s;, is the modulo-2 sum of x;, y;, and ¢;. The
carry-out, ciy1, is equal to 1 if the sum of x;, y;, and ¢; is equal to either 2 or 3. Karnaugh
maps for these functions are shown in part (b) of the figure. For the carry-out function the
optimal sum-of-products realization is

Ciyl = XY +XiCi + YiCi
For the s; function a sum-of-products realization is
Si = XiYiCi + Xy, Ci + Xiy;¢i + Xiyici

A more attractive way of implementing this function is by using the XOR gates, as explained
below.
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XiYi
¢ 00 01 11 10
0 1 1
i X Vi | Cisn Si
1] 1 1
0 0 O 0 0
0 0 1 0 1
o1 0 |0 |1 5= O vi@c
0 1 1 1 0
X.V.
1 00 0 1 i
10 1 1 0 ¢ 00 01 11 10
110 |1 0 0 )
1 1 1 1 1
1 1 1 1

(a) Truth table

Civ1 = XYt X6+ Y6

(b) Karnaugh maps

J ! ) 4 i+1

(c) Circuit

Figure 3.3  Full-adder.
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Use of XOR Gates

As shown in Chapter 2, the XOR function of two variables is defined as x; @ x, =
X1x; + x1X,. The preceding expression for the sum bit can be manipulated into a form that
uses only XOR operations as follows

si = (Xiyi +xy)C + (Xiy; + xiyi)ci
= (x; D y)c; + (x; @ yi)c
=X ®y) D

The XOR operation is associative; hence we can write
Si=xiDyide

Therefore, a three-input XOR operation can be used to realize s;.

The XOR operation generates as an output a modulo-2 sum of its inputs. Thus, the
output is equal to 1 if an odd number of inputs have the value 1, and it is equal to 0
otherwise. For this reason the XOR is sometimes referred to as the odd function. Observe
that the XOR has no minterms that can be combined into a larger product term, as evident
from the checkerboard pattern for function s; in the map in Figure 3.3b. The logic circuit
implementing the truth table in Figure 3.3a is given in Figure 3.3c. This circuit is known
as a full-adder.

Another interesting feature of XOR gates is that a two-input XOR gate can be thought
of as using one input as a control signal that determines whether the true or complemented
value of the other input will be passed through the gate as the output value. This is clear
from the definition of XOR, where x; @ y; = Xy + xy. Consider x to be the control input.
Then if x = 0, the output will be equal to the value of y. But if x = 1, the output will be
equal to the complement of y. In the derivation above, we used algebraic manipulation
to derive 5; = (x; B y;) ® ¢;. We could have obtained the same expression immediately
by making the following observation. In the top half of the truth table in Figure 3.3a, c¢;
is equal to O, and the sum function s; is the XOR of x; and y;. In the bottom half of the
table, ¢; is equal to 1, while s; is the complemented version of its top half. This observation
leads directly to our expression using 2 two-input XOR operations. We will encounter an
important example of using XOR gates to pass true or complemented signals under the
control of another signal in Section 3.3.3.

In the preceding discussion we encountered the complement of the XOR operation,
which we denoted as x @ y. This operation is used so commonly that it is given the distinct
name XNOR. A special symbol, ©, is often used to denote the XNOR operation, namely

The XNOR is sometimes also referred to as the coincidence operation because it produces
the output of 1 when its inputs coincide in value; that is, they are both 0 or both 1.
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Figure 3.4 A decomposed implementation of the full-adder circuit.

3.2.1 DEcoMPOSED FULL-ADDER

In view of the names used for the circuits, one can expect that a full-adder can be constructed
using half-adders. This can be accomplished by creating a multilevel circuit given in
Figure 3.4. It uses two half-adders to form a full-adder. The reader should verify the
functional correctness of this circuit.

3.2.2 RiIrPPLE-CARRY ADDER

To perform addition by hand, we start from the least-significant digit and add pairs of digits,
progressing to the most-significant digit. If a carry is produced in position i, then this carry is
added to the operands in position i + 1. The same arrangement can be used in a logic circuit
that performs addition. For each bit position we can use a full-adder circuit, connected as
shown in Figure 3.5. Note that to be consistent with the customary way of writing numbers,
the least-significant bit position is on the right. Carries that are produced by the full-adders
propagate to the left.

When the operands X and Y are applied as inputs to the adder, it takes some time before
the output sum, S, is valid. Each full-adder introduces a certain delay before its s; and ¢; |
outputs are valid. Let this delay be denoted as Az. Thus the carry-out from the first stage,
c1, arrives at the second stage At after the application of the xy and yo inputs. The carry-out
from the second stage, c,, arrives at the third stage with a 2At delay, and so on. The signal
cn—1 1s valid after a delay of (n — 1) A, which means that the complete sum is available
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Xn-1 Yn-1 1N Y0 Yo
¢
¢pe— FA |*=— -1 eoee ¢ =] FA |=— FA |=—¢
Sp—1 51 So
MSB position LSB position

Figure 3.5  An n-bit ripple-carry adder.

after a delay of nAt. Because of the way the carry signals “ripple” through the full-adder
stages, the circuit in Figure 3.5 is called a ripple-carry adder.

The delay incurred to produce the final sum and carry-out in a ripple-carry adder
depends on the size of the numbers. When 32- or 64-bit numbers are used, this delay
may become unacceptably high. Because the circuit in each full-adder leaves little room
for a drastic reduction in the delay, it may be necessary to seek different structures for
implementation of n-bit adders. We will discuss a technique for building high-speed adders
in Section 3.4.

So far we have dealt with unsigned integers only. The addition of such numbers does
not require a carry-in for stage 0. In Figure 3.5 we included ¢y in the diagram so that the
ripple-carry adder can also be used for subtraction of numbers, as we will see in Section 3.3.

3.2.3 DEsIGN ExaAMPLE

Suppose that we need a circuit that multiplies an eight-bit unsigned number by 3. Let
A = ajae - - - ajap denote the number and P = popg - - - p1po denote the product P = 3A.
Note that 10 bits are needed to represent the product.

A simple approach to design the required circuit is to use two ripple-carry adders to
add three copies of the number A, as illustrated in Figure 3.6a. The symbol that denotes
each adder is a commonly-used graphical symbol for adders. The letters x;, y;, s;, and ¢;
indicate the meaning of the inputs and outputs according to Figure 3.5. The first adder
produces A +A = 2A. Tts result is represented as eight sum bits and the carry from the
most-significant bit. The second adder produces 24 + A = 3A. It has to be a nine-bit adder
to be able to handle the nine bits of 2A, which are generated by the first adder. Because the
y; inputs have to be driven only by the eight bits of A, the ninth input yg is connected to a
constant 0.

This approach is straightforward, but not very efficient. Because 3A = 2A + A, we
can observe that 2A can be generated by shifting the bits of A one bit-position to the left,
which gives the bit pattern ayasasasazara;ap0. According to Equation 3.1, this pattern is
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A:a7...aO
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(b) Efficient design

Figure 3.6  Circuit that multiplies an eight-bit unsigned number by 3.
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equal to 2A. Then a single ripple-carry adder suffices for implementing 3A, as shown in
Figure 3.6b. This is essentially the same circuit as the second adder in part (a) of the figure.
Note that the input xj is connected to a constant 0. Note also that in the second adder in part
(a) of the figure the value of x; is always 0, even though it is driven by the least-significant
bit, s, of the sum of the first adder. Because xo = yg = ayp in the first adder, the sum bit s¢
will be 0, whether ag is O or 1.

3.3 SIGNED NUMBERS

In the decimal system the sign of a number is indicated by a + or — symbol to the left
of the most-significant digit. In the binary system the sign of a number is denoted by the
left-most bit. For a positive number the left-most bit is equal to 0, and for a negative number
it is equal to 1. Therefore, in signed numbers the left-most bit represents the sign, and the
remaining n — 1 bits represent the magnitude, as illustrated in Figure 3.7. It is important to
note the difference in the location of the most-significant bit (MSB). In unsigned numbers
all bits represent the magnitude of a number; hence all n bits are significant in defining
the magnitude. Therefore, the MSB is the left-most bit, b,_;. In signed numbers there are
n — 1 significant bits, and the MSB is in bit position b,_,.

bn -1 bl bO
o 0o 0
\ /
Vv
T Magnitude
MSB
(a) Unsigned number
bn -1 bn -2 bl bo
\ /
Vv
Sign T Magnitude
0 denotes +
1 denotes — MSB

(b) Signed number

Figure 3.7  Formats for representation of integers.
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3.3.1 NEGATIVE NUMBERS

Positive numbers are represented using the positional number representation as explained
in the previous section. Negative numbers can be represented in three different ways:
sign-and-magnitude, 1’s complement, and 2’s complement.

Sign-and-Magnitude Representation

In the familiar decimal representation, the magnitude of both positive and negative
numbers is expressed in the same way. The sign symbol distinguishes a number as being
positive or negative. This scheme is called the sign-and-magnitude number representation.
The same scheme can be used with binary numbers in which case the sign bit is 0 or 1
for positive or negative numbers, respectively. For example, if we use four-bit numbers,
then +5 = 0101 and —5 = 1101. Because of its similarity to decimal sign-and-magnitude
numbers, this representation is easy to understand. However, as we will see shortly, this
representation is not well suited for use in computers. More suitable representations are
based on complementary systems, explained below.

1’s Complement Representation

In a complementary number system, the negative numbers are defined according to a
subtraction operation involving positive numbers. We will consider two schemes for binary
numbers: the 1’s complement and the 2’s complement. In the /’s complement scheme, an
n-bit negative number, K, is obtained by subtracting its equivalent positive number, P,
from 2" — 1; thatis, K = (2" — 1) — P. For example, if n = 4, then K = 2*—1)—-P=
(15)10 — P = (1111), — P. If we convert +5 to a negative, we get —5 = 1111 — 0101 =
1010. Similarly, +3 = 0011 and —3 = 1111 — 0011 = 1100. Clearly, the 1’s complement
can be obtained simply by complementing each bit of the number, including the sign bit.
While 1°s complement numbers are easy to derive, they have some drawbacks when used
in arithmetic operations, as we will see in the next section.

2’s Complement Representation

In the 2’s complement scheme, a negative number, K, is obtained by subtracting its
equivalent positive number, P, from 2"; namely, K = 2" — P. Using our four-bit example,
—5=10000 — 0101 = 1011, and —3 = 10000 — 0011 = 1101. Finding 2’s complements
in this manner requires performing a subtraction operation that involves borrows. However,
we can observe that if K; is the 1’s complement of P and K5 is the 2’s complement of P,
then

Ki=@Q'—1)—P
K,=2"—P

It follows that K, = K + 1. Thus a simpler way of finding a 2’s complement of a number
is to add 1 to its 1’s complement because finding a 1’s complement is trivial. This is how
2’s complement numbers are obtained in logic circuits that perform arithmetic operations.

The reader will need to develop an ability to find 2’s complement numbers quickly.
There is a simple rule that can be used for this purpose.
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Rule for Finding 2’s Complements

Givenanumber B = b,_1b,_> - - - b1 by, its 2’s complement, K = k,_1k,—» - - - k1ko, can
be found by examining the bits of B from right to left and taking the following action: copy
all bits of B that are 0 and the first bit that is 1; then simply complement the rest of the bits.

For example, if B = 0110, then we copy k9 = by = 0 and k; = b; = 1, and comple-
ment the rest so that k, = 52 =0andk; = 53 = 1. Hence K = 1010. As another example,
if B = 10110100, then K = 01001100. We leave the proof of this rule as an exercise for
the reader.

Table 3.2 illustrates the interpretation of all 16 four-bit patterns in the three signed-
number representations that we have considered. Note that for both sign-and-magnitude
representation and for 1’s complement representation there are two patterns that represent
the value zero. For 2’s complement there is only one such pattern. Also, observe that the
range of numbers that can be represented with four bits in 2’s complement form is —8 to
+7, while in the other two representations it is —7 to +7.

Using 2’s-complement representation, an n-bit number B = b,_ b, - - - b1 by repre-
sents the value

V(B) = (=bp1 X 2" ) 4 bya x 2" 24 d by x 2! 4 by x 2° [3.2]

Thus the largest negative number, 100. ..00, has the value —2"~!. The largest positive
number, 011 ... 11, has the value 2"~! — 1.

Table 3.2 Interpretation of four-bit signed integers.

Sign and
bsbabiby magnitude 1’s complement 2’s complement
0111 +7 +7 +7
0110 +6 +6 +6
0101 +5 +5 +5
0100 +4 +4 +4
0011 +3 +3 +3
0010 +2 +2 +2
0001 +1 +1 +1
0000 +0 +0 +0
1000 -0 -7 —8
1001 -1 —6 -7
1010 -2 -5 —6
1011 -3 —4 -5
1100 —4 -3 —4
1101 -5 -2 -3
1110 —6 -1 -2

1111 =7 —0 =Il
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3.3.2 ADDITION AND SUBTRACTION

To assess the suitability of different number representations, it is necessary to investigate
their use in arithmetic operations—particularly in addition and subtraction. We canillustrate
the good and bad aspects of each representation by considering very small numbers. We will
use four-bit numbers, consisting of a sign bit and three significant bits. Thus the numbers
have to be small enough so that the magnitude of their sum can be expressed in three bits,
which means that the sum cannot exceed the value 7.

Addition of positive numbers is the same for all three number representations. It is
actually the same as the addition of unsigned numbers discussed in Section 3.2. But there
are significant differences when negative numbers are involved. The difficulties that arise
become apparent if we consider operands with different combinations of signs.

Sign-and-Magnitude Addition

If both operands have the same sign, then the addition of sign-and-magnitude numbers
is simple. The magnitudes are added, and the resulting sum is given the sign of the operands.
However, if the operands have opposite signs, the task becomes more complicated. Then
it is necessary to subtract the smaller number from the larger one. This means that logic
circuits that compare and subtract numbers are also needed. We will see shortly that it
is possible to perform subtraction without the need for this circuitry. For this reason, the
sign-and-magnitude representation is not used in computers.

1’s Complement Addition

An obvious advantage of the 1’s complement representation is that a negative num-
ber is generated simply by complementing all bits of the corresponding positive number.
Figure 3.8 shows what happens when two numbers are added. There are four cases to
consider in terms of different combinations of signs. As seen in the top half of the figure,
the computation of 5 4+ 2 = 7 and (—5) 4+ 2 = (—3) is straightforward; a simple addition
of the operands gives the correct result. Such is not the case with the other two possibilities.
Computing 5 + (—2) = 3 produces the bit vector 10010. Because we are dealing with
four-bit numbers, there is a carry-out from the sign-bit position. Also, the four bits of the

(+5) 0101 (-5) 1010
+(+2) +0010 +(+2) +0010
(+7) 0111 (-3) 1100
(+5) 0101 (-5) 1010
+ (=2) +1101 + (=2) +1101
(+3) 10010 (-7) 10111
1 1

0011 1000

Figure 3.8  Examples of 1’s complement addition.
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result represent the number 2 rather than 3, which is a wrong result. Interestingly, if we
take the carry-out from the sign-bit position and add it to the result in the least-significant
bit position, the new result is the correct sum of 3. This correction is indicated in blue in
the figure. A similar situation arises when adding (—5) 4+ (—2) = (—7). After the initial
addition the result is wrong because the four bits of the sum are 0111, which represents +7
rather than —7. But again, there is a carry-out from the sign-bit position, which can be used
to correct the result by adding it in the LSB position, as shown in Figure 3.8.

The conclusion from these examples is that the addition of 1’s complement numbers
may or may not be simple. In some cases a correction is needed, which amounts to an extra
addition that must be performed. Consequently, the time needed to add two 1’s complement
numbers may be twice as long as the time needed to add two unsigned numbers.

2’s Complement Addition

Consider the same combinations of numbers as used in the 1’s complement example.
Figure 3.9 indicates how the addition is performed using 2’s complement numbers. Adding
542 =7and (-5) + 2 = (—3) is straightforward. The computation 5 + (—2) = 3 gen-
erates the correct four bits of the result, namely 0011. There is a carry-out from the sign-bit
position, which we can simply ignore. The fourth case is (—5) + (—2) = (—7). Again, the
four bits of the result, 1001, give the correct sum (—7). In this case also, the carry-out from
the sign-bit position can be ignored.

As illustrated by these examples, the addition of 2’s complement numbers is very
simple. When the numbers are added, the result is always correct. If there is a carry-out
from the sign-bit position, it is simply ignored. Therefore, the addition process is the same,
regardless of the signs of the operands. It can be performed by an adder circuit, such as
the one shown in Figure 3.5. Hence the 2’s complement notation is highly suitable for
the implementation of addition operations. We will now consider its use in subtraction
operations.

(+5) 0101 (-5) 1011

+(+2) +0010 +(+2) +0010

+7 0111 (-3) 1101

(+5) 0101 (-5) 1011

+ (-2) +1110 + (-2) +1110

(+3) 10011 -7) 11001
ignore ignore

Figure 3.9  Examples of 2's complement addition.
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2’s Complement Subtraction

The easiest way of performing subtraction is to negate the subtrahend and add it to
the minuend. This is done by finding the 2’s complement of the subtrahend and then
performing the addition. Figure 3.10 illustrates the process. The operation 5 — (+2) = 3
involves finding the 2’s complement of +2, which is 1110. When this number is added to
0101, the result is 0011 = (43) and a carry-out from the sign-bit position occurs, which is
ignored. A similar situation arises for (—5) — (+2) = (—7). In the remaining two cases
there is no carry-out, and the result is correct.

As a graphical aid to visualize the addition and subtraction examples in Figures 3.9 and
3.10, we can place all possible four-bit patterns on a modulo-16 circle given in Figure 3.11a.
If these bit patterns represented unsigned integers, they would be numbers O to 15. If they
represent 2’s-complement integers, then the numbers range from —8 to 47, as shown.
The addition operation is done by stepping in the clockwise direction by the magnitude of
the number to be added. For example, —5 + 2 is determined by starting at 1011 (= —5)
and moving clockwise two steps, giving the result 1101 (= —3). Figure 3.115 shows how
subtraction can be performed on the modulo-16 circle, using the example 5 — 2 = 3. We can
start at 0101 (= +5) and move counterclockwise by two steps, which gives 0011 (= +-3).
But, we can also use the 2’s complement of 2 and add this value by stepping in the clockwise

(+5) 0101 0101

-(+2) -0010 —> +1110

(+3) 10011
ignore

(-5) 1011 1011

- (+2) -0010 —> + 1110

=7 11001
ignore

(+5) 0101 0101

- (=2) -1110  —> +0010

+7 0111

(-5) 1011 1011
- (-2) -1110 —=> +0010

(=3) 1101

Figure 3.10  Examples of 2’s complement subtraction.
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(a) The number circle (b) Subtracting 2 by adding its 2's complement

Figure 3.11 Graphical inferpretation of four-bit 2's complement numbers.

direction as shown in the figure. Since there are 16 numbers on the circle, the value we
need to add is 16 — 2 = (14) ;o = (1110),.

The key conclusion of this section is that the subtraction operation can be realized as
the addition operation, using a 2’s complement of the subtrahend, regardless of the signs of
the two operands. Therefore, it should be possible to use the same adder circuit to perform
both addition and subtraction.

3.3.3 ADDER AND SUBTRACTOR UNIT

The only difference between performing addition and subtraction is that for subtraction it
is necessary to use the 2’s complement of one operand. Let X and Y be the two operands,
such that Y serves as the subtrahend in subtraction. From Section 3.3.1 we know that a
2’s complement can be obtained by adding 1 to the 1’s complement of Y. Adding 1 in the
least-significant bit position can be accomplished simply by setting the carry-in bit ¢ to 1.
A 1’s complement of a number is obtained by complementing each of its bits. This could be
done with NOT gates, but we need a more flexible circuit where we can use the true value
of Y for addition and its complement for subtraction.

In Section 3.2 we explained that two-input XOR gates can be used to choose between
true and complemented versions of an input value, under the control of the other input. This
idea can be applied in the design of the adder/subtractor unit as follows. Assume that there
exists a control signal that chooses whether addition or subtraction is to be performed. Let



3.3 SIGNED NUMBERS

Yn-1

Add/Sub

eee control
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c, n-bit adder €o

n-1 51 So

Figure 3.12  Adder/subtractor unit.

this signal be called Add/Sub. Also, let its value be 0 for addition and 1 for subtraction. To
indicate this fact, we placed a bar over Add. This is a commonly used convention, where
a bar over a name means that the action specified by the name is to be taken if the control
signal has the value 0. Now let each bit of Y be connected to one input of an XOR gate, with
the other input connected to Add/Sub. The outputs of the XOR gates represent Y if Add/Sub
= 0, and they represent the 1’s complement of Y if Add/Sub = 1. This leads to the circuit
in Figure 3.12. The main part of the circuit is an n-bit adder, which can be implemented
using the ripple-carry structure of Figure 3.5. Note that the control signal Add/Sub is also
connected to the carry-in ¢o. This makes ¢y = 1 when subtraction is to be performed, thus
adding the 1 that is needed to form the 2’s complement of Y. When the addition operation
is performed, we will have ¢y = 0.

The combined adder/subtractor unit is a good example of an important concept in the
design of logic circuits. It is useful to design circuits to be as flexible as possible and to
exploit common portions of circuits for as many tasks as possible. This approach minimizes
the number of gates needed to implement such circuits, and it reduces the wiring complexity
substantially.

3.3.4 RADIX-COMPLEMENT SCHEMES*

The 2’s complement scheme is just a special case of radix-complement schemes which we
discuss in this section. This general discussion can be skipped without loss of continuity in
the context of computer technology.
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The idea of performing a subtraction operation by addition of a complement of the
subtrahend is not restricted to binary numbers. We can gain some insight into the workings
of the 2’s complement scheme by considering its counterpart in the decimal number system.
Consider the subtraction of two-digit decimal numbers. Computing a result such as 74 —
33 =41 is simple because each digit of the subtrahend is smaller than the corresponding
digit of the minuend; therefore, no borrow is needed in the computation. But computing
74 — 36 = 38 is not as simple because a borrow is needed in subtracting the least-significant
digit. If a borrow occurs, the computation becomes more complicated.

Suppose that we restructure the required computation as follows

74 — 36 = 74 + 100 — 100 — 36
— 74 4 (100 — 36) — 100

Now two subtractions are needed. Subtracting 36 from 100 still involves borrows. But
noting that 100 = 99 + 1, these borrows can be avoided by writing

74 —-36 =744+ 99+ 1—-36) — 100
=744 (99 -36)+1— 100

The subtraction in parentheses does not require borrows; it is performed by subtracting each
digit of the subtrahend from 9. We can see a direct correlation between this expression and
the one used for 2’s complement, as reflected in the circuit in Figure 3.12. The operation
(99 — 36) is analogous to complementing the subtrahend Y to find its 1’s complement,
which is the same as subtracting each bit from 1. Using decimal numbers, we find the 9's
complement of the subtrahend by subtracting each digit from 9. In Figure 3.12 we add
the carry-in of 1 to form the 2’s complement of Y. In our decimal example we perform
(99 — 36) + 1 = 64. Here 64 is the 10’s complement of 36. For an n-digit decimal number,
N, its 10’s complement, Ky, is defined as Ko = 10" — N, while its 9’s complement, Ko, is
Ky =(10"-1)—N.

Thus the required subtraction (74 — 36) can be performed by addition of the 10’s
complement of the subtrahend, as in

74 —36 =74 + 64 — 100
=138 — 100
=38
The subtraction 138 — 100 is trivial because it means that the leading digit in 138 is simply

deleted. This is analogous to ignoring the carry-out from the circuit in Figure 3.12, as
discussed for the subtraction examples in Figure 3.10.

Example 3.1

Suppose that A and B are n-digit decimal numbers. Using the above 10’s-complement
approach, B can be subtracted from A as follows:

A—B=A+ (10" — B) — 10"

If A > B, then the operation A + (10" — B) produces a carry-out of 1. This carry is equiva-
lent to 10”; hence it can be simply ignored.
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Butif A < B, then the operation A 4 (10" — B) produces a carry-out of 0. Let the result
obtained be M, so that

A—B=M — 10"
We can rewrite this as
10" —B-A) =M

The left side of this equation is the 10’s complement of (B — A). The 10’s complement of
a positive number represents a negative number that has the same magnitude. Hence M
correctly represents the negative value obtained from the computation A — B when A < B.
This concept is illustrated in the examples that follow.
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When dealing with binary signed numbers we use 0 in the left-most bit position to denote
a positive number and 1 to denote a negative number. If we wanted to build hardware that
operates on signed decimal numbers, we could use a similar approach. Let 0 in the left-most
digit position denote a positive number and let 9 denote a negative number. Note that 9 is
the 9’s complement of 0 in the decimal system, just as 1 is the 1’s complement of O in the
binary system.

Thus, using three-digit signed numbers, A = 045 and B = 027 are positive numbers
with magnitudes 45 and 27, respectively. The number B can be subtracted from A as follows

A — B =045 - 027
= 045 4 1000 — 1000 — 027
= 045 4 (999 — 027) + 1 — 1000
=045+972 4+ 1 — 1000
= 1018 — 1000
=018
This gives the correct answer of +18.
Next consider the case where the minuend has lower value than the subtrahend. This
is illustrated by the computation
B—A=027—-045
= 027 4 1000 — 1000 — 045
=027 4 (999 — 045) + 1 — 1000
=027 +954 4+ 1 — 1000
=982 — 1000

From this expression it appears that we still need to perform the subtraction 982 — 1000.
But as seen in Example 3.1, this can be rewritten as

982 = 1000 + B — A
= 1000 — (A — B)

Example 3.2
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Therefore, 982 is the negative number that results when forming the 10’s complement of
(A — B). From the previous computation we know that (A — B) = 018, which denotes
+18. Thus the signed number 982 is the 10’s complement representation of —18, which is
the required result.

These examples illustrate that signed numbers can be subtracted without using a sub-
traction operation that involves borrows. The only subtraction needed is in forming the
9’s complement of the subtrahend, in which case each digit is simply subtracted from 9.
Thus a circuit that forms the 9’s complement, combined with a normal adder circuit, will
suffice for both addition and subtraction of decimal signed numbers. A key point is that the
hardware needs to deal only with n digits if n-digit numbers are used. Any carry that may
be generated from the left-most digit position is simply ignored.

The concept of subtracting a number by adding its radix-complement is general. If
the radix is r, then the r’s complement, K,, of an n-digit number, N, is determined as
K, =7r"—N. The (r — 1)’s complement, K,_y, is defined as K,_; = (#" — 1) — N; it is
computed simply by subtracting each digit of N from the value (r — 1). The (r — 1)’s
complement is referred to as the diminished-radix complement. Circuits for forming the
(r — 1)’s complements are simpler than those for general subtraction that involves borrows.
The circuits are particularly simple in the binary case, where the 1’s complement requires
just inverting each bit.

Example 3.3

In Figure 3.10 we illustrated the subtraction operation on binary numbers given in 2’s-
complement representation. Consider the computation (+5) — (+2) = (+3), using the
approach discussed above. Each number is represented by a four-bit pattern. The value 2*
is represented as 10000. Then
0101 — 0010 = 0101 + (10000 — 0010) — 10000

= 0101 + (1111 — 0010) 4+ 1 — 10000

= 0101 + 1101 + 1 — 10000

= 10011 — 10000

= 0011

Because 5 > 2, there is a carry from the fourth bit position. It represents the value 2%,
denoted by the pattern 10000.

Example 3.4

Consider now the computation (+2) — (45) = (—3), which gives

0010 — 0101 = 0010 + (10000 — 0101) — 10000
= 0010+ (1111 —0101) + 1 — 10000
= 0010 + 1010 + 1 — 10000
= 1101 — 10000
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Because 2 < 5, there is no carry from the fourth bit position. The answer, 1101, is the
2’s-complement representation of —3. Note that

1101 = 10000 + 0010 — 0101
= 10000 — (0101 — 0010)
= 10000 — 0011

indicating that 1101 is the 2’s complement of 0011 (43).
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Finally, consider the case where the subtrahend is a negative number. The computation
(+5) — (=2) = (+7) is done as follows

0101 — 1110 = 0101 + (10000 — 1110) — 10000
= 0101 + (1111 — 1110) 4+ 1 — 10000
= 0101 + 0001 4 1 — 10000
= 0111 — 10000

While 5 > (—2), the pattern 1110 is greater than the pattern 0101 when the patterns are
treated as unsigned numbers. Therefore, there is no carry from the fourth bit position. The
answer 0111 is the 2’s complement representation of +7. Note that

0111 = 10000 + 0101 — 1110
= 10000 — (1110 — 0101)
= 10000 — 1001

and 1001 represents —7.

3.3.5 ARITHMETIC OVERFLOW

The result of addition or subtraction is supposed to fit within the significant bits used to
represent the numbers. If n bits are used to represent signed numbers, then the result must
be in the range —2"~! to 2"~! — 1. If the result does not fit in this range, then we say that
arithmetic overflow has occurred. To ensure the correct operation of an arithmetic circuit,
it is important to be able to detect the occurrence of overflow.

Figure 3.13 presents the four cases where 2’s-complement numbers with magnitudes
of 7 and 2 are added. Because we are using four-bit numbers, there are three significant bits,
br—o. When the numbers have opposite signs, there is no overflow. But if both numbers
have the same sign, the magnitude of the result is 9, which cannot be represented with just
three significant bits; therefore, overflow occurs. The key to determining whether overflow
occurs is the carry-out from the MSB position, called c3 in the figure, and from the sign-bit
position, called c4. The figure indicates that overflow occurs when these carry-outs have
different values, and a correct sum is produced when they have the same value. Indeed, this
is true in general for both addition and subtraction of 2’s-complement numbers. As a quick

Example 3.5
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+7) 0111 -7) 1001
+(+2) +0010 +(+2) +0010
+9) 1001 (-5) 1011
c, =0 ¢y =0
;=1 c;=0
+7) 0111 (=7) 1001
+ (=2) + 1110 + (=2) + 1110
(+5) 10101 -9) 10111
cy =1 cy =1
c3 =1 c3=0

Figure 3.13  Examples for defermination of overflow.

check of this statement, consider the examples in Figure 3.9 where the numbers are small
enough so that overflow does not occur in any case. In the top two examples in the figure,
there is a carry-out of O from both sign and MSB positions. In the bottom two examples,
there is a carry-out of 1 from both positions. Therefore, for the examples in Figures 3.9 and
3.13, the occurrence of overflow is detected by

Overflow = c3¢4 + ¢3¢4

=c3Dcy
For n-bit numbers we have
Overflow = ¢, D ¢,

Thus the circuit in Figure 3.12 can be modified to include overflow checking with the
addition of one XOR gate.

An alternative and more intuitive way of detecting the arithmetic overflow is to ob-
serve that overflow occurs if both summands have the same sign but the resulting sum has
a different sign. Let X = x3xpx1x9 and Y = y3y,y;y0 represent four-bit 2’s-complement
numbers, and let S = 535,559 be the sum S = X + Y. Then

Overflow = x3y353 4+ X3Y353

The carry-out and overflow signals indicate whether the result of a given addition is too
large to fit into the number of bits available to represent the sum. The carry-out is meaningful
only when unsigned numbers are involved, while the overflow is meaningful only in the
case of signed numbers. In a typical computer, it is prudent to use the same adder circuits
for dealing with both unsigned and signed operands, thus reducing the amount of circuitry
required. This means that both the carry-out and overflow signals should be generated, as
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we have discussed. Then, a program instruction that specifies unsigned operands can use
the carry-out signal, while an instruction that has signed operands can use the overflow
signal.

3.3.6 PERFORMANCE ISSUES

When buying a digital system, such as a computer, the buyer pays particular attention to
the performance that the system is expected to provide and to the cost of acquiring the
system. Superior performance usually comes at a higher cost. However, a large increase in
performance can often be achieved at a modest increase in cost. A commonly used indicator
of the value of a system is its price/performance ratio.

The addition and subtraction of numbers are fundamental operations that are performed
frequently in the course of a computation. The speed with which these operations are
performed has a strong impact on the overall performance of a computer. In light of this,
let us take a closer look at the speed of the adder/subtractor unit in Figure 3.12. We are
interested in the largest delay from the time the operands X and Y are presented as inputs,
until the time all bits of the sum S and the final carry-out, c,, are valid. Most of this delay
is caused by the n-bit adder circuit. Assume that the adder is implemented using the ripple-
carry structure in Figure 3.5 and that each full-adder stage is the circuit in Figure 3.3¢c. The
delay for the carry-out signal in this circuit, Az, is equal to two gate delays. From Section
3.2.2 we know that the final result of the addition will be valid after a delay of nAt, which
is equal to 2n gate delays. In addition to the delay in the ripple-carry path, there is also a
delay in the XOR gates that feed either the true or complemented value of Y to the adder
inputs. If this delay is equal to one gate delay, then the total delay of the circuit in Figure
3.12 is 2n + 1 gate delays. For a large n, say n = 32 or n = 64, the delay would lead to
unacceptably poor performance. Therefore, it is important to find faster circuits to perform
addition.

The speed of any circuit is limited by the longest delay along the paths through the
circuit. In the case of the circuit in Figure 3.12, the longest delay is along the path from
the y; input, through the XOR gate and through the carry circuit of each adder stage. The
longest delay is often referred to as the critical-path delay, and the path that causes this
delay is called the critical path.
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The performance of a large digital system is dependent on the speed of circuits that form
its various functional units. Obviously, better performance can be achieved using faster
circuits. This can be accomplished by using superior (usually newer) technology in which
the delays in basic gates are reduced. Butitcan also be accomplished by changing the overall
structure of a functional unit, which may lead to even more impressive improvement. In
this section we will discuss an alternative for implementation of an n-bit adder, which
substantially reduces the time needed to add numbers.
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3.4.1 CARRY-LOOKAHEAD ADDER

To reduce the delay caused by the effect of carry propagation through the ripple-carry adder,
we can attempt to evaluate quickly for each stage whether the carry-in from the previous
stage will have a value 0 or 1. If a correct evaluation can be made in a relatively short time,
then the performance of the complete adder will be improved.

From Figure 3.3b the carry-out function for stage i can be realized as

Cit1 = X;iyi + XiCi + YiCi
If we factor this expression as
Cit1 = Xyi + (x; + yi)ci

then it can be written as

Ciy1 = & T Ppici [3.3]
where
8i = Xiyi
Pi =X +Yi

The function g; is equal to 1 when both inputs x; and y; are equal to 1, regardless of the value
of the incoming carry to this stage, ¢;. Since in this case stage i is guaranteed to generate
a carry-out, g is called the generate function. The function p; is equal to 1 when at least
one of the inputs x; and y; is equal to 1. In this case a carry-out is produced if ¢; = 1. The
effect is that the carry-in of 1 is propagated through stage i; hence p; is called the propagate
function.

Expanding the expression 3.3 in terms of stage i — 1 gives

Ciy1 = & + pi(gi—1 + pi-1ci-1)
= gi +Ppigi-1 + PiPi-1Ci—1

The same expansion for other stages, ending with stage 0, gives

Ciy1 = &i +Digi—1 +PiPi—18i—2 + -+ pipi—1 -+ - p2ap18o + PiPi—1 - - P1poco  [3.4]

This expression represents a two-level AND-OR circuit in which c¢;y; is evaluated very
quickly. An adder based on this expression is called a carry-lookahead adder.

To appreciate the physical meaning of expression 3.4, it is instructive to consider its
effect on the construction of a fast adder in comparison with the details of the ripple-
carry adder. We will do so by examining the detailed structure of the two stages that add
the least-significant bits, namely, stages O and 1. Figure 3.14 shows the first two stages
of a ripple-carry adder in which the carry-out functions are implemented as indicated in
expression 3.3. Each stage is essentially the circuit from Figure 3.3¢ except that an extra
OR gate is used (which produces the p; signal), instead of an AND gate because we factored
the sum-of-products expression for c¢; 4.
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Figure 3.14 A ripple-carry adder based on expression 3.3.

The slow speed of the ripple-carry adder is caused by the long path along which a carry
signal must propagate. In Figure 3.14 the critical path is from inputs xy and y, to the output
c;. It passes through five gates, as highlighted in blue. The path in other stages of an n-bit
adder is the same as in stage 1. Therefore, the total number of gate delays along the critical
pathis 2n + 1.

Figure 3.15 gives the first two stages of the carry-lookahead adder, using expression
3.4 to implement the carry-out functions. Thus

c1 = go + poco
C2 = g1 +Ppi18o + P1Poco

This circuit does not have the long ripple-carry path that is present in Figure 3.14. Instead,
all carry signals are produced after three gate delays: one gate delay is needed to produce
the generate and propagate signals go, g1, po, and p;, and two more gate delays are needed
to produce c; and ¢, concurrently. Extending the circuit to n bits, the final carry-out signal
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Figure 3.15  The first two stages of a carry-lookahead adder.

¢, would also be produced after only three gate delays because expression 3.4 is just a large
two-level (AND-OR) circuit.

The total delay in the n-bit carry-lookahead adder is four gate delays. The values of
all g; and p; signals are determined after one gate delay. It takes two more gate delays to
evaluate all carry signals. Finally, it takes one more gate delay (XOR) to generate all sum
bits. The key to the good performance of the adder is quick evaluation of carry signals.

The complexity of an n-bit carry-lookahead adder increases rapidly as n becomes larger.
To reduce the complexity, we can use a hierarchical approach in designing large adders.
Suppose that we want to design a 32-bit adder. We can divide this adder into 4 eight-bit
blocks, such that block 0 adds bits 7 ... 0, block 1 adds bits 15 ... 8, block 2 adds bits
23 ... 16, and block 3 adds bits 31 ... 24. Then we can implement each block as an
eight-bit carry-lookahead adder. The carry-out signals from the four blocks are cg, ci6, 24,
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Figure 3.16 A hierarchical carry-lookahead adder with ripple-carry between blocks.

and c3,. Now we have two possibilities. We can connect the four blocks as four stages in a
ripple-carry adder. Thus while carry-lookahead is used within each block, the carries ripple
between the blocks. This circuit is illustrated in Figure 3.16.

