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Preface

This book is intended for an introductory course in digital logic design, which is a basic
course in most electrical and computer engineering programs. A successful designer of
digital logic circuits needs a good understanding of basic concepts and a firm grasp of the
modern design approach that relies on computer-aided design (CAD) tools.

The main goals of the book are (1) to teach students the fundamental concepts in
classical manual digital design and (2) illustrate clearly the way in which digital circuits
are designed today, using CAD tools. Even though modern designers no longer use manual
techniques, except in rare circumstances, our motivation for teaching such techniques is
to give students an intuitive feeling for how digital circuits operate. Also, the manual
techniques provide an illustration of the types of manipulations performed by CAD tools,
giving students an appreciation of the benefits provided by design automation. Throughout
the book, basic concepts are introduced by way of examples that involve simple circuit
designs, which we perform using both manual techniques and modern CAD-tool-based
methods. Having established the basic concepts, more complex examples are then provided,
using the CAD tools. Thus our emphasis is on modern design methodology to illustrate
how digital design is carried out in practice today.

Technology

The book discusses modern digital circuit implementation technologies. The emphasis is on
programmable logic devices (PLDs), which is the most appropriate technology for use in a
textbook for two reasons. First, PLDs are widely used in practice and are suitable for almost
all types of digital circuit designs. In fact, students are more likely to be involved in PLD-
based designs at some point in their careers than in any other technology. Second, circuits
are implemented in PLDs by end-user programming. Therefore, students can be provided
with an opportunity, in a laboratory setting, to implement the book’s design examples in
actual chips. Students can also simulate the behavior of their designed circuits on their own
computers. We use the two most popular types of PLDs for targeting of designs: complex
programmable logic devices (CPLDs) and field-programmable gate arrays (FPGAs).

We emphasize the use of a hardware description language in specifying the logic cir-
cuits, because the HDL-based approach is the most efficient design method to use in practice.
We describe in detail the IEEE Standard Verilog HDL language and use it extensively in
examples.
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Scope of the Book

This edition of the book has been extensively restructured. All of the material that should
be covered in a one-semester course is now included in Chapters 1 to 6. More advanced
material is presented in Chapters 7 to 11.

Chapter 1 provides a general introduction to the process of designing digital systems.
It discusses the key steps in the design process and explains how CAD tools can be used
to automate many of the required tasks. It also introduces the representation of digital
information.

Chapter 2 introduces the logic circuits. It shows how Boolean algebra is used to
represent such circuits. It introduces the concepts of logic circuit synthesis and optimization,
and shows how logic gates are used to implement simple circuits. It also gives the reader
a first glimpse at Verilog, as an example of a hardware description language that may be
used to specify the logic circuits.

Chapter 3 concentrates on circuits that perform arithmetic operations. It discusses num-
bers and shows how they can be manipulated using logic circuits. This chapter illustrates
how Verilog can be used to specify the desired functionality and how CAD tools provide a
mechanism for developing the required circuits.

Chapter 4 presents combinational circuits that are used as building blocks. It includes
the encoder, decoder, and multiplexer circuits. These circuits are very convenient for
illustrating the application of many Verilog constructs, giving the reader an opportunity to
discover more advanced features of Verilog.

Storage elements are introduced in Chapter 5. The use of flip-flops to realize regular
structures, such as shift registers and counters, is discussed. Verilog-specified designs of
these structures are included.

Chapter 6 gives a detailed presentation of synchronous sequential circuits (finite state
machines). It explains the behavior of these circuits and develops practical design tech-
niques for both manual and automated design.

Chapter 7 is a discussion of a number of practical issues that arise in the design of real
systems. It highlights problems often encountered in practice and indicates how they can
be overcome. Examples of larger circuits illustrate a hierarchical approach in designing
digital systems. Complete Verilog code for these circuits is presented.

Chapter 8 deals with more advanced techniques for optimized implementation of logic
functions. It presents algorithmic techniques for optimization. It also explains how logic
functions can be specified using a cubical representation as well as using binary decision
diagrams.

Asynchronous sequential circuits are discussed in Chapter 9. While this treatment is
not exhaustive, it provides a good indication of the main characteristics of such circuits.
Even though the asynchronous circuits are not used extensively in practice, they provide
an excellent vehicle for gaining a deeper understanding of the operation of digital circuits
in general. They illustrate the consequences of propagation delays and race conditions that
may be inherent in the structure of a circuit.

Chapter 10 presents a complete CAD flow that the designer experiences when design-
ing, implementing, and testing a digital circuit.
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Chapter 11 introduces the topic of testing. A designer of logic circuits has to be aware
of the need to test circuits and should be conversant with at least the most basic aspects of
testing.

Appendix A provides a complete summary of Verilog features. Although use of Verilog
is integrated throughout the book, this appendix provides a convenient reference that the
reader can consult from time to time when writing Verilog code.

The electronic aspects of digital circuits are presented in Appendix B. This appendix
shows how the basic gates are built using transistors and presents various factors that affect
circuit performance. The emphasis is on the latest technologies, with particular focus on
CMOS technology and programmable logic devices.

What Can Be Covered in a Course

Much of the material in the book can be covered in 2 one-quarter courses. A good coverage
of the most important material can be achieved in a single one-semester, or even a one-
quarter course. This is possible only if the instructor does not spend too much time teaching
the intricacies of Verilog and CAD tools. To make this approach possible, we organized
the Verilog material in a modular style that is conducive to self-study. Our experience in
teaching different classes of students at the University of Toronto shows that the instructor
may spend only three to four lecture hours on Verilog, describing how the code should be
structured, including the use of design hierarchy, using scalar and vector variables, and on
the style of code needed to specify sequential circuits. The Verilog examples given in the
book are largely self-explanatory, and students can understand them easily.

The book is also suitable for a course in logic design that does not include exposure to
Verilog. However, some knowledge of Verilog, even at a rudimentary level, is beneficial
to the students, and it is a great preparation for a job as a design engineer.

One-Semester Course

The following material should be covered in lectures:

• Chapter 1—all sections.
• Chapter 2—all sections.
• Chapter 3—Sections 3.1 to 3.5.
• Chapter 4—all sections.
• Chapter 5—all sections.
• Chapter 6—all sections.

One-Quarter Course

In a one-quarter course the following material can be covered:

• Chapter 1—all sections.
• Chapter 2—all sections.
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• Chapter 3—Sections 3.1 to 3.3 and Section 3.5.
• Chapter 4—all sections.
• Chapter 5—all sections.
• Chapter 6—Sections 6.1 to 6.4.

Verilog

Verilog is a complex language, which some instructors feel is too hard for beginning students
to grasp. We fully appreciate this issue and have attempted to solve it. It is not necessary
to introduce the entire Verilog language. In the book we present the important Verilog
constructs that are useful for the design and synthesis of logic circuits. Many other language
constructs, such as those that have meaning only when using the language for simulation
purposes, are omitted. The Verilog material is introduced gradually, with more advanced
features being presented only at points where their use can be demonstrated in the design
of relevant circuits.

The book includes more than 120 examples of Verilog code. These examples illustrate
how Verilog is used to describe a wide range of logic circuits, from those that contain only
a few gates to those that represent digital systems such as a simple processor.

All of the examples of Verilog code presented in the book are provided on the Authors’
website at

www.eecg.toronto.edu/∼brown/Verilog_3e

Solved Problems

The chapters include examples of solved problems. They show how typical homework
problems may be solved.

Homework Problems

More than 400 homework problems are provided in the book. Answers to selected problems
are given at the back of the book. Solutions to all problems are available to instructors in
the Solutions Manual that accompanies the book.

PowerPoint Slides and Solutions Manual

PowerPoint slides that contain all of the figures in the book are available on the Authors’
website. Instructors can request access to these slides, as well as access to the Solutions
Manual for the book, at:

www.mhhe.com/brownvranesic
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CAD Tools

Modern digital systems are quite large. They contain complex logic circuits that would be
difficult to design without using good CAD tools. Our treatment of Verilog should enable the
reader to develop Verilog code that specifies logic circuits of varying degrees of complexity.
To gain proper appreciation of the design process, it is highly beneficial to implement the
designs using commercially-available CAD tools. Some excellent CAD tools are available
free of charge. For example, the Altera Corporation has its Quartus II CAD software, which
is widely used for implementing designs in programmable logic devices such as FPGAs.
The Web Edition of the Quartus II software can be downloaded from Altera’s website and
used free of charge, without the need to obtain a license. In previous editions of this
book a set of tutorials for using the Quartus II software was provided in the appendices.
Those tutorials can now be found on the Authors’ website. Another set of useful tutorials
about Quartus II can be found on Altera’s University Program website, which is located at
www.altera.com/education/univ.

Acknowledgments

We wish to express our thanks to the people who have helped during the preparation of
the book. Dan Vranesic produced a substantial amount of artwork. He and Deshanand
Singh also helped with the preparation of the solutions manual. Tom Czajkowski helped
in checking the answers to some problems. The reviewers, William Barnes, New Jersey
Institute of Technology; Thomas Bradicich, North Carolina State University; James Clark,
McGill University; Stephen DeWeerth, Georgia Institute of Technology; Sander Eller, Cal
Poly Pomona; Clay Gloster, Jr., North Carolina State University (Raleigh); Carl Hamacher,
Queen’s University; Vincent Heuring, University of Colorado; Yu Hen Hu, University of
Wisconsin; Wei-Ming Lin, University of Texas (San Antonio); Wayne Loucks, Univer-
sity of Waterloo; Kartik Mohanram, Rice University; Jane Morehead, Mississippi State
University; Chris Myers, University of Utah; Vojin Oklobdzija, University of California
(Davis); James Palmer, Rochester Institute of Technology; Gandhi Puvvada, University of
Southern California; Teodoro Robles, Milwaukee School of Engineering; Tatyana Roziner,
Boston University; Rob Rutenbar, Carnegie Mellon University; Eric Schwartz, University
of Florida; Wen-Tsong Shiue, Oregon State University; Peter Simko, Miami University;
Scott Smith, University of Missouri (Rolla); Arun Somani, Iowa State University; Bernard
Svihel, University of Texas (Arlington); and Zeljko Zilic, McGill University provided con-
structive criticism and made numerous suggestions for improvements.

The support of McGraw-Hill people has been exemplary. We truly appreciate the help
of Raghu Srinivasan, Vincent Bradshaw, Darlene Schueller, Curt Reynolds, and Michael
Lange. We are also grateful for the excellent support in the typesetting of the book that has
been provided by Techsetters, Inc.

Stephen Brown and Zvonko Vranesic



December 31, 2012 09:16 vra80547_toc Sheet number 1 Page number xi magenta black

xi

Contents

C h a p t e r 1

Introduction 1

1.1 Digital Hardware 2
1.1.1 Standard Chips 4
1.1.2 Programmable Logic Devices 5
1.1.3 Custom-Designed Chips 5

1.2 The Design Process 6
1.3 Structure of a Computer 8
1.4 Logic Circuit Design in This Book 8
1.5 Digital Representation of Information 11

1.5.1 Binary Numbers 12
1.5.2 Conversion between Decimal and

Binary Systems 13
1.5.3 ASCII Character Code 14
1.5.4 Digital and Analog Information 16

1.6 Theory and Practice 16
Problems 18
References 19

C h a p t e r 2

Introduction to Logic
Circuits 21

2.1 Variables and Functions 22
2.2 Inversion 25
2.3 Truth Tables 26
2.4 Logic Gates and Networks 27

2.4.1 Analysis of a Logic Network 29
2.5 Boolean Algebra 33

2.5.1 The Venn Diagram 37
2.5.2 Notation and Terminology 42
2.5.3 Precedence of Operations 43

2.6 Synthesis Using AND, OR, and NOT
Gates 43
2.6.1 Sum-of-Products and Product-of-Sums

Forms 48
2.7 NAND and NOR Logic Networks 54
2.8 Design Examples 59

2.8.1 Three-Way Light Control 59

2.8.2 Multiplexer Circuit 60
2.8.3 Number Display 63

2.9 Introduction to CAD Tools 64
2.9.1 Design Entry 64
2.9.2 Logic Synthesis 66
2.9.3 Functional Simulation 67
2.9.4 Physical Design 67
2.9.5 Timing Simulation 67
2.9.6 Circuit Implementation 68
2.9.7 Complete Design Flow 68

2.10 Introduction to Verilog 68
2.10.1 Structural Specification of Logic

Circuits 70
2.10.2 Behavioral Specification of Logic

Circuits 72
2.10.3 Hierarchical Verilog Code 76
2.10.4 How NOT to Write Verilog Code 78

2.11 Minimization and Karnaugh Maps 78
2.12 Strategy for Minimization 87

2.12.1 Terminology 87
2.12.2 Minimization Procedure 89

2.13 Minimization of Product-of-Sums Forms 91
2.14 Incompletely Specified Functions 94
2.15 Multiple-Output Circuits 96
2.16 Concluding Remarks 101
2.17 Examples of Solved Problems 101

Problems 111
References 120

C h a p t e r 3

Number Representation and
Arithmetic Circuits 121

3.1 Positional Number Representation 122
3.1.1 Unsigned Integers 122
3.1.2 Octal and Hexadecimal

Representations 123
3.2 Addition of Unsigned Numbers 125

3.2.1 Decomposed Full-Adder 129
3.2.2 Ripple-Carry Adder 129
3.2.3 Design Example 130



December 31, 2012 09:16 vra80547_toc Sheet number 2 Page number xii magenta black

xii Contents

3.3 Signed Numbers 132
3.3.1 Negative Numbers 133
3.3.2 Addition and Subtraction 135
3.3.3 Adder and Subtractor Unit 138
3.3.4 Radix-Complement Schemes∗ 139
3.3.5 Arithmetic Overflow 143
3.3.6 Performance Issues 145

3.4 Fast Adders 145
3.4.1 Carry-Lookahead Adder 146

3.5 Design of Arithmetic Circuits Using CAD
Tools 151
3.5.1 Design of Arithmetic Circuits Using

Schematic Capture 151
3.5.2 Design of Arithmetic Circuits Using

Verilog 152
3.5.3 Using Vectored Signals 155
3.5.4 Using a Generic Specification 156
3.5.5 Nets and Variables in Verilog 158
3.5.6 Arithmetic Assignment Statements 159
3.5.7 Module Hierarchy in Verilog Code 163
3.5.8 Representation of Numbers in Verilog

Code 166
3.6 Multiplication 167

3.6.1 Array Multiplier for Unsigned
Numbers 167

3.6.2 Multiplication of Signed Numbers 169
3.7 Other Number Representations 170

3.7.1 Fixed-Point Numbers 170
3.7.2 Floating-Point Numbers 172
3.7.3 Binary-Coded-Decimal

Representation 174
3.8 Examples of Solved Problems 178

Problems 184
References 188

C h a p t e r 4

Combinational-Circuit
Building Blocks 189

4.1 Multiplexers 190
4.1.1 Synthesis of Logic Functions Using

Multiplexers 193
4.1.2 Multiplexer Synthesis Using Shannon’s

Expansion 196
4.2 Decoders 201

4.2.1 Demultiplexers 203

4.3 Encoders 205
4.3.1 Binary Encoders 205
4.3.2 Priority Encoders 205

4.4 Code Converters 208
4.5 Arithmetic Comparison Circuits 208
4.6 Verilog for Combinational Circuits 210

4.6.1 The Conditional Operator 210
4.6.2 The If-Else Statement 212
4.6.3 The Case Statement 215
4.6.4 The For Loop 221
4.6.5 Verilog Operators 223
4.6.6 The Generate Construct 228
4.6.7 Tasks and Functions 229

4.7 Concluding Remarks 232
4.8 Examples of Solved Problems 233

Problems 243
References 246

C h a p t e r 5

Flip-Flops, Registers, and
Counters 247

5.1 Basic Latch 249
5.2 Gated SR Latch 251

5.2.1 Gated SR Latch with NAND Gates 253
5.3 Gated D Latch 253

5.3.1 Effects of Propagation Delays 255
5.4 Edge-Triggered D Flip-Flops 256

5.4.1 Master-Slave D Flip-Flop 256
5.4.2 Other Types of Edge-Triggered D

Flip-Flops 258
5.4.3 D Flip-Flops with Clear and Preset 260
5.4.4 Flip-Flop Timing Parameters 263

5.5 T Flip-Flop 263
5.6 JK Flip-Flop 264
5.7 Summary of Terminology 266
5.8 Registers 267

5.8.1 Shift Register 267
5.8.2 Parallel-Access Shift Register 267

5.9 Counters 269
5.9.1 Asynchronous Counters 269
5.9.2 Synchronous Counters 272
5.9.3 Counters with Parallel Load 276

5.10 Reset Synchronization 278
5.11 Other Types of Counters 280

5.11.1 BCD Counter 280
5.11.2 Ring Counter 280



December 31, 2012 09:16 vra80547_toc Sheet number 3 Page number xiii magenta black

Contents xiii

5.11.3 Johnson Counter 283
5.11.4 Remarks on Counter Design 283

5.12 Using Storage Elements with CAD Tools 284
5.12.1 Including Storage Elements in

Schematics 284
5.12.2 Using Verilog Constructs for Storage

Elements 285
5.12.3 Blocking and Non-Blocking

Assignments 288
5.12.4 Non-Blocking Assignments for

Combinational Circuits 293
5.12.5 Flip-Flops with Clear Capability 293

5.13 Using Verilog Constructs for Registers and
Counters 295
5.13.1 Flip-Flops and Registers with Enable

Inputs 300
5.13.2 Shift Registers with Enable Inputs 302

5.14 Design Example 302
5.14.1 Reaction Timer 302
5.14.2 Register Transfer Level (RTL) Code 309

5.15 Timing Analysis of Flip-flop Circuits 310
5.15.1 Timing Analysis with Clock Skew 312

5.16 Concluding Remarks 314
5.17 Examples of Solved Problems 315

Problems 321
References 329

C h a p t e r 6

Synchronous Sequential
Circuits 331

6.1 Basic Design Steps 333
6.1.1 State Diagram 333
6.1.2 State Table 335
6.1.3 State Assignment 336
6.1.4 Choice of Flip-Flops and Derivation of

Next-State and Output Expressions 337
6.1.5 Timing Diagram 339
6.1.6 Summary of Design Steps 340

6.2 State-Assignment Problem 344
6.2.1 One-Hot Encoding 347

6.3 Mealy State Model 349
6.4 Design of Finite State Machines Using CAD

Tools 354
6.4.1 Verilog Code for Moore-Type FSMs 355
6.4.2 Synthesis of Verilog Code 356
6.4.3 Simulating and Testing the Circuit 358

6.4.4 Alternative Styles of Verilog Code 359
6.4.5 Summary of Design Steps When Using

CAD Tools 360
6.4.6 Specifying the State Assignment in

Verilog Code 361
6.4.7 Specification of Mealy FSMs Using

Verilog 363
6.5 Serial Adder Example 363

6.5.1 Mealy-Type FSM for Serial Adder 364
6.5.2 Moore-Type FSM for Serial Adder 367
6.5.3 Verilog Code for the Serial Adder 370

6.6 State Minimization 372
6.6.1 Partitioning Minimization

Procedure 374
6.6.2 Incompletely Specified FSMs 381

6.7 Design of a Counter Using the Sequential
Circuit Approach 383
6.7.1 State Diagram and State Table for a

Modulo-8 Counter 383
6.7.2 State Assignment 384
6.7.3 Implementation Using D-Type

Flip-Flops 385
6.7.4 Implementation Using JK-Type

Flip-Flops 386
6.7.5 Example—A Different Counter 390

6.8 FSM as an Arbiter Circuit 393
6.9 Analysis of Synchronous Sequential

Circuits 397
6.10 Algorithmic State Machine (ASM)

Charts 401
6.11 Formal Model for Sequential Circuits 405
6.12 Concluding Remarks 407
6.13 Examples of Solved Problems 407

Problems 416
References 420

C h a p t e r 7

Digital System Design 421

7.1 Bus Structure 422
7.1.1 Using Tri-State Drivers to Implement a

Bus 422
7.1.2 Using Multiplexers to Implement a

Bus 424
7.1.3 Verilog Code for Specification of Bus

Structures 426
7.2 Simple Processor 429



December 31, 2012 09:16 vra80547_toc Sheet number 4 Page number xiv magenta black

xiv Contents

7.3 A Bit-Counting Circuit 441
7.4 Shift-and-Add Multiplier 446
7.5 Divider 455
7.6 Arithmetic Mean 466
7.7 Sort Operation 470
7.8 Clock Synchronization and Timing

Issues 478
7.8.1 Clock Distribution 478
7.8.2 Flip-Flop Timing Parameters 481
7.8.3 Asynchronous Inputs to Flip-Flops 482
7.8.4 Switch Debouncing 483

7.9 Concluding Remarks 485
Problems 485
References 489

C h a p t e r 8

Optimized Implementation of
Logic Functions 491

8.1 Multilevel Synthesis 492
8.1.1 Factoring 493
8.1.2 Functional Decomposition 496
8.1.3 Multilevel NAND and NOR

Circuits 502
8.2 Analysis of Multilevel Circuits 504
8.3 Alternative Representations of Logic

Functions 510
8.3.1 Cubical Representation 510
8.3.2 Binary Decision Diagrams 514

8.4 Optimization Techniques Based on Cubical
Representation 520
8.4.1 A Tabular Method for Minimization 521
8.4.2 A Cubical Technique for

Minimization 529
8.4.3 Practical Considerations 536

8.5 Concluding Remarks 537
8.6 Examples of Solved Problems 537

Problems 546
References 549

C h a p t e r 9

Asynchronous Sequential
Circuits 551

9.1 Asynchronous Behavior 552
9.2 Analysis of Asynchronous Circuits 556

9.3 Synthesis of Asynchronous Circuits 564
9.4 State Reduction 577
9.5 State Assignment 592

9.5.1 Transition Diagram 595
9.5.2 Exploiting Unspecified Next-State

Entries 598
9.5.3 State Assignment Using Additional

State Variables 602
9.5.4 One-Hot State Assignment 607

9.6 Hazards 608
9.6.1 Static Hazards 609
9.6.2 Dynamic Hazards 613
9.6.3 Significance of Hazards 614

9.7 A Complete Design Example 616
9.7.1 The Vending-Machine Controller 616

9.8 Concluding Remarks 621
9.9 Examples of Solved Problems 623

Problems 631
References 635

C h a p t e r 10

Computer Aided Design
Tools 637

10.1 Synthesis 638
10.1.1 Netlist Generation 638
10.1.2 Gate Optimization 638
10.1.3 Technology Mapping 640

10.2 Physical Design 644
10.2.1 Placement 646
10.2.2 Routing 647
10.2.3 Static Timing Analysis 648

10.3 Concluding Remarks 650
References 651

C h a p t e r 11

Testing of Logic Circuits 653

11.1 Fault Model 654
11.1.1 Stuck-at Model 654
11.1.2 Single and Multiple Faults 655
11.1.3 CMOS Circuits 655

11.2 Complexity of a Test Set 655
11.3 Path Sensitizing 657

11.3.1 Detection of a Specific Fault 659
11.4 Circuits with Tree Structure 661
11.5 Random Tests 662



December 31, 2012 09:16 vra80547_toc Sheet number 5 Page number xv magenta black

Contents xv

11.6 Testing of Sequential Circuits 665
11.6.1 Design for Testability 665

11.7 Built-in Self-Test 669
11.7.1 Built-in Logic Block Observer 673
11.7.2 Signature Analysis 675
11.7.3 Boundary Scan 676

11.8 Printed Circuit Boards 676
11.8.1 Testing of PCBs 678
11.8.2 Instrumentation 679

11.9 Concluding Remarks 680
Problems 680
References 683

A p p e n d i x A

Verilog Reference 685

A.1 Documentation in Verilog Code 686
A.2 White Space 686
A.3 Signals in Verilog Code 686
A.4 Identifier Names 687
A.5 Signal Values, Numbers, and Parameters 687

A.5.1 Parameters 688
A.6 Net and Variable Types 688

A.6.1 Nets 688
A.6.2 Variables 689
A.6.3 Memories 690

A.7 Operators 690
A.8 Verilog Module 692
A.9 Gate Instantiations 694
A.10 Concurrent Statements 696

A.10.1 Continuous Assignments 696
A.10.2 Using Parameters 697

A.11 Procedural Statements 698
A.11.1 Always and Initial Blocks 698
A.11.2 The If-Else Statement 700
A.11.3 Statement Ordering 701
A.11.4 The Case Statement 702
A.11.5 Casez and Casex Statements 703
A.11.6 Loop Statements 704
A.11.7 Blocking versus Non-blocking

Assignments for Combinational
Circuits 708

A.12 Using Subcircuits 709
A.12.1 Subcircuit Parameters 710
A.12.2 The Generate Capability 712

A.13 Functions and Tasks 713

A.14 Sequential Circuits 716
A.14.1 A Gated D Latch 717
A.14.2 D Flip-Flop 717
A.14.3 Flip-Flops with Reset 718
A.14.4 Registers 718
A.14.5 Shift Registers 720
A.14.6 Counters 721
A.14.7 An Example of a Sequential Circuit 722
A.14.8 Moore-Type Finite State Machines 723
A.14.9 Mealy-Type Finite State Machines 724

A.15 Guidelines for Writing Verilog Code 725
A.16 Concluding Remarks 731

References 731

A p p e n d i x B

Implementation
Technology 733

B.1 Transistor Switches 734
B.2 NMOS Logic Gates 736
B.3 CMOS Logic Gates 739

B.3.1 Speed of Logic Gate Circuits 746
B.4 Negative Logic System 747
B.5 Standard Chips 749

B.5.1 7400-Series Standard Chips 749
B.6 Programmable Logic Devices 753

B.6.1 Programmable Logic Array (PLA) 754
B.6.2 Programmable Array Logic (PAL) 757
B.6.3 Programming of PLAs and PALs 759
B.6.4 Complex Programmable Logic Devices

(CPLDs) 761
B.6.5 Field-Programmable Gate Arrays 764

B.7 Custom Chips, Standard Cells, and Gate
Arrays 769

B.8 Practical Aspects 771
B.8.1 MOSFET Fabrication and Behavior 771
B.8.2 MOSFET On-Resistance 775
B.8.3 Voltage Levels in Logic Gates 776
B.8.4 Noise Margin 778
B.8.5 Dynamic Operation of Logic Gates 779
B.8.6 Power Dissipation in Logic Gates 782
B.8.7 Passing 1s and 0s Through Transistor

Switches 784
B.8.8 Transmission Gates 786
B.8.9 Fan-in and Fan-out in Logic Gates 788
B.8.10 Tri-state Drivers 792



December 31, 2012 09:16 vra80547_toc Sheet number 6 Page number xvi magenta black

xvi Contents

B.9 Static Random Access Memory (SRAM) 794
B.9.1 SRAM Blocks in PLDs 797

B.10 Implementation Details for SPLDs, CPLDs,
and FPGAs 797
B.10.1 Implementation in FPGAs 804

B.11 Concluding Remarks 806

B.12 Examples of Solved Problems 807
Problems 814
References 823

Answers 825

Index 839



December 31, 2012 09:08 vra80547_ch01 Sheet number 1 Page number 1 magenta black

1

c h a p t e r

1
Introduction

Chapter Objectives

In this chapter you will be introduced to:

• Digital hardware components

• An overview of the design process

• Binary numbers

• Digital representation of information
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This book is about logic circuits—the circuits from which computers are built. Proper understanding of
logic circuits is vital for today’s electrical and computer engineers. These circuits are the key ingredient of
computers and are also used in many other applications. They are found in commonly-used products like
music and video players, electronic games, digital watches, cameras, televisions, printers, and many household
appliances, as well as in large systems, such as telephone networks, Internet equipment, television broadcast
equipment, industrial control units, and medical instruments. In short, logic circuits are an important part of
almost all modern products.

The material in this book will introduce the reader to the many issues involved in the design of logic
circuits. It explains the key ideas with simple examples and shows how complex circuits can be derived
from elementary ones. We cover the classical theory used in the design of logic circuits because it provides
the reader with an intuitive understanding of the nature of such circuits. But, throughout the book, we
also illustrate the modern way of designing logic circuits using sophisticated computer aided design (CAD)
software tools. The CAD methodology adopted in the book is based on the industry-standard design language
called the Verilog hardware description language. Design with Verilog is first introduced in Chapter 2, and
usage of Verilog and CAD tools is an integral part of each chapter in the book.

Logic circuits are implemented electronically, using transistors on an integrated circuit chip. Commonly
available chips that use modern technology may contain more than a billion transistors, as in the case of some
computer processors. The basic building blocks for such circuits are easy to understand, but there is nothing
simple about a circuit that contains billions of transistors. The complexity that comes with large circuits can
be handled successfully only by using highly-organized design techniques. We introduce these techniques in
this chapter, but first we briefly describe the hardware technology used to build logic circuits.

1.1 Digital Hardware

Logic circuits are used to build computer hardware, as well as many other types of products.
All such products are broadly classified as digital hardware. The reason that the name digital
is used will be explained in Section 1.5—it derives from the way in which information is
represented in computers, as electronic signals that correspond to digits of information.

The technology used to build digital hardware has evolved dramatically over the past
few decades. Until the 1960s logic circuits were constructed with bulky components, such
as transistors and resistors that came as individual parts. The advent of integrated circuits
made it possible to place a number of transistors, and thus an entire circuit, on a single chip.
In the beginning these circuits had only a few transistors, but as the technology improved
they became more complex. Integrated circuit chips are manufactured on a silicon wafer,
such as the one shown in Figure 1.1. The wafer is cut to produce the individual chips,
which are then placed inside a special type of chip package. By 1970 it was possible to
implement all circuitry needed to realize a microprocessor on a single chip. Although early
microprocessors had modest computing capability by today’s standards, they opened the
door for the information processing revolution by providing the means for implementation
of affordable personal computers.



December 31, 2012 09:08 vra80547_ch01 Sheet number 3 Page number 3 magenta black

1.1 Digital Hardware 3

Figure 1.1 A silicon wafer (courtesy of Altera Corp.).

About 30 years ago Gordon Moore, chairman of Intel Corporation, observed that in-
tegrated circuit technology was progressing at an astounding rate, approximately doubling
the number of transistors that could be placed on a chip every two years. This phenomenon,
informally known as Moore’s law, continues to the present day. Thus in the early 1990s
microprocessors could be manufactured with a few million transistors, and by the late 1990s
it became possible to fabricate chips that had tens of millions of transistors. Presently, chips
can be manufactured containing billions of transistors.

Moore’s law is expected to continue to hold true for a number of years. A consortium
of integrated circuit associations produces a forecast of how the technology is expected
to evolve. Known as the International Technology Roadmap for Semiconductors (ITRS)
[1], this forecast discusses many aspects of technology, including the maximum number of
transistors that can be manufactured on a single chip. Asample of data from the ITRS is given
in Figure 1.2. It shows that chips with about 10 million transistors could be successfully
manufactured in 1995, and this number has steadily increased, leading to today’s chips with
over a billion transistors. The roadmap predicts that chips with as many as 100 billion
transistors will be possible by the year 2022. There is no doubt that this technology will
have a huge impact on all aspects of people’s lives.

The designer of digital hardware may be faced with designing logic circuits that can be
implemented on a single chip or designing circuits that involve a number of chips placed
on a printed circuit board (PCB). Frequently, some of the logic circuits can be realized
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Figure 1.2 An estimate of the maximum number of transistors per chip
over time.

in existing chips that are readily available. This situation simplifies the design task and
shortens the time needed to develop the final product. Before we discuss the design process
in detail, we should introduce the different types of integrated circuit chips that may be
used.

There exists a large variety of chips that implement various functions that are useful
in the design of digital hardware. The chips range from simple ones with low function-
ality to extremely complex chips. For example, a digital hardware product may require a
microprocessor to perform some arithmetic operations, memory chips to provide storage
capability, and interface chips that allow easy connection to input and output devices. Such
chips are available from various vendors.

For many digital hardware products, it is also necessary to design and build some logic
circuits from scratch. For implementing these circuits, three main types of chips may be
used: standard chips, programmable logic devices, and custom chips. These are discussed
next.

1.1.1 Standard Chips

Numerous chips are available that realize some commonly-used logic circuits. We will
refer to these as standard chips, because they usually conform to an agreed-upon standard
in terms of functionality and physical configuration. Each standard chip contains a small
amount of circuitry (usually involving fewer than 100 transistors) and performs a simple
function. To build a logic circuit, the designer chooses the chips that perform whatever
functions are needed and then defines how these chips should be interconnected to realize
a larger logic circuit.
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Standard chips were popular for building logic circuits until the early 1980s. However,
as integrated circuit technology improved, it became inefficient to use valuable space on
PCBs for chips with low functionality. Another drawback of standard chips is that the
functionality of each chip is fixed and cannot be changed.

1.1.2 Programmable Logic Devices

In contrast to standard chips that have fixed functionality, it is possible to construct chips
that contain circuitry which can be configured by the user to implement a wide range of
different logic circuits. These chips have a very general structure and include a collection
of programmable switches that allow the internal circuitry in the chip to be configured in
many different ways. The designer can implement whatever functions are required for a
particular application by setting the programmable switches as needed. The switches are
programmed by the end user, rather than when the chip is manufactured. Such chips are
known as programmable logic devices (PLDs).

PLDs are available in a wide range of sizes, and can be used to implement very large
logic circuits. The most commonly-used type of PLD is known as a field-programmable
gate array (FPGA). The largest FPGAs contain billions of transistors [2, 3], and support the
implementation of complex digital systems. An FPGA consists of a large number of small
logic circuit elements, which can be connected together by using programmable switches
in the FPGA. Because of their high capacity, and their capability to be tailored to meet the
requirements of a specific application, FPGAs are widely used today.

1.1.3 Custom-Designed Chips

FPGAs are available as off-the-shelf components that can be purchased from different sup-
pliers. Because they are programmable, they can be used to implement most logic circuits
found in digital hardware. However, they also have a drawback in that the programmable
switches consume valuable chip area and limit the speed of operation of implemented cir-
cuits. Thus in some cases FPGAs may not meet the desired performance or cost objectives.
In such situations it is possible to design a chip from scratch; namely, the logic circuitry that
must be included on the chip is designed first and then the chip is manufactured by a com-
pany that has the fabrication facilities. This approach is known as custom or semi-custom
design, and such chips are often called application-specific integrated circuits (ASICs).

The main advantage of a custom chip is that its design can be optimized for a specific
task; hence it usually leads to better performance. It is possible to include a larger amount
of logic circuitry in a custom chip than would be possible in other types of chips. The
cost of producing such chips is high, but if they are used in a product that is sold in large
quantities, then the cost per chip, amortized over the total number of chips fabricated, may
be lower than the total cost of off-the-shelf chips that would be needed to implement the
same function(s). Moreover, if a single chip can be used instead of multiple chips to achieve
the same goal, then a smaller area is needed on a PCB that houses the chips in the final
product. This results in a further reduction in cost.
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A disadvantage of the custom-design approach is that manufacturing a custom chip
often takes a considerable amount of time, on the order of months. In contrast, if an FPGA
can be used instead, then the chips are programmed by the end user and no manufacturing
delays are involved.

1.2 The Design Process

The availability of computer-based tools has greatly influenced the design process in a wide
variety of environments. For example, designing an automobile is similar in the general
approach to designing a furnace or a computer. Certain steps in the development cycle must
be performed if the final product is to meet the specified objectives.

The flowchart in Figure 1.3 depicts a typical development process. We assume that
the process is to develop a product that meets certain expectations. The most obvious
requirements are that the product must function properly, that it must meet an expected
level of performance, and that its cost should not exceed a given target.

The process begins with the definition of product specifications. The essential features
of the product are identified, and an acceptable method of evaluating the implemented
features in the final product is established. The specifications must be tight enough to
ensure that the developed product will meet the general expectations, but should not be
unnecessarily constraining (that is, the specifications should not prevent design choices
that may lead to unforeseen advantages).

From a complete set of specifications, it is necessary to define the general structure of
an initial design of the product. This step is difficult to automate. It is usually performed by
a human designer because there is no clear-cut strategy for developing a product’s overall
structure—it requires considerable design experience and intuition.

After the general structure is established, CAD tools are used to work out the details.
Many types of CAD tools are available, ranging from those that help with the design
of individual parts of the system to those that allow the entire system’s structure to be
represented in a computer. When the initial design is finished, the results must be verified
against the original specifications. Traditionally, before the advent of CAD tools, this step
involved constructing a physical model of the designed product, usually including just the
key parts. Today it is seldom necessary to build a physical model. CAD tools enable
designers to simulate the behavior of incredibly complex products, and such simulations
are used to determine whether the obtained design meets the required specifications. If
errors are found, then appropriate changes are made and the verification of the new design
is repeated through simulation. Although some design flaws may escape detection via
simulation, usually all but the most subtle problems are discovered in this way.

When the simulation indicates that the design is correct, a complete physical prototype
of the product is constructed. The prototype is thoroughly tested for conformance with the
specifications. Any errors revealed in the testing must be fixed. The errors may be minor,
and often they can be eliminated by making small corrections directly on the prototype of
the product. In case of large errors, it is necessary to redesign the product and repeat the
steps explained above. When the prototype passes all the tests, then the product is deemed
to be successfully designed and it can go into production.
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Figure 1.3 The development process.
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1.3 Structure of a Computer

To understand the role that logic circuits play in digital systems, consider the structure of
a typical computer, as illustrated in Figure 1.4a. The computer case houses a number of
printed circuit boards (PCBs), a power supply, and (not shown in the figure) storage units,
like a hard disk and DVD or CD-ROM drives. Each unit is plugged into a main PCB, called
the motherboard. As indicated on the bottom of the figure, the motherboard holds several
integrated circuit chips, and it provides slots for connecting other PCBs, such as audio,
video, and network boards.

Figure 1.4b illustrates the structure of an integrated circuit chip. The chip comprises
a number of subcircuits, which are interconnected to build the complete circuit. Examples
of subcircuits are those that perform arithmetic operations, store data, or control the flow
of data. Each of these subcircuits is a logic circuit. As shown in the middle of the figure, a
logic circuit comprises a network of connected logic gates. Each logic gate performs a very
simple function, and more complex operations are realized by connecting gates together.
Logic gates are built with transistors, which in turn are implemented by fabricating various
layers of material on a silicon chip.

This book is primarily concerned with the center portion of Figure 1.4b—the design
of logic circuits. We explain how to design circuits that perform important functions, such
as adding, subtracting, or multiplying numbers, counting, storing data, and controlling the
processing of information. We show how the behavior of such circuits is specified, how
the circuits are designed for minimum cost or maximum speed of operation, and how the
circuits can be tested to ensure correct operation. We also briefly explain how transistors
operate, and how they are built on silicon chips.

1.4 Logic Circuit Design in This Book

In this book we use a modern design approach based on the Verilog hardware description
language and CAD tools to illustrate many aspects of logic circuit design. We selected
this technology because it is widely used in industry and because it enables the readers to
implement their designs in FPGA chips, as discussed below. This technology is particularly
well-suited for educational purposes because many readers have access to facilities for using
CAD tools and programming FPGA devices.

To gain practical experience and a deeper understanding of logic circuits, we advise
the reader to implement the examples in this book using CAD software. Most of the ma-
jor vendors of CAD systems provide their software at no cost to university students for
educational use. Some examples are Altera, Cadence, Mentor Graphics, Synopsys, and
Xilinx. The CAD systems offered by any of these companies can be used equally well
with this book. Two CAD systems that are particularly well-suited for use with this book
are the Quartus II software from Altera and the ISE software from Xilinx. Both of these
CAD systems support all phases of the design cycle for logic circuits and are powerful
and easy to use. The reader is encouraged to visit the website for these companies, where
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Figure 1.4 A digital hardware system (Part b).

the software tools and tutorials that explain their use can be downloaded and installed onto
any personal computer.

To facilitate experimentation with logic circuits, some FPGA manufacturers provide
special PCBs that include one or more FPGA chips and an interface to a personal computer.
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Figure 1.5 An FPGA board.

Once a logic circuit has been designed using the CAD tools, the circuit can be programmed
into an FPGA on the board. Inputs can then be applied to the FPGA by way of switches
and other devices, and the generated outputs can be examined. An example of such a board
is depicted in Figure 1.5. This type of board is an excellent vehicle for learning about
logic circuits, because it provides a collection of simple input and output devices. Many
illustrative experiments can be carried out by designing and implementing logic circuits
using the FPGA chip on the board.

1.5 Digital Representation of Information

In Section 1.1 we mentioned that information is represented in logic circuits as electronic
signals. Each of these signals can be thought of as representing one digit of information. To
make the design of logic circuits easier, each digit is allowed to take on only two possible
values, usually denoted as 0 and 1. These logic values are implemented as voltage levels in
a circuit; the value 0 is usually represented as 0 V (ground), and the value 1 is the voltage
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level of the circuit’s power supply. As we discuss in Appendix B, typical power-supply
voltages in logic circuits range from 1 V DC to 5 V DC.

In general, all information in logic circuits is represented as combinations of 0 and 1
digits. Before beginning our discussion of logic circuits in Chapter 2, it will be helpful to
examine how numbers, alphanumeric data (text), and other information can be represented
using the digits 0 and 1.

1.5.1 Binary Numbers

In the familiar decimal system, a number consists of digits that have 10 possible values,
from 0 to 9, and each digit represents a multiple of a power of 10. For example, the number
8547 represents 8 × 103 + 5 × 102 + 4 × 101 + 7 × 100. We do not normally write the
powers of 10 with the number, because they are implied by the positions of the digits. In
general, a decimal integer is expressed by an n-tuple comprising n decimal digits

D = dn−1dn−2 · · · d1d0

which represents the value

V (D) = dn−1 × 10n−1 + dn−2 × 10n−2 + · · · + d1 × 101 + d0 × 100

This is referred to as the positional number representation.
Because the digits have 10 possible values and each digit is weighted as a power of

10, we say that decimal numbers are base-10 numbers. Decimal numbers are familiar,
convenient, and easy to understand. However, since digital circuits represent information
using only the values 0 and 1, it is not practical to have digits that can assume ten values.
In these circuits it is more appropriate to use the binary, or base-2, system which has only
the digits 0 and 1. Each binary digit is called a bit. In the binary number system, the same
positional number representation is used so that

B = bn−1bn−2 · · · b1b0

represents an integer that has the value

V (B) = bn−1 × 2n−1 + bn−2 × 2n−2 + · · · + b1 × 21 + b0 × 20 [1.1]

=
n−1∑

i=0

bi × 2i

For example, the binary number 1101 represents the value

V = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20

Because a particular digit pattern has different meanings for different bases, we will indicate
the base as a subscript when there is potential for confusion. Thus to specify that 1101 is
a base-2 number, we will write (1101)2. Evaluating the preceding expression for V gives
V = 8 + 4 + 1 = 13. Hence

(1101)2 = (13)10
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Table 1.1 Numbers in decimal
and binary.

Decimal Binary
representation representation

00 0000
01 0001
02 0010
03 0011
04 0100
05 0101
06 0110
07 0111
08 1000
09 1001
10 1010
11 1011
12 1100
13 1101
14 1110
15 1111

The range of integers that can be represented by a binary number depends on the number of
bits used. Table 1.1 lists the first 15 positive integers and shows their binary representations
using four bits. An example of a larger number is (10110111)2 = (183)10. In general, using
n bits allows representation of positive integers in the range 0 to 2n − 1.

In a binary number the right-most bit is usually referred to as the least-significant bit
(LSB). The left-most bit, which has the highest power of 2 associated with it, is called the
most-significant bit (MSB). In digital systems it is often convenient to consider several bits
together as a group. A group of four bits is called a nibble, and a group of eight bits is called
a byte.

1.5.2 Conversion between Decimal and Binary Systems

A binary number is converted into a decimal number simply by applying Equation 1.1 and
evaluating it using decimal arithmetic. Converting a decimal number into a binary number
is not quite as straightforward, because we need to construct the number by using powers of
2. For example, the number (17)10 is 24 + 20 = (10001)2, and the number (50)10 is 25 +
24 + 21 = (110010)2. In general, the conversion can be performed by successively dividing
the decimal number by 2 as follows. Suppose that a decimal number D = dk−1 · · · d1d0,
with a value V , is to be converted into a binary number B = bn−1 · · · b2b1b0. Then, we can
write V in the form

V = bn−1 × 2n−1 + · · · + b2 × 22 + b1 × 21 + b0
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Convert (857)10

Remainder
857 ÷ 2 = 428 1 LSB
428 ÷ 2 = 214 0
214 ÷ 2 = 107 0
107 ÷ 2 = 53 1
53 ÷ 2 = 26 1
26 ÷ 2 = 13 0
13 ÷ 2 = 6 1
6 ÷ 2 = 3 0
3 ÷ 2 = 1 1
1 ÷ 2 = 0 1 MSB

Result is (1101011001)2

Figure 1.6 Conversion from decimal to binary.

If we now divide V by 2, the result is

V

2
= bn−1 × 2n−2 + · · · + b2 × 21 + b1 + b0

2

The quotient of this integer division is bn−1 × 2n−2 + · · · + b2 × 2 + b1, and the remainder
is b0. If the remainder is 0, then b0 = 0; if it is 1, then b0 = 1. Observe that the quotient
is just another binary number, which comprises n − 1 bits, rather than n bits. Dividing this
number by 2 yields the remainder b1. The new quotient is

bn−1 × 2n−3 + · · · + b2

Continuing the process of dividing the new quotient by 2, and determining one bit in each
step, will produce all bits of the binary number. The process continues until the quotient
becomes 0. Figure 1.6 illustrates the conversion process, using the example (857)10 =
(1101011001)2. Note that the least-significant bit (LSB) is generated first and the most-
significant bit (MSB) is generated last.

So far, we have considered only the representation of positive integers. In Chapter 3
we will complete the discussion of number representation by explaining how negative
numbers are handled and how fixed-point and floating-point numbers may be represented.
We will also explain how arithmetic operations are performed in computers.

1.5.3 ASCII Character Code

Alphanumeric information, such as letters and numbers typed on a computer keyboard, is
represented as codes consisting of 0 and 1 digits. The most common code used for this type
of information is known as the ASCII code, which stands for the American Standard Code
for Information Interchange. The code specified by this standard is presented in Table 1.2.
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Table 1.2 The seven-bit ASCII code.

Bit
positions

Bit positions 654

3210 000 001 010 011 100 101 110 111

0000 NUL DLE SPACE 0 @ P ´ p

0001 SOH DC1 ! 1 A Q a q

0010 STX DC2 ” 2 B R b r

0011 ETX DC3 # 3 C S c s

0100 EOT DC4 $ 4 D T d t

0101 ENQ NAK % 5 E U e u

0110 ACK SYN & 6 F V f v

0111 BEL ETB ’ 7 G W g w

1000 BS CAN ( 8 H X h x

1001 HT EM ) 9 I Y i y

1010 LF SUB * : J Z j z

1011 VT ESC + ; K [ k {

1100 FF FS , < L \ 1 |
1101 CR GS - = M ] m }

1110 SO RS . > N ˆ n ˜

1111 SI US / ? O — o DEL

NUL Null/Idle SI Shift in

SOH Start of header DLE Data link escape

STX Start of text DC1-DC4 Device control

ETX End of text NAK Negative acknowledgement

EOT End of transmission SYN Synchronous idle

ENQ Enquiry ETB End of transmitted block

ACQ Acknowledgement CAN Cancel (error in data)

BEL Audible signal EM End of medium

BS Back space SUB Special sequence

HT Horizontal tab ESC Escape

LF Line feed FS File separator

VT Vertical tab GS Group separator

FF Form feed RS Record separator

CR Carriage return US Unit separator

SO Shift out DEL Delete/Idle

Bit positions of code format = 6 5 4 3 2 1 0
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The ASCII code uses seven-bit patterns to denote 128 different characters. Ten of
the characters are decimal digits 0 to 9. As the table shows, the high-order bits have the
same pattern, b6b5b4 = 011, for all 10 digits. Each digit is identified by the low-order
four bits, b3−0, using the binary patterns for these digits. Capital and lowercase letters are
encoded in a way that makes sorting of textual information easy. The codes for A to Z are in
ascending numerical sequence, which means that the task of sorting letters (or words) can
be accomplished by a simple arithmetic comparison of the codes that represent the letters.

In addition to codes that represent characters and letters, the ASCII code includes
punctuation marks such as ! and ?, commonly used symbols such as & and %, and a
collection of control characters. The control characters are those needed in computer
systems to handle and transfer data among various devices. For example, the carriage
return character, which is abbreviated as CR in the table, indicates that the carriage, or
cursor position, of an output device, such as a printer or display, should return to the left-
most column.

TheASCII code is used to encode information that is handled as text. It is not convenient
for representation of numbers that are used as operands in arithmetic operations. For this
purpose, it is best to convert ASCII-encoded numbers into a binary representation that we
discussed before.

The ASCII standard uses seven bits to encode a character. In computer systems a more
natural size is eight bits, or one byte. There are two common ways of fitting an ASCII-
encoded character into a byte. One is to set the eighth bit, b7, to 0. Another is to use this
bit to indicate the parity of the other seven bits, which means showing whether the number
of 1s in the seven-bit code is even or odd. We discuss parity in Chapter 4.

1.5.4 Digital and Analog Information

Binary numbers can be used to represent many types of information. For example, they
can represent music that is stored in a personal music player. Figure 1.7 illustrates a music
player, which contains an electronic memory for storing music files. A music file comprises
a sequence of binary numbers that represent tones. To convert these binary numbers into
sound, a digital-to-analog (D/A) converter circuit is used. It converts digital values into
corresponding voltage levels, which create an analog voltage signal that drives the speakers
inside the headphones. The binary values stored in the music player are referred to as digital
information, whereas the voltage signal that drives the speakers is analog information.

1.6 Theory and Practice

Modern design of logic circuits depends heavily on CAD tools, but the discipline of logic
design evolved long before CAD tools were invented. This chronology is quite obvious
because the very first computers were built with logic circuits, and there certainly were no
computers available on which to design them!
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Figure 1.7 Using digital technology to represent music.

Numerous manual design techniques have been developed to deal with logic circuits.
Boolean algebra, which we will introduce in Chapter 2, was adopted as a mathematical
means for representing such circuits. An enormous amount of “theory” was developed
showing how certain design issues may be treated. To be successful, a designer had to
apply this knowledge in practice.

CAD tools not only made it possible to design incredibly complex circuits but also
made the design work much simpler in general. They perform many tasks automatically,
which may suggest that today’s designer need not understand the theoretical concepts used
in the tasks performed by CAD tools. An obvious question would then be, Why should one
study the theory that is no longer needed for manual design? Why not simply learn how to
use the CAD tools?

There are three big reasons for learning the relevant theory. First, although the CAD
tools perform the automatic tasks of optimizing a logic circuit to meet particular design
objectives, the designer has to give the original description of the logic circuit. If the
designer specifies a circuit that has inherently bad properties, then the final circuit will also
be of poor quality. Second, the algebraic rules and theorems for design and manipulation
of logic circuits are directly implemented in today’s CAD tools. It is not possible for a user
of the tools to understand what the tools do without grasping the underlying theory. Third,
CAD tools offer many optional processing steps that a user can invoke when working on
a design. The designer chooses which options to use by examining the resulting circuit
produced by the CAD tools and deciding whether it meets the required objectives. The
only way that the designer can know whether or not to apply a particular option in a given
situation is to know what the CAD tools will do if that option is invoked—again, this
implies that the designer must be familiar with the underlying theory. We discuss the logic
circuit theory extensively in this book, because it is not possible to become an effective
logic circuit designer without understanding the fundamental concepts.
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There is another good reason to learn some logic circuit theory even if it were not
required for CAD tools. Simply put, it is interesting and intellectually challenging. In the
modern world filled with sophisticated automatic machinery, it is tempting to rely on tools as
a substitute for thinking. However, in logic circuit design, as in any type of design process,
computer-based tools are not a substitute for human intuition and innovation. Computer-
based tools can produce good digital hardware designs only when employed by a designer
who thoroughly understands the nature of logic circuits.

Problems

Answers to problems marked by an asterisk are given at the back of the book.

*1.1 Convert the following decimal numbers into binary, using the method shown in Figure 1.6.
(a) (20)10

(b) (100)10

(c) (129)10

(d) (260)10

(e) (10240)10

1.2 Convert the following decimal numbers into binary, using the method shown in Figure 1.6.
(a) (30)10

(b) (110)10

(c) (259)10

(d) (500)10

(e) (20480)10

1.3 Convert the following decimal numbers into binary, using the method shown in Figure 1.6.
(a) (1000)10

(b) (10000)10

(c) (100000)10

(c) (1000000)10

*1.4 In Figure 1.6 we show how to convert a decimal number into binary by successively dividing
by 2. Another way to derive the answer is to constuct the number by using powers of 2.
For example, if we wish to convert the number (23)10, then the largest power of 2 that is
not larger than 23 is 24 = 16. Hence, the binary number will have five bits and the most-
significant bit is b4 = 1. We then perform the subtraction 23 − 16 = 7. Now, the largest
power of 2 that is not larger than 7 is 22 = 4. Hence, b3 = 0 (because 23 = 8 is larger than
7) and b2 = 1. Continuing this process gives

23 = 16 + 4 + 2 + 1

= 24 + 22 + 21 + 20

= 10000 + 00100 + 00010 + 00001

= 10111
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Using this method, convert the following decimal numbers into binary.
(a) (17)10

(b) (33)10

(c) (67)10

(d) (130)10

(e) (2560)10

(f) (51200)10

1.5 Repeat Problem 3 using the method described in Problem 4.

*1.6 Convert the following binary numbers into decimal.
(a) (1001)2

(b) (11100)2

(c) (111111)2

(d) (101010101010)2

1.7 Convert the following binary numbers into decimal.
(a) (110010)2

(b) (1100100)2

(c) (11001000)2

(d) (110010000)2

*1.8 What is the minimum number of bits needed to represent the following decimal numbers
in binary?
(a) (270)10

(b) (520)10

(c) (780)10

(d) (1029)10

1.9 Repeat Problem 8 for the following decimal numbers:
(a) (111)10

(b) (333)10

(c) (555)10

(d) (1111)10
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c h a p t e r

2
Introduction to Logic Circuits

Chapter Objectives

In this chapter you will be introduced to:

• Logic functions and circuits

• Boolean algebra for dealing with logic functions

• Logic gates and synthesis of simple circuits

• CAD tools and the Verilog hardware description language

• Minimization of functions and Karnaugh maps
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The study of logic circuits is motivated mostly by their use in digital computers. But such circuits also form
the foundation of many other digital systems, such as those that perform control applications or are involved in
digital communications. All such applications are based on some simple logical operations that are performed
on input information.

In Chapter 1 we showed that information in computers is represented as electronic signals that can have
two discrete values. Although these values are implemented as voltage levels in a circuit, we refer to them
simply as logic values, 0 and 1. Any circuit in which the signals are constrained to have only some number of
discrete values is called a logic circuit. Logic circuits can be designed with different numbers of logic values,
such as three, four, or even more, but in this book we deal only with the binary logic circuits that have two
logic values.

Binary logic circuits have the dominant role in digital technology. We hope to provide the reader with
an understanding of how these circuits work, how are they represented in mathematical notation, and how
are they designed using modern design automation techniques. We begin by introducing some basic concepts
pertinent to the binary logic circuits.

2.1 Variables and Functions

The dominance of binary circuits in digital systems is a consequence of their simplicity,
which results from constraining the signals to assume only two possible values. The simplest
binary element is a switch that has two states. If a given switch is controlled by an input
variable x, then we will say that the switch is open if x = 0 and closed if x = 1, as illustrated
in Figure 2.1a. We will use the graphical symbol in Figure 2.1b to represent such switches
in the diagrams that follow. Note that the control input x is shown explicitly in the symbol.
In Appendix B we explain how such switches are implemented with transistors.

Consider a simple application of a switch, where the switch turns a small lightbulb on
or off. This action is accomplished with the circuit in Figure 2.2a. A battery provides the
power source. The lightbulb glows when a sufficient amount of current passes through it.

x 1=x 0=

(a) Two states of a switch

S

x

(b) Symbol for a switch

Figure 2.1 A binary switch.
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(a) Simple connection to a battery

S

x

(b) Using a ground connection as the return path

Battery Light

x
Power
supply

S

Light

Figure 2.2 A light controlled by a switch.

The current flows when the switch is closed, that is, when x = 1. In this example the input
that causes changes in the behavior of the circuit is the switch control x. The output is
defined as the state (or condition) of the light, which we will denote by the letter L. If the
light is on, we will say that L = 1. If the light is off, we will say that L = 0. Using this
convention, we can describe the state of the light as a function of the input variable x. Since
L = 1 if x = 1 and L = 0 if x = 0, we can say that

L(x) = x

This simple logic expression describes the output as a function of the input. We say that
L(x) = x is a logic function and that x is an input variable.

The circuit in Figure 2.2a can be found in an ordinary flashlight, where the switch is a
simple mechanical device. In an electronic circuit the switch is implemented as a transistor
and the light may be a light-emitting diode (LED). An electronic circuit is powered by a
power supply of a certain voltage, usually in the range of 1 to 5 volts. One side of the power
supply provides the circuit ground, as illustrated in Figure 2.2b. The circuit ground is a
common reference point for voltages in the circuit. Rather than drawing wires in a circuit
diagram for all nodes that return to the circuit ground, the diagram can be simplified by
showing a connection to a ground symbol, as we have done for the bottom terminal of the
light L in the figure. In the circuit diagrams that follow we will use this convention, because
it makes the diagrams look simpler.

Consider now the possibility of using two switches to control the state of the light. Let
x1 and x2 be the control inputs for these switches. The switches can be connected either
in series or in parallel as shown in Figure 2.3. Using a series connection, the light will be
turned on only if both switches are closed. If either switch is open, the light will be off.
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(a) The logical AND function (series connection)

S

x1
Power
supply

S

x2

S

x1

Power
supply S

x2

(b) The logical OR function (parallel connection)

Light

Light

Figure 2.3 Two basic functions.

This behavior can be described by the expression

L(x1, x2) = x1 · x2

where L = 1 if x1 = 1 and x2 = 1,

L = 0 otherwise.

The “·” symbol is called the AND operator, and the circuit in Figure 2.3a is said to implement
a logical AND function.

The parallel connection of two switches is given in Figure 2.3b. In this case the light
will be on if either the x1 or x2 switch is closed. The light will also be on if both switches
are closed. The light will be off only if both switches are open. This behavior can be stated
as

L(x1, x2) = x1 + x2

where L = 1 if x1 = 1 or x2 = 1 or if x1 = x2 = 1,

L = 0 if x1 = x2 = 0.

The + symbol is called the OR operator, and the circuit in Figure 2.3b is said to implement
a logical OR function. It is important not to confuse the use of the + symbol with its more
common meaning, which is for arithmetic addition. In this chapter the + symbol represents
the logical OR operation unless otherwise stated.

In the above expressions for AND and OR, the output L(x1, x2) is a logic function with
input variables x1 and x2. The AND and OR functions are two of the most important logic
functions. Together with some other simple functions, they can be used as building blocks
for the implementation of all logic circuits. Figure 2.4 illustrates how three switches can be
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S

x1

Power
supply S

x2

Light

S

x3

Figure 2.4 A series-parallel connection.

Sx Light

Power
supply

R

Figure 2.5 An inverting circuit.

used to control the light in a more complex way. This series-parallel connection of switches
realizes the logic function

L(x1, x2, x3) = (x1 + x2) · x3

The light is on if x3 = 1 and, at the same time, at least one of the x1 or x2 inputs is equal
to 1.

2.2 Inversion

So far we have assumed that some positive action takes place when a switch is closed, such
as turning the light on. It is equally interesting and useful to consider the possibility that a
positive action takes place when a switch is opened. Suppose that we connect the light as
shown in Figure 2.5. In this case the switch is connected in parallel with the light, rather
than in series. Consequently, a closed switch will short-circuit the light and prevent the
current from flowing through it. Note that we have included an extra resistor in this circuit
to ensure that the closed switch does not short-circuit the power supply. The light will be
turned on when the switch is opened. Formally, we express this functional behavior as

L(x) = x

where L = 1 if x = 0,

L = 0 if x = 1
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The value of this function is the inverse of the value of the input variable. Instead of
using the word inverse, it is more common to use the term complement. Thus we say that
L(x) is a complement of x in this example. Another frequently used term for the same
operation is the NOT operation. There are several commonly used notations for indicating
the complementation. In the preceding expression we placed an overbar on top of x. This
notation is probably the best from the visual point of view. However, when complements
are needed in expressions that are typed using a computer keyboard, which is often done
when using CAD tools, it is impractical to use overbars. Instead, either an apostrophe is
placed after the variable, or an exclamation mark (!), the tilde character (∼), or the word
NOT is placed in front of the variable to denote the complementation. Thus the following
are equivalent:

x = x′ = !x = ∼x = NOT x

The complement operation can be applied to a single variable or to more complex
operations. For example, if

f (x1, x2) = x1 + x2

then the complement of f is

f (x1, x2) = x1 + x2

This expression yields the logic value 1 only when neither x1 nor x2 is equal to 1, that is,
when x1 = x2 = 0. Again, the following notations are equivalent:

x1 + x2 = (x1 + x2)
′ = !(x1 + x2) = ∼(x1 + x2) = NOT (x1 + x2)

2.3 Truth Tables

We have introduced the three most basic logic operations—AND, OR, and complement—by
relating them to simple circuits built with switches. This approach gives these operations a
certain “physical meaning.” The same operations can also be defined in the form of a table,
called a truth table, as shown in Figure 2.6. The first two columns (to the left of the double
vertical line) give all four possible combinations of logic values that the variables x1 and x2

x1 x2 x1 x2 x1 + x2

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

AND OR

·

Figure 2.6 A truth table for the AND and OR operations.
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x1 x2 x3 x1 x2 x3 x1 + x2 + x3

0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 0 1
1 0 0 0 1
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

· ·

Figure 2.7 Three-input AND and OR operations.

can have. The next column defines the AND operation for each combination of values of x1

and x2, and the last column defines the OR operation. Because we will frequently need to
refer to “combinations of logic values” applied to some variables, we will adopt a shorter
term, valuation, to denote such a combination of logic values.

The truth table is a useful aid for depicting information involving logic functions. We
will use it in this book to define specific functions and to show the validity of certain func-
tional relations. Small truth tables are easy to deal with. However, they grow exponentially
in size with the number of variables. A truth table for three input variables has eight rows
because there are eight possible valuations of these variables. Such a table is given in
Figure 2.7, which defines three-input AND and OR functions. For four input variables the
truth table has 16 rows, and so on. In general, for n input variables the truth table has 2n

rows.
The AND and OR operations can be extended to n variables. An AND function of

variables x1, x2, . . . , xn has the value 1 only if all n variables are equal to 1. An OR function
of variables x1, x2, . . . , xn has the value 1 if one or more of the variables is equal to 1.

2.4 Logic Gates and Networks

The three basic logic operations introduced in the previous sections can be used to implement
logic functions of any complexity. A complex function may require many of these basic
operations for its implementation. Each logic operation can be implemented electronically
with transistors, resulting in a circuit element called a logic gate. A logic gate has one or
more inputs and one output that is a function of its inputs. It is often convenient to describe
a logic circuit by drawing a circuit diagram, or schematic, consisting of graphical symbols
representing the logic gates. The graphical symbols for the AND, OR, and NOT gates are
shown in Figure 2.8. The figure indicates on the left side how the AND and OR gates are
drawn when there are only a few inputs. On the right side it shows how the symbols are



December 31, 2012 09:08 vra80547_ch02 Sheet number 8 Page number 28 magenta black

28 C H A P T E R 2 • Introduction to Logic Circuits

x1

x2

xn

x1 x2
… xn+ + +

x1

x2
x1 x2+

x1

x2

xn

x1

x2

x1 x x1 x2
… xn⋅ ⋅

(a) AND gates

(b) OR gates

x x

(c) NOT gate

· ·

Figure 2.8 The basic gates.

x

x
1

2

x3
f x1 x2+( ) x3⋅=

Figure 2.9 The function from Figure 2.4.

augmented to accommodate a greater number of inputs. We show how logic gates are built
using transistors in Appendix B.

A larger circuit is implemented by a network of gates. For example, the logic function
from Figure 2.4 can be implemented by the network in Figure 2.9. The complexity of a
given network has a direct impact on its cost. Because it is always desirable to reduce
the cost of any manufactured product, it is important to find ways for implementing logic
circuits as inexpensively as possible. We will see shortly that a given logic function can
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be implemented with a number of different networks. Some of these networks are simpler
than others, hence searching for the solutions that entail minimum cost is prudent.

In technical jargon a network of gates is often called a logic network or simply a logic
circuit. We will use these terms interchangeably.

2.4.1 Analysis of a Logic Network

Adesigner of digital systems is faced with two basic issues. For an existing logic network, it
must be possible to determine the function performed by the network. This task is referred
to as the analysis process. The reverse task of designing a new network that implements a
desired functional behavior is referred to as the synthesis process. The analysis process is
rather straightforward and much simpler than the synthesis process.

Figure 2.10a shows a simple network consisting of three gates. To analyze its functional
behavior, we can consider what happens if we apply all possible combinations of the input
signals to it. Suppose that we start by making x1 = x2 = 0. This forces the output of the
NOT gate to be equal to 1 and the output of the AND gate to be 0. Because one of the inputs
to the OR gate is 1, the output of this gate will be 1. Therefore, f = 1 if x1 = x2 = 0. If we
then let x1 = 0 and x2 = 1, no change in the value of f will take place, because the outputs
of the NOT and AND gates will still be 1 and 0, respectively. Next, if we apply x1 = 1
and x2 = 0, then the output of the NOT gate changes to 0 while the output of the AND gate
remains at 0. Both inputs to the OR gate are then equal to 0; hence the value of f will be 0.
Finally, let x1 = x2 = 1. Then the output of the AND gate goes to 1, which in turn causes
f to be equal to 1. Our verbal explanation can be summarized in the form of the truth table
shown in Figure 2.10b.

Timing Diagram
We have determined the behavior of the network in Figure 2.10a by considering the four

possible valuations of the inputs x1 and x2. Suppose that the signals that correspond to these
valuations are applied to the network in the order of our discussion; that is, (x1, x2) = (0, 0)

followed by (0, 1), (1, 0), and (1, 1). Then changes in the signals at various points in the
network would be as indicated in blue in the figure. The same information can be presented
in graphical form, known as a timing diagram, as shown in Figure 2.10c. The time runs
from left to right, and each input valuation is held for some fixed duration. The figure shows
the waveforms for the inputs and output of the network, as well as for the internal signals
at the points labeled A and B.

The timing diagram in Figure 2.10c shows that changes in the waveforms at points A
and B and the output f take place instantaneously when the inputs x1 and x2 change their
values. These idealized waveforms are based on the assumption that logic gates respond
to changes on their inputs in zero time. Such timing diagrams are useful for indicating
the functional behavior of logic circuits. However, practical logic gates are implemented
using electronic circuits which need some time to change their states. Thus, there is a delay
between a change in input values and a corresponding change in the output value of a gate.
In chapters that follow we will use timing diagrams that incorporate such delays.
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x1

x2

1 1 0 0→ → →

f

0 0 0 1→ → →

1 1 0 1→ → →

0 0 1 1→ → →

0 1 0 1→ → →

(a) Network that implements f x1 x1 x2⋅+=

x1 x2 f x1 x2,( )

0
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(b) Truth table
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1
0

1
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B

f
Time

(c) Timing diagram

1 1 0 0→ → →0 0 1 1→ → →

1 1 0 1→ → →
0 1 0 1→ → → g

x1

x2

(d) Network that implements g x1 x2+=

A B

1
1
0
0

0

0
0

1

Figure 2.10 An example of logic networks.
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Timing diagrams are used for many purposes. They depict the behavior of a logic
circuit in a form that can be observed when the circuit is tested using instruments such as
logic analyzers and oscilloscopes. Also, they are often generated by CAD tools to show
the designer how a given circuit is expected to behave before it is actually implemented
electronically. We will introduce the CAD tools later in this chapter and will make use of
them throughout the book.

Functionally Equivalent Networks
Now consider the network in Figure 2.10d. Going through the same analysis procedure,

we find that the output g changes in exactly the same way as f does in part (a) of the figure.
Therefore, g(x1, x2) = f (x1, x2), which indicates that the two networks are functionally
equivalent; the output behavior of both networks is represented by the truth table in Figure
2.10b. Since both networks realize the same function, it makes sense to use the simpler
one, which is less costly to implement.

In general, a logic function can be implemented with a variety of different networks,
probably having different costs. This raises an important question: How does one find the
best implementation for a given function? We will discuss some of the main approaches
for synthesizing logic functions later in this chapter. For now, we should note that some
manipulation is needed to transform the more complex network in Figure 2.10a into the
network in Figure 2.10d. Since f (x1, x2) = x1 + x1 · x2 and g(x1, x2) = x1 + x2, there must
exist some rules that can be used to show the equivalence

x1 + x1 · x2 = x1 + x2

We have already established this equivalence through detailed analysis of the two circuits
and construction of the truth table. But the same outcome can be achieved through algebraic
manipulation of logic expressions. In Section 2.5 we will introduce a mathematical approach
for dealing with logic functions, which provides the basis for modern design techniques.

Example 2.1As an example of a logic function, consider the diagram in Figure 2.11a. It includes two
toggle switches that control the values of signals x and y. Each toggle switch can be pushed
down to the bottom position or up to the top position. When a toggle switch is in the bottom
position it makes a connection to logic value 0 (ground), and when in the top position it
connects to logic value 1 (power supply level). Thus, these toggle switches can be used to
set x and y to either 0 or 1.

The signals x and y are inputs to a logic circuit that controls a light L. The required
behavior is that the light should be on only if one, but not both, of the toggle switches
is in the top position. This specification leads to the truth table in part (b) of the figure.
Since L = 1 when x = 0 and y = 1 or when x = 1 and y = 0, we can implement this logic
function using the network in Figure 2.11c.

The reader may recognize the behavior of our light as being similar to that over a set of
stairs in a house, where the light is controlled by two switches: one at the top of the stairs,
and the other at the bottom. The light can be turned on or off by either switch because
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(a) Two switches that control a light

0

1

0

1

Logic
circuit L

x

y

L

0

1

1

0

x y

0

0

1

1

0

1

0

1

(b) Truth table

x

y
L

(d) XOR gate symbol

L

x

y

(c) Logic network 

Figure 2.11 An example of a logic circuit.

it follows the truth table in Figure 2.11b. This logic function, which differs from the OR
function only when both inputs are equal to 1, is useful for other applications as well. It is
called the exclusive-OR (XOR) function and is indicated in logic expressions by the symbol
⊕. Thus, rather than writing L = x · y + x · y, we can write L = x ⊕ y. The XOR function
has the logic-gate symbol illustrated in Figure 2.11d .

Example 2.2 In Chapter 1 we showed how numbers are represented in computers by using binary digits.
As another example of logic functions, consider the addition of two one-digit binary numbers
a and b. The four possible valuations of a, b and the resulting sums are given in Figure 2.12a
(in this figure the + operator signifies addition). The sum S = s1s0 has to be a two-digit
binary number, because when a = b = 1 then S = 10.

Figure 2.12b gives a truth table for the logic functions s1 and s0. From this table we
can see that s1 = a · b and s0 = a ⊕ b. The corresponding logic network is given in part
(c) of the figure. This type of logic circuit, which adds binary numbers, is referred to as an
adder circuit. We discuss circuits of this type in Chapter 3.
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Figure 2.12 Addition of binary numbers.

2.5 Boolean Algebra

In 1849 George Boole published a scheme for the algebraic description of processes involved
in logical thought and reasoning [1]. Subsequently, this scheme and its further refinements
became known as Boolean algebra. It was almost 100 years later that this algebra found
application in the engineering sense. In the late 1930s Claude Shannon showed that Boolean
algebra provides an effective means of describing circuits built with switches [2]. The
algebra can, therefore, be used to describe logic circuits. We will show that this algebra
is a powerful tool that can be used for designing and analyzing logic circuits. The reader
will come to appreciate that it provides the foundation for much of our modern digital
technology.

Axioms of Boolean Algebra
Like any algebra, Boolean algebra is based on a set of rules that are derived from a

small number of basic assumptions. These assumptions are called axioms. Let us assume
that Boolean algebra involves elements that take on one of two values, 0 and 1. Assume
that the following axioms are true:

1a. 0 · 0 = 0

1b. 1 + 1 = 1

2a. 1 · 1 = 1
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2b. 0 + 0 = 0

3a. 0 · 1 = 1 · 0 = 0

3b. 1 + 0 = 0 + 1 = 1

4a. If x = 0, then x = 1

4b. If x = 1, then x = 0

Single-Variable Theorems
From the axioms we can define some rules for dealing with single variables. These

rules are often called theorems. If x is a Boolean variable, then the following theorems
hold:

5a. x · 0 = 0

5b. x + 1 = 1

6a. x · 1 = x

6b. x + 0 = x

7a. x · x = x

7b. x + x = x

8a. x · x = 0

8b. x + x = 1

9. x = x

It is easy to prove the validity of these theorems by perfect induction, that is, by substituting
the values x = 0 and x = 1 into the expressions and using the axioms given above. For
example, in theorem 5a, if x = 0, then the theorem states that 0 · 0 = 0, which is true
according to axiom 1a. Similarly, if x = 1, then theorem 5a states that 1 · 0 = 0, which
is also true according to axiom 3a. The reader should verify that theorems 5a to 9 can be
proven in this way.

Duality
Notice that we have listed the axioms and the single-variable theorems in pairs. This

is done to reflect the important principle of duality. Given a logic expression, its dual is
obtained by replacing all + operators with · operators, and vice versa, and by replacing
all 0s with 1s, and vice versa. The dual of any true statement (axiom or theorem) in
Boolean algebra is also a true statement. At this point in the discussion, the reader might
not appreciate why duality is a useful concept. However, this concept will become clear
later in the chapter, when we will show that duality implies that at least two different ways
exist to express every logic function with Boolean algebra. Often, one expression leads to
a simpler physical implementation than the other and is thus preferable.

Two- and Three-Variable Properties
To enable us to deal with a number of variables, it is useful to define some two- and

three-variable algebraic identities. For each identity, its dual version is also given. These
identities are often referred to as properties. They are known by the names indicated below.
If x, y, and z are Boolean variables, then the following properties hold:
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10a. x · y = y · x Commutative

10b. x + y = y + x

11a. x · ( y · z) = (x · y) · z Associative

11b. x + ( y + z) = (x + y) + z

12a. x · ( y + z) = x · y + x · z Distributive

12b. x + y · z = (x + y) · (x + z)

13a. x + x · y = x Absorption

13b. x · (x + y) = x

14a. x · y + x · y = x Combining

14b. (x + y) · (x + y) = x

15a. x · y = x + y DeMorgan’s theorem

15b. x + y = x · y

16a. x + x · y = x + y

16b. x · (x + y) = x · y

17a. x · y + y · z + x · z = x · y + x · z Consensus

17b. (x + y) · (y + z) · (x + z) = (x + y) · (x + z)

Again, we can prove the validity of these properties either by perfect induction or by
performing algebraic manipulation. Figure 2.13 illustrates how perfect induction can be
used to prove DeMorgan’s theorem, using the format of a truth table. The evaluation of
left-hand and right-hand sides of the identity in 15a gives the same result.

We have listed a number of axioms, theorems, and properties. Not all of these are
necessary to define Boolean algebra. For example, assuming that the + and · operations
are defined, it is sufficient to include theorems 5 and 8 and properties 10 and 12. These
are sometimes referred to as Huntington’s basic postulates [3]. The other identities can be
derived from these postulates.

The preceding axioms, theorems, and properties provide the information necessary for
performing algebraic manipulation of more complex expressions.

x y x y x y x y x + y

0 0 0 1 1 1 1
0 1 0 1 1 0 1
1 0 0 1 0 1 1
1 1 1 0 0 0 0

LHS RHS

· ·

Figure 2.13 Proof of DeMorgan’s theorem in 15a.
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Example 2.3 Let us prove the validity of the logic equation

(x1 + x3) · (x1 + x3) = x1 · x3 + x1 · x3

The left-hand side can be manipulated as follows. Using the distributive property, 12a,
gives

LHS = (x1 + x3) · x1 + (x1 + x3) · x3

Applying the distributive property again yields

LHS = x1 · x1 + x3 · x1 + x1 · x3 + x3 · x3

Note that the distributive property allows ANDing the terms in parenthesis in a way analo-
gous to multiplication in ordinary algebra. Next, according to theorem 8a, the terms x1 · x1

and x3 · x3 are both equal to 0. Therefore,

LHS = 0 + x3 · x1 + x1 · x3 + 0

From 6b it follows that

LHS = x3 · x1 + x1 · x3

Finally, using the commutative property, 10a and 10b, this becomes

LHS = x1 · x3 + x1 · x3

which is the same as the right-hand side of the initial equation.

Example 2.4 Consider the logic equation

x1 · x3 + x2 · x3 + x1 · x3 + x2 · x3 = x1 · x2 + x1 · x2 + x1 · x2

The left-hand side can be manipulated as follows

LHS = x1 · x3 + x1 · x3 + x2 · x3 + x2 · x3 using 10b

= x1 · (x3 + x3) + x2 · (x3 + x3) using 12a

= x1 · 1 + x2 · 1 using 8b

= x1 + x2 using 6a

The right-hand side can be manipulated as

RHS = x1 · x2 + x1 · (x2 + x2) using 12a

= x1 · x2 + x1 · 1 using 8b

= x1 · x2 + x1 using 6a

= x1 + x1 · x2 using 10b

= x1 + x2 using 16a
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Being able to manipulate both sides of the initial equation into identical expressions estab-
lishes the validity of the equation. Note that the same logic function is represented by either
the left- or the right-hand side of the above equation; namely

f (x1, x2, x3) = x1 · x3 + x2 · x3 + x1 · x3 + x2 · x3

= x1 · x2 + x1 · x2 + x1 · x2

As a result of manipulation, we have found a much simpler expression

f (x1, x2, x3) = x1 + x2

which also represents the same function. This simpler expression would result in a lower-
cost logic circuit that could be used to implement the function.

Examples 2.3 and 2.4 illustrate the purpose of the axioms, theorems, and properties
as a mechanism for algebraic manipulation. Even these simple examples suggest that it is
impractical to deal with highly complex expressions in this way. However, these theorems
and properties provide the basis for automating the synthesis of logic functions in CAD
tools. To understand what can be achieved using these tools, the designer needs to be aware
of the fundamental concepts.

2.5.1 The Venn Diagram

We have suggested that perfect induction can be used to verify the theorems and properties.
This procedure is quite tedious and not very informative from the conceptual point of view.
A simple visual aid that can be used for this purpose also exists. It is called the Venn
diagram, and the reader is likely to find that it provides for a more intuitive understanding
of how two expressions may be equivalent.

The Venn diagram has traditionally been used in mathematics to provide a graphical
illustration of various operations and relations in the algebra of sets. A set s is a collection
of elements that are said to be the members of s. In the Venn diagram the elements of
a set are represented by the area enclosed by a contour such as a square, a circle, or an
ellipse. For example, in a universe N of integers from 1 to 10, the set of even numbers is
E = {2, 4, 6, 8, 10}. Acontour representing E encloses the even numbers. The odd numbers
form the complement of E; hence the area outside the contour represents E = {1, 3, 5, 7, 9}.

Since in Boolean algebra there are only two values (elements) in the universe, B =
{0, 1}, we will say that the area within a contour corresponding to a set s denotes that s = 1,
while the area outside the contour denotes s = 0. In the diagram we will shade the area
where s = 1. The concept of the Venn diagram is illustrated in Figure 2.14. The universe B
is represented by a square. Then the constants 1 and 0 are represented as shown in parts (a)
and (b) of the figure. A variable, say, x, is represented by a circle, such that the area inside
the circle corresponds to x = 1, while the area outside the circle corresponds to x = 0.
This is illustrated in part (c). An expression involving one or more variables is depicted by



December 31, 2012 09:08 vra80547_ch02 Sheet number 18 Page number 38 magenta black

38 C H A P T E R 2 • Introduction to Logic Circuits

x y

z

x y

x y x y

x x xx

(a) Constant 1 (b) Constant 0

(c) Variable x (d)

(e) (f)

(g) (h)

x

x y x y+

x y z+x y

·

· ·

Figure 2.14 The Venn diagram representation.

shading the area where the value of the expression is equal to 1. Part (d) indicates how the
complement of x is represented.