Instead of using a ripple-carry approach between blocks, a faster circuit can be designed
in which a second-level carry-lookahead is performed to produce quickly the carry signals
between blocks. The structure of this “hierarchical carry-lookahead adder” is shown in
Figure 3.17. Each block in the top row includes an eight-bit carry-lookahead adder, based
on generate and propagate signals for each stage in the block, as discussed before. However,
instead of producing a carry-out signal from the most-significant bit of the block, each block
produces generate and propagate signals for the entire block. Let G; and P; denote these
signals for each block j. Now G; and P; can be used as inputs to a second-level carry-
lookahead circuit at the bottom of Figure 3.17, which evaluates all carries between blocks.
We can derive the block generate and propagate signals for block 0 by examining the
expression for cg

cg = 87 + P7186 + P1D685 + P1P6P584 + P1P6P5P483 + P1P6D5PAD382
+ p1P6eP5P4P3P281 + P1P6Ps5P4P3P2P180 + P1PeP5P4P3P2P1P0C0o

The last term in this expression specifies that, if all eight propagate functions are 1, then
the carry-in ¢ is propagated through the entire block. Hence

Py = p1pspspapipP201Po

The rest of the terms in the expression for cg represent all other cases when the block
produces a carry-out. Thus

Go = g7+ P186 + P1P68s + * - - + P1P6P5P4P3P2P180
The expression for cg in the hierarchical adder is given by
cg = G() + P, 0C0

For block 1 the expressions for G| and P; have the same form as for Gy and Py except that
each subscript i is replaced by i + 8. The expressions for G,, P,, G3, and Pj are derived in



150 CHAPTER 3 . NUMBER REPRESENTATION AND ARITHMETIC CIRCUITS

X31-24 Y31-24 X15-8  JYi15-8 X710 Y7-0
Block .o Block Block — o

3 Coy 1 0

G| Py G| P Gy| Py
S31-24 S15-8 S7-0

L I
vy 17 vy vy l vy
1] 15| 1 [
Second-level lookahead s

Figure 3.17 A hierarchical carry-lookahead adder.

the same way. The expression for the carry-out of block 1, ¢y, is

cie = G1 + Pics
= G1 + P1Go + P1Poco

Similarly, the expressions for ¢4 and c3; are

¢y = Gy + P,Gy + P,P1Gy + P>P1Pycy
C3p = G3 + P3G2 +P3P2G1 + P3P2P1 G() + P3P2P1P()C0

Using this scheme, it takes two more gate delays to produce the carry signals cg, ci6, €24,
and c3; than the time needed to generate the G; and P; functions. Therefore, since G; and P;
require three gate delays, cs, c16, C24, and c3; are available after five gate delays. The time
needed to add two 32-bit numbers involves these five gate delays plus two more to produce
the internal carries in blocks 1, 2, and 3, plus one more gate delay (XOR) to generate each
sum bit. This gives a total of eight gate delays.

In Section 3.3.6 we determined that it takes 2n + 1 gate delays to add two numbers
using a ripple-carry adder. For 32-bit numbers this implies 65 gate delays. It is clear that
the carry-lookahead adder offers a large performance improvement. The trade-off is much
greater complexity of the required circuit.
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Technology Considerations

The preceding delay analysis assumes that gates with any number of inputs can be
used. But, the number of gate inputs, referred to as the fan-in of the gate, has to be limited
in practice as we discuss in Appendix B. Therefore the reality of fan-in constraints must be
taken into account. To illustrate this problem, consider the expressions for the first eight
carries:

€1 = &o + Poco
€2 = 81+ Pi18&o + P1Poco

cg = 87 + P7186 + P1D685 + D1P6P584 + P1P6P5P483 + P1P6D5P4D3&2
+ P1D6P5P4P3D281 + P1P6P5PaP3P2P180 + D1P6P5PaP3P2P1P0C0

Suppose that the maximum fan-in of the gates is four inputs. Then it is impossible to
implement all of these expressions with a two-level AND-OR circuit. The biggest problem
is cg, where one of the AND gates requires nine inputs; moreover, the OR gate also requires
nine inputs. To meet the fan-in constraint, we can rewrite the expression for cg as

cs = (g7 + P786 + P7P68&5 + P1P6P3584) + [(P1p6psp4) (83 + P3g2 + P3p281 + Pap2pi18o)]
+ (p7P6ps5P4) (P3P2P1P0)Co

To implement this expression we need ten AND gates and three OR gates. The propagation
delay in generating cg consists of one gate delay to develop all g; and p;, two gate delays
to produce the sum-of-products terms in parentheses, one gate delay to form the product
term in square brackets, and one delay for the final ORing of terms. Hence cg is valid after
five gate delays, rather than the three gate delays that would be needed without the fan-in
constraint.

Because fan-in limitations reduce the speed of the carry-lookahead adder, some devices
that are characterized by low fan-in include dedicated circuitry for implementation of fast
adders. Examples of such devices include FPGAs, which are described in Appendix B.
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In this section we show how the arithmetic circuits can be designed by using CAD tools.

3.5.1 DESIGN OF ARITHMETIC CIRCUITS USING SCHEMATIC
CAPTURE

An obvious way to design an arithmetic circuit via schematic capture is to draw a schematic
that contains the necessary logic gates. For example, to create an n-bit adder, we could first
draw a schematic that represents a full-adder. Then an n-bit ripple-carry adder could be
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created by drawing a higher-level schematic that connects together n instances of the full-
adder. A hierarchical schematic created in this manner would look like the circuit shown in
Figure 3.5. We could also use this methodology to create an adder/subtractor circuit, such
as the circuit depicted in Figure 3.12.

The main problem with this approach is that it is cumbersome, especially when the
number of bits is large. This issue is even more apparent if we consider creating a schematic
for a carry-lookahead adder. As shown in Section 3.4.1, the carry circuitry in each stage
of the carry-lookahead adder becomes increasingly more complex. Hence it is necessary
to draw a separate schematic for each stage of the adder. A better approach for creating
arithmetic circuits via schematic capture is to use predefined subcircuits.

The schematic capture tools provide a library of graphical symbols that represent basic
logic gates. These gates are used to create schematics of relatively simple circuits. In
addition to basic gates, most schematic capture tools also provide a library of commonly-
used circuits, such as adders. Each circuit is provided as a module that can be imported
into a schematic and used as part of a larger circuit.

Different vendors of CAD tools have their specific approaches to how schematic capture
is performed. Instead of dealing with the schematic capture approach, we will concentrate
on the more convenient and flexible approach of using Verilog to design our circuits.

3.5.2 DESIGN OF ARITHMETIC CIRCUITS USING VERILOG

We said in Section 3.5.1 that an obvious way to create an n-bit adder is to draw a hierarchical
schematic that contains n full-adders. This approach can also be followed by using Verilog,
by first creating a Verilog module for a full-adder and then defining a higher-level module
that uses n instances of the full-adder. As a first attempt at designing arithmetic circuits
by using Verilog, we will show how to write the hierarchical code for a ripple-carry adder.
Hierarchical Verilog code was introduced in Chapter 2.

Suppose that we wish to implement the full-adder circuit given in Figure 3.3¢, which
has the inputs Cin, x, and y, and produces the outputs s and Cout. One way of specifying
this circuit in Verilog is to use the gate-level primitives as shown in Figure 3.18. Each of the
three AND gates in the circuit is defined by a separate statement. Verilog allows combining
such statements into a single statement as shown in Figure 3.19. In this case, commas are
used to separate the definition of each AND gate.

Another possibility is to use functional expressions as indicated in Figure 3.20. The
XOR operation is denoted by the ”* sign. Again, it is possible to combine the two continuous
assignment statements into a single statement as shown in Figure 3.21.

Both of the above approaches result in the same full-adder circuit being synthesized.
We can now create a separate Verilog module for the ripple-carry adder, which instantiates
the fulladd module as a subcircuit. One method of doing this is shown in Figure 3.22. The
module comprises the code for a four-bit ripple-carry adder, named adder4. One of the
four-bit numbers to be added is represented by the four signals x3, x», x1, X9, and the other
number is represented by ys, y2, ¥1, ¥o. The sum is represented by s3, $2, 51, So. The circuit
incorporates a carry input, carryin, into the least-significant bit position and a carry output,
carryout, from the most-significant bit position.
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module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

xor (s, X, y, Cin);
and (z1, x, y);

and (z2, x, Cin);
and (z3, y, Cin);

or (Cout, z1, z2, z3);

endmodule

Figure 3.18  Verilog code for the full-adder using gate-level
primitives.

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

xor (s, X, y, Cin);
and (z1, x,y),
(22, x, Cin),
(23, y, Cin);
or (Cout, z1, 22, z3);

endmodule

Figure 3.19  Another version of Verilog code from
Figure 3.18.

The four-bit adder in Figure 3.22 is described using four instantiation statements. Each
statement begins with the name of the module, fulladd, that is being instantiated, followed
by an instance name. The instance names must be unique. The least-significant stage in
the adder is named stage0 and the most-significant stage is stage3. The signal names in the
adder4 module that are to be connected to each input and output port on the fulladd module
are then listed. These signals are listed in the same order as in the fulladd module, namely
the order Cin, x, y, s, Cout.

As discussed in Section 2.10, the signal names associated with each instance of the
fulladd module implicitly specify how the full-adders are connected together. For example,
the carry-out of the stage0 instance is connected to the carry-in of the stagel instance. The
synthesized circuit has the same structure as the one shown in Figure 3.5. The fulladd
module may be included in the same Verilog source code file as the adder4 module, as we
have done in Figure 3.22, but it may also comprise a separate file. In the latter case, the
location of the file fulladd has to be indicated to the compiler.
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module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

assign s=x " y” Cin;
assign Cout=(x &y) | (x & Cin) | (y & Cin);

endmodule

Figure 3.20  Verilog code for the full-adder using continuous
assignment.

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

assign s=x"y " Cin,
Cout=(x & y) | (x & Cin) | (y & Cin);

endmodule

Figure 3.21  Another version of Verilog code from Figure 3.20.

module adder4 (carryin, x3, x2, x1, x0, y3, y2, y1, y0, s3, s2, s1, s0, carryout);
input carryin, x3, x2, x1, x0, y3, y2, y1, yO;
output s3,s2, sl, s0, carryout;

fulladd stageO (carryin, x0, yO0, s0, c1);
fulladd stagel (cl, x1,yl, sl, c2);
fulladd stage2 (c2, x2,y2, s2, c3);
fulladd stage3 (c3, x3, y3, s3, carryout);
endmodule
module fulladd (Cin, x, y, s, Cout);
input Cin, x,y;

output s, Cout;

assign s=x "y " Cin;
assign Cout=(x & y) | (x & Cin) | (y & Cin);

endmodule

Figure 3.22  Verilog code for a four-bit adder.
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3.5.3 USING VECTORED SIGNALS

In Figure 3.22 each of the four-bit inputs and the four-bit output of the adder is represented
using single-bit signals. A more convenient approach is to use multibit signals, called
vectors, to represent the numbers. Just as a number is represented in a logic circuit as
signals on multiple wires, it can be represented in Verilog code as a multibit vector. An
example of an input vector is

input [3:0] X;

This statement defines X to be a four-bit vector. Its individual bits can be referred to by
using an index value in square brackets. Thus, the most-significant bit (MSB) is referred
to as X [3] and the least-significant bit (LSB) is X [0]. A two-bit vector that consists of the
two middle bits of X is denoted as X [2:1]. The symbol X refers to the entire vector.

Using vectors we can specify the four-bit adder as shown in Figure 3.23. In addition
to the input vectors X and Y, and output vector S, we chose to define the carry signals
between the full-adder stages as a three-bit vector C[3:1]. Note that the carry into stage0
is still called carryin, while the carry from stage3 is called carryout. The internal carry
signals are defined in the statement

wire [3:1] C;

In Figure 3.23, signal C[1] is used to connect the carry output of the full-adder in stage O
to the carry input of the full-adder in stage 1. Similarly, C[2] and C[3] are used to connect
the other stages of the adder.

The vector specification gives the bit width in square brackets, as in X [3:0]. The bit
width is specified using the index of the MSB first and the LSB last. Hence, X[3] is the
MSB and X [0] is the LSB. A reverse ordering can also be used. For example, Z[0:3] defines
a four-bit vector in which Z[0] is its MSB and Z[3] is its LSB. The terminology MSB and
LSB is natural when vectors are used to represent numbers. In other cases, the bit-select
index merely identifies a particular bit in a vector.

module adder4 (carryin, X, Y, S, carryout);
input carryin;
input [3:0] X, Y;
output [3:0] S;
output carryout;
wire [3:1] C;

fulladd stageO (carryin, X[0], Y[O], S[O], C[1]);
fulladd stagel (C[1], X[1], Y[1], S[1], C[2]);
fulladd stage2 (C[2], X[2], Y[2], S[2], C[3]);
fulladd stage3 (C[3], X[3], Y[3], S[3], carryout);

endmodule

Figure 3.23 A four-bit adder using vectors.
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3.5.4 USING A GENERIC SPECIFICATION

The approach in designing a ripple-carry adder presented in Figure 3.23 is rather restrictive
because the resulting circuit is of a predetermined size of four bits. A similar adder that
could add 32-bit numbers would require Verilog code with 32 instances of the full-adder
subcircuit defined in separate statements. From the designer’s point of view, it is preferable
to define a module that could be used to implement an adder of any size, where the size
may be given as a parameter.

Verilog allows the use of general parameters that can be given a specific value as
desired. For example, an n-bit vector representing a number may be given as X [n—1:0]. If
n is defined in the Verilog statement

parameter n = 4;

then the bit range of X is [3:0].
The ripple-carry adder in Figure 3.5 can be described using the logic expressions

Sk = X D Yk D ck
Cik+1 = XYk + XkCr + YiCi

fork =0, 1,...,n— 1. Instead of instantiating full-adders as in Figure 3.23, these expres-
sions can be used in Verilog to specify the desired adder.

Figure 3.24 shows Verilog code that defines an n-bit adder. The inputs X and Y and
the output sum § are declared to be n-bit vectors. To simplify the use of carry signals in
the adder circuit, we defined a vector C that has n 4 1 bits. Bit C[0] is the carry into the
LSB position, while C[n] is the carry from the MSB position. Hence C[0] = carryin and
carryout = C[n] in terms of the n-bit adder.

To specify the repetitive structure of the ripple-carry adder, Figure 3.24 introduces the
Verilog for statement. Like the if-else statement introduced in Chapter 2, the for statement
is a procedural statement that must be placed inside an always block, as shown in the
figure. As explained in Chapter 2, any signal that is assigned a value by a statement within
an always block must retain this value until it is again re-evaluated by changes in the
sensitivity variables given in the always statement. Such signals are declared to be of reg
type; they are carryout, S, and C signals in Figure 3.24. The sensitivity variables are X, Y,
and carryin.

In our example, the for loop consists of two statements delineated by begin and end.
These statements define the sum and carry functions for the adder stage that corresponds
to the value of the loop variable k. The range of k is from O to n — 1 and its value is
incremented by 1 for each iteration of the loop. The syntax of the Verilog for statement
is similar to the syntax of a for loop in the C programming language. However, the C
operators ++ and —— do not exist in Verilog, hence incrementing or decrementing of the
loop variable must be given as k = k + 1 or k = k — 1, rather than k++ or k——. Note
that k is declared to be an integer and it is used to control the number of iterations of the for
loop; it does not represent a physical connection in the circuit. The effect of the for loop is
to repeat the statements inside the loop for each loop iteration. For instance, if k were set
to 2 in this example, then the for loop would be equivalent to the four statements
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module addern (carryin, X, Y, S, carryout);
parameter n = 32;
input carryin;
input [n— 1:0] X, Y;
output reg [n—1:0]S;
output reg carryout;
reg [n:0] C;
integer k;

always @(X, Y, carryin)
begin
C[0] = carryin;
for k=0;k< n; k=k+1)
begin
S[k] = X[k] * Y[k] * C[k];
Clk+1] = (X[k] & Y[K]) | (X[k] & C[kD) | (Y[k] & C[k]);
end
carryout = C[n];
end

endmodule

Figure 3.24 A generic specification of a ripple-carry adder.

S[ol = X[01" Y[o] * C[O];
C[1] = (X[0] & Y[0]) | (X[0] & C[O]) | (Y[O] & C[OD);
S[1] = X[11" Y[1]* C[1];
C[2] = (X[1] & Y[1]) | (X[1] & C[1]) | (Y[1] & C[1]);

Since the value of n is 32, as declared in the parameter statement, the code in the figure
implements a 32-bit adder.

Using the Generate Capability

In Figure 3.23 we instantiated four copies of the fulladd subcircuit to specify a four-bit
ripple-carry adder. This approach can be used to specify an n-bit adder by using a loop
that instantiates the fulladd subcircuit n times. The Verilog generate construct provides
the desired capability. It allows instantiation statements to be included inside for loops and
if-else statements. If a for loop is included in the generate block, the loop index variable
has to be declared of type genvar. A genvar variable is similar to an integer variable, but
it can have only positive values and it can be used only inside generate blocks.

Figure 3.25 shows how the addern module can be written to instantiate n fulladd
modules. Each instance generated by the compiler in the for loop will have a unique
instance name produced by the compiler based on the for loop label. The generated names
are addbit[0].stage, ..., addbit.[n — 1].stage. This code produces the same result as the
code in Figure 3.24.
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module addern (carryin, X, Y, S, carryout);
parameter n = 32;
input carryin;
input [n-1:0] X, Y;
output [n—1:0] S;
output carryout;
wire [n:0] C;

genvar i,
assign C[0] = carryin;
assign carryout = C[n];

generate
for(i=0;i<=n-1;i=1i+l)
begin:addbit
fulladd stage (C[i], X[i], Y[il, S[i], C[i+1]);
end
endgenerate

endmodule

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

assign s=x "y " Cin;
assign Cout=(x &y) | (x & Cin) | (y & Cin);

endmodule

Figure 3.25 A ripple-carry adder specified by using the generate
statement.

3.5.5 NETS AND VARIABLES IN VERILOG

Alogic circuit is modeled in Verilog by a collection of interconnected logic elements and/or
by procedural statements that describe its behavior. Connections between logic elements are
defined using nets. Signals produced by procedural statements are referred to as variables.

Nets

A net represents a node in a circuit. Nets can be of different types. For synthesis
purposes the only important nets are of wire type, which we used in Section 3.5.3. A wire
connects an output of one logic element in a circuit to an input of another logic element.
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It can be a scalar that represents a single connection or a vector that represents multiple
connections. For example, in Figure 3.22, carry signals c3, ¢3, and ¢; are scalars that model
the connections between the full-adder modules. The specific connections are defined by
the way the full-adder modules are instantiated. In Figure 3.23, the same carry signals
are defined as a three-bit vector C. Observe that in Figure 3.22 the carry signals are not
explicitly declared to be of wire type. The reason is that nets do not have to be declared in
the code because Verilog syntax assumes that all signals are nets by default. Of course, the
code in the figure would also be correct if we include in it the declaration

wire c3, c2,cl;

In Figure 3.23 it is necessary to declare the existence of vector C; otherwise, the Verilog
compiler would not be able to determine that C[3], C[2], and C[1] are the constituent signals
of C. Since these signals are nets, the vector C is declared to be of wire type.

Variables

Verilog provides variables to allow a circuit to be described in terms of its behavior.
A variable can be assigned a value in one Verilog statement, and it retains this value until
it is overwritten by a subsequent assignment statement. There are two types of variables:
reg and integer. As mentioned in Chapter 2, all signals that are assigned a value using
procedural statements must be declared as variables by using the reg or integer keywords.
The scalar carryout and the vectors S and C in Figure 3.24 are examples of the reg type.
The loop variable k in the same figure illustrates the integer type. It serves as a loop index.
Such variables are useful for describing a circuit’s behavior; they do not usually correspond
directly to signals in the resulting circuit.

Further discussion of nets and variables is given in Appendix A.

3.5.6 ARITHMETIC ASSIGNMENT STATEMENTS

Arithmetic operations are used so often that it is convenient to have them incorporated
directly into a hardware description language. Verilog implements such operations using
arithmetic assignment statements and vectors. If the following vectors are defined

input [n—1:0]1X,Y;
output [n—1:0] S;

then, the arithmetic assignment statement
S=X+Y;

represents an n-bit adder.

In addition to the + operator, which is used for addition, Verilog also provides other
arithmetic operators. The Verilog operators are discussed fully in Chapter 4 and Appendix
A. The complete Verilog code that includes the preceding statement is given in Figure 3.26.
Since there is a single statement in the always block, it is not necessary to include the begin
and end delimiters.
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The code in Figure 3.26 defines a circuit that generates the n sum bits, but it does not
include carry-out or overflow signals. As explained previously, the carry-out signal is useful
when the numbers X, Y, and § are interpreted as being unsigned numbers. The carry-out is
1 when the sum of unsigned numbers overflows n bits. But, if X, Y, and S are interpreted
as being signed numbers, then the carry-out is not meaningful, and we have to generate the
arithmetic overflow output as discussed in Section 3.3.5. One way in which these signals
can be generated is given in Figure 3.27.

The carry-out from the MSB position, n — 1, can be derived by observing that the
carry-out must be 1 if both x,,_; and y,_; are 1, or if either x,_; or y,_; is 1 and s,,_; is O.

module addern (carryin, X, Y, S);
parameter n = 32;
input carryin;
input [n-1:0] X, Y;
output reg [n—1:0]S;

always @(X, Y, carryin)
S=X+Y + carryin;

endmodule

Figure 3.26  Specification of an n-bit adder using arithmetic
assignment.

module addern (carryin, X, Y, S, carryout, overflow);
parameter n = 32;
input carryin;
input [n-1:0] X, Y;
output reg [n—1:0]S;
output reg carryout, overflow;

always @(X, Y, carryin)
begin
S =X+Y + carryin;
carryout = (X[n—-1] & Y[n-1]) | (X[n—-1] &~ S[n—1]) | (Y[n—1] &~ S[n—-1]);
overflow = (X[n—-1] & Y[n—-1] &~ S[n—-1]) | (~X[n-1] & ~Y[n-1] & S[n—-1]);
end

endmodule

Figure 3.27  An n-bit adder with carry-out and overflow signals.
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Thus,
carryout = Xp—1yn—1 + Xp—18u—1 + Yn—151—1

(Note that this is just a normal logic expression in which the + sign represents the OR
operation.) The expression for arithmetic overflow was defined in Section 3.3.5 as ¢, ®
cn—1. In our case, ¢, corresponds to carryout, but there is no direct way of accessing ¢;_1,
which is the carry from bit-position n — 2. Instead, we can use the more intuitive expression
derived in Section 3.3.5, so that

0V€7ﬂ0w = xn—lyn—lgn—l + )_Cn—lin_lsn—l

Another way of including the carry-out and overflow signals is shown in Figure 3.28.
The (n + 1)-bit vector named Sum is used. The extra bit, Sum[n], becomes the carry-out
from bit-position n — 1 in the adder. The statement used to assign the sum of X, Y, and
carryin to the Sum signal uses an unusual syntax. The meaning of the terms in brackets,
namely {1°b0, X} and {1°b0, Y}, is that a O is concatenated on the left of the n-bit vectors
X and Y to create (n+1)-bit vectors. In Verilog the { , } operator is called the concatenate
operator. If A is an m-bit vector and B is a k-bit vector, then {A, B} creates an (m + k)-bit
vector comprising A as its most-significant m bits and B as its least-significant k bits. The
notation 1°b0 represents a one-bit binary number that has the value 0. The reason that the
concatenate operator is used in Figure 3.28 is to cause Sum/[n] to be equivalent to the carry
from bit position n — 1. In effect, we created x,, = y, = 0 so that

Sum[n] =040+ c,—;

module addern (carryin, X, Y, S, carryout, overflow);
parameter n = 32;
input carryin;
input [n-1:0]1X,Y;
output reg [n—1:0]S;
output reg carryout, overflow;
reg [n:0] Sum;

always @(X, Y, carryin)

begin
Sum = {1’b0, X} + {1’b0, Y} + carryin;
S = Sum[n-1:0];

carryout = Sum[n];
overflow = (X[n-1] & Y[n—1] & ~S[n—-1]) | (~X[n—-1] & ~Y[n-1] & S[n—-1]);
end

endmodule

Figure 3.28  An dlternative specification of n-bit adder with carry-out and overflow
signals.
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This example is useful because it provides a simple introduction to the concept of concate-
nation. But we could have written simply

Sum = X + Y + carryin;

Because Sum is an (n 4 1)-bit vector, the summation will be performed as if X and Y were
(n + 1)-bit vectors in which Os are padded on the left.
Another detail to observe from the figure is the statement

S = Sum[n—1:0];

This statement assigns the lower n bits of Sum to the output sum S. The next statement
assigns the carry-out from the addition, Sum[n], to the output signal carryout.

We show the code in Figures 3.27 and 3.28 to illustrate some features of Verilog in the
context of adder design. In general, a given design task can be performed using different
approaches, as we will see throughout the book. Let us attempt another specification of
the n-bit adder. In Figure 3.28 we use an (n + 1)-bit vector, Sum, as an intermediate signal
needed to produce the n bits of S and the carry-out from the adder stage n — 1. This requires
two Verilog statements that extract the desired bits from Sum. We showed how concatenation
can be used to pad a 0 to vectors X and Y, but pointed out that this is not necessary because
a vector is automatically padded with Os if it is involved in an arithmetic operation that
produces a result of greater bit size. We can use concatenation more effectively on the left
side of the addition statement by concatenating carryout to the S vector so that

{carryout, S} = X + Y + carryin;

Then there is no need for the Sum signal and the Verilog code is simplified as indicated in
Figure 3.29. Since both figures, 3.28 and 3.29, describe the same behavior of the adder,
the Verilog compiler is likely to generate the same circuit for either figure. The code in
Figure 3.29 is simpler and more elegant.

module addern (carryin, X, Y, S, carryout, overflow);
parameter n = 32;
input carryin;
input [n-1:0] X, Y;
output reg [n—1:0] S;
output reg carryout, overflow;

always @(X, Y, carryin)
begin

{carryout, S} = X + Y + carryin;

overflow = (X[n-1] & Y[n-1] &~ S[n—1]) | (~X[n-1] &~ Y[n-1] & S[n—-1]);
end

endmodule

Figure 3.29  Simplified complete specification of n-bit adder.
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module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output reg s, Cout;

always @(x, y, Cin)
{Cout, s} =x +y + Cin;

endmodule

Figure 3.30  Behavioral specification of a full-adder.

Note that the same approach can be used to specify a full-adder circuit, as shown in
Figure 3.30. Unlike the specifications in Figures 3.18 to 3.21, which define the structure of
the full-adder in terms of basic logic operations, in this case the code describes its behavior
and the Verilog compiler implements the suitable details using the target technology.

3.5.7 MobpULE HIERARCHY IN VERILOG CODE

In Section 2.10.3 we introduced hierarchical Verilog code, in which a Verilog module instan-
tiates other Verilog modules as subcircuits. If an instantiated module includes parameters,
then either the default value of a parameter can be used for each instance, or a new value
of the parameter can be specified.

Suppose that we wish to create a circuit consisting of two adders as follows. One adder
generates a 16-bit sum § = A + B, while the other generates an 8-bit sum 7 = C + D. An
overflow signal must be set to 1 if either of the adders generates an arithmetic overflow. One
way of specifying the desired circuit is presented in Figure 3.31. The top-level module,
adder_hier, instantiates two instances of the addern module in Figure 3.29. Since the
default value of n is 32 for addern, the top-level module has to define the desired values of
16 and 8. The statement

defparam Ul.n=16
sets the value of n to 16 for the addern instance called U 1. Similarly, the statement
defparam U2.n =38

sets the value of n to 8 for the instance named U?2.

Note that in Figure 3.31 we added an extra bit to both S and T to hold the carry-out
signals produced by the adders; these signals are useful if the resulting sums are interpreted
as unsigned numbers.

Another way in which the value of n can be specified in the instantiated modules is
shown in Figure 3.32. Here, the value of n is defined by using the Verilog # operator, instead
of using the defparam statement. The code in Figures 3.31 and 3.32 produces identical
results.
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module adder_hier (A, B, C, D, S, T, overflow);
input [15:0] A, B;
input [7:0] C, D;
output [16:0] S;
output [8:0] T;
output overflow;

wire o1, 02; // used for the overflow signals

addern U1 (1°b0, A, B, S[15:0], S[16], ol);
defparam Ul.n = 16;

addern U2 (1’b0, C, D, T[7:0], T[8], 02);
defparam U2.n = §;

assign overflow = ol | 02;

endmodule

Figure 3.31  An example of setting parameter values in Verilog
code.

module adder_hier (A, B, C, D, S, T, overflow);
input [15:0] A, B;
input [7:0] C, D;
output [16:0] S;
output [8:0] T;
output overflow;

wire o1, 02; // used for the overflow signals

addern #(16) U1 (1°b0, A, B, S[15:0], S[16], o1);
addern #(8) U2 (1’b0, C, D, T[7:0], T[8], 02);

assign overflow = ol | 02;

endmodule

Figure 3.32  Using the Verilog # operator fo set the values of
parameters.

An alternative version of the code in Figure 3.32 is given in Figure 3.33. Here, we
have again used the # operator, but in this case we have explicitly included the name n
by using the syntax #(.n(16)) and #(.n(8)). In the same way that the names of parameters
can be shown explicitly, the code in Figure 3.33 illustrates how the port names of a subcircuit
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module adder_hier (A, B, C, D, S, T, overflow);
input [15:0] A, B;
input [7:0] C, D;
output [16:0] S;
output [8:0] T;
output overflow;

wire ol, 02; // used for the overflow signals

addern #(.n(16)) U1
(
.carryin (1°b0),
X (A),
.Y (B),
.S (S[15:0]),
.carryout (S[16]),
.overflow (ol)
);
addern #(.n(8)) U2
(
.carryin (1°b0),
X (C),
.Y (D),
.S (T[7:0]),
.carryout (T[8]),
.overflow (02)

)
assign overflow = ol | 02;

endmodule

Figure 3.33  An dlternative version of the code in Figure 3.32.

can be included explicitly. In Verilog jargon this style of code is referred to as named
port connections. In this case, the signals can be listed in any order. If the names of port
signals of the instantiated module are not shown explicitly, as in Figures 3.31 and 3.32,
then the order in which signals are listed in an instantiation statement determines how the
connections are made. This is referred to as ordered association of port connections. In
this case, the instantiation statement must list the ports in the order in which they appear
in the instantiated module. The drawback of the style of code in Figure 3.33 is that it is
more verbose. But, it has the advantage of being more explicit and hence less susceptible
to careless errors.
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3.5.8 REPRESENTATION OF NUMBERS IN VERILOG CODE

Numbers can be given as constants in Verilog code. They can be given as binary (b), octal
(0), hexadecimal (h), or decimal (d) numbers. Their size can be either fixed or unspecified.
For sized numbers the format is

<size_in_bits>’<radix_identifier> <significant_digits>

The size is a decimal number that gives the number of bits needed, the radix is identified
using letters b, o, h, or d, and the digits are given in the notation of the radix used. For
example, the decimal number 2217 can be represented using 12 bits as follows

12’b100010101001
12°04251

12’h8A9

12°d2217

Unsized numbers are given without specifying the size. For example, the decimal number
278 may be given as

6100010110
"0426

’h116

278

For decimal numbers it is not necessary to give the radix identifier d. When an unsized
number is used in an expression the Verilog compiler gives it a certain size, which is typically
the same as the size of the other operand(s) in the expression. To improve readability, it is
possible to use the underscore character. Instead of writing 12°b100010101001, it is easier
to visualize the same number as 12°b1000_1010_1001.

Negative numbers are represented by placing the minus sign in front. Thus, if —5 is
specified as —4’b101, it will be interpreted as a four-bit 2’s-complement of 5, which is
1011.

The specified size may exceed the number of bits that are actually needed to represent a
given number. In this case, the final representation is padded to the left to yield the required
size. However, if there are more digits than can fit into the number of bits given as the size,
the extra digits will be ignored.

Numbers represented by vectors of different bit sizes can be used in arithmetic opera-
tions. Suppose that A is an eight-bit vector and B is a four-bit vector. Then the statement

S=A+B;

will generate an eight-bit sum vector S. The result will be correct if B is a positive number.
However, if B is a negative number expressed in 2’s complement representation, the result
will be incorrect because Os will be padded on the left to make B an eight-bit vector for the
purpose of the addition operation. The value of a positive number does not change if Os are
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appended as the most-significant bits; the value of a negative number does not change if
1s are appended as the most-significant bits. Such replication of the sign bit is called sign
extension. Therefore, for correct operation it is necessary to use a sign-extended version of
B, which can be accomplished with concatenation in the statement

S =A+ {4{B[3]},B};

The notation 4{B[3]} denotes that the bit B[3] is replicated four times; it is equivalent to
writing {B[3], B[3], B[3], B[3]}. This is referred to as the replication operator, which is
discussed in Chapter 4.
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Before we discuss the general issue of multiplication, we should note that a binary number,
B, can be multiplied by 2 simply by adding a zero to the right of its least-significant bit. This
effectively moves all bits of B to the left, and we say that B is shifted left by one bit position.
Thus if B=b,_1b,—»---b1by, then 2 X B =b,,_1b,,_»---b1by0. (We have already used
this fact in Section 3.2.3.) Similarly, a number is multiplied by 2% by shifting it left by k bit
positions. This is true for both unsigned and signed numbers.

We should also consider what happens if a binary number is shifted right by k bit
positions. According to the positional number representation, this action divides the
number by 2%, For unsigned numbers the shifting amounts to adding k zeros to the
left of the most-significant bit. For example, if B is an unsigned number, then B -2 =
0b,—1b,—> - - - bob;. Note that bit by is lost when shifting to the right. For signed num-
bers it is necessary to preserve the sign. This is done by shifting the bits to the right
and filling from the left with the value of the sign bit. Hence if B is a signed number,
then B+~2 =b,_1b,_1b,_» ---byb,. For instance, if B = 011000 = (24)9, then B -2 =
001100 = (12)9 and B +4 = 000110 = (6)19. Similarly, if B = 101000 = —(24)¢, then
B -2 =110100 = —(12);9p and B -4 = 111010 = —(6)19. The reader should also ob-
serve that the smaller the positive number, the more Os there are to the left of the first 1,
while for a negative number there are more 1s to the left of the first 0.

Now we can turn our attention to the general task of multiplication. Two binary numbers
can be multiplied using the same method as we use for decimal numbers. We will focus our
discussion on multiplication of unsigned numbers. Figure 3.34a shows how multiplication
is performed manually, using four-bit numbers. Each multiplier bit is examined from right
to left. If a bit is equal to 1, an appropriately shifted version of the multiplicand is added
to form a partial product. If the multiplier bit is equal to 0, then nothing is added. The
sum of all shifted versions of the multiplicand is the desired product. Note that the product
occupies eight bits.

3.6.1 ARRAY MULTIPLIER FOR UNSIGNED NUMBERS
Figure 3.34b indicates how multiplication may be performed by using multiple adders. In

each step a four-bit adder is used to compute the new partial product. Note that as the
computation progresses, the least-significant bits are not affected by subsequent additions;
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Partial product 0 1110
Multiplicand M (14) 1110 At procue 1o
Multiplier Q (11) X 1011 +—
1110 Partial product 1 (])8(1)3 1
1110 +
0000 Partial product 2 01010
1110 + 11 101
Product P (154) 10011010 Product P (154) 10011010

(a) Multiplication by hand

(b) Using multiple adders
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(c) Hardware implementation

Figure 3.34  Multiplication of unsigned numbers.

hence they can be passed directly to the final product, as indicated by blue arrows. Of
course, these bits are a part of the partial products as well.

The same scheme can be used to design a multiplier circuit. We will stay with four-
bit numbers to keep the discussion simple. Let the multiplicand, multiplier, and product
be denoted as M = mzmamimo, Q = q3q29190, and P = pipepspapspap1po, respectively.
Figure 3.34c¢ shows the required operations. Partial product O is obtained by using the AND
of gy with each bit of M, which produces 0 if go = 0 and M if gy = 1. Thus

PP0O = m3qo maqo miqo mMoqo

Partial product 1, PP1, is generated by adding PPO to a shifted version of M that is ANDed
with ¢g;. Similarly, partial product PP2 is generated using the AND of g, with M shifted
by another bit position and adding to PP1, and so on.
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Figure 3.35 A 4 x 4 multiplier circuit.

A circuit that implements the preceding operations is arranged in an array, as shown in
Figure 3.35. In this figure the AND gates and full-adders that produce the partial products
are shown in blue, in the same way as the blue highlighted rows in Figure 3.34c. The
full-adders are connected to form ripple-carry adders. It is possible to design even faster
multipliers by using other types of adders [1].

3.6.2 MULTIPLICATION OF SIGNED NUMBERS

Multiplication of unsigned numbers illustrates the main issues involved in the design of
multiplier circuits. Multiplication of signed numbers is somewhat more complex.

If the multiplier operand is positive, it is possible to use essentially the same scheme as
for unsigned numbers. For each bit of the multiplier operand that is equal to 1, a properly
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shifted version of the multiplicand must be added to the partial product. The multiplicand
can be either positive or negative.

Since shifted versions of the multiplicand are added to the partial products, it is
important to ensure that the numbers involved are represented correctly. For example,
if the two right-most bits of the multiplier are both equal to 1, then the first addition
must produce the partial product PP1 = M + 2M, where M is the multiplicand. If M =
Mpy—1My—o - - - mymyg, then PP1 = m,_ym,_o ---mymgy + mu_1m,—> - - -mymp0. The adder
that performs this addition comprises circuitry that adds two operands of equal length.
Since shifting the multiplicand to the left, to generate 2M , results in one of the operands
having n + 1 bits, the required addition has to be performed using the second operand,
M, represented also as an (n + 1)-bit number. An n-bit signed number is represented
as an (n + 1)-bit number by using sign extension, that is, by replicating the sign bit as
the new left-most bit. Thus M = m,_;m,_, - - - mymy is represented using (n + 1) bits as
M = m,_ym,_ymy_5 - - - mymy.

When a shifted version of the multiplicand is added to a partial product, overflow has
to be avoided. Hence the new partial product must be larger by one extra bit. Figure
3.36a illustrates the process of multiplying two positive numbers. The sign-extended bits
are shown in blue. Part (b) of the figure involves a negative multiplicand. Note that the
resulting product has 2n bits in both cases.

For a negative multiplier operand, it is possible to convert both the multiplier and the
multiplicand into their 2’s complements because this will not change the value of the result.
Then the scheme for a positive multiplier can be used.

We have presented a relatively simple scheme for multiplication of signed numbers.
There exist other techniques that are more efficient but also more complex. We will not
pursue these techniques, but an interested reader may consult reference [1].

We have discussed circuits that perform addition, subtraction, and multiplication. An-
other arithmetic operation that is needed in computer systems is division. Circuits that
perform division are more complex; we will present an example in Chapter 7. Various
techniques for performing division are usually discussed in books on the subject of com-
puter organization and can be found in references [1, 2].

3.7 OTHER NUMBER REPRESENTATIONS

In the previous sections we dealt with binary integers represented in the positional number
representation. Other types of numbers are also used in digital systems. In this section we
will discuss briefly three other types: fixed-point, floating-point, and binary-coded decimal
numbers.

3.7.1 Fixep-PoinT NUMBERS

A fixed-point number consists of integer and fraction parts. It can be written in the positional
number representation as

B=0b,_1b,_»---bibg.b_1b_»---b_;
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Multiplicand M (+14) 01110
Multiplier Q (+11) x 01011
Partial product 0 0001110
+ 001110
Partial product 1 0010101
+ 000000
Partial product 2 0001010
+ 001110
Partial product 3 0010011
+000000]
Product P (+154) 0010011010

(a) Positive multiplicand

Multiplicand M =14) 10010
Multiplier Q (+11) x 01011
Partial product 0 1110010
+ 110010
Partial product 1 1101011
+ 000000
Partial product 2 1110101
+ 110010
Partial product 3 1101100
+000000]
Product P 154) 1101100110

(b) Negative multiplicand

Figure 3.36  Multiplication of signed numbers.