To represent two variables, x and y, we draw two overlapping circles. Then the area
where the circles overlap represents the case where x = y = 1, namely, the AND of x and
y, as shown in part (e). Since this common area consists of the intersecting portions of x
and y, the AND operation is often referred to formally as the intersection of x and y. Part
( f ) illustrates the OR operation, where x + y represents the total area within both circles,



December 31, 2012 09:08 vra80547_ch02 Sheet number 19 Page number 39 magenta black

2.5 Boolean Algebra 39

x y

z

x y

z

x y

z

x y

z

x y

z

x y

z

x x y

x y x+ zx y z+( )

(a) (d)

(c) (f)

x zy z+(b) (e)

·

·

· · ·

Figure 2.15 Verification of the distributive property x · ( y + z) = x · y + x · z.

namely, where at least one of x or y is equal to 1. Since this combines the areas in the
circles, the OR operation is formally often called the union of x and y.

Part (g) depicts the term x · y, which is represented by the intersection of the area for x
with that for y. Part (h) gives a three-variable example; the expression x · y + z is the union
of the area for z with that of the intersection of x and y.

To see how we can use Venn diagrams to verify the equivalence of two expressions,
let us demonstrate the validity of the distributive property, 12a, in Section 2.5. Figure 2.15
gives the construction of the left and right sides of the identity that defines the property

x · ( y + z) = x · y + x · z

Part (a) shows the area where x = 1. Part (b) indicates the area for y + z. Part (c) gives the
diagram for x · ( y + z), the intersection of shaded areas in parts (a) and (b). The right-hand
side is constructed in parts (d ), (e), and ( f ). Parts (d ) and (e) describe the terms x · y and
x · z, respectively. The union of the shaded areas in these two diagrams then corresponds
to the expression x · y + x · z, as seen in part ( f ). Since the shaded areas in parts (c) and
( f ) are identical, it follows that the distributive property is valid.
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As another example, consider the identity

x · y + x · z + y · z = x · y + x · z

which is illustrated in Figure 2.16. Notice that this identity states that the term y · z is fully
covered by the terms x · y and x · z; therefore, this term can be omitted. This identity, which
we listed earlier as property 17a, is often referred to as consensus.

The reader should use the Venn diagram to prove some other identities. The examples
below prove the distributive property 12b, and DeMorgan’s theorem, 15a.

x y

z

yx

z

x y

z

x y

y z x y x+ z

x z

x y

z

x y

x y

z

x z

x y x+ z y z+

x y

z

x y

z

· ·

· ·

· · ·

· · ·

Figure 2.16 Verification of x · y + x · z + y · z = x · y + x · z.
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Example 2.5The distributive property 12a in Figure 2.15 will look familiar to the reader, because it is valid
both for Boolean variables and for variables that are real numbers. In the case of real-number
variables, the operations involved would be multiplication and addition, rather than logical
AND and OR. However, the dual form 12b of this property, x + y · z = (x + y) · (x + z),
does not hold for real-number variables involving multiplication and addition operations.
To prove that this identity is valid in Boolean algebra we can use the Venn diagrams in
Figure 2.17. Parts (a) and (b) of the figure depict the terms x and y · z, respectively, and
part (c) gives the union of parts (a) and (b). Parts (d) and (e) depict the sum terms (x + y)
and (x + z), and part ( f ) shows the intersection of (d) and (e). Since the diagrams in (c)
and ( f ) are the same, this proves the identity.

(b) y z

(a) x

yx

z

yx

z

(c) x y+ z

yx

z

(e) x z+

(d) x y+

yx

z

yx

z

(f) (x y)+ (x z)+

yx

z

·

··

Figure 2.17 Proof of the distributive property 12b.
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x y

(b) x y·

(e) x y+

x y

x y

(a) x y·

x y

(d) y

x y

(c) x

Figure 2.18 Proof of DeMorgan’s theorem 15a.

Example 2.6 A proof of DeMorgan’s theorem 15a by using Venn diagrams is illustrated in Figure 2.18.
The diagram in part (b) of the figure, which is the complement of x · y, is the same as the
diagram in part (e), which is the union of part (c) with part (d), thus proving the theorem.
We leave it as an exercise for the reader to prove the dual form of DeMorgan’s theorem,
15b.

2.5.2 Notation and Terminology

Boolean algebra is based on the AND and OR operations, for which we have adopted
the symbols · and +, respectively. These are also the standard symbols for the familiar
arithmetic multiplication and addition operations. Considerable similarity exists between
the Boolean operations and the arithmetic operations, which is the main reason why the
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same symbols are used. In fact, when single digits are involved there is only one significant
difference; the result of 1 + 1 is equal to 2 in ordinary arithmetic, whereas it is equal to 1
in Boolean algebra as defined by theorem 7b in Section 2.5.

Because of the similarity with the arithmetic addition and multiplication operations,
the OR and AND operations are often called the logical sum and product operations. Thus
x1 + x2 is the logical sum of x1 and x2, and x1 · x2 is the logical product of x1 and x2. Instead
of saying “logical product” and “logical sum,” it is customary to say simply “product” and
“sum.” Thus we say that the expression

x1 · x2 · x3 + x1 · x4 + x2 · x3 · x4

is a sum of three product terms, whereas the expression

(x1 + x3) · (x1 + x3) · (x2 + x3 + x4)

is a product of three sum terms.

2.5.3 Precedence of Operations

Using the three basic operations—AND, OR, and NOT—it is possible to construct an infinite
number of logic expressions. Parentheses can be used to indicate the order in which the
operations should be performed. However, to avoid an excessive use of parentheses, another
convention defines the precedence of the basic operations. It states that in the absence of
parentheses, operations in a logic expression must be performed in the order: NOT, AND,
and then OR. Thus in the expression

x1 · x2 + x1 · x2

it is first necessary to generate the complements of x1 and x2. Then the product terms x1 · x2

and x1 · x2 are formed, followed by the sum of the two product terms. Observe that in the
absence of this convention, we would have to use parentheses to achieve the same effect as
follows:

(x1 · x2) + ((x1) · (x2))

Finally, to simplify the appearance of logic expressions, it is customary to omit the ·
operator when there is no ambiguity. Therefore, the preceding expression can be written as

x1x2 + x1x2

We will use this style throughout the book.

2.6 Synthesis Using AND, OR, and NOT Gates

Armed with some basic ideas, we can now try to implement arbitrary functions using the
AND, OR, and NOT gates. Suppose that we wish to design a logic circuit with two inputs,
x1 and x2. Assume that x1 and x2 represent the states of two switches, either of which may
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x1 x2 f x1 x2

0 0 1
0 1 1
1 0 0
1 1 1

(     , )

Figure 2.19 A function to be synthesized.

produce a 0 or 1. The function of the circuit is to continuously monitor the state of the
switches and to produce an output logic value 1 whenever the switches (x1, x2) are in states
(0, 0), (0, 1), or (1, 1). If the state of the switches is (1, 0), the output should be 0. We can
express the required behavior using a truth table, as shown in Figure 2.19.

A possible procedure for designing a logic circuit that implements this truth table is to
create a product term that has a value of 1 for each valuation for which the output function
f has to be 1. Then we can take a logical sum of these product terms to realize f . Let us
begin with the fourth row of the truth table, which corresponds to x1 = x2 = 1. The product
term that is equal to 1 for this valuation is x1 · x2, which is just the AND of x1 and x2. Next
consider the first row of the table, for which x1 = x2 = 0. For this valuation the value 1 is
produced by the product term x1 · x2. Similarly, the second row leads to the term x1 · x2.
Thus f may be realized as

f (x1, x2) = x1x2 + x1x2 + x1x2

The logic network that corresponds to this expression is shown in Figure 2.20a.
Although this network implements f correctly, it is not the simplest such network. To

find a simpler network, we can manipulate the obtained expression using the theorems and
properties from Section 2.5. According to theorem 7b, we can replicate any term in a logical
sum expression. Replicating the third product term, the above expression becomes

f (x1, x2) = x1x2 + x1x2 + x1x2 + x1x2

Using the commutative property 10b to interchange the second and third product terms
gives

f (x1, x2) = x1x2 + x1x2 + x1x2 + x1x2

Now the distributive property 12a allows us to write

f (x1, x2) = (x1 + x1)x2 + x1(x2 + x2)
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f

(a) Canonical sum-of-products

f

(b) Minimal-cost realization

x2

x1

x1

x2

Figure 2.20 Two implementations of the function in Figure 2.19.

Applying theorem 8b we get

f (x1, x2) = 1 · x2 + x1 · 1

Finally, theorem 6a leads to

f (x1, x2) = x2 + x1

The network described by this expression is given in Figure 2.20b. Obviously, the cost of
this network is much less than the cost of the network in part (a) of the figure.

This simple example illustrates two things. First, a straightforward implementation of
a function can be obtained by using a product term (AND gate) for each row of the truth
table for which the function is equal to 1. Each product term contains all input variables, and
it is formed such that if the input variable xi is equal to 1 in the given row, then xi is entered
in the term; if xi = 0 in that row, then xi is entered. The sum of these product terms realizes
the desired function. Second, there are many different networks that can realize a given
function. Some of these networks may be simpler than others. Algebraic manipulation can
be used to derive simplified logic expressions and thus lower-cost networks.

The process whereby we begin with a description of the desired functional behavior
and then generate a circuit that realizes this behavior is called synthesis. Thus we can
say that we “synthesized” the networks in Figure 2.20 from the truth table in Figure 2.19.
Generation of AND-OR expressions from a truth table is just one of many types of synthesis
techniques that we will encounter in this book.
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Example 2.7 Figure 2.21a depicts a part of a factory that makes bubble gumballs. The gumballs travel
on a conveyor that has three associated sensors s1, s2, and s3. The sensor s1 is connected
to a scale that weighs each gumball, and if a gumball is not heavy enough to be acceptable
then the sensor sets s1 = 1. Sensors s2 and s3 examine the diameter of each gumball. If
a gumball is too small to be acceptable, then s2 = 1, and if it is too large, then s3 = 1.
If a gumball is of an acceptable weight and size, then the sensors give s1 = s2 = s3 = 0.
The conveyor pushes the gumballs over a “trap door” that it used to reject the ones that
are not properly formed. A gumball should be rejected if it is too large, or both too small
and too light. The trap door is opened by setting the logic function f to the value 1. By
inspection, we can see that an appropriate logic expression is f = s1s2 + s3. We will use
Boolean algebra to derive this logic expression from the truth table.

The truth table for f is given in Figure 2.21b. It sets f to 1 for each row in the table
where s3 has the value 1 (too large), as well as for each row where s1 = s2 = 1 (too light and
too small). As described previously, a logic expression for f can be formed by including a
product term for each row where f = 1. Thus, we can write

f = s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3

(a) Conveyor and sensors

0
1
0
1
0
1
1
1

f

0
0
0
0
1
1
1
1

0
0
1
1
0
0
1
1

0
1
0
1
0
1
0
1

s1 s2 s3

(b) Truth table

s1

s2 s3

f “reject”=

gumball

Figure 2.21 A bubble gumball factory.
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We can use algebraic manipulation to simplify this expression in a number of ways. For
example, as shown below, we can first use rule 7b to repeat the term s1s2s3, and then use
the distributive property 12a and rule 8b to simplify the expression

f = s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3

= s1s3(s2 + s2) + s1s3(s2 + s2) + s1s2(s3 + s3)

= s1s3 + s1s3 + s1s2

Now, using the combining property 14a on the first two product terms gives

f = s3 + s1s2

The observant reader will notice that using the combining property 14a is really just a short
form of first using the distributive property 12a and then applying rule 8b, as we did in the
previous step. Our simplified expression for f is the same as the one that we determined
earlier, by inspection.

Example 2.8There are different ways in which we can simplify the logic expression produced from the
truth table in Figure 2.21b. Another approach is to first repeat the term s1s2s3, as we did in
Example 2.7, and then proceed as follows

f = s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3

= s3(s1s2 + s1s2 + s1s2 + s1s2) + s1s2(s3 + s3)

= s3 · 1 + s1s2

= s3 + s1s2

Here, we used the distributive property 12a to produce the expression (s1s2 + s1s2 + s1s2 +
s1s2). Since this expression includes all possible valuations of s1, s2, it is equal to 1, leading
to the same expression for f that we derived before.

Example 2.9Yet another way of producing the symplified logic expression is shown below.

f = s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3

= s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3 + s1s2s3

= s1s3(s2 + s2) + s2s3(s1 + s1) + s1s2(s3 + s3)

= s1s3 + s2s3 + s1s2

= s3(s1 + s2) + s1s2

= s3(s1s2) + s1s2

= s3 + s1s2

In this solution, we first repeat the term s1s2s3, and then symplify to generate the expression
s3(s1 + s2) + s1s2. Using DeMorgan’s theorem 15a we can replace (s1 + s2) with (s1s2),
which can then be deleted by applying property 16a.
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As illustrated by Examples 2.7 to 2.9, there are multiple ways in which a logic expres-
sion can be minimized by using Boolean algebra. This process can be daunting, because it
is not obvious which rules, identities, and properties should be applied, and in what order.
Later in this chapter, in Section 2.11, we will introduce a graphical technique, called the
Karnaugh map, that clarifies this process by providing a systematic way of generating a
minimal-cost logic expression for a function.

2.6.1 Sum-of-Products and Product-of-Sums Forms

Having introduced the synthesis process by means of simple examples, we will now present
it in more formal terms using the terminology that is encountered in the technical literature.
We will also show how the principle of duality, which was introduced in Section 2.5, applies
broadly in the synthesis process.

If a function f is specified in the form of a truth table, then an expression that realizes
f can be obtained by considering either the rows in the table for which f = 1, as we have
already done, or by considering the rows for which f = 0, as we will explain shortly.

Minterms
For a function of n variables, a product term in which each of the n variables appears

once is called a minterm. The variables may appear in a minterm either in uncomplemented
or complemented form. For a given row of the truth table, the minterm is formed by
including xi if xi = 1 and by including xi if xi = 0.

To illustrate this concept, consider the truth table in Figure 2.22. We have numbered the
rows of the table from 0 to 7, so that we can refer to them easily. From the discussion of the
binary number representation in Section 1.5, we can observe that the row numbers chosen
are just the numbers represented by the bit patterns of variables x1, x2, and x3. The figure
shows all minterms for the three-variable table. For example, in the first row the variables

Row
number x1 x2 x3 Minterm Maxterm

0 0 0 0 m0 = x1x2x3 M0 = x1 + x2 + x3
1 0 0 1 m1 = x1x2x3 M1 = x1 + x2 + x3
2 0 1 0 m2 = x1x2x3 M2 = x1 + x2 + x3
3 0 1 1 m3 = x1x2x3 M3 = x1 + x2 + x3
4 1 0 0 m4 = x1x2x3 M4 = x1 + x2 + x3
5 1 0 1 m5 = x1x2x3 M5 = x1 + x2 + x3
6 1 1 0 m6 = x1x2x3 M6 = x1 + x2 + x3
7 1 1 1 m7 = x1x2x3 M7 = x1 + x2 + x3

Figure 2.22 Three-variable minterms and maxterms.
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have the values x1 = x2 = x3 = 0, which leads to the minterm x1x2x3. In the second row
x1 = x2 = 0 and x3 = 1, which gives the minterm x1x2x3, and so on. To be able to refer to
the individual minterms easily, it is convenient to identify each minterm by an index that
corresponds to the row numbers shown in the figure. We will use the notation mi to denote
the minterm for row number i. Thus m0 = x1x2x3, m1 = x1x2x3, and so on.

Sum-of-Products Form
A function f can be represented by an expression that is a sum of minterms, where each

minterm isANDed with the value of f for the corresponding valuation of input variables. For
example, the two-variable minterms are m0 = x1x2, m1 = x1x2, m2 = x1x2, and m3 = x1x2.
The function in Figure 2.19 can be represented as

f = m0 · 1 + m1 · 1 + m2 · 0 + m3 · 1

= m0 + m1 + m3

= x1x2 + x1x2 + x1x2

which is the form that we derived in the previous section using an intuitive approach. Only
the minterms that correspond to the rows for which f = 1 appear in the resulting expression.

Any function f can be represented by a sum of minterms that correspond to the rows
in the truth table for which f = 1. The resulting implementation is functionally correct and
unique, but it is not necessarily the lowest-cost implementation of f . A logic expression
consisting of product (AND) terms that are summed (ORed) is said to be in the sum-of-
products (SOP) form. If each product term is a minterm, then the expression is called a
canonical sum-of-products for the function f . As we have seen in the example of Figure 2.20,
the first step in the synthesis process is to derive a canonical sum-of-products expression
for the given function. Then we can manipulate this expression, using the theorems and
properties of Section 2.5, with the goal of finding a functionally equivalent sum-of-products
expression that has a lower cost.

As another example, consider the three-variable function f (x1, x2, x3), specified by the
truth table in Figure 2.23. To synthesize this function, we have to include the minterms m1,

Row
number x1 x2 x3 f x1 x2 x3

0 0 0 0 0
1 0 0 1 1
2 0 1 0 0
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

(    ,     , )

Figure 2.23 A three-variable function.
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m4, m5, and m6. Copying these minterms from Figure 2.22 leads to the following canonical
sum-of-products expression for f

f (x1, x2, x3) = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

This expression can be manipulated as follows

f = (x1 + x1)x2x3 + x1(x2 + x2)x3

= 1 · x2x3 + x1 · 1 · x3

= x2x3 + x1x3

This is the minimum-cost sum-of-products expression for f . It describes the circuit shown
in Figure 2.24a. A good indication of the cost of a logic circuit is the total number of gates
plus the total number of inputs to all gates in the circuit. Using this measure, the cost of
the network in Figure 2.24a is 13, because there are five gates and eight inputs to the gates.
By comparison, the network implemented on the basis of the canonical sum-of-products
would have a cost of 27; from the preceding expression, the OR gate has four inputs, each
of the four AND gates has three inputs, and each of the three NOT gates has one input.

Minterms, with their row-number subscripts, can also be used to specify a given func-
tion in a more concise form. For example, the function in Figure 2.23 can be specified

f

(a) A minimal sum-of-products realization

f

x1

x2

x3

x2

x1

x3

(b) A minimal product-of-sums realization

Figure 2.24 Two realizations of the function in Figure 2.23.
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as

f (x1, x2, x3) =
∑

(m1, m4, m5, m6)

or even more simply as

f (x1, x2, x3) =
∑

m(1, 4, 5, 6)

The
∑

sign denotes the logical sum operation. This shorthand notation is often used in
practice.

Example 2.10Consider the function

f (x1, x2, x3) =
∑

m(2, 3, 4, 6, 7)

The canonical SOP expression for the function is derived using minterms

f = m2 + m3 + m4 + m6 + m7

= x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

This expression can be simplified using the identities in Section 2.5 as follows

f = x1x2(x3 + x3) + x1(x2 + x2)x3 + x1x2(x3 + x3)

= x1x2 + x1x3 + x1x2

= (x1 + x1)x2 + x1x3

= x2 + x1x3

Example 2.11Suppose that a four-variable function is defined by

f (x1, x2, x3, x4) =
∑

m(3, 7, 9, 12, 13, 14, 15)

The canonical SOP expression for this function is

f = x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4 + x1x2x3x4

A simpler SOP expression can be obtained as follows

f = x1(x2 + x2)x3x4 + x1(x2 + x2)x3x4 + x1x2x3(x4 + x4) + x1x2x3(x4 + x4)

= x1x3x4 + x1x3x4 + x1x2x3 + x1x2x3

= x1x3x4 + x1x3x4 + x1x2(x3 + x3)

= x1x3x4 + x1x3x4 + x1x2
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Maxterms
The principle of duality suggests that if it is possible to synthesize a function f by

considering the rows in the truth table for which f = 1, then it should also be possible to
synthesize f by considering the rows for which f = 0. This alternative approach uses the
complements of minterms, which are called maxterms. All possible maxterms for three-
variable functions are listed in Figure 2.22. We will refer to a maxterm Mj by the same row
number as its corresponding minterm mj as shown in the figure.

Product-of-Sums Form
If a given function f is specified by a truth table, then its complement f can be rep-

resented by a sum of minterms for which f = 1, which are the rows where f = 0. For
example, for the function in Figure 2.19

f (x1, x2) = m2

= x1x2

If we complement this expression using DeMorgan’s theorem, the result is

f = f = x1x2

= x1 + x2

Note that we obtained this expression previously by algebraic manipulation of the canonical
sum-of-products form for the function f . The key point here is that

f = m2 = M2

where M2 is the maxterm for row 2 in the truth table.
As another example, consider again the function in Figure 2.23. The complement of

this function can be represented as

f (x1, x2, x3) = m0 + m2 + m3 + m7

= x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

Then f can be expressed as

f = m0 + m2 + m3 + m7

= m0 · m2 · m3 · m7

= M0 · M2 · M3 · M7

= (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

This expression represents f as a product of maxterms.
A logic expression consisting of sum (OR) terms that are the factors of a logical product

(AND) is said to be of the product-of-sums (POS) form. If each sum term is a maxterm, then
the expression is called a canonical product-of-sums for the given function. Any function
f can be synthesized by finding its canonical product-of-sums. This involves taking the
maxterm for each row in the truth table for which f = 0 and forming a product of these
maxterms.
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Returning to the preceding example, we can attempt to reduce the complexity of the
derived expression that comprises a product of maxterms. Using the commutative property
10b and the associative property 11b from Section 2.5, this expression can be written as

f = ((x1 + x3) + x2)((x1 + x3) + x2)(x1 + (x2 + x3))(x1 + (x2 + x3))

Then, using the combining property 14b, the expression reduces to

f = (x1 + x3)(x2 + x3)

The corresponding network is given in Figure 2.24b. The cost of this network is 13. While
this cost happens to be the same as the cost of the sum-of-products version in Figure 2.24a,
the reader should not assume that the cost of a network derived in the sum-of-products form
will in general be equal to the cost of a corresponding circuit derived in the product-of-sums
form.

Using the shorthand notation, an alternative way of specifying our sample function is

f (x1, x2, x3) = �(M0, M2, M3, M7)

or more simply

f (x1, x2, x3) = �M (0, 2, 3, 7)

The � sign denotes the logical product operation.
The preceding discussion has shown how logic functions can be realized in the form

of logic circuits, consisting of networks of gates that implement basic functions. A given
function may be realized with various different circuit structures, which usually implies
a difference in cost. An important objective for a designer is to minimize the cost of the
designed circuit. We will discuss strategies for finding minimum-cost implementations in
Section 2.11.

Example 2.12Consider again the function in Example 2.10. Instead of using the minterms, we can specify
this function as a product of maxterms for which f = 0, namely

f (x1, x2, x3) = �M (0, 1, 5)

Then, the canonical POS expression is derived as

f = M0 · M1 · M5

= (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

A simplified POS expression can be derived as

f = (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

= ((x1 + x2) + x3)((x1 + x2) + x3)(x1 + (x2 + x3))(x1 + (x2 + x3))

= ((x1 + x2) + x3x3)(x1x1 + (x2 + x3))

= (x1 + x2)(x2 + x3)
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Another way of deriving this product-of-sums expression is to use the sum-of-products form
of f . Thus,

f (x1, x2, x3) =
∑

m(0, 1, 5)

= x1x2x3 + x1x2x3 + x1x2x3

= x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

= x1x2(x3 + x3) + x2x3(x1 + x1)

= x1x2 + x2x3

Now, first applying DeMorgan’s theorem 15b, and then applying 15a (twice) gives

f = f

= (x1x2 + x2x3)

= (x1x2)(x2x3)

= (x1 + x2)(x2 + x3)

To see that this product-of-sums expression for f is equivalent to the sum-of-products
expression that we derived in Example 2.10, we can slightly rearrange our expression as
f = (x2 + x1)(x2 + x3). Now, recognizing that this expression has the form of the righthand
side of the distributive property 12b, we have the sum-of-products expression f = x2 + x1x3.

2.7 NAND and NOR Logic Networks

We have discussed the use of AND, OR, and NOT gates in the synthesis of logic circuits.
There are other basic logic functions that are also used for this purpose. Particularly useful
are the NAND and NOR functions which are obtained by complementing the output gener-
ated by AND and OR operations, respectively. These functions are attractive because they
are implemented with simpler electronic circuits than the AND and OR functions, as we
discuss in Appendix B. Figure 2.25 gives the graphical symbols for the NAND and NOR
gates. A bubble is placed on the output side of the AND and OR gate symbols to represent
the complemented output signal.

If NAND and NOR gates are realized with simpler circuits than AND and OR gates,
then we should ask whether these gates can be used directly in the synthesis of logic circuits.
In Section 2.5 we introduced DeMorgan’s theorem. Its logic gate interpretation is shown in
Figure 2.26. Identity 15a is interpreted in part (a) of the figure. It specifies that a NAND of
variables x1 and x2 is equivalent to first complementing each of the variables and then ORing
them. Notice on the far-right side that we have indicated the NOT gates simply as bubbles,
which denote inversion of the logic value at that point. The other half of DeMorgan’s
theorem, identity 15b, appears in part (b) of the figure. It states that the NOR function is
equivalent to first inverting the input variables and then ANDing them.
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(a) NAND gates

(b) NOR gates

· · ··

Figure 2.25 NAND and NOR gates.
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Figure 2.26 DeMorgan’s theorem in terms of logic gates.
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In Section 2.6 we explained how any logic function can be implemented either in sum-
of-products or product-of-sums form, which leads to logic networks that have either an
AND-OR or an OR-AND structure, respectively. We will now show that such networks
can be implemented using only NAND gates or only NOR gates.

Consider the network in Figure 2.27 as a representative of general AND-OR networks.
This network can be transformed into a network of NAND gates as shown in the figure.
First, each connection between the AND gate and an OR gate is replaced by a connection
that includes two inversions of the signal: one inversion at the output of the AND gate and
the other at the input of the OR gate. Such double inversion has no effect on the behavior
of the network, as stated formally in theorem 9 in Section 2.5. According to Figure 2.26a,
the OR gate with inversions at its inputs is equivalent to a NAND gate. Thus we can redraw
the network using only NAND gates, as shown in Figure 2.27. This example shows that
any AND-OR network can be implemented as a NAND-NAND network having the same
topology.

Figure 2.28 gives a similar construction for a product-of-sums network, which can be
transformed into a circuit with only NOR gates. The procedure is exactly the same as the
one described for Figure 2.27 except that now the identity in Figure 2.26b is applied. The
conclusion is that any OR-AND network can be implemented as a NOR-NOR network
having the same topology.

Example 2.13 Let us implement the function

f (x1, x2, x3) =
∑

m(2, 3, 4, 6, 7)

using NOR gates only. In Example 2.12 we showed that the function can be represented
by the POS expression

f = (x1 + x2)(x2 + x3)

An OR-AND circuit that corresponds to this expression is shown in Figure 2.29a. Using
the same structure of the circuit, a NOR-gate version is given in Figure 2.29b. Note that x3

is inverted by a NOR gate that has its inputs tied together.

Example 2.14 Let us now implement the function

f (x1, x2, x3) =
∑

m(2, 3, 4, 6, 7)

using NAND gates only. In Example 2.10 we derived the SOP expression

f = x2 + x1x3

which is realized using the circuit in Figure 2.30a. We can again use the same structure
to obtain a circuit with NAND gates, but with one difference. The signal x2 passes only
through an OR gate, instead of passing through an AND gate and an OR gate. If we simply
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Figure 2.27 Using NAND gates to implement a sum-of-products.
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Figure 2.28 Using NOR gates to implement a product-of-sums.
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(a) POS implementation

(b) NOR implementation

f

Figure 2.29 NOR-gate realization of the function in Example 2.13.
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(a) SOP implementation

(b) NAND implementation

Figure 2.30 NAND-gate realization of the function in Example 2.10.
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replace the OR gate with a NAND gate, this signal would be inverted which would result
in a wrong output value. Since x2 must either not be inverted, or it can be inverted twice,
we can pass it through two NAND gates as depicted in Figure 2.30b. Observe that for this
circuit the output f is

f = x2 · x1x3

Applying DeMorgan’s theorem, this expression becomes

f = x2 + x1x3

2.8 Design Examples

Logic circuits provide a solution to a problem. They implement functions that are needed to
carry out specific tasks. Within the framework of a computer, logic circuits provide complete
capability for execution of programs and processing of data. Such circuits are complex and
difficult to design. But regardless of the complexity of a given circuit, a designer of logic
circuits is always confronted with the same basic issues. First, it is necessary to specify the
desired behavior of the circuit. Second, the circuit has to be synthesized and implemented.
Finally, the implemented circuit has to be tested to verify that it meets the specifications.
The desired behavior is often initially described in words, which then must be turned into
a formal specification. In this section we give three simple examples of design.

2.8.1 Three-Way Light Control

Assume that a large room has three doors and that a switch near each door controls a light
in the room. It has to be possible to turn the light on or off by changing the state of any one
of the switches.

As a first step, let us turn this word statement into a formal specification using a truth
table. Let x1, x2, and x3 be the input variables that denote the state of each switch. Assume
that the light is off if all switches are open. Closing any one of the switches will turn the
light on. Then turning on a second switch will have to turn off the light. Thus the light
will be on if exactly one switch is closed, and it will be off if two (or no) switches are
closed. If the light is off when two switches are closed, then it must be possible to turn
it on by closing the third switch. If f (x1, x2, x3) represents the state of the light, then the
required functional behavior can be specified as shown in the truth table in Figure 2.31.
The canonical sum-of-products expression for the specified function is

f = m1 + m2 + m4 + m7

= x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

This expression cannot be simplified into a lower-cost sum-of-products expression. The
resulting circuit is shown in Figure 2.32a.
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x1 x2 x3 f

0 0 0 0
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Figure 2.31 Truth table for the three-way light
control.

An alternative realization for this function is in the product-of-sums form. The canon-
ical expression of this type is

f = M0 · M3 · M5 · M6

= (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

The resulting circuit is depicted in Figure 2.32b. It has the same cost as the circuit in part
(a) of the figure.

When the designed circuit is implemented, it can be tested by applying the various
input valuations to the circuit and checking whether the output corresponds to the values
specified in the truth table. A straightforward approach is to check that the correct output
is produced for all eight possible input valuations.

2.8.2 Multiplexer Circuit

In computer systems it is often necessary to choose data from exactly one of a number
of possible sources. Suppose that there are two sources of data, provided as input signals
x1 and x2. The values of these signals change in time, perhaps at regular intervals. Thus
sequences of 0s and 1s are applied on each of the inputs x1 and x2. We want to design a
circuit that produces an output that has the same value as either x1 or x2, dependent on the
value of a selection control signal s. Therefore, the circuit should have three inputs: x1,
x2, and s. Assume that the output of the circuit will be the same as the value of input x1 if
s = 0, and it will be the same as x2 if s = 1.

Based on these requirements, we can specify the desired circuit in the form of a truth
table given in Figure 2.33a. From the truth table, we derive the canonical sum of products

f (s, x1, x2) = sx1x2 + sx1x2 + sx1x2 + sx1x2
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f

(a) Sum-of-products realization

(b) Product-of-sums realization

x1

x2

x3

f

x1

x2

x3

Figure 2.32 Implementation of the function in Figure 2.31.

Using the distributive property, this expression can be written as

f = sx1(x2 + x2) + s(x1 + x1)x2

Applying theorem 8b yields

f = sx1 · 1 + s · 1 · x2

Finally, theorem 6a gives

f = sx1 + sx2
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s f s x1 x2

f s x1 x2
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(d) More compact truth-table representation

s x1 x2
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Figure 2.33 Implementation of a multiplexer.

A circuit that implements this function is shown in Figure 2.33b. Circuits of this type are
used so extensively that they are given a special name. A circuit that generates an output
that exactly reflects the state of one of a number of data inputs, based on the value of one
or more selection control inputs, is called a multiplexer. We say that a multiplexer circuit
“multiplexes” input signals onto a single output.



December 31, 2012 09:08 vra80547_ch02 Sheet number 43 Page number 63 magenta black

2.8 Design Examples 63

In this example we derived a multiplexer with two data inputs, which is referred to
as a “2-to-1 multiplexer.” A commonly used graphical symbol for the 2-to-1 multiplexer
is shown in Figure 2.33c. The same idea can be extended to larger circuits. A 4-to-1
multiplexer has four data inputs and one output. In this case two selection control inputs
are needed to choose one of the four data inputs that is transmitted as the output signal. An
8-to-1 multiplexer needs eight data inputs and three selection control inputs, and so on.

Note that the statement “f = x1 if s = 0, and f = x2 if s = 1” can be presented in a
more compact form of a truth table, as indicated in Figure 2.33d . In later chapters we will
have occasion to use such representation.

We showed how a multiplexer can be built using AND, OR, and NOT gates. The same
circuit structure can be used to implement the multiplexer using NAND gates, as explained
in Section 2.7. InAppendix B we will show other possibilities for constructing multiplexers.
In Chapter 4 we will discuss the use of multiplexers in considerable detail.

2.8.3 Number Display

In Example 2.2 we designed an adder circuit that generates the arithmetic sum S = a + b,
where a and b are one-bit numbers and S = s1s0 provides the resulting two-bit sum, which
is either 00, 01, or 10. In this design example we wish to create a logic circuit that drives
a familiar seven-segment display, as illustrated in Figure 2.34a. This display allows us to
show the value of S as a decimal number, either 0, 1, or 2. The display includes seven

ce
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0
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(a) Logic circuit and 7-segment display
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Figure 2.34 Display of numbers.



December 31, 2012 09:08 vra80547_ch02 Sheet number 44 Page number 64 magenta black

64 C H A P T E R 2 • Introduction to Logic Circuits

segments, labeled a, b, . . . , g in the figure, where each segment is a light-emitting diode
(LED). Our logic circuit has the two inputs s1 and s0. It produces seven outputs, one for
each segment in the display. Setting an output to the value 1 illuminates the corresponding
segment in the display. By illuminating specific segments for each valuation of s1s0 we can
make the display’s appearance correspond to the shape of the appropriate decimal digit.

Part (b) of Figure 2.34 shows a truth table for the possible valuations of s1s0 and
indicates on the lefthand side how the display should appear in each case. The truth table
specifies the logic values needed for each of the seven functions. For example, segment a
in the 7-segment display needs to be turned on when S has the decimal values 0 or 2, but
has to be off when S has the value 1. Hence, the corresponding logic function is set to 1 for
minterms m0 and m2, giving a = s1s0 + s1s0 = s0. Logic expressions for each of the seven
functions are:

a = d = e = s0

b = 1

c = s1

f = s1s0

g = s1s0

Designers of logic circuits rely heavily on CAD tools. We want to encourage the reader
to become familiar with CAD tools as soon as possible. We have reached a point where
an introduction to these tools is useful. The next section presents some basic concepts that
are needed to use these tools. We will also introduce, in Section 2.10, a special language
for describing logic circuits, called Verilog. This language is used to describe the circuits
as an input to the CAD tools, which then proceed to derive a suitable implementation.

2.9 Introduction to CAD Tools

The preceding sections introduced a basic approach for synthesis of logic circuits. A de-
signer could use this approach manually for small circuits. However, logic circuits found
in complex systems, such as today’s computers, cannot be designed manually—they are
designed using sophisticated CAD tools that automatically implement the synthesis tech-
niques.

To design a logic circuit, a number of CAD tools are needed. They are usually packaged
together into a CAD system, which typically includes tools for the following tasks: design
entry, logic synthesis and optimization, simulation, and physical design. We will introduce
some of these tools in this section and will provide additional discussion in later chapters.

2.9.1 Design Entry

The starting point in the process of designing a logic circuit is the conception of what the
circuit is supposed to do and the formulation of its general structure. This step is done
manually by the designer because it requires design experience and intuition. The rest
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of the design process is done with the aid of CAD tools. The first stage of this process
involves entering into the CAD system a description of the circuit being designed. This
stage is called design entry. We will describe two design entry methods: using schematic
capture and writing source code in a hardware description language.

Schematic Capture
A logic circuit can be defined by drawing logic gates and interconnecting them with

wires. A CAD tool for entering a designed circuit in this way is called a schematic capture
tool. The word schematic refers to a diagram of a circuit in which circuit elements, such
as logic gates, are depicted as graphical symbols and connections between circuit elements
are drawn as lines.

A schematic capture tool uses the graphics capabilities of a computer and a computer
mouse to allow the user to draw a schematic diagram. To facilitate inclusion of gates
in the schematic, the tool provides a collection of graphical symbols that represent gates
of various types with different numbers of inputs. This collection of symbols is called a
library. The gates in the library can be imported into the user’s schematic, and the tool
provides a graphical way of interconnecting the gates to create a logic network.

Any subcircuits that have been previously created can be represented as graphical
symbols and included in the schematic. In practice it is common for a CAD system user to
create a circuit that includes within it other smaller circuits. This methodology is known
as hierarchical design and provides a good way of dealing with the complexities of large
circuits.

The schematic-capture method is simple to use, but becomes awkward when large
circuits are involved. A better method for dealing with large circuits is to write source code
using a hardware description language to represent the circuit.

Hardware Description Languages
A hardware description language (HDL) is similar to a typical computer programming

language except that an HDL is used to describe hardware rather than a program to be
executed on a computer. Many commercial HDLs are available. Some are proprietary,
meaning that they are provided by a particular company and can be used to implement
circuits only in the technology offered by that company. We will not discuss the proprietary
HDLs in this book. Instead, we will focus on a language that is supported by virtually
all vendors that provide digital hardware technology and is officially endorsed as an Insti-
tute of Electrical and Electronics Engineers (IEEE) standard. The IEEE is a worldwide
organization that promotes technical activities to the benefit of society in general. One of
its activities involves the development of standards that define how certain technological
concepts can be used in a way that is suitable for a large body of users.

Two HDLs are IEEE standards: Verilog HDL and VHDL (Very High Speed Integrated
Circuit Hardware Description Language). Both languages are in widespread use in the
industry. We use Verilog in this book, but a VHDL version of the book is also available
from the same publisher [4]. Although the two languages differ in many ways, the choice
of using one or the other when studying logic circuits is not particularly important, because
both offer similar features. Concepts illustrated in this book using Verilog can be directly
applied when using VHDL.
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In comparison to performing schematic capture, using Verilog offers a number of advan-
tages. Because it is supported by most organizations that offer digital hardware technology,
Verilog provides design portability. Acircuit specified in Verilog can be implemented in dif-
ferent types of chips and with CAD tools provided by different companies, without having
to change the Verilog specification. Design portability is an important advantage because
digital circuit technology changes rapidly. By using a standard language, the designer can
focus on the functionality of the desired circuit without being overly concerned about the
details of the technology that will eventually be used for implementation.

Design entry of a logic circuit is done by writing Verilog code. Signals in the circuit
can be represented as variables in the source code, and logic functions are expressed by
assigning values to these variables. Verilog source code is plain text, which makes it easy
for the designer to include within the code documentation that explains how the circuit
works. This feature, coupled with the fact that Verilog is widely used, encourages sharing
and reuse of Verilog-described circuits. This allows faster development of new products in
cases where existing Verilog code can be adapted for use in the design of new circuits.

Similar to the way in which large circuits are handled in schematic capture, Verilog
code can be written in a modular way that facilitates hierarchical design. Both small and
large logic circuit designs can be efficiently represented in Verilog code.

Verilog design entry can be combined with other methods. For example, a schematic-
capture tool can be used in which a subcircuit in the schematic is described using Verilog.
We will introduce Verilog in Section 2.10.

2.9.2 Logic Synthesis

Synthesis is the process of generating a logic circuit from an initial specification that may
be given in the form of a schematic diagram or code written in a hardware description
language. Synthesis CAD tools generate efficient implementations of circuits from such
specifications.

The process of translating, or compiling, Verilog code into a network of logic gates is
part of synthesis. The output is a set of logic expressions that describe the logic functions
needed to realize the circuit.

Regardless of what type of design entry is used, the initial logic expressions produced by
the synthesis tools are not likely to be in an optimal form because they reflect the designer’s
input to the CAD tools. It is impossible for a designer to manually produce optimal results
for large circuits. So, one of the important tasks of the synthesis tools is to manipulate the
user’s design to automatically generate an equivalent, but better circuit.