The value of the number is

n—1
‘KB)::E:bixT

i=—k

The position of the radix point is assumed to be fixed; hence the name fixed-point number.
If the radix point is not shown, then it is assumed to be to the right of the least-significant
digit, which means that the number is an integer.

Logic circuits that deal with fixed-point numbers are essentially the same as those used
for integers. We will not discuss them separately.
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3.7.2 FLOATING-POINT NUMBERS

Fixed-point numbers have a range that is limited by the significant digits used to represent
the number. For example, if we use eight digits and a sign to represent decimal integers,
then the range of values that can be represented is 0 to £99999999. If eight digits are
used to represent a fraction, then the representable range is 0.00000001 to £0.99999999.
In scientific applications it is often necessary to deal with numbers that are very large or
very small. Instead of using the fixed-point representation, which would require many
significant digits, it is better to use the floating-point representation in which numbers are
represented by a mantissa comprising the significant digits and an exponent of the radix R.
The format is

Mantissa x REPoe™
The numbers are often normalized, such that the radix point is placed to the right of the first
nonzero digit, as in 5.234 x 10* or 6.31 x 10728,

Binary floating-point representation has been standardized by the Institute of Electrical
and Electronic Engineers (IEEE) [3]. Two sizes of formats are specified in this standard—
a single-precision 32-bit format and a double-precision 64-bit format. Both formats are
illustrated in Figure 3.37.

Single-Precision Floating-Point Format

Figure 3.37a depicts the single-precision format. The left-most bit is the sign bit—0
for positive and 1 for negative numbers. There is an 8-bit exponent field, E, and a 23-bit
mantissa field, M. The exponent is with respect to the radix 2. Because it is necessary to

- 32 bits -
S E M
Sign 4 v N .
0 denotes + 8-bit 23 bits of mantissa
1 denotes — excess-127
exponent

(a) Single precision

- 64 bits -
S E M
Sign —T M M
11-bit excess-1023 52 bits of mantissa
exponent

(b) Double precision

Figure 3.37  IEEE Standard floating-point formats.
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be able to represent both very large and very small numbers, the exponent can be either
positive or negative. Instead of simply using an 8-bit signed number as the exponent, which
would allow exponent values in the range —128 to 127, the IEEE standard specifies the
exponent in the excess-127 format. In this format the value 127 is added to the value of the
actual exponent so that

Exponent = E — 127

In this way E becomes a positive integer. This format is convenient for adding and subtract-
ing floating-point numbers because the first step in these operations involves comparing the
exponents to determine whether the mantissas must be appropriately shifted to add/subtract
the significant bits. The range of E is 0 to 255. The extreme values of E = 0 and E = 255
are taken to denote the exact zero and infinity, respectively. Therefore, the normal range of
the exponent is —126 to 127, which is represented by the values of E from 1 to 254.

The mantissa is represented using 23 bits. The IEEE standard calls for a normalized
mantissa, which means that the most-significant bit is always equal to 1. Thus it is not
necessary to include this bit explicitly in the mantissa field. Therefore, if M is the bit vector
in the mantissa field, the actual value of the mantissa is 1.M, which gives a 24-bit mantissa.
Consequently, the floating-point format in Figure 3.37a represents the number

Value = +1.M x 26177

The size of the mantissa field allows the representation of numbers that have the precision
of about seven decimal digits. The exponent field range of 27!?° to 2!*7 corresponds to
about 10%38,

Double-Precision Floating-Point Format

Figure 3.37b shows the double-precision format, which uses 64 bits. Both the exponent
and mantissa fields are larger. This format allows greater range and precision of numbers.
The exponent field has 11 bits, and it specifies the exponent in the excess-1023 format,
where

Exponent = E — 1023

The range of E is 0 to 2047, but again the values £ = 0 and E = 2047 are used to indicate
the exact zero and infinity, respectively. Thus the normal range of the exponent is —1022
to 1023, which is represented by the values of E from 1 to 2046.

The mantissa field has 52 bits. Since the mantissa is assumed to be normalized, its
actual value is again 1.M . Therefore, the value of a floating-point number is

Value = +1.M x 2£7108

This format allows representation of numbers that have the precision of about 16 decimal
digits and the range of approximately 10*3%,

Arithmetic operations using floating-point operands are significantly more complex
than signed integer operations. Because this is a rather specialized domain, we will not
elaborate on the design of logic circuits that can perform such operations. For a more
complete discussion of floating-point operations, the reader may consult references [1, 2].
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3.7.3 BINARY-CODED-DECIMAL REPRESENTATION

In digital systems it is possible to represent decimal numbers simply by encoding each digit
in binary form. This is called the binary-coded-decimal (BCD) representation. Because
there are 10 digits to encode, it is necessary to use four bits per digit. Each digit is encoded
by the binary pattern that represents its unsigned value, as shown in Table 3.3. Note that
only 10 of the 16 available patterns are used in BCD, which means that the remaining 6
patterns should not occur in logic circuits that operate on BCD operands; these patterns
are usually treated as don’t-care conditions in the design process. BCD representation was
used in some early computers as well as in many handheld calculators. Its main virtue is
that it provides a format that is convenient when numerical information is to be displayed
on a simple digit-oriented display. Its drawbacks are complexity of circuits that perform
arithmetic operations and the fact that six of the possible code patterns are wasted.

Even though the importance of BCD representation has diminished, it is still encoun-
tered. To give the reader an indication of the complexity of the required circuits, we will
consider BCD addition in some detail.

BCD Addition

The addition of two BCD digits is complicated by the fact that the sum may exceed
9, in which case a correction will have to be made. Let X = x3xx1x9 and Y = y3y2y1y0
represent the two BCD digits and let S = 53525150 be the desired sum digit, S =X + Y.
Obviously, if X 4+ Y < 9, then the addition is the same as the addition of 2 four-bit unsigned
binary numbers. But, if X + Y > 9, then the result requires two BCD digits. Moreover,
the four-bit sum obtained from the four-bit adder may be incorrect.

There are two cases where some correction has to be made: when the sum is greater
than 9 but no carry-out is generated using four bits, and when the sum is greater than 15 so

Table 3.3  Binary-coded

decimal digits.

Decimal digit BCD code
0 0000
1 0001
2 0010
3 0011
4 0100
5 0101
6 0110
7 0111
8 1000
9 1001
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X 0111 7
+ Y + 0101 + 5
Z

1100 12
+0110

carry—s 10010
\_V_I
S=2

X 1000 8
+Y + 1001 + 9
Z

10001 17
+0110

carry— 10111

\_V_/
S=17

Figure 3.38  Addition of BCD digits.

that a carry-out is generated using four bits. Figure 3.38 illustrates these cases. In the first
case the four-bit addition yields Z = 7 + 5 = 12. To obtain a correct BCD result, we must
generate S = 2 and a carry-out of 1. The necessary correction is apparent from the fact
that the four-bit addition is a modulo-16 scheme, whereas decimal addition is a modulo-10
scheme. Therefore, a correct decimal digit can be generated by adding 6 to the result of
four-bit addition whenever this result exceeds 9. Thus we can arrange the computation as
follows

Z=X4+Y
IfZ <9, then S = Z and carry-out = 0
if Z>9, then S = Z + 6 and carry-out = 1

The second example in Figure 3.38 shows what happens when X 4+ Y > 15. In this case
Z = 17, which is a five-bit binary number. Note that the four least-significant bits, Z3_o,
represent the value 1, while Z, represents the value 16. To generate a correct BCD result,
it is again necessary to add 6 to the intermediate sum Z;_q to produce the value 7. The bit
Z,4 is the carry to the next digit position.

Figure 3.39 gives a block diagram of a one-digit BCD adder that is based on this
scheme. The block that detects whether Z > 9 produces an output signal, Adjust, which
controls the multiplexer that provides the correction when needed. A second four-bit adder
generates the corrected sum bits. Since whenever the adjustment of 6 is made there is a
carry to the next digit position, c,,, is just equal to the Adjust signal.

The one-digit BCD adder can be specified in Verilog code by describing its behavior
as shown in Figure 3.40. Inputs X and Y, and output S are defined as four-bit numbers.
The intermediate sum, Z, is defined as a five-bit number. The if-else statement is used to
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!

4-bitadder [*—— Cin

carry-out

Zy Z3_9

Detect if ———
sum >9 N————

43

g

4-bitadder [*— O

, <

CDL{[ S

Adjust

Figure 3.39  Block diagram for a one-digit BCD adder.

module bcdadd (Cin, X, Y, S, Cout);
input Cin;
input [3:0] X, Y;
output reg [3:0] S;
output reg Cout;

reg [4:0] Z;
always @(X, Y, Cin)
begin
Z=X+Y + Cin;
if (Z <10)
{Cout, S} =7,
else
{Cout, S} =Z + 6;
end
endmodule

Figure 3.40  Verilog code for a one-digit BCD adder.
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provide the adjustment explained above; hence it is not necessary to use an explicit Adjust
signal.

If we wish to derive a circuit to implement the block diagram in Figure 3.39 by hand,
instead of by using Verilog, then the following approach can be used. To define the Adjust
function, we can observe that the intermediate sum will exceed 9 if the carry-out from the
four-bit adder is equal to 1, or if z3 = 1 and either z, or z; (or both) are equal to 1. Hence
the logic expression for this function is

Adjust = Carry-out + z3(z2 + z1)

Instead of implementing another complete four-bit adder to perform the correction, we can
use a simpler circuit because the addition of constant 6 does not require the full capability
of a four-bit adder. Note that the least-significant bit of the sum, sy, is not affected at all;
hence sy = zo. A two-bit adder may be used to develop bits s, and s;. Bit s3 is the same as
z3 if the carry-out from the two-bit adder is 0, and it is equal to z3 if this carry-out is equal
to 1. A complete circuit that implements this scheme is shown in Figure 3.41. Using the

X3 Xp X X Y3 Y2 Y1 Yo
Four-bit adder -— Cyy
Z3 12 Zl ZO

iy

Two-bit adder

53 $2 51 So

Figure 3.41  Circuit for a one-digit BCD adder.
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one-digit BCD adder as a basic block, it is possible to build larger BCD adders in the same
way as a binary full-adder is used to build larger ripple-carry binary adders.

Subtraction of BCD numbers can be handled with the radix-complement approach. Just
as we use 2’s complement representation to deal with negative binary numbers, we can use
10’s complement representation to deal with decimal numbers. We leave the development
of such a scheme as an exercise for the reader (see Problem 3.19).

3.8 EXAMPLES OF SOLVED PROBLEMS

This section presents some typical problems that the reader may encounter and shows how
such problems can be solved.

Example 3.6

Problem: Convert the decimal number 14959 into a hexadecimal number.

Solution: An integer is converted into the hexadecimal representation by successive divi-
sions by 16, such that in each step the remainder is a hex digit. To see why this is true,
consider a four-digit number H = hszhyh hy. Its value is

V =hy x 165 4+ hy x 16> + h; x 16 + hy

If we divide this by 16, we obtain
% ho
— =hy x 16> +hy x 16 +h) + —
16 3 X +hp X 16 + hy + 16

Thus, the remainder gives /. Figure 3.42 shows the steps needed to perform the conversion
(14959) 19 = (3A6F) 6.

Convert (14959) 19
Remainder Hex digit
14959 - 16 = 934 15 F LSB
934 - 16 = 58 6 6
58+16 = 3 10 A
3+16 = 0 3 3 MSB
Result is (3A6F) ¢4

Figure 3.42  Conversion from decimal to hexadecimal.
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Problem: Convert the decimal fraction 0.8254 into binary representation.

Solution: As indicated in Section 3.7.1, a binary fraction is represented as the bit pattern
B=0.b_(b_5---b_,, and its value is

V=b,x2 " 4b,,x2 24 4b_,x2"
Multiplying this expression by 2 gives
boy+byx2 4 b, x 27D

Here, the left-most term is the first bit to the right of the radix point. The remaining terms
constitute another binary fraction which can be manipulated in the same way. Therefore,
to convert a decimal fraction into a binary fraction, we multiply the decimal number by
2 and set the computed bit to O if the product is less than 1 and set it to 1 if the product
is greater than or equal to 1. We repeat this calculation until a sufficient number of bits
are obtained to meet the desired accuracy. Note that it may not be possible to represent a
decimal fraction with a binary fraction that has exactly the same value. Figure 3.43 shows
the required computation that yields (0.8254);o = (0.11010011 .. .),.

Example 3.7

Convert (0.8254)

0.8254 x2 = m‘—— 1 MSB
0.6508 x 2 = m— 1
0.3016 x2 = W‘—— 0
0.6032x2 = W‘—— 1
0.2064 x 2 = (')Kl—b 0
04128 x2 = (')8?‘—— 0
0.8256 x2 = m— 1
0.6512x2 = 1'.3()T|—— 1 LSB

(0.8254),, = (0.11010011...),

Figure 3.43  Conversion of fractions from decimal to binary.
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Example 3.8

Problem: Convert the decimal fixed point number 214.45 into a binary fixed point number.

Solution: For the integer part perform successive division by 2 as illustrated in Fig-
ure 1.6. For the fractional part perform successive multiplication by 2 as described in Ex-
ample 3.7. The complete computation is presented in Figure 3.44, producing (214.45)9 =
(11010110.0111001 . . .),.

Example 3.9

Problem: In computer computations itis often necessary to compare numbers. Two four-bit
signed numbers, X = x3xx1x9 and ¥ = y3y,y;y0, can be compared by using the subtractor
circuit in Figure 3.45, which performs the operation X — Y. The three outputs denote the
following:

° Z =1 if the result is 0; otherwise Z = 0
° N = 1 if the result is negative; otherwise N = 0
. V = 1 if arithmetic overflow occurs; otherwise V = 0

Show how Z, N, and V can be used to determine thecases X =Y, X <Y, X <Y, X > 7Y,
and X >Y.

Solution: Consider first the case X < Y, where the following possibilities may arise:

° If X and Y have the same sign there will be no overflow, hence V = 0. Then for both
positive and negative X and Y the difference will be negative (N = 1).

° If X is negative and Y is positive, the difference will be negative (N = 1) if there is
no overflow (V = 0); but the result will be positive (N = 0) if there is overflow (V = 1).

Therefore, if X < Y then N @V = 1.

The case X = Y is detected by Z = 1. Then, X < Y isdetectedbyZ + (N V) = 1.
The last two cases are just simple inverses: X > Y if Z4+ (N@V)=1and X > 7Y if
NV =1.

Example 3.10

Problem: Write Verilog code to specify the circuit in Figure 3.45.

Solution: We can specify the circuit using the approach given in Figure 3.23, as indicated
in Figure 3.46. Note that the statement

assign Z = IS;
will produce 1 only if S = 53555159 = 0000. Thus, it represents the four-bit NOR function
Z =s53+5+ 51+ 50

Instantiating each full adder separately becomes awkward when large circuits are in-
volved, as would be the case if the comparator had 32-bit operands. An alternative is to use
the generic specification presented in Figure 3.24, as shown in Figure 3.47.
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3
2

1

2
0.45x2
0.90 x 2
0.80 x 2
0.60 x 2
0.20x 2
0.40x2

0.80 x 2

—
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|

i
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=53+2
"3
i

— 2641
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0LSB

1 MSB

0 MSB

1LSB

(214.45),, = (11010110.0111001...),

Figure 3.44

binary.

Conversion of fixed point numbers from decimal to
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Y3

2

Y1

Yo

C 4 C 3 C 2 C 1
FA FA -—] FA -— FA
53 52 51 5o
\
v N Z
(overflow) (negative) (zero)

Figure 3.45

A comparator circuit.

module comparator (X, Y, V, N, Z);
input [3:0] X, Y;
output V, N, Z;
wire [3:0] S;
wire [4:1] C;

endmodule

fulladd stageO (1°bl, X[0], ~Y[0], S[0], C[1]);
fulladd stagel (C[1], X[1],~Y[1], S[1],C
fulladd stage2 (C[2], X[2], ~Y[2], S[2], C
fulladd stage3 (C[3], X[3], ~Y[3], S[3], C[4]);
assign V =C[4] " C[3];
assign N = S[3];
assign Z =1S;

module fulladd (Cin, x, y, s, Cout);
input Cin, x,y;
output s, Cout;

endmodule

assign s =x "y " Cin;
assign Cout=(x &y) | (x & Cin) | (y & Cin);

Figure 3.46

[
[
[
[

21);
3D;

€o

Structural Verilog code for the comparator circuit.
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module comparator (X, Y, V, N, Z);
parameter n = 32;
input [n-1:0] X,Y;
output reg V,N, Z;
reg [n—1:0]S;
reg [n:0] C;
integer k;

always @(X,Y)

begin
C[0] = I’bl;
for (k=0; k< n; k=k+1)
begin

Sik] = X[k] " ~Y[k] " C[Kk];
Clk+1] = (X[k] & ~Y[k]) | (X[k] & C[K]) | (~Y[k] & C[K]);

end
V =C[n] " C[n-1];
N=S[n-1];
Z=1S;
end
endmodule

Figure 3.47  Generic Verilog code for the comparator circuit.
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Problem: Figure 3.35 depicts a four-bit multiplier circuit. Each row in this circuit consists Example 3.11

of four full-adder (FA) blocks connected in a ripple-carry configuration. The delay caused
by the carry signals rippling through the rows has a significant impact on the time needed
to generate the output product. In an attempt to speed up the circuit, we may use the
arrangement in Figure 3.48. Here, the carries in a given row are “saved” and included in
the next row at the correct bit position. Then, in the first row the full-adders can be used
to add three properly shifted bits of the multiplicand as selected by the multiplier bits. For
example, in bit position 2 the three inputs are myqo, mq;, and mpq,. In the last row it is
still necessary to use the ripple-carry adder. A circuit that consists of an array of full-adders
connected in this manner is called a carry-save adder array.

What is the total delay of the circuit in Figure 3.48 compared to that of the circuit in
Figure 3.35?

Solution: In the circuit in Figure 3.35 the longest path is through the right-most two full-
adders in the top row, followed by the two right-most FAs in the second row, and then
through all four FAs in the bottom row. Hence this delay is eight times the delay through a
full-adder block. In addition, there is the AND-gate delay needed to form the inputs to the
first FA in the top row. These combined delays are the critical delay, which determines the
speed of the multiplier circuit.
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0 msqq myqq miqo moqo
ms3q maq miq myq
msqy maqy myqy ¢ moqa 0
FA ‘J — FA ‘J — FA ‘J FA ‘J
ms3qs myqs3 mqs myqs3 0

' ¥ ¥ y
FA FAJ—FA‘I—FA

]

17 ¢FA ¢FA ¢FA ¢FA <« 0 " "

P7 Pe Ps P4 3 P2 P Po

Figure 3.48  Multiplier carry-save array.

In the circuit in Figure 3.48, the longest path is through the right-most FAs in the first
and second rows, followed by all four FAs in the bottom row. Therefore, the critical delay
is six times the delay through a full-adder block plus the AND-gate delay needed to form
the inputs to the first FA in the top row.

*3.1

| PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

Determine the decimal values of the following unsigned numbers:
(a) (0111011110),

(b) (1011100111),

(c) 3751)g

(d) (A25F)16

(e) (FOF0)6

*3.2 Determine the decimal values of the following 1’s complement numbers:

(2) 0111011110
(b) 1011100111
(c) 1111111110

*3.3 Determine the decimal values of the following 2’s complement numbers:

(2) 0111011110
(b) 1011100111
(c) 1111111110
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Convert the decimal numbers 73, 1906, —95, and —1630 into signed 12-bit numbers in the
following representations:

(a) Sign and magnitude

(b) 1’s complement

(c) 2’s complement

Perform the following operations involving eight-bit 2’s complement numbers and indicate
whether arithmetic overflow occurs. Check your answers by converting to decimal sign-
and-magnitude representation.

00110110 01110101 11011111
4 01000101 + 11011110 + 10111000

00110110 01110101 11010011
— 00101011 — 11010110 — 11101100

Prove that the XOR operation is associative, which means thatx; & (y; ® z;) = (x; ® y;) D
-

Show that the circuit in Figure 3.4 implements the full-adder specified in Figure 3.3a.
Prove the validity of the simple rule for finding the 2’s complement of a number, which
was presented in Section 3.3. Recall that the rule states that scanning a number from right
to left, all Os and the first 1 are copied; then all remaining bits are complemented.

Prove the validity of the expression Overflow = ¢, @ c,—; for addition of n-bit signed
numbers.

Verify that a carry-out signal, ¢, from bit position k£ — 1 of an adder circuit can be generated
as ¢ = xx @ yr D sk, where x; and y; are inputs and sy is the sum bit.

Consider the circuit in Figure P3.1. Can this circuit be used as one stage in a ripple-carry
adder? Discuss the pros and cons. The operation of transistors shown in the figure is
described in Appendix B.

Determine the number of gates needed to implement an n-bit carry-lookahead adder, as-
suming no fan-in constraints. Use AND, OR, and XOR gates with any number of inputs.
Determine the number of gates needed to implement an eight-bit carry-lookahead adder
assuming that the maximum fan-in for the gates is four.

In Figure 3.17 we presented the structure of a hierarchical carry-lookahead adder. Show
the complete circuit for a four-bit version of this adder, built using 2 two-bit blocks.

What is the critical delay path in the multiplier in Figure 3.35? What is the delay along this
path in terms of the number of gates?

Write a Verilog module to describe the 4 x 4 multiplier shown in Figure 3.35. Synthesize
a circuit from the code and verify its functional correctness.

Consider the Verilog code in Figure P3.2. Given the relationship between the signals IN and
OUT, what is the functionality of the circuit described by the code? Comment on whether
or not this code represents a good style to use for the functionality that it represents.

Design a circuit that generates the 9’s complement of a BCD digit. Note that the 9’s
complement of d is 9 — d.
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VDD

b
b

)
Y _J 8i

Figure P3.1  Circuit for Problem 3.11.

o]

i+1

module problem3_17 (IN, OUT);

input [3:0] IN;
output reg [3:0] OUT;

always @(IN)

if IN ==4"b0101) OUT =4’b0001;

else if IN ==4’b0110)
else if IN ==4’b0111)
else if IN ==4’b1001)
else if (IN ==4’b1010)
else if (IN == 4’b1011)
else if IN ==4’b1101)
else if IN ==4’b1110)
else if IN ==4’bl1111)
else OUT = 4’b0000;

endmodule

OUT =4’b0010;
OUT =4’b0011;
OUT =4’b0010;
OUT =4’b0100;
OUT =4’b0110;
OUT =4’b0011;
OUT =4’b0110;
OUT =4’b1001;

Figure P3.2  The code for Problem 3.17.
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Derive a scheme for performing subtraction using BCD operands. Show a block diagram
for the subtractor circuit. Hint: Subtraction can be performed easily if the operands are
in the 10’s complement (radix complement) representation. In this representation the sign
digit is O for a positive number and 9 for a negative number.

Write complete Verilog code for the circuit that you derived in Problem 3.19.

Suppose that we want to determine how many of the bits in a three-bit unsigned number
are equal to 1. Design the simplest circuit that can accomplish this task.

Repeat Problem 3.21 for a six-bit unsigned number.
Repeat Problem 3.21 for an eight-bit unsigned number.

Show a graphical interpretation of three-digit decimal numbers, similar to Figure 3.11. The
left-most digit is O for positive numbers and 9 for negative numbers. Verify the validity of
your answer by trying a few examples of addition and subtraction.

In a ternary number system there are three digits: 0, 1, and 2. Figure P3.3 defines a ternary
half-adder. Design a circuit that implements this half-adder using binary-encoded signals,
such that two bits are used for each ternary digit. LetA = ajay, B = b1by, and Sum = s;50;
note that Carry is just a binary signal. Use the following encoding: 00 = (0)3, 01 = (1)3,
and 10 = (2)3. Minimize the cost of the circuit.

AB | Carry | Sum
00 0 0
01 0 1
02 0 2
10 0 1
11 0 2
12 1 0
20 0 2
21 1 0
22 1 1

Figure P3.3  Ternary half-adder.

Design a ternary full-adder circuit, using the approach described in Problem 3.25.
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3.27 Consider the subtractions 26 — 27 = 99 and 18 — 34 = 84. Using the concepts presented
in Section 3.3.4, explain how these answers (99 and 84) can be interpreted as the correct
signed results of these subtractions.
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4

COMBINATIONAL-CIRCUIT BUILDING
BLOCKS

CHAPTER OBJECTIVES

In this chapter you will learn about:

e Commonly used combinational subcircuits

e  Multiplexers, which can be used for selection of signals and for implementation
of general logic functions

e  Circuits used for encoding, decoding, and code-conversion purposes
e Key Verilog constructs used to define combinational circuits
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Previous chapters have introduced the basic techniques for design of logic circuits. In practice, a few types
of logic circuits are often used as building blocks in larger designs. This chapter discusses a number of these
blocks and gives examples of their use. The chapter also includes a major section on Verilog, which describes
several key features of the language.

| 4.1 MULTIPLEXERS

Multiplexers were introduced briefly in Chapter 2. A multiplexer circuit has a number
of data inputs, one or more select inputs, and one output. It passes the signal value on
one of the data inputs to the output. The data input is selected by the values of the select
inputs. Figure 4.1 shows a 2-to-1 multiplexer. Part (a) gives the symbol commonly used.
The select input, s, chooses as the output of the multiplexer either input wy or w;. The
multiplexer’s functionality can be described in the form of a truth table as shown in part (b)
of the figure. Part (c) gives a sum-of-products implementation of the 2-to-1 multiplexer.
Part (d) illustrates how it can be constructed with transmission gates which are discussed
in Appendix B.

Figure 4.2a depicts a larger multiplexer with four data inputs, wy, ..., w3, and two
select inputs, s; and syp. As shown in the truth table in part (b) of the figure, the two-bit
number represented by s;5¢ selects one of the data inputs as the output of the multiplexer.

N

5 f
"o f 0 "o
Wi 1 Wy
(a) Graphical symbol (b) Truth table
wy —— | Wo —
N f s —
wy w, — L 7
(c) Sum-of-products circuit (d) Circuit with transmission gates

Figure 4.1 A 2-to-1 multiplexer.
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So
Sl
Yo 0 0 | wg
Zl ¥ 0 1 w
W2 1 0 Wy
3 11 | wy
(a) Graphical symbol (b) Truth table
50 Do 1)
WO —
sy Do [

J[
7YY
.

(c) Circuit

Figure 4.2 A 4-to-1 multiplexer.

A sum-of-products implementation of the 4-to-1 multiplexer appears in Figure 4.2¢. It
realizes the multiplexer function

f =S1Sowo + 5150w + S1Sow2 + S150W3

It is possible to build larger multiplexers using the same approach. Usually, the num-
ber of data inputs, n, is an integer power of two. A multiplexer that has n data inputs,
wo, ..., wy—1, requires [ logpn ] select inputs. Larger multiplexers can also be constructed
from smaller multiplexers. For example, the 4-to-1 multiplexer can be built using three
2-to-1 multiplexers as illustrated in Figure 4.3. Figure 4.4 shows how a 16-to-1 multiplexer
is constructed with five 4-to-1 multiplexers.
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51

So

L) 0
Wl 1

—/

Wy

w3

Figure 4.3  Using 2-to-1 multiplexers to build a 4-to-1
multiplexer.

So
51

o]

Wo

—

w3

Wy SH

53

wwolwile

w7

wg

Figure 4.4 A 16-to-1 multiplexer.
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©

X — = )|
Xy — = = )
(a) A 2x2 crossbar switch

xl 0
M|
—1
s
X2 0
Y2
1

(b) Implementation using multiplexers

Figure 4.5 A practical application of multiplexers.
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Figure 4.5 shows a circuit that has two inputs, x; and x;, and two outputs, y; and y,. As
indicated by the blue lines, the function of the circuit is to allow either of its inputs to be
connected to either of its outputs, under the control of another input, s. A circuit that has
n inputs and k outputs, whose sole function is to provide a capability to connect any input
to any output, is usually referred to as an nxk crossbar switch. Crossbars of various sizes
can be created, with different numbers of inputs and outputs. When there are two inputs
and two outputs, it is called a 2x?2 crossbar.

Figure 4.5b shows how the 2 x 2 crossbar can be implemented using 2-to-1 multiplexers.
The multiplexer select inputs are controlled by the signal s. If s = 0, the crossbar connects
x1 to y; and x, to y,, while if s = 1, the crossbar connects x; to y, and x, to y;. Crossbar
switches are useful in many practical applications in which it is necessary to be able to
connect one set of wires to another set of wires, where the connection pattern changes from
time to time.

Example 4.1

4.1.1 SyYNTHESIS OF LoGIic FuncTIONS USING MULTIPLEXERS

Multiplexers are useful in many practical applications, such as the one described above.
They can also be used in a more general way to synthesize logic functions. Consider the
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Wy
w1 Wy f W,
0
0 0 0
01 |1 1
1o |1 1 f
1 1 0 0

(a) Implementation using a 4-to-1 multiplexer

wywy | f W, f
0

%—— 0 w2

1 }—|—' 1 VT/Z

0

—_—— O O
— o = O

(b) Modified truth table

Wi

wo

(c) Circuit

Figure 4.6  Synthesis of a logic function using mutiplexers.

example in Figure 4.6a. The truth table defines the function f = w; @ w,. This function
can be implemented by a 4-to-1 multiplexer in which the values of f in each row of the
truth table are connected as constants to the multiplexer data inputs. The multiplexer select
inputs are driven by w; and w,. Thus for each valuation of w;w,, the output f is equal to
the function value in the corresponding row of the truth table.

The above implementation is straightforward, but it is not very efficient. A better
implementation can be derived by manipulating the truth table as indicated in Figure 4.6b,
which allows f to be implemented by a single 2-to-1 multiplexer. One of the input signals,
wy in this example, is chosen as the select input of the 2-to-1 multiplexer. The truth table
is redrawn to indicate the value of f for each value of wi. When w; = 0, f has the same
value as input w,, and when w; = 1, f has the value of w,. The circuit that implements
this truth table is given in Figure 4.6¢. This procedure can be applied to synthesize a circuit
that implements any logic function.
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W1W2W3i Wy W, f
0 0 0 0
0 0 1 0
010 0
0 1 1 1
1 00 0 )
1 0 1 1)
1 1 0 1]
1 1 1 1)

(a) Modified truth table

Wy
w1

0

W3—E f

] _

(b) Circuit

Figure 4.7  Implementation of the three-input majority function
using a 4-to-1 multiplexer.

Figure 4.7a gives the truth table for the three-input majority function, and it shows how the ~Example 4.2
truth table can be modified to implement the function using a 4-to-1 multiplexer. Any two

of the three inputs may be chosen as the multiplexer select inputs. We have chosen w; and

wy, for this purpose, resulting in the circuit in Figure 4.7b.

Figure 4.8a indicates how the function f = w; @ w, @ w3 can be implemented using 2-to-1 ~ Example 4.3
multiplexers. When w; = 0, f is equal to the XOR of w, and w3, and when w; = 1, f
is the XNOR of w, and w3. Part (b) of the figure gives a corresponding circuit. The left
multiplexer in the circuit produces w, @ ws, using the result from Figure 4.6, and the right
multiplexer uses the value of w; to select either w, @ w3 or its complement. Note that we
could have derived this circuit directly by writing the function as f = (wy ® wz) ® w.
Figure 4.9 gives an implementation of the three-input XOR function using a 4-to-1
multiplexer. Choosing w; and w; for the select inputs results in the circuit shown.
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wpwy wy | f
0 0 0 0
001 1 wy @ wy )
01 0 1 Wy
0 1 1 0 w3
1 00 1 f
1 0 1 0
w, ®w
1 10| 0 S
1 1 1 1
(a) Truth table (b) Circuit

Figure 4.8  Three-input XOR implemented with 2-to-1 multiplexers.

wywywy | f
0 0 0 O}
W;
0 0 1 1 : wy
010 1}, "1
W;
0 1 1 0 - w3
Lo ]
1 0 1 0 :
1 1 0 O}
W;
1 1 1 1 :
(a) Truth table (b) Circuit

Figure 4.9  Three-input XOR implemented with a 4-to-1 multiplexer.

4.1.2 MULTIPLEXER SYNTHESIS USING SHANNON’S EXPANSION

Figures 4.6 through 4.9 illustrate how truth tables can be interpreted to implement logic
functions using multiplexers. In each case the inputs to the multiplexers are the constants
0 and 1, or some variable or its complement. Besides using such simple inputs, it is
possible to connect more complex circuits as inputs to a multiplexer, allowing functions to
be synthesized using a combination of multiplexers and other logic gates. Suppose that we
want to implement the three-input majority function in Figure 4.7 using a 2-to-1 multiplexer
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wpwywy | f
0 0 0 0
0 0 1 0
010 0
0 1 1 1
1 0 0 0
1 0 1 1
1 1 0 1
1 1 1 1
(a) Truth table

w
1
W, j_‘
W3

(b) Circuit

Figure 4.10  The three-input majority function implemented using a
2-to-1 multiplexer.

in this way. Figure 4.10 shows an intuitive way of realizing this function. The truth table
can be modified as shown on the right. If w; = 0, then f = wyws, and if w; = 1, then
f = wy 4+ ws. Using wy as the select input for a 2-to-1 multiplexer leads to the circuit in
Figure 4.10b.

This implementation can be derived using algebraic manipulation as follows. The
function in Figure 4.10a is expressed in sum-of-products form as

f =Wiwaws + wiwaws + wiwaws + wiwows
It can be manipulated into
[ =wilwaws) +wi(Waws + waws + waws)
= wi(waws) + wi(wz + w3)

which corresponds to the circuit in Figure 4.100.

Multiplexer implementations of logic functions require that a given function be decom-
posed in terms of the variables that are used as the select inputs. This can be accomplished
by means of a theorem proposed by Claude Shannon [1].
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Shannon’s Expansion Theorem Any Boolean function f (wy, ..., w,) can be written in
the form

fvi,wa, oo, wy) =wi-fO0,wa, oo, wy) Fwi-f(Lwa, oo, wy)

This expansion can be done in terms of any of the n variables. We will leave the proof of
the theorem as an exercise for the reader (see Problem 4.9).

To illustrate its use, we can apply the theorem to the three-input majority function,
which can be written as

S wi, wa, w3) = wiwa + wiws + wows
Expanding this function in terms of w; gives
S =wi0-wa+0-ws +wows) + wi(l-wa+1-w3+woaws)
=wi(wawsz) + wi (w2 + ws3)

which is the expression that we derived above.
For the three-input XOR function, we have

f=w ®w, ®ws
Wwi(0ODwr, dws) +wi(1Bwr®ws)

Wi - (w2 @ wz) +wy - (W ©ws)

which gives the circuit in Figure 4.8b.

In Shannon’s expansion the termf (0, wa, . . ., w,) is called the cofactor of f withrespect
to wy; it is denoted in shorthand notation as f,. Similarly, the term f (1, wy, ..., wy) is
called the cofactor of f with respect to w, written f,,,. Hence we can write

f = W]fW] + W]fwl

In general, if the expansion is done with respect to variable w;, then f; denotes
S, oo, wi, 0, wigy, ..o, wy), fi, denotes f (wy, ..., wi—t, 1, wiyr, ..., wy), and

f(wlv cees Wn) = WifWi + Wlfwi

The complexity of the logic expression may vary depending on which variable, w;, is used,
as illustrated in Example 4.4.

Example 4.4

For the function f = w;ws 4 wyw3, decomposition using w; gives
f = Wlle + Wlfw1
=wi(ws +w2) + wi(waws)
Using w; instead of w; produces
f = WZfW2 + WZﬁVz
= wa(W1w3) +wa(Wiw3 + Wws3)

=wr(Wiwz) +war (Wi + w3)
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Finally, using w3 gives

f=wafw, + wafu,
= wz(w2) + wz(wp)
The results generated using w; and w, have the same cost, but the expression produced
using ws has a lower cost. In practice, when performing decompositions of this type it is
useful to try a number of alternatives and choose the one that produces the best result.

Shannon’s expansion can be done in terms of more than one variable. For example,
expanding a function in terms of w; and w, gives

f(Wl,-..,Wn)ZWIWQ'f(O,O,W3,...,Wn)+W1W2'f(o,1,W3,...,Wn)
+wiwa - f (1,0, wa, oo wy) Fwiwa - f(L L ws, oo wy)

This expansion gives a form that can be implemented using a 4-to-1 multiplexer. If Shan-
non’s expansion is done in terms of all n variables, then the result is the canonical sum-of-
products form, which was defined in Section 2.6.1.
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Assume that we wish to implement the function
f=wiws +wiwy +wiws

using a 2-to-1 multiplexer and any other necessary gates. Shannon’s expansion using w
gives

[ =wife, +wify,
=wi(w3) +wi(wa + w3)

The corresponding circuit is shown in Figure 4.11a. Assume now that we wish to use a
4-to-1 multiplexer instead. Further decomposition using w, gives

f = WIWZfWWz + WlWZfWWz + WlWZﬁv]Wz + WlWZﬁHWz
= wiwa(W3) + wiwa(W3) + wiwa(w3) + wiwy(1)

The circuit is shown in Figure 4.11b.

Example 4.5

Consider the three-input majority function
f =wiwz +wiws + wows

We wish to implement this function using only 2-to-1 multiplexers. Shannon’s expansion
using wy yields

[ =wiwawz) +wi(wz + wz + wows)

= wi(wawsz) +wi(wy + w3)

Example 4.6
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w1

—o—_
=) >

(a) Using a 2-to-1 multiplexer

Wy
Wy

Wws __DO_C

(b) Using a 4-to-1 multiplexer

Figure 4.11 The circuits synthesized in Example 4.5.

Wy

0_
w3

\_/

Figure 4.12  The circuit synthesized in Example 4.6.

Let g = wpws and & = w, + ws. Expansion of both g and % using w, gives
g = w2(0) + wa(ws)
h =wy(w3) +wa(l)

The corresponding circuit is shown in Figure 4.12. It is equivalent to the 4-to-1 multiplexer
circuit derived using a truth table in Figure 4.7.
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4.2 DECODERS

Consider the logic circuit in Figure 4.13. It has two inputs, w; and wy, and four outputs,
Y0, Y1, Y2, and y3. As shown in the truth table, only one of the outputs is asserted at a time,
and each output corresponds to one valuation of the inputs. Setting the inputs w;wg to 00,
01, 10, or 11 causes the output yg, yi, y2, or y3 to be set to 1, respectively. This type of
circuit is called a binary decoder. Its inputs represent a binary number, which is decoded
to assert the corresponding output. A circuit symbol and logic circuit for this decoder are
shown in parts (b) and (c¢) of the figure. Each output is driven by an AND gate that decodes
the corresponding valuation of w;wy.

It is useful to include an enable input, En, in a decoder circuit, as illustrated in Fig-
ure 4.14. When enabled by setting En = 1 the decoder behaves as presented in Figure 4.13.

Wi Wy Yo Y1 Y2 X3
YoF—
00| 1 00 0 —w, oy -
0 1 01 0 0 —w, v
1 0 0 0 1 O
V3 b—
1 1 0 0 0 1
(a) Truth table (b) Graphical symbol
w DQ L)
DR
wy DQ [
D
D>
D>

(c) Logic circuit

Figure 4.13 A 2-to-4 decoder.
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En wy wo | Yo Y1 Y2 Y3
— 1w I
1 0 0 1 0 0 0 _WO Y0
1 0 1] 01 0 0 Y
1 1.0 0 0 1 0 e
1 1 1 0 0 0 1 —|En 3
0 x X 0O 0 0 O
(a) Truth table (b) Graphical symbol
wg DO
L\
} Yo
Wy DO M
] Y1
] Y2
] Y3
En
(c) Logic circuit
n N
inputs . . : : 2"
—w,_ ° ° outputs
Enable —\ En Yo 1 p—

(d) An n-to-2" decoder

Figure 4.14  Binary decoder.
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But, if it is disabled by setting En = 0, then none of the outputs are asserted. Note that
only five rows are shown in the truth table, because if En = 0 then all outputs are equal
to 0 regardless of the values of w; and wy. The truth table indicates this by showing x
when it does not matter whether the variable in question has the value 0 or 1. A graphical
symbol for this decoder is given in Figure 4.14b. Part (c) of the figure shows how the enable
capability can be included in the decoder of Figure 4.13c. A binary decoder with n inputs
has 2" outputs. A graphical symbol for an n-to-2" decoder is shown in Figure 4.14d.

A k-bit binary code in which exactly one of the bits is set to 1 at a time is referred to
as one-hot encoded, meaning that the single bit that is set to 1 is deemed to be “hot.” The
outputs of an enabled binary decoder are one-hot encoded.

We should also note that decoders can be designed to have either active-high or active-
low outputs. In our discussion, we have assumed that active-high outputs are needed.

Larger decoders can be built using the sum-of-products structure in Figure 4.14c, or
else they can be constructed from smaller decoders. Figure 4.15 shows how a 3-to-8 decoder
is built with two 2-to-4 decoders. The w, input drives the enable inputs of the two decoders.
The top decoder is enabled if w, = 0, and the bottom decoder is enabled if w, = 1. This
concept can be applied for decoders of any size. Figure 4.16 shows how five 2-to-4 decoders
can be used to construct a 4-to-16 decoder. Because of its treelike structure, this type of
circuit is often referred to as a decoder tree.
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Decoders are useful for many practical purposes. In Figure 4.2¢ we showed the sum-of-
products implementation of the 4-to-1 multiplexer, which requires AND gates to distinguish
the four different valuations of the select inputs s; and sy. Since a decoder evaluates the
values on its inputs, it can be used to build a multiplexer as illustrated in Figure 4.17. The
enable input of the decoder is not needed in this case, and it is set to 1. The four outputs of
the decoder represent the four valuations of the select inputs.

Example 4.7

4.2,.1 DEMULTIPLEXERS

We showed in Section 4.1 that a multiplexer has one output, n data inputs, and [ logyn ]
select inputs. The purpose of the multiplexer circuit is to multiplex the n data inputs onto
the single data output under control of the select inputs. A circuit that performs the opposite
function, namely, placing the value of a single data input onto multiple data outputs, is
called a demultiplexer. The demultiplexer can be implemented using a decoder circuit. For
example, the 2-to-4 decoder in Figure 4.14 can be used as a 1-to-4 demultiplexer. In this
case the En input serves as the data input for the demultiplexer, and the y, to y3 outputs
are the data outputs. The valuation of wyw, determines which of the outputs is set to the
value of En. To see how the circuit works, consider the truth table in Figure 4.14a. When
En = 0, all the outputs are set to 0, including the one selected by the valuation of wwy.
When En = 1, the valuation of w;wy sets the appropriate output to 1.

In general, an n-to-2" decoder circuit can be used as a 1-to-n demultiplexer. However, in
practice decoder circuits are used much more often as decoders rather than as demultiplexers.
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Yo
Y1
Y2
Y3

Y4
Ys
Ye
Y7

Yo
Y1
Y2
Y3

Yy
Vs
Ve

—

Vg

Yo
Y10
1

Yo Wo Yo
Wl w] -\"I
D e Y2
"2 ) En Y3
En — —1 "o Yo
Wi Y1
e Y2
] En Y3
Figure 4.15 A 3-to-8 decoder using two 2-to-4 decoders.
Wo W Yo
Wi Wi Vi
b))
En Y3
1 vy Yo
Wi Y1
Y2
"2 wo Yo | En V3
ws Wy Y J
Yo
En En Y3 +—1 " Yo
Wy Vi
Y2
En Y3
—1 "o Yo
Wi Y1
Y2
En Y3

Figure 4.16

A 4-to-16 decoder built using a decoder tree.
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Wy —

w; —
s — wo Yo f
S —/W1 Y1

A wy —]
1 —1En Y3 —I—

w3y —

oAl
;

Figure 4.17 A 4-to-1 multiplexer built using a decoder.
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4.3 ENCODERS

An encoder performs the opposite function of a decoder. It encodes given information into
a more compact form.

4.3.1 BINARY ENCODERS

A binary encoder encodes information from 2" inputs into an n-bit code, as indicated in
Figure 4.18. Exactly one of the input signals should have a value of 1, and the outputs
present the binary number that identifies which input is equal to 1. The truth table for a
4-to-2 encoder is provided in Figure 4.19a. Observe that the output yy is 1 when either
input wy or ws is 1, and output y; is 1 when input w, or ws is 1. Hence these outputs can be
generated by the circuit in Figure 4.19b. Note that we assume that the inputs are one-hot
encoded. All input patterns that have multiple inputs set to 1 are not shown in the truth
table, and they are treated as don’t-care conditions.

Encoders are used to reduce the number of bits needed to represent given information.
A practical use of encoders is for transmitting information in a digital system. Encoding
the information allows the transmission link to be built using fewer wires. Encoding is also
useful if information is to be stored for later use because fewer bits need to be stored.

4.3.2 Priority ENCODERS

Another useful class of encoders is based on the priority of input signals. In a priority
encoder each input has a priority level associated with it. The encoder outputs indicate the
active input that has the highest priority. When an input with a high priority is asserted, the



206

CHAPTER 4

other inputs with lower priority are ignored. The truth table for a 4-to-2 priority encoder is
shown in Figure 4.20. It assumes that wy has the lowest priority and ws the highest. The
outputs y; and yy represent the binary number that identifies the highest priority input set
to 1. Since it is possible that none of the inputs is equal to 1, an output, z, is provided to
indicate this condition. It is set to 1 when at least one of the inputs is equal to 1. It is set to
0 when all inputs are equal to 0. The outputs y; and y, are not meaningful in this case, and
hence the first row of the truth table can be treated as a don’t-care condition for y; and yy.

COMBINATIONAL-CIRCUIT BUILDING BLOCKS

27[ .
inputs

. outputs

Figure 4.18

A 2"-to-n binary encoder.

w3 Wy Wi Wy Y1 Yo
0O 0 0 1 0 0
0O 0 1 O 0 1
0O 1 0 O 1 0
1 0 0 O 1 1

Wo

(a) Truth table

Wl # yo

Wy

w3

Figure 4.19

(b) Circuit

Y1

A 4-to-2 binary encoder.
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W3 Wy Wi Wy Y1 Yo 2

HRooH = O O

- o O O O
> = O O O
XX M = O
—_——_= O O
- O = O
—_—_— = O

Figure 4.20  Truth table for a 4-to-2 priority encoder.

The behavior of the priority encoder is most easily understood by first considering
the last row in the truth table. It specifies that if input ws is 1, then the outputs are set to
y1yo = 11. Because wj has the highest priority level, the values of inputs w;, wy, and wy
do not matter. To reflect the fact that their values are irrelevant, w,, wy, and w, are denoted
by the symbol x in the truth table. The second-last row in the truth table stipulates that
if wp, = 1, then the outputs are set to y;yp = 10, but only if w3 = 0. Similarly, input w;
causes the outputs to be set to y;yp = 01 only if both w3 and w, are 0. Input wy produces
the outputs y;yo = 00 only if wy is the only input that is asserted.

Alogic circuit that implements the truth table can be synthesized by using the techniques
developed in Chapter 2. However, a more convenient way to derive the circuit is to define
a set of intermediate signals, iy, . .., i3, based on the observations above. Each signal, i,
is equal to 1 only if the input with the same index, wy, represents the highest-priority input
that is set to 1. The logic expressions for i, ..., i3 are

io = W3W2W1 Wwo

il = W3W2W1
I = W3
i3 = w3

Using the intermediate signals, the rest of the circuit for the priority encoder has the same
structure as the binary encoder in Figure 4.19, namely

Yo =11 +i3
Vi =iy +i3

The output z is given by

z=ip+i1+ir+1i3
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4.4 CobpE CONVERTERS

The purpose of the decoder and encoder circuits is to convert from one type of input
encoding to a different output encoding. For example, a 3-to-8 binary decoder converts
from a binary number on the input to a one-hot encoding at the output. An 8-to-3 binary
encoder performs the opposite conversion. There are many other possible types of code
converters. One common example is a BCD-to-7-segment decoder, which was introduced
in Section 2.14. A similar decoder is often used to display hexadecimal information on
seven-segment displays. As explained in Section 3.1.2, long binary numbers are easier to
deal with visually if they are represented in the hexadecimal form. A hex-to-7-segment
decoder can be implemented as shown in Figure 4.21. Digits 0 to 9 are displayed the same
as in the case of the BCD-to-7-segment decoder. Digits 10 to 15 are displayed as A, b, C,
d,E,and F.

We should note that although the word decoder is traditionally used for such circuits, a
more appropriate term is code converter. The term decoder is more appropriate for circuits
that produce one-hot encoded outputs.

4.5 ARITHMETIC COMPARISON CIRCUITS

Chapter 3 presented arithmetic circuits that perform addition, subtraction, and multiplication
of binary numbers. Another useful type of arithmetic circuit compares the relative sizes
of two binary numbers. Such a circuit is called a comparator. This section considers the
design of a comparator that has two n-bit inputs, A and B, which represent unsigned binary
numbers. The comparator produces three outputs, called AegB, AgtB, and AltB. The AeqB
output is set to 1 if A and B are equal. The AgtB output is 1 if A is greater than B, and the
AltB output is 1 if A is less than B.

The desired comparator can be designed by creating a truth table that specifies the three
outputs as functions of A and B. However, even for moderate values of n, the truth table is
large. A better approach is to derive the comparator circuit by considering the bits of A and
B in pairs. We can illustrate this by a small example, where n = 4.

Let A = aszaajap and B = b3byb1by. Define a set of intermediate signals called
is, ip, i1, and iy. Each signal, i, is 1 if the bits of A and B with the same index are equal.
That is, iy = a; @ by. The comparator’s AegB output is then given by

AEqB = i3i2i1 i()

An expression for the AgzB output can be derived by considering the bits of A and B in the
order from the most-significant bit to the least-significant bit. The first bit-position, k, at
which a; and b differ determines whether A is less than or greater than B. If a; = 0 and
by = 1,then A < B. Butif ¢y = 1 and b, = 0, then A > B. The AgzB output is defined by

AgtB = a3E3 + 1'3(1252 + i3i2a151 + i3i2i10050
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1 0 1 1 0O 0 1 1 1 1 1
1 1 0 O 1 0 0 1 1 1 0
1 1 0 1 O 1 1 1 1 0 1
1 1 1 O 1 0 0 1 1 1 1
1 1 1 1 1 0 0 0 1 1 1
(c) Truth table

Figure 4.21 A hex-to-7-segment display code converter.

The i; signals ensure that only the first bits, considered from the left to the right, of A and
B that differ determine the value of AgzB.
The AltB output can be derived by using the other two outputs as

AltB = AeqB + AgtB

Alogic circuit that implements the four-bit comparator circuit is shown in Figure 4.22. This
approach can be used to design a comparator for any value of n.

Comparator circuits, like most logic circuits, can be designed in different ways. Another
approach for designing a comparator circuit is presented in Example 3.9 in Chapter 3.
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Figure 4.22 A four-bit comparator circuit.

‘ 4.6 VERILOG FOR COMBINATIONAL CIRCUITS

Having presented a number of useful building block circuits, we will now consider how
such circuits can be described in Verilog. Rather than using gates or logic expressions,
we will specify the circuits in terms of their behavior. We will also give a more rigorous
description of previously used behavioral Verilog constructs and introduce some new ones.

4.6.1 THE CONDITIONAL OPERATOR

In a logic circuit it is often necessary to choose between several possible signals or values
based on the state of some condition. A typical example is a multiplexer circuit in which
the output is equal to the data input signal chosen by the valuation of the select inputs. For
simple implementation of such choices Verilog provides a conditional operator (?:) which
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assigns one of two values depending on a conditional expression. It involves three operands
used in the syntax

conditional_expression ? true_expression : false_expression

If the conditional expression evaluates to 1 (true), then the value of true_expression is
chosen; otherwise, the value of false_expression is chosen. For example, the statement

A=B <C)?7(D+5): (D+2)

means that if B is less than C, the value of A will be D + 5, or else A will have the
value D + 2. We used parentheses in the expression to improve readability; they are not
necessary. The conditional operator can be used both in continuous assignment statements
and in procedural statements inside an always block.
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A 2-to-1 multiplexer can be defined using the conditional operator in an assign statement
as shown in Figure 4.23. The module, named mux2fol, has the inputs wy, wy, and s, and
the output f. The signal s is used for the selection criterion. The output f is equal to wy if
the select input s has the value 1; otherwise, f is equal to wy. Figure 4.24 shows how the
same multiplexer can be defined by using the conditional operator inside an always block.
The same approach can be used to define the 4-to-1 multiplexer from Figure 4.2. As
seen in the truth table in Figure 4.2b, if the select input s; = 1, then fis set to either w, or
ws based on the value of s5(. Similarly, if s; = 0, then f1is set to either wy or w;. Figure 4.25
shows how nested conditional operators can be used to define this function. The module
is called mux4tol. 1Tts select inputs are represented by the two-bit vector S. The first
conditional expression tests the value of bit s;. If s = 1, then s is tested and fis set to ws
if so = 1 and fis set to w, if 5o = 0. This corresponds to the third and fourth rows of the
truth table in Figure 4.2b. Similarly, if s; = O the conditional operator on the right chooses
f =wyifso = 1land f = wy if 59 = 0, thus realizing the first two rows of the truth table.

Example 4.8

module mux2tol (w0, wl, s, f);
input w0, wl, s;
output f;
assign f=s? wl : w0;

endmodule

Figure 4.23 A 2-to-1 multiplexer specified using the
conditional operator.
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module mux2tol (w0, wl, s, f);
input w0, wl,s;
output reg f;

always @(w0, wl, s)
f=s?wl: wo0;

endmodule

Figure 4.24  An dlternative specification of a 2-to-1
multiplexer using the conditional operator.

module mux4tol (w0, wl, w2, w3, S, f);
input w0, wl, w2, w3;
input [1:0] S;
output f;
assign f=S[1]? (S[0] ? w3 : w2): (S[0] ? w1l : wO0);

endmodule

Figure 4.25 A 4-to-1 multiplexer specified using the conditional operator.

4.6.2 THE IF-ELSE STATEMENT

We have already used the if-else statement in previous chapters. It has the syntax

if (conditional_expression) statement;
else statement;

The conditional expression may use the operators given in Table A.1. If the expression
is evaluated to true then the first statement (or a block of statements delineated by begin
and end keywords) is executed, or else the second statement (or a block of statements) is
executed.

Example 4.9  Figure 4.26 shows how the if-else statement can be used to describe a 2-to-1 multiplexer.
The if clause states that f is assigned the value of wy when s = 0. Else, f is assigned the
value of wy.
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module mux2tol (w0, wl, s, f);
input w0, wl, s;
output reg f;

always @(w0, wl, s)

if s==0)
f=wO0;
else
f=wl;
endmodule

Figure 4.26  Code for a 2-to-1 multiplexer using the
if-else statement.

The if-else statement can be used to implement larger multiplexers. A4-to-1 multiplexer
is shown in Figure 4.27. The if-else clauses set f to the value of one of the inputs wy, . . ., ws,
depending on the valuation of S.

Another way of defining the same circuit is presented in Figure 4.28. In this case, a
four-bit vector W is defined instead of single-bit signals wy, wy, w,, and ws. Also, the four
different values of S are specified as decimal rather than binary numbers.

Figure 4.4 shows how a 16-to-1 multiplexer can be built by using five 4-to-1 multiplexers. Example 4.10
Figure 4.29 presents Verilog code for this circuit using five instantiations of the mux4tol
module. The data inputs to the mux16tol module are the 16-bit vector W, and the select
inputs are the four-bit vector S. In the Verilog code signal names are needed for the outputs
of the four 4-to-1 multiplexers on the left of Figure 4.4. A four-bit signal named M is used
for this purpose. The first multiplexer instantiated, Mux1, corresponds to the multiplexer
at the top left of Figure 4.4. Its first four ports are driven by the signals W[0], ..., W[3].
The syntax S[1:0] is used to attach the signals S[1] and S[0] to the two-bit S port of the
mux4tol module. The M [0] signal is connected to the multiplexer’s output port. Similarly,
Mux2, Mux3, and Mux4 are instantiations of the next three multiplexers on the left. The
multiplexer on the right of Figure 4.4 is instantiated as Mux5. The signals M [0], ..., M [3]
are connected to its data inputs, and bits S[3] and S[2] are attached to the select inputs. The
output port generates the muxI6tol output . Compiling the code results in the multiplexer
function

f = 53525150w0 + $35251SoW1 + 535251S0W2 + - - - + 53528150W14 + $35251S0W15
Since the mux4tol module is being instantiated in the code of Figure 4.29, it is nec-
essary to either include the code of Figure 4.28 in the same file as the mux/6tol module
or place the mux4tol module in a separate file in the same directory, or a directory with a
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module mux4tol (w0, wl, w2, w3, S, f);
input w0, wl, w2, w3;
input [1:0] S;
output reg f;

always @(*)

if (S ==2’b00)
f=wO0;

else if (S ==2’b01)
f=wl;

else if (S ==2"b10)
f=w2;

else
f=w3;

endmodule

Figure 4.27  Code for a 4-to-1 multiplexer using the if-else
statement.

module mux4tol (W, S, f);
input [0:3] W,
input [1:0] S;
output reg f;

always @(W, S)

if (S==0)
f=W[0];
elseif (S==1)
f=WI[1];
else if (S ==2)
f=WI[2];
else
f=WI[3];
endmodule

Figure 4.28  Alternative specification of a 4-to-1
multiplexer.

specified path so that the Verilog compiler can find it. Observe that if the code in Figure 4.27
were used as the required mux4tol module, then we would have to list the ports separately,
as in W[0], W[1], W[2], W[3], rather than as the vector W[0:3].
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module muxl16tol (W, S, f);
input [0:15] W,
input [3:0] S;
output f;
wire [0:3] M;

mux4tol Mux1 (W[0:3], S[1:0], M[O]);
mux4tol Mux2 (W[4:7], S[1:0], M[1]);
mux4tol Mux3 (W[8:11], S[1:0], M[2]);
mux4tol Mux4 (W[12:15], S[1:0], M[3]);
mux4tol Mux5 (MJ[0:3], S[3:2], f);

endmodule

Figure 4.29  Hierarchical code for a 16-to-1 multiplexer.

4.6.3 THE CASE STATEMENT

The if-else statement provides the means for choosing an alternative based on the value of
an expression. When there are many possible alternatives, the code based on this statement
may become awkward to read. Instead, it is often possible to use the Verilog case statement
which is defined as

case (expression)
alternativel: statement;
alternative2: statement;

alternativej: statement;
[default: statement;]
endcase

The value of the controlling expression and each alternative are compared bit by bit. When
there is one or more matching alternative, the statement(s) associated with the first match
(only) is executed. When the specified alternatives do not cover all possible valuations of
the controlling expression, the optional default clause should be included. Otherwise, the
Verilog compiler will synthesize memory elements to deal with the unspecified possibilities;
we will discuss this issue in Chapter 5.

The case statement can be used to define a 4-to-1 multiplexer as shown in Figure 4.30. The Example 4.11
four values that the select vector S can have are given as decimal numbers, but they could
also be given as binary numbers.
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module mux4tol (W, S, f);
input [0:3] W;
input [1:0] S;
output reg f;

always @(W, S)
case (S)
0: f=W][O0];
1: f=WI[1];
2: £=W[2];
3: f=W[3];
endcase

endmodule

Figure 4.30 A 4-to-1 multiplexer defined using the
case statement.

Example 4.12

Figure 4.31 shows how a case statement can be used to describe the truth table for a 2-to-4
binary decoder. The module is called dec2to4. The data inputs are the two-bit vector W,
and the enable input is En. The four outputs are represented by the four-bit vector Y.

In the truth table for the decoder in Figure 4.14a, the inputs are listed in the order
En wy wy. To represent these three signals in the controlling expression, the Verilog code
uses the concatenate operator to combine the En and W signals into a three-bit vector. The
four alternatives in the case statement correspond to the truth table in Figure 4.14a where
En =1, and the decoder outputs have the same patterns as in the first four rows of the
truth table. The last clause uses the default keyword and sets the decoder outputs to 0000,
because it represents all other cases, namely those where En = 0.

Example 4.13

The 2-to-4 decoder can be specified using a combination of if-else and case statements as
given in Figure 4.32. If En = 0, then all four bits of the output Y are set to the value 0O, else
the case alternatives are evaluated if En = 1.

Example 4.14

The tree structure of the 4-to-16 decoder in Figure 4.16 can be defined as shown in Figure
4.33. The inputs are a four-bit vector W and an enable signal En. The outputs are represented
by the 16-bit vector Y. The circuit uses five instances of the 2-to-4 decoder defined in either
Figure 4.31 or 4.32. The outputs of the left-most decoder in Figure 4.16 are denoted as the
four-bit vector M in Figure 4.33.
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module dec2to4 (W, En, Y);
input [1:0] W;
input En;
output reg [0:3];

always @(W, En)
case ({En, W})
3’b100: Y =4’b1000;
3’b101: Y =4’b0100;
3’b110: Y =4’b0010;
3’bl111: Y =4’b0001;
default: Y =4’b0000;
endcase

endmodule

Figure 4.31  Verilog code for a 2-to-4 binary decoder.

module dec2to4 (W, En, Y);
input [1:0] W;
input En;
output reg [0:3]Y;

always @(W, En)
begin
if (En ==0)
Y = 4’b0000;
else
case (W)
0: Y =4b1000;
1: Y =4’b0100;
2: Y =4’b0010;
3: Y =4’b0001;
endcase
end

endmodule

Figure 4.32  Alternative code for a 2-to-4 binary
decoder.
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module dec4tol6 (W, En, Y);
input [3:0] W;
input En;
output [0:15];
wire [0:3] M;

dec2to4 Decl (W][3:2], M[0:3], En);
dec2to4 Dec2 (W[1:0], Y[0:3], M[0]);
dec2to4 Dec3 (W[1:0], Y[4:7], M[1]);
dec2to4 Dec4 (W[1:0], Y[8:11], M[2]);
dec2to4 Dec5 (W[1:0], Y[12:15], M[3]);

endmodule

Figure 4.33  Verilog code for a 4-to-16 decoder.

Example 4.15

Another example of a case statement is given in Figure 4.34. The module, seg7, represents
the hex-to-7-segment decoder in Figure 4.21. The hexadecimal input is the four-bit vector
named hex, and the seven outputs are the seven-bit vector named leds. The case alternatives
are listed so that they resemble the truth table in Figure 4.21c. Note that there is a comment
to the right of the case statement, which labels the seven outputs with the letters from a
to g. These labels indicate to the reader the correlation between the bits of the leds vector
in the Verilog code and the seven segments in Figure 4.21b.

Example 4.16

An arithmetic logic unit (ALU) is a logic circuit that performs various Boolean and arithmetic
operations on n-bit operands. Table 4.1 specifies the functionality of a simple ALU, known
as the 74381 chip, which has been available in the form of a standard chip in the family
called the 7400-series. This ALU has 2 four-bit data inputs, A and B, a three-bit select
input, S, and a four-bit output, F. As the table shows, F is defined by various arithmetic or
Boolean operations on the inputs A and B. In this table + means arithmetic addition, and
— means arithmetic subtraction. To avoid confusion, the table uses the words XOR, OR,
and AND for the Boolean operations. Each Boolean operation is done in a bitwise fashion.
For example, FF = A AND B produces the four-bit result fo = apbo, fi = a1b1, f» = axb»,
andf3 = a3b3.

Figure 4.35 shows how the functionality of the 74381 ALU can be described in Verilog
code. The case statement shown corresponds directly to Table 4.1.

The Casex and Casez Statements

Logic circuits that we have considered so far operate using the logic values 0 and 1.
When specifying the functionality of such circuits in the form of a truth table, we sometimes
encounter cases where it does not matter whether a given logic variable has the value O or
1, as seen in Figures 4.14a and 4.20. It is customary to use the letter x to denote such cases,
where x represents an unknown value.
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module seg7 (hex, leds);
input [3:0] hex;
output reg [1:7] leds;

always @ (hex)
case (hex) //abcdefg
0: leds=7b1111110;
: leds = 7°b0110000;
: leds =7°b1101101;
: leds=7"b1111001;
: leds =7°b0110011;
: leds =7°b1011011;
: leds =7’b1011111;
: leds = 7°b1110000;
: leds =7°b1111111;
: leds =7’b1111011;
10: leds = 7°b1110111;
11: leds =7°b0011111;
12:1leds = 7’b1001110;
13:leds = 7°b0111101;
14:1leds =7°b1001111;
15:1eds = 7’b1000111;
endcase

O 00 1 Nt AW

endmodule

Figure 4.34  Code for a hex

Table 4.1  The functionality

of the 74381
ALU.
Inputs Outputs

Operation 52 51 S0 F
Clear 000 0000
B-A 001 B—A
A—B 010 A—B
ADD 011 A+B
XOR 100 A XOR B
OR 101 AORB
AND 110 A AND B

Preset 111 1111

-to-7-segment decoder.
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/1 74381 ALU

module alu (S, A, B, F);
input [2:0] S;
input [3:0] A, B;
output reg [3:0] F;

always @(S, A, B)

case (S)
0: F=4b0000;
1: F=B- A;
2: F=A- B;
3: F=A+B;
4: F=A" B;
5:F=A|B;
6: F=A&B;
7: F=4’bl111;

endcase

endmodule

Figure 4.35  Code that represents the functionality of
the 74381 ALU chip.

It is also possible to implement circuits that can produce three different types of output
signals. In addition to the usual 0 and 1 values, there is a third value that indicates that the
output line is not connected to any defined voltage level. In this state the output behaves like
an open circuit, as explained in Appendix B. We say that the output is in the high-impedance
state, which is usually denoted by using the letter z.

In Verilog, a signal can have four possible values: 0, 1, z, or x. The z and x values can
also be denoted by the capital letters Z and X. In the case statement it is possible to use
the logic values 0, 1, z, and x in the case alternatives. A bit-by-bit comparison is used to
determine the match between the expression and one of the alternatives.

Verilog provides two variants of the case statement that treat the z and x values in
a different way. The casez statement treats all z values in the case alternatives and the
controlling expression as don’t cares. The casex statement treats all z and x values as don’t
cares.

Example 4.17

Figure 4.36 gives Verilog code for the priority encoder defined in Figure 4.20. The desired
priority scheme is realized by using a casex statement. The first alternative specifies that
the output is set to y;yg = 3 if the input w3 is 1. This assignment does not depend on the
values of inputs wy, wy, or wy; hence their values do not matter. The other alternatives in
the casex statement are evaluated only if w3 = 0. The second alternative states that if w;
is 1, then y;yp = 2. If wp, = 0, then the next alternative results in y;yp = 1 if w; = 1. If
w3 = wp = w; = 0 and wy = 1, then the fourth alternative results in y;yy = 0.
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module priority (W, Y, z);
input [3:0] W;
output reg [1:0]Y;
output reg z;

always @(W)

begin
z=1;
casex (W)
4’blxxx: Y =3;
4’b01xx: Y =2;
4’b001x: Y=1;
4’b0001: Y =0;
default: begin
z=0;
Y =2’bx;
end
endcase
end
endmodule

Figure 4.36  Verilog code for a priority encoder.

The priority encoder’s output z must be set to 1 whenever at least one of the data inputs
is 1. This output is set to 1 outside the casex statement in the always block. If none of the
four alternatives matches the value of W, then the default clause overrides the value of z
and sets it to 0. The default clause also indicates that the ¥ output can be set to any pattern
because it will be ignored.
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4.6.4 THaE For LooprP

If the structure of a desired circuit exhibits a certain regularity, it may be convenient to
define the circuit using a for loop. We introduced the for loop in Section 3.5.4, where it
was useful in a generic specification of a ripple-carry adder. The for loop has the syntax

for (initial_index; terminal_index; increment) statement;

A loop control variable, which has to be of type integer, is set to the value given as the
initial index. Itis used in the statement or a block of statements delineated by begin and end
keywords. After each iteration, the control variable is changed as defined in the increment.
The iterations end after the control variable has reached the terminal index.
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Unlike for loops in high-level programming languages, the Verilog for loop does not
specify changes that take place in time through successive loop iterations. Instead, during
each iteration it specifies a different subcircuit. In Figure 3.25 the for loop was used to
define a cascade of full-adder subcircuits to form an n-bit ripple-carry adder. The for loop
can be used to define many other structures as illustrated by the next two examples.

Example 4.18

Figure 4.37 shows how the for loop can be used to specify a 2-to-4 decoder circuit. The
effect of the loop is to repeat the if-else statement four times, for k =0, ..., 3. The first
loop iteration sets yo = 1 if W = 0 and En = 1. Similarly, the other three iterations set the
values of yy, y», and y3 according to the values of W and En.

This arrangement can be used to specify a large n-to-2" decoder simply by increasing
the sizes of vectors W and Y accordingly, and making n — 1 be the terminal index value
of k.

Example 4.19

The priority encoder of Figure 4.20 can be defined by the Verilog code in Figure 4.38. In
the always block, the output bits y; and y, are first set to the don’t-care state and z is cleared
to 0. Then, if one or more of the four inputs ws, ..., wy is equal to 1, the for loop will set
the valuation of y;yy to match the index of the highest priority input that has the value 1.
Note that each successive iteration through the loop corresponds to a higher priority. Verilog
semantics specify that a signal that receives multiple assignments in an always block retains
the last assignment. Thus the iteration that corresponds to the highest priority input that is
equal to 1 will override any setting of ¥ established during the previous iterations.

module dec2to4 (W, En, Y);
input [1:0] W;
input En;
output reg [0:3]Y;
integer k;

always @(W, En)
for (k=0;k<=3;k=k+])
if (W ==k) && (En==1))

Y[k]=1;
else
Y[k]=0;
endmodule

Figure 4.37 A 2-to-4 binary decoder specified using the for
loop.
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module priority (W, Y, z);
input [3:0] W;
output reg [1:0]Y;
output reg z;
integer k;

always @(W)
begin
Y =2’bx;
z=0;
for k=0;k< 4;k=k+1)
if (W[k])
begin
Y =k;
z=1;
end
end

endmodule

Figure 4.38 A priority encoder specified using the for
loop.

4.6.5 VERILOG OPERATORS

In this section we discuss the Verilog operators that are useful for synthesizing logic circuits.
Table 4.2 lists these operators in groups that reflect the type of operation performed. A more
complete listing of the operators is given in Table A.1.

To illustrate the results produced by the various operators, we will use three-bit vectors
A[2:0], B[2:0], and C[2:0], as well as scalars f and w.

Bitwise Operators

Bitwise operators operate on individual bits of operands. The ~ operator forms the 1’s
complement of the operand such that the statement

C=~A;

produces the result ¢, = a,, c; = ay, and ¢y = ap, where a; and c; are the bits of the vectors
AandC.
Most bitwise operators operate on pairs of bits. The statement

C=A&B;

generates ¢, = aj - by, ¢y = ay - by, and ¢y = ag - by. Similarly, the | and * operators per-
form bitwise OR and XOR operations. The "~ operator, which can also be written as ~",
produces the XNOR such that

223



224 CHAPTER 4 o COMBINATIONAL-CIRCUIT BUILDING BLOCKS

Table 4.2  Verilog operators.

Operator type Operator symbols Operation performed Number of operands

Bitwise = 1’s complement 1
& Bitwise AND 2
| Bitwise OR 2
A Bitwise XOR 2
~A o A~ Bitwise XNOR 2
Logical ! NOT 1
&& AND 2
I OR 2
Reduction & Reduction AND 1
~& Reduction NAND 1
| Reduction OR 1
~ | Reduction NOR 1
A Reduction XOR 1
~N or N~ Reduction XNOR 1
Arithmetic 4F Addition 2
— Subtraction 2
— 2’s complement 1
Multiplication 2
/ Division 2
Relational > Greater than 2
< Less than 2
>= Greater than or equal to 2
<= Less than or equal to 2
Equality == Logical equality 2
= Logical inequality 2
Shift >> Right shift 2
<< Left shift 2

Concatenation {,} Concatenation Any number

Replication {{}} Replication Any number
Conditional 7 Conditional 3

C=A~"B;

gives ¢ = ay ® by, c; = a; @ by, and ¢y = ag D by. If the operands are of unequal size,
then the shorter operand is extended by padding Os to the left.

A scalar function may be assigned a value as a result of a bitwise operation on two
vector operands. In this case, it is only the least-significant bits of the operands that are
involved in the operation. Hence the statement

f=A"B;

yields f = ag @ by.
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&0 1 x | 10 1 x
0]l]0 0 O 0/0 1 x
1 ]1]0 1 x 171 1 1
x |0 x X x| x 1 x
Ao 1 x ~N10 1 x
0]0 1 x 0 1 0 x
111 0 x 1 0 1 x
X | X X X X | X X X

Figure 4.39  Truth tables for bitwise operators.

The bitwise operations may involve operands that include the unknown logic value x.
Then the operations are performed according to the truth tables in Figure 4.39. For example,
if P=4’b101x and Q = 4’b1001, then P & Q = 4’b100x while P | Q = 4’b1011.

Logical Operators
The ! operator has the same effect on a scalar operand as the ~ operator. Thus, f = !w
= ~w. But the effect on a vector operand is different, namely if

f=1A;
then f will be equal to 1 (true) only if all bits of A are equal to O (false). Hence, f =

a> + ay + ap.
The && operator implements the AND operation such that

f=A&&B;
produces f = (ay + a; + ag) - (by + by + bp). Similarly, using the || operator in
f=AllB;
gives f = (ay + ay + ap) + (b2 + by + bo).

Reduction Operators
The reduction operators perform an operation on the bits of a single vector operand
and produce a one-bit result. Using the & operator in

f=&A;
produces f = a; - a; - ag. Similarly,
f="A;

gives f = a, @ a; @ agp, and so on.
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Arithmetic Operators

We have already encountered the arithmetic operators in Chapter 3. They perform
standard arithmetic operations. Thus

C=A+B;
puts the three-bit sum of A plus B into C, while
C=A-B;
puts the difference of A and B into C. The operation
C=-A;

places the 2’s complement of A into C.

The addition, subtraction, and multiplication operations are supported by most CAD
synthesis tools. However, the division operation is often not supported. When the Verilog
compiler encounters an arithmetic operator, it usually synthesizes it by using an appropriate
module from a library.

Relational Operators

The relational operators are typically used as conditions in if-else and for statements.
These operators have the same meaning as the corresponding operators in the C program-
ming language. An expression that uses the relational operators returns the value 1 if it is
evaluated as true, and the value O if evaluated as false. If there are any x (unknown) or z
bits in the operands, then the expression takes the value x.

Example 4.20

The use of relational operators in the if-else statement is illustrated in Figure 4.40. The
defined circuit is the four-bit comparator described in Section 4.5.

Equality Operators

The expression (A == B) is evaluated as true if A is equal to B and false otherwise. The
= operator has the opposite effect. The result is ambiguous (x) if either operand contains
x or z values.

Shift Operators

A vector operand can be shifted to the right or left by a number of bits specified as a
constant. When bits are shifted, the vacant bit positions are filled with Os. For example,

B=A<<1;
results in b, = ay, b; = ap, and by = 0. Similarly,
B=A>>2;

yields b, = b; = 0 and by = a,.
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module compare (A, B, AeqB, AgtB, AltB);
input [3:0] A, B;
output reg AeqB, AgtB, AltB;

always @(A, B)
begin
AeqB =0;
AgtB =0;
AltB = 0;
if (A==B)
AegB =1;
else if (A > B)
AgtB =1;
else
AltB =1;
end

endmodule

Figure 4.40  Verilog code for a four-bit comparator.

Concatenate Operator

This operator concatenates two or more vectors to create a larger vector. For example,
D= {A,B};
defines the six-bit vector D = ayajapb,b1bgy. Similarly, the concatenation
E = {3’bl11, A, 2°b00};

produces the eight-bit vector E = 111aya;a(00.

Replication Operator

This operator allows repetitive concatenation of the same vector, which is replicated the
number of times indicated in the replication constant. For example, {3{A}} is equivalent to
writing {A, A, A}. The specification {4{2’b10}} produces the eight-bit vector 10101010.

The replication operator may be used in conjunction with the concatenate operator. For
instance, {2{A}, 3{B}} is equivalent to {A, A, B, B, B}. We introduced the concatenate
and replication operators in Sections 3.5.6 and 3.5.8, respectively, and illustrated their use
in specifying the adder circuits.
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Table 4.3  Precedence of Verilog operators.

Operator type Operator symbols Precedence
Complement I~ = Highest precedence
Arithmetic * /

+ —
Shift << >>
Relational < <= > >=
Equality = =
Reduction & ~&

A ~ N

|~
Logical &&

l

Conditional 7 Lowest precedence

Conditional Operator
The conditional operator is discussed fully in Section 4.6.1.

Operator Precedence

The Verilog operators are assumed to have the precedence indicated in Table 4.3.
The order of precedence is from top to bottom; operators in the top row have the highest
precedence and those in the bottom row have the lowest precedence. The operators listed
in the same row have the same precedence.

The designer can use parentheses to change the precedence of operators in Verilog code
or remove any possible misinterpretation. It is a good practice to use parentheses to make
the code unambiguous and easy to read.

4.6.6 THE GENERATE CONSTRUCT

In Section 3.5.4 we introduced the generate loop capability which can be used to create
multiple instances of subcircuits. A subcircuit may be defined in a block of statements
delineated by the generate and endgenerate keywords. The subcircuit is instantiated
multiple times using a generate-index variable. This variable is defined using the genvar
keyword and it can have only positive integer values. It is not possible to use an index
declared as a normal integer variable.