The measure of what makes one circuit better than another depends on the particular
needs of a design project and the technology chosen for implementation. Earlier in this
chapter we suggested that a good circuit might be one that has the lowest cost. There are other
possible optimization goals, which are motivated by the type of hardware technology used
for implementation of the circuit. We discuss implementation technologies in Appendix B.

The performance of a synthesized circuit can be assessed by physically constructing
the circuit and testing it. But, its behavior can also be evaluated by means of simulation.
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2.9.3 Functional Simulation

A circuit represented in the form of logic expressions can be simulated to verify that it
will function as expected. The tool that performs this task is called a functional simulator.
It uses the logic expressions (often referred to as equations) generated during synthesis,
and assumes that these expressions will be implemented with perfect gates through which
signals propagate instantaneously. The simulator requires the user to specify valuations
of the circuit’s inputs that should be applied during simulation. For each valuation, the
simulator evaluates the outputs produced by the expressions. The results of simulation are
usually provided in the form of a timing diagram which the user can examine to verify that
the circuit operates as required.

2.9.4 Physical Design

After logic synthesis the next step in the design flow is to determine exactly how to imple-
ment the circuit on a given chip. This step is often called physical design. As we discuss in
Appendix B, there are several different technologies that may be used to implement logic
circuits. The physical design tools map a circuit specified in the form of logic expressions
into a realization that makes use of the resources available on the target chip. They deter-
mine the placement of specific logic elements, which are not necessarily simple gates of
the type we have encountered so far. They also determine the wiring connections that have
to be made between these elements to implement the desired circuit.

2.9.5 Timing Simulation

Logic gates and other logic elements are implemented with electronic circuits, and these
circuits cannot perform their function with zero delay. When the values of inputs to the
circuit change, it takes a certain amount of time before a corresponding change occurs at
the output. This is called a propagation delay of the circuit. The propagation delay consists
of two kinds of delays. Each logic element needs some time to generate a valid output
signal whenever there are changes in the values of its inputs. In addition to this delay, there
is a delay caused by signals that must propagate along wires that connect various logic
elements. The combined effect is that real circuits exhibit delays, which has a significant
impact on their speed of operation.

A timing simulator evaluates the expected delays of a designed logic circuit. Its results
can be used to determine if the generated circuit meets the timing requirements of the
specification for the design. If the requirements are not met, the designer can ask the
physical design tools to try again by indicating specific timing constraints that have to be
met. If this does not succeed, then the designer has to try different optimizations in the
synthesis step, or else improve the initial design that is presented to the synthesis tools.
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2.9.6 Circuit Implementation

Having ascertained that the designed circuit meets all requirements of the specification, the
circuit is implemented on an actual chip. If a custom-manufactured chip is created for this
design, then this step is called chip fabrication. But if a programmable hardware device
is used, then this step is called chip configuration or programming. Various types of chip
technologies are described in Appendix B.

2.9.7 Complete Design Flow

The CAD tools discussed above are the essential parts of a CAD system. The complete
design flow that we discussed is illustrated in Figure 2.35. This has been just a brief
introductory discussion. A full presentation of the CAD tools is given in Chapter 10.

At this point the reader should have some appreciation for what is involved when using
CAD tools. However, the tools can be fully appreciated only when they are used firsthand.
We strongly encourage the reader to obtain access to suitable CAD tools and implement
some examples of circuits by using these tools. Two examples of commonly-used CAD
tools are the Quartus II tools available from Altera Corporation and the ISE tools provided
by Xilinx Corporation. Both of these CAD systems can be obtained free-of-charge for
educational use from their respective corporations’ websites.

2.10 Introduction to Verilog

In the 1980s rapid advances in integrated circuit technology lead to efforts to develop
standard design practices for digital circuits. Verilog was produced as a part of that effort.
The original version of Verilog was developed by Gateway Design Automation, which was
later acquired by Cadence Design Systems. In 1990 Verilog was put into the public domain,
and it has since become one of the most popular languages for describing digital circuits.
In 1995 Verilog was adopted as an official IEEE Standard, called 1364-1995. An enhanced
version of Verilog, called Verilog 2001, was adopted as IEEE Standard 1364-2001 in 2001.
While this version introduced a number of new features, it also supports all of the features
in the original Verilog standard.

Verilog was originally intended for simulation and verification of digital circuits. Sub-
sequently, with the addition of synthesis capability, Verilog has also become popular for
use in design entry in CAD systems. The CAD tools are used to synthesize the Verilog
code into a hardware implementation of the described circuit. In this book our main use of
Verilog will be for synthesis.

Verilog is a complex, sophisticated language. Learning all of its features is a daunting
task. However, for use in synthesis only a subset of these features is important. To simplify
the presentation, we will focus the discussion on the features of the Verilog language that
are actually used in the examples in the book. The material presented is sufficient to allow
the reader to design a wide range of circuits. The reader who wishes to learn the complete
Verilog language can refer to one of the specialized texts [5–11].
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Figure 2.35 A typical CAD system.
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Verilog is introduced in several stages throughout the book. Our general approach will
be to introduce particular features only when they are relevant to the design topics covered
in that part of the text. In Appendix A we provide a concise summary of the Verilog features
covered in the book. The reader will find it convenient to refer to that material from time to
time. In the remainder of this chapter we discuss the most basic concepts needed to write
simple Verilog code.

Representation of Digital Circuits in Verilog
When using CAD tools to synthesize a logic circuit, the designer can provide the initial

description of the circuit in several different ways, as we explained in the previous section.
One efficient way is to write this description in the form of Verilog source code. The Verilog
compiler translates this code into a logic circuit.

Verilog allows the designer to describe a desired circuit in a number of ways. One
possibility is to use Verilog constructs that describe the structure of the circuit in terms
of circuit elements, such as logic gates. A larger circuit is defined by writing code that
connects such elements together. This approach is referred to as the structural representation
of logic circuits. Another possibility is to describe a circuit more abstractly, by using
logic expressions and Verilog programming constructs that define the desired behavior of
the circuit, but not its actual structure in terms of gates. This is called the behavioral
representation.

2.10.1 Structural Specification of Logic Circuits

Verilog includes a set of gate-level primitives that correspond to commonly-used logic gates.
A gate is represented by indicating its functional name, output, and inputs. For example, a
two-input AND gate, with output y and inputs x1 and x2, is denoted as

and (y, x1, x2);
A four-input OR gate is specified as

or (y, x1, x2, x3, x4);
The keywords nand and nor are used to define the NAND and NOR gates in the same way.
The NOT gate given by

not (y, x);
implements y = x. The gate-level primitives can be used to specify larger circuits. All of
the available Verilog gate-level primitives are listed in Table A.2 in Appendix A.

A logic circuit is specified in the form of a module that contains the statements that
define the circuit. A module has inputs and outputs, which are referred to as its ports.
The word port is a commonly-used term that refers to an input or output connection to an
electronic circuit. Consider the multiplexer circuit from Figure 2.33b, which is reproduced
in Figure 2.36. This circuit can be represented by the Verilog code in Figure 2.37. The
first statement gives the module a name, example1, and indicates that there are four port
signals. The next two statements declare that x1, x2, and s are to be treated as input signals,
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f

x2
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Figure 2.36 The logic circuit for a multiplexer.

module example1 (x1, x2, s, f);
input x1, x2, s;
output f;

not (k, s);
and (g, k, x1);
and (h, s, x2);
or (f, g, h);

endmodule

Figure 2.37 Verilog code for the circuit in Figure 2.36.

while f is the output. The actual structure of the circuit is specified in the four statements
that follow. The NOT gate gives k = s. The AND gates produce g = sx1 and h = sx2. The
outputs of AND gates are combined in the OR gate to form

f = g + h
= sx1 + sx2

The module ends with the endmodule statement. We have written the Verilog keywords
in bold type to make the text easier to read. We will continue this practice throughout the
book.

A second example of Verilog code is given in Figure 2.38. It defines a circuit that has
four input signals, x1, x2, x3, and x4, and three output signals, f, g, and h. It implements the
logic functions

g = x1x3 + x2x4

h = (x1 + x3)(x2 + x4)

f = g + h
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module example2 (x1, x2, x3, x4, f, g, h);
input x1, x2, x3, x4;
output f, g, h;

and (z1, x1, x3);
and (z2, x2, x4);
or (g, z1, z2);
or (z3, x1, x3);
or (z4, x2, x4);
and (h, z3, z4);
or (f, g, h);

endmodule

Figure 2.38 Verilog code for a four-input circuit.

Instead of using explicit NOT gates to define x2 and x3, we have used the Verilog operator
“∼” (tilde character on the keyboard) to denote complementation. Thus, x2 is indicated as
∼x2 in the code. The circuit produced by the Verilog compiler for this example is shown
in Figure 2.39.

Verilog Syntax
The names of modules and signals in Verilog code follow two simple rules: the name

must start with a letter, and it can contain any letter or number plus the “_” underscore
and “$” characters. Verilog is case sensitive. Thus, the name k is not the same as K and
Example1 is not the same as example1. The Verilog syntax does not enforce a particular
style of code. For example, multiple statements can appear on a single line. White space
characters, such as SPACE and TAB, and blank lines are ignored. As a matter of good
style, code should be formatted in such a way that it is easy to read. Indentation and blank
lines can be used to make separate parts of the code easily recognizable, as we have done in
Figures 2.37 and 2.38. Comments may be included in the code to improve its readability.
A comment begins with the double slash “//” and continues to the end of the line.

2.10.2 Behavioral Specification of Logic Circuits

Using gate-level primitives can be tedious when large circuits have to be designed. An
alternative is to use more abstract expressions and programming constructs to describe the
behavior of a logic circuit. One possibility is to define the circuit using logic expressions.
Figure 2.40 shows how the circuit in Figure 2.36 can be defined with the expression

f = sx1 + sx2

TheAND and OR operations are indicated by the “&” and “|” Verilog operators, respectively.
The assign keyword provides a continuous assignment for the signal f . The word continuous
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Figure 2.39 Logic circuit for the code in Figure 2.38.

module example3 (x1, x2, s, f);
input x1, x2, s;
output f;

assign f = ( s & x1) | (s & x2);

endmodule

Figure 2.40 Using the continuous assignment to specify the
circuit in Figure 2.36.

stems from the use of Verilog for simulation; whenever any signal on the right-hand side
changes its state, the value of f will be re-evaluated. The effect is equivalent to using the
gate-level primitives in Figure 2.37. Following this approach, the circuit in Figure 2.39 can
be specified as shown in Figure 2.41.

Using logic expressions makes it easier to write Verilog code. But even higher levels
of abstraction can often be used to advantage. Consider again the multiplexer circuit of
Figure 2.36. The circuit can be described in words by saying that f = x1 if s = 0 and f = x2

if s = 1. In Verilog, this behavior can be defined with the if-else statement

if (s == 0)
f = x1;

else
f = x2;
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module example4 (x1, x2, x3, x4, f, g, h);
input x1, x2, x3, x4;
output f, g, h;

assign g = (x1 & x3) | (x2 & x4);
assign h = (x1 | x3) & ( x2 | x4);
assign f = g | h;

endmodule

Figure 2.41 Using the continuous assignment to specify the
circuit in Figure 2.39.

// Behavioral specification
module example5 (x1, x2, s, f);

input x1, x2, s;
output f;
reg f;

always @(x1 or x2 or s)
if (s == 0)

f = x1;
else

f = x2;

endmodule

Figure 2.42 Behavioral specification of the circuit in
Figure 2.36.

The complete code is given in Figure 2.42. The first line illustrates how a comment can be
inserted. The if-else statement is an example of a Verilog procedural statement. We will
introduce other procedural statements, such as loop statements, in Chapters 3 and 4.

Verilog syntax requires that procedural statements be contained inside a construct called
an always block, as shown in Figure 2.42. An always block can contain a single statement,
as in this example, or it can contain multiple statements. A typical Verilog design module
may include several always blocks, each representing a part of the circuit being modeled.
An important property of the always block is that the statements it contains are evaluated
in the order given in the code. This is in contrast to the continuous assignment statements,
which are evaluated concurrently and hence have no meaningful order.

The part of the always block after the @ symbol, in parentheses, is called the sensitivity
list. This list has its roots in the use of Verilog for simulation. The statements inside
an always block are executed by the simulator only when one or more of the signals in
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the sensitivity list changes value. In this way, the complexity of a simulation process is
simplified, because it is not necessary to execute every statement in the code at all times.
When Verilog is being employed for synthesis of circuits, as in this book, the sensitivity list
simply tells the Verilog compiler which signals can directly affect the outputs produced by
the always block.

If a signal is assigned a value using procedural statements, then Verilog syntax requires
that it be declared as a variable; this is accomplished by using the keyword reg in Figure 2.42.
This term also derives from the simulation jargon: It means that, once a variable’s value
is assigned with a procedural statement, the simulator “registers” this value and it will not
change until the always block is executed again. We will discuss this issue in detail in
Chapter 3.

Instead of using a separate statement to declare that the variable f is of reg type in
Figure 2.42, we can alternatively use the syntax

output reg f;

which combines these two statements. Also, Verilog 2001 adds the ability to declare a
signal’s direction and type directly in the module’s list of ports. This style of code is
illustrated in Figure 2.43. In the sensitivity list of the always statement we can use commas
instead of the word or, which is also illustrated in Figure 2.43. Moreover, instead of listing
the relevant signals in the sensitivity list, it is possible to write simply

always @(∗)

or even more simply

always @∗
assuming that the compiler will figure out which signals need to be considered.

Behavioral specification of a logic circuit defines only its behavior. CAD synthesis
tools use this specification to construct the actual circuit. The detailed structure of the
synthesized circuit will depend on the technology used.

// Behavioral specification
module example5 (input x1, x2, s, output reg f);

always @(x1, x2, s)
if (s == 0)

f = x1;
else

f = x2;

endmodule

Figure 2.43 A more compact version of the code in Figure 2.42.
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2.10.3 Hierarchical Verilog Code

The examples of Verilog code given so far include just a single module. For larger designs,
it is often convenient to create a hierarchical structure in the Verilog code, in which there
is a top-level module that includes multiple instances of lower-level modules. To see how
hierarchical Verilog code can be written consider the circuit in Figure 2.44. This circuit
comprises two lower-level modules: the adder module that we described in Figure 2.12, and
the module that drives a 7-segment display which we showed in Figure 2.34. The purpose
of the circuit is to generate the arithmetic sum of the two inputs x and y, using the adder
module, and then to show the resulting decimal value on the 7-segment display.

Verilog code for the adder module from Figure 2.12 and the display module from
Figure 2.34 is given in Figures 2.45 and 2.46, respectively. For the adder module con-
tinuous assignment statements are used to specify the two-bit sum s1s0. The assignment
statement for s0 uses the Verilog XOR operator, which is specified as s0 = a ∧ b. The code
for the display module includes continuous assignment statements that correspond to the

s0
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b
c
d
e
f
g

Adder module Display module

a

b

Top-level module

x

y

s0

s1

w0

w1

a
b
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Figure 2.44 A logic circuit with two modules.

// An adder module
module adder (a, b, s1, s0);

input a, b;
output s1, s0;

assign s1 = a & b;
assign s0 = a b;

endmodule

Figure 2.45 Verilog specification of the circuit in
Figure 2.12.
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// A module for driving a 7-segment display
module display (s1, s0, a, b, c, d, e, f, g);

input s1, s0;
output a, b, c, d, e, f, g;

assign a = s0;
assign b = 1;
assign c = s1;
assign d = s0;
assign e = s0;
assign f = s1 & s0;
assign g = s1 & s0;

endmodule

Figure 2.46 Verilog specification of the circuit in Figure 2.34.

module adder_display (x, y, a, b, c, d, e, f, g);
input x, y;
output a, b, c, d, e, f, g;
wire w1, w0;

adder U1 (x, y, w1, w0);
display U2 (w1, w0, a, b, c, d, e, f, g);

endmodule

Figure 2.47 Hierarchical Verilog code for the circuit in
Figure 2.44.

logic expressions for each of the seven outputs of the display circuit, which are given in
Section 2.8.3. The statement

assign b = 1;
assigns the output b of the display module to have the constant value 1. We discuss the
specification of numbers in Verilog code in Chapter 3.

The top-level Verilog module, named adder_display, is given in Figure 2.47. This
module has the inputs x and y, and the outputs a, . . . , g. The statement

wire w1, w0;
is needed because the signals w1 and w0 are neither inputs nor outputs of the circuit in
Figure 2.44. Since these signals cannot be declared as input or output ports in the Verilog
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code, they have to be declared as (internal) wires. The statement

adder U1 (x, y, w1, w0);

instantiates the adder module from Figure 2.45 as a submodule. The submodule is given
a name, U1, which can be any valid Verilog name. In this instantiation statement the
signals attached to the ports of the adder submodule are listed in the same order as those
in Figure 2.45. Thus, the input ports x and y of the top-level module in Figure 2.47 are
connected to the first two ports of adder, which are named a and b. The order in which
signals are listed in the instantiation statement determines which signal is connected to each
port in the submodule. The instantiation statement also attaches the last two ports of the
adder submodule, which are its outputs, to the wires w1 and w0 in the top-level module.
The statement

display U2 (w1, w0, a, b, c, d, e, f, g);

instantiates the other submodule in our circuit. Here, the wires w1 and w0, which have
already been connected to the outputs of the adder submodule, are attached to the corre-
sponding input ports of the display submodule. The display submodule’s output ports are
attached to the a, . . . , g output ports of the top-level module.

2.10.4 How NOT to Write Verilog Code

When learning how to use Verilog or other hardware description languages, the tendency for
the novice is to write code that resembles a computer program, containing many variables
and loops. It is difficult to determine what logic circuit the CAD tools will produce when
synthesizing such code. This book contains more than 100 examples of complete Verilog
code that represent a wide range of logic circuits. In these examples the code is easily
related to the described logic circuit. The reader is advised to adopt the same style of code.
A good general guideline is to assume that if the designer cannot readily determine what
logic circuit is described by the Verilog code, then the CAD tools are not likely to synthesize
the circuit that the designer is trying to model.

Once complete Verilog code is written for a particular design, the reader is encouraged
to analyze the resulting circuit produced by the CAD synthesis tools; typical CAD systems
provide graphical viewing tools that can display a logic circuit that corresponds to the output
produced by the Verilog compiler. Much can be learned about Verilog, logic circuits, and
logic synthesis through this process. We provide additional guidelines for writing Verilog
code in Appendix A.

2.11 Minimization and Karnaugh Maps

In a number of our examples we have used algebraic manipulation to find a reduced-cost
implementation of a function in either sum-of-products or product-of-sums form. In these
examples, we made use of the rules, theorems, and properties of Boolean algebra that



December 31, 2012 09:08 vra80547_ch02 Sheet number 59 Page number 79 magenta black

2.11 Minimization and Karnaugh Maps 79

Row
number x1 x2 x3 f

0 0 0 0 1
1 0 0 1 0
2 0 1 0 1
3 0 1 1 0
4 1 0 0 1
5 1 0 1 1
6 1 1 0 1
7 1 1 1 0

Figure 2.48 The function f (x1, x2, x3) = ∑
m(0, 2, 4, 5, 6).

were introduced in Section 2.5. For example, we often used the distributive property,
DeMorgan’s theorem, and the combining property. In general, it is not obvious when
to apply these theorems and properties to find a minimum-cost circuit, and it is often
tedious and impractical to do so. This section introduces a more manageable approach, call
the Karnaugh map, which provides a systematic way of producing a minimum-cost logic
expression.

The key to the Karnaugh map approach is that it allows the application of the combining
property 14a, or 14b, as judiciously as possible. To understand how it works consider the
function f in Figure 2.48. The canonical sum-of-products expression for f consists of
minterms m0, m2, m4, m5, and m6, so that

f = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

The combining property 14a allows us to replace two minterms that differ in the value of
only one variable with a single product term that does not include that variable at all. For
example, both m0 and m2 include x1 and x3, but they differ in the value of x2 because m0

includes x2 while m2 includes x2. Thus

x1x2x3 + x1x2x3 = x1(x2 + x2)x3

= x1 · 1 · x3

= x1x3

Hence m0 and m2 can be replaced by the single product term x1x3. Similarly, m4 and m6

differ only in the value of x2 and can be combined using

x1x2x3 + x1x2x3 = x1(x2 + x2)x3

= x1 · 1 · x3

= x1x3
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Now the two newly-generated terms, x1x3 and x1x3, can be combined further as

x1x3 + x1x3 = (x1 + x1)x3

= 1 · x3

= x3

These optimization steps indicate that we can replace the four minterms m0, m2, m4, and
m6 with the single product term x3. In other words, the minterms m0, m2, m4, and m6 are
all included in the term x3. The remaining minterm in f is m5. It can be combined with m4,
which gives

x1x2x3 + x1x2x3 = x1x2

Recall that theorem 7b in Section 2.5 indicates that

m4 = m4 + m4

which means that we can use the minterm m4 twice—to combine with minterms m0, m2,
and m6 to yield the term x3 as explained above and also to combine with m5 to yield the
term x1x2.

We have now accounted for all the minterms in f ; hence all five input valuations for
which f = 1 are covered by the minimum-cost expression

f = x3 + x1x2

The expression has the product term x3 because f = 1 when x3 = 0 regardless of the values
of x1 and x2. The four minterms m0, m2, m4, and m6 represent all possible minterms for
which x3 = 0; they include all four valuations, 00, 01, 10, and 11, of variables x1 and x2.
Thus if x3 = 0, then it is guaranteed that f = 1. This may not be easy to see directly from
the truth table in Figure 2.48, but it is obvious if we write the corresponding valuations
grouped together:

x1 x2 x3

m0 0 0 0

m2 0 1 0

m4 1 0 0

m6 1 1 0

In a similar way, if we look at m4 and m5 as a group of two

x1 x2 x3

m4 1 0 0

m5 1 0 1

it is clear that when x1 = 1 and x2 = 0, then f = 1 regardless of the value of x3.
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x1
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(a) Truth table (b) Karnaugh map
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m0

m1

m3

m2

Figure 2.49 Location of two-variable minterms.

The preceding discussion suggests that it would be advantageous to devise a method
that allows easy discovery of groups of minterms for which f = 1 that can be combined
into single terms. The Karnaugh map is a useful vehicle for this purpose.

The Karnaugh map [1] is an alternative to the truth-table form for representing a
function. The map consists of cells that correspond to the rows of the truth table. Consider
the two-variable example in Figure 2.49. Part (a) depicts the truth-table form, where each
of the four rows is identified by a minterm. Part (b) shows the Karnaugh map, which has
four cells. The columns of the map are labeled by the value of x1, and the rows are labeled
by x2. This labeling leads to the locations of minterms as shown in the figure. Compared
to the truth table, the advantage of the Karnaugh map is that it allows easy recognition of
minterms that can be combined using property 14a from Section 2.5. Minterms in any two
cells that are adjacent, either in the same row or the same column, can be combined. For
example, the minterms m2 and m3 can be combined as

m2 + m3 = x1x2 + x1x2

= x1(x2 + x2)

= x1 · 1

= x1

The Karnaugh map is not just useful for combining pairs of minterms. As we will see in
several larger examples, the Karnaugh map can be used directly to derive a minimum-cost
circuit for a logic function.

Two-Variable Map
A Karnaugh map for a two-variable function is given in Figure 2.50. It corresponds to

the function f of Figure 2.19. The value of f for each valuation of the variables x1 and x2

is indicated in the corresponding cell of the map. Because a 1 appears in both cells of the
bottom row and these cells are adjacent, there exists a single product term that can cause
f to be equal to 1 when the input variables have the values that correspond to either of
these cells. To indicate this fact, we have circled the cell entries in the map. Rather than
using the combining property formally, we can derive the product term intuitively. Both of
the cells are identified by x2 = 1, but x1 = 0 for the left cell and x1 = 1 for the right cell.
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x1
x2

1 0

1 1

f x2 x1+=
0

1

0 1

Figure 2.50 The function of Figure 2.19.

Thus if x2 = 1, then f = 1 regardless of whether x1 is equal to 0 or 1. The product term
representing the two cells is simply x2.

Similarly, f = 1 for both cells in the first column. These cells are identified by x1 = 0.
Therefore, they lead to the product term x1. Since this takes care of all instances where
f = 1, it follows that the minimum-cost realization of the function is

f = x2 + x1

Evidently, to find a minimum-cost implementation of a given function, it is necessary
to find the smallest number of product terms that produce a value of 1 for all cases where
f = 1. Moreover, the cost of these product terms should be as low as possible. Note that a
product term that covers two adjacent cells is cheaper to implement than a term that covers
only a single cell. For our example once the two cells in the bottom row have been covered
by the product term x2, only one cell (top left) remains. Although it could be covered by
the term x1x2, it is better to combine the two cells in the left column to produce the product
term x1 because this term is cheaper to implement.

Three-Variable Map
A three-variable Karnaugh map is constructed by placing 2 two-variable maps side

by side. Figure 2.51a lists all of the three-variable minterms, and part (b) of the figure
indicates the locations of these minterms in the Karnaugh map. In this case each valuation
of x1 and x2 identifies a column in the map, while the value of x3 distinguishes the two
rows. To ensure that minterms in the adjacent cells in the map can always be combined
into a single product term, the adjacent cells must differ in the value of only one variable.
Thus the columns are identified by the sequence of (x1, x2) values of 00, 01, 11, and 10,
rather than the more obvious 00, 01, 10, and 11. This makes the second and third columns
different only in variable x1. Also, the first and the fourth columns differ only in variable
x1, which means that these columns can be considered as being adjacent. The reader may
find it useful to visualize the map as a rectangle folded into a cylinder where the left and the
right edges in Figure 2.51b are made to touch. (A sequence of codes, or valuations, where
consecutive codes differ in one variable only is known as the Gray code. This code is used
for a variety of purposes, some of which will be encountered later in the book.)

Figure 2.52a represents the function of Figure 2.23 in Karnaugh-map form. To synthe-
size this function, it is necessary to cover the four 1s in the map as efficiently as possible.
It is not difficult to see that two product terms suffice. The first covers the 1s in the top row,
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Figure 2.51 Location of three-variable minterms.
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(a) The function of Figure 2.23

f x3 x1 x2+=

(b) The function of Figure 2.48
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Figure 2.52 Examples of three-variable Karnaugh maps.

which are represented by the term x1x3. The second term is x2x3, which covers the 1s in
the bottom row. Hence the function is implemented as

f = x1x3 + x2x3

which describes the circuit obtained in Figure 2.24a.
In a three-variable map it is possible to combine cells to produce product terms that

correspond to a single cell, two adjacent cells, or a group of four adjacent cells. Realization
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of a group of four adjacent cells using a single product term is illustrated in Figure 2.52b,
using the function from Figure 2.48. The four cells in the top row correspond to the
(x1, x2, x3) valuations 000, 010, 110, and 100. As we discussed before, this indicates that if
x3 = 0, then f = 1 for all four possible valuations of x1 and x2, which means that the only
requirement is that x3 = 0. Therefore, the product term x3 represents these four cells. The
remaining 1, corresponding to minterm m5, is best covered by the term x1x2, obtained by
combining the two cells in the right-most column. The complete realization of f is

f = x3 + x1x2

It is also possible to have a group of eight 1s in a three-variable map. This is the trivial case
of a function where f = 1 for all valuations of input variables; in other words, f is equal to
the constant 1.

The Karnaugh map provides a simple mechanism for generating the product terms that
should be used to implement a given function. A product term must include only those
variables that have the same value for all cells in the group represented by this term. If the
variable is equal to 1 in the group, it appears uncomplemented in the product term; if it is
equal to 0, it appears complemented. Each variable that is sometimes 1 and sometimes 0
in the group does not appear in the product term.

Four-Variable Map
A four-variable map is constructed by placing 2 three-variable maps together to create

four rows in the same fashion as we used 2 two-variable maps to form the four columns
in a three-variable map. Figure 2.53 shows the structure of the four-variable map and
the location of minterms. We have included in this figure another frequently used way of
designating the rows and columns. As shown in blue, it is sufficient to indicate the rows
and columns for which a given variable is equal to 1. Thus x1 = 1 for the two right-most
columns, x2 = 1 for the two middle columns, x3 = 1 for the bottom two rows, and x4 = 1
for the two middle rows.

Figure 2.54 gives four examples of four-variable functions. The function f1 has a group
of four 1s in adjacent cells in the bottom two rows, for which x2 = 0 and x3 = 1—they are

x1 x2
x3 x4 00 01 11 10

00

01

11

10

x2

x4

x1

x3

m0

m1 m5

m4 m12

m13

m8

m9

m3

m2 m6

m7 m15

m14

m11

m10

Figure 2.53 A four-variable Karnaugh map.
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Figure 2.54 Examples of four-variable Karnaugh maps.

represented by the product term x2x3. This leaves the two 1s in the second row to be covered,
which can be accomplished with the term x1x3x4. Hence the minimum-cost implementation
of the function is

f1 = x2x3 + x1x3x4

The function f2 includes a group of eight 1s that can be implemented by a single term, x3.
Again, the reader should note that if the remaining two 1s were implemented as a group
of two, the result would be the product term x1x3x4. Implementing these 1s as a part of a
group of four 1s, as shown in the figure, gives the less expensive product term x1x4.

Just as the left and the right edges of the map are adjacent in terms of the assignment
of the variables, so are the top and the bottom edges. Indeed, the four corners of the map
are adjacent to each other and thus can form a group of four 1s, which may be implemented
by the product term x2x4. This case is depicted by the function f3. In addition to this group
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of 1s, there are four other 1s that must be covered to implement f3. This can be done as
shown in the figure.

In all examples that we have considered so far, a unique solution exists that leads to
a minimum-cost circuit. The function f4 provides an example where there is some choice.
The groups of four 1s in the top-left and bottom-right corners of the map are realized by the
terms x1x3 and x1x3, respectively. This leaves the two 1s that correspond to the term x1x2x3.
But these two 1s can be realized more economically by treating them as a part of a group
of four 1s. They can be included in two different groups of four, as shown in the figure.
One choice leads to the product term x1x2, and the other leads to x2x3. Both of these terms
have the same cost; hence it does not matter which one is chosen in the final circuit. Note
that the complement of x3 in the term x2x3 does not imply an increased cost in comparison
with x1x2, because this complement must be generated anyway to produce the term x1x3,
which is included in the implementation.

Five-Variable Map
We can use 2 four-variable maps to construct a five-variable map. It is easy to imagine

a structure where one map is directly behind the other, and they are distinguished by x5 = 0
for one map and x5 = 1 for the other map. Since such a structure is awkward to draw, we
can simply place the two maps side by side as shown in Figure 2.55. For the logic function
given in this example, two groups of four 1s appear in the same place in both four-variable
maps; hence their realization does not depend on the value of x5. The same is true for the
two groups of two 1s in the second row. The 1 in the top-right corner appears only in the
right map, where x5 = 1; it is a part of the group of two 1s realized by the term x1x2x3x5.
Note that in this map we left blank those cells for which f = 0, to make the figure more
readable. We will do likewise in a number of maps that follow.

Using a five-variable map is obviously more awkward than using maps with fewer
variables. Extending the Karnaugh map concept to more variables is not useful from

x1 x2
x3 x4 00 01 11 10

1 1

1 1

1 1

00

01

11

10

x1 x2
x3 x4 00 01 11 10
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1 1

1 1

1 1

00
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10

f1 x1 x3 x1 x3 x4 x1 x2 x3 x5+ +=

x5 1=x5 0=

Figure 2.55 A five-variable Karnaugh map.
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the practical point of view. This is not troublesome, because practical synthesis of logic
functions is done with CAD tools that perform the necessary minimization automatically.
Although Karnaugh maps are occasionally useful for designing small logic circuits, our main
reason for introducing the Karnaugh maps is to provide a simple vehicle for illustrating the
ideas involved in the minimization process.

2.12 Strategy for Minimization

For the examples in the preceding section, we used an intuitive approach to decide how the 1s
in a Karnaugh map should be grouped together to obtain the minimum-cost implementation
of a given function. Our intuitive strategy was to find as few as possible and as large as
possible groups of 1s that cover all cases where the function has a value of 1. Each group
of 1s has to comprise cells that can be represented by a single product term. The larger
the group of 1s, the fewer the number of variables in the corresponding product term. This
approach worked well because the Karnaugh maps in our examples were small. For larger
logic functions, which have many variables, such intuitive approach is unsuitable. Instead,
we must have an organized method for deriving a minimum-cost implementation. In this
section we will introduce a possible method, which is similar to the techniques that are
automated in CAD tools. To illustrate the main ideas, we will use Karnaugh maps.

2.12.1 Terminology

A huge amount of research work has gone into the development of techniques for synthesis
of logic functions. The results of this research have been published in numerous papers.
To facilitate the presentation of the results, certain terminology has evolved that avoids
the need for using highly descriptive phrases. We define some of this terminology in the
following paragraphs because it is useful for describing the minimization process.

Literal
A given product term consists of some number of variables, each of which may appear

either in uncomplemented or complemented form. Each appearance of a variable, either
uncomplemented or complemented, is called a literal. For example, the product term x1x2x3

has three literals, and the term x1x3x4x6 has four literals.

Implicant
A product term that indicates the input valuation(s) for which a given function is equal

to 1 is called an implicant of the function. The most basic implicants are the minterms,
which we introduced in Section 2.6.1. For an n-variable function, a minterm is an implicant
that consists of n literals.

Consider the three-variable function in Figure 2.56. There are 11 implicants for this
function. This includes the five minterms: x1x2x3, x1x2x3, x1x2x3, x1x2x3, and x1x2x3.
Then there are the implicants that correspond to all possible pairs of minterms that can be
combined, namely, x1x2 (m0 and m1), x1x3 (m0 and m2), x1x3 (m1 and m3), x1x2 (m2 and m3),
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Figure 2.56 Three-variable function f (x1, x2, x3) =∑
m(0, 1, 2, 3, 7).

and x2x3 (m3 and m7). Finally, there is one implicant that covers a group of four minterms,
which consists of a single literal x1.

Prime Implicant
An implicant is called a prime implicant if it cannot be combined into another implicant

that has fewer literals. Another way of stating this definition is to say that it is impossible
to delete any literal in a prime implicant and still have a valid implicant.

In Figure 2.56 there are two prime implicants: x1 and x2x3. It is not possible to delete
a literal in either of them. Doing so for x1 would make it disappear. For x2x3, deleting
a literal would leave either x2 or x3. But x2 is not an implicant because it includes the
valuation (x1, x2, x3) = 110 for which f = 0, and x3 is not an implicant because it includes
(x1, x2, x3) = 101 for which f = 0. Another way of thinking about prime implicants is that
they represent “the largest groups of 1s” that can be circled in the Karnaugh map.

Cover
A collection of implicants that account for all valuations for which a given function is

equal to 1 is called a cover of that function. A number of different covers exist for most
functions. Obviously, a set of all minterms for which f = 1 is a cover. It is also apparent
that a set of all prime implicants is a cover.

A cover defines a particular implementation of the function. In Figure 2.56 a cover
consisting of minterms leads to the expression

f = x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

Another valid cover is given by the expression

f = x1x2 + x1x2 + x2x3

The cover comprising the prime implicants is

f = x1 + x2x3

While all of these expressions represent the function f correctly, the cover consisting of
prime implicants leads to the lowest-cost implementation.
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Cost
In Section 2.6.1 we suggested that a good indication of the cost of a logic circuit is the

number of gates plus the total number of inputs to all gates in the circuit. We will use this
definition of cost throughout the book. But we will assume that primary inputs, namely,
the input variables, are available in both true and complemented forms at zero cost. Thus
the expression

f = x1x2 + x3x4

has a cost of nine because it can be implemented using two AND gates and one OR gate,
with six inputs to the AND and OR gates.

If an inversion is needed inside a circuit, then the corresponding NOT gate and its input
are included in the cost. For example, the expression

g = (
x1x2 + x3

)
(x4 + x5)

is implemented using two AND gates, two OR gates, and one NOT gate to complement
(x1x2 + x3), with nine inputs. Hence the total cost is 14.

2.12.2 Minimization Procedure

We have seen that it is possible to implement a given logic function with various circuits.
These circuits may have different structures and different costs. When designing a logic
circuit, there are usually certain criteria that must be met. One such criterion is likely to
be the cost of the circuit, which we considered in the previous discussion. In general, the
larger the circuit, the more important the cost issue becomes. In this section we will assume
that the main objective is to obtain a minimum-cost circuit.

In the previous subsection we concluded that the lowest-cost implementation is
achieved when the cover of a given function consists of prime implicants. The ques-
tion then is how to determine the minimum-cost subset of prime implicants that will cover
the function. Some prime implicants may have to be included in the cover, while for others
there may be a choice. If a prime implicant includes a minterm for which f = 1 that is not
included in any other prime implicant, then it must be included in the cover and is called
an essential prime implicant. In the example in Figure 2.56, both prime implicants are
essential. The term x2x3 is the only prime implicant that covers the minterm m7, and x1

is the only one that covers the minterms m0, m1, and m2. Notice that the minterm m3 is
covered by both of these prime implicants. The minimum-cost realization of the function
is

f = x1 + x2x3

We will now present several examples in which there is a choice as to which prime
implicants to include in the final cover. Consider the four-variable function in Figure 2.57.
There are five prime implicants: x1x3, x2x3, x3x4, x1x2x4, and x2x3x4. The essential ones
(highlighted in blue) are x2x3 (because of m11), x3x4 (because of m14), and x2x3x4 (because of
m13). They must be included in the cover. These three prime implicants cover all minterms
for which f = 1 except m7. It is clear that m7 can be covered by either x1x3 or x1x2x4.
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Figure 2.57 Four-variable function f (x1, . . . , x4) =∑
m(2, 3, 5, 6, 7, 10, 11, 13, 14).

Because x1x3 has a lower cost, it is chosen for the cover. Therefore, the minimum-cost
realization is

f = x2x3 + x3x4 + x2x3x4 + x1x3

From the preceding discussion, the process of finding a minimum-cost circuit involves
the following steps:

1. Generate all prime implicants for the given function f .

2. Find the set of essential prime implicants.

3. If the set of essential prime implicants covers all valuations for which f = 1, then
this set is the desired cover of f . Otherwise, determine the nonessential prime
implicants that should be added to form a complete minimum-cost cover.

The choice of nonessential prime implicants to be included in the cover is governed by the
cost considerations. This choice is often not obvious. Indeed, for large functions there may
exist many possibilities, and some heuristic approach (i.e., an approach that considers only
a subset of possibilities but gives good results most of the time) has to be used. One such
approach is to arbitrarily select one nonessential prime implicant and include it in the cover
and then determine the rest of the cover. Next, another cover is determined assuming that
this prime implicant is not in the cover. The costs of the resulting covers are compared, and
the less-expensive cover is chosen for implementation.

We can illustrate the process by using the function in Figure 2.58. Of the six prime
implicants, only x3x4 is essential. Consider next x1x2x3 and assume first that it will be
included in the cover. Then the remaining three minterms, m10, m11, and m15, will require
two more prime implicants to be included in the cover. A possible implementation is

f = x3x4 + x1x2x3 + x1x3x4 + x1x2x3

The second possibility is that x1x2x3 is not included in the cover. Then x1x2x4 becomes
essential because there is no other way of covering m13. Because x1x2x4 also covers m15,
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Figure 2.58 The function f (x1, . . . , x4) =∑
m(0, 4, 8, 10, 11, 12, 13, 15).

only m10 and m11 remain to be covered, which can be achieved with x1x2x3. Therefore, the
alternative implementation is

f = x3x4 + x1x2x4 + x1x2x3

Clearly, this implementation is a better choice.
Sometimes there may not be any essential prime implicants at all. An example is given

in Figure 2.59. Choosing any of the prime implicants and first including it, then excluding
it from the cover leads to two alternatives of equal cost. One includes the prime implicants
indicated in black, which yields

f = x1x3x4 + x2x3x4 + x1x3x4 + x2x3x4

The other includes the prime implicants indicated in blue, which yields

f = x1x2x4 + x1x2x3 + x1x2x4 + x1x2x3

This procedure can be used to find minimum-cost implementations of both small and
large logic functions. For our small examples it was convenient to use Karnaugh maps
to determine the prime implicants of a function and then choose the final cover. Other
techniques based on the same principles are much more suitable for use in CAD tools; we
will introduce such techniques in Chapter 8.