Example 4.21

Figure 4.41 shows how the generate construct can be used to specify an n-bit ripple-carry
adder. The subcircuit is a full-adder defined structurally in terms of primitive gates as
introduced in Figure 3.18. The for loop causes the full-adder block to be instantiated n
times.
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module addern (carryin, X, Y, S, carryout);
parameter n = 32;
input carryin;
input [n-1:0] X,Y;
output [n—-1:0] S;
output carryout;
wire [n:0] C;

genvar k;
assign C[0] = carryin;
assign carryout = C[n];
generate
for (k=0;k < n; k=k+1)
begin: fulladd_stage
wire z1, z2, z3; //wires within full-adder
xor (S[k], X[k], Y[k], C[k]);
and (z1, X[k], Y[k]);
and (z2, X[k], C[k]);
and (z3, Y[k], C[k]);
or (Clk+1], z1, z2, z3);
end
endgenerate

endmodule

Figure 4.41 Using the generate loop to define an n-bit
ripple-carry adder.

In this example, the for statement is used in the generate block to control the selection
of the generated objects. The generate block can also contain if-else and case statements
to determine which objects are generated.
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4.6.7 TasSks AND FUNCTIONS

In high-level programming languages it is possible to use subroutines and functions to
avoid replicating specific routines that may be needed in several places of a given program.
Verilog provides similar capabilities, known as tasks and functions. They can be used to
modularize large designs and make the Verilog code easier to understand.

Verilog Task

A task is declared by the keyword task and it comprises a block of statements that ends
with the keyword endtask. The task must be included in the module that calls it. It may
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have input and output ports. These are not the ports of the module that contains the task,
which are used to make external connections to the module. The task ports are used only
to pass values between the module and the task.

Example 4.22

In Figure 4.29 we showed the Verilog code for a 16-to-1 multiplexer that instantiates five
copies of a 4-to-1 multiplexer circuit given in a separate module named mux4fol. The same
circuit can be specified using the task approach as shown in Figure 4.42. Observe the key
differences. The task mux4tol is included in the module muxI6tol. It is called from an
always block by means of an appropriate case statement. The output of a task must be a
variable, hence g is of reg type.

module mux16tol (W, S16, f);
input [0:15] W;
input [3:0] S16;
output reg f;

always @(W, S16)
case (S16[3:2])
0: mux4tol (W[0:3], S16[1:0], ©);
1: mux4tol (W[4:7], S16[1:0], f);
2: mux4tol (W[8:11], S16[1:0], f);
3: mux4tol (W[12:15], S16[1:0], f);
endcase

// Task that specifies a 4-to-1 multiplexer
task mux4tol;

input [0:3] X;

input [1:0] S4;

output reg g;

case (S4)

= X[0];
X[1];
=X[2];
3 g X[3];
endcase
endtask

endmodule

Figure 4.42  Use of a task in Verilog code.
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Verilog Function

A function is declared by the keyword function and it comprises a block of statements
that ends with the keyword endfunction. The function must have at least one input and it
returns a single value that is placed where the function is invoked.

Figure 4.43 shows how the code in Figure 4.42 can be written to use a function. The Verilog Example 4.23
compiler essentially inserts the body of the function at each place where it is called. Hence
the clause

0: f = mux4tol (W[0:3], S16[1:0]);

becomes

module mux16tol (W, S16, f);
input [0:15] W;
input [3:0] S16;
output reg f;

// Function that specifies a 4-to-1 multiplexer
function mux4tol;

input [0:3] X;

input [1:0] S4;

case (S4)
0: mux4tol = X[0];
1: mux4tol = X[1];
2: mux4tol = X[2];
3: mux4tol = X[3];
endcase
endfunction

always @(W, S16)
case (S16[3:2])
0: f = mux4tol (W[0:3], S16[1:0]);
1: f = mux4tol (W[4:7], S16[1:0));
2: f = mux4tol (W[8:11], S16[1:0]);
3: f = mux4tol (W[12:15], S16[1:0]);
endcase

endmodule

Figure 4.43  The code from Figure 4.42 using a function.
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0: case (S16[1:0])

0: f = W]JO0];
1: f=W[1];
2: f=WJ[2];
3: f=W]J3];
endcase

The function serves as a convenience that makes the mux/6tol module more compact.

A Verilog function can invoke another function but it cannot call a Verilog task. A task
may call another task and it may invoke a function. In Figure 4.42 we defined the task after
the always block that calls it. In contrast, in Figure 4.43 we defined the function before
the always block that invokes it. Both possibilities are allowed in the Verilog standard for
both tasks and functions. However, some tools require functions to be defined before the
statements that invoke them.

4.7 CoONCLUDING REMARKS

This chapter has introduced a number of circuit building blocks. Examples using these
blocks to construct larger circuits will be presented in later chapters. To describe the
building block circuits efficiently, several Verilog constructs have been introduced. In
many cases a given circuit can be described in various ways, using different constructs. A
circuit that can be described using an if-else statement can also be described using a case
statement or perhaps a for loop. In general, there are no strict rules that dictate when one
style should be preferred over another. With experience the user develops a sense for which
types of statements work well in a particular design situation. Personal preference also
influences how the code is written.

Verilog is not a programming language, and Verilog code should not be written as if it
were a computer program. The statements discussed in this chapter can be used to create
large, complex circuits. A good way to design such circuits is to construct them using well-
defined modules, in the manner that we illustrated for the multiplexers, decoders, encoders,
and so on. Additional examples using the Verilog statements introduced in this chapter are
given in Chapters 5 and 6. In Chapter 7 we provide a number of examples of using Verilog
code to describe larger digital systems. For more information on Verilog, the reader can
consult more specialized books [2—-8].

In the next chapter we introduce logic circuits that include the ability to store logic
signal values in memory elements.
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4.8 EXAMPLES OF SOLVED PROBLEMS

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

Problem: Implement the function f (wy, wa, w3) = > m(0, 1, 3,4, 6, 7) by using a 3-to-8 Example 4.24
binary decoder and an OR gate.

Solution: The decoder generates a separate output for each minterm of the required function.
These outputs are then combined in the OR gate, giving the circuit in Figure 4.44.

Problem: Derive a circuit that implements an 8-to-3 binary encoder. Example 4.25

Solution: The truth table for the encoder is shown in Figure 4.45. Only those rows for
which a single input variable is equal to 1 are shown; the other rows can be treated as don’t
care cases. From the truth table it is seen that the desired circuit is defined by the equations

Yo = w4+ ws + we +wy

Yi=w2+ w3+ we+wy

Yo =wi +w3+Wws+wy

Problem: Implement the function Example 4.26
Wi, wa, w3, wa, ws) = WiwawaWws + wiwy + wiws + wiwy + wi3waws

by using a 4-to-1 multiplexer and as few other gates as possible. Assume that only the
uncomplemented inputs wy, wp, ws, wy, and ws are available.

W3 — "o Yo
W2 — Wy Y1
Wi— w, Yo F—
Y3
v ) !
Vs F—
Ye
I —En Y7

Figure 4.44  Circuit for Example 4.24.
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W7 We Ws Wy W3 Wy Wy Wy Y2 Y1 Yo
0O 0 0 0 0 0 0 1 0 0 O
0O 0 0 0 0 o0 1 O 0 0 1
o 0 0 0 0O 1 0 O 0O 1 0
o 0 0 0 1 0 0 O 0 1 1
o 0 0 1 0 0 0 O 1 0 O
o o0 1 0 0 0 0 O 1 0 1
o 1 0 0 0 O 0 O 1 1 0
1 0 0 0 0 0 0 O 1 1 1

Figure 4.45  Truth table for an 8-to-3 binary encoder.

Wl W4
wy WyWs J\L
Ws
I VV3 WS
w3 )
;Dﬁ

/

Figure 4.46  Circuit for Example 4.26.

Solution: Since variables w; and w, appear in more product terms in the expression for
f than the other three variables, let us perform Shannon’s expansion with respect to these
two variables. The expansion gives
f = WIWJWIW4 + WIW‘UCWIWA + W1W4fw]W4 + W1W4fwlw4
= Wiws(Waws) + wiwa(waws) + wiwa(wz + w3) + wiwa (1)

We can use a NOR gate to implement wows = w, + ws. We also need an AND gate and an
OR gate. The complete circuit is presented in Figure 4.46.
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by by by 82 81 8o
0 0 O 0O 0 O
0 0 1 0 0 1
0O 1 O 0 1 1
0 1 1 0O 1 O
1 0 O 1 1 0
1 0 1 1 1 1
1 1 0 1 0 1
1 1 1 1 0 0

Figure 4.47  Binary to Gray code coversion.

Problem: In Chapter 2 we pointed out that the rows and columns of a Karnaugh map Example 4.27
are labeled using Gray code. This is a code in which consecutive valuations differ in one

variable only. Figure 4.47 depicts the conversion between three-bit binary and Gray codes.

Design a circuit that can convert a binary code into Gray code according to the figure.

Solution: From the figure it follows that
=0
g1 = biby + bby
=b ® b
g0 = boby + boby
= by ® b

Problem: In Section 4.1.2 we showed that any logic function can be decomposed using Example 4.28
Shannon’s expansion theorem. For a four-variable function, f (wy, ..., ws), the expansion
with respect to wy is

fwi, oo owe) =wifs +wify,

A circuit that implements this expression is given in Figure 4.48a.

(a) If the decomposition yields fi;, = 0, then the multiplexer in the figure can be replaced
by a single logic gate. Show this circuit.

(b) Repeat part (a) for the case where f,,, = 1.

Solution: The desired circuits are shown in parts (b) and (c) of Figure 4.48.
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Wy
Wy
w3

Wy

I,

fW']

(a) Shannon’s expansion of the function f.

I_}f

D

w1
L)
W3 fw]
Wy
(b) Solution for part a.
Wi
Wy
w3 I3,
e
(c) Solution for part b.
Figure 4.48  Circuits for Example 4.28.

Example 4.29 Problem: In Section 2.17 we said that field-programmable gate arrays (FPGAs) contain
lookup tables (LUTs) that are used to implement logic functions. Each LUT can be pro-
grammed to implement any logic function of its inputs. FPGAs are discussed in detail in
Appendix B. Many commercial FPGAs contain four-input lookup tables (4-LUTs). What
is the minimum number of 4-LUTs needed to construct a 4-to-1 multiplexer with select

inputs 51 and 5o and data inputs w3, wa, wy, and wo?

Solution: A straightforward attempt is to use directly the expression that defines the 4-to-1

multiplexer

Let g = 515owo + S15ow1 and h = 5150wy + s15ows, so thatf = g + h. This decomposition

f = S1Sowo + 150w + 515wz + S1SoW3

leads to the circuit in Figure 4.49a, which requires three LUTs.
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So
51

LUT

Wo

Wi

LUT }— f

1L
.

LUT
Wy

W3

(a) Using three LUTs

So
51

LUT k

Wo

Wi

LUT pb— f

Wy

W3

(b) Using two LUTs

Figure 4.49  Circuits for Example 4.29.

When designing logic circuits, one can sometimes come up with a clever idea which
leads to a superior implementation. Figure 4.49bH shows how it is possible to implement
the multiplexer with just two LUTs, based on the following observation. The truth table in
Figure 4.2b indicates that when s; = 0 the output must be either wy or wy, as determined
by the value of syp. This can be generated by the first LUT, with the output k. The second
LUT must make the choice between w, and w3 when s; = 1. But, the choice can be made
only by knowing the value of s¢. Since it is impossible to have five inputs in the LUT, more
information has to be passed from the first to the second LUT. Observe that when s; = 1
the output / will be equal to either w; or ws, in which case it is not necessary to know the
values of wy and w;. Hence, in this case we can pass on the value of sy through the first
LUT, rather than wy or w;. This can be done by making the function of this LUT

k = 51(Sowo + sow1) + 5150

237
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0 ws wy wy Wo 0

| | | | | |
o f\1 0/ f\1 0/ 13\1 0/ J3\1 0/ ﬁ\l | 0/
k

Y3 Y2 Y1 Yo

Figure 4.50 A shifter circuit.

Then, the second LUT performs the function
f =51k + 51 (kws + kwg)

Example 4.30 Problem: In digital systems it is often necessary to have circuits that can shift the bits of
a vector by one or more bit positions to the left or right. Design a circuit that can shift a
four-bit vector W = w3yw,wwy one bit position to the right when a control signal Shift is
equal to 1. Let the outputs of the circuit be a four-bit vector ¥ = y3y,y;yo and a signal k,
such that if Shift = 1 then y3 = 0, y, = w3, y1 = wa, yo = wy, and k = wy. If Shift =0
then Y = W and k = 0.

Solution: The required circuit can be implemented with five 2-to-1 multiplexers as shown
in Figure 4.50. The Shift signal is used as the select input to each multiplexer.

Example 4.31 Problem: The shifter circuit in Example 4.30 shifts the bits of an input vector by one bit
position to the right. It fills the vacated bit on the left side with 0. A more versatile shifter
circuit may be able to shift by more bit positions at a time. If the bits that are shifted out are
placed into the vacated positions on the left, then the circuit effectively rotates the bits of
the input vector by a specified number of bit positions. Such a circuit is often called a barrel
shifter. Design a four-bit barrel shifter that rotates the bits by 0, 1, 2, or 3 bit positions as
determined by the valuation of two control signals s; and so.

Solution: The required action is given in Figure 4.51a. The barrel shifter can be imple-
mented with four 4-to-1 multiplexers as shown in Figure 4.51b. The control signals s; and
so are used as the select inputs to the multiplexers.

Example 4.32 Problem: Write Verilog code that represents the circuit in Figure 4.17. Use the dec2ro4
module in Figure 4.31 as a subcircuit in your code.

Solution: The code is shown in Figure 4.52. Note that the dec2to4 module can be included
in the same file as we have done in the figure, but it can also be in a separate file in the
project directory.
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St So Yz Y2 Y1 Yo

W3 Wy Wi Wy
Wo W3 Wy Wy
Wl WO W3 W2
W2 Wl WO W3

—_—— O O
_— o = O

(a) Truth table

w3 Wy wy Wo

T [T [T [
S, —e o >

1

So

Y3 Y2 Y1 Yo
(b) Circuit

Figure 4.51 A barrel shifter circuit.

Problem: Write Verilog code that represents the shifter circuit in Figure 4.50. Example 4.33

Solution: One possibility is to specify the structure of this circuit as shown in Figure 4.53.
The if-else construct is used to define the desired shifting of individual bits. A typical
Verilog compiler will implement this code with 2-to-1 multiplexers as depicted in Fig-
ure 4.50.

An alternative is to make use of the shift operator defined in Section 4.6.5, as indicated
in Figure 4.54.

Problem: Write Verilog code that defines the barrel shifter in Figure 4.51. Example 4.34

Solution: The code in Figure 4.55 is a possible solution. The rotate function is accomplished
by concatenating two copies of the input vector W and shifting the obtained 8-bit vector to
the right by the number of bit positions specified as the input S. The four least-significant
bits of the resulting 8-bit vector are the desired output Y.
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module mux4tol (W, S, f);
input [0:3] W;
input [1:0] S;
output f;
wire [0:3]Y;

dec2to4 decoder (S, 1,Y);
assign f=|(W & Y);

endmodule

module dec2to4 (W, En, Y);
input [1:0] W,
input En;
output reg [0:3]Y;

always @(W, En)
case ({En, W})
3’b100: Y =4’b1000;
3’b101: Y =4’b0100;
3’b110: Y =4’b0010;
3’bl111: Y =4’b0001;
default: Y = 4’b0000;
endcase

endmodule

Figure 4.52  Verilog code for Example 4.32.

Example 4.35 The concept of parity is widely used in digital systems for error-checking purposes. When
digital information is transmitted from one point to another, perhaps by long wires, it is
possible for some bits to become corrupted during the transmission process. For example,
the sender may transmit a bit whose value is equal to 1, but the receiver observes a bit whose
value is 0. Suppose that a data item consists of n bits. A simple error-checking mechanism
can be implemented by including an extra bit, p, which indicates the parity of the n-bit item.
Two kinds of parity can be used. For even parity the p bit is given the value such that the
total number of 1s in the n + 1 transmitted bits (comprising the n-bit data and the parity bit
p) is even. For odd parity the p bit is given the value that makes the total number of 1s odd.
The sender generates the p bit based on the n-bit data item that is to be transmitted. The
receiver checks whether the parity of the received item is correct.

Parity generating and checking circuits can be realized with XOR gates. For example,
for a four-bit data item consisting of bits x3x,x]xo, the even parity bit can be generated as

pP=x3DxDx1 Dxo
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module shifter (W, Shift, Y, k);
input [3:0] W;
input Shift;
output reg [3:0]Y;
output reg k;

always @ (W, Shift)
begin
if (Shift)
begin
Y[3]=0;
Y[2:0] = W[3:1];
k =WIO];
end
else
begin
Y=W;
k=0;
end
end

endmodule

Figure 4.53  Verilog code for the circuit in Figure 4.50.

At the receiving end the checking is done using
c=pDx3sDx2 B x D xo

If ¢ = 0, then the received item shows the correct parity. If ¢ = 1, then an error has occurred.
Note that observing ¢ = 0 is not a guarantee that the received item is correct. If two or any
even number of bits have their values inverted during the transmission, the parity of the
data item will not be changed; hence the error will not be detected. But if an odd number
of bits are corrupted, then the error will be detected.

Problem: The ASCII code, discussed in Section 1.5.3, uses seven-bit patterns to represent
characters. In computer applications it is common to use one byte per character. The eighth
bit, b7, is usually set to O for use in digital processing. But, if the the character data is to be
transmitted from one digital system to another, it may be prudent to use bit b; as a parity
bit. Write Verilog code that specifies a circuit that accepts an input byte (where b7 = 0) and
produces an output byte where b7 is the even parity bit.

Solution: Let X and Y be the input and output bytes, respectively. Then, the desired
solution is given in Figure 4.56.
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module shifter (W, Shift, Y, k);
input [3:0] W;
input Shift;
output reg [3:0]Y;
output reg k;

always @(W, Shift)

begin
if (Shift)
begin
Y=W>> 1,
k =WIO];
end
else
begin
Y =W,
k=0;
end
end
endmodule

Figure 4.54  Alternative Verilog code for the circuit in
Figure 4.50.

module barrel (W, S, Y);
input [3:0] W;
input [1:0] S;
output [3:0]Y;
wire [3:0] T;
assign {T,Y}={W, W} >> §;

endmodule

Figure 4.55  Verilog code for the barrel shifter.

module parity (X, Y);
input [7:0] X;
output [7:0]Y;
assign Y = {"X[6:0], X[6:0]};

endmodule

Figure 4.56  Verilog code for Example 4.35.
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PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

4.1

4.2

*4.3

4.4
*4.5

4.6
4.7

4.8
4.9
*4.10

*4.11

4.16

Show how the function f (wy, wa, w3) = Y m(0, 2, 3,4, 5,7) can be implemented using a
3-to-8 binary decoder and an OR gate.

Show how the function f(wy, wp, w3) = > m(1,2,3,5,6) can be implemented using a
3-to-8 binary decoder and an OR gate.

Consider the function f = w;w3 + waws + wiw;. Use the truth table to derive a circuit for
f that uses a 2-to-1 multiplexer.

Repeat Problem 4.3 for the function f = wows + wiws.

For the function f (wy, wa, w3) = Y m(0, 2, 3, 6), use Shannon’s expansion to derive an
implementation using a 2-to-1 multiplexer and any other necessary gates.

Repeat Problem 4.5 for the function f (wy, wo, w3) = > m(0,4, 6, 7).

Consider the function f = w, + w;w3 + wiws. Show how repeated application of Shan-
non’s expansion can be used to derive the minterms of f.

Repeat Problem 4.7 for f = wy + wws.
Prove Shannon’s expansion theorem presented in Section 4.1.2.

Section 4.1.2 shows Shannon’s expansion in sum-of-products form. Using the principle of
duality, derive the equivalent expression in product-of-sums form.

Consider the function f = w;w, + Wows + wiwows. The cost of this minimal sum-of-
products expression is 14, which includes four gates and 10 inputs to the gates. Use
Shannon’s expansion to derive a multilevel circuit that has a lower cost and give the cost
of your circuit.

Use multiplexers to implement the circuit for stage 0 of the carry-lookahead adder in Figure
3.15 (included in the right-most shaded area).

Derive minimal sum-of-products expressions for the outputs a, b, and ¢ of the 7-segment
display in Figure 4.21.

Derive minimal sum-of-products expressions for the outputs d, e, f, and g of the 7-segment
display in Figure 4.21.

For the function, f, in Example 4.26 perform Shannon’s expansion with respect to variables
wi and wy, rather than w; and w4. How does the resulting circuit compare with the circuit
in Figure 4.46?

Consider the multiplexer-based circuit illustrated in Figure P4.1. Show how the function
f = wows + wiws + wows can be implemented using only one instance of this circuit.
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Figure P4.1 A multiplexer-based circuit.

4,17 Show how the function f = wiw3 + wiws; + waws + wiw; can be realized using one or
more instances of the circuit in Figure P4.1. Note that there are no NOT gates in the circuit;
hence complements of signals have to be generated using the multiplexers in the logic block.

*4.,18 Consider the Verilog code in Figure P4.2. What type of circuit does the code represent?
Comment on whether or not the style of code used is a good choice for the circuit that it
represents.

module problem4_18 (W, En, y0, y1, y2, y3);
input [1:0] W;
input En;
output reg y0, yl, y2, y3;

always @(W, En)

begin
y0 =0;
yl=0;
y2=0;
y3=0;
if (En)

if(W==0) y0=1,
elseif W==1) yl=1;
elseif ( W==2) y2=1;
else y3=1;

end

endmodule

Figure P4.2  Code for Problem 4.18.
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Write Verilog code that represents the function in Problem 4.2, using a case statement.
Write Verilog code for a 4-to-2 binary encoder.
Write Verilog code for an 8-to-3 binary encoder.

Figure P4.3 shows a modified version of the code for a 2-to-4 decoder in Figure 4.37. This
code is almost correct but contains one error. What is the error?

module dec2to4 (W, En, Y);
input [1:0] W;
input En;
output reg [0:3]Y;
integer k;

always @(W, En)
for (k=0;k<=3;k=k+1)
if( W==k)
Y|[k] = En;

endmodule

Figure P4.3  Code for Problem 4.22.

Derive the circuit for an 8-to-3 priority encoder.
Using a casex statement, write Verilog code for an 8-to-3 priority encoder.
Repeat Problem 4.24, using a for loop.

Create a Verilog module named if2to4 that represents a 2-to-4 binary decoder using an
if-else statement. Create a second module named A3t08 that represents the 3-to-8 binary
decoder in Figure 4.15 using two instances of the if2fo4 module.

Create a Verilog module named h6f0o64 that represents a 6-to-64 binary decoder. Use the
treelike structure in Figure 4.16, in which the 6-to-64 decoder is built using nine instances
of the h3to8 decoder created in Problem 4.26.

Write Verilog code that represents the circuit in Figure 4.17. Use the dec2fo4 module in
Figure 4.31 as a subcircuit in your code.

Design a shifter circuit, similar to the one in Figure 4.50, which can shift a four-bit input
vector, W = wswowwy, one bit-position to the right when the control signal Right is equal
to 1, and one bit-position to the left when the control signal Left is equal to 1. When Right
= Left = 0, the output of the circuit should be the same as the input vector. Assume that
the condition Right = Left = 1 will never occur.

Design a circuit that can multiply an eight-bit number, A = a7, ..., ap, by 1, 2,3 or 4 to
produce the result A, 2A, 3A or 4A, respectively.
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4.31
4.32

4.33
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Write Verilog code that implements the task in Problem 4.30.

Figure 4.47 depicts the relationship between the binary and Gray codes. Design a circuit
that can convert Gray code into binary code.

Example 4.35 and Figure 4.56 show how a circuit that generates an ASCII byte suitable for
sending over a communications link may be defined. Write Verilog code for its counterpart
at the receiving end, where byte Y (which includes the parity bit) has to be converted into
byte X in which the bit x7 has to be 0. An error signal has to be produced, which is set to
0 or 1 depending on whether the parity check indicates correct or erroneous transmission,

respectively.
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5

FLip-FLOPS, REGISTERS, AND COUNTERS

CHAPTER OBJECTIVES

In this chapter you will learn about:

e Logic circuits that can store information

e  Flip-flops, which store a single bit

e Registers, which store multiple bits

e  Shift registers, which shift the contents of the register
e Counters of various types

e  Verilog constructs used to implement storage elements
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In previous chapters we considered combinational circuits where the value of each output depends solely on
the values of signals applied to the inputs. There exists another class of logic circuits in which the values of the
outputs depend not only on the present values of the inputs but also on the past behavior of the circuit. Such
circuits include storage elements that store the values of logic signals. The contents of the storage elements
are said to represent the state of the circuit. When the circuit’s inputs change values, the new input values
either leave the circuit in the same state or cause it to change into a new state. Over time the circuit changes
through a sequence of states as a result of changes in the inputs. Circuits that behave in this way are referred
to as sequential circuits.

In this chapter we will introduce circuits that can be used as storage elements. But first, we
will motivate the need for such circuits by means of a simple example. Suppose that we wish
to control an alarm system, as shown in Figure 5.1. The alarm mechanism responds to the
control input On/ Off . Ttisturned on when On/Off = 1, anditis off when On/Off = 0. The
desired operation is that the alarm turns on when the sensor generates a positive voltage
signal, Set, in response to some undesirable event. Once the alarm is triggered, it must
remain active even if the sensor output goes back to zero. The alarm is turned off manually
by means of a Reset input. The circuit requires a memory element to remember that the
alarm has to be active until the Reset signal arrives.

Figure 5.2 gives a rudimentary memory element, consisting of a loop that has two
inverters. If we assume that A = 0, then B = 1. The circuit will maintain these values
indefinitely because of the feedback loop. We say that the circuit is in the state defined
by these values. If we assume that A = 1, then B = 0, and the circuit will remain in this
second state indefinitely. Thus the circuit has two possible states. This circuit is not useful,
because it lacks some practical means for changing its state. Useful circuits that exhibit
such memory behavior can be constructed with logic gates.

Set
Sensor ——mm=

Memory On/ ﬁ‘

> Alarm

element
Reset ——

Figure 5.1 Control of an alarm system.

o>

Figure 5.2 A simple memory element.
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Figure 5.3 presents a memory element built with NOR gates. Its inputs, Set and Reset,
provide the means for changing the state, Q, of the circuit. A more usual way of drawing
this circuit is given in Figure 5.4a, where the two NOR gates are said to be connected in
cross-coupled style. The circuit is referred to as a basic latch. Its behavior is described by
the table in Figure 5.4b. When both inputs, R and S, are equal to 0 the latch maintains its
existing state because of the feedback loop. This state may be either Q, = 0 and Q, = 1,
or Q, = 1 and Q, = 0, which is indicated in the table by stating that the Q, and Q,, outputs
have values 0/1 and 1/0, respectively. Observe that Q, and Q,, are complements of each
other in this case. When R = 1 and § = 0, the latch is reset into a state where Q, = 0 and
Q, = 1. WhenR = 0and § = 1, the latch is set into a state where Q, = 1 and Q, = 0. The
fourth possibility is to have R = § = 1. In this case both Q, and Q, will be 0. The table in
Figure 5.4b resembles a truth table. However, since it does not represent a combinational
circuit in which the values of the outputs are determined solely by the current values of the
inputs, it is often called a characteristic table rather than a truth table.

Figure 5.4¢ gives a timing diagram for the latch, assuming that the propagation delay
through the NOR gates is negligible. Of course, in areal circuit the changes in the waveforms
would be delayed according to the propagation delays of the gates. We assume that initially
Q, = 0and Q, = 1. The state of the latch remains unchanged until time #,, when S becomes
equal to 1, causing Q, to change to 0, which in turn causes Q, to change to 1 because
R + Q, = 1. The causality relationship is indicated by the arrows in the diagram. When S
goes to 0 at 3, there is no change in the state because both S and R are then equal to 0. At
t4 we have R = 1, which causes Q, to go to 0, which in turn causes Q, to go to 1 because
S+ Q, =1. Atts both § and R are equal to 1, which forces both Q, and Q, to be equal
to 0. As soon as S returns to 0, at 5, Q, becomes equal to 1 again. At g we have S =1
and R = 0, which causes Q, = 0 and Q, = 1. An interesting situation occurs at ;9. From
19 to t;p we have Q, = Q, = 0 because R = § = 1. Now if both R and S change to O at
t10, both Q, and Q, will go to 1. But having both Q, and Q, equal to 1 will immediately
force Q, = Q,, = 0. There will be an oscillation between Q, = Q, =0and Q, = Q, = 1.
If the delays through the two NOR gates are exactly the same, the oscillation will continue
indefinitely. In a real circuit there will invariably be some difference in the delays through
these gates, and the latch will eventually settle into one of its two stable states, but we don’t
know which state it will be. This uncertainty is indicated in the waveforms by dashed lines.

Reset

Set — Q

Figure 5.3 A memory element with NOR gates.
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R S R Q. Qp
—— Q, 4
0 0 0/1 1/0 (no change)
0 1 0 1
1 O 1 0
Q 1 1 0 0
S b
(a) Circuit (b) Characteristic table
I I3 14y s le 17 Iy fy o
1
R
0

==

(RN

0 ----

Qp

— Time

(c) Timing diagram

Figure 5.4 A basic latch built with NOR gates.

The oscillations discussed above illustrate that even though the basic latch is a simple
circuit, careful analysis has to be done to fully appreciate its behavior. In general, any
circuit that contains one or more feedback paths, such that the state of the circuit depends
on the propagation delays through logic gates, has to be designed carefully. We discuss
timing issues in Section 5.15 and in Chapter 9.

The latch in Figure 5.4a can perform the functions needed for the memory element in
Figure 5.1, by connecting the Set signal to the S input and Reset to the R input. The Q,
output provides the desired On/Off signal. To initialize the operation of the alarm system,
the latch is reset. Thus the alarm is off. When the sensor generates the logic value 1, the
latch is set and Q, becomes equal to 1. This turns on the alarm mechanism. If the sensor
output returns to 0, the latch retains its state where Q, = 1; hence the alarm remains turned
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on. The only way to turn off the alarm is by resetting the latch, which is accomplished by
making the Reset input equal to 1.
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In Section 5.1 we saw that the basic SR latch can serve as a useful memory element. It
remembers its state when both the S and R inputs are 0. It changes its state in response
to changes in the signals on these inputs. The state changes occur at the time when the
changes in the signals occur. If we cannot control the time of such changes, then we don’t
know when the latch may change its state.

In the alarm system of Figure 5.1, it may be desirable to be able to enable or disable
the entire system by means of a control input, Enable. Thus when enabled, the system
would function as described above. In the disabled mode, changing the Ser input from O to
1 would not cause the alarm to turn on. The latch in Figure 5.4a cannot provide the desired
operation. But the latch circuit can be modified to respond to the input signals S and R only
when Enable = 1. Otherwise, it would maintain its state.

The modified circuit is depicted in Figure 5.5a. It includes two AND gates that provide
the desired control. When the control signal Clk is equal to 0, the S” and R’ inputs to the
latch will be 0, regardless of the values of signals S and R. Hence the latch will maintain
its existing state as long as Clk = 0. When Clk changes to 1, the §” and R’ signals will be
the same as the S and R signals, respectively. Therefore, in this mode the latch will behave
as we described in Section 5.1. Note that we have used the name Clk for the control signal
that allows the latch to be set or reset, rather than call it the Enable signal. The reason is that
such circuits are often used in digital systems where it is desirable to allow the changes in
the states of memory elements to occur only at well-defined time intervals, as if they were
controlled by a clock. The control signal that defines these time intervals is usually called
the clock signal. The name Clk is meant to reflect this nature of the signal.

Circuits of this type, which use a control signal, are called gated latches. Because our
circuit exhibits set and reset capability, it is called a gated SR latch. Figure 5.5b describes
its behavior. It defines the state of the Q output at time 7 4 1, namely, Q(r + 1), as a
function of the inputs S, R, and Clk. When Clk = 0, the latch will remain in the state it
is in at time ¢, that is, Q(#), regardless of the values of inputs S and R. This is indicated
by specifying S = x and R = x, where x means that it does not matter if the signal value
is 0 or 1. When Clk = 1, the circuit behaves as the basic latch in Figure 5.4. It is set by
S = 1 and reset by R = 1. The last row of the table, where S = R = 1, shows that the state
Q(z + 1) is undefined because we don’t know whether it will be O or 1. This corresponds
to the situation described in Section 5.1 in conjunction with the timing diagram in Figure
5.4 at time t;(. At this time both S and R inputs go from 1 to 0, which causes the oscillatory
behavior that we discussed. If S = R = 1, this situation will occur as soon as Clk goes from
1 to 0. To ensure a meaningful operation of the gated SR latch, it is essential to avoid the
possibility of having both the S and R inputs equal to 1 when Clk changes from 1 to 0.

A timing diagram for the gated SR latch is given in Figure 5.5¢. It shows Cik as a
periodic signal that is equal to 1 at regular time intervals to suggest that this is how the
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R Clk S R Q(t+1)
0 x X Q(?) (no change)
1 0 O Q(?) (no change)
Clk 10 1 0
1 1 0 1
1 1 1 X
S — S’
(a) Circuit (b) Characteristic table
1 — — — — —
Clk
0 b
1
R L
0
1
S
0
1 r--
Q 2
0 —_— s = =
_ 1 — p--
Q ?
0 -

— Time

(c) Timing diagram

— Clk
—R Q}—

(d) Graphical symbol

Figure 5.5  Gated SR latch.
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Figure 5.6  Gated SR latch with NAND gates.

clock signal usually appears in a real system. The diagram presents the effect of several
combinations of signal values. Observe that we have labeled one output as Q and the other
as its complement Q, rather than Q, and Q, as in Figure 5.4. Since the undefined mode,
where S = R = 1, must be avoided in practice, the normal operation of the latch will have
the outputs as complements of each other. Moreover, we will often say that the latch is set
when Q = 1, and it is reset when Q = 0. A graphical symbol for the gated SR latch is given
in Figure 5.5d.

5.2.1 GATED SR LATCH WITH NAND GATES

So far we have implemented the basic latch with cross-coupled NOR gates. We can also
construct the latch with NAND gates. Using this approach, we can implement the gated
SR latch as depicted in Figure 5.6. The behavior of this circuit is described by the table
in Figure 5.5b. Note that in this circuit, the clock is gated by NAND gates, rather than by
AND gates. Note also that the S and R inputs are reversed in comparison with the circuit
in Figure 5.5a.
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In Section 5.2 we presented the gated SR latch and showed how it can be used as the memory
element in the alarm system of Figure 5.1. This latch is useful for many other applications.
In this section we describe another gated latch that is even more useful in practice. It has a
single data input, called D, and it stores the value on this input, under the control of a clock
signal. It is called a gated D latch.

To motivate the need for a gated D latch, consider the adder/subtractor unit discussed
in Chapter 3 (Figure 3.12). When we described how that circuit is used to add numbers, we
did not discuss what is likely to happen with the sum bits that are produced by the adder.
Adder/subtractor units are often used as part of a computer. The result of an addition or
subtraction operation is often used as an operand in a subsequent operation. Therefore, it
is necessary to be able to remember the values of the sum bits generated by the adder until
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they are needed again. We might think of using the basic latches to remember these bits,
one bit per latch. In this context, instead of saying that a latch remembers the value of a
bit, it is more illuminating to say that the latch stores the value of the bit or simply “stores
the bit.” We should think of the latch as a storage element.

But can we obtain the desired operation using the basic latches? We can certainly reset
all latches before the addition operation begins. Then we would expect that by connecting
a sum bit to the S input of a latch, the latch would be set to 1 if the sum bit has the value
1; otherwise, the latch would remain in the O state. This would work fine if all sum bits
are 0 at the start of the addition operation and, after some propagation delay through the
adder, some of these bits become equal to 1 to give the desired sum. Unfortunately, the
propagation delays that exist in the adder circuit cause a big problem in this arrangement.
Suppose that we use a ripple-carry adder. When the X and Y inputs are applied to the adder,
the sum outputs may alternate between 0 and 1 a number of times as the carries ripple
through the circuit. The problem is that if we connect a sum bit to the S input of a latch,
then if the sum bit is temporarily a 1 and then settles to O in the final result, the latch will
remain set to 1 erroneously.

The problem caused by the alternating values of the sum bits in the adder could be
solved by using the gated SR latches, instead of the basic latches. Then we could arrange
that the clock signal is O during the time needed by the adder to produce a correct sum.
After allowing for the maximum propagation delay in the adder circuit, the clock should
go to 1 to store the values of the sum bits in the gated latches. As soon as the values have
been stored, the clock can return to 0, which ensures that the stored values will be retained
until the next time the clock goes to 1. To achieve the desired operation, we would also
have to reset all latches to O prior to loading the sum-bit values into these latches. This is
an awkward way of dealing with the problem, and it is preferable to use the gated D latches
instead.

Figure 5.7a shows the circuit for a gated D latch. It is based on the gated SR latch, but
instead of using the S and R inputs separately, it has just one data input, D. For convenience
we have labeled the points in the circuit that are equivalent to the S and R inputs. If D = 1,
then S = 1 and R = 0, which forces the latch into the state Q = 1. If D =0, then S =0
and R = 1, which causes Q = 0. Of course, the changes in state occur only when Clk = 1.

In this circuit it is impossible to have the troublesome situation where S = R = 1. In
the gated D latch, the output Q merely tracks the value of the input D while Clk = 1. As
soon as Clk goes to 0, the state of the latch is frozen until the next time the clock signal goes
to 1. Therefore, the gated D latch stores the value of the D input seen at the time the clock
changes from 1 to 0. Figure 5.7 also gives the characteristic table, the graphical symbol,
and a timing diagram for the gated D latch.

The timing diagram illustrates what happens if the D signal changes while Clk = 1.
During the third clock pulse, starting at #3, the output Q changes to 1 because D = 1. But
midway through the pulse D goes to 0, which causes Q to go to 0. This value of Q is stored
when Clk changes to 0. Now no further change in the state of the latch occurs until the
next clock pulse, at #4. The key point to observe is that as long as the clock has the value 1,
the Q output follows the D input. But when the clock has the value 0, the Q output cannot
change. The logic values are implemented as low and high voltage levels, as explained in
detail in Appendix B. Since the output of the gated D latch is controlled by the level of the
clock input, the latch is said to be level sensitive. The circuits in Figures 5.5 through 5.7 are
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Figure 5.7  Gated D lafch.

level sensitive. We will show in Section 5.4 that it is possible to design storage elements
for which the output changes only at the point in time when the clock changes from one
value to the other. Such circuits are said to be edge triggered.

5.3.1 EFFECTS OF PROPAGATION DELAYS

In the previous discussion we ignored the effects of propagation delays. In practical circuits
it is essential to take these delays into account. Consider the gated D latch in Figure 5.7a.
It stores the value of the D input that is present at the time the clock signal changes from
1 to 0. It operates properly if the D signal is stable (that is, not changing) at the time Clk
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Figure 5.8  Setup and hold times.

goes from 1 to 0. But it may lead to unpredictable results if the D signal also changes at
this time. Therefore, the designer of a logic circuit that generates the D signal must ensure
that this signal is stable when the critical change in the clock signal takes place.