The previous examples have been based on the sum-of-products form. We will next
illustrate that the same concepts apply for the product-of-sums form.

2.13 Minimization of Product-of-Sums Forms

Now that we know how to find the minimum-cost sum-of-products (SOP) implementations
of functions, we can use the same techniques and the principle of duality to obtain minimum-
cost product-of-sums (POS) implementations. In this case it is the maxterms for which
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Figure 2.59 The function f (x1, . . . , x4) =∑
m(0, 2, 4, 5, 10, 11, 13, 15).
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Figure 2.60 POS minimization of f (x1, x2, x3) = �M (4, 5, 6).

f = 0 that have to be combined into sum terms that are as large as possible. Again, a sum
term is considered larger if it covers more maxterms, and the larger the term, the less costly
it is to implement.

Figure 2.60 depicts the same function as Figure 2.56 depicts. There are three maxterms
that must be covered: M4, M5, and M6. They can be covered by two sum terms shown in
the figure, leading to the following implementation:

f = (x1 + x2)(x1 + x3)

A circuit corresponding to this expression has two OR gates and one AND gate, with two
inputs for each gate. Its cost is greater than the cost of the equivalent SOP implementation
derived in Figure 2.56, which requires only one OR gate and one AND gate.

The function from Figure 2.57 is reproduced in Figure 2.61. The maxterms for which
f = 0 can be covered as shown, leading to the expression

f = (x2 + x3)(x3 + x4)(x1 + x2 + x3 + x4)
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Figure 2.61 POS minimization of f (x1, . . . , x4) =
�M (0, 1, 4, 8, 9, 12, 15).

This expression represents a circuit with three OR gates and one AND gate. Two of the
OR gates have two inputs, and the third has four inputs; the AND gate has three inputs.
Assuming that both the complemented and uncomplemented versions of the input variables
x1 to x4 are available at no extra cost, the cost of this circuit is 15. This compares favorably
with the SOP implementation derived from Figure 2.57, which requires five gates and 13
inputs at a total cost of 18.

In general, as we already know from Section 2.6.1, the SOP and POS implementations
of a given function may or may not entail the same cost. The reader is encouraged to find
the POS implementations for the functions in Figures 2.58 and 2.59 and compare the costs
with the SOP forms.

We have shown how to obtain minimum-cost POS implementations by finding the
largest sum terms that cover all maxterms for which f = 0. Another way of obtaining
the same result is by finding a minimum-cost SOP implementation of the complement of
f . Then we can apply DeMorgan’s theorem to this expression to obtain the simplest POS

realization because f = f . For example, the simplest SOP implementation of f in Figure
2.60 is

f = x1x2 + x1x3

Complementing this expression using DeMorgan’s theorem yields

f = f = x1x2 + x1x3

= x1x2 · x1x3

= (x1 + x2)(x1 + x3)

which is the same result as obtained above.
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Using this approach for the function in Figure 2.61 gives

f = x2x3 + x3x4 + x1x2x3x4

Complementing this expression produces

f = f = x2x3 + x3x4 + x1x2x3x4

= x2x3 · x3x4 · x1x2x3x4

= (x2 + x3)(x3 + x4)(x1 + x2 + x3 + x4)

which matches the previously-derived implementation.

2.14 Incompletely Specified Functions

In digital systems it often happens that certain input conditions can never occur. For
example, suppose that x1 and x2 control two interlocked switches such that both switches
cannot be closed at the same time. Thus the only three possible states of the switches
are that both switches are open or that one switch is open and the other switch is closed.
Namely, the input valuations (x1, x2) = 00, 01, and 10 are possible, but 11 is guaranteed
not to occur. Then we say that (x1, x2) = 11 is a don’t-care condition, meaning that a circuit
with x1 and x2 as inputs can be designed by ignoring this condition. A function that has
don’t-care condition(s) is said to be incompletely specified.

Don’t-care conditions, or don’t-cares for short, can be used to advantage in the design
of logic circuits. Since these input valuations will never occur, the designer may assume that
the function value for these valuations is either 1 or 0, whichever is more useful in trying
to find a minimum-cost implementation. Figure 2.62 illustrates this idea. The required
function has a value of 1 for minterms m2, m4, m5, m6, and m10. Assuming the above-
mentioned interlocked switches, the x1 and x2 inputs will never be equal to 1 at the same
time; hence the minterms m12, m13, m14, and m15 can all be used as don’t-cares. The don’t-
cares are denoted by the letter d in the map. Using the shorthand notation, the function f
is specified as

f (x1, . . . , x4) =
∑

m(2, 4, 5, 6, 10) + D(12, 13, 14, 15)

where D is the set of don’t-cares.
Part (a) of the figure indicates the best sum-of-products implementation. To form

the largest possible groups of 1s, thus generating the lowest-cost prime implicants, it is
necessary to assume that the don’t-cares D12, D13, and D14 (corresponding to minterms
m12, m13, and m14) have the value of 1 while D15 has the value of 0. Then there are only
two prime implicants, which provide a complete cover of f . The resulting implementation
is

f = x2x3 + x3x4
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Figure 2.62 Two implementations of the function f (x1, . . . , x4) =∑
m(2, 4, 5, 6, 10) + D(12, 13, 14, 15).

Part (b) shows how the best product-of-sums implementation can be obtained. The
same values are assumed for the don’t cares. The result is

f = (x2 + x3)(x3 + x4)

The freedom in choosing the value of don’t-cares leads to greatly simplified realizations. If
we were to naively exclude the don’t-cares from the synthesis of the function, by assuming
that they always have a value of 0, the resulting SOP expression would be

f = x1x2x3 + x1x3x4 + x2x3x4

and the POS expression would be

f = (x2 + x3)(x3 + x4)(x1 + x2)

Both of these expressions have higher costs than the expressions obtained with a more
appropriate assignment of values to don’t-cares.

Although don’t-care values can be assigned arbitrarily, an arbitrary assignment may
not lead to a minimum-cost implementation of a given function. If there are k don’t-cares,
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then there are 2k possible ways of assigning 0 or 1 values to them. In the Karnaugh map
we can usually see how best to do this assignment to find the simplest implementation.

In the example above, we chose the don’t-cares D12, D13, and D14 to be equal to 1 and
D15 equal to 0 for both the SOP and POS implementations. Thus the derived expressions
represent the same function, which could also be specified as

∑
m(2, 4, 5, 6, 10, 12, 13, 14).

Assigning the same values to the don’t-cares for both SOP and POS implementations is not
always a good choice. Sometimes it may be advantageous to give a particular don’t-care
the value 1 for SOP implementation and the value 0 for POS implementation, or vice versa.
In such cases the optimal SOP and POS expressions will represent different functions,
but these functions will differ only for the valuations that correspond to these don’t-cares.
Example 2.26 in Section 2.17 illustrates this possibility.

Using interlocked switches to illustrate how don’t-care conditions can occur in a real
system may seem to be somewhat contrived. A more practical example is shown below,
and in future chapters we will encounter many examples of don’t-cares that occur in the
course of practical design of digital circuits.

Example 2.15 In Section 2.8.3 we designed a logic circuit that displays the decimal value of a two-bit
number on a seven-segment display. In this example we will design a similar circuit,
except that the input will be a four-bit number X = x3x2x1x0 that represents the decimal
values 0, 1, . . . , 9. Using four bits to represent decimal digits in this way is often referred
to as the binary coded decimal (BCD) representation. We discuss BCD numbers in detail in
Chapter 3. The circuit is depicted in Figure 2.63a. Part (b) of the figure gives a truth table
for each of the seven outputs a, b, . . . , g, that control the display. It also indicates how the
display should appear for each value of X . Since X is restricted to decimal digits, then the
values of X from 1010 to 1111 are not used. These entries are omitted from the truth table
in Figure 2.63b, and can be treated as don’t cares in the design of the circuit.

To derive logic expressions for the outputs a to g, it is useful to draw Karnaugh maps.
Figure 2.63c gives Karnaugh maps for the functions a and e. For the function a, the best
result is obtained by setting all six don’t-care cells in the map to the value of 1, which
gives a = x2x0 + x1 + x2x0 + x3. However, for the function e a better choice is to set only
two of the don’t-care cells, corresponding to x3x2x1x0 = 1010 and x3x2x1x0 = 1110, to 1.
The other don’t-care cells should be set to 0 for this function to yield the minimum-cost
expression e = x2x0 + x1x0.

2.15 Multiple-Output Circuits

As illustrated in Example 2.15, in practical digital systems it is often necessary to implement
a number of functions that are part of a larger logic circuit. Instead of implementing each
of these functions separately, it may be possible to share some of the gates needed in the
implementation of individual functions. For example, in Figure 2.63 the AND gate that
produces x2x0 could be shared for use in both functions a and e.
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Example 2.16 An example of gate sharing is given in Figure 2.64. Two functions, f1 and f2, of the same
variables are to be implemented. The minimum-cost implementations for these functions
are obtained as shown in parts (a) and (b) of the figure. This results in the expressions

f1 = x1x3 + x1x3 + x2x3x4

f2 = x1x3 + x1x3 + x2x3x4

The cost of f1 is four gates and 10 inputs, for a total of 14. The cost of f2 is the same. Thus
the total cost is 28 if both functions are implemented by separate circuits. A less-expensive
realization is possible if the two circuits are combined into a single circuit with two outputs.
Because the first two product terms are identical in both expressions, the AND gates that
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(c) Combined circuit for f1 f2and

Figure 2.64 An example of multiple-output synthesis.
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implement them need not be duplicated. The combined circuit is shown in Figure 2.64c.
Its cost is six gates and 16 inputs, for a total of 22.

In this example we reduced the overall cost by finding minimum-cost realizations of f1
and f2 and then sharing the gates that implement the common product terms. This strategy
does not necessarily always work the best, as the next example shows.

Example 2.17Figure 2.65 shows two functions to be implemented by a single circuit. Minimum-cost
realizations of the individual functions f3 and f4 are obtained from parts (a) and (b) of the
figure.

f3 = x1x4 + x2x4 + x1x2x3

f4 = x1x4 + x2x4 + x1x2x3x4

None of the AND gates can be shared, which means that the cost of the combined circuit
would be six AND gates, two OR gates, and 21 inputs, for a total of 29.

But several alternative realizations are possible. Instead of deriving the expressions for
f3 and f4 using only prime implicants, we can look for other implicants that may be shared
advantageously in the combined realization of the functions. Figure 2.65c shows the best
choice of implicants, which yields the realization

f3 = x1x2x4 + x1x2x3x4 + x1x4

f4 = x1x2x4 + x1x2x3x4 + x2x4

The first two implicants are identical in both expressions. The resulting circuit is given in
Figure 2.65d . It has the cost of six gates and 17 inputs, for a total of 23.

Example 2.18In Example 2.16 we sought the best SOP implementation for the functions f1 and f2 in
Figure 2.64. We will now consider the POS implementation of the same functions. The
minimum-cost POS expressions for f1 and f2 are

f1 = (x1 + x3)(x1 + x2 + x3)(x1 + x3 + x4)

f2 = (x1 + x3)(x1 + x2 + x3)(x1 + x3 + x4)

There are no common sum terms in these expressions that could be shared in the imple-
mentation. Moreover, from the Karnaugh maps in Figure 2.64, it is apparent that there is
no sum term (covering the cells where f1 = f2 = 0) that can be profitably used in realizing
both f1 and f2. Thus the best choice is to implement each function separately, according to
the preceding expressions. Each function requires three OR gates, one AND gate, and 11
inputs. Therefore, the total cost of the circuit that implements both functions is 30. This
realization is costlier than the SOP realization derived in Example 2.16.
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Example 2.19Consider now the POS realization of the functions f3 and f4 in Figure 2.65. The minimum-
cost POS expressions for f3 and f4 are

f3 = (x3 + x4)(x2 + x4)(x1 + x4)(x1 + x2)

f4 = (x3 + x4)(x2 + x4)(x1 + x4)(x1 + x2 + x4)

The first three sum terms are the same in both f3 and f4; they can be shared in a combined
circuit. These terms require three OR gates and six inputs. In addition, one 2-input OR
gate and one 4-input AND gate are needed for f3, and one 3-input OR gate and one 4-input
AND gate are needed for f4. Thus the combined circuit comprises five OR gates, two AND
gates, and 19 inputs, for a total cost of 26. This cost is slightly higher than the cost of the
circuit derived in Example 2.17.

These examples show that the complexities of the best SOP or POS implementations
of given functions may be quite different. For the functions in Figures 2.64 and 2.65, the
SOP form gives better results. But if we are interested in implementing the complements
of the four functions in these figures, then the POS form would be less costly.

Sophisticated CAD tools used to synthesize logic functions will automatically perform
the types of optimizations illustrated in the preceding examples.

2.16 Concluding Remarks

In this chapter we introduced the concept of logic circuits. We showed that such circuits can
be implemented using logic gates and that they can be described using a mathematical model
called Boolean algebra. Because practical logic circuits are often large, it is important to
have good CAD tools to help the designer. We introduced the Verilog hardware description
language that can be used to specify circuits for use in a CAD tool. We urge the reader to
start using CAD software for the design of logic circuits as soon as possible.

This chapter has attempted to provide the reader with an understanding of some aspects
of synthesis and optimization for logic functions. Now that the reader is comfortable with
the fundamental concepts, we can examine digital circuits of a more sophisticated nature.
The next chapter describes circuits that perform arithmetic operations, which are a key part
of computers.

2.17 Examples of Solved Problems

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.
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Example 2.20 Problem: Determine if the following equation is valid

x1x3 + x2x3 + x1x2 = x1x2 + x1x3 + x2x3

Solution: The equation is valid if the expressions on the left- and right-hand sides represent
the same function. To perform the comparison, we could construct a truth table for each
side and see if the truth tables are the same. An algebraic approach is to derive a canonical
sum-of-products form for each expression.

Using the fact that x + x = 1 (theorem 8b), we can manipulate the left-hand side as
follows:

LHS = x1x3 + x2x3 + x1x2

= x1(x2 + x2)x3 + (x1 + x1)x2x3 + x1x2(x3 + x3)

= x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

These product terms represent the minterms 2, 0, 7, 3, 5, and 4, respectively.
For the right-hand side we have

RHS = x1x2 + x1x3 + x2x3

= x1x2(x3 + x3) + x1(x2 + x2)x3 + (x1 + x1)x2x3

= x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3 + x1x2x3

These product terms represent the minterms 3, 2, 7, 5, 4, and 0, respectively. Since both
expressions specify the same minterms, they represent the same function; therefore, the
equation is valid. Another way of representing this function is by

∑
m(0, 2, 3, 4, 5, 7).

Example 2.21 Problem: Design the minimum-cost product-of-sums expression for the function
f (x1, x2, x3, x4) = ∑

m(0, 2, 4, 5, 6, 7, 8, 10, 12, 14, 15).

Solution: The function is defined in terms of its minterms. To find a POS expression we
should start with the definition in terms of maxterms, which is f = �M (1, 3, 9, 11, 13).
Thus,

f = M1 · M3 · M9 · M11 · M13

= (x1 + x2 + x3 + x4)(x1 + x2 + x3 + x4)(x1 + x2 + x3 + x4)(x1 + x2 + x3 + x4)(x1 + x2 + x3 + x4)

We can rewrite the product of the first two maxterms as

M1 · M3 = (x1 + x2 + x4 + x3)(x1 + x2 + x4 + x3) using commutative property 10b

= x1 + x2 + x4 + x3x3 using distributive property 12b

= x1 + x2 + x4 + 0 using theorem 8a

= x1 + x2 + x4 using theorem 6b

Similarly, M9 · M11 = x1 + x2 + x4. Now, we can use M9 again, according to property 7a,
to derive M9 · M13 = x1 + x3 + x4. Hence

f = (x1 + x2 + x4)(x1 + x2 + x4)(x1 + x3 + x4)
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Applying 12b again, we get the final answer

f = (x2 + x4)(x1 + x3 + x4)

Example 2.22Problem: A circuit that controls a given digital system has three inputs: x1, x2, and x3. It
has to recognize three different conditions:

• Condition A is true if x3 is true and either x1 is true or x2 is false

• Condition B is true if x1 is true and either x2 or x3 is false

• Condition C is true if x2 is true and either x1 is true or x3 is false

The control circuit must produce an output of 1 if at least two of the conditions A, B, and C
are true. Design the simplest circuit that can be used for this purpose.

Solution: Using 1 for true and 0 for false, we can express the three conditions as follows:

A = x3(x1 + x2) = x3x1 + x3x2

B = x1(x2 + x3) = x1x2 + x1x3

C = x2(x1 + x3) = x2x1 + x2x3

Then, the desired output of the circuit can be expressed as f = AB + AC + BC. These
product terms can be determined as:

AB = (x3x1 + x3x2)(x1x2 + x1x3)

= x3x1x1x2 + x3x1x1x3 + x3x2x1x2 + x3x2x1x3

= x3x1x2 + 0 + x3x2x1 + 0

= x1x2x3

AC = (x3x1 + x3x2)(x2x1 + x2x3)

= x3x1x2x1 + x3x1x2x3 + x3x2x2x1 + x3x2x2x3

= x3x1x2 + 0 + 0 + 0

= x1x2x3

BC = (x1x2 + x1x3)(x2x1 + x2x3)

= x1x2x2x1 + x1x2x2x3 + x1x3x2x1 + x1x3x2x3

= 0 + 0 + x1x3x2 + x1x3x2

= x1x2x3

Therefore, f can be written as

f = x1x2x3 + x1x2x3 + x1x2x3

= x1(x2 + x2)x3 + x1x2(x3 + x3)

= x1x3 + x1x2

= x1(x3 + x2)
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(c) Function C (d) Function f

x1 x1

x1 x1

x2

x2

x2

x2

x3 x3

x3 x3

Figure 2.66 The Venn diagrams for Example 2.23.

Example 2.23 Problem: Solve the problem in Example 2.22 by using Venn diagrams.

Solution: The Venn diagrams for functions A, B, and C in Example 2.22 are shown in parts
a to c of Figure 2.66. Since the function f has to be true when two or more of A, B, and C
are true, then the Venn diagram for f is formed by identifying the common shaded areas in
the Venn diagrams for A, B, and C. Any area that is shaded in two or more of these diagrams
is also shaded in f , as shown in Figure 2.66d . This diagram corresponds to the function

f = x1x2 + x1x3 = x1(x2 + x3)

Example 2.24 Problem: Use algebraic manipulation to derive the simplest sum-of-products expression
for the function

f = x2x3x4 + x1x3x4 + x1x2x4

Solution: Applying the consensus property 17a to the first two terms yields

f = x2x3x4 + x1x3x4 + x2x4x1x4 + x1x2x4

= x2x3x4 + x1x3x4 + x1x2x4 + x1x2x4

Now, using the combining property 14a for the last two terms gives

f = x2x3x4 + x1x3x4 + x1x4

Finally, using the absorption property 13a produces

f = x2x3x4 + x1x4
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Example 2.25Problem: Use algebraic manipulation to derive the simplest product-of-sums expression
for the function

f = (x1 + x2 + x3)(x1 + x2 + x4)(x1 + x3 + x4)

Solution: Applying the consensus property 17b to the first two terms yields

f = (x1 + x2 + x3)(x1 + x2 + x4)(x1 + x3 + x1 + x4)(x1 + x3 + x4)

= (x1 + x2 + x3)(x1 + x2 + x4)(x1 + x3 + x4)(x1 + x3 + x4)

Now, using the combining property 14b for the last two terms gives

f = (x1 + x2 + x3)(x1 + x2 + x4)(x1 + x3)

Finally, using the absorption property 13b on the first and last terms produces

f = (x1 + x2 + x4)(x1 + x3)

Example 2.26Problem: Determine the minimum-cost SOP and POS expressions for the function
f (x1, x2, x3, x4) = ∑

m(4, 6, 8, 10, 11, 12, 15) + D(3, 5, 7, 9).

Solution: The function can be represented in the form of a Karnaugh map as shown in
Figure 2.67a. Note that the location of minterms in the map is as indicated in Figure 2.53.
To find the minimum-cost SOP expression, it is necessary to find the prime implicants that
cover all 1s in the map. The don’t-cares may be used as desired. Minterm m6 is covered
only by the prime implicant x1x2, hence this prime implicant is essential and it must be
included in the final expression. Similarly, the prime implicants x1x2 and x3x4 are essential
because they are the only ones that cover m10 and m15, respectively. These three prime
implicants cover all minterms for which f = 1 except m12. This minterm can be covered
in two ways, by choosing either x1x3x4 or x2x3x4. Since both of these prime implicants
have the same cost, we can choose either of them. Choosing the former, the desired SOP
expression is

f = x1x2 + x1x2 + x3x4 + x1x3x4

These prime implicants are encircled in the map.
The desired POS expression can be found as indicated in Figure 2.64b. In this case,

we have to find the sum terms that cover all 0s in the function. Note that we have written
0s explicitly in the map to emphasize this fact. The term (x1 + x2) is essential to cover the
0s in squares 0 and 2, which correspond to maxterms M0 and M2. The terms (x3 + x4) and
(x1 + x2 + x3 + x4) must be used to cover the 0s in squares 13 and 14, respectively. Since
these three sum terms cover all 0s in the map, the POS expression is

f = (x1 + x2)(x3 + x4)(x1 + x2 + x3 + x4)

The chosen sum terms are encircled in the map.
Observe the use of don’t-cares in this example. To get a minimum-cost SOP expression

we assumed that all four don’t-cares have the value 1. But, the minimum-cost POS expres-
sion becomes possible only if we assume that don’t-cares 3, 5, and 9 have the value 0 while
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x1 x2
x3 x4 00 01 11 10
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(a) Determination of the SOP expression

(b) Determination of the POS expression
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0 0
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Figure 2.67 Karnaugh maps for Example 2.26.

the don’t-care 7 has the value 1. This means that the resulting SOP and POS expressions are
not identical in terms of the functions they represent. They cover identically all valuations
for which f is specified as 1 or 0, but they differ in the valuations 3, 5, and 9. Of course,
this difference does not matter, because the don’t-care valuations will never be applied as
inputs to the implemented circuits.

Example 2.27 Problem: Use Karnaugh maps to find the minimum-cost SOP and POS expressions for the
function

f (x1, . . . , x4) = x1x3x4 + x3x4 + x1x2x4 + x1x2x3x4

assuming that there are also don’t-cares defined as D = ∑
(9, 12, 14).
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Solution: The Karnaugh map that represents this function is shown in Figure 2.68a. The
map is derived by placing 1s that correspond to each product term in the expression used
to specify f . The term x1x3x4 corresponds to minterms 0 and 4. The term x3x4 represents
the third row in the map, comprising minterms 3, 7, 11, and 15. The term x1x2x4 specifies
minterms 1 and 3. The fourth product term represents the minterm 13. The map also
includes the three don’t-care conditions.

To find the desired SOP expression, we must find the least-expensive set of prime
implicants that covers all 1s in the map. The term x3x4 is a prime implicant which must
be included because it is the only prime implicant that covers the minterm 7; it also covers
minterms 3, 11, and 15. Minterm 4 can be covered with either x1x3x4 or x2x3x4. Both of
these terms have the same cost; we will choose x1x3x4 because it also covers the minterm 0.
Minterm 1 may be covered with either x1x2x3 or x2x4; we should choose the latter because
its cost is lower. This leaves only the minterm 13 to be covered, which can be done with

x1 x2
x3 x4 00 01 11 10

1

1 d

1

00

01

11

10 d

1

1

1

d

1 1

x1 x3 x4

x3 x4

x2 x4

x1 x4

x1 x2
x3 x4 00 01 11 10

1

1 d

1

0

00

01

11

10 d

1

1

1

d

1 1

00

0

0

x1 x2 x3 x4+ + +( )

x3 x4+( )

x1 x4+( )

(a) Determination of the SOP expression

(b) Determination of the POS expression

Figure 2.68 Karnaugh maps for Example 2.27.
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either x1x4 or x1x2 at equal costs. Choosing x1x4, the minimum-cost SOP expression is

f = x3x4 + x1x3x4 + x2x4 + x1x4

Figure 2.68b shows how we can find the POS expression. The sum term (x3 + x4)

covers the 0s in the bottom row. To cover the 0 in square 8 we must include (x1 + x4). The
remaining 0, in square 5, must be covered with (x1 + x2 + x3 + x4). Thus, the minimum-
cost POS expression is

f = (x3 + x4)(x1 + x4)(x1 + x2 + x3 + x4)

Example 2.28 Problem: Consider the expression

f = s3(s1 + s2) + s1s2

Derive a minimum-cost SOP expression for f .

Solution: Applying the distributive property 12a we can write

f = s1s3 + s2s3 + s1s2

Now, it is easy to see how f can be represented in the form of a Karnaugh map, as depicted
in Figure 2.69. The figure shows that minterms from each of the above three product terms
cover the bottom row of the Karnaugh map, leading to the minimum-cost expression

f = s3 + s1s2

Example 2.29 Write Verilog code that represents the logic circuit in Figure 2.70. Use only continuous
assignment statements to specify the required functions.

Solution: An example of the required Verilog code is shown in Figure 2.71.

s2s3

s1s2
s3

1 1

1

1 1

00 01 11 10

0

1

s1s2s1s3

s3

Figure 2.69 A Karnaugh map that represents the function in
Example 2.28.
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f

k

Figure 2.70 The logic circuit for Example 2.29.

module f_g (x, y, z, f, g);
input x, y, z;
output f, g;
wire k;

assign k = y z;
assign g = k x;
assign f = ( k & z) | (k & x);

endmodule

Figure 2.71 Verilog code for Example 2.29.

Example 2.30Consider the circuit shown in Figure 2.72. It includes two copies of the 2-to-1 multiplexer
circuit from Figure 2.33, and the adder circuit from Figure 2.12. If the multiplexers’ select
input m = 0, then this circuit produces the sum S = a + b. But if m = 1, then the circuit
produces S = c + d . By using multiplexers, we are able to share one adder for generating
the two different sums a + b and c + d . Sharing a subcircuit for multiple purposes is
commonly-used in practice, although usually with larger subcircuits than our one-bit adder.
Write Verilog code for the circuit in Figure 2.72. Use the hierarchical style of Verilog
code illustrated in Figure 2.47, including two instances of a Verilog module for the 2-to-1
multiplexer subcircuit, and one instance of the adder subcircuit.

Solution: An example of the required Verilog code is shown in Figure 2.73. We should
mention that both the shared module and the adder module have input ports named a and b.
This does not cause any conflict because the name of a signal declared in a Verilog module
is limited to the scope of that module.
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b
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s1

Adder module

a

b

s0

s1
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w2

Top-level module

0

1

0

1

Figure 2.72 The circuit for Example 2.30.

module shared (a, b, c, d, m, s1, s0);
input a, b, c, d, m;
output s1, s0;
wire w1, w2;
mux2to1 U1 (a, c, m, w1);
mux2to1 U2 (b, d, m, w2);
adder U3 (w1, w2, s1, s0);

endmodule

module mux2to1 (x1, x2, s, f);
input x1, x2, s;
output f;
assign f = ( s & x1) | (s & x2);

endmodule

endmodule

module adder (a, b, s1, s0);
input a, b;
output s1, s0;
assign s1 = a & b;
assign s0 = a b;

Figure 2.73 Verilog code for Example 2.30.
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Example 2.31In Chapter 1 we said that several types of integrated circuit chips are available for imple-
mentation of logic circuits, and that field-programmable gate arrays (FPGAs) are commonly
used. In an FPGA, logic functions are not implemented directly using AND, OR, and NOT
gates. Instead, an FPGA implements logic functions by using a type of circuit element
called lookup tables (LUTs). A LUT can be programmed by the user to implement any
logic function of its inputs. Thus, if a LUT has three inputs, then it can implement any
logic function of these three inputs. We describe FPGAs and lookup tables in detail in
Appendix B. Consider the four-input function

f = x1x2x4 + x2x3x4 + x1x2x3

Show how this function can be implemented in an FPGA that has three-input LUTs.

Solution: A straightforward implementation requires four 3-input LUTs. Three of these
LUTs are used for the three-input AND operations, and the final LUT implements the three-
input OR operation. It is also possible to apply logic synthesis techniques that result in
fewer LUTs. We discuss these techniques in Chapter 8 (see Example 8.19).

Problems

Answers to problems marked by an asterisk are given at the back of the book.

2.1 Use algebraic manipulation to prove that x + yz = (x + y) · (x + z). Note that this is the
distributive rule, as stated in identity 12b in Section 2.5.

2.2 Use algebraic manipulation to prove that (x + y) · (x + y) = x.

2.3 Use algebraic manipulation to prove that xy + yz + xz = xy + xz. Note that this is the
consensus property 17a in Section 2.5.

2.4 Use the Venn diagram to prove the identity in Problem 2.3.

2.5 Use the Venn diagram to prove DeMorgan’s theorem, as given in expression 15b in Sec-
tion 2.5.

2.6 Use the Venn diagram to prove that

(x1 + x2 + x3) · (x1 + x2 + x3) = x1 + x2

*2.7 Determine whether or not the following expressions are valid, i.e., whether the left- and
right-hand sides represent the same function.
(a) x1x3 + x1x2x3 + x1x2 + x1x2 = x2x3 + x1x3 + x2x3 + x1x2x3

(b) x1x3 + x2x3 + x2x3 = (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

(c) (x1 + x3)(x1 + x2 + x3)(x1 + x2) = (x1 + x2)(x2 + x3)(x1 + x3)

2.8 Draw a timing diagram for the circuit in Figure 2.24a. Show the waveforms that can be
observed on all wires in the circuit.

2.9 Repeat Problem 2.8 for the circuit in Figure 2.24b.
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2.10 Use algebraic manipulation to show that for three input variables x1, x2, and x3

∑
m(1, 2, 3, 4, 5, 6, 7) = x1 + x2 + x3

2.11 Use algebraic manipulation to show that for three input variables x1, x2, and x3

�M (0, 1, 2, 3, 4, 5, 6) = x1x2x3

*2.12 Use algebraic manipulation to find the minimum sum-of-products expression for the func-
tion f = x1x3 + x1x2 + x1x2x3 + x1x2x3.

2.13 Use algebraic manipulation to find the minimum sum-of-products expression for the func-
tion f = x1x2x3 + x1x2x4 + x1x2x3x4.

2.14 Use algebraic manipulation to find the minimum product-of-sums expression for the func-
tion f = (x1 + x3 + x4) · (x1 + x2 + x3) · (x1 + x2 + x3 + x4).

*2.15 Use algebraic manipulation to find the minimum product-of-sums expression for the func-
tion f = (x1 + x2 + x3) · (x1 + x2 + x3) · (x1 + x2 + x3) · (x1 + x2 + x3).

2.16 (a) Show the location of all minterms in a three-variable Venn diagram.
(b) Show a separate Venn diagram for each product term in the function f = x1x2x3 +
x1x2 + x1x3. Use the Venn diagram to find the minimal sum-of-products form of f.

2.17 Represent the function in Figure 2.23 in the form of a Venn diagram and find its minimal
sum-of-products form.

2.18 Figure P2.1 shows two attempts to draw a Venn diagram for four variables. For parts (a)
and (b) of the figure, explain why the Venn diagram is not correct. (Hint: The Venn diagram
must be able to represent all 16 minterms of the four variables.)

x1 x2

x3

x4

(a)

x1 x2

x3

x4

(b)

Figure P2.1 Two attempts to draw a four-variable Venn diagram.

2.19 Figure P2.2 gives a representation of a four-variable Venn diagram and shows the location
of minterms m0, m1, and m2. Show the location of the other minterms in the diagram.
Represent the function f = x1x2x3x4 + x1x2x3x4 + x1x2 on this diagram.
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x3

x2x1

x4

x3

x2x1

m0

m1m2

Figure P2.2 A four-variable Venn diagram.

*2.20 Design the simplest sum-of-products circuit that implements the function f (x1, x2, x3) =∑
m(3, 4, 6, 7).

2.21 Design the simplest sum-of-products circuit that implements the function f (x1, x2, x3) =∑
m(1, 3, 4, 6, 7).

2.22 Design the simplest product-of-sums circuit that implements the function f (x1, x2, x3) =
�M (0, 2, 5).

*2.23 Design the simplest product-of-sums expression for the function f (x1, x2, x3) = �M (0, 1,

5, 7).

2.24 Derive the simplest sum-of-products expression for the function f (x1, x2, x3, x4) =
x1x3x4 + x2x3x4 + x1x2x3.

2.25 Use algebraic manipulation to derive the simplest sum-of-products expression for the func-
tion f (x1, x2, x3, x4, x5) = x1x3x5 + x1x3x4 + x1x4x5 + x1x2x3x5. (Hint: Use the consensus
property 17a.)

2.26 Use algebraic manipulation to derive the simplest product-of-sums expression for the func-
tion f (x1, x2, x3, x4) = (x1 + x3 + x4)(x2 + x3 + x4)(x1 + x2 + x3). (Hint: Use the con-
sensus property 17b.)

2.27 Use algebraic manipulation to derive the simplest product-of-sums expression for the
function f (x1, x2, x3, x4, x5) = (x2 + x3 + x5)(x1 + x3 + x5)(x1 + x2 + x5)(x1 + x4 + x5).
(Hint: Use the consensus property 17b.)

*2.28 Design the simplest circuit that has three inputs, x1, x2, and x3, which produces an output
value of 1 whenever two or more of the input variables have the value 1; otherwise, the
output has to be 0.

2.29 Design the simplest circuit that has three inputs, x1, x2, and x3, which produces an output
value of 1 whenever exactly one or two of the input variables have the value 1; otherwise,
the output has to be 0.

2.30 Design the simplest circuit that has four inputs, x1, x2, x3, and x4, which produces an output
value of 1 whenever three or more of the input variables have the value 1; otherwise, the
output has to be 0.
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2.31 For the timing diagram in Figure P2.3, synthesize the function f (x1, x2, x3) in the simplest
sum-of-products form.

1
0

1
0

1
0

1
0

x1

x2

Time

x3

f

Figure P2.3 A timing diagram representing a logic function.

*2.32 For the timing diagram in Figure P2.3, synthesize the function f (x1, x2, x3) in the simplest
product-of-sums form.

*2.33 For the timing diagram in Figure P2.4, synthesize the function f (x1, x2, x3) in the simplest
sum-of-products form.

1
0

1
0

1
0

1
0

x1

x2

Time

x3

f

Figure P2.4 A timing diagram representing a logic function.

2.34 For the timing diagram in Figure P2.4, synthesize the function f (x1, x2, x3) in the simplest
product-of-sums form.

2.35 Design a circuit with output f and inputs x1, x0, y1, and y0. Let X = x1x0 and Y = y1y0

represent two 2-digit binary numbers. The output f should be 1 if the numbers represented
by X and Y are equal. Otherwise, f should be 0.
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(a) Show the truth table for f.
(b) Synthesize the simplest possible product-of-sums expression for f.

2.36 Repeat Problem 2.35 for the case where f should be 1 only if X ≥ Y .
(a) Show the truth table for f.
(b) Show the canonical sum-of-products expression for f.
(c) Show the simplest possible sum-of-products expression for f.

*2.37 Find the minimum-cost SOPand POS forms for the function f (x1, x2, x3) = ∑
m(1, 2, 3, 5).

*2.38 Repeat Problem 2.37 for the function f (x1, x2, x3) = ∑
m(1, 4, 7) + D(2, 5).

2.39 Repeat Problem 2.37 for the function f (x1, . . . , x4) = �M (0, 1, 2, 4, 5, 7, 8, 9, 10, 12,
14, 15).

2.40 Repeat Problem 2.37 for the function f (x1, . . . , x4) = ∑
m(0, 2, 8, 9, 10, 15) + D(1, 3,

6, 7).

*2.41 Repeat Problem 2.37 for the function f (x1, . . . , x5) = �M (1, 4, 6, 7, 9, 12,15, 17, 20, 21,
22, 23, 28, 31).

2.42 Repeat Problem 2.37 for the function f (x1, . . . , x5) = ∑
m(0, 1, 3, 4, 6, 8, 9, 11, 13, 14,

16, 19, 20, 21, 22, 24, 25) + D(5, 7, 12, 15, 17, 23).

2.43 Repeat Problem 2.37 for the function f (x1, . . . , x5) = ∑
m(1, 4, 6, 7, 9, 10, 12, 15, 17, 19,

20, 23, 25, 26, 27, 28, 30, 31) + D(8, 16, 21, 22).

2.44 Find 5 three-variable functions for which the product-of-sums form has lower cost than the
sum-of-products form.

*2.45 A four-variable logic function that is equal to 1 if any three or all four of its variables are
equal to 1 is called a majority function. Design a minimum-cost SOP circuit that implements
this majority function.

2.46 Derive a minimum-cost realization of the four-variable function that is equal to 1 if exactly
two or exactly three of its variables are equal to 1; otherwise it is equal to 0.

*2.47 Prove or show a counter-example for the statement: If a function f has a unique minimum-
cost SOP expression, then it also has a unique minimum-cost POS expression.

*2.48 A circuit with two outputs has to implement the following functions

f (x1, . . . , x4) =
∑

m(0, 2, 4, 6, 7, 9) + D(10, 11)

g(x1, . . . , x4) =
∑

m(2, 4, 9, 10, 15) + D(0, 13, 14)

Design the minimum-cost circuit and compare its cost with combined costs of two circuits
that implement f and g separately. Assume that the input variables are available in both
uncomplemented and complemented forms.

2.49 Repeat Problem 2.48 for the following functions

f (x1, . . . , x5) = ∑
m(1, 4, 5, 11, 27, 28) + D(10, 12, 14, 15, 20, 31)

g(x1, . . . , x5) = ∑
m(0, 1, 2, 4, 5, 8, 14, 15, 16, 18, 20, 24, 26, 28, 31) + D(10, 11, 12, 27)
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*2.50 Consider the function f = x3x5 + x1x2x4 + x1x2x4 + x1x3x4 + x1x3x4 + x1x2x5 + x1x2x5.
Derive a minimum-cost POS expression for this function.

2.51 Implement the function in Figure 2.31 using only NAND gates.

2.52 Implement the function in Figure 2.31 using only NOR gates.

2.53 Implement the circuit in Figure 2.39 using NAND and NOR gates.

*2.54 Design the simplest circuit that implements the function f (x1, x2, x3) = ∑
m(3, 4, 6, 7)

using NAND gates.

2.55 Design the simplest circuit that implements the function f (x1, x2, x3) = ∑
m(1, 3, 4, 6, 7)

using NAND gates.

*2.56 Repeat Problem 2.54 using NOR gates.

2.57 Repeat Problem 2.55 using NOR gates.

2.58 (a) Use a schematic capture tool (which can be downloaded from the Internet; for example,
from www.altera.com) to draw schematics for the following functions

f1 = x2x3x4 + x1x2x4 + x1x2x3 + x1x2x3

f2 = x2x4 + x1x2 + x2x3

(b) Use functional simulation to prove that f1 = f2.

2.59 (a) Use a schematic capture tool to draw schematics for the following functions

f1 = (x1 + x2 + x4) · (x2 + x3 + x4) · (x1 + x3 + x4) · (x1 + x3 + x4)

f2 = (x2 + x4) · (x3 + x4) · (x1 + x4)

(b) Use functional simulation to prove that f1 = f2.

2.60 Write Verilog code to implement the circuit in Figure 2.32a using the gate-level primitives.

2.61 Repeat Problem 2.60 for the circuit in Figure 2.32b.

2.62 Write Verilog code to implement the function f (x1, x2, x3) = ∑
m(1, 2, 3, 4, 5, 6) using the

gate-level primitives. Ensure that the resulting circuit is as simple as possible.

2.63 Write Verilog code to implement the function f (x1, x2, x3) = ∑
m(0, 1, 3, 4, 5, 6) using the

continuous assignment.

2.64 (a) Write Verilog code to describe the following functions

f1 = x1x3 + x2x3 + x3x4 + x1x2 + x1x4

f2 = (x1 + x3) · (x1 + x2 + x4) · (x2 + x3 + x4)

(b) Use functional simulation to prove that f1 = f2.

2.65 Consider the following Verilog statements

f1 = (x1 & x3) | (∼x1 & ∼x3) | (x2 & x4) | (∼x2 & ∼x4);
f2 = (x1 & x2 & ∼x3 & ∼x4) | (∼x1 & ∼x2 & x3 & x4) |

(x1 & ∼x2 & ∼x3 & x4) | (∼x1 & x2 & x3 & ∼x4);
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(a) Write complete Verilog code to implement f1 and f2.
(b) Use functional simulation to prove that f1 = f2.

*2.66 Consider the logic expressions

f = x1x2x5 + x1x2x4x5 + x1x2x4x5 + x1x2x3x4 + x1x2x3x5 + x2x3x4x5 + x1x2x3x4x5

g = x2x3x4 + x2x3x4x5 + x1x3x4x5 + x1x2x4x5 + x1x3x4x5 + x1x2x3x5 + x1x2x3x4x5

Prove or disprove that f = g.

2.67 Repeat Problem 2.66 for the following expressions

f = x1x2x3 + x2x4 + x1x2x4 + x2x3x4 + x1x2x3

g = (x2 + x3 + x4)(x1 + x2 + x4)(x2 + x3 + x4)(x1 + x2 + x3)(x1 + x2 + x4)

2.68 Repeat Problem 2.66 for the following expressions

f = x2x3x4 + x2x3 + x2x4 + x1x2x4 + x1x2x3x5

g = (x2 + x3 + x4)(x2 + x4 + x5)(x1 + x2 + x3)(x2 + x3 + x4 + x5)

2.69 A circuit with two outputs is defined by the logic functions

f = x1x2x3 + x2x4 + x2x3x4 + x1x2x3x4

g = x1x3x4 + x1x2x4 + x1x3x4 + x2x3x4

Derive a minimum-cost implementation of this circuit. What is the cost of your circuit?

2.70 Repeat Problem 2.69 for the functions

f = (x1 + x2 + x3)(x1 + x3 + x4)(x1 + x2 + x3)(x1 + x2 + x4)(x1 + x2 + x4)

g = (x1 + x2 + x3)(x1 + x2 + x4)(x2 + x3 + x4)(x1 + x2 + x3 + x4)

2.71 A given system has four sensors that can produce an output of 0 or 1. The system operates
properly when exactly one of the sensors has its output equal to 1. An alarm must be raised
when two or more sensors have the output of 1. Design the simplest circuit that can be used
to raise the alarm.

2.72 Repeat Problem 2.71 for a system that has seven sensors.

2.73 Find the minimum-cost circuit consisting only of two-input NAND gates for the function
f (x1, . . . , x4) = ∑

m(0, 1, 2, 3, 4, 6, 8, 9, 12). Assume that the input variables are avail-
able in both uncomplemented and complemented forms. (Hint: Consider the complement
of the function.)

2.74 Repeat Problem 2.73 for the function f (x1, . . . , x4) = ∑
m(2, 3, 6, 8, 9, 12).

2.75 Find the minimum-cost circuit consisting only of two-input NOR gates for the function
f (x1, . . . , x4) = ∑

m(6, 7, 8, 10, 12, 14, 15). Assume that the input variables are available
in both uncomplemented and complemented forms. (Hint: Consider the complement of
the function.)

2.76 Repeat Problem 2.75 for the function f (x1, . . . , x4) = ∑
m(2, 3, 4, 5, 9, 10, 11, 12, 13, 15).
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2.77 Consider the circuit in Figure P2.5, which implements functions f and g. What is the cost of
this circuit, assuming that the input variables are available in both true and complemented
forms? Redesign the circuit to implement the same functions, but at as low a cost as
possible. What is the cost of your circuit?

f

g

x2

x4

x4

x1

x3

x1

x3

x2

x3

x4

x1

x3

x4

x2

x1

x1

x4

x3

x1

x4

Figure P2.5 Circuit for Problem 2.78.
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2.78 Repeat Problem 2.78 for the circuit in Figure P2.6. Use only NAND gates in your circuit.

x1

x2

x2

x1

x3

x4

x2

x1

x2

x3

x1

x3

x2

g

f

Figure P2.6 Circuit for Problem 2.79.
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c h a p t e r

3
Number Representation
and Arithmetic Circuits

Chapter Objectives

In this chapter you will learn about:

• Representation of numbers in computers

• Circuits used to perform arithmetic operations

• Performance issues in large circuits

• Use of Verilog to specify arithmetic circuits
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In this chapter we will discuss logic circuits that perform arithmetic operations. We will explain how numbers
can be added, subtracted, and multiplied. We will also show how to write Verilog code to describe the
arithmetic circuits. These circuits provide an excellent platform for illustrating the power and versatility of
Verilog in specifying complex logic-circuit assemblies. The concepts involved in the design of arithmetic
circuits are easily applied to a wide variety of other circuits.

Before tackling the design of arithmetic circuits, it is necessary to discuss how numbers are repre-
sented in digital systems. In Chapter 1 we introduced binary numbers and showed how they can be expressed
using the positional number representation. We also discussed the conversion process between decimal and
binary number systems. In Chapter 2 we dealt with logic variables in a general way, using variables to
represent either the states of switches or some general conditions. Now we will use the variables to represent
numbers. Several variables are needed to specify a number, with each variable corresponding to one digit of
the number.

3.1 Positional Number Representation

When dealing with numbers and arithmetic operations, it is convenient to use standard
symbols. Thus to represent addition we use the plus (+) symbol, and for subtraction we use
the minus (−) symbol. In Chapter 2 we used the + symbol mostly to represent the logical
OR operation. Even though we will now use the same symbols for two different purposes,
the meaning of each symbol will usually be clear from the context of the discussion. In
cases where there may be some ambiguity, the meaning will be stated explicitly.

3.1.1 Unsigned Integers

The simplest numbers to consider are the integers. We will begin by considering positive
integers and then expand the discussion to include negative integers. Numbers that are
positive only are called unsigned, and numbers that can also be negative are called signed.
Representation of numbers that include a radix point (real numbers) is discussed later in
the chapter.

As explained in Section 1.5.1, an n-bit unsigned number

B = bn−1bn−2 · · · b1b0

represents an integer that has the value

V (B) = bn−1 × 2n−1 + bn−2 × 2n−2 + · · · + b1 × 21 + b0 × 20 [3.1]

=
n−1∑

i=0

bi × 2i
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3.1.2 Octal and Hexadecimal Representations

The positional number representation can be used for any radix. If the radix is r, then the
number

K = kn−1kn−2 · · · k1k0

has the value

V (K) =
n−1∑

i=0

ki × ri

Our interest is limited to those radices that are most practical. We will use decimal numbers
because they are used by people, and we will use binary numbers because they are used by
computers. In addition, two other radices are useful—8 and 16. Numbers represented with
radix 8 are called octal numbers, while radix-16 numbers are called hexadecimal numbers.
In octal representation the digit values range from 0 to 7. In hexadecimal representation
(often abbreviated as hex), each digit can have one of 16 values. The first ten are denoted
the same as in the decimal system, namely, 0 to 9. Digits that correspond to the decimal
values 10, 11, 12, 13, 14, and 15 are denoted by the letters, A, B, C, D, E, and F. Table 3.1
gives the first 18 integers in these number systems.

In computers the dominant number system is binary. The reason for using the octal and
hexadecimal systems is that they serve as a useful shorthand notation for binary numbers.
One octal digit represents three bits. Thus a binary number is converted into an octal number

Table 3.1 Numbers in different systems.

Decimal Binary Octal Hexadecimal

00 00000 00 00
01 00001 01 01
02 00010 02 02
03 00011 03 03
04 00100 04 04
05 00101 05 05
06 00110 06 06
07 00111 07 07
08 01000 10 08
09 01001 11 09
10 01010 12 0A
11 01011 13 0B
12 01100 14 0C
13 01101 15 0D
14 01110 16 0E
15 01111 17 0F
16 10000 20 10
17 10001 21 11
18 10010 22 12



December 31, 2012 09:12 vra80547_ch03 Sheet number 4 Page number 124 magenta black

124 C H A P T E R 3 • Number Representation and Arithmetic Circuits

by taking groups of three bits, starting from the least-significant bit, and replacing them
with the corresponding octal digit. For example, 101011010111 is converted as

1 0 1︸︷︷︸ 0 1 1︸︷︷︸ 0 1 0︸︷︷︸ 1 1 1︸︷︷︸
5 3 2 7

which means that (101011010111)2 = (5327)8. If the number of bits is not a multiple of
three, then we add 0s to the left of the most-significant bit. For example, (10111011)2 =
(273)8 because of the grouping

0 1 0︸︷︷︸ 1 1 1︸︷︷︸ 0 1 1︸︷︷︸
2 7 3

Conversion from octal to binary is just as straightforward; each octal digit is simply replaced
by three bits that denote the same value.

Similarly, a hexadecimal digit represents four bits. For example, a 16-bit number is
represented by four hex digits, as in

(1010111100100101)2 = (AF25)16

using the grouping

1 0 1 0︸ ︷︷ ︸ 1 1 1 1︸ ︷︷ ︸ 0 0 1 0︸ ︷︷ ︸ 0 1 0 1︸ ︷︷ ︸
A F 2 5

Zeros are added to the left of the most-significant bit if the number of bits is not a multiple
of four. For example, (1101101000)2 = (368)16 because of the grouping

0 0 1 1︸ ︷︷ ︸ 0 1 1 0︸ ︷︷ ︸ 1 0 0 0︸ ︷︷ ︸
3 6 8

Conversion from hexadecimal to binary involves straightforward substitution of each hex
digit by four bits that denote the same value.

Binary numbers used in modern computers often have 32 or 64 bits. Written as binary
n-tuples (sometimes called bit vectors), such numbers are awkward for people to deal with.
It is much simpler to deal with them in the form of 8- or 16-digit hex numbers. Because
the arithmetic operations in a digital system usually involve binary numbers, we will focus
on circuits that use such numbers. We will sometimes use the hexadecimal representation
as a convenient shorthand description.

We have introduced the simplest numbers—unsigned integers. It is necessary to be
able to deal with several other types of numbers. We will discuss the representation of
signed numbers, fixed-point numbers, and floating-point numbers later in this chapter. But
first we will examine some simple circuits that operate on numbers to give the reader a
feeling for digital circuits that perform arithmetic operations and to provide motivation for
further discussion.
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3.2 Addition of Unsigned Numbers

Binary addition is performed in the same way as decimal addition except that the values
of individual digits can be only 0 or 1. In Chapter 2, we already considered the addition
of 2 one-bit numbers, as an example of a simple logic circuit. Now, we will consider this
task in the context of general adder circuits. The one-bit addition entails four possible
combinations, as indicated in Figure 3.1a. Two bits are needed to represent the result of the
addition. The right-most bit is called the sum, s. The left-most bit, which is produced as
a carry-out when both bits being added are equal to 1, is called the carry, c. The addition
operation is defined in the form of a truth table in part (b) of the figure. The sum bit s is
the XOR function. The carry c is the AND function of inputs x and y. A circuit realization
of these functions is shown in Figure 3.1c. This circuit, which implements the addition of
only two bits, is called a half-adder.

Sum
s

0

1

1

0

Carry
c

0

0

0

1

0
0+

0
1+

1000

1
0+

10

1
1+

01

x
y+

sc

SumCarry

(a) The four possible cases

x y

0

0

1

1

0

1

0

1

(b) Truth table

x

y
s

c

HA
x

y

s

c

(c) Circuit (d) Graphical symbol

Figure 3.1 Half-adder.
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X x4 x3x2 x1x0=

Y+ y4 y3 y2 y1 y0=

Generated carries

S s4 s3 s2 s1s0=

15( )10

10( )10

25( )10

0 1 1 1 1

0 1 0 1 0

1 1 1 0

1 1 0 0 1

++

xi

yi

si

ci

...

...

ci 1+

...

...

...

...

...

...

...... ...

(a) An example of addition (b) Bit position i

Figure 3.2 Addition of multibit numbers.

A more interesting case is when larger numbers that have multiple bits are involved.
Then it is still necessary to add each pair of bits, but for each bit position i, the addition
operation may include a carry-in from bit position i − 1.

Figure 3.2a presents an example of the addition operation. The two operands are X =
(01111)2 = (15)10 and Y = (01010)2 = (10)10. Five bits are used to represent X and
Y , making it possible to represent integers in the range from 0 to 31; hence the sum
S = X + Y = (25)10 can also be denoted as a five-bit integer. Note the labeling of individual
bits, such that X = x4x3x2x1x0 and Y = y4y3y2y1y0. The figure shows, in a blue color, the
carries generated during the addition process. For example, a carry of 0 is generated when
x0 and y0 are added, a carry of 1 is produced when x1 and y1 are added, and so on.

In Chapter 2 we designed logic circuits by first specifying their behavior in the form
of a truth table. This approach is impractical in designing an adder circuit that can add the
five-bit numbers in Figure 3.2. The required truth table would have 10 input variables, 5
for each number X and Y . It would have 210 = 1024 rows! A better approach is to consider
the addition of each pair of bits, xi and yi, separately.

For bit position 0, there is no carry-in, and hence the addition is the same as for
Figure 3.1. For each other bit position i, the addition involves bits xi and yi, and a carry-in
ci, as illustrated in Figure 3.2b. This observation leads to the design of a logic circuit that
has three inputs xi, yi, and ci, and produces the two outputs si and ci+1. The required truth
table is shown in Figure 3.3a. The sum bit, si, is the modulo-2 sum of xi, yi, and ci. The
carry-out, ci+1, is equal to 1 if the sum of xi, yi, and ci is equal to either 2 or 3. Karnaugh
maps for these functions are shown in part (b) of the figure. For the carry-out function the
optimal sum-of-products realization is

ci+1 = xiyi + xici + yici

For the si function a sum-of-products realization is

si = xiyici + xiyici + xiyici + xiyici

Amore attractive way of implementing this function is by using the XOR gates, as explained
below.
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Figure 3.3 Full-adder.
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Use of XOR Gates
As shown in Chapter 2, the XOR function of two variables is defined as x1 ⊕ x2 =

x1x2 + x1x2. The preceding expression for the sum bit can be manipulated into a form that
uses only XOR operations as follows

si = (xiyi + xiyi)ci + (xiyi + xiyi)ci

= (xi ⊕ yi)ci + (xi ⊕ yi)ci

= (xi ⊕ yi) ⊕ ci

The XOR operation is associative; hence we can write

si = xi ⊕ yi ⊕ ci

Therefore, a three-input XOR operation can be used to realize si.
The XOR operation generates as an output a modulo-2 sum of its inputs. Thus, the

output is equal to 1 if an odd number of inputs have the value 1, and it is equal to 0
otherwise. For this reason the XOR is sometimes referred to as the odd function. Observe
that the XOR has no minterms that can be combined into a larger product term, as evident
from the checkerboard pattern for function si in the map in Figure 3.3b. The logic circuit
implementing the truth table in Figure 3.3a is given in Figure 3.3c. This circuit is known
as a full-adder.

Another interesting feature of XOR gates is that a two-input XOR gate can be thought
of as using one input as a control signal that determines whether the true or complemented
value of the other input will be passed through the gate as the output value. This is clear
from the definition of XOR, where xi ⊕ yi = xy + xy. Consider x to be the control input.
Then if x = 0, the output will be equal to the value of y. But if x = 1, the output will be
equal to the complement of y. In the derivation above, we used algebraic manipulation
to derive si = (xi ⊕ yi) ⊕ ci. We could have obtained the same expression immediately
by making the following observation. In the top half of the truth table in Figure 3.3a, ci

is equal to 0, and the sum function si is the XOR of xi and yi. In the bottom half of the
table, ci is equal to 1, while si is the complemented version of its top half. This observation
leads directly to our expression using 2 two-input XOR operations. We will encounter an
important example of using XOR gates to pass true or complemented signals under the
control of another signal in Section 3.3.3.

In the preceding discussion we encountered the complement of the XOR operation,
which we denoted as x ⊕ y. This operation is used so commonly that it is given the distinct
name XNOR. A special symbol, �, is often used to denote the XNOR operation, namely

x � y = x ⊕ y

The XNOR is sometimes also referred to as the coincidence operation because it produces
the output of 1 when its inputs coincide in value; that is, they are both 0 or both 1.
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s

c
ci

xi
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ci 1+
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ci
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yi

ci 1+

si

(a) Block diagram

(b) Detailed diagram

Figure 3.4 A decomposed implementation of the full-adder circuit.

3.2.1 Decomposed Full-Adder

In view of the names used for the circuits, one can expect that a full-adder can be constructed
using half-adders. This can be accomplished by creating a multilevel circuit given in
Figure 3.4. It uses two half-adders to form a full-adder. The reader should verify the
functional correctness of this circuit.

3.2.2 Ripple-Carry Adder

To perform addition by hand, we start from the least-significant digit and add pairs of digits,
progressing to the most-significant digit. If a carry is produced in position i, then this carry is
added to the operands in position i + 1. The same arrangement can be used in a logic circuit
that performs addition. For each bit position we can use a full-adder circuit, connected as
shown in Figure 3.5. Note that to be consistent with the customary way of writing numbers,
the least-significant bit position is on the right. Carries that are produced by the full-adders
propagate to the left.

When the operands X and Y are applied as inputs to the adder, it takes some time before
the output sum, S, is valid. Each full-adder introduces a certain delay before its si and ci+1

outputs are valid. Let this delay be denoted as �t. Thus the carry-out from the first stage,
c1, arrives at the second stage �t after the application of the x0 and y0 inputs. The carry-out
from the second stage, c2, arrives at the third stage with a 2�t delay, and so on. The signal
cn−1 is valid after a delay of (n − 1)�t, which means that the complete sum is available
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s0
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Figure 3.5 An n-bit ripple-carry adder.

after a delay of n�t. Because of the way the carry signals “ripple” through the full-adder
stages, the circuit in Figure 3.5 is called a ripple-carry adder.

The delay incurred to produce the final sum and carry-out in a ripple-carry adder
depends on the size of the numbers. When 32- or 64-bit numbers are used, this delay
may become unacceptably high. Because the circuit in each full-adder leaves little room
for a drastic reduction in the delay, it may be necessary to seek different structures for
implementation of n-bit adders. We will discuss a technique for building high-speed adders
in Section 3.4.

So far we have dealt with unsigned integers only. The addition of such numbers does
not require a carry-in for stage 0. In Figure 3.5 we included c0 in the diagram so that the
ripple-carry adder can also be used for subtraction of numbers, as we will see in Section 3.3.

3.2.3 Design Example

Suppose that we need a circuit that multiplies an eight-bit unsigned number by 3. Let
A = a7a6 · · · a1a0 denote the number and P = p9p8 · · · p1p0 denote the product P = 3A.
Note that 10 bits are needed to represent the product.

A simple approach to design the required circuit is to use two ripple-carry adders to
add three copies of the number A, as illustrated in Figure 3.6a. The symbol that denotes
each adder is a commonly-used graphical symbol for adders. The letters xi, yi, si, and ci

indicate the meaning of the inputs and outputs according to Figure 3.5. The first adder
produces A + A = 2A. Its result is represented as eight sum bits and the carry from the
most-significant bit. The second adder produces 2A + A = 3A. It has to be a nine-bit adder
to be able to handle the nine bits of 2A, which are generated by the first adder. Because the
yi inputs have to be driven only by the eight bits of A, the ninth input y8 is connected to a
constant 0.

This approach is straightforward, but not very efficient. Because 3A = 2A + A, we
can observe that 2A can be generated by shifting the bits of A one bit-position to the left,
which gives the bit pattern a7a6a5a4a3a2a1a00. According to Equation 3.1, this pattern is
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Figure 3.6 Circuit that multiplies an eight-bit unsigned number by 3.
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equal to 2A. Then a single ripple-carry adder suffices for implementing 3A, as shown in
Figure 3.6b. This is essentially the same circuit as the second adder in part (a) of the figure.
Note that the input x0 is connected to a constant 0. Note also that in the second adder in part
(a) of the figure the value of x0 is always 0, even though it is driven by the least-significant
bit, s0, of the sum of the first adder. Because x0 = y0 = a0 in the first adder, the sum bit s0

will be 0, whether a0 is 0 or 1.

3.3 Signed Numbers

In the decimal system the sign of a number is indicated by a + or − symbol to the left
of the most-significant digit. In the binary system the sign of a number is denoted by the
left-most bit. For a positive number the left-most bit is equal to 0, and for a negative number
it is equal to 1. Therefore, in signed numbers the left-most bit represents the sign, and the
remaining n − 1 bits represent the magnitude, as illustrated in Figure 3.7. It is important to
note the difference in the location of the most-significant bit (MSB). In unsigned numbers
all bits represent the magnitude of a number; hence all n bits are significant in defining
the magnitude. Therefore, the MSB is the left-most bit, bn−1. In signed numbers there are
n − 1 significant bits, and the MSB is in bit position bn−2.

bn 1– b1 b0

Magnitude

MSB

(a) Unsigned number

bn 1– b1 b0

Magnitude
Sign

(b) Signed number

bn 2–

0 denotes
1 denotes

+
– MSB

Figure 3.7 Formats for representation of integers.
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3.3.1 Negative Numbers

Positive numbers are represented using the positional number representation as explained
in the previous section. Negative numbers can be represented in three different ways:
sign-and-magnitude, 1’s complement, and 2’s complement.

Sign-and-Magnitude Representation
In the familiar decimal representation, the magnitude of both positive and negative

numbers is expressed in the same way. The sign symbol distinguishes a number as being
positive or negative. This scheme is called the sign-and-magnitude number representation.
The same scheme can be used with binary numbers in which case the sign bit is 0 or 1
for positive or negative numbers, respectively. For example, if we use four-bit numbers,
then +5 = 0101 and −5 = 1101. Because of its similarity to decimal sign-and-magnitude
numbers, this representation is easy to understand. However, as we will see shortly, this
representation is not well suited for use in computers. More suitable representations are
based on complementary systems, explained below.

1’s Complement Representation
In a complementary number system, the negative numbers are defined according to a

subtraction operation involving positive numbers. We will consider two schemes for binary
numbers: the 1’s complement and the 2’s complement. In the 1’s complement scheme, an
n-bit negative number, K , is obtained by subtracting its equivalent positive number, P,
from 2n − 1; that is, K = (2n − 1) − P. For example, if n = 4, then K = (24 − 1) − P =
(15)10 − P = (1111)2 − P. If we convert +5 to a negative, we get −5 = 1111 − 0101 =
1010. Similarly, +3 = 0011 and −3 = 1111 − 0011 = 1100. Clearly, the 1’s complement
can be obtained simply by complementing each bit of the number, including the sign bit.
While 1’s complement numbers are easy to derive, they have some drawbacks when used
in arithmetic operations, as we will see in the next section.

2’s Complement Representation
In the 2’s complement scheme, a negative number, K , is obtained by subtracting its

equivalent positive number, P, from 2n; namely, K = 2n − P. Using our four-bit example,
−5 = 10000 − 0101 = 1011, and −3 = 10000 − 0011 = 1101. Finding 2’s complements
in this manner requires performing a subtraction operation that involves borrows. However,
we can observe that if K1 is the 1’s complement of P and K2 is the 2’s complement of P,
then

K1 = (2n − 1) − P

K2 = 2n − P

It follows that K2 = K1 + 1. Thus a simpler way of finding a 2’s complement of a number
is to add 1 to its 1’s complement because finding a 1’s complement is trivial. This is how
2’s complement numbers are obtained in logic circuits that perform arithmetic operations.

The reader will need to develop an ability to find 2’s complement numbers quickly.
There is a simple rule that can be used for this purpose.
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Rule for Finding 2’s Complements
Given a number B = bn−1bn−2 · · · b1b0, its 2’s complement, K = kn−1kn−2 · · · k1k0, can

be found by examining the bits of B from right to left and taking the following action: copy
all bits of B that are 0 and the first bit that is 1; then simply complement the rest of the bits.

For example, if B = 0110, then we copy k0 = b0 = 0 and k1 = b1 = 1, and comple-
ment the rest so that k2 = b2 = 0 and k3 = b3 = 1. Hence K = 1010. As another example,
if B = 10110100, then K = 01001100. We leave the proof of this rule as an exercise for
the reader.

Table 3.2 illustrates the interpretation of all 16 four-bit patterns in the three signed-
number representations that we have considered. Note that for both sign-and-magnitude
representation and for 1’s complement representation there are two patterns that represent
the value zero. For 2’s complement there is only one such pattern. Also, observe that the
range of numbers that can be represented with four bits in 2’s complement form is −8 to
+7, while in the other two representations it is −7 to +7.

Using 2’s-complement representation, an n-bit number B = bn−1bn−2 · · · b1b0 repre-
sents the value

V (B) = (−bn−1 × 2n−1) + bn−2 × 2n−2 + · · · + b1 × 21 + b0 × 20 [3.2]

Thus the largest negative number, 100 . . . 00, has the value −2n−1. The largest positive
number, 011 . . . 11, has the value 2n−1 − 1.

Table 3.2 Interpretation of four-bit signed integers.

Sign and
b3b2b1b0 magnitude 1’s complement 2’s complement

0111 +7 +7 +7

0110 +6 +6 +6

0101 +5 +5 +5

0100 +4 +4 +4

0011 +3 +3 +3

0010 +2 +2 +2

0001 +1 +1 +1

0000 +0 +0 +0

1000 −0 −7 −8

1001 −1 −6 −7

1010 −2 −5 −6

1011 −3 −4 −5

1100 −4 −3 −4

1101 −5 −2 −3

1110 −6 −1 −2

1111 −7 −0 −1
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3.3.2 Addition and Subtraction

To assess the suitability of different number representations, it is necessary to investigate
their use in arithmetic operations—particularly in addition and subtraction. We can illustrate
the good and bad aspects of each representation by considering very small numbers. We will
use four-bit numbers, consisting of a sign bit and three significant bits. Thus the numbers
have to be small enough so that the magnitude of their sum can be expressed in three bits,
which means that the sum cannot exceed the value 7.

Addition of positive numbers is the same for all three number representations. It is
actually the same as the addition of unsigned numbers discussed in Section 3.2. But there
are significant differences when negative numbers are involved. The difficulties that arise
become apparent if we consider operands with different combinations of signs.

Sign-and-Magnitude Addition
If both operands have the same sign, then the addition of sign-and-magnitude numbers

is simple. The magnitudes are added, and the resulting sum is given the sign of the operands.
However, if the operands have opposite signs, the task becomes more complicated. Then
it is necessary to subtract the smaller number from the larger one. This means that logic
circuits that compare and subtract numbers are also needed. We will see shortly that it
is possible to perform subtraction without the need for this circuitry. For this reason, the
sign-and-magnitude representation is not used in computers.

1’s Complement Addition
An obvious advantage of the 1’s complement representation is that a negative num-

ber is generated simply by complementing all bits of the corresponding positive number.
Figure 3.8 shows what happens when two numbers are added. There are four cases to
consider in terms of different combinations of signs. As seen in the top half of the figure,
the computation of 5 + 2 = 7 and (−5) + 2 = (−3) is straightforward; a simple addition
of the operands gives the correct result. Such is not the case with the other two possibilities.
Computing 5 + (−2) = 3 produces the bit vector 10010. Because we are dealing with
four-bit numbers, there is a carry-out from the sign-bit position. Also, the four bits of the
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0 1 1 1

0 1 0 1
0 0 1 0
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0 1 1 1

1 0 1 0
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Figure 3.8 Examples of 1’s complement addition.
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result represent the number 2 rather than 3, which is a wrong result. Interestingly, if we
take the carry-out from the sign-bit position and add it to the result in the least-significant
bit position, the new result is the correct sum of 3. This correction is indicated in blue in
the figure. A similar situation arises when adding (−5) + (−2) = (−7). After the initial
addition the result is wrong because the four bits of the sum are 0111, which represents +7
rather than −7. But again, there is a carry-out from the sign-bit position, which can be used
to correct the result by adding it in the LSB position, as shown in Figure 3.8.

The conclusion from these examples is that the addition of 1’s complement numbers
may or may not be simple. In some cases a correction is needed, which amounts to an extra
addition that must be performed. Consequently, the time needed to add two 1’s complement
numbers may be twice as long as the time needed to add two unsigned numbers.

2’s Complement Addition
Consider the same combinations of numbers as used in the 1’s complement example.

Figure 3.9 indicates how the addition is performed using 2’s complement numbers. Adding
5 + 2 = 7 and (−5) + 2 = (−3) is straightforward. The computation 5 + (−2) = 3 gen-
erates the correct four bits of the result, namely 0011. There is a carry-out from the sign-bit
position, which we can simply ignore. The fourth case is (−5) + (−2) = (−7). Again, the
four bits of the result, 1001, give the correct sum (−7). In this case also, the carry-out from
the sign-bit position can be ignored.

As illustrated by these examples, the addition of 2’s complement numbers is very
simple. When the numbers are added, the result is always correct. If there is a carry-out
from the sign-bit position, it is simply ignored. Therefore, the addition process is the same,
regardless of the signs of the operands. It can be performed by an adder circuit, such as
the one shown in Figure 3.5. Hence the 2’s complement notation is highly suitable for
the implementation of addition operations. We will now consider its use in subtraction
operations.
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1 0 1 1
0 0 1 0

0 1 1 1

0 1 0 1
0 0 1 0

++

1 0 0 1

1 0 1 1
1 1 1 0

0 0 1 1
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11
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5+( )
2+( )

7+( )

+

5+( )

3+( )

+ 2–( )

2+( )
5–( )

3–( )

+

5–( )

7–( )

+ 2–( )

Figure 3.9 Examples of 2’s complement addition.
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2’s Complement Subtraction
The easiest way of performing subtraction is to negate the subtrahend and add it to

the minuend. This is done by finding the 2’s complement of the subtrahend and then
performing the addition. Figure 3.10 illustrates the process. The operation 5 − (+2) = 3
involves finding the 2’s complement of +2, which is 1110. When this number is added to
0101, the result is 0011 = (+3) and a carry-out from the sign-bit position occurs, which is
ignored. A similar situation arises for (−5) − (+2) = (−7). In the remaining two cases
there is no carry-out, and the result is correct.

As a graphical aid to visualize the addition and subtraction examples in Figures 3.9 and
3.10, we can place all possible four-bit patterns on a modulo-16 circle given in Figure 3.11a.
If these bit patterns represented unsigned integers, they would be numbers 0 to 15. If they
represent 2’s-complement integers, then the numbers range from −8 to +7, as shown.
The addition operation is done by stepping in the clockwise direction by the magnitude of
the number to be added. For example, −5 + 2 is determined by starting at 1011 (= −5)
and moving clockwise two steps, giving the result 1101 (= −3). Figure 3.11b shows how
subtraction can be performed on the modulo-16 circle, using the example 5 − 2 = 3. We can
start at 0101 (= +5) and move counterclockwise by two steps, which gives 0011 (= +3).
But, we can also use the 2’s complement of 2 and add this value by stepping in the clockwise
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Figure 3.10 Examples of 2’s complement subtraction.
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Figure 3.11 Graphical interpretation of four-bit 2’s complement numbers.

direction as shown in the figure. Since there are 16 numbers on the circle, the value we
need to add is 16 − 2 = (14)10 = (1110)2.

The key conclusion of this section is that the subtraction operation can be realized as
the addition operation, using a 2’s complement of the subtrahend, regardless of the signs of
the two operands. Therefore, it should be possible to use the same adder circuit to perform
both addition and subtraction.

3.3.3 Adder and Subtractor Unit

The only difference between performing addition and subtraction is that for subtraction it
is necessary to use the 2’s complement of one operand. Let X and Y be the two operands,
such that Y serves as the subtrahend in subtraction. From Section 3.3.1 we know that a
2’s complement can be obtained by adding 1 to the 1’s complement of Y . Adding 1 in the
least-significant bit position can be accomplished simply by setting the carry-in bit c0 to 1.
A 1’s complement of a number is obtained by complementing each of its bits. This could be
done with NOT gates, but we need a more flexible circuit where we can use the true value
of Y for addition and its complement for subtraction.

In Section 3.2 we explained that two-input XOR gates can be used to choose between
true and complemented versions of an input value, under the control of the other input. This
idea can be applied in the design of the adder/subtractor unit as follows. Assume that there
exists a control signal that chooses whether addition or subtraction is to be performed. Let
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x0x1xn 1–

cn n-bit adder
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c0

Add / Sub
control

Figure 3.12 Adder/subtractor unit.

this signal be called Add/Sub. Also, let its value be 0 for addition and 1 for subtraction. To
indicate this fact, we placed a bar over Add. This is a commonly used convention, where
a bar over a name means that the action specified by the name is to be taken if the control
signal has the value 0. Now let each bit of Y be connected to one input of an XOR gate, with
the other input connected to Add/Sub. The outputs of the XOR gates represent Y if Add/Sub
= 0, and they represent the 1’s complement of Y if Add/Sub = 1. This leads to the circuit
in Figure 3.12. The main part of the circuit is an n-bit adder, which can be implemented
using the ripple-carry structure of Figure 3.5. Note that the control signal Add/Sub is also
connected to the carry-in c0. This makes c0 = 1 when subtraction is to be performed, thus
adding the 1 that is needed to form the 2’s complement of Y . When the addition operation
is performed, we will have c0 = 0.

The combined adder/subtractor unit is a good example of an important concept in the
design of logic circuits. It is useful to design circuits to be as flexible as possible and to
exploit common portions of circuits for as many tasks as possible. This approach minimizes
the number of gates needed to implement such circuits, and it reduces the wiring complexity
substantially.

3.3.4 Radix-Complement Schemes∗

The 2’s complement scheme is just a special case of radix-complement schemes which we
discuss in this section. This general discussion can be skipped without loss of continuity in
the context of computer technology.
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The idea of performing a subtraction operation by addition of a complement of the
subtrahend is not restricted to binary numbers. We can gain some insight into the workings
of the 2’s complement scheme by considering its counterpart in the decimal number system.
Consider the subtraction of two-digit decimal numbers. Computing a result such as 74 −
33 = 41 is simple because each digit of the subtrahend is smaller than the corresponding
digit of the minuend; therefore, no borrow is needed in the computation. But computing
74 − 36 = 38 is not as simple because a borrow is needed in subtracting the least-significant
digit. If a borrow occurs, the computation becomes more complicated.

Suppose that we restructure the required computation as follows

74 − 36 = 74 + 100 − 100 − 36

= 74 + (100 − 36) − 100

Now two subtractions are needed. Subtracting 36 from 100 still involves borrows. But
noting that 100 = 99 + 1, these borrows can be avoided by writing

74 − 36 = 74 + (99 + 1 − 36) − 100

= 74 + (99 − 36) + 1 − 100

The subtraction in parentheses does not require borrows; it is performed by subtracting each
digit of the subtrahend from 9. We can see a direct correlation between this expression and
the one used for 2’s complement, as reflected in the circuit in Figure 3.12. The operation
(99 − 36) is analogous to complementing the subtrahend Y to find its 1’s complement,
which is the same as subtracting each bit from 1. Using decimal numbers, we find the 9’s
complement of the subtrahend by subtracting each digit from 9. In Figure 3.12 we add
the carry-in of 1 to form the 2’s complement of Y . In our decimal example we perform
(99 − 36) + 1 = 64. Here 64 is the 10’s complement of 36. For an n-digit decimal number,
N , its 10’s complement, K10, is defined as K10 = 10n − N , while its 9’s complement, K9, is
K9 = (10n − 1) − N .

Thus the required subtraction (74 − 36) can be performed by addition of the 10’s
complement of the subtrahend, as in

74 − 36 = 74 + 64 − 100

= 138 − 100

= 38

The subtraction 138 − 100 is trivial because it means that the leading digit in 138 is simply
deleted. This is analogous to ignoring the carry-out from the circuit in Figure 3.12, as
discussed for the subtraction examples in Figure 3.10.

Example 3.1 Suppose that A and B are n-digit decimal numbers. Using the above 10’s-complement
approach, B can be subtracted from A as follows:

A − B = A + (10n − B) − 10n

If A ≥ B, then the operation A + (10n − B) produces a carry-out of 1. This carry is equiva-
lent to 10n; hence it can be simply ignored.
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But if A < B, then the operation A + (10n − B) produces a carry-out of 0. Let the result
obtained be M , so that

A − B = M − 10n

We can rewrite this as

10n − (B − A) = M

The left side of this equation is the 10’s complement of (B − A). The 10’s complement of
a positive number represents a negative number that has the same magnitude. Hence M
correctly represents the negative value obtained from the computation A − B when A < B.
This concept is illustrated in the examples that follow.

Example 3.2When dealing with binary signed numbers we use 0 in the left-most bit position to denote
a positive number and 1 to denote a negative number. If we wanted to build hardware that
operates on signed decimal numbers, we could use a similar approach. Let 0 in the left-most
digit position denote a positive number and let 9 denote a negative number. Note that 9 is
the 9’s complement of 0 in the decimal system, just as 1 is the 1’s complement of 0 in the
binary system.

Thus, using three-digit signed numbers, A = 045 and B = 027 are positive numbers
with magnitudes 45 and 27, respectively. The number B can be subtracted from A as follows

A − B = 045 − 027

= 045 + 1000 − 1000 − 027

= 045 + (999 − 027) + 1 − 1000

= 045 + 972 + 1 − 1000

= 1018 − 1000

= 018

This gives the correct answer of +18.
Next consider the case where the minuend has lower value than the subtrahend. This

is illustrated by the computation

B − A = 027 − 045

= 027 + 1000 − 1000 − 045

= 027 + (999 − 045) + 1 − 1000

= 027 + 954 + 1 − 1000

= 982 − 1000

From this expression it appears that we still need to perform the subtraction 982 − 1000.
But as seen in Example 3.1, this can be rewritten as

982 = 1000 + B − A

= 1000 − (A − B)
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Therefore, 982 is the negative number that results when forming the 10’s complement of
(A − B). From the previous computation we know that (A − B) = 018, which denotes
+18. Thus the signed number 982 is the 10’s complement representation of −18, which is
the required result.

These examples illustrate that signed numbers can be subtracted without using a sub-
traction operation that involves borrows. The only subtraction needed is in forming the
9’s complement of the subtrahend, in which case each digit is simply subtracted from 9.
Thus a circuit that forms the 9’s complement, combined with a normal adder circuit, will
suffice for both addition and subtraction of decimal signed numbers. A key point is that the
hardware needs to deal only with n digits if n-digit numbers are used. Any carry that may
be generated from the left-most digit position is simply ignored.

The concept of subtracting a number by adding its radix-complement is general. If
the radix is r, then the r’s complement, Kr , of an n-digit number, N , is determined as
Kr = rn − N . The (r − 1)’s complement, Kr−1, is defined as Kr−1 = (rn − 1) − N ; it is
computed simply by subtracting each digit of N from the value (r − 1). The (r − 1)’s
complement is referred to as the diminished-radix complement. Circuits for forming the
(r − 1)’s complements are simpler than those for general subtraction that involves borrows.
The circuits are particularly simple in the binary case, where the 1’s complement requires
just inverting each bit.

Example 3.3 In Figure 3.10 we illustrated the subtraction operation on binary numbers given in 2’s-
complement representation. Consider the computation (+5) − (+2) = (+3), using the
approach discussed above. Each number is represented by a four-bit pattern. The value 24

is represented as 10000. Then

0101 − 0010 = 0101 + (10000 − 0010) − 10000

= 0101 + (1111 − 0010) + 1 − 10000

= 0101 + 1101 + 1 − 10000

= 10011 − 10000

= 0011

Because 5 > 2, there is a carry from the fourth bit position. It represents the value 24,
denoted by the pattern 10000.

Example 3.4 Consider now the computation (+2) − (+5) = (−3), which gives

0010 − 0101 = 0010 + (10000 − 0101) − 10000

= 0010 + (1111 − 0101) + 1 − 10000

= 0010 + 1010 + 1 − 10000

= 1101 − 10000
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Because 2 < 5, there is no carry from the fourth bit position. The answer, 1101, is the
2’s-complement representation of −3. Note that

1101 = 10000 + 0010 − 0101

= 10000 − (0101 − 0010)

= 10000 − 0011

indicating that 1101 is the 2’s complement of 0011 (+3).