Figure 5.8 illustrates the critical timing region. The minimum time that the D signal
must be stable prior to the negative edge of the Clk signal is called the setup time, ty,, of
the latch. The minimum time that the D signal must remain stable after the negative edge
of the Clk signal is called the hold time, t;, of the latch. The values of #,, and #, depend
on the technology used. Manufacturers of integrated circuit chips provide this information
on the data sheets that describe their chips. Typical values for a modern technology may
be t,, = 0.3 ns and t;, = 0.2 ns. We will give examples of how setup and hold times affect
the speed of operation of circuits in Section 5.15. The behavior of storage elements when
setup or hold times are violated is discussed in Chapter 7.

5.4 EbDGE-TRIGGERED D FLIP-FLOPS

In the level-sensitive latches, the state of the latch keeps changing according to the values of
input signals during the period when the clock signal is active (equal to 1 in our examples).
As we will see in Sections 5.8 and 5.9, there is also a need for storage elements that can
change their states no more than once during one clock cycle. We will now discuss circuits
that exhibit such behavior.

5.4.1 MASTER-SLAVE D FLir-FLOP

Consider the circuit given in Figure 5.9a, which consists of two gated D latches. The first,
called master, changes its state while Clock = 1. The second, called slave, changes its state
while Clock = 0. The operation of the circuit is such that when the clock is high, the master
tracks the value of the D input signal and the slave does not change. Thus the value of Q,,
follows any changes in D, and the value of Q, remains constant. When the clock signal
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(a) Circuit

(b) Timing diagram

(c) Graphical symbol

Figure 5.9  Master-slave D flip-flop.

changes to 0, the master stage stops following the changes in the D input. At the same time,
the slave stage responds to the value of the signal Q,, and changes state accordingly. Since
Q,, does not change while Clock = 0, the slave stage can undergo at most one change of
state during a clock cycle. From the external observer’s point of view, namely, the circuit
connected to the output of the slave stage, the master-slave circuit changes its state at the
negative-going edge of the clock. The negative edge is the edge where the clock signal
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changes from 1 to 0. Regardless of the number of changes in the D input to the master
stage during one clock cycle, the observer of the Q, signal will see only the change that
corresponds to the D input at the negative edge of the clock.

The circuit in Figure 5.9 is called a master-slave D flip-flop. The term flip-flop denotes
a storage element that changes its output state at the edge of a controlling clock signal. The
timing diagram for this flip-flop is shown in Figure 5.95. A graphical symbol is given in
Figure 5.9¢. In the symbol we use the > mark to denote that the flip-flop responds to the
“active edge” of the clock. We place a bubble on the clock input to indicate that the active
edge for this particular circuit is the negative edge.

We can augment the circuit in Figure 5.9a by reversing the connections of the clock
signal to the master and slave stages. That is, include an inverter in the clock input to the
master stage and connect the uncomplemented clock signal to the slave stage. Now, the state
of the master stage will be transferred into the slave stage when the clock signal changes
from O to 1. This circuit behaves as a positive-edge-triggered master-slave D flip-flop. Tt
can be represented by the graphical symbol in Figure 5.9¢ where the bubble on the clock
input is removed.

Level-Sensitive versus Edge-Triggered Storage Elements

At this point it is useful to compare the timing in the various storage elements that
we have discussed. Figure 5.10 shows three different types of storage elements that are
driven by the same data and clock inputs. The first element is a gated D latch, which is
level sensitive. The second one is a positive-edge-triggered D flip-flop, and the third one is
a negative-edge-triggered D flip-flop. To accentuate the differences between these storage
elements, the D input changes its values more than once during each half of the clock
cycle. Observe that the gated D latch follows the D input as long as the clock is high. The
positive-edge-triggered flip-flop responds only to the value of D when the clock changes
from O to 1. The negative-edge-triggered flip-flop responds only to the value of D when
the clock changes from 1 to 0.

5.4.2 OTHER TYPES OF EDGE-TRIGGERED D FLIP-FLOPS

Master-slave flip-flops illustrate the concept of edge triggering very clearly. Other circuits
have been used to accomplish the same task. Consider the circuit presented in Figure 5.11a.
It requires only six NAND gates and, hence, fewer transistors than the master-slave circuit.
The operation of the circuit is as follows. When Clock = 0, the outputs of gates 2 and 3
are high. Thus P1 = P2 = 1, which maintains the output latch, comprising gates 5 and 6,
in its present state. At the same time, the signal P3 is equal to D, and P4 is equal to its
complement D. When Clock changes to 1, the following changes take place. The values
of P3 and P4 are transmitted through gates 2 and 3 to cause P1 = D and P2 = D, which
sets Q = D and Q = D. To operate reliably, P3 and P4 must be stable when Clock changes
from O to 1. Hence the setup time of the flip-flop is equal to the delay from the D input
through gates 4 and 1 to P3. The hold time is given by the delay through gate 3 because
once P2 is stable, the changes in D no longer matter.
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Figure 5.10  Comparison of level-sensitive and edge-triggered D storage elements.

For proper operation it is necessary to show that after Clock changes to 1 any further
changes in D will not affect the output latch as long as Clock = 1. We have to consider two
cases. Suppose first that D = 0 at the positive edge of the clock. Then P2 = 0, which will
keep the output of gate 4 equal to 1 as long as Clock = 1, regardless of the value of the D
input. The second case is if D = 1 at the positive edge of the clock. Then P1 = 0, which
forces the outputs of gates 1 and 3 to be equal to 1, regardless of the D input. Therefore,
the flip-flop ignores changes in the D input while Clock = 1.
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Figure 5.11 A positive-edge-triggered D flip-flop.

This circuit behaves as a positive-edge-triggered D flip-flop. A similar circuit, con-
structed with NOR gates, can be used as a negative-edge-triggered flip-flop.

5.4.3 D Fripr-FLopPs WITH CLEAR AND PRESET

Flip-flops are often used for implementation of circuits that can have many possible states,
where the response of the circuit depends not only on the present values of the circuit’s
inputs but also on the particular state that the circuit is in at that time. We will discuss
a general form of such circuits in Chapter 6. A simple example is a counter circuit that
counts the number of occurrences of some event, perhaps passage of time. We will discuss
counters in detail in Section 5.9. A counter comprises a number of flip-flops, whose outputs
are interpreted as a number. The counter circuit has to be able to increment or decrement the
number. Itis also important to be able to force the counter into a known initial state (count).
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Figure 5.12  Master-slave D flip-flop with Clear and Preset.

Obviously, it must be possible to clear the count to zero, which means that all flip-flops
must have Q = 0. It is equally useful to be able to preset each flip-flop to Q = 1, to insert
some specific count as the initial value in the counter. These features can be incorporated
into the circuits of Figures 5.9 and 5.11 as follows.

Figure 5.12a shows an implementation of the circuit in Figure 5.9a using NAND gates.
The master stage is just the gated D latch of Figure 5.7a. Instead of using another latch
of the same type for the slave stage, we can use the slightly simpler gated SR latch of
Figure 5.6. This eliminates one NOT gate from the circuit.

A simple way of providing the clear and preset capability is to add an extra input to
each NAND gate in the cross-coupled latches, as indicated in blue. Placing a 0 on the
Clear_n input will force the flip-flop into the state Q = 0. If Clear_n = 1, then this input
will have no effect on the NAND gates. Similarly, Preset_n = 0 forces the flip-flop into
the state Q = 1, while Preset_n = 1 has no effect. To denote that the Clear_n and Preset_n
inputs are active when their value is 0, we appended the letter n (for “negative”) to these
names. We should note that the circuit that uses this flip-flop should not try to force both
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Preset_n

Clock -

D

Clear_n

(a) Circuit

Preset_n —(L

Clear_n —
Sl D

—>b> Qo Clock

Clear_n

(b) Graphical symbol (c) Adding a synchronous clear

Figure 5.13  Positive-edge-triggered D flip-flop with Clear and Preset.

Clear_n and Preset_n to 0 at the same time. A graphical symbol for this flip-flop is shown
in Figure 5.12b.

A similar modification can be done on the edge-triggered flip-flop of Figure 5.11a, as
indicated in Figure 5.13a. Again, both Clear_n and Preset_n inputs are active low. They
do not disturb the flip-flop when they are equal to 1.

In the circuits in Figures 5.12a and 5.13a, the effect of a low signal on either the Clear_n
or Preset_n input is immediate. For example, if Clear_n = 0 then the flip-flop goes into
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the state Q = 0 immediately, regardless of the value of the clock signal. In such a circuit,
where the Clear_n signal is used to clear a flip-flop without regard to the clock signal, we
say that the flip-flop has an asynchronous clear. In practice, it is often preferable to clear
the flip-flops on the active edge of the clock. Such synchronous clear can be accomplished
as shown in Figure 5.13c. The flip-flop operates normally when the Clear_n input is equal
to 1. But if Clear_n goes to 0, then on the next positive edge of the clock the flip-flop will
be cleared to 0. We will examine the clearing of flip-flops in more detail in Section 5.10.

5.4.4 FLipr-FLOP TIMING PARAMETERS

In Section 5.3.1 we discussed timing issues related to latch circuits. In practice such
issues are equally important for circuits with flip-flops. Figure 5.14a shows a positive-
edge triggered flip-flop with asynchronous clear, and part (b) of the figure illustrates some
important timing parameters for this flip-flop. Data is loaded into the D input of the flip-
flop on a positive clock edge, and this logic value must be stable during the setup time, #,,
before the clock edge occurs. The data must remain stable during the hold time, 7, after the
edge. If the setup or hold requirements are not adhered to in a circuit that uses this flip-flop,
then it may enter an unstable condition known as metastability; we discuss this concept in
Chapter 7.

As indicated in Figure 5.14, a clock-to-Q propagation delay, ., is incurred before the
value of Q changes after a positive clock edge. In general, the delay may not be exactly
the same for the cases when Q changes from 1 to 0 or O to 1, but we assume for simplicity
that these delays are equal. For the flip-flops in a commercial chip, two values are usually
specified for #.q, representing the maximum and minimum delays that may occur in practice.
Specifying a range of values when estimating the delays in a chip is a common practice due
to many sources of variation in delay that are caused by the chip manufacturing process.
In Section 5.15 we provide some examples that illustrate the effects of flip-flop timing
parameters on the operation of circuits.
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The D flip-flop is a versatile storage element that can be used for many purposes. By
including some simple logic circuitry to drive its input, the D flip-flop may appear to be a
different type of storage element. An interesting modification is presented in Figure 5.15a.
This circuit uses a positive-edge-triggered D flip-flop. The feedback connections make
the input signal D equal to either the value of Q or Q under the control of the signal that
is labeled 7. On each positive edge of the clock, the flip-flop may change its state Q(¢).
If T =0, then D = Q and the state will remain the same, that is, Q(f + 1) = Q(¢). But
if T =1, then D = 6 and the new state will be Q(z + 1) = G(t). Therefore, the overall
operation of the circuit is that it retains its present state if 7 = 0, and it reverses its present
state if 7 = 1.
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Figure 5.14  Flip-flop timing parameters.

The operation of the circuit is specified in the form of a characteristic table in Fig-
ure 5.15b. Any circuit that implements this table is called a T flip-flop. The name T flip-flop
derives from the behavior of the circuit, which “toggles” its state when T = 1. The toggle
feature makes the T flip-flop a useful element for building counter circuits, as we will see
in Section 5.9.

‘ 5.6 JKFLir-FLoP

Another interesting circuit can be derived from Figure 5.15a. Instead of using a single
control input, 7', we can use two inputs, J and K, as indicated in Figure 5.16a. For this
circuit the input D is defined as

D=JQ+KQ
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Figure 5.15 T flip-flop.

A corresponding characteristic table is given in Figure 5.16b. The circuit is called a JK
flip-flop. Tt combines the behaviors of SR and T flip-flops in a useful way. It behaves as
the SR flip-flop, where / = § and K = R, for all input values except / = K = 1. For the
latter case, which has to be avoided in the SR flip-flop, the JK flip-flop toggles its state like
the T flip-flop.

The JK flip-flop is a versatile circuit. It can be used for straight storage purposes, just
like the D and SR flip-flops. But it can also serve as a T flip-flop by connecting the J and
K inputs together.

265



266 CHAPTER 5 ¢ FrLip-FLOPS, REGISTERS, AND COUNTERS

D
K—Do—} L 5 _

] Q
Clock
(a) Circuit

J K |Q(+1)

0 0 Q1) —J Qf—

01 0 —p

1 0 1 —xk 6 _

11 Q(1)
(b) Characteristic table (c) Graphical symbol

Figure 5.16  JKflip-flop.

| 5.7 SUMMARY OF TERMINOLOGY

We have used the terminology that is quite common. But the reader should be aware that
different interpretations of the terms latch and flip-flop can be found in the literature. Our
terminology can be summarized as follows:

Basic latch is a feedback connection of two NOR gates or two NAND gates, which
can store one bit of information. It can be set to 1 using the S input and reset to 0
using the R input.

Gated latch is a basic latch that includes input gating and a control input signal. The
latch retains its existing state when the control input is equal to 0. Its state may be
changed when the control signal is equal to 1. In our discussion we referred to the
control input as the clock. We considered two types of gated latches:

e Gated SR latch uses the S and R inputs to set the latch to 1 or reset it to 0,
respectively.

e Gated D latch uses the D input to force the latch into a state that has the same
logic value as the D input.
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A flip-flop is a storage element that can have its output state changed only on the edge
of the controlling clock signal. If the state changes when the clock signal goes from 0
to 1, we say that the flip-flop is positive-edge triggered. If the state changes when

the clock signal goes from 1 to 0, we say that the flip-flop is negative-edge triggered.
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A flip-flop stores one bit of information. When a set of n flip-flops is used to store 7 bits of
information, such as an n-bit number, we refer to these flip-flops as a register. A common
clock is used for each flip-flop in a register, and each flip-flop operates as described in the
previous sections. The term register is merely a convenience for referring to n-bit structures
consisting of flip-flops.

5.8.1 SHIFT REGISTER

In Section 3.6 we explained that a given number is multiplied by 2 if its bits are shifted
one bit position to the left and a O is inserted as the new least-significant bit. Similarly, the
number is divided by 2 if the bits are shifted one bit-position to the right. A register that
provides the ability to shift its contents is called a shift register.

Figure 5.17a shows a four-bit shift register that is used to shift its contents one bit-
position to the right. The data bits are loaded into the shift register in a serial fashion using
the In input. The contents of each flip-flop are transferred to the next flip-flop at each
positive edge of the clock. An illustration of the transfer is given in Figure 5.17b, which
shows what happens when the signal values at In during eight consecutive clock cycles are
1,0,1,1,1,0,0, and 0, assuming that the initial state of all flip-flops is 0.

To implement a shift register it is necessary to use flip-flops. The level-sensitive gated
latches are not suitable, because a change in the value of /n would propagate through more
than one latch during the time when the clock is equal to 1.

5.8.2 PARALLEL-ACCESS SHIFT REGISTER

In computer systems it is often necessary to transfer n-bit data items. This may be done by
transmitting all bits at once using n separate wires, in which case we say that the transfer
is performed in parallel. But it is also possible to transfer all bits using a single wire, by
performing the transfer one bit at a time, in n consecutive clock cycles. We refer to this
scheme as serial transfer. To transfer an n-bit data item serially, we can use a shift register
that can be loaded with all » bits in parallel (in one clock cycle). Then during the next n
clock cycles, the contents of the register can be shifted out for serial transfer. The reverse
operation is also needed. If bits are received serially, then after n clock cycles the contents
of the register can be accessed in parallel as an n-bit item.
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Figure 5.17 A simple shift register.

Figure 5.18 shows a four-bit shift register that provides the parallel access. A 2-to-1
multiplexer on its D input allows each flip-flop to be connected to two different sources.
One source is the preceding flip-flop, which is needed for the shift-register operation. The
other source is the external input that corresponds to the bit that is to be loaded into the
flip-flop as a part of the parallel-load operation. The control signal Shift/Load is used to
select the mode of operation. If Shift/Load = 0, then the circuit operates as a shift register.
If Shift/Load = 1, then the parallel input data are loaded into the register. In both cases the
action takes place on the positive edge of the clock.

In Figure 5.18 we have chosen to label the flip-flops’ outputs as Qs, ..., Q, because
shift registers are often used to hold binary numbers. The contents of the register can be
accessed in parallel by observing the outputs of all flip-flops. The flip-flops can also be
accessed serially, by observing the values of Q, during consecutive clock cycles while the
contents are being shifted. A circuit in which data can be loaded in series and then accessed
in parallel is called a series-to-parallel converter. Similarly, the opposite type of circuit is a
parallel-to-series converter. The circuit in Figure 5.18 can perform both of these functions.
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Figure 5.18  Parallel-access shift register.

5.9 COUNTERS

In Chapter 3 we dealt with circuits that perform arithmetic operations. We showed how
adder/subtractor circuits can be designed, either using a simple cascaded (ripple-carry)
structure that is inexpensive but slow or using a more complex carry-lookahead structure
that is both more expensive and faster. In this section we examine special types of addition
and subtraction operations, which are used for the purpose of counting. In particular, we
want to design circuits that can increment or decrement a count by 1. Counter circuits are
used in digital systems for many purposes. They may count the number of occurrences of
certain events, generate timing intervals for control of various tasks in a system, keep track
of time elapsed between specific events, and so on.

Counters can be implemented using the adder/subtractor circuits discussed in Chapter 3
and the registers discussed in Section 5.8. However, since we only need to change the
contents of a counter by 1, it is not necessary to use such elaborate circuits. Instead, we
can use much simpler circuits that have a significantly lower cost. We will show how the
counter circuits can be designed using T and D flip-flops.

5.9.1 ASYNCHRONOUS COUNTERS

The simplest counter circuits can be built using T flip-flops because the toggle feature is
naturally suited for the implementation of the counting operation.
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Up-Counter with T Flip-Flops

Figure 5.19a gives a three-bit counter capable of counting from 0 to 7. The clock inputs
of the three flip-flops are connected in cascade. The T input of each flip-flop is connected
to a constant 1, which means that the state of the flip-flop will be reversed (toggled) at each
positive edge of its clock. We are assuming that the purpose of this circuit is to count the
number of pulses that occur on the primary input called Clock. Thus the clock input of
the first flip-flop is connected to the Clock line. The other two flip-flops have their clock
inputs driven by the Q output of the preceding flip-flop. Therefore, they toggle their state
whenever the preceding flip-flop changes its state from Q = 1 to Q = 0, which results in a
positive edge of the Q signal.

Figure 5.19b shows a timing diagram for the counter. The value of Q toggles once each
clock cycle. The change takes place shortly after the positive edge of the Clock signal. The
delay is caused by the propagation delay through the flip-flop. Since the second flip-flop
is clocked by Q,, the value of Q, changes shortly after the negative edge of the Q, signal.
Similarly, the value of Q, changes shortly after the negative edge of the Q, signal. If we
look at the values Q,Q;Q, as the count, then the timing diagram indicates that the counting

1 T Q—‘ I;T Q—‘ I;T Q
Clock > Q ‘ > Q ‘ > Q

QO Q1 QZ
(a) Circuit
Clock I I L5 | I I I I
]
Q _ | I I N I | I
S
Q, | 38 I L
Q, <‘I L
Count O 1 2 3 4 5 6 7 0

(b) Timing diagram

Figure 5.19 A three-bit up-counter.
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sequenceis 0, 1,2,3,4,5,6,7,0, 1, and so on. This circuit is a modulo-8 counter. Because
it counts in the upward direction, we call it an up-counter.

The counter in Figure 5.19a has three stages, each comprising a single flip-flop. Only
the first stage responds directly to the Clock signal; we say that this stage is synchronized
to the clock. The other two stages respond after an additional delay. For example, when
Count = 3, the next clock pulse will cause the Count to go to 4. As indicated by the arrows
in the timing diagram in Figure 5.19b, this change requires the toggling of the states of
all three flip-flops. The change in Q, is observed only after a propagation delay from the
positive edge of Clock. The Q, and Q, flip-flops have not yet changed; hence for a brief
time the count is Q,Q;Q, = 010. The change in Q; appears after a second propagation
delay, at which point the count is 000. Finally, the change in Q, occurs after a third delay,
at which point the stable state of the circuit is reached and the count is 100. This behavior is
similar to the rippling of carries in the ripple-carry adder circuit of Figure 3.5. The circuit
in Figure 5.19a is an asynchronous counter, or a ripple counter.

Down-Counter with T Flip-Flops

A slight modification of the circuit in Figure 5.19a is presented in Figure 5.20a. The
only difference is that in Figure 5.20a the clock inputs of the second and third flip-flops are

1 T Q LTQ LTQ

Clock

QO Q1 Q2
(a) Circuit
Clock I I I I I I I I
Q | I | I | I | |

Q | I I |

Count O 7 6 5 4 3 2 1 0
(b) Timing diagram

Figure 5.20 A three-bit down-counter.
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driven by the Q outputs of the preceding stages, rather than by the Q outputs. The timing
diagram, given in Figure 5.20b, shows that this circuit counts in the sequence 0, 7, 6, 5, 4,
3,2,1,0, 7, and so on. Because it counts in the downward direction, we say that it is a
down-counter.

It is possible to combine the functionality of the circuits in Figures 5.19a and 5.20a
to form a counter that can count either up or down. Such a counter is called an up/down-
counter. We leave the derivation of this counter as an exercise for the reader (Problem 5.15).

5.9.2 SYNCHRONOUS COUNTERS

The asynchronous counters in Figures 5.19a and 5.20a are simple, but not very fast. If a
counter with a larger number of bits is constructed in this manner, then the delays caused
by the cascaded clocking scheme may become too long to meet the desired performance
requirements. We can build a faster counter by clocking all flip-flops at the same time,
using the approach described below.

Synchronous Counter with T Flip-Flops

Table 5.1 shows the contents of a three-bit up-counter for eight consecutive clock
cycles, assuming that the count is initially 0. Observing the pattern of bits in each row of
the table, it is apparent that bit Q, changes on each clock cycle. Bit Q; changes only when
Qp = 1. Bit Q, changes only when both Q, and Q, are equal to 1. In general, for an n-bit
up-counter, a given flip-flop changes its state only when all the preceding flip-flops are in
the state Q = 1. Therefore, if we use T flip-flops to realize the counter, then the T inputs
are defined as

To = 1
T, =Q
T, = QyQ

Table 5.1  Derivation of the synchronous

up-counter.
Clock cycle | Q,Q; Qg
0 o 0 0 — Q) changes
X 0 0 1 — Q, changes
2 0 1 0-=—ry
3 0 1 1
4 1 0 0=
5 1 0 1
6 1 1 0=y
7 1 1 1
8 0 0 0=
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T3 = QyQ,Q,

T, =QQ---Q,_,

An example of a four-bit counter based on these expressions is given in Figure 5.21a.
Instead of using AND gates of increased size for each stage, we use a factored arrangement
as shown in the figure. This arrangement does not slow down the response of the counter,
because all flip-flops change their states after a propagation delay from the positive edge
of the clock. Note that a change in the value of Q, may have to propagate through several
AND gates to reach the flip-flops in the higher stages of the counter, which requires a certain

—I_}—I_

31 s i () T e I

oc — — ’*
(a) Circuit
coee U HU U UL ULUUUL
o [ r e e
Q | I | I | I | Ll
Q | | | L
Q I L

Comt 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0 1

(b) Timing diagram

Figure 5.21 A four-bit synchronous up-counter.
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Figure 5.22  Inclusion of Enable and Clear capability.

amount of time. This time must not exceed the clock period. Actually, it must be less than
the clock period minus the setup time for the flip-flops.

Figure 5.21b gives a timing diagram. It shows that the circuit behaves as a modulo-16
up-counter. Because all changes take place with the same delay after the active edge of the
Clock signal, the circuit is called a synchronous counter.

Enable and Clear Capability

The counters in Figures 5.19 through 5.21 change their contents in response to each
clock pulse. Often it is desirable to be able to inhibit counting, so that the count remains
in its present state. This may be accomplished by including an Enable control signal, as
indicated in Figure 5.22. The circuit is the counter of Figure 5.21, where the Enable signal
controls directly the T input of the first flip-flop. Connecting the Enable also to the AND-
gate chain means that if Enable = 0, then all T inputs will be equal to 0. If Enable = 1,
then the counter operates as explained previously.

In many applications it is necessary to start with the count equal to zero. This is easily
achieved if the flip-flops can be cleared, as explained in Section 5.4.3. The clear inputs on
all flip-flops can be tied together and driven by a Clear_n control input.

Synchronous Counter with D Flip-Flops

While the toggle feature makes T flip-flops a natural choice for the implementation
of counters, it is also possible to build counters using other types of flip-flops. The JK
flip-flops can be used in exactly the same way as the T flip-flops because if the J and K
inputs are tied together, a JK flip-flop becomes a T flip-flop. We will now consider using D
flip-flops for this purpose.

Itis not obvious how D flip-flops can be used to implement a counter. We will present a
formal method for deriving such circuits in Chapter 6. Here we will present a circuit structure
that meets the requirements but will leave the derivation for Chapter 6. Figure 5.23 gives
a four-bit up-counter that counts in the sequence 0, 1,2, ..., 14, 15,0, 1, and so on. The
count is indicated by the flip-flop outputs Q;Q,Q,Q,. If we assume that Enable = 1, then
the D inputs of the flip-flops are defined by the expressions

Dy=Q,®1=0Q,
D; =Q; ®Qq
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Figure 5.23 A four-bit counter with D flip-flops.

Dy =Q, ® QQ
D3 = Q3 ® Q,Q,Qq

For a larger counter the ith stage is defined by

Di=Q;®Q;_1Qir - QQ

We will show how to derive these equations in Chapter 6.
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We have included the Enable control signal in Figure 5.23 so that the counter counts the
clock pulses only if Enable = 1. In effect, the above equations are modified to implement
the circuit in the figure as follows

Dy = Qq, @ Enable

D, =Q; ® Q- Enable

Dy =Q, Q- Q- Enable

D3 =Q3®Q, - Q- Q- Enable

The operation of the counter is based on our observation for Table 5.1 that the state of the
flip-flop in stage i changes only if all preceding flip-flops are in the state Q = 1. This makes
the output of the AND gate that feeds stage i equal to 1, which causes the output of the XOR
gate connected to D; to be equal to Q;. Otherwise, the output of the XOR gate provides
D; = Q;, and the flip-flop remains in the same state.

We have included an extra AND gate that produces the output Z. This signal makes it
easy to concatenate two such counters to create a larger counter. It is also useful in appli-
cations where it is necessary to detect the state where the count has reached its maximum
value (all 1s) and will go to 0 in the next clock cycle.

The counter in Figure 5.23 is essentially the same as the circuit in Figure 5.22. We
showed in Figure 5.15a that a T flip-flop can be formed from a D flip-flop by providing the
extra gating that gives

D=QT +QT
=QoT

Thus in each stage in Figure 5.23, the D flip-flop and the associated XOR gate implement
the functionality of a T flip-flop.

5.9.3 COUNTERS WITH PARALLEL LoAD

Often it is necessary to start counting with the initial count being equal to 0. This state can
be achieved by using the capability to clear the flip-flops as indicated in Figure 5.22. But
sometimes it is desirable to start with a different count. To allow this mode of operation,
a counter circuit must have some inputs through which the initial count can be loaded.
Using the Clear and Preset inputs for this purpose is a possibility, but a better approach is
discussed below.

The circuit of Figure 5.23 can be modified to provide the parallel-load capability as
shown in Figure 5.24. A two-input multiplexer is inserted before each D input. One input to
the multiplexer is used to provide the normal counting operation. The other input is a data
bit that can be loaded directly into the flip-flop. A control input, Load, is used to choose the
mode of operation. The circuit counts when Load = 0. A new initial value, D3D,D1 Dy, is
loaded into the counter when Load = 1.
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Figure 5.24

A counter with parallel-load capability.

277



278

CHAPTER 5 ¢ FrLip-FLOPS, REGISTERS, AND COUNTERS

5.10 RESET SYNCHRONIZATION

We have already mentioned that it is important to be able to clear, or reset, the contents
of a counter prior to commencing a counting operation. This can be done using the clear
capability of the individual flip-flops. But we may also be interested in resetting the count to
0 during the normal counting process. An n-bit up-counter functions naturally as a modulo-
2" counter. Suppose that we wish to have a counter that counts modulo some base that is
not a power of 2. For example, we may want to design a modulo-6 counter, for which the
counting sequence is 0, 1, 2, 3, 4, 5, 0, 1, and so on.

The most straightforward approach is to recognize when the count reaches 5 and then
reset the counter. An AND gate can be used to detect the occurrence of the count of 5.
Actually, it is sufficient to ascertain that Q, = Q, = 1, which is true only for 5 in our
desired counting sequence. A circuit based on this approach is given in Figure 5.25a. It

1 —_
0 —_
O —_
—1 D2 Q,
_} Load
Clock
Clock I—

(a) Circuit

Clock I I I I I I

Q _| | I— | I— | I—

Q | I

Tr

Q |

Count 0 1 2 3 4 5 0 1

(b) Timing diagram

Figure 5.25 A modulo-6 counter with synchronous reset.
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uses a three-bit synchronous counter of the type depicted in Figure 5.24. The parallel-load
feature of the counter is used to reset its contents when the count reaches 5. The resetting
action takes place at the positive clock edge after the count has reached 5. It involves
loading D, DDy = 000 into the flip-flops. As seen in the timing diagram in Figure 5.25b,
the desired counting sequence is achieved, with each value of the count being established
for one full clock cycle. Because the counter is reset on the active edge of the clock, we
say that this type of counter has a synchronous reset.

Consider now the possibility of using the clear feature of individual flip-flops, rather
than the parallel-load approach. The circuit in Figure 5.26a illustrates one possibility. It
uses the counter structure of Figure 5.21a. Since the clear inputs are active when low, a
NAND gate is used to detect the occurrence of the count of 5 and cause the clearing of all
three flip-flops. Conceptually, this seems to work fine, but closer examination reveals a
potential problem. The timing diagram for this circuit is given in Figure 5.26b. It shows a
difficulty that arises when the count is equal to 5. As soon as the count reaches this value,
the NAND gate triggers the resetting action. The flip-flops are cleared to O a short time after
the NAND gate has detected the count of 5. This time depends on the gate delays in the
circuit, but not on the clock. Therefore, signal values Q,Q;Q, = 101 are maintained for a

I T Q T Q D_‘— T Q }
Q Q Q,
Clock > Q —>  Q ’7> Q
(a) Circuit

Count 0 1 2 3 4 5 0 1 2
(b) Timing diagram

Figure 5.26 A modulo-6 counter with asynchronous reset.
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time that is much less than a clock cycle. Depending on a particular application of such a
counter, this may be adequate, but it may also be completely unacceptable. For example, if
the counter is used in a digital system where all operations in the system are synchronized
by the same clock, then this narrow pulse denoting Count = 5 would not be seen by the rest
of the system. This is not a good way of designing circuits, because pulses of short length
often cause unforeseen difficulties in practice. The approach employed in Figure 5.26a is
said to use asynchronous reset.

The timing diagrams in Figures 5.25b and 5.26b suggest that synchronous reset is a
better choice than asynchronous reset. The same observation is true if the natural counting
sequence has to be broken by loading some value other than zero. The new value of the
count can be established cleanly using the parallel-load feature. The alternative of using
the clear and preset capability of individual flip-flops to set their states to reflect the desired
count has the same problems as discussed in conjunction with the asynchronous reset.

5.11 OTHER TYPES OF COUNTERS

In this section we discuss three other types of counters that can be found in practical
applications. The first uses the decimal counting sequence, and the other two generate
sequences of codes that do not represent binary numbers.

5.11.1 BCD COUNTER

Binary-coded-decimal (BCD) counters can be designed using the approach explained in
Section 5.10. A two-digit BCD counter is presented in Figure 5.27. It consists of two
modulo-10 counters, one for each BCD digit, which we implemented using the parallel-
load four-bit counter of Figure 5.24. Note that in a modulo-10 counter it is necessary to
reset the four flip-flops after the count of 9 has been obtained. Thus the Load input to each
stage is equal to 1 when Q; = Q, = 1, which causes Os to be loaded into the flip-flops at
the next positive edge of the clock signal. Whenever the count in stage 0, BCDy, reaches 9
it is necessary to enable the second stage so that it will be incremented when the next clock
pulse arrives. This is accomplished by keeping the Enable signal for BCD, low at all times
except when BCDy = 9.

In practice, it has to be possible to clear the contents of the counter by activating some
control signal. Two OR gates are included in the circuit for this purpose. The control input
Clear can be used to load Os into the counter. Observe that in this case Clear is active when
high.

5.11.2 RiING COUNTER

In the preceding counters the count is indicated by the state of the flip-flops in the counter.
In all cases the count is a binary number. Using such counters, if an action is to be taken
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1 —— Enable
0—— D, Q
0 Pi Q‘ BCD,
0— D, Q,
0 — D, Qs
Clock t)
Clock |—
Clear Enable
00— Do Qo
0— D Q BCD,
00— Db, Q,
0 — Dj Q;
|— Clock

Figure 5.27 A two-digit BCD counter.

as a result of a particular count, then it is necessary to detect the occurrence of this count.
This may be done using AND gates, as illustrated in Figures 5.25 through 5.27.

It is possible to devise a counterlike circuit in which each flip-flop reaches the state
Q; = 1 for exactly one count, while for all other counts Q; = 0. Then Q; indicates directly
an occurrence of the corresponding count. Actually, since this does not represent binary
numbers, it is better to say that the outputs of the flips-flops represent a code. Such a circuit
can be constructed from a simple shift register, as indicated in Figure 5.28a. The Q output
of the last stage in the shift register is fed back as the input to the first stage, which creates
a ringlike structure. If a single 1 is injected into the ring, this 1 will be shifted through
the ring at successive clock cycles. For example, in a four-bit structure, the possible codes
QpQ;Q,Q5 will be 1000, 0100, 0010, and 0001. As we said in Section 4.2, such encoding,
where there is a single 1 and the rest of the code variables are 0, is called a one-hot code.

The circuit in Figure 5.28a is referred to as a ring counter. Its operation has to be
initialized by injecting a 1 into the first stage. This is achieved by using the Start control
signal, which presets the left-most flip-flop to 1 and clears the others to 0. We assume that
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(a) An n-bit ring counter
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(b) A four-bit ring counter

Figure 5.28  Ring countfer.

all changes in the value of the Start signal occur shortly after an active clock edge so that
the flip-flop timing parameters are not violated.

The circuit in Figure 5.28a can be used to build a ring counter with any number of
bits, n. For the specific case of n = 4, part (b) of the figure shows how a ring counter
can be constructed using a two-bit up-counter and a decoder. When Start is set to 1, the
counter is reset to 00. After Start changes back to 0, the counter increments its value in the
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normal way. The 2-to-4 decoder, described in Section 4.2, changes the counter output into
a one-hot code. For the count values 00, 01, 10, 11, 00, and so on, the decoder produces
QpQ;Q,Q5 = 1000, 0100, 0010, 0001, 1000, and so on. This circuit structure can be used
for larger ring counters, as long as the number of bits is a power of two.

5.11.3 JounsoN COUNTER

An interesting variation of the ring counter is obtained if, instead of the Q output, we take
the Q output of the last stage and feed it back to the first stage, as shown in Figure 5.29. This
circuit is known as a Johnson counter. An n-bit counter of this type generates a counting
sequence of length 2n. For example, a four-bit counter produces the sequence 0000, 1000,
1100, 1110, 1111, 0111, 0011, 0001, 0000, and so on. Note that in this sequence, only a
single bit has a different value for two consecutive codes.

To initialize the operation of the Johnson counter, it is necessary to reset all flip-flops,
as shown in the figure. Observe that neither the Johnson nor the ring counter will generate
the desired counting sequence if not initialized properly.

5.11.4 REMARKS ON COUNTER DESIGN

The sequential circuits presented in this chapter, namely, registers and counters, have a
regular structure that allows the circuits to be designed using an intuitive approach. In
Chapter 6 we will present a more formal approach to design of sequential circuits and show
how the circuits presented in this chapter can be derived using this approach.

Q() Q1 Qn—l

—> Q —P Q |7 > Q
Reset_n

Clock I J

Figure 5.29  Johnson counter.
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5.12 UsING STORAGE ELEMENTS WITH CAD TooLs

This section shows how circuits with storage elements can be designed using either schematic
capture or Verilog code.

5.12.1 INCLUDING STORAGE ELEMENTS IN SCHEMATICS

One way to create a circuit is to draw a schematic that builds latches and flip-flops from
logic gates. Because these storage elements are used in many applications, most CAD
systems provide them as prebuilt modules. Figure 5.30 shows a schematic created with
a schematic capture tool, which includes three types of flip-flops that are imported from
a library provided as part of the CAD system. The top element is a gated D latch, the
middle element is a positive-edge-triggered D flip-flop, and the bottom one is a positive-
edge-triggered T flip-flop. The D and T flip-flops have asynchronous, active-low clear and
preset inputs. If these inputs are not connected in a schematic, then the CAD tool makes
them inactive by assigning the default value of 1 to them.

When the gated D latch is synthesized for implementation in a chip, the CAD tool may
not generate the cross-coupled NOR or NAND gates shown in Section 5.2. In some chips
the AND-OR circuit depicted in Figure 5.31 may be preferable. This circuit is functionally
equivalent to the cross-coupled version in Section 5.2. One aspect of this circuit should be
mentioned. From the functional point of view, it appears that the circuit can be simplified
by removing the AND gate with the inputs Data and Latch. Without this gate, the top

Data [ D o —— Latch
Clock | — ENA,
D pMc: > Flipflop
CLRH
Y
THH
T [ > Toggle
CLRH
Y

Figure 5.30  Three types of storage elements in a schematic.
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Data
Clock ’

-
:39}* Latch
-

Figure 5.31  Gated D latch generated by CAD tools.

AND gate sets the value stored in the latch when the clock is 1, and the bottom AND gate
maintains the stored value when the clock is 0. But without this gate, the circuit has a
timing problem known as a static hazard. A detailed explanation of hazards will be given
in Chapter 11.

The circuit in Figure 5.30 can be implemented in a CPLD as shown in Figure 5.32.
The D and T flip-flops are realized using the flip-flops on the chip that are configurable as
either D or T types. The figure depicts in blue the gates and wires needed to implement the
circuit in Figure 5.30.

The results of a timing simulation for the implementation in Figure 5.32 are given in
Figure 5.33. The Latch signal, which is the output of the gated D latch implemented as
indicated in Figure 5.31, follows the Data input whenever the Clock signal is 1. Because
of propagation delays in the chip, the Latch signal is delayed in time with respect to the
Data signal. Since the Flipflop signal is the output of the D flip-flop, it changes only after
a positive clock edge. Similarly, the output of the T flip-flop, called Toggle in the figure,
toggles when Data = 1 and a positive clock edge occurs. The timing diagram illustrates
the delay from when the positive clock edge occurs at the input pin of the chip until a
change in the flip-flop output appears at the output pin of the chip. This time is called the
clock-to-output time, t,.

5.12.2 UsING VERILOG CONSTRUCTS FOR STORAGE ELEMENTS

In Section 4.6 we described a number of Verilog constructs. We now show how these
constructs can be used to describe storage elements.