Example 3.5Finally, consider the case where the subtrahend is a negative number. The computation
(+5) − (−2) = (+7) is done as follows

0101 − 1110 = 0101 + (10000 − 1110) − 10000

= 0101 + (1111 − 1110) + 1 − 10000

= 0101 + 0001 + 1 − 10000

= 0111 − 10000

While 5 > (−2), the pattern 1110 is greater than the pattern 0101 when the patterns are
treated as unsigned numbers. Therefore, there is no carry from the fourth bit position. The
answer 0111 is the 2’s complement representation of +7. Note that

0111 = 10000 + 0101 − 1110

= 10000 − (1110 − 0101)

= 10000 − 1001

and 1001 represents −7.

3.3.5 Arithmetic Overflow

The result of addition or subtraction is supposed to fit within the significant bits used to
represent the numbers. If n bits are used to represent signed numbers, then the result must
be in the range −2n−1 to 2n−1 − 1. If the result does not fit in this range, then we say that
arithmetic overflow has occurred. To ensure the correct operation of an arithmetic circuit,
it is important to be able to detect the occurrence of overflow.

Figure 3.13 presents the four cases where 2’s-complement numbers with magnitudes
of 7 and 2 are added. Because we are using four-bit numbers, there are three significant bits,
b2−0. When the numbers have opposite signs, there is no overflow. But if both numbers
have the same sign, the magnitude of the result is 9, which cannot be represented with just
three significant bits; therefore, overflow occurs. The key to determining whether overflow
occurs is the carry-out from the MSB position, called c3 in the figure, and from the sign-bit
position, called c4. The figure indicates that overflow occurs when these carry-outs have
different values, and a correct sum is produced when they have the same value. Indeed, this
is true in general for both addition and subtraction of 2’s-complement numbers. As a quick
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Figure 3.13 Examples for determination of overflow.

check of this statement, consider the examples in Figure 3.9 where the numbers are small
enough so that overflow does not occur in any case. In the top two examples in the figure,
there is a carry-out of 0 from both sign and MSB positions. In the bottom two examples,
there is a carry-out of 1 from both positions. Therefore, for the examples in Figures 3.9 and
3.13, the occurrence of overflow is detected by

Overflow = c3c4 + c3c4

= c3 ⊕ c4

For n-bit numbers we have

Overflow = cn−1 ⊕ cn

Thus the circuit in Figure 3.12 can be modified to include overflow checking with the
addition of one XOR gate.

An alternative and more intuitive way of detecting the arithmetic overflow is to ob-
serve that overflow occurs if both summands have the same sign but the resulting sum has
a different sign. Let X = x3x2x1x0 and Y = y3y2y1y0 represent four-bit 2’s-complement
numbers, and let S = s3s2s1s0 be the sum S = X + Y . Then

Overflow = x3y3s3 + x3y3s3

The carry-out and overflow signals indicate whether the result of a given addition is too
large to fit into the number of bits available to represent the sum. The carry-out is meaningful
only when unsigned numbers are involved, while the overflow is meaningful only in the
case of signed numbers. In a typical computer, it is prudent to use the same adder circuits
for dealing with both unsigned and signed operands, thus reducing the amount of circuitry
required. This means that both the carry-out and overflow signals should be generated, as
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we have discussed. Then, a program instruction that specifies unsigned operands can use
the carry-out signal, while an instruction that has signed operands can use the overflow
signal.

3.3.6 Performance Issues

When buying a digital system, such as a computer, the buyer pays particular attention to
the performance that the system is expected to provide and to the cost of acquiring the
system. Superior performance usually comes at a higher cost. However, a large increase in
performance can often be achieved at a modest increase in cost. A commonly used indicator
of the value of a system is its price/performance ratio.

The addition and subtraction of numbers are fundamental operations that are performed
frequently in the course of a computation. The speed with which these operations are
performed has a strong impact on the overall performance of a computer. In light of this,
let us take a closer look at the speed of the adder/subtractor unit in Figure 3.12. We are
interested in the largest delay from the time the operands X and Y are presented as inputs,
until the time all bits of the sum S and the final carry-out, cn, are valid. Most of this delay
is caused by the n-bit adder circuit. Assume that the adder is implemented using the ripple-
carry structure in Figure 3.5 and that each full-adder stage is the circuit in Figure 3.3c. The
delay for the carry-out signal in this circuit, �t, is equal to two gate delays. From Section
3.2.2 we know that the final result of the addition will be valid after a delay of n�t, which
is equal to 2n gate delays. In addition to the delay in the ripple-carry path, there is also a
delay in the XOR gates that feed either the true or complemented value of Y to the adder
inputs. If this delay is equal to one gate delay, then the total delay of the circuit in Figure
3.12 is 2n + 1 gate delays. For a large n, say n = 32 or n = 64, the delay would lead to
unacceptably poor performance. Therefore, it is important to find faster circuits to perform
addition.

The speed of any circuit is limited by the longest delay along the paths through the
circuit. In the case of the circuit in Figure 3.12, the longest delay is along the path from
the yi input, through the XOR gate and through the carry circuit of each adder stage. The
longest delay is often referred to as the critical-path delay, and the path that causes this
delay is called the critical path.

3.4 Fast Adders

The performance of a large digital system is dependent on the speed of circuits that form
its various functional units. Obviously, better performance can be achieved using faster
circuits. This can be accomplished by using superior (usually newer) technology in which
the delays in basic gates are reduced. But it can also be accomplished by changing the overall
structure of a functional unit, which may lead to even more impressive improvement. In
this section we will discuss an alternative for implementation of an n-bit adder, which
substantially reduces the time needed to add numbers.
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3.4.1 Carry-Lookahead Adder

To reduce the delay caused by the effect of carry propagation through the ripple-carry adder,
we can attempt to evaluate quickly for each stage whether the carry-in from the previous
stage will have a value 0 or 1. If a correct evaluation can be made in a relatively short time,
then the performance of the complete adder will be improved.

From Figure 3.3b the carry-out function for stage i can be realized as

ci+1 = xiyi + xici + yici

If we factor this expression as

ci+1 = xiyi + (xi + yi)ci

then it can be written as

ci+1 = gi + pici [3.3]

where

gi = xiyi

pi = xi + yi

The function gi is equal to 1 when both inputs xi and yi are equal to 1, regardless of the value
of the incoming carry to this stage, ci. Since in this case stage i is guaranteed to generate
a carry-out, g is called the generate function. The function pi is equal to 1 when at least
one of the inputs xi and yi is equal to 1. In this case a carry-out is produced if ci = 1. The
effect is that the carry-in of 1 is propagated through stage i; hence pi is called the propagate
function.

Expanding the expression 3.3 in terms of stage i − 1 gives

ci+1 = gi + pi(gi−1 + pi−1ci−1)

= gi + pigi−1 + pipi−1ci−1

The same expansion for other stages, ending with stage 0, gives

ci+1 = gi + pigi−1 + pipi−1gi−2 + · · · + pipi−1 · · · p2p1g0 + pipi−1 · · · p1p0c0 [3.4]

This expression represents a two-level AND-OR circuit in which ci+1 is evaluated very
quickly. An adder based on this expression is called a carry-lookahead adder.

To appreciate the physical meaning of expression 3.4, it is instructive to consider its
effect on the construction of a fast adder in comparison with the details of the ripple-
carry adder. We will do so by examining the detailed structure of the two stages that add
the least-significant bits, namely, stages 0 and 1. Figure 3.14 shows the first two stages
of a ripple-carry adder in which the carry-out functions are implemented as indicated in
expression 3.3. Each stage is essentially the circuit from Figure 3.3c except that an extra
OR gate is used (which produces the pi signal), instead of an AND gate because we factored
the sum-of-products expression for ci+1.
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x1 y1

g1 p1

s1
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x0 y0

g0 p0

s0

Stage 0

c0

c1
c2

Figure 3.14 A ripple-carry adder based on expression 3.3.

The slow speed of the ripple-carry adder is caused by the long path along which a carry
signal must propagate. In Figure 3.14 the critical path is from inputs x0 and y0 to the output
c2. It passes through five gates, as highlighted in blue. The path in other stages of an n-bit
adder is the same as in stage 1. Therefore, the total number of gate delays along the critical
path is 2n + 1.

Figure 3.15 gives the first two stages of the carry-lookahead adder, using expression
3.4 to implement the carry-out functions. Thus

c1 = g0 + p0c0

c2 = g1 + p1g0 + p1p0c0

This circuit does not have the long ripple-carry path that is present in Figure 3.14. Instead,
all carry signals are produced after three gate delays: one gate delay is needed to produce
the generate and propagate signals g0, g1, p0, and p1, and two more gate delays are needed
to produce c1 and c2 concurrently. Extending the circuit to n bits, the final carry-out signal
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x1 y1

g1 p1

s1

x0 y0

s0

c2

x0 y0

c0

c1

g0 p0

Figure 3.15 The first two stages of a carry-lookahead adder.

cn would also be produced after only three gate delays because expression 3.4 is just a large
two-level (AND-OR) circuit.

The total delay in the n-bit carry-lookahead adder is four gate delays. The values of
all gi and pi signals are determined after one gate delay. It takes two more gate delays to
evaluate all carry signals. Finally, it takes one more gate delay (XOR) to generate all sum
bits. The key to the good performance of the adder is quick evaluation of carry signals.

The complexity of an n-bit carry-lookahead adder increases rapidly as n becomes larger.
To reduce the complexity, we can use a hierarchical approach in designing large adders.
Suppose that we want to design a 32-bit adder. We can divide this adder into 4 eight-bit
blocks, such that block 0 adds bits 7 . . . 0, block 1 adds bits 15 . . . 8, block 2 adds bits
23 . . . 16, and block 3 adds bits 31 . . . 24. Then we can implement each block as an
eight-bit carry-lookahead adder. The carry-out signals from the four blocks are c8, c16, c24,
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Block

x31 24–

c32 c24

y31 24–

s31 24–

x15 8–

c16

y15 8–

s15 8–
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x7 0– y7 0–

s7 0–

c03
Block

1
Block

0

Figure 3.16 A hierarchical carry-lookahead adder with ripple-carry between blocks.

and c32. Now we have two possibilities. We can connect the four blocks as four stages in a
ripple-carry adder. Thus while carry-lookahead is used within each block, the carries ripple
between the blocks. This circuit is illustrated in Figure 3.16.

Instead of using a ripple-carry approach between blocks, a faster circuit can be designed
in which a second-level carry-lookahead is performed to produce quickly the carry signals
between blocks. The structure of this “hierarchical carry-lookahead adder” is shown in
Figure 3.17. Each block in the top row includes an eight-bit carry-lookahead adder, based
on generate and propagate signals for each stage in the block, as discussed before. However,
instead of producing a carry-out signal from the most-significant bit of the block, each block
produces generate and propagate signals for the entire block. Let Gj and Pj denote these
signals for each block j. Now Gj and Pj can be used as inputs to a second-level carry-
lookahead circuit at the bottom of Figure 3.17, which evaluates all carries between blocks.
We can derive the block generate and propagate signals for block 0 by examining the
expression for c8

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4 + p7p6p5p4g3 + p7p6p5p4p3g2

+ p7p6p5p4p3p2g1 + p7p6p5p4p3p2p1g0 + p7p6p5p4p3p2p1p0c0

The last term in this expression specifies that, if all eight propagate functions are 1, then
the carry-in c0 is propagated through the entire block. Hence

P0 = p7p6p5p4p3p2p1p0

The rest of the terms in the expression for c8 represent all other cases when the block
produces a carry-out. Thus

G0 = g7 + p7g6 + p7p6g5 + · · · + p7p6p5p4p3p2p1g0

The expression for c8 in the hierarchical adder is given by

c8 = G0 + P0c0

For block 1 the expressions for G1 and P1 have the same form as for G0 and P0 except that
each subscript i is replaced by i + 8. The expressions for G2, P2, G3, and P3 are derived in
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Block
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Figure 3.17 A hierarchical carry-lookahead adder.

the same way. The expression for the carry-out of block 1, c16, is

c16 = G1 + P1c8

= G1 + P1G0 + P1P0c0

Similarly, the expressions for c24 and c32 are

c24 = G2 + P2G1 + P2P1G0 + P2P1P0c0

c32 = G3 + P3G2 + P3P2G1 + P3P2P1G0 + P3P2P1P0c0

Using this scheme, it takes two more gate delays to produce the carry signals c8, c16, c24,
and c32 than the time needed to generate the Gj and Pj functions. Therefore, since Gj and Pj

require three gate delays, c8, c16, c24, and c32 are available after five gate delays. The time
needed to add two 32-bit numbers involves these five gate delays plus two more to produce
the internal carries in blocks 1, 2, and 3, plus one more gate delay (XOR) to generate each
sum bit. This gives a total of eight gate delays.

In Section 3.3.6 we determined that it takes 2n + 1 gate delays to add two numbers
using a ripple-carry adder. For 32-bit numbers this implies 65 gate delays. It is clear that
the carry-lookahead adder offers a large performance improvement. The trade-off is much
greater complexity of the required circuit.
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Technology Considerations
The preceding delay analysis assumes that gates with any number of inputs can be

used. But, the number of gate inputs, referred to as the fan-in of the gate, has to be limited
in practice as we discuss in Appendix B. Therefore the reality of fan-in constraints must be
taken into account. To illustrate this problem, consider the expressions for the first eight
carries:

c1 = g0 + p0c0

c2 = g1 + p1g0 + p1p0c0

...

c8 = g7 + p7g6 + p7p6g5 + p7p6p5g4 + p7p6p5p4g3 + p7p6p5p4p3g2

+ p7p6p5p4p3p2g1 + p7p6p5p4p3p2p1g0 + p7p6p5p4p3p2p1p0c0

Suppose that the maximum fan-in of the gates is four inputs. Then it is impossible to
implement all of these expressions with a two-level AND-OR circuit. The biggest problem
is c8, where one of the AND gates requires nine inputs; moreover, the OR gate also requires
nine inputs. To meet the fan-in constraint, we can rewrite the expression for c8 as

c8 = (g7 + p7g6 + p7p6g5 + p7p6p5g4) + [( p7p6p5p4)(g3 + p3g2 + p3p2g1 + p3p2p1g0)]
+ ( p7p6p5p4)( p3p2p1p0)c0

To implement this expression we need ten AND gates and three OR gates. The propagation
delay in generating c8 consists of one gate delay to develop all gi and pi, two gate delays
to produce the sum-of-products terms in parentheses, one gate delay to form the product
term in square brackets, and one delay for the final ORing of terms. Hence c8 is valid after
five gate delays, rather than the three gate delays that would be needed without the fan-in
constraint.

Because fan-in limitations reduce the speed of the carry-lookahead adder, some devices
that are characterized by low fan-in include dedicated circuitry for implementation of fast
adders. Examples of such devices include FPGAs, which are described in Appendix B.

3.5 Design of Arithmetic Circuits Using CAD Tools

In this section we show how the arithmetic circuits can be designed by using CAD tools.

3.5.1 Design of Arithmetic Circuits Using Schematic
Capture

An obvious way to design an arithmetic circuit via schematic capture is to draw a schematic
that contains the necessary logic gates. For example, to create an n-bit adder, we could first
draw a schematic that represents a full-adder. Then an n-bit ripple-carry adder could be
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created by drawing a higher-level schematic that connects together n instances of the full-
adder. A hierarchical schematic created in this manner would look like the circuit shown in
Figure 3.5. We could also use this methodology to create an adder/subtractor circuit, such
as the circuit depicted in Figure 3.12.

The main problem with this approach is that it is cumbersome, especially when the
number of bits is large. This issue is even more apparent if we consider creating a schematic
for a carry-lookahead adder. As shown in Section 3.4.1, the carry circuitry in each stage
of the carry-lookahead adder becomes increasingly more complex. Hence it is necessary
to draw a separate schematic for each stage of the adder. A better approach for creating
arithmetic circuits via schematic capture is to use predefined subcircuits.

The schematic capture tools provide a library of graphical symbols that represent basic
logic gates. These gates are used to create schematics of relatively simple circuits. In
addition to basic gates, most schematic capture tools also provide a library of commonly-
used circuits, such as adders. Each circuit is provided as a module that can be imported
into a schematic and used as part of a larger circuit.

Different vendors of CAD tools have their specific approaches to how schematic capture
is performed. Instead of dealing with the schematic capture approach, we will concentrate
on the more convenient and flexible approach of using Verilog to design our circuits.

3.5.2 Design of Arithmetic Circuits Using Verilog

We said in Section 3.5.1 that an obvious way to create an n-bit adder is to draw a hierarchical
schematic that contains n full-adders. This approach can also be followed by using Verilog,
by first creating a Verilog module for a full-adder and then defining a higher-level module
that uses n instances of the full-adder. As a first attempt at designing arithmetic circuits
by using Verilog, we will show how to write the hierarchical code for a ripple-carry adder.
Hierarchical Verilog code was introduced in Chapter 2.

Suppose that we wish to implement the full-adder circuit given in Figure 3.3c, which
has the inputs Cin, x, and y, and produces the outputs s and Cout. One way of specifying
this circuit in Verilog is to use the gate-level primitives as shown in Figure 3.18. Each of the
three AND gates in the circuit is defined by a separate statement. Verilog allows combining
such statements into a single statement as shown in Figure 3.19. In this case, commas are
used to separate the definition of each AND gate.

Another possibility is to use functional expressions as indicated in Figure 3.20. The
XOR operation is denoted by the ∧ sign. Again, it is possible to combine the two continuous
assignment statements into a single statement as shown in Figure 3.21.

Both of the above approaches result in the same full-adder circuit being synthesized.
We can now create a separate Verilog module for the ripple-carry adder, which instantiates
the fulladd module as a subcircuit. One method of doing this is shown in Figure 3.22. The
module comprises the code for a four-bit ripple-carry adder, named adder4. One of the
four-bit numbers to be added is represented by the four signals x3, x2, x1, x0, and the other
number is represented by y3, y2, y1, y0. The sum is represented by s3, s2, s1, s0. The circuit
incorporates a carry input, carryin, into the least-significant bit position and a carry output,
carryout, from the most-significant bit position.
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module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

xor (s, x, y, Cin);
and (z1, x, y);
and (z2, x, Cin);
and (z3, y, Cin);
or (Cout, z1, z2, z3);

endmodule

Figure 3.18 Verilog code for the full-adder using gate-level
primitives.

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

xor (s, x, y, Cin);
and (z1, x, y),

(z2, x, Cin),
(z3, y, Cin);

or (Cout, z1, z2, z3);

endmodule

Figure 3.19 Another version of Verilog code from
Figure 3.18.

The four-bit adder in Figure 3.22 is described using four instantiation statements. Each
statement begins with the name of the module, fulladd, that is being instantiated, followed
by an instance name. The instance names must be unique. The least-significant stage in
the adder is named stage0 and the most-significant stage is stage3. The signal names in the
adder4 module that are to be connected to each input and output port on the fulladd module
are then listed. These signals are listed in the same order as in the fulladd module, namely
the order Cin, x, y, s, Cout.

As discussed in Section 2.10, the signal names associated with each instance of the
fulladd module implicitly specify how the full-adders are connected together. For example,
the carry-out of the stage0 instance is connected to the carry-in of the stage1 instance. The
synthesized circuit has the same structure as the one shown in Figure 3.5. The fulladd
module may be included in the same Verilog source code file as the adder4 module, as we
have done in Figure 3.22, but it may also comprise a separate file. In the latter case, the
location of the file fulladd has to be indicated to the compiler.
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module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

assign s = x y Cin;
assign Cout = (x & y) | (x & Cin) | (y & Cin);

endmodule

Figure 3.20 Verilog code for the full-adder using continuous
assignment.

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

assign s = x y Cin,
Cout = (x & y) | (x & Cin) | (y & Cin);

endmodule

Figure 3.21 Another version of Verilog code from Figure 3.20.

module adder4 (carryin, x3, x2, x1, x0, y3, y2, y1, y0, s3, s2, s1, s0, carryout);
input carryin, x3, x2, x1, x0, y3, y2, y1, y0;
output s3, s2, s1, s0, carryout;

fulladd stage0 (carryin, x0, y0, s0, c1);
fulladd stage1 (c1, x1, y1, s1, c2);
fulladd stage2 (c2, x2, y2, s2, c3);
fulladd stage3 (c3, x3, y3, s3, carryout);

endmodule

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

assign s = x y Cin;
assign Cout = (x & y) | (x & Cin) | (y & Cin);

endmodule

Figure 3.22 Verilog code for a four-bit adder.
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3.5.3 Using Vectored Signals

In Figure 3.22 each of the four-bit inputs and the four-bit output of the adder is represented
using single-bit signals. A more convenient approach is to use multibit signals, called
vectors, to represent the numbers. Just as a number is represented in a logic circuit as
signals on multiple wires, it can be represented in Verilog code as a multibit vector. An
example of an input vector is

input [3:0] X;

This statement defines X to be a four-bit vector. Its individual bits can be referred to by
using an index value in square brackets. Thus, the most-significant bit (MSB) is referred
to as X [3] and the least-significant bit (LSB) is X [0]. A two-bit vector that consists of the
two middle bits of X is denoted as X [2:1]. The symbol X refers to the entire vector.

Using vectors we can specify the four-bit adder as shown in Figure 3.23. In addition
to the input vectors X and Y , and output vector S, we chose to define the carry signals
between the full-adder stages as a three-bit vector C[3:1]. Note that the carry into stage0
is still called carryin, while the carry from stage3 is called carryout. The internal carry
signals are defined in the statement

wire [3:1] C;

In Figure 3.23, signal C[1] is used to connect the carry output of the full-adder in stage 0
to the carry input of the full-adder in stage 1. Similarly, C[2] and C[3] are used to connect
the other stages of the adder.

The vector specification gives the bit width in square brackets, as in X [3:0]. The bit
width is specified using the index of the MSB first and the LSB last. Hence, X [3] is the
MSB and X [0] is the LSB. A reverse ordering can also be used. For example, Z[0:3] defines
a four-bit vector in which Z[0] is its MSB and Z[3] is its LSB. The terminology MSB and
LSB is natural when vectors are used to represent numbers. In other cases, the bit-select
index merely identifies a particular bit in a vector.

module adder4 (carryin, X, Y, S, carryout);
input carryin;
input [3:0] X, Y;
output [3:0] S;
output carryout;
wire [3:1] C;

fulladd stage0 (carryin, X[0], Y[0], S[0], C[1]);
fulladd stage1 (C[1], X[1], Y[1], S[1], C[2]);
fulladd stage2 (C[2], X[2], Y[2], S[2], C[3]);
fulladd stage3 (C[3], X[3], Y[3], S[3], carryout);

endmodule

Figure 3.23 A four-bit adder using vectors.
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3.5.4 Using a Generic Specification

The approach in designing a ripple-carry adder presented in Figure 3.23 is rather restrictive
because the resulting circuit is of a predetermined size of four bits. A similar adder that
could add 32-bit numbers would require Verilog code with 32 instances of the full-adder
subcircuit defined in separate statements. From the designer’s point of view, it is preferable
to define a module that could be used to implement an adder of any size, where the size
may be given as a parameter.

Verilog allows the use of general parameters that can be given a specific value as
desired. For example, an n-bit vector representing a number may be given as X [n−1:0]. If
n is defined in the Verilog statement

parameter n = 4;

then the bit range of X is [3:0].
The ripple-carry adder in Figure 3.5 can be described using the logic expressions

sk = xk ⊕ yk ⊕ ck

ck+1 = xkyk + xkck + ykck

for k = 0, 1, . . . , n − 1. Instead of instantiating full-adders as in Figure 3.23, these expres-
sions can be used in Verilog to specify the desired adder.

Figure 3.24 shows Verilog code that defines an n-bit adder. The inputs X and Y and
the output sum S are declared to be n-bit vectors. To simplify the use of carry signals in
the adder circuit, we defined a vector C that has n + 1 bits. Bit C[0] is the carry into the
LSB position, while C[n] is the carry from the MSB position. Hence C[0] = carryin and
carryout = C[n] in terms of the n-bit adder.

To specify the repetitive structure of the ripple-carry adder, Figure 3.24 introduces the
Verilog for statement. Like the if-else statement introduced in Chapter 2, the for statement
is a procedural statement that must be placed inside an always block, as shown in the
figure. As explained in Chapter 2, any signal that is assigned a value by a statement within
an always block must retain this value until it is again re-evaluated by changes in the
sensitivity variables given in the always statement. Such signals are declared to be of reg
type; they are carryout, S, and C signals in Figure 3.24. The sensitivity variables are X , Y ,
and carryin.

In our example, the for loop consists of two statements delineated by begin and end.
These statements define the sum and carry functions for the adder stage that corresponds
to the value of the loop variable k. The range of k is from 0 to n − 1 and its value is
incremented by 1 for each iteration of the loop. The syntax of the Verilog for statement
is similar to the syntax of a for loop in the C programming language. However, the C
operators ++ and −− do not exist in Verilog, hence incrementing or decrementing of the
loop variable must be given as k = k + 1 or k = k − 1, rather than k++ or k−−. Note
that k is declared to be an integer and it is used to control the number of iterations of the for
loop; it does not represent a physical connection in the circuit. The effect of the for loop is
to repeat the statements inside the loop for each loop iteration. For instance, if k were set
to 2 in this example, then the for loop would be equivalent to the four statements
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module addern (carryin, X, Y, S, carryout);
parameter n = 32;
input carryin;
input [n– 1:0] X, Y;
output reg [n –1:0] S;
output reg carryout;
reg [n:0] C;
integer k;

always @(X, Y, carryin)
begin

C[0] = carryin;
for (k = 0; k < n; k = k+1)
begin

S[k] = X[k] Y[k] C[k];
C[k+1] = (X[k] & Y[k]) (X[k] & C[k]) (Y[k] & C[k]);

end
carryout = C[n];

end

endmodule

Figure 3.24 A generic specification of a ripple-carry adder.

S[0] = X[0] ∧ Y[0] ∧ C[0];
C[1] = (X[0] & Y[0]) | (X[0] & C[0]) | (Y[0] & C[0]);
S[1] = X[1] ∧ Y[1] ∧ C[1];
C[2] = (X[1] & Y[1]) | (X[1] & C[1]) | (Y[1] & C[1]);

Since the value of n is 32, as declared in the parameter statement, the code in the figure
implements a 32-bit adder.

Using the Generate Capability
In Figure 3.23 we instantiated four copies of the fulladd subcircuit to specify a four-bit

ripple-carry adder. This approach can be used to specify an n-bit adder by using a loop
that instantiates the fulladd subcircuit n times. The Verilog generate construct provides
the desired capability. It allows instantiation statements to be included inside for loops and
if-else statements. If a for loop is included in the generate block, the loop index variable
has to be declared of type genvar. A genvar variable is similar to an integer variable, but
it can have only positive values and it can be used only inside generate blocks.

Figure 3.25 shows how the addern module can be written to instantiate n fulladd
modules. Each instance generated by the compiler in the for loop will have a unique
instance name produced by the compiler based on the for loop label. The generated names
are addbit[0].stage, . . . , addbit.[n − 1].stage. This code produces the same result as the
code in Figure 3.24.
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module addern (carryin, X, Y, S, carryout);
parameter n = 32;
input carryin;
input [n –1:0] X, Y;
output [n –1:0] S;
output carryout;
wire [n:0] C;

genvar i;
assign C[0] = carryin;
assign carryout = C[n];

generate
for (i = 0; i < = n –1; i = i+1)
begin:addbit

fulladd stage (C[i], X[i], Y[i], S[i], C[i+1]);
end

endgenerate

endmodule

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

assign s = x y Cin;
assign Cout = (x & y) (x & Cin) (y & Cin);

endmodule

Figure 3.25 A ripple-carry adder specified by using the generate
statement.

3.5.5 Nets and Variables in Verilog

A logic circuit is modeled in Verilog by a collection of interconnected logic elements and/or
by procedural statements that describe its behavior. Connections between logic elements are
defined using nets. Signals produced by procedural statements are referred to as variables.

Nets
A net represents a node in a circuit. Nets can be of different types. For synthesis

purposes the only important nets are of wire type, which we used in Section 3.5.3. A wire
connects an output of one logic element in a circuit to an input of another logic element.
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It can be a scalar that represents a single connection or a vector that represents multiple
connections. For example, in Figure 3.22, carry signals c3, c2, and c1 are scalars that model
the connections between the full-adder modules. The specific connections are defined by
the way the full-adder modules are instantiated. In Figure 3.23, the same carry signals
are defined as a three-bit vector C. Observe that in Figure 3.22 the carry signals are not
explicitly declared to be of wire type. The reason is that nets do not have to be declared in
the code because Verilog syntax assumes that all signals are nets by default. Of course, the
code in the figure would also be correct if we include in it the declaration

wire c3, c2, c1;

In Figure 3.23 it is necessary to declare the existence of vector C; otherwise, the Verilog
compiler would not be able to determine that C[3], C[2], and C[1] are the constituent signals
of C. Since these signals are nets, the vector C is declared to be of wire type.

Variables
Verilog provides variables to allow a circuit to be described in terms of its behavior.

A variable can be assigned a value in one Verilog statement, and it retains this value until
it is overwritten by a subsequent assignment statement. There are two types of variables:
reg and integer. As mentioned in Chapter 2, all signals that are assigned a value using
procedural statements must be declared as variables by using the reg or integer keywords.
The scalar carryout and the vectors S and C in Figure 3.24 are examples of the reg type.
The loop variable k in the same figure illustrates the integer type. It serves as a loop index.
Such variables are useful for describing a circuit’s behavior; they do not usually correspond
directly to signals in the resulting circuit.

Further discussion of nets and variables is given in Appendix A.

3.5.6 Arithmetic Assignment Statements

Arithmetic operations are used so often that it is convenient to have them incorporated
directly into a hardware description language. Verilog implements such operations using
arithmetic assignment statements and vectors. If the following vectors are defined

input [n−1:0] X, Y;
output [n−1:0] S;

then, the arithmetic assignment statement

S = X + Y;

represents an n-bit adder.
In addition to the + operator, which is used for addition, Verilog also provides other

arithmetic operators. The Verilog operators are discussed fully in Chapter 4 and Appendix
A. The complete Verilog code that includes the preceding statement is given in Figure 3.26.
Since there is a single statement in the always block, it is not necessary to include the begin
and end delimiters.



December 31, 2012 09:12 vra80547_ch03 Sheet number 40 Page number 160 magenta black

160 C H A P T E R 3 • Number Representation and Arithmetic Circuits

The code in Figure 3.26 defines a circuit that generates the n sum bits, but it does not
include carry-out or overflow signals. As explained previously, the carry-out signal is useful
when the numbers X , Y , and S are interpreted as being unsigned numbers. The carry-out is
1 when the sum of unsigned numbers overflows n bits. But, if X , Y , and S are interpreted
as being signed numbers, then the carry-out is not meaningful, and we have to generate the
arithmetic overflow output as discussed in Section 3.3.5. One way in which these signals
can be generated is given in Figure 3.27.

The carry-out from the MSB position, n − 1, can be derived by observing that the
carry-out must be 1 if both xn−1 and yn−1 are 1, or if either xn−1 or yn−1 is 1 and sn−1 is 0.

module addern (carryin, X, Y, S);
parameter n = 32;
input carryin;
input [n –1:0] X, Y;
output reg [n –1:0] S;

always @(X, Y, carryin)
S = X + Y + carryin;

endmodule

Figure 3.26 Specification of an n-bit adder using arithmetic
assignment.

module addern (carryin, X, Y, S, carryout, overflow);
parameter n = 32;
input carryin;
input [n– 1:0] X, Y;
output reg [n– 1:0] S;
output reg carryout, overflow;

always @(X, Y, carryin)
begin

S = X + Y + carryin;
carryout = (X[n– 1] & Y[n– 1]) | (X[n– 1] & S[n– 1]) | (Y[n– 1] & S[n– 1]);
overflow = (X[n– 1] & Y[n– 1] & S[n– 1]) | ( X[n– 1] & Y[n– 1] & S[n– 1]);

end

endmodule

Figure 3.27 An n-bit adder with carry-out and overflow signals.
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Thus,

carryout = xn−1yn−1 + xn−1sn−1 + yn−1sn−1

(Note that this is just a normal logic expression in which the + sign represents the OR
operation.) The expression for arithmetic overflow was defined in Section 3.3.5 as cn ⊕
cn−1. In our case, cn corresponds to carryout, but there is no direct way of accessing cn−1,
which is the carry from bit-position n − 2. Instead, we can use the more intuitive expression
derived in Section 3.3.5, so that

overflow = xn−1yn−1sn−1 + xn−1yn−1sn−1

Another way of including the carry-out and overflow signals is shown in Figure 3.28.
The (n + 1)-bit vector named Sum is used. The extra bit, Sum[n], becomes the carry-out
from bit-position n − 1 in the adder. The statement used to assign the sum of X, Y, and
carryin to the Sum signal uses an unusual syntax. The meaning of the terms in brackets,
namely {1’b0, X} and {1’b0, Y}, is that a 0 is concatenated on the left of the n-bit vectors
X and Y to create (n+1)-bit vectors. In Verilog the { , } operator is called the concatenate
operator. If A is an m-bit vector and B is a k-bit vector, then {A, B} creates an (m + k)-bit
vector comprising A as its most-significant m bits and B as its least-significant k bits. The
notation 1’b0 represents a one-bit binary number that has the value 0. The reason that the
concatenate operator is used in Figure 3.28 is to cause Sum[n] to be equivalent to the carry
from bit position n − 1. In effect, we created xn = yn = 0 so that

Sum[n] = 0 + 0 + cn−1

module addern (carryin, X, Y, S, carryout, overflow);
parameter n = 32;
input carryin;
input [n– 1:0] X, Y;
output reg [n– 1:0] S;
output reg carryout, overflow;
reg [n:0] Sum;

always @(X, Y, carryin)
begin

Sum = {1’b0, X} + {1’b0, Y} + carryin;
S = Sum[n– 1:0];
carryout = Sum[n];
overflow = (X[n– 1] & Y[n– 1] & S[n– 1]) | ( X[n– 1] & Y[n– 1] & S[n– 1]);

end

endmodule

Figure 3.28 An alternative specification of n-bit adder with carry-out and overflow
signals.
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This example is useful because it provides a simple introduction to the concept of concate-
nation. But we could have written simply

Sum = X + Y + carryin;

Because Sum is an (n + 1)-bit vector, the summation will be performed as if X and Y were
(n + 1)-bit vectors in which 0s are padded on the left.

Another detail to observe from the figure is the statement

S = Sum[n−1:0];

This statement assigns the lower n bits of Sum to the output sum S. The next statement
assigns the carry-out from the addition, Sum[n], to the output signal carryout.

We show the code in Figures 3.27 and 3.28 to illustrate some features of Verilog in the
context of adder design. In general, a given design task can be performed using different
approaches, as we will see throughout the book. Let us attempt another specification of
the n-bit adder. In Figure 3.28 we use an (n + 1)-bit vector, Sum, as an intermediate signal
needed to produce the n bits of S and the carry-out from the adder stage n − 1. This requires
twoVerilog statements that extract the desired bits from Sum. We showed how concatenation
can be used to pad a 0 to vectors X and Y , but pointed out that this is not necessary because
a vector is automatically padded with 0s if it is involved in an arithmetic operation that
produces a result of greater bit size. We can use concatenation more effectively on the left
side of the addition statement by concatenating carryout to the S vector so that

{carryout, S} = X + Y + carryin;

Then there is no need for the Sum signal and the Verilog code is simplified as indicated in
Figure 3.29. Since both figures, 3.28 and 3.29, describe the same behavior of the adder,
the Verilog compiler is likely to generate the same circuit for either figure. The code in
Figure 3.29 is simpler and more elegant.

module addern (carryin, X, Y, S, carryout, overflow);
parameter n = 32;
input carryin;
input [n– 1:0] X, Y;
output reg [n– 1:0] S;
output reg carryout, overflow;

always @(X, Y, carryin)
begin

{carryout, S} = X + Y + carryin;
overflow = (X[n– 1] & Y[n– 1] & S[n– 1]) | ( X[n– 1] & Y[n– 1] & S[n– 1]);

end

endmodule

Figure 3.29 Simplified complete specification of n-bit adder.
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module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output reg s, Cout;

always @(x, y, Cin)
{Cout, s} = x + y + Cin;

endmodule

Figure 3.30 Behavioral specification of a full-adder.

Note that the same approach can be used to specify a full-adder circuit, as shown in
Figure 3.30. Unlike the specifications in Figures 3.18 to 3.21, which define the structure of
the full-adder in terms of basic logic operations, in this case the code describes its behavior
and the Verilog compiler implements the suitable details using the target technology.

3.5.7 Module Hierarchy in Verilog Code

In Section 2.10.3 we introduced hierarchical Verilog code, in which a Verilog module instan-
tiates other Verilog modules as subcircuits. If an instantiated module includes parameters,
then either the default value of a parameter can be used for each instance, or a new value
of the parameter can be specified.

Suppose that we wish to create a circuit consisting of two adders as follows. One adder
generates a 16-bit sum S = A + B, while the other generates an 8-bit sum T = C + D. An
overflow signal must be set to 1 if either of the adders generates an arithmetic overflow. One
way of specifying the desired circuit is presented in Figure 3.31. The top-level module,
adder_hier, instantiates two instances of the addern module in Figure 3.29. Since the
default value of n is 32 for addern, the top-level module has to define the desired values of
16 and 8. The statement

defparam U1.n = 16

sets the value of n to 16 for the addern instance called U1. Similarly, the statement

defparam U2.n = 8

sets the value of n to 8 for the instance named U2.
Note that in Figure 3.31 we added an extra bit to both S and T to hold the carry-out

signals produced by the adders; these signals are useful if the resulting sums are interpreted
as unsigned numbers.

Another way in which the value of n can be specified in the instantiated modules is
shown in Figure 3.32. Here, the value of n is defined by using the Verilog # operator, instead
of using the defparam statement. The code in Figures 3.31 and 3.32 produces identical
results.
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module adder_hier (A, B, C, D, S, T, overflow);
input [15:0] A, B;
input [7:0] C, D;
output [16:0] S;
output [8:0] T;
output overflow;

wire o1, o2; // used for the overflow signals

addern U1 (1’b0, A, B, S[15:0], S[16], o1);
defparam U1.n = 16;
addern U2 (1’b0, C, D, T[7:0], T[8], o2);
defparam U2.n = 8;

assign overflow = o1 | o2;

endmodule

Figure 3.31 An example of setting parameter values in Verilog
code.

module adder_hier (A, B, C, D, S, T, overflow);
input [15:0] A, B;
input [7:0] C, D;
output [16:0] S;
output [8:0] T;
output overflow;

wire o1, o2; // used for the overflow signals

addern #(16) U1 (1’b0, A, B, S[15:0], S[16], o1);
addern #(8) U2 (1’b0, C, D, T[7:0], T[8], o2);

assign overflow = o1 | o2;

endmodule

Figure 3.32 Using the Verilog # operator to set the values of
parameters.

An alternative version of the code in Figure 3.32 is given in Figure 3.33. Here, we
have again used the # operator, but in this case we have explicitly included the name n
by using the syntax #(.n(16)) and #(.n(8)). In the same way that the names of parameters
can be shown explicitly, the code in Figure 3.33 illustrates how the port names of a subcircuit
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module adder_hier (A, B, C, D, S, T, overflow);
input [15:0] A, B;
input [7:0] C, D;
output [16:0] S;
output [8:0] T;
output overflow;

wire o1, o2; // used for the overflow signals

addern #(.n(16)) U1
(

.carryin (1’b0),

.X (A),

.Y (B),

.S (S[15:0]),

.carryout (S[16]),

.overflow (o1)
);
addern #(.n(8)) U2
(

.carryin (1’b0),

.X (C),

.Y (D),

.S (T[7:0]),

.carryout (T[8]),

.overflow (o2)
);

assign overflow = o1 | o2;

endmodule

Figure 3.33 An alternative version of the code in Figure 3.32.

can be included explicitly. In Verilog jargon this style of code is referred to as named
port connections. In this case, the signals can be listed in any order. If the names of port
signals of the instantiated module are not shown explicitly, as in Figures 3.31 and 3.32,
then the order in which signals are listed in an instantiation statement determines how the
connections are made. This is referred to as ordered association of port connections. In
this case, the instantiation statement must list the ports in the order in which they appear
in the instantiated module. The drawback of the style of code in Figure 3.33 is that it is
more verbose. But, it has the advantage of being more explicit and hence less susceptible
to careless errors.
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3.5.8 Representation of Numbers in Verilog Code

Numbers can be given as constants in Verilog code. They can be given as binary (b), octal
(o), hexadecimal (h), or decimal (d) numbers. Their size can be either fixed or unspecified.
For sized numbers the format is

<size_in_bits>’<radix_identifier><significant_digits>

The size is a decimal number that gives the number of bits needed, the radix is identified
using letters b, o, h, or d, and the digits are given in the notation of the radix used. For
example, the decimal number 2217 can be represented using 12 bits as follows

12’b100010101001
12’o4251
12’h8A9
12’d2217

Unsized numbers are given without specifying the size. For example, the decimal number
278 may be given as

’b100010110
’o426
’h116
278

For decimal numbers it is not necessary to give the radix identifier d. When an unsized
number is used in an expression the Verilog compiler gives it a certain size, which is typically
the same as the size of the other operand(s) in the expression. To improve readability, it is
possible to use the underscore character. Instead of writing 12’b100010101001, it is easier
to visualize the same number as 12’b1000_1010_1001.