Asimple way of specifying a storage element is by using the if-else statement to describe
the desired behavior responding to changes in the levels of data and clock inputs. Consider
the always block

always @(Control, B)
if (Control)
A=B;

285



286 CHAPTER 5 ¢ FrLip-FLOPS, REGISTERS, AND COUNTERS

Interconnection wires Clock

Data

]

Latch
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Flip-flop

]

Toggle

]

(Other macrocells not shown)

Figure 5.32  Implementation of the schematic in Figure 5.30 in a CPLD.

where A is a variable of reg type. This code specifies that the value of A should be made
equal to the value of B when Control = 1. But the statement does not indicate an action that
should occur when Control = 0. In the absence of an assigned value, the Verilog compiler
assumes that the value of A caused by the if statement must be maintained when Control
is not equal to 1. This notion of implied memory is realized by instantiating a latch in the
circuit.
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Figure 5.33  Timing simulation for the storage elements in Figure 5.30.

module D_latch (D, Clk, Q);
input D, CIk;
output reg Q;

always @ (D, Clk)
if (Clk)
Q=D;

endmodule

Figure 5.34  Code for a gated D latch.

287

CODE FOR A GATED D LATCH The code in Figure 5.34 defines a module named D_latch,
which has the inputs D and Clk and the output Q. The if clause defines that the Q output must
take the value of D when Clk = 1. Since no else clause is given, a latch will be synthesized
to maintain the value of Q when Clk = 0. Therefore, the code describes a gated D latch.
The sensitivity list includes Clk and D because both of these signals can cause a change in
the value of the Q output.

Example 5.1

An always construct is used to define a circuit that responds to changes in the signals
that appear in the sensitivity list. While in the examples presented so far the always blocks
are sensitive to the levels of signals, it is also possible to specify that a response should take
place only at a particular edge of a signal. The desired edge is specified by using the Verilog
keywords posedge and negedge, which are used to implement edge-triggered circuits.

CODE FORAD FLIP-FLOP  Figure 5.35 defines amodule named flipflop, which is a positive-
edge-triggered D flip-flop. The sensitivity list contains only the clock signal because it is
the only signal that can cause a change in the Q output. The keyword posedge specifies

Example 5.2
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module flipflop (D, Clock, Q);
input D, Clock;
output reg Q;

always @ (posedge Clock)
Q=D;

endmodule

Figure 5.35  Code for a D flip-flop.

that a change may occur only on the positive edge of Clock. At this time the output Q
is set to the value of the input D. Since posedge appears in the sensitivity list, Q will be
implemented as the output of a flip-flop.

5.12.3 BLOCKING AND NON-BLOCKING ASSIGNMENTS

In all our Verilog examples presented so far we have used the equal sign for assignments,
as in

f=x1 & x2;
or
C=A+B;
or
Q=D;

This notation is called a blocking assignment. A Verilog compiler evaluates the statements
in an always block in the order in which they are written. If a variable is given a value by
a blocking assignment statement, then this new value is used in evaluating all subsequent
statements in the block.

Example 5.3

Consider the code in Figure 5.36. Since the always block is sensitive to the positive clock
edge, both Q1 and Q2 will be implemented as the outputs of D flip-flops. However, because
blocking assignments are involved, these two flip-flops will not be connected in cascade,
as the reader might expect. The first statement

Ql =D;
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module example5_3 (D, Clock, Q1, Q2);
input D, Clock;
output reg QI, Q2;

always @ (posedge Clock)

begin
Q1 =D;
Q2=0Ql;
end
endmodule

Figure 5.36  Incorrect code for two cascaded flip-flops.

D D Qf— Q
Clock > Q
—1D QI— Qz
> Q

Figure 5.37  Circuit for Example 5.3.

sets Q1 to the value of D. This new value is used in evaluating the subsequent statement
Q2 =Ql;

which results in Q2 = Q1 = D. The synthesized circuit has two parallel flip-flops, as illus-
trated in Figure 5.37. A synthesis tool will likely delete one of these redundant flip-flops as
an optimization step.

289

Verilog also provides a non-blocking assignment, denoted with <=. All non-blocking
assignment statements in an always block are evaluated using the values that the variables
have when the always block is entered. Thus, a given variable has the same value for all
statements in the block. The meaning of non-blocking is that the result of each assignment
is not seen until the end of the always block.
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Example 5.4

Figure 5.38 gives the same code as in Figure 5.36, but using non-blocking assignments. In
the two statements

Q1 <=D;
Q2 <=Ql;

the variables Q1 and Q2 have some value at the start of evaluating the always block, and
then they change to a new value concurrently at the end of the always block. This code
generates a cascaded connection between flip-flops, which implements the shift register
depicted in Figure 5.39.

The differences between blocking and non-blocking assignments are illustrated further
by the following two examples.

Example 5.5

Code that involves some gates in addition to flip-flops is defined in Figure 5.40 using block-
ing assignment statements. The resulting circuit is given in Figure 5.41. Both fand g are
implemented as the outputs of D flip-flops, because the sensitivity list of the always block
specifies the event posedge Clock. Since blocking assignments are used, the updated value
of f generated by the statement f = x1 & x2 has to be seen immediately by the following
statement g = f | x3. Thus, the AND gate that produces x1 & x2 is connected to the OR
gate that feeds the g flip-flop, as shown in Figure 5.41.

Example 5.6

If non-blocking assignments are used, as given in Figure 5.42, then both f and g are updated
simultaneously. Hence, the previous value of f is used in updating the value of g, which
means that the output of the flip-flop that generates f is connected to the OR gate that feeds
the g flip-flop. This gives rise to the circuit in Figure 5.43.

module example5_4 (D, Clock, Q1, Q2);
input D, Clock;
output reg Ql, Q2;

always @ (posedge Clock)

begin
Ql<=D;
Q2<=Ql;
end
endmodule

Figure 5.38  Code for two cascaded flip-flops.
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Q, Q,

Clock > Q ’— > Q

Figure 5.39  Circuit defined in Figure 5.38.

module example5_5 (x1, x2, x3, Clock, f, g);
input x1, x2, x3, Clock;
output reg f, g;

always @ (posedge Clock)
begin

f=x1 & x2;

g="r|x3;
end

endmodule

Figure 5.40  Code for Example 5.5.

X3
— ) >——1p of—
)C2—

> Q

D Q /
Clock > Q

Figure 5.41  Circuit for Example 5.5.
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module example5_6 (x1, x2, x3, Clock, f, g);
input x1, x2, x3, Clock;
output reg f, g;

always @ (posedge Clock)
begin
f<=x1 & x2;
g<=1|x3;
end

endmodule

Figure 5.42  Code for Example 5.6.

D

Xy — /\ D Q

X2

Clock > Q

Figure 5.43  Circuit for Example 5.6.

It is interesting to consider what circuit would be synthesized if the statements that
specify f and g were reversed. For the code in Figure 5.40 the impact would be significant.
If g is evaluated first, then the second statement does not depend on the first one, because f
does not depend on g. The resulting circuit would be the same as the one in Figure 5.43. In
contrast, reversing the statement order would make no difference for the code in Figure 5.42,

in which the non-blocking assignment is used.

The use of blocking assignments for sequential circuits can easily lead to wrong results,
as demonstrated in Figure 5.37. The dependence on ordering of blocking assignments is
dangerous, as shown in the previous example. For this reason, only non-blocking assign-

ments should be used to describe sequential circuits.
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5.12.4 NON-BLOCKING ASSIGNMENTS FOR COMBINATIONAL
CIRrcuUITS

A natural question at this point is whether non-blocking assignments can be used for combi-
national circuits. The answer is that they can be used in most situations, but when subsequent
assignments in an always block depend on the results of previous assignments, the non-
blocking assignments can generate nonsensical circuits. As an example, assume that we
have a three-bit vector A = aya;ap, and we wish to generate a combinational function f
that is equal to 1 when there are two adjacent bits in A that have the value 1. One way to
specify this function with blocking assignments is

always @(A)
begin
f=A[1] & A[O];
f=1](A[2] & A[l]);
end

These statements produce the desired logic function, which is f = ajay + aa;. Consider
now changing the code to use the non-blocking assignments

f <=A[1] & A[0];
f <=1 (A[2] & A[1]);

There are two key aspects of the Verilog semantics relevant to this code:

1. The results of non-blocking assignments are visible only after all of the statements in
the always block have been evaluated.

2.  When there are multiple assignments to the same variable inside an always block, the
result of the last assignment is maintained.

In this example, f has an unspecified initial value when we enter the always block. The
first statement assigns f = ajag, but this result is not visible to the second statement. It still
sees the original unspecified value of f. The second assignment overrides (deletes!) the
first assignment and produces the logic function f = f + aya;. This expression does not
correspond to a combinational circuit, because it represents an AND-OR circuit in which
the OR-gate is fed back to itself. It is best to use blocking assignments when describing
combinational circuits, so as to avoid accidentally creating a sequential circuit.

5.12.5 Fvrir-FLoPs WITH CLEAR CAPABILITY

By using a particular sensitivity list and a specific style of if-else statement, it is possible
to include clear (or preset) signals on flip-flops.
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Example 5.7

ASYNCHRONOUS CLEAR  Figure 5.44 gives a module that defines a D flip-flop with an
asynchronous active-low reset (clear) input. When Resetn, the reset input, is equal to 0, the
flip-flop’s Q output is set to 0. Note that the sensitivity list specifies the negative edge of
Resetn as an event trigger along with the positive edge of the clock. We cannot omit the
keyword negedge because the sensitivity list cannot have both edge-triggered and level-
sensitive signals.

Example 5.8

SYNCHRONOUS CLEAR  Figure 5.45 shows how a D flip-flop with a synchronous reset
input can be described. In this case the reset signal is acted upon only when a positive
clock edge arrives. This code generates the circuit in Figure 5.13¢, which has an AND gate
connected to the flip-flop’s D input.

module flipflop (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output reg Q;

always @(negedge Resetn, posedge Clock)
if (Resetn)

Q<=0
else
Q<=D;
endmodule

Figure 5.44 D flip-flop with asynchronous reset.

module flipflop (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output reg Q;

always @(posedge Clock)
if (Resetn)

Q<=0
else
Q<=D;
endmodule

Figure 5.45 D flip-flop with synchronous reset.
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5.13 UsING VERILOG CONSTRUCTS FOR REGISTERS AND
COUNTERS

In this section we show how registers and counters can be specified in Verilog code. Fig-
ure 5.44 gives code for a D flip-flop. One way to describe an n-bit register is to write
hierarchical code that includes n instances of the D flip-flop subcircuit. A simpler approach
is to use the same code as in Figure 5.44 and define the D input and Q output as multibit
signals.

AN N-BIT REGISTER  Since registers of different sizes are often needed in logic circuits, it
is advantageous to define a register module for which the number of flip-flops can be easily
changed. The code for an n-bit register is given in Figure 5.46. The parameter n specifies
the number of flip-flops in the register. By changing this parameter, the code can represent
a register of any size.

Example 5.9

A FOUR-BIT SHIFT REGISTER  Assume that we wish to write Verilog code that represents the
four-bit parallel-access shift register in Figure 5.18. One approach is to write hierarchical
code that uses four subcircuits. Each subcircuit consists of a D flip-flop with a 2-to-1
multiplexer connected to the D input. Figure 5.47 defines the module named muxdff, which
represents this subcircuit. The two data inputs are named Dy and Dy, and they are selected
using the Sel input. The if-else statement specifies that on the positive clock edge if Sel
=0, then Q is assigned the value of Dy; otherwise, Q is assigned the value of D;. An
alternative way of defining the same circuit is given in Figure 5.48. In this code, the
conditional assignment statement specifies a 2-to-1 multiplexer with the output D, which
is then connected to the flip-flop in the always block.

Figure 5.49 defines the four-bit shift register. The module Stage3 instantiates the left-
most flip-flop, which has the output Qs, and the module Stage0 instantiates the right-most
flip-flop, Q. When L = 1, the register is loaded in parallel from the R input; and when L
= 0, shifting takes place in the left to right direction. Serial data is shifted into the most-
significant bit, Q, from the w input.

Example 5.10

ALTERNATIVE CODE FOR A FOUR-BIT SHIFT REGISTER A different style of code for the
four-bit shift register is given in Figure 5.50. Instead of using subcircuits, the shift register is
defined using the approach presented in Example 5.4. All actions take place at the positive
edge of the clock. If L = 1, the register is loaded in parallel with the four bits of input R.
If L = 0, the contents of the register are shifted to the right and the value of the input w is
loaded into the most-significant bit Qs.

Example 5.11
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module regn (D, Clock, Resetn, Q);
parameter n = 16;
input [n-1:0] D;
input Clock, Resetn;
output reg [n—-1:0] Q;

always @(negedge Resetn, posedge Clock)
if (Resetn)

Q<=0;
else
Q<=D;
endmodule

Figure 5.46  Code for an n-bit register with asynchronous clear.

module muxdff (DO, D1, Sel, Clock, Q);
input DO, D1, Sel, Clock;
output reg Q;

always @(posedge Clock)
if (!Sel)
Q<=D0;
else
Q<=Dl;

endmodule

Figure 5.47  Code for a D flip-flop with a 2-to-1 multiplexer on
the D input.

module muxdff (DO, D1, Sel, Clock, Q);
input DO, D1, Sel, Clock;
output reg Q;

wire D;
assign D = Sel ? D1 : DO;

always @ (posedge Clock)
Q<=D;

endmodule

Figure 5.48  Alternative code for a D flip-flop with a 2-to-1
multiplexer on the D input.
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module shift4 (R, L, w, Clock, Q);
input [3:0] R;
input L, w, Clock;
output wire [3:0] Q;

muxdff Stage3 (w, R[3], L, Clock, Q[3]);

muxdff Stage2 (Q[3], R[2], L, Clock, Q[2]);
muxdff Stagel (Q[2], R[1], L, Clock, Q[1]);
muxdff StageO (Q[1], R[0], L, Clock, Q[0]);

endmodule

Figure 5.49  Hierarchical code for a four-bit shift register.

module shift4 (R, L, w, Clock, Q);
input [3:0] R;
input L, w, Clock;
output reg [3:0] Q;

always @(posedge Clock)

if (L)
Q<=R;

else

begin
Q[0] <=Q[1];
Q[1] <=Q[2];
Q[2] <=Q[3];
QB <=w;

end

endmodule

Figure 5.50  Alternative code for a four-bit shift register.

AN N-BIT SHIFT REGISTER  Figure 5.51 shows the code that can be used to represent shift Example 5.12
registers of any size. The parameter n, which has the default value 16 in the figure, sets

the number of flip-flops. The code is identical to that in Figure 5.50 with two exceptions.

First, R and Q are defined in terms of n. Second, the else clause that describes the shifting

operation is generalized to work for any number of flip-flops by using a for loop.
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module shiftn (R, L, w, Clock, Q);
parameter n = 16;
input [n-1:0] R;
input L, w, Clock;
output reg [n-1:0] Q;
integer k;

always @(posedge Clock)
if (L)
Q<=R;
else
begin
for (k=0 k< n-1; k=k+1)
Qlk] <= Q[k+1];
Qn-1]<=w;
end

endmodule

Figure 5.51  An n-bit shift register.

module upcount (Resetn, Clock, E, Q);
input Resetn, Clock, E;
output reg [3:0] Q;

always @(negedge Resetn, posedge Clock)
if (Resetn)

Q<=0
else if (E)
Q<=0Q+1;
endmodule

Figure 5.52  Code for a four-bit up-counter.

Example 5.13 UP-COUNTER Figure 5.52 represents a four-bit up-counter with a reset input, Resetn, and
an enable input, E. The outputs of the flip-flops in the counter are represented by the vector
named Q. The if statement specifies an asynchronous reset of the counter if Resetn = 0.
The else if clause specifies that if £ = 1 the count is incremented on the positive clock edge.




5.13 UsING VERILOG CONSTRUCTS FOR REGISTERS AND COUNTERS

299

UP-COUNTER WITH PARALLEL LOAD The code in Figure 5.53 defines an up-counter that
has a parallel-load input in addition to a reset input. The parallel data is provided as the
input vector R. The first if statement provides the same asynchronous reset as in Figure
5.52. The else if clause specifies that if L = 1 the flip-flops in the counter are loaded in
parallel from the R inputs on the positive clock edge. If L = 0, the count is incremented,
under control of the enable input E.

Example 5.14

DOWN-COUNTER WITH PARALLEL LOAD  Figure 5.54 shows the code for a down-counter
named downcount. A down-counter is normally used by loading it with some starting count
and then decrementing its contents. The starting count is represented in the code by the
vector R. On the positive clock edge, if L = 1 the counter is loaded with the input R, and
if L = 0 the count is decremented, under control of the enable input E.

Example 5.15

UP/DOWN COUNTER  Verilog code for an up/down counter is given in Figure 5.55. This
module combines the capabilities of the counters defined in Figures 5.53 and 5.54. It
includes a control signal up_down that governs the direction of counting.

Example 5.16

module upcount (R, Resetn, Clock, E, L, Q);
input [3:0] R;
input Resetn, Clock, E, L;
output reg [3:0] Q;

always @(negedge Resetn, posedge Clock)
if (Resetn)

Q<=0
else if (L)
Q<=R;
else if (E)
Q<=Q+1;
endmodule

Figure 5.53 A four-bit up-counter with a parallel load.
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module downcount (R, Clock, E, L, Q);
parameter n = §;
input [n-1:0]R;
input Clock, L, E;
output reg [n-1:0] Q;

always @ (posedge Clock)

if (L)
Q<=R;
else if (E)
Q<=Q-1;
endmodule

Figure 5.54 A down-counter with a parallel load.

module updowncount (R, Clock, L, E, up_down, Q);
parameter n = §;
input [n-1:0] R;
input Clock, L, E, up_down;
output reg [n—1:0] Q;

always @ (posedge Clock)

if (L)
Q<=R;
else if (E)

Q<=Q+ (up_down? 1: -1);
endmodule

Figure 5.55  Code for an up/down counter.

5.13.1 FvrLir-FLOPS AND REGISTERS WITH ENABLE INPUTS

We showed in Figures 5.22 and 5.23 how an enable input can be used in counter circuits
to be able to prevent the flip-flops from toggling when an active clock edge occurs. It is
also useful in many other types of circuits to be able to prevent the data stored in flip-flops
from changing when an active clock edge occurs. For D flip-flops, this capability can be
provided by adding a multiplexer to the flip-flop, as shown in Figure 5.56a. When E = 0,
the flip-flop output cannot change, because the multiplexer connects Q to the input of the
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Figure 5.56  Providing an enable input for a D flip-flop.

module rege (D, Clock, Resetn, E, Q);
input D, Clock, Resetn, E;
output reg Q;

always @ (posedge Clock, negedge Resetn)
if (Resetn == 0)

Q<=0
else if (E)
Q<=D;
endmodule

Figure 5.57  Code for a D flip-flop with enable.

flip-flop. Butif £ = 1, then the multiplexer allows new data to be loaded into the flip-flop
from the D input. Instead of using the multiplexer shown in the figure, another way to
implement the enable feature is to use a two-input AND gate as illustrated in Figure 5.56b.
Then setting E = 0 prevents the clock signal from reaching the flip-flop’s clock input. This
method seems simpler than the multiplexer approach, but we will show in Section 5.15 that
it can cause problems in practical operation. We will prefer the multiplexer-based approach
over gating the clock with an AND gate.

Verilog code for a D flip-flop with an asynchronous reset input and an enable input is
given in Figure 5.57. After first specifying the reset condition, the always block uses an
else if clause to ensure that the data stored in the flip-flop can change only when E = 1.
We can extend the enable capability to registers with n bits by using n 2-to-1 multiplexers
controlled by E, as shown in Figure 5.58. The multiplexer for each flip-flop, i, selects either
the external data bit, R;, or the flip-flop’s output, Q;.
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module regne (R, Clock, Resetn, E, Q);
parameter n = 8§;
input [n-1:0]R;
input Clock, Resetn, E;
output reg [n—1:0] Q;

always @(posedge Clock, negedge Resetn)
if (Resetn == 0)
Q<=0;
else if (E)
Q<=R;

endmodule

Figure 5.58  An n-bit register with an enable input.

5.13.2 SHIFT REGISTERS WITH ENABLE INPUTS

It is useful to be able to inhibit the shifting operation in a shift register by using an enable
input, E. We showed in Figure 5.18 that shift registers can be constructed with a parallel-
load capability, which is implemented using a multiplexer. Figure 5.59 shows how the
enable feature can be added by using an additional multiplexer. If the parallel-load control
input, L, is 1, the flip-flops are loaded in parallel. If L = 0, the additional multiplexer selects
new data to be loaded into the flip-flops only if the enable E is 1.

Verilog code that represents the circuit in Figure 5.59 is given in Figure 5.60. When
L =1, the register is loaded in parallel from the R input. When L = 0 and E = 1, the data
in the shift register is shifted in a left-to-right direction.

5.14 DESIGN EXAMPLE

This section presents an example of a digital system that makes use of some of the building
blocks described in this chapter and in Chapter 4.

5.14.1 REeAcTION TIMER

Electronic devices operate at remarkably fast speeds, with the typical delay through a logic
gate being less than 1 ns. In this example we use a logic circuit to measure the speed of a
much slower type of device—a person.

We will design a circuit that can be used to measure the reaction time of a person to
a specific event. The circuit turns on a small light, called a light-emitting diode (LED). In
response to the LED being turned on, the person attempts to press a switch as quickly as
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module shiftrne (R, L, E, w, Clock, Q);
parameter n =4;
input [n-1:0] R;
input L, E, w, Clock;
output reg [n—1:0] Q;
integer k;

always @ (posedge Clock)
begin
if (L)
Q<=R;
else if (E)
begin
Qn-1]<=w;
for(k=n-2;k>= 0;k=k-1)
QIk] <= Qlk+1];
end
end

endmodule

Figure 5.60 A left-to-right shift register with an enable input.

possible. The circuit measures the elapsed time from when the LED is turned on until the
switch is pressed.

To measure the reaction time, a clock signal with an appropriate frequency is needed.
In this example we use a 100 Hz clock, which measures time at a resolution of 1/100 of a
second. The reaction time can then be displayed using two digits that represent fractions
of a second from 00/100 to 99/100.

Digital systems often include high-frequency clock signals to control various subsys-
tems. In this case assume the existence of an input clock signal with the frequency 102.4
kHz. From this signal we can derive the required 100 Hz signal by using a counter as a clock
divider. A timing diagram for a four-bit counter is given in Figure 5.21. It shows that the
least-significant bit output, Qy, of the counter is a periodic signal with half the frequency of
the clock input. Hence we can view Q, as dividing the clock frequency by two. Similarly,
the Q, output divides the clock frequency by four. In general, output Q; in an n-bit counter
divides the clock frequency by 2°*!. In the case of our 102.4 kHz clock signal, we can use
a 10-bit counter, as shown in Figure 5.61b. The counter output c9 has the required 100 Hz
frequency because 102400 Hz/1024 = 100 Hz.

The reaction timer circuit has to be able to turn an LED on and off. The graphical
symbol for an LED is shown in blue in Figure 5.615. Small blue arrows in the symbol
represent the light that is emitted when the LED is turned on. The LED has two terminals:
the one on the left in the figure is the cathode, and the terminal on the right is the anode.
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To turn the LED on, the cathode has to be set to a sufficiently lower voltage than the anode,
which causes a current to flow through the LED. If the voltages on its two terminals are
equal, the LED is off.

Figure 5.61b shows one way to control the LED, using an inverter. If the input voltage
Viep = 0, then the voltage at the cathode is equal to Vpp; hence the LED is off. But if
Viep = Vpp, the cathode voltage is 0 V and the LED is on. The amount of current that
flows is limited by the value of the resistor R;. This current flows through the LED and
the inverter. Since the current flows info the inverter, we say that the inverter sinks the
current. The maximum current that a logic gate can sink without sustaining permanent
damage is usually called Iy, which stands for the “maximum current when the output is
low.” The value of R; is chosen such that the current is less than Ip;. As an example
assume that the inverter is implemented inside a chip for which the value of I, specified
in the data sheet for the chip is 12 mA. For Vpp = 5V, this leads to R, ~ 450 Q2 because
5V /450 Q2 = 11 mA (there is actually a small voltage drop across the LED when it is turned
on, but we ignore this for simplicity). The amount of light emitted by the LED is proportional
to the current flow. If 11 mA is insufficient, then the inverter should be implemented in
a driver chip, like those described in Appendix B, because drivers provide a higher value
of I OL-

The complete reaction-timer circuit is illustrated in Figure 5.61¢, with the inverter
from part (b) shaded in grey. The graphical symbol for a push-button switch is shown in
the top left of the diagram. The switch normally makes contact with the top terminals, as
depicted in the figure. When depressed, the switch makes contact with the bottom terminals;
when released, it automatically springs back to the top position. In the figure the switch is
connected such that it normally produces a logic value of 1, and it produces a O pulse when
pressed.

When depressed, the push-button switch causes the D flip-flop to be synchronously
reset. The output of this flip-flop determines whether the LED is on or off, and it also
provides the count enable input to a two-digit BCD counter. As discussed in Section 5.11,
each digit in a BCD counter has four bits that take the values 0000 to 1001. Thus the
counting sequence can be viewed as decimal numbers from 00 to 99. A circuit for the
BCD counter is given in Figure 5.27. Each digit in the counter is connected through a code
converter to a 7-segment display, which we described in the discussion for Figure 2.63.
In Figure 5.61c the counter is clocked by the c9 output of the clock divider in part (a) of
the figure. The intended use of the reaction-timer circuit is to first assert the Reset input to
clear the flip-flop and thus turn off the LED and disable the counter. Asserting the Reset
input also clears the contents of the counter to 00. The input w normally has the value 0,
which keeps the flip-flop cleared and prevents the count value from changing. The reaction
test is initiated by setting w = 1 for one ¢y clock cycle. After the next positive edge of the
clock, the flip-flop output becomes a 1, which turns on the LED. We assume that w returns
to 0 after one ¢y clock cycle, but the flip-flop output remains at 1 because of the 2-to-1
multiplexer connected to the D input. The counter is then incremented every 1/100 of a
second. When the user depresses the switch, the flip-flop is cleared, which turns off the
LED and stops the counter. The two-digit display shows the elapsed time to the nearest
1/100 of a second from when the LED was turned on until the user was able to respond by
depressing the switch.
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Verilog Code

To describe the circuit in Figure 5.61c¢ using Verilog code, we can make use of subcir-
cuits for the BCD counter and the 7-segment code converter. Code for the BCD counter,
which represents the circuit in Figure 5.27, is shown in Figure 5.62. The two-digit BCD
output is represented by the 2 four-bit signals BCD1 and BCDO. The Clear input provides
a synchronous reset for both digits in the counter. If E = 1, the count value is incremented
on the positive clock edge; and if E = 0, the count value is unchanged. Each digit can
take the values from 0000 to 1001. Figure 5.63 gives the code for the BCD-to-7-segment
decoder.

Figure 5.64 shows the code for the reaction timer. The input signal Pushn represents the
value produced by the push-button switch. The output signal LEDn represents the output
of the inverter that is used to control the LED. The two 7-segment displays are controlled
by the seven-bit signals Digitl and Digit 0.

The flip-flop in Figure 5.61¢ is loaded with the value 1 if w =1, but if w = 0 the
stored value in the flip-flop is not changed. This circuit is described by the always block in
Figure 5.64, which also includes a synchronous reset input; the reset is activated if either

module BCDcount (Clock, Clear, E, BCD1, BCDO0);
input Clock, Clear, E;
output reg [3:0] BCDI1, BCDO;

always @ (posedge Clock)
begin
if (Clear)
begin
BCD1 <=0;
BCD0<=0;
end
else if (E)
if (BCDO ==4’b1001)
begin
BCD0<=0;
if (BCD1 ==4’b1001)
BCDI1 <=0;
else
BCDI1 <=BCDI1 + 1;
end
else
BCDO <=BCDO + 1;
end

endmodule

Figure 5.62  Code for the two-digit BCD counter in Figure 5.27.
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module seg7 (bcd, leds);
input [3:0] bed;
output reg [1:7] leds;

always @(bcd)
case (bcd) //abcdefg
0: leds = 7’b1111110;
: leds = 7’b0110000;
: leds =7°b1101101;
: leds =7’b1111001;
: leds =7°b0110011;
: leds =7"b1011011;
: leds =7’b1011111;
: leds = 7°b1110000;
: leds =7"bl111111;
:leds =7’b1111011;
default: leds = 7°bx;
endcase

O 00NN R W =

endmodule

Figure 5.63  Code for the BCD-to-7-segment decoder.

module reaction (Clock, Reset, c9, w, Pushn, LEDn, Digitl, Digit0);
input Clock, Reset, c9, w, Pushn;
output wire LEDn;
output wire [1:7] Digitl, Digit0;
reg LED;
wire [3:0] BCD1, BCDO;

always @ (posedge Clock)
begin
if ('Pushn || Reset)
LED <=0;
else if (w)
LED<=1;
end

assign LEDn =~LED;

BCDcount counter (c9, Reset, LED, BCD1, BCDO0);
seg7 segl (BCDI, Digitl);

seg7 seg0 (BCDO, Digit0);

endmodule

Figure 5.64  Code for the reaction timer.
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Figure 5.65  Simulation of the reaction timer circuit.

Pushn = 0 or Reset = 1. We have chosen to use a synchronous reset because the flip-flop
output is connected to the enable input £ on the BCD counter. As we know from the
discussion in Section 5.3, it is important that all signals connected to flip-flops meet the
required setup and hold times. The push-button switch can be pressed at any time and is not
synchronized to the ¢y clock signal. By using a synchronous reset for the flip-flop in Figure
5.61c, we avoid possible timing problems in the counter. Of course, the setup time of the
flip-flop itself may become violated due to the asynchronous operation of the push-button
switch. We show in Chapter 7 how this type of problem can be alleviated by adding extra
flip-flops that are used to synchronize signals.

A simulation of the reaction-timer circuit implemented in a chip is shown in Figure
5.65. Initially, Reset is asserted to clear the the flip-flop and counter. When w changes to 1,
the circuit sets LEDn to 0, which represents the LED being turned on. After some amount
of time, the switch will be depressed. In the simulation we arbitrarily set Pushn to 0O after
18 ¢9 clock cycles. Thus this choice represents the case when the person’s reaction time is
about 0.18 seconds. In human terms this duration is a very short time; for electronic circuits
it is a very long time. An inexpensive personal computer can perform tens of millions of
operations in 0.18 seconds!

5.14.2 REGISTER TRANSFER LEVEL (RTL) CODE

Atthis point, we have introduced most of the Verilog constructs that are needed for synthesis.
Most of our examples give behavioral code, utilizing if-else statements, case statements, for
loops, and other procedural statements. It is possible to write behavioral code in a style that
resembles a computer program, in which there is a complex flow of control with many loops
and branches. With such code, sometimes called high-level behavioral code, it is difficult to
relate the code to the final hardware implementation; it may even be difficult to predict what
circuit a high-level synthesis tool will produce. In this book we do not use the high-level
style of code. Instead, we present Verilog code in such a way that the code can be easily
related to the circuit that is being described. Most design modules presented are fairly small,
to facilitate simple descriptions. Larger designs are built by interconnecting the smaller
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modules. This approach is usually referred to as the register-transfer level (RTL) style of
code. Itis the most popular design method used in practice. RTL code is characterized by a
straightforward flow of control through the code; it comprises well-understood subcircuits
that are connected together in a simple way.

5.15 TiMiNG ANALYSIS OF FLIP-FLOP CIRCUITS

In Figure 5.14 we showed the timing parameters associated with a D flip-flop. A simple
circuit that uses this flip-flop is given in Figure 5.66. We wish to calculate the maximum
clock frequency, F),,, for which this circuit will operate properly, and also determine if the
circuit suffers from any hold time violations. In the literature, this type of analysis of circuits
is usually called fiming analysis. We will assume that the flip-flop timing parameters have
the values t;, = 0.6 ns, #;, = 0.4 ns, and 0.8 ns < #.q < 1.0 ns. A range of minimum and
maximum values is given for 7.q because, as we mentioned in Section 5.4.4, this is the usual
way of dealing with variations in delay that exist in integrated circuit chips.

To calculate the minimum period of the clock signal, T,;, = 1/F 4, We need to con-
sider all paths in the circuit that start and end at flip-flops. In this simple circuit there is
only one such path, which starts when data is loaded into the flip-flop by a positive clock
edge, propagates to the Q output after the . delay, propagates through the NOT gate, and
finally must meet the setup requirement at the D input. Therefore

Tyin = teQ + tnor + t

Since we are interested in the longest delay for this calculation, the maximum value of
t.q should be used. For the calculation of fyor we will assume that the delay through any
logic gate can be calculated as 1 + 0.1k, where k is the number of inputs to the gate. For a
NOT gate this gives 1.1 ns, which leads to

Tin=10+1.140.6=2.7ns
Frae = 1/2.70ns = 370.37 MHz

It is also necessary to check if there are any hold time violations in the circuit. In this
case we need to examine the shortest possible delay from a positive clock edge to a change
in the value of the D input. The delay is given by f.q 4+ tyor = 0.8 + 1.1 = 1.9 ns. Since
1.9 ns > 1, = 0.4 ns there is no hold time violation.

As another example of timing analysis of flip-flop circuits, consider the counter circuit
shown in Figure 5.67. We wish to calculate the maximum clock frequency for which this
circuit will operate properly assuming the same flip-flop timing parameters as we did for
Figure 5.66. We will again assume that the propagation delay through a logic gate can be
calculated as 1 + 0.1k.

There are many paths in this circuit that start and end at flip-flops. The longest such
path starts at flip-flop Qp and ends at flip-flop Q3. The longest path in a circuit is often called
a critical path. The delay of the critical path includes the clock-to-Q delay of flip-flop Qy,
the propagation delay through three AND gates, and one XOR-gate delay. We must also
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account for the setup time of flip-flop Q3. This gives
Tin = teq + 3(tanp) + txor + tsu
Using the maximum value of 7.q gives

Tpin = 1.0 +3(1.2) + 1.2+ 0.6 ns = 6.4 ns
Fax = 1/6.41s = 156.25 MHz

The shortest paths through the circuit are from each flip-flop to itself, through an XOR
gate. The minimum delay along each such path is 7.q + txor = 0.8 +1.2 = 2.0 ns. Since
2.0 ns > 1, = 0.4 ns there are no hold time violations.

5.15.1 TiMING ANALYSIS WITH CLOCK SKEW

In the above analysis we assumed that the clock signal arrived at exactly the same time
at all four flip-flops. We will now repeat this analysis assuming that the clock signal still
arrives at flip-flops Qp, Q;, and Q, simultaneously, but that there is a delay in the arrival
of the clock signal at flip-flop Q3. Such a variation in the arrival time of a clock signal at
different flip-flops is called clock skew, ty.,,, and can be caused by a number of factors.

In Figure 5.67 the critical path through the circuit is from flip-flop Qo to Q3. However,
the clock skew at Qs has the effect of reducing this delay, because it provides additional
time before data is loaded into this flip-flop. Taking a clock skew of 1.5 ns into account, the
delay of the path from flip-flop Qo to Q3 is given by t.q + 3(tanp) + txor + tsu — tskew =
6.4 — 1.5 ns = 4.9 ns. There is now a different critical path through the circuit, which starts
at flip-flop Qp and ends at Q,. The delay of this path gives

Thin = teQ + 2(tanp) + txor + ts
=1.04+2(1.2)+1.2+0.6ns
=52ns

Frax = 1/521ns = 192.31 MHz

In this case the clock skew results in an increase in the circuit’s maximum clock frequency.
But if the clock skew had been negative, which would be the case if the clock signal arrived
earlier at flip-flop Qs than at other flip-flops, then the result would have been a reduced
F max-

Since the loading of data into flip-flop Q3 is delayed by the clock skew, it has the
effect of increasing the hold time requirement of this flip-flop to #;, + f.., for all paths
that end at Q3 but start at Qp, Qp, or Q,. The shortest such path in the circuit is from
flip-flop Q, to Q3 and has the delay t.q + tanp + txor = 0.8 + 1.2+ 1.2 = 3.2 ns. Since
3.2 n8 > t, + tgew = 1.9 ns there is no hold time violation.

If we repeat the above hold time analysis for clock skew values #,, > 3.2 — 1, =
2.8 ns, then hold time violations will exist. Thus, if 7y, > 2.8 ns the circuit will not work
reliably at any clock frequency.
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Consider the circuit in Figure 5.68. In this circuit, there is a path that starts at flip-flop Q,
passes through some network of logic gates, and ends at the D input of flip-flop Q,. As
indicated in the figure, different delays may be incurred before the clock signal reaches the
flip-flops. Let A and A, be the clock-signal delays for flip-flops Q; and Q,, respectively.
The clock skew between these two flip-flops is then defined as

Lkew = Ao — A4

Let the longest delay along the paths through the logic gates in the circuit be 7. Then,
the minimum allowable clock period for these two flip-flops is

Tmin = th + 1+t — Lskew

Thus, if A, > Ay, then tg,., allows for an increased value of F,,,,, but if A, < Ay, then
the clock skew requires a decrease in Fjy-

To calculate whether a hold time violation exists at flip-flop Q, we need to determine
the delay along the shortest path between the flip-flops. If the minimum delay through the
logic gates in the circuit is #;, then a hold time violation occurs if

teQ + 11 < th + lskew

Here, the hold-time constraint is more difficult to meetif A, — A > 0, and itis less difficult
to meet if A, — A} < O.

Example 5.17

The techniques described above for F,,, and hold time analysis can be applied to any
circuit in which the same, or related, clock signals are connected to all flip-flops. Consider
again the reaction-timer circuit in Figure 5.61. The clock divider in part (a) of the figure
generates the ¢y signal, which drives the clock inputs of the flip-flops in the BCD counter.

N

Q Q
D QF—— Logic gates D Q

Clock cee

Figure 5.68 A general example of clock skew.
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W eee eee
a b gla b g
Converter Converter
0 — D Q | wywywywy | wywywy wy
1 1 —

Clock > Q

A

o — —} g BCD, BCD,
° J

. - Two-digit BCD counter

9
Reset Clear

Figure 5.69 A modified version of the reaction-timer circuit.

Since these paths start at the Q output of the c9 flip-flop but end at the clock inputs of other
flip-flops, rather than at D inputs, the above timing analysis method cannot be applied.
However, we could restructure the reaction-timer circuit as indicated in Figure 5.69. Instead
of using cq directly as a clock for the BCD counter, a ten-input AND gate is used to generate
a signal that has the value 1 for only one of the 1024 count values from the clock divider.
This signal is then ANDed with the control flip-flop output to cause the BCD counter to be
incremented at the desired rate of 100 times per second.

In the circuit of Figure 5.69 all flip-flops are clocked directly by the Clock signal.
Therefore, the F,,,, and hold time analysis can now be applied. In general, it is a good
design approach for sequential circuits to connect the clock inputs of all flip-flops to a
common clock. We discuss such issues in detail in Chapter 7.

5.16 CoNCLUDING REMARKS

In this chapter we have presented circuits that serve as basic storage elements in digital
systems. These elements are used to build larger units such as registers, shift registers,
and counters. Many other texts that deal with this material are available [3—-10]. We
have illustrated how circuits with flip-flops can be described using Verilog code. More
information on Verilog can be found in [11-18]. In the next chapter a more formal method
for designing circuits with flip-flops will be presented.
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C
— A
B
(a) Circuit
C
|l |A —» = 3A —-| |l | A — |« 3A
A
B
— < 2A —>1 ~2A — «—2A —ﬁ ~2A

(b) Timing diagram

Figure 5.70  Circuit for Example 5.18.

5.17 EXAMPLES OF SOLVED PROBLEMS

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

Problem: Consider the circuit in Figure 5.70a. Assume that the input C is driven by a Example 5.18
square wave signal with a 50% duty cycle. Draw a timing diagram that shows the waveforms
at points A and B. Assume that the propagation delay through each gate is A seconds.

Solution: The timing diagram is shown in Figure 5.70b.

Problem: Determine the functional behavior of the circuit in Figure 5.71. Assume that Example 5.19
input w is driven by a square wave signal.

Solution: When both flip-flops are cleared, their outputs are Qy = Q; = 0. After the Clear
input goes high, each pulse on the w input will cause a change in the flip-flops as indicated
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FFO FFI
Qo

—
o
—
o

L Q

Al
Al

Clear T

Figure 5.71  Circuit for Example 5.19.

Time FFO FF1

interval Jo Ko Qo | J1 Ki Q

Clear 1 1 0|0 1 0
f 11 111 0
1 o 1 0|0 1 1
t 1 1 0|0 1 0
14 11 111 0

Figure 5.72  Summary of the behavior of the circuit in Figure 5.71.

in Figure 5.72. Note that the figure shows the state of the signals after the changes caused
by the rising edge of a pulse have taken place.

In consecutive time intervals the values of Q; Qg are 00, 01, 10, 00, 01, and so on.
Therefore, the circuit generates the counting sequence: 0, 1, 2, 0, 1, and so on. Hence, the
circuit is a modulo-3 counter.

Example 5.20 Problem: Design a circuit that can be used to control a vending machine. The circuit has
five inputs: Q (quarter), D (dime), N (nickel), Coin, and Resetn. When a coin is deposited
in the machine, a coin-sensing mechanism generates a pulse on the appropriate input (Q,
D, or N). To signify the occurrence of the event, the mechanism also generates a pulse on
the line Coin. The circuit is reset by using the Resetn signal (active low). When at least
30 cents has been deposited, the circuit activates its output, Z. No change is given if the
amount exceeds 30 cents.
Design the required circuit by using the following components: a six-bit adder, a six-bit
register, and any number of AND, OR, and NOT gates.
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| l
N/
Adder
Ss_o
Coin ——(
Register §
Resetn ——Q

Z

Figure 5.73  Circuit for Example 5.20.

Solution: Figure 5.73 gives a possible circuit. The value of each coin is represented by a
corresponding five-bit number. It is added to the current total, which is held in register S.
The required output is

Z = 55 + 54535251

The register is clocked by the negative edge of the Coin signal. This allows for a propagation
delay through the adder, and ensures that a correct sum will be placed into the register.

In Chapter 9 we will show how this type of control circuit can be designed using a
more structured approach.

317
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module vend (N, D, Q, Resetn, Coin, Z);
input N, D, Q, Resetn, Coin;
output Z;
wire [4:0] X;
reg [5:0] S;

assign X[0]=N| Q;

assign X[1]=D;

assign X[2] =N;

assign X[3]=D| Q;

assign X[4]=Q;

assign Z = S[5] | (S[4] & S[3] & S[2] & S[1]);

always @ (negedge Coin, negedge Resetn)
if (Resetn == 1’b0)
S <=5’b00000;
else
S<={1'b0, X} +S;

endmodule

Figure 5.74  Code for Example 5.21.

Example 5.21

Problem: Write Verilog code to implement the circuit in Figure 5.73.

Solution: Figure 5.74 gives the desired code.

Example 5.22

Problem: In Section 5.15 we presented a timing analysis for the counter circuit in Figure
5.67. Redesign this circuit to reduce the logic delay between flip-flops, so that the circuit
can operate at a higher maximum clock frequency.

Solution: As we showed in Section 5.15, the performance of the counter circuit is limited
by the delay through its cascaded AND gates. To increase the circuit’s performance we
can refactor the AND gates as illustrated in Figure 5.75. The longest delay path in this
redesigned circuit, which starts at flip-flop Qg and ends at Q3, provides the minimum clock
period

Tyin = teQ + tanp + Ixor + Lo
=10+4+14+4+12+0.6ns =4.2ns

The redesigned counter has a maximum clock frequency of F,,,, = 1/4.2ns = 238.1 MHz,
compared to the result for the original counter, which was 156.25 MHz.
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Figure 5.75 A faster 4-bit counter.
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Problem: In Example 5.17 we showed how to perform timing analysis when there may be Example 5.23

different delays associated with the clock signal at each of the flip-flops in a circuit. The
circuit in Figure 5.76 includes three flip-flops, Q;, Q», and Qs, with corresponding clock
delays Ay, Aj, and Aj3. The flip-flop timing parameters are f;, = 0.6 ns, t;, = 0.4 ns, and
0.8 < 1.9 < 1 ns. Also, the delay through a logic gate is given by 1 + 0.1k, where k is the

number of inputs to the gate.

Calculate the F,,,, for the circuit for the following sets of clock delays: A} = A, =
A3 =0ns; A; = A3 =0nsand A, =0.7ns; A; = 1ns, A, =0, and A3 = 0.5 ns. Also,
determine if there are any hold time violations in the circuit for the sets of clock delays
Al =Ar=A3=0ns,and Ay =1ns, A, =0, A =0.5ns.
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b QQILDjDD QQ2 DO—D QQ3

Figure 5.76 A circuit with clock skews.

Solution: For the values A; = A, = A3 = 0, there is no clock skew. Let the path delay
between two flip-flops, Q; and Q;, be T, —.q,- The longest path delays are calculated by
including the maximum value of #.q at flip-flop Q;, and the setup time at flip-flop Q;, as
follows

TQ1—>Q2 =1.Q + txor + tanDp + tsy = 1412412406 =4ns

TQzﬁQz =1.Q ttanp + tyy = 1+412+4+0.6=28ns

Tq,~q, =t +tvor + 1ty =14+ 1.14+0.6 =2.7ns

TQS_’QI =tQ+tu= 14+0.6=1.6ns

TQ3_>Q2 =1tQ+txor +tanp + 1ty =1+12+12+06=4ns
Since the critical path delay Tq,—q, = Tq,q, =4 ns, then F, =1/(4 x 107) =
250 MHz.

Forthe values A} = A3z = 0,and A, = 0.7 ns, there is clock skew for the paths between
flip-flops Q; and Q,, as well as Q3 and Q,. Adjusting the longest delays calculated above
to account for clock skew, we have

TQ|—>Q2 =4 —tgew =4— (A —A) =4—-0.7=33ns

TQZQQ3 =27 —tgew =2.7T— (A3 — Ay) =2.7—(0—-0.7) =3.4ns

TQ3_>Q2 =4 —tgew =4 —(Ay— A3) =4—-0.7=33ns
The critical path delay now starts at flip-flop Q> and ends at flip-flop Q3. Since Tq,.q, =
3.4 ns, then Fpee = 1/(3.4 x 107°) = 294 MHz.

For the values A; =1, A, =0, and Az = 0.5 ns, there is clock skew for the paths
between all flip-flops. Adjusting the longest delays calculated for the case with no clock
skew, we have

TQ1—>Q2 =4_tskew:4_(A2_Al) =4_(0_ 1)=5HS

TQ2_>QS = 2.7 — tgery = 2.7 — (A3 — Ay) =2.7— (0.5 =2.2ns
TQ3%Q1 =16 —tgey =16 — (A1 —A3)=1.6—(1—-0.5) =1.1ns
TQ3%Q2 =4 —tgew =4 — (A — A3) =4—-(0—-0.5) =4.5ns
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The critical path delay is from flip-flop Q; to flip-flop Qz. Since Tq,.q, = 5 ns, then
Fipax = 1/(5 x 107°) = 200 MHz.

To determine whether any hold time violations exist, we need to calculate the shortest
path delays, using the minimum value of 7.q. For A = A, = A3 =0, we have

Tg,»q, =t +txor +tanvp = 0.8 +1.2+1.2=32ns
Tg,~q, =t +tavp =08 +1.2=2ns

Tg,-q, =tq+tyor =0.8+1.1=19ns

Tg,~q, =1tq=0.38ns

Tq,q, =tq+itxor +tanp =08 +1.2+1.2=32ns

Since the shortest path delay Tq,_.q, = 0.8 ns > 1, there is no hold time violation in the
circuit.

We showed in Section 5.15 that if the shortest path delay through a circuit is called
T, then a hold time violation occurs if T} — tg,.,, < t;. Adjusting the shortest path delays
calculated above for the values A =1, A, =0, and A3z = 0.5 gives

To 0, =32 —fyew =32 — (Ay— A)) =32—(0—1) =4.2ns
To,-0, = 1.9 — Iy = 1.9 — (A3 — Ay) = 1.9 — 0.5 = 1.4 ns

To,-0, = 0.8 — Iy = 0.8 — (A} — A3) = 0.8 — (1 —0.5) = 0.3 ns
To,-0, = 3.2 — fyew = 3.2 — (Ay — A3) =32 — (0—0.5) = 3.7 ns

The shortest path delay is Tq,.q, = 0.3 ns < #,, which represents a hold time violation.
Hence, the circuit may not function reliably regardless of the frequency of the clock signal.

PROBLEMS

Answers to problems marked by an asterisk are given at the back of the book.

5.1 Consider the timing diagram in Figure P5.1. Assuming that the D and Clock inputs shown
are applied to the circuit in Figure 5.10, draw waveforms for the Q,, Q,, and Q, signals.

Clock | | | |
b __ | L L L] L

Figure P5.1  Timing diagram for Problem 5.1.
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Figure 5.4 shows a latch built with NOR gates. Draw a similar latch using NAND gates.
Derive its characteristic table and show its timing diagram.

Show a circuit that implements the gated SR latch using NAND gates only.

Given a 100-MHz clock signal, derive a circuit using D flip-flops to generate 50-MHz
and 25-MHz clock signals. Draw a timing diagram for all three clock signals, assuming
reasonable delays.

An SR flip-flop is a flip-flop that has set and reset inputs like a gated SR latch. Show how
an SR flip-flop can be constructed using a D flip-flop and other logic gates.

The gated SR latch in Figure 5.5a has unpredictable behavior if the S and R inputs are
both equal to 1 when the Clk changes to 0. One way to solve this problem is to create a
set-dominant gated SR latch in which the condition § = R = 1 causes the latch to be set to
1. Design a set-dominant gated SR latch and show the circuit.

Show how a JK flip-flop can be constructed using a T flip-flop and other logic gates.

Consider the circuit in Figure P5.2. Assume that the two NAND gates have much longer
(about four times) propagation delay than the other gates in the circuit. How does this
circuit compare with the circuits that we discussed in this chapter?

A:Do
s—]

Figure P5.2  Circuit for Problem 5.8.

Write Verilog code that represents a T flip-flop with an asynchronous clear input. Use
behavioral code, rather than structural code.

Write Verilog code that represents a JK flip-flop. Use behavioral code, rather than structural
code.
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Synthesize a circuit for the code written for Problem 5.10 by using your CAD tools. Simulate
the circuit and show a timing diagram that verifies the desired functionality.

A universal shift register can shift in both the left-to-right and right-to-left directions, and
it has parallel-load capability. Draw a circuit for such a shift register.

Write Verilog code for a universal shift register with » bits.

Design a four-bit synchronous counter with parallel load. Use T flip-flops, instead of the D
flip-flops used in Section 5.9.3.

Design a three-bit up/down counter using T flip-flops. It should include a control input
called Up/Down. If Up/Down = 0, then the circuit should behave as an up-counter. If
Up/Down = 1, then the circuit should behave as a down-counter.

Repeat Problem 5.15 using D flip-flops.

The circuit in Figure P5.3 looks like a counter. What is the counting sequence of this circuit?

Qo Q Q,
T Q ‘ T Q T Q J

Clock >  Q ’7> Q —pP Q

Figure P5.3  The circuit for Problem 5.17.

Consider the circuit in Figure P5.4. How does this circuit compare with the circuit in Figure
5.167 Can the circuits be used for the same purposes? If not, what is the key difference
between them?

Clock [>o Clk Clk
K : R _Q R Q Q

Figure P5.4  Circuit for Problem 5.18.
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Construct a NOR-gate circuit, similar to the one in Figure 5.11a, which implements a
negative-edge-triggered D flip-flop.

Write Verilog code that represents a modulo-12 up-counter with synchronous reset.

For the flip-flops in the counter in Figure 5.24, assume that ¢, = 3 ns, #;, = 1 ns, and the
propagation delay through a flip-flop is 1 ns. Assume that each AND gate, XOR gate, and
2-to-1 multiplexer has the propagation delay equal to 1 ns. What is the maximum clock
frequency for which the circuit will operate correctly?

Write Verilog code that represents an eight-bit Johnson counter. Synthesize the code with
your CAD tools and give a timing simulation that shows the counting sequence.

Write Verilog code in the style shown in Figure 5.51 that represents a ring counter. Your
code should have a parameter n that sets the number of flip-flops in the counter.

A ring oscillator is a circuit that has an odd number, n, of inverters connected in a ringlike
structure, as shown in Figure P5.5. The output of each inverter is a periodic signal with a
certain period.

oo - —>o ;

Figure P5.5 A ring oscillator.

(a) Assume that all the inverters are identical; hence they all have the same delay, called
t,. Let the output of one of the inverters be named f. Give an equation that expresses the
period of the signal f in terms of n and t,.

(b) For this part you are to design a circuit that can be used to experimentally measure the
delay #, through one of the inverters in the ring oscillator. Assume the existence of an input
called Reset and another called Interval. The timing of these two signals is shown in Figure
P5.6. The length of time for which Interval has the value 1 is known. Assume that this
length of time is 100 ns. Design a circuit that uses the Reset and Interval signals and the
signal f from part (a) to experimentally measure #,. In your design you may use logic gates
and subcircuits such as adders, flip-flops, counters, registers, and so on.

Reset | |
Interval | |

- 100ns —mM

Figure P5.6  Timing of signals for Problem 5.24.
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5.25 A circuit for a gated D latch is shown in Figure P5.7. Assume that the propagation delay
through either a NAND gate or an inverter is 1 ns. Complete the timing diagram given in
the figure, which shows the signal values with 1 ns resolution.

D

Clock r

)
L
> P

I

Clock

-
=

O =

O =

Figure P5.7  Circuit and timing diagram for Problem 5.25.

*5.26 A logic circuit has two inputs, Clock and Start, and two outputs, f and g. The behavior of
the circuit is described by the timing diagram in Figure P5.8. When a pulse is received

Clock 1

Start

Figure P5.8  Timing diagram for Problem 5.26.
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on the Start input, the circuit produces pulses on the f and g outputs as shown in the
timing diagram. Design a suitable circuit using only the following components: a three-
bit resettable positive-edge-triggered synchronous counter and basic logic gates. For your
answer assume that the delays through all logic gates and the counter are negligible.

5.27 The following code checks for adjacent ones in an n-bit vector.

always @(A)
begin
f=A[1] & A[O];
for (k=2;k <n; k=k+1)
f=1|(A[k] & A[k—1]);
end

With blocking assignments this code produces the desired logic function, which is f =
ajap + - -+ + ay—1a,—>. What logic function is produced if we change the code to use
non-blocking assignments?

5.28 The Verilog code in Figure P5.9 represents a 3-bit linear-feedback shift register (LFSR).
This type of circuit generates a counting sequence of pseudo-random numbers that repeats
after 2" — 1 clock cycles, where n is the number of flip-flops in the LFSR. Synthesize a
circuit to implement the LFSR in a chip. Draw a diagram of the circuit. Simulate the
circuit’s behavior by loading the pattern 001 into the LFSR and then enabling the register
to count. What is the counting sequence?

module Ifsr (R, L, Clock, Q);
input [0:2] R;
input L, Clock;
output reg [0:2] Q;

always @(posedge Clock)
if (L)
Q<=R;
else

Q<= {Q[2], Q[0] " Q[2], Q[11};
endmodule

Figure P5.9  Code for a linear-feedback shift register.
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5.29 Repeat Problem 5.28 for the Verilog code in Figure P5.10.

module Ifsr (R, L, Clock, Q);
input [0:2] R;
input L, Clock;
output reg [0:2] Q;

always @ (posedge Clock)
if (L)
Q<=R;
else

Q <= {Q[2], Q[0], Q[1] ~ Q[2]};
endmodule

Figure P5.10  Code for a linear-feedback shift register.

5.30 The Verilog code in Figure P5.11 is equivalent to the code in Figure P5.9, except that
blocking assignments are used. Draw the circuit represented by this code. What is its
counting sequence?

module Ifsr (R, L, Clock, Q);
input [0:2] R;
input L, Clock;
output reg [0:2] Q;

always @ (posedge Clock)

if (L)
Q<=R;

else

begin
QI[0] = Q[2];
Q[1]=Q[0] ~ Q[2];
Q2] =QI1];

end

endmodule

Figure P5.11  Code for Problem 5.30.



328

5.31

5.32

CHAPTER 5 ¢ FrLip-FLOPS, REGISTERS, AND COUNTERS

The Verilog code in Figure P5.12 is equivalent to the code in Figure P5.10, except that
blocking assignments are used. Draw the circuit represented by this code. What is its
counting sequence?

module Ifsr (R, L, Clock, Q);
input [0:2] R;
input L, Clock;
output reg [0:2] Q;

always @(posedge Clock)
if (L)
Q<=R;
else
begin
Q[0] = Q[2];
Q[1]=Q[OI;
Q[2] = Q[1] ~ QI2];

end

endmodule

Figure P5.12  Code for Problem 5.31.

The circuit in Figure 5.59 gives a shift register in which the parallel-load control input
is independent of the enable input. Show a different shift register circuit in which the
parallel-load operation can be performed only when the enable input is also asserted.
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6

SYNCHRONOUS SEQUENTIAL CIRCUITS

CHAPTER OBJECTIVES

In this chapter you will learn about:

e Design techniques for circuits that use flip-flops

e The concept of states and their implementation with flip-flops

e  Synchronous control by using a clock signal

e Sequential behavior of digital circuits

e A complete procedure for designing synchronous sequential circuits
e  Verilog specification of sequential circuits

e The concept of finite state machines
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In preceding chapters we considered combinational logic circuits in which outputs are determined fully by
the present values of inputs. We also discussed how simple storage elements can be implemented in the form
of flip-flops. The output of a flip-flop depends on the state of the flip-flop rather than the value of its inputs
at any given time; the inputs cause changes in the state.

In this chapter we deal with a general class of circuits in which the outputs depend on the past behavior
of the circuit, as well as on the present values of inputs. They are called sequential circuits. In most cases
a clock signal is used to control the operation of a sequential circuit; such a circuit is called a synchronous
sequential circuit. The alternative, in which no clock signal is used, is called an asynchronous sequential
circuit. Synchronous circuits are easier to design and are used in a vast majority of practical applications;
they are the topic of this chapter. Asynchronous circuits will be discussed in Chapter 9.

Synchronous sequential circuits are realized using combinational logic and one or more flip-flops. The
general structure of such a circuit is shown in Figure 6.1. The circuit has a set of primary inputs, W, and
produces a set of outputs, Z. The stored values in the flip-flops are referred to as the state, Q, of the circuit.
Under control of the clock signal, the flip-flops change their state as determined by the combinational logic
that feeds the inputs of these flip-flops. Thus the circuit moves from one state to another. To ensure that only
one transition from one state to another takes place during one clock cycle, the flip-flops have to be of the
edge-triggered type. They can be triggered either by the positive (0 to 1 transition) or by the negative (1 to 0
transition) edge of the clock. We will use the term active clock edge to refer to the clock edge that causes the
change in state.

The combinational logic that provides the input signals to the flip-flops has two sources: the primary
inputs, W, and the present (current) state of the flip-flops, Q. Thus changes in state depend on both the present
state and the values of the primary inputs.

Figure 6.1 indicates that the outputs of the sequential circuit are generated by another combinational
circuit, such that the outputs are a function of the present state of the flip-flops and of the primary inputs.
Although the outputs always depend on the present state, they do not necessarily have to depend directly on
the primary inputs. Thus the connection shown in blue in the figure may or may not exist. To distinguish
between these two possibilities, it is customary to say that sequential circuits whose outputs depend only on
the state of the circuit are of Moore type, while those whose outputs depend on both the state and the primary
inputs are of Mealy type. These names are in honor of Edward Moore and George Mealy, who investigated
the behavior of such circuits in the 1950s.

Combinational
circuit
Q

Combinational

— Flip-flops
circuit

Clock

Figure 6.1  The general form of a sequential circuit.
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Sequential circuits are also called finite state machines (FSMs), which is a more formal name that is often
found in technical literature. The name derives from the fact that the functional behavior of these circuits can
be represented using a finite number of states. In this chapter we will often use the term finite state machine,
or simply machine, when referring to sequential circuits.

6.1 Basic DESIGN STEPS

Sequential circuits are often used to control the operation of physical systems. We will
introduce the techniques for designing such circuits by means of a simple example.

Consider an application where the speed of an automatically-controlled vehicle has
to be regulated as follows. The vehicle is designed to run at some predetermined speed.
However, due to some operational conditions the speed may exceed the desirable limit, in
which case the vehicle has to be slowed down. To determine when such action is needed,
the speed is measured at regular intervals. Let a binary signal w indicate whether the speed
exceeds the required limit, such that w = 0 means that the speed is within acceptable range
and w = 1 indicates excessive speed. The desired control strategy is that if w = 1 during
two or more consecutive measurements, a control signal z must be asserted to cause the
vehicle to slow down. Thus, z = 0 allows the current speed to be maintained, while z = 1
reduces the speed. Let a signal Clock define the required timing intervals, such that the
speed is measured once during each clock cycle. Therefore, we wish to design a circuit that
meets the following specification:

The circuit has one input, w, and one output, z.
All changes in the circuit occur on the positive edge of the clock signal.

The output z is equal to 1 if during two immediately preceding clock cycles the input
w was equal to 1. Otherwise, the value of z is equal to 0.

From this specification it is apparent that the output z depends on both present and past
values of w. Consider the sequence of values of the w and z signals for the clock cycles
shown in Figure 6.2. The values of w are assumed to be generated by the vehicle being
controlled; the values of z correspond to our specification. Since w = 1 in clock cycle #;
and remains equal to 1 in cycle #4, then z should be set to 1 in cycle #5. Similarly, z should
be set to 1 in cycle 7g because w = 1 in cycles f¢ and #7, and it should also be set to 1 in #9
because w = 1 in #7 and £3. As seen in the figure, for a given value of input w the output z
may be either 0 or 1. For example, w = 0 during clock cycles #, and s, but z = 0 during ,
and z = 1 during #5. Similarly, w = 1 during #; and fg, but z = 0 during #; and z = 1 during
t3. This means that z is not determined only by the present value of w, so there must exist
different states in the circuit that determine the value of z.

6.1.1 STATE DIAGRAM

The first step in designing a finite state machine is to determine how many states are needed
and which transitions are possible from one state to another. There is no set procedure for
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Clockcycle: tg t; ty t
w: 0O 1 O 1 1 0 1 1 1 0 1
zz 0 0 O

Figure 6.2  Sequences of input and output signals.

this task. The designer must think carefully about what the machine has to accomplish. A
good way to begin is to select one particular state as a starting state; this is the state that the
circuit should enter when power is first turned on or when a reset signal is applied. For our
example let us assume that the starting state is called state A. As long as the input w is 0,
the circuit need not do anything, and so each active clock edge should result in the circuit
remaining in state A. When w becomes equal to 1, the machine should recognize this, and
move to a different state, which we will call state B. This transition takes place on the next
active clock edge after w has become equal to 1. In state B, as in state A, the circuit should
keep the value of output z at 0, because it has not yet seen w = 1 for two consecutive clock
cycles. When in state B, if w is O at the next active clock edge, the circuit should move back
to state A. However, if w = 1 when in state B, the circuit should change at the next active
clock edge to a third state, called C, and it should then generate an output z = 1. The circuit
should remain in state C as long as w = 1 and should continue to maintain z = 1. When
w becomes 0, the machine should move back to state A. Since the preceding description
handles all possible values of input w that the machine can encounter in its various states,
we can conclude that three states are needed to implement the desired machine.

Now that we have determined in an informal way the possible transitions between states,
we will describe a more formal procedure that can be used to design the corresponding
sequential circuit. Behavior of a sequential circuit can be described in several different
ways. The conceptually simplest method is to use a pictorial representation in the form
of a state diagram, which is a graph that depicts states of the circuit as nodes (circles)
and transitions between states as directed arcs. The state diagram in Figure 6.3 defines the
behavior that corresponds to our specification. States A, B, and C appear as nodes in the
diagram. Node A represents the starting state, and it is also the state that the circuit will reach
after an input w = 0 is applied. In this state the output z should be 0, which is indicated
as A/z = 0 in the node. The circuit should remain in state A as long as w = 0, which is
indicated by an arc with a label w = 0 that originates and terminates at this node. The first
occurrence of w = 1 (following the condition w = 0) is recorded by moving from state A to
state B. This transition is indicated on the graph by an arc originating at A and terminating
at B. The label w = 1 on this arc denotes the input value that causes the transition. In state
B the output remains at 0, which is indicated as B/z = 0 in the node.

When the circuit is in state B, it will change to state C if w is still equal to 1 at the
next active clock edge. In state C the output z becomes equal to 1. If w stays at 1 during
subsequent clock cycles, the circuit will remain in state C maintaining z = 1. However, if
w becomes 0 when the circuit is either in state B or in state C, the next active clock edge
will cause a transition to state A to take place.
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w=1

Figure 6.3  State diagram of a simple sequential circuit.

Present Next state Output
state w=0 w=1 Z
A A B 0
B A C 0
C A C 1

Figure 6.4  State table corresponding to Figure 6.3.

In the diagram we indicated that the Reset input is used to force the circuit into state
A. We could treat Reset as just another input to the circuit, and show a transition from each
state to the starting state A under control of the input Reset. This would complicate the
diagram unnecessarily. Instead, we use a single arrow with the Reset label, as shown in
Figure 6.3, to indicate that the Reset input causes a change to the starting state regardless
of what state the circuit happens to be in.

6.1.2 STATE TABLE

Although the state diagram provides a description of the behavior of a sequential circuit
that is easy to understand, to proceed with the implementation of the circuit it is conve-
nient to translate the information contained in the state diagram into a tabular form. Figure
6.4 shows the state table for our sequential circuit. The table indicates all transitions from
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each present state to the next state for different values of the input signal. Note that the
output z is specified with respect to the present state, namely, the state that the circuit is
in at present time. Note also that we did not include the Reset input; instead, we made an
implicit assumption that the first state in the table is the starting state.

We now show the design steps that will produce the final circuit. To explain the basic
design concepts, we first go through a traditional process of manually performing each
design step. This is followed by a discussion of automated design techniques that use
modern computer aided design (CAD) tools.

6.1.3 STATE ASSIGNMENT

The state table in Figure 6.4 defines the three states in terms of letters A, B, and C. When
implemented in a logic circuit, each state is represented by a particular valuation (combi-
nation of values) of state variables. Each state variable may be implemented in the form of
a flip-flop. Since three states have to be realized, it is sufficient to use two state variables.
Let these variables be y; and y;.

Now we can adapt the general block diagram in Figure 6.1 to our example as shown in
Figure 6.5, to indicate the structure of the circuit that implements the required finite state
machine. Two flip-flops represent the state variables. In the figure we have not specified
the type of flip-flops to be used; this issue is addressed in the next subsection. From the
specification in Figures 6.3 and 6.4, the output z is determined only by the present state of
the circuit. Thus the block diagram in Figure 6.5 shows that z is a function of only y; and
yo; our design is of Moore type. We need to design a combinational circuit that uses y; and
¥, as input signals and generates a correct output signal z for all possible valuations of these
inputs.

——

1 Vi

W —
Combinational —P Combinational
— L Lo —
circuit circuit
Y, 2
—1>
Clock

Figure 6.5 A general sequential circuit with input w, output z, and two state flip-flops.
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Next state
Present

state | w=0 w= 1| Output

z

a1 Y Yy

A 00 00 01 0

B 01 00 10 0

C 10 00 10 1

11 dd dd d

Figure 6.6  State-assigned table corresponding to Figure 6.4.

The signals y; and y, are also fed back to the combinational circuit that determines
the next state of the FSM. This circuit also uses the primary input signal w. Its outputs are
two signals, Y| and Y,, which are used to set the state of the flip-flops. Each active edge
of the clock will cause the flip-flops to change their state according to the values of ¥ and
Y, at that time. Therefore, Y, and Y, are called the next-state variables, and y; and y, are
called the present-state variables. We need to design a combinational circuit with inputs
w, y1, and y,, such that for all valuations of these inputs the outputs Y; and Y, will cause
the machine to move to the next state that satisfies our specification. The next step in the
design process is to create a truth table that defines this circuit, as well as the circuit that
generates z.

To produce the desired truth table, we assign a specific valuation of variables y; and y,
to each state. One possible assignment is given in Figure 6.6, where the states A, B, and C
are represented by y,y; = 00, 01, and 10, respectively. The fourth valuation, y,y; = 11, is
not needed in this case.

The type of table given in Figure 6.6 is usually called a state-assigned table. This table
can serve directly as a truth table for the output z with the inputs y; and y,. Although for
the next-state functions Y; and Y, the table does not have the appearance of a normal truth
table, because there are two separate columns in the table for each value of w, it is obvious
that the table includes all of the information that defines Y; and Y, in terms of valuations
of inputs w, y, and y,.

6.1.4 CHOICE OF FLIP-FLOPS AND DERIVATION OF NEXT-STATE AND
OuTPUT EXPRESSIONS

From the state-assigned table in Figure 6.6, we can derive the logic expressions for the
next-state and output functions. But first we have to decide on the type of flip-flops that
will be used in the circuit. The most straightforward choice is to use D-type flip-flops,
because in this case the values of Y} and Y, are simply clocked into the flip-flops to become
the new values of y; and y,. In other words, if the inputs to the flip-flops are called D,
and D,, then these signals are the same as Y} and Y,. Note that the diagram in Figure 6.5
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Yo Vq
w 00 ol 11 10 Ignoring don’t cares Using don’t cares
0] o0 0 d 0 L L
Yy =wyiy Yy =wyiy
1 @ 0 d 0
Y21
v 00 01 11 10
0] o 0 d 0 _ _
Y, = wy yo+twyy, Y, = wy,+wy,
1o [ } = w(y; +))
Y1
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2= Y1) 2=
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Figure 6.7  Derivation of logic expressions for the table in Figure 6.6.

corresponds exactly to this use of D-type flip-flops. For other types of flip-flops, such as
JK type, the relationship between the next-state variable and inputs to a flip-flop is not as
straightforward; we will consider this situation in Section 6.7.

The required logic expressions can be derived as shown in Figure 6.7. We use Karnaugh
maps to make it easy for the reader to verify the validity of the expressions. Recall that
in Figure 6.6 we needed only three of the four possible binary valuations to represent the
states. The fourth valuation, y,y; = 11, will not occur in the circuit because the circuit is
constrained to move only within states A, B, and C; therefore, we may choose to treat this
valuation as a don’t-care condition. The resulting don’t-care squares in the Karnaugh maps
are denoted by d’s. Using the don’t cares to simplify the expressions, we obtain

Yi =wyy,
Y2 =w(1+y2)
="M

If we do not use don’t cares, then the resulting expressions are slightly more complex; they
are shown in the gray-shaded area of Figure 6.7.

Since D; = Y; and D, = Y5, the logic circuit that corresponds to the preceding expres-
sions is implemented as shown in Figure 6.8. Observe that a clock signal is included, and
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Y, 2
D Q Z

ﬂ Y y
w ) : D Q :

Clock

Resetn

Figure 6.8  Final implementation of the sequential circuit.

the circuit is provided with an active-low reset capability. Connecting the clear input on
the flip-flops to an external Resetn signal, as shown in the figure, provides a simple means
for forcing the circuit into a known state. If we apply the signal Resetn = 0 to the circuit,
then both flip-flops will be cleared to 0, placing the FSM into the state y,y; = 00.

6.1.5 TiMING DIAGRAM

To understand fully the operation of the circuit in Figure 6.8, let us consider its timing
diagram presented in Figure 6.9. The diagram depicts the signal waveforms that correspond
to the sequences of values in Figure 6.2.

Because we are using positive-edge-triggered flip-flops, all changes in the signals occur
shortly after the positive edge of the clock. The amount of delay from the clock edge depends
on the propagation delays through the flip-flops. Note that the input signal w is also shown
to change slightly after the active edge of the clock. This is a good assumption because in
a typical digital system an input such as w would be just an output of another circuit that is
synchronized by the same clock. We discuss the synchronization of input signals with the
clock signal in Chapter 7.
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Figure 6.9  Timing diagram for the circuit in Figure 6.8.

B

A key point to observe is that even though w changes slightly after the active clock
edge, and thus the value of w is equal to 1 (or 0) for almost the entire clock cycle, no change
in the circuit will occur until the beginning of the next clock cycle when the positive edge
causes the flip-flops to change their state. Thus the value of w must be equal to 1 for two
clock cycles if the circuit is to reach state C and generate the output z = 1.

6.1.6 SUMMARY OF DESIGN STEPS

We can summarize the steps involved in designing a synchronous sequential circuit as
follows:

Obtain the specification of the desired circuit.

2. Derive the states for the machine by first selecting a starting state. Then, given the
specification of the circuit, consider all valuations of the inputs to the circuit and
create new states as needed for the machine to respond to these inputs. To keep track
of the states as they are visited, create a state diagram. When completed, the state
diagram shows all states in the machine and gives the conditions under which the
circuit moves from one state to another.

3. Create a state table from the state diagram. Alternatively, it may be convenient to
directly create the state table in step 2, rather than first creating a state diagram.

4. In our sequential circuit example, there were only three states; hence it was a simple
matter to create the state table that does not contain more states than necessary.
However, in practice it is common to deal with circuits that have a large number of
states. In such cases it is unlikely that the first attempt at deriving a state table will
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produce optimal results, so that we may have more states than is really necessary.
This can be corrected by a procedure that minimizes the number of states. We will
discuss the process of state minimization in Section 6.6.

5. Decide on the number of state variables needed to represent all states and perform the
state assignment. There are many different state assignments possible for a given
sequential circuit. Some assignments may be better than others. In the preceding
example we used what seemed to be a natural state assignment. We will return to this
example in Section 6.2 and show that a different assignment may lead to a simpler
circuit.

6. Choose the type of flip-flops to be used in the circuit. Derive the next-state logic
expressions to control the inputs to all flip-flops and then derive logic expressions for
the outputs of the circuit. So far we have used only D-type flip-flops. We will
consider other types of flip-flops in Section 6.7.

7. Implement the circuit as indicated by the logic expressions.

We introduced the steps used in the design of sequential circuits by using an example of
a simple controller for a vehicle. In this case the value of w reflected the speed of the vehicle.
But, we could consider this example in a more general sense, in that the value of w in each
clock cycle provides a sequence of symbols over time, where each symbol has the value 0
or 1. Our circuit can detect sequences of symbols that consist of consecutive 1s, and indicate
this by generating z = 1 following each occurrence of two consecutive 1s. Beacause the
circuit detects a specific sequence of symbols, we can say that it acts as a sequence detector.
Similar circuits can be designed to detect a variety of different sequences.
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We have illustrated the design steps using a very simple sequential circuit. We will now
consider a slightly more complex example that is closely tied to application in computer
systems.

A computer system usually contains a number of registers that hold data during various
operations. Sometimes it is necessary to swap the contents of two registers. Typically,
this is done by using a temporary location, which is usually a third register. For example,
suppose that we want to swap the contents of registers R1 and R2. We can achieve this by
first transferring the contents of R2 into the third register, say R3. Next, we transfer the
contents of R1 into R2. Finally, we transfer the contents of R3 into R1.

Registers in a computer system are connected via an interconnection network, as shown
in Figure 6.10. In addition to the wires that connect to the network, each register has two
control signals. The Rk, signal causes the contents of register Rk to be placed into the
interconnection network. The Rk;, signal causes the data from the network to be loaded
into Rk. The Rk,,, and Rk;, signals are generated by a control circuit, which is a finite state
machine. For our example, we will design a control circuit that swaps the contents of R1
and R2, in response to an input w = 1. Therefore, the inputs to the control circuit will be
w and Clock. The outputs will be R1,,;, R1l;;, R2p4:, R2i, R3,4, R3in, and Done which
indicates the completion of the required transfers.

Example 6.1
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Figure 6.10  System for Example 6.1.

The desired swapping operation will be performed as follows. The contents of R2 are
first loaded into R3, using the control signals R2,,, = 1 and R3;, = 1. Then the contents of
R1 are transferred into R2, using R1,,, = 1 and R2;, = 1. Finally, the contents of R3 (which
are the previous contents of R2) are transferred into R1, using R3,,, = 1 and R1;, = 1. Since
this step completes the required swap, we will set the signal Done = 1. Assume that the
swapping is performed in response to a pulse on the input w, which has a duration of one
clock cycle. Figure 6.11 gives a state diagram for a sequential circuit that generates the
output control signals in the required sequence. Note that to keep the diagram simple, we
have indicated the output signals only when they are equal to 1. In all other cases the output
signals are equal to 0.

In the starting state, A, no transfer is indicated, and all output signals are 0. The circuit
remains in this state until a request to swap arrives in the form of w changing to 1. In state
B the signals required to transfer the contents of R2 into R3 are asserted. The next active
clock edge places these contents into R3. This clock edge also causes the circuit to change
to state C, regardless of whether w is equal to O or 1. In this state the signals for transferring
R1 into R2 are asserted. The transfer takes place at the next active clock edge, and the
circuit changes to state D regardless of the value of w. The final transfer, from R3 to R1, is
performed on the clock edge that leaves state D, which also causes the circuit to return to
state A.

Figure 6.12 presents the same information in a state table. Since there are four states,
we can use two state variables, y, and y;. A straightforward state assignment where the
states A, B, C, and D are assigned the valuations y,y; = 00, 01, 10, and 11, respectively,
leads to the state-assigned table in Figure 6.13. Using this assignment and D-type flip-flops,
the next-state expressions can be derived as shown in Figure 6.14. They are

Yi=wy +y»
2=y, +y1»2
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A

A /No transfer

) «—— Reset
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Figure 6.11

State diagram for Example 6.1.

Present Next state Outputs
state | w=0 w=1| Rlow Rlix R20u R2yu R3,; R3; Done
A A B 0 0 0 0 0 0 0
B C C 0 0 1 0 0 1 0
C D D 1 0 0 1 0 0 0
D A A 0 1 0 0 1 0 1
Figure 6.12  State table for Example 6.1.

The output control s