Negative numbers are represented by placing the minus sign in front. Thus, if −5 is
specified as −4’b101, it will be interpreted as a four-bit 2’s-complement of 5, which is
1011.

The specified size may exceed the number of bits that are actually needed to represent a
given number. In this case, the final representation is padded to the left to yield the required
size. However, if there are more digits than can fit into the number of bits given as the size,
the extra digits will be ignored.

Numbers represented by vectors of different bit sizes can be used in arithmetic opera-
tions. Suppose that A is an eight-bit vector and B is a four-bit vector. Then the statement

S = A + B;

will generate an eight-bit sum vector S. The result will be correct if B is a positive number.
However, if B is a negative number expressed in 2’s complement representation, the result
will be incorrect because 0s will be padded on the left to make B an eight-bit vector for the
purpose of the addition operation. The value of a positive number does not change if 0s are
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appended as the most-significant bits; the value of a negative number does not change if
1s are appended as the most-significant bits. Such replication of the sign bit is called sign
extension. Therefore, for correct operation it is necessary to use a sign-extended version of
B, which can be accomplished with concatenation in the statement

S = A + {4{B[3]}, B};

The notation 4{B[3]} denotes that the bit B[3] is replicated four times; it is equivalent to
writing {B[3], B[3], B[3], B[3]}. This is referred to as the replication operator, which is
discussed in Chapter 4.

3.6 Multiplication

Before we discuss the general issue of multiplication, we should note that a binary number,
B, can be multiplied by 2 simply by adding a zero to the right of its least-significant bit. This
effectively moves all bits of B to the left, and we say that B is shifted left by one bit position.
Thus if B = bn−1bn−2 · · · b1b0, then 2 × B = bn−1bn−2 · · · b1b00. (We have already used
this fact in Section 3.2.3.) Similarly, a number is multiplied by 2k by shifting it left by k bit
positions. This is true for both unsigned and signed numbers.

We should also consider what happens if a binary number is shifted right by k bit
positions. According to the positional number representation, this action divides the
number by 2k . For unsigned numbers the shifting amounts to adding k zeros to the
left of the most-significant bit. For example, if B is an unsigned number, then B ÷ 2 =
0bn−1bn−2 · · · b2b1. Note that bit b0 is lost when shifting to the right. For signed num-
bers it is necessary to preserve the sign. This is done by shifting the bits to the right
and filling from the left with the value of the sign bit. Hence if B is a signed number,
then B ÷ 2 = bn−1bn−1bn−2 · · · b2b1. For instance, if B = 011000 = (24)10, then B ÷ 2 =
001100 = (12)10 and B ÷ 4 = 000110 = (6)10. Similarly, if B = 101000 = −(24)10, then
B ÷ 2 = 110100 = −(12)10 and B ÷ 4 = 111010 = −(6)10. The reader should also ob-
serve that the smaller the positive number, the more 0s there are to the left of the first 1,
while for a negative number there are more 1s to the left of the first 0.

Now we can turn our attention to the general task of multiplication. Two binary numbers
can be multiplied using the same method as we use for decimal numbers. We will focus our
discussion on multiplication of unsigned numbers. Figure 3.34a shows how multiplication
is performed manually, using four-bit numbers. Each multiplier bit is examined from right
to left. If a bit is equal to 1, an appropriately shifted version of the multiplicand is added
to form a partial product. If the multiplier bit is equal to 0, then nothing is added. The
sum of all shifted versions of the multiplicand is the desired product. Note that the product
occupies eight bits.

3.6.1 Array Multiplier for Unsigned Numbers

Figure 3.34b indicates how multiplication may be performed by using multiple adders. In
each step a four-bit adder is used to compute the new partial product. Note that as the
computation progresses, the least-significant bits are not affected by subsequent additions;
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Figure 3.34 Multiplication of unsigned numbers.

hence they can be passed directly to the final product, as indicated by blue arrows. Of
course, these bits are a part of the partial products as well.

The same scheme can be used to design a multiplier circuit. We will stay with four-
bit numbers to keep the discussion simple. Let the multiplicand, multiplier, and product
be denoted as M = m3m2m1m0, Q = q3q2q1q0, and P = p7p6p5p4p3p2p1p0, respectively.
Figure 3.34c shows the required operations. Partial product 0 is obtained by using the AND
of q0 with each bit of M , which produces 0 if q0 = 0 and M if q0 = 1. Thus

PP0 = m3q0 m2q0 m1q0 m0q0

Partial product 1, PP1, is generated by adding PP0 to a shifted version of M that is ANDed
with q1. Similarly, partial product PP2 is generated using the AND of q2 with M shifted
by another bit position and adding to PP1, and so on.
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Figure 3.35 A 4 × 4 multiplier circuit.

A circuit that implements the preceding operations is arranged in an array, as shown in
Figure 3.35. In this figure the AND gates and full-adders that produce the partial products
are shown in blue, in the same way as the blue highlighted rows in Figure 3.34c. The
full-adders are connected to form ripple-carry adders. It is possible to design even faster
multipliers by using other types of adders [1].

3.6.2 Multiplication of Signed Numbers

Multiplication of unsigned numbers illustrates the main issues involved in the design of
multiplier circuits. Multiplication of signed numbers is somewhat more complex.

If the multiplier operand is positive, it is possible to use essentially the same scheme as
for unsigned numbers. For each bit of the multiplier operand that is equal to 1, a properly
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shifted version of the multiplicand must be added to the partial product. The multiplicand
can be either positive or negative.

Since shifted versions of the multiplicand are added to the partial products, it is
important to ensure that the numbers involved are represented correctly. For example,
if the two right-most bits of the multiplier are both equal to 1, then the first addition
must produce the partial product PP1 = M + 2M , where M is the multiplicand. If M =
mn−1mn−2 · · · m1m0, then PP1 = mn−1mn−2 · · · m1m0 + mn−1mn−2 · · · m1m00. The adder
that performs this addition comprises circuitry that adds two operands of equal length.
Since shifting the multiplicand to the left, to generate 2M , results in one of the operands
having n + 1 bits, the required addition has to be performed using the second operand,
M , represented also as an (n + 1)-bit number. An n-bit signed number is represented
as an (n + 1)-bit number by using sign extension, that is, by replicating the sign bit as
the new left-most bit. Thus M = mn−1mn−2 · · · m1m0 is represented using (n + 1) bits as
M = mn−1mn−1mn−2 · · · m1m0.

When a shifted version of the multiplicand is added to a partial product, overflow has
to be avoided. Hence the new partial product must be larger by one extra bit. Figure
3.36a illustrates the process of multiplying two positive numbers. The sign-extended bits
are shown in blue. Part (b) of the figure involves a negative multiplicand. Note that the
resulting product has 2n bits in both cases.

For a negative multiplier operand, it is possible to convert both the multiplier and the
multiplicand into their 2’s complements because this will not change the value of the result.
Then the scheme for a positive multiplier can be used.

We have presented a relatively simple scheme for multiplication of signed numbers.
There exist other techniques that are more efficient but also more complex. We will not
pursue these techniques, but an interested reader may consult reference [1].

We have discussed circuits that perform addition, subtraction, and multiplication. An-
other arithmetic operation that is needed in computer systems is division. Circuits that
perform division are more complex; we will present an example in Chapter 7. Various
techniques for performing division are usually discussed in books on the subject of com-
puter organization and can be found in references [1, 2].

3.7 Other Number Representations

In the previous sections we dealt with binary integers represented in the positional number
representation. Other types of numbers are also used in digital systems. In this section we
will discuss briefly three other types: fixed-point, floating-point, and binary-coded decimal
numbers.

3.7.1 Fixed-Point Numbers

Afixed-point number consists of integer and fraction parts. It can be written in the positional
number representation as

B = bn−1bn−2 · · · b1b0.b−1b−2 · · · b−k
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–

–

(a) Positive multiplicand

(b) Negative multiplicand

Figure 3.36 Multiplication of signed numbers.

The value of the number is

V (B) =
n−1∑

i=−k

bi × 2i

The position of the radix point is assumed to be fixed; hence the name fixed-point number.
If the radix point is not shown, then it is assumed to be to the right of the least-significant
digit, which means that the number is an integer.

Logic circuits that deal with fixed-point numbers are essentially the same as those used
for integers. We will not discuss them separately.
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3.7.2 Floating-Point Numbers

Fixed-point numbers have a range that is limited by the significant digits used to represent
the number. For example, if we use eight digits and a sign to represent decimal integers,
then the range of values that can be represented is 0 to ±99999999. If eight digits are
used to represent a fraction, then the representable range is 0.00000001 to ±0.99999999.
In scientific applications it is often necessary to deal with numbers that are very large or
very small. Instead of using the fixed-point representation, which would require many
significant digits, it is better to use the floating-point representation in which numbers are
represented by a mantissa comprising the significant digits and an exponent of the radix R.
The format is

Mantissa × RExponent

The numbers are often normalized, such that the radix point is placed to the right of the first
nonzero digit, as in 5.234 × 1043 or 6.31 × 10−28.

Binary floating-point representation has been standardized by the Institute of Electrical
and Electronic Engineers (IEEE) [3]. Two sizes of formats are specified in this standard—
a single-precision 32-bit format and a double-precision 64-bit format. Both formats are
illustrated in Figure 3.37.

Single-Precision Floating-Point Format
Figure 3.37a depicts the single-precision format. The left-most bit is the sign bit—0

for positive and 1 for negative numbers. There is an 8-bit exponent field, E, and a 23-bit
mantissa field, M . The exponent is with respect to the radix 2. Because it is necessary to

Sign

32 bits

23 bits of mantissa
excess-127
exponent

8-bit

52 bits of mantissa11-bit excess-1023
exponent

64 bits

Sign

S M

S M

(a) Single precision

(b) Double precision

E

+

E

0 denotes
–1 denotes

Figure 3.37 IEEE Standard floating-point formats.
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be able to represent both very large and very small numbers, the exponent can be either
positive or negative. Instead of simply using an 8-bit signed number as the exponent, which
would allow exponent values in the range −128 to 127, the IEEE standard specifies the
exponent in the excess-127 format. In this format the value 127 is added to the value of the
actual exponent so that

Exponent = E − 127

In this way E becomes a positive integer. This format is convenient for adding and subtract-
ing floating-point numbers because the first step in these operations involves comparing the
exponents to determine whether the mantissas must be appropriately shifted to add/subtract
the significant bits. The range of E is 0 to 255. The extreme values of E = 0 and E = 255
are taken to denote the exact zero and infinity, respectively. Therefore, the normal range of
the exponent is −126 to 127, which is represented by the values of E from 1 to 254.

The mantissa is represented using 23 bits. The IEEE standard calls for a normalized
mantissa, which means that the most-significant bit is always equal to 1. Thus it is not
necessary to include this bit explicitly in the mantissa field. Therefore, if M is the bit vector
in the mantissa field, the actual value of the mantissa is 1.M , which gives a 24-bit mantissa.
Consequently, the floating-point format in Figure 3.37a represents the number

Value = ±1.M × 2E−127

The size of the mantissa field allows the representation of numbers that have the precision
of about seven decimal digits. The exponent field range of 2−126 to 2127 corresponds to
about 10±38.

Double-Precision Floating-Point Format
Figure 3.37b shows the double-precision format, which uses 64 bits. Both the exponent

and mantissa fields are larger. This format allows greater range and precision of numbers.
The exponent field has 11 bits, and it specifies the exponent in the excess-1023 format,
where

Exponent = E − 1023

The range of E is 0 to 2047, but again the values E = 0 and E = 2047 are used to indicate
the exact zero and infinity, respectively. Thus the normal range of the exponent is −1022
to 1023, which is represented by the values of E from 1 to 2046.

The mantissa field has 52 bits. Since the mantissa is assumed to be normalized, its
actual value is again 1.M . Therefore, the value of a floating-point number is

Value = ±1.M × 2E−1023

This format allows representation of numbers that have the precision of about 16 decimal
digits and the range of approximately 10±308.

Arithmetic operations using floating-point operands are significantly more complex
than signed integer operations. Because this is a rather specialized domain, we will not
elaborate on the design of logic circuits that can perform such operations. For a more
complete discussion of floating-point operations, the reader may consult references [1, 2].
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3.7.3 Binary-Coded-Decimal Representation

In digital systems it is possible to represent decimal numbers simply by encoding each digit
in binary form. This is called the binary-coded-decimal (BCD) representation. Because
there are 10 digits to encode, it is necessary to use four bits per digit. Each digit is encoded
by the binary pattern that represents its unsigned value, as shown in Table 3.3. Note that
only 10 of the 16 available patterns are used in BCD, which means that the remaining 6
patterns should not occur in logic circuits that operate on BCD operands; these patterns
are usually treated as don’t-care conditions in the design process. BCD representation was
used in some early computers as well as in many handheld calculators. Its main virtue is
that it provides a format that is convenient when numerical information is to be displayed
on a simple digit-oriented display. Its drawbacks are complexity of circuits that perform
arithmetic operations and the fact that six of the possible code patterns are wasted.

Even though the importance of BCD representation has diminished, it is still encoun-
tered. To give the reader an indication of the complexity of the required circuits, we will
consider BCD addition in some detail.

BCD Addition
The addition of two BCD digits is complicated by the fact that the sum may exceed

9, in which case a correction will have to be made. Let X = x3x2x1x0 and Y = y3y2y1y0

represent the two BCD digits and let S = s3s2s1s0 be the desired sum digit, S = X + Y .
Obviously, if X + Y ≤ 9, then the addition is the same as the addition of 2 four-bit unsigned
binary numbers. But, if X + Y > 9, then the result requires two BCD digits. Moreover,
the four-bit sum obtained from the four-bit adder may be incorrect.

There are two cases where some correction has to be made: when the sum is greater
than 9 but no carry-out is generated using four bits, and when the sum is greater than 15 so

Table 3.3 Binary-coded
decimal digits.

Decimal digit BCD code

0 0000

1 0001

2 0010

3 0011

4 0100

5 0101

6 0110

7 0111

8 1000

9 1001
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+

1 1 0 0

0 1 1 1
0 1 0 1+

X
Y

Z

+
7
5

12
0 1 1 0+

1 0 0 1 0carry

+

1 0 0 0 1

1 0 0 0
1 0 0 1+

X
Y

Z

+
8
9

17
0 1 1 0+

1 0 1 1 1carry

S = 2

S = 7

Figure 3.38 Addition of BCD digits.

that a carry-out is generated using four bits. Figure 3.38 illustrates these cases. In the first
case the four-bit addition yields Z = 7 + 5 = 12. To obtain a correct BCD result, we must
generate S = 2 and a carry-out of 1. The necessary correction is apparent from the fact
that the four-bit addition is a modulo-16 scheme, whereas decimal addition is a modulo-10
scheme. Therefore, a correct decimal digit can be generated by adding 6 to the result of
four-bit addition whenever this result exceeds 9. Thus we can arrange the computation as
follows

Z = X + Y

If Z ≤ 9, then S = Z and carry-out = 0

if Z > 9, then S = Z + 6 and carry-out = 1

The second example in Figure 3.38 shows what happens when X + Y > 15. In this case
Z = 17, which is a five-bit binary number. Note that the four least-significant bits, Z3−0,
represent the value 1, while Z4 represents the value 16. To generate a correct BCD result,
it is again necessary to add 6 to the intermediate sum Z3−0 to produce the value 7. The bit
Z4 is the carry to the next digit position.

Figure 3.39 gives a block diagram of a one-digit BCD adder that is based on this
scheme. The block that detects whether Z > 9 produces an output signal, Adjust, which
controls the multiplexer that provides the correction when needed. A second four-bit adder
generates the corrected sum bits. Since whenever the adjustment of 6 is made there is a
carry to the next digit position, cout is just equal to the Adjust signal.

The one-digit BCD adder can be specified in Verilog code by describing its behavior
as shown in Figure 3.40. Inputs X and Y , and output S are defined as four-bit numbers.
The intermediate sum, Z , is defined as a five-bit number. The if-else statement is used to
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4-bit adder

Detect if

MUX

4-bit adder

sum 9>

6 0

X Y

cin
carry-out

Adjust

S

0

cout

Z3 0–Z4

Figure 3.39 Block diagram for a one-digit BCD adder.

module bcdadd (Cin, X, Y, S, Cout);
input Cin;
input [3:0] X, Y;
output reg [3:0] S;
output reg Cout;
reg [4:0] Z;

always @(X, Y, Cin)
begin

Z = X + Y + Cin;
if (Z < 10)

{Cout, S} = Z;
else

{Cout, S} = Z + 6;
end

endmodule

Figure 3.40 Verilog code for a one-digit BCD adder.
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provide the adjustment explained above; hence it is not necessary to use an explicit Adjust
signal.

If we wish to derive a circuit to implement the block diagram in Figure 3.39 by hand,
instead of by using Verilog, then the following approach can be used. To define the Adjust
function, we can observe that the intermediate sum will exceed 9 if the carry-out from the
four-bit adder is equal to 1, or if z3 = 1 and either z2 or z1 (or both) are equal to 1. Hence
the logic expression for this function is

Adjust = Carry-out + z3(z2 + z1)

Instead of implementing another complete four-bit adder to perform the correction, we can
use a simpler circuit because the addition of constant 6 does not require the full capability
of a four-bit adder. Note that the least-significant bit of the sum, s0, is not affected at all;
hence s0 = z0. A two-bit adder may be used to develop bits s2 and s1. Bit s3 is the same as
z3 if the carry-out from the two-bit adder is 0, and it is equal to z3 if this carry-out is equal
to 1. A complete circuit that implements this scheme is shown in Figure 3.41. Using the

cout

Four-bit adder

Two-bit adder

s3 s2 s1 s0

z3 z2 z1 z0

x3 x2 x1 x0 y3 y2 y1 y0

cin

Figure 3.41 Circuit for a one-digit BCD adder.
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one-digit BCD adder as a basic block, it is possible to build larger BCD adders in the same
way as a binary full-adder is used to build larger ripple-carry binary adders.

Subtraction of BCD numbers can be handled with the radix-complement approach. Just
as we use 2’s complement representation to deal with negative binary numbers, we can use
10’s complement representation to deal with decimal numbers. We leave the development
of such a scheme as an exercise for the reader (see Problem 3.19).

3.8 Examples of Solved Problems

This section presents some typical problems that the reader may encounter and shows how
such problems can be solved.

Example 3.6 Problem: Convert the decimal number 14959 into a hexadecimal number.

Solution: An integer is converted into the hexadecimal representation by successive divi-
sions by 16, such that in each step the remainder is a hex digit. To see why this is true,
consider a four-digit number H = h3h2h1h0. Its value is

V = h3 × 163 + h2 × 162 + h1 × 16 + h0

If we divide this by 16, we obtain

V

16
= h3 × 162 + h2 × 16 + h1 + h0

16

Thus, the remainder gives h0. Figure 3.42 shows the steps needed to perform the conversion
(14959)10 = (3A6F)16.

Convert (14959)10

Remainder Hex digit
14959 ÷ 16 = 934 15 F LSB

934 ÷ 16 = 58 6 6
58 ÷ 16 = 3 10 A
3 ÷ 16 = 0 3 3 MSB

Result is (3A6F)16

Figure 3.42 Conversion from decimal to hexadecimal.
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Example 3.7Problem: Convert the decimal fraction 0.8254 into binary representation.

Solution: As indicated in Section 3.7.1, a binary fraction is represented as the bit pattern
B = 0.b−1b−2 · · · b−m and its value is

V = b−1 × 2−1 + b−2 × 2−2 + · · · + b−m × 2−m

Multiplying this expression by 2 gives

b−1 + b−2 × 2−1 + · · · + b−m × 2−(m−1)

Here, the left-most term is the first bit to the right of the radix point. The remaining terms
constitute another binary fraction which can be manipulated in the same way. Therefore,
to convert a decimal fraction into a binary fraction, we multiply the decimal number by
2 and set the computed bit to 0 if the product is less than 1 and set it to 1 if the product
is greater than or equal to 1. We repeat this calculation until a sufficient number of bits
are obtained to meet the desired accuracy. Note that it may not be possible to represent a
decimal fraction with a binary fraction that has exactly the same value. Figure 3.43 shows
the required computation that yields (0.8254)10 = (0.11010011 . . .)2.

0.8254 2× 1.6508=

0.6508 2× 1.3016=

0.3016 2× 0.6032=

0.6032 2× 1.2064=

0.2064 2× 0.4128=

0.4128 2× 0.8256=

0.8256 2× 1.6512=

1 MSB

1

0

1

0

0

Convert

0.8254( )10 0.11010011…( )2=

0.6512 2× 1.3024= 1 LSB

0.8254( )10

1

Figure 3.43 Conversion of fractions from decimal to binary.
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Example 3.8 Problem: Convert the decimal fixed point number 214.45 into a binary fixed point number.

Solution: For the integer part perform successive division by 2 as illustrated in Fig-
ure 1.6. For the fractional part perform successive multiplication by 2 as described in Ex-
ample 3.7. The complete computation is presented in Figure 3.44, producing (214.45)10 =
(11010110.0111001 . . .)2.

Example 3.9 Problem: In computer computations it is often necessary to compare numbers. Two four-bit
signed numbers, X = x3x2x1x0 and Y = y3y2y1y0, can be compared by using the subtractor
circuit in Figure 3.45, which performs the operation X − Y . The three outputs denote the
following:

• Z = 1 if the result is 0; otherwise Z = 0

• N = 1 if the result is negative; otherwise N = 0

• V = 1 if arithmetic overflow occurs; otherwise V = 0

Show how Z , N , and V can be used to determine the cases X = Y , X < Y , X ≤ Y , X > Y ,
and X ≥ Y .

Solution: Consider first the case X < Y , where the following possibilities may arise:

• If X and Y have the same sign there will be no overflow, hence V = 0. Then for both
positive and negative X and Y the difference will be negative (N = 1).

• If X is negative and Y is positive, the difference will be negative (N = 1) if there is
no overflow (V = 0); but the result will be positive (N = 0) if there is overflow (V = 1).

Therefore, if X < Y then N ⊕ V = 1.
The case X = Y is detected by Z = 1. Then, X ≤ Y is detected by Z + (N ⊕ V ) = 1.

The last two cases are just simple inverses: X > Y if Z + (N ⊕ V ) = 1 and X ≥ Y if
N ⊕ V = 1.

Example 3.10 Problem: Write Verilog code to specify the circuit in Figure 3.45.

Solution: We can specify the circuit using the approach given in Figure 3.23, as indicated
in Figure 3.46. Note that the statement

assign Z = !S;
will produce 1 only if S = s3s2s1s0 = 0000. Thus, it represents the four-bit NOR function

Z = s3 + s2 + s1 + s0

Instantiating each full adder separately becomes awkward when large circuits are in-
volved, as would be the case if the comparator had 32-bit operands. An alternative is to use
the generic specification presented in Figure 3.24, as shown in Figure 3.47.
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214
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---+=
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--------- 53 1
2
---+=

53
2
------ 26 1

2
---+=

26
2
------ 13 0

2
---+=

13
2
------ 6 1

2
---+=

6
2
--- 3 0

2
---+=

3
2
--- 1 1

2
---+=

1
2
--- 0 1

2
---+=

0 LSB

1 MSB

1

1

0

1

0

1

0.45 2× 0.90=

0.90 2× 1.80=

0.80 2× 1.60=

0.60 2× 1.20=

0.20 2× 0.40=

0.40 2× 0.80=

0.80 2× 1.60=

0 MSB

1 LSB

1

1

1

0

0

Convert

214.45( )10 11010110.0111001…( )2=

214.45( )10

Figure 3.44 Conversion of fixed point numbers from decimal to
binary.
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Figure 3.45 A comparator circuit.

module comparator (X, Y, V, N, Z);
input [3:0] X, Y;
output V, N, Z;
wire [3:0] S;
wire [4:1] C;

fulladd stage0 (1’b1, X[0], Y[0], S[0], C[1]);
fulladd stage1 (C[1], X[1], Y[1], S[1], C[2]);
fulladd stage2 (C[2], X[2], Y[2], S[2], C[3]);
fulladd stage3 (C[3], X[3], Y[3], S[3], C[4]);
assign V = C[4] C[3];
assign N = S[3];
assign Z = !S;

endmodule

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

assign s = x y Cin;
assign Cout = (x & y) (x & Cin) (y & Cin);

endmodule

Figure 3.46 Structural Verilog code for the comparator circuit.
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module comparator (X, Y, V, N, Z);
parameter n = 32;
input [n –1:0] X, Y;
output reg V, N, Z;
reg [n –1:0] S;
reg [n:0] C;
integer k;

always @(X, Y)
begin

C[0] = 1’b1;
for (k = 0; k < n; k = k+1)
begin

S[k] = X[k] Y[k] C[k];
C[k+1] = (X[k] & Y[k]) (X[k] & C[k]) ( Y[k] & C[k]);

end
V = C[n] C[n–1];
N = S[n –1];
Z = !S;

end

endmodule

Figure 3.47 Generic Verilog code for the comparator circuit.

Example 3.11Problem: Figure 3.35 depicts a four-bit multiplier circuit. Each row in this circuit consists
of four full-adder (FA) blocks connected in a ripple-carry configuration. The delay caused
by the carry signals rippling through the rows has a significant impact on the time needed
to generate the output product. In an attempt to speed up the circuit, we may use the
arrangement in Figure 3.48. Here, the carries in a given row are “saved” and included in
the next row at the correct bit position. Then, in the first row the full-adders can be used
to add three properly shifted bits of the multiplicand as selected by the multiplier bits. For
example, in bit position 2 the three inputs are m2q0, m1q1, and m0q2. In the last row it is
still necessary to use the ripple-carry adder. A circuit that consists of an array of full-adders
connected in this manner is called a carry-save adder array.

What is the total delay of the circuit in Figure 3.48 compared to that of the circuit in
Figure 3.35?

Solution: In the circuit in Figure 3.35 the longest path is through the right-most two full-
adders in the top row, followed by the two right-most FAs in the second row, and then
through all four FAs in the bottom row. Hence this delay is eight times the delay through a
full-adder block. In addition, there is the AND-gate delay needed to form the inputs to the
first FA in the top row. These combined delays are the critical delay, which determines the
speed of the multiplier circuit.
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FA FA FAFA

FA FA FAFA

FA FA FAFA

p7 p6 p5 p4 p3 p1 p0p2

0 m3q0
m3q1 m2q1
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m1q1 m0q1

m2q3 m1q3 m0q3 0

0
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Figure 3.48 Multiplier carry-save array.

In the circuit in Figure 3.48, the longest path is through the right-most FAs in the first
and second rows, followed by all four FAs in the bottom row. Therefore, the critical delay
is six times the delay through a full-adder block plus the AND-gate delay needed to form
the inputs to the first FA in the top row.

Problems

Answers to problems marked by an asterisk are given at the back of the book.

*3.1 Determine the decimal values of the following unsigned numbers:
(a) (0111011110)2

(b) (1011100111)2

(c) (3751)8

(d) (A25F)16

(e) (F0F0)16

*3.2 Determine the decimal values of the following 1’s complement numbers:
(a) 0111011110
(b) 1011100111
(c) 1111111110

*3.3 Determine the decimal values of the following 2’s complement numbers:
(a) 0111011110
(b) 1011100111
(c) 1111111110
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*3.4 Convert the decimal numbers 73, 1906, −95, and −1630 into signed 12-bit numbers in the
following representations:
(a) Sign and magnitude
(b) 1’s complement
(c) 2’s complement

3.5 Perform the following operations involving eight-bit 2’s complement numbers and indicate
whether arithmetic overflow occurs. Check your answers by converting to decimal sign-
and-magnitude representation.

00110110 01110101 11011111
+ 01000101 + 11011110 + 10111000

00110110 01110101 11010011
− 00101011 − 11010110 − 11101100

3.6 Prove that the XOR operation is associative, which means that xi ⊕ ( yi ⊕ zi) = (xi ⊕ yi) ⊕
zi.

3.7 Show that the circuit in Figure 3.4 implements the full-adder specified in Figure 3.3a.

3.8 Prove the validity of the simple rule for finding the 2’s complement of a number, which
was presented in Section 3.3. Recall that the rule states that scanning a number from right
to left, all 0s and the first 1 are copied; then all remaining bits are complemented.

3.9 Prove the validity of the expression Overflow = cn ⊕ cn−1 for addition of n-bit signed
numbers.

3.10 Verify that a carry-out signal, ck , from bit position k − 1 of an adder circuit can be generated
as ck = xk ⊕ yk ⊕ sk , where xk and yk are inputs and sk is the sum bit.

*3.11 Consider the circuit in Figure P3.1. Can this circuit be used as one stage in a ripple-carry
adder? Discuss the pros and cons. The operation of transistors shown in the figure is
described in Appendix B.

*3.12 Determine the number of gates needed to implement an n-bit carry-lookahead adder, as-
suming no fan-in constraints. Use AND, OR, and XOR gates with any number of inputs.

*3.13 Determine the number of gates needed to implement an eight-bit carry-lookahead adder
assuming that the maximum fan-in for the gates is four.

3.14 In Figure 3.17 we presented the structure of a hierarchical carry-lookahead adder. Show
the complete circuit for a four-bit version of this adder, built using 2 two-bit blocks.

3.15 What is the critical delay path in the multiplier in Figure 3.35? What is the delay along this
path in terms of the number of gates?

3.16 Write a Verilog module to describe the 4 × 4 multiplier shown in Figure 3.35. Synthesize
a circuit from the code and verify its functional correctness.

*3.17 Consider the Verilog code in Figure P3.2. Given the relationship between the signals IN and
OUT, what is the functionality of the circuit described by the code? Comment on whether
or not this code represents a good style to use for the functionality that it represents.

3.18 Design a circuit that generates the 9’s complement of a BCD digit. Note that the 9’s
complement of d is 9 − d .
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ci 1+

gi

pixi

yi

ci

si

VDD

Figure P3.1 Circuit for Problem 3.11.

module problem3_17 (IN, OUT);
input [3:0] IN;
output reg [3:0] OUT;

always @(IN)
if (IN == 4’b0101) OUT = 4’b0001;
else if (IN == 4’b0110) OUT = 4’b0010;
else if (IN == 4’b0111) OUT = 4’b0011;
else if (IN == 4’b1001) OUT = 4’b0010;
else if (IN == 4’b1010) OUT = 4’b0100;
else if (IN == 4’b1011) OUT = 4’b0110;
else if (IN == 4’b1101) OUT = 4’b0011;
else if (IN == 4’b1110) OUT = 4’b0110;
else if (IN == 4’b1111) OUT = 4’b1001;
else OUT = 4’b0000;

endmodule

Figure P3.2 The code for Problem 3.17.
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3.19 Derive a scheme for performing subtraction using BCD operands. Show a block diagram
for the subtractor circuit. Hint: Subtraction can be performed easily if the operands are
in the 10’s complement (radix complement) representation. In this representation the sign
digit is 0 for a positive number and 9 for a negative number.

3.20 Write complete Verilog code for the circuit that you derived in Problem 3.19.

*3.21 Suppose that we want to determine how many of the bits in a three-bit unsigned number
are equal to 1. Design the simplest circuit that can accomplish this task.

3.22 Repeat Problem 3.21 for a six-bit unsigned number.

3.23 Repeat Problem 3.21 for an eight-bit unsigned number.

3.24 Show a graphical interpretation of three-digit decimal numbers, similar to Figure 3.11. The
left-most digit is 0 for positive numbers and 9 for negative numbers. Verify the validity of
your answer by trying a few examples of addition and subtraction.

3.25 In a ternary number system there are three digits: 0, 1, and 2. Figure P3.3 defines a ternary
half-adder. Design a circuit that implements this half-adder using binary-encoded signals,
such that two bits are used for each ternary digit. Let A = a1a0, B = b1b0, and Sum = s1s0;
note that Carry is just a binary signal. Use the following encoding: 00 = (0)3, 01 = (1)3,
and 10 = (2)3. Minimize the cost of the circuit.

A B Carry Sum

0 0 0 0

0 1 0 1

0 2 0 2

1 0 0 1

1 1 0 2

1 2 1 0

2 0 0 2

2 1 1 0

2 2 1 1

Figure P3.3 Ternary half-adder.

3.26 Design a ternary full-adder circuit, using the approach described in Problem 3.25.
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3.27 Consider the subtractions 26 − 27 = 99 and 18 − 34 = 84. Using the concepts presented
in Section 3.3.4, explain how these answers (99 and 84) can be interpreted as the correct
signed results of these subtractions.
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c h a p t e r

4
Combinational-Circuit Building

Blocks

Chapter Objectives

In this chapter you will learn about:

• Commonly used combinational subcircuits

• Multiplexers, which can be used for selection of signals and for implementation
of general logic functions

• Circuits used for encoding, decoding, and code-conversion purposes

• Key Verilog constructs used to define combinational circuits
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Previous chapters have introduced the basic techniques for design of logic circuits. In practice, a few types
of logic circuits are often used as building blocks in larger designs. This chapter discusses a number of these
blocks and gives examples of their use. The chapter also includes a major section on Verilog, which describes
several key features of the language.

4.1 Multiplexers

Multiplexers were introduced briefly in Chapter 2. A multiplexer circuit has a number
of data inputs, one or more select inputs, and one output. It passes the signal value on
one of the data inputs to the output. The data input is selected by the values of the select
inputs. Figure 4.1 shows a 2-to-1 multiplexer. Part (a) gives the symbol commonly used.
The select input, s, chooses as the output of the multiplexer either input w0 or w1. The
multiplexer’s functionality can be described in the form of a truth table as shown in part (b)

of the figure. Part (c) gives a sum-of-products implementation of the 2-to-1 multiplexer.
Part (d) illustrates how it can be constructed with transmission gates which are discussed
in Appendix B.

Figure 4.2a depicts a larger multiplexer with four data inputs, w0, . . . , w3, and two
select inputs, s1 and s0. As shown in the truth table in part (b) of the figure, the two-bit
number represented by s1s0 selects one of the data inputs as the output of the multiplexer.

(a) Graphical symbol

f

s

w0

w1

0

1

(b) Truth table

0
1

f

fs

w0

w1

(c) Sum-of-products circuit

s

w0

w1

f

s

w0

w1

(d) Circuit with transmission gates

Figure 4.1 A 2-to-1 multiplexer.
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(a) Graphical symbol

f

s1

w0
w1

00

01

(b) Truth table

w0
w1

s0

w2
w3

10

11

0
0
1
1

1
0
1

fs1

0

s0

w2
w3

f

(c) Circuit

s1

w0

w1

s0

w2

w3

Figure 4.2 A 4-to-1 multiplexer.

A sum-of-products implementation of the 4-to-1 multiplexer appears in Figure 4.2c. It
realizes the multiplexer function

f = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3

It is possible to build larger multiplexers using the same approach. Usually, the num-
ber of data inputs, n, is an integer power of two. A multiplexer that has n data inputs,
w0, . . . , wn−1, requires � log2n � select inputs. Larger multiplexers can also be constructed
from smaller multiplexers. For example, the 4-to-1 multiplexer can be built using three
2-to-1 multiplexers as illustrated in Figure 4.3. Figure 4.4 shows how a 16-to-1 multiplexer
is constructed with five 4-to-1 multiplexers.
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s0

w0

w1

0

1

w2

w3

0

1

f
0

1

s1

Figure 4.3 Using 2-to-1 multiplexers to build a 4-to-1
multiplexer.

w8

w11

s1

w0

s0

w3

w4

w7

w12

w15

s3

s2

f

Figure 4.4 A 16-to-1 multiplexer.
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x1 0

1

x2 0

1

s

y1

y2

x1

x2

y1

y2

(a) A 2x2 crossbar switch

(b) Implementation using multiplexers

s

Figure 4.5 A practical application of multiplexers.

Example 4.1Figure 4.5 shows a circuit that has two inputs, x1 and x2, and two outputs, y1 and y2. As
indicated by the blue lines, the function of the circuit is to allow either of its inputs to be
connected to either of its outputs, under the control of another input, s. A circuit that has
n inputs and k outputs, whose sole function is to provide a capability to connect any input
to any output, is usually referred to as an n×k crossbar switch. Crossbars of various sizes
can be created, with different numbers of inputs and outputs. When there are two inputs
and two outputs, it is called a 2×2 crossbar.

Figure 4.5b shows how the 2×2 crossbar can be implemented using 2-to-1 multiplexers.
The multiplexer select inputs are controlled by the signal s. If s = 0, the crossbar connects
x1 to y1 and x2 to y2, while if s = 1, the crossbar connects x1 to y2 and x2 to y1. Crossbar
switches are useful in many practical applications in which it is necessary to be able to
connect one set of wires to another set of wires, where the connection pattern changes from
time to time.

4.1.1 Synthesis of Logic Functions Using Multiplexers

Multiplexers are useful in many practical applications, such as the one described above.
They can also be used in a more general way to synthesize logic functions. Consider the
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(a) Implementation using a 4-to-1 multiplexer

f

w1

0
1

0
1

w2

1
0

0
0
1
1

1
0
1

fw1

0

w2

1
0

(b) Modified truth table

0
1

0
0
1
1

1
0
1

fw1

0

w2

1
0

f
w2

w1

0
1

fw1

w2

w2

(c) Circuit

Figure 4.6 Synthesis of a logic function using mutiplexers.

example in Figure 4.6a. The truth table defines the function f = w1 ⊕ w2. This function
can be implemented by a 4-to-1 multiplexer in which the values of f in each row of the
truth table are connected as constants to the multiplexer data inputs. The multiplexer select
inputs are driven by w1 and w2. Thus for each valuation of w1w2, the output f is equal to
the function value in the corresponding row of the truth table.

The above implementation is straightforward, but it is not very efficient. A better
implementation can be derived by manipulating the truth table as indicated in Figure 4.6b,
which allows f to be implemented by a single 2-to-1 multiplexer. One of the input signals,
w1 in this example, is chosen as the select input of the 2-to-1 multiplexer. The truth table
is redrawn to indicate the value of f for each value of w1. When w1 = 0, f has the same
value as input w2, and when w1 = 1, f has the value of w2. The circuit that implements
this truth table is given in Figure 4.6c. This procedure can be applied to synthesize a circuit
that implements any logic function.
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w3

w3

f

w1

0

w2

1

(a) Modified truth table

(b) Circuit

00
0
1
1

1
0
1

fw1

0

w2

1

0 0

0 1

1 0

1 1

0

0

0

1

0 0

0 1

1 0

1 1

0

1

1

1

w1 w2 w3 f

0

0

0

0

1

1

1

1

w3

Figure 4.7 Implementation of the three-input majority function
using a 4-to-1 multiplexer.

Example 4.2Figure 4.7a gives the truth table for the three-input majority function, and it shows how the
truth table can be modified to implement the function using a 4-to-1 multiplexer. Any two
of the three inputs may be chosen as the multiplexer select inputs. We have chosen w1 and
w2 for this purpose, resulting in the circuit in Figure 4.7b.

Example 4.3Figure 4.8a indicates how the function f = w1 ⊕ w2 ⊕ w3 can be implemented using 2-to-1
multiplexers. When w1 = 0, f is equal to the XOR of w2 and w3, and when w1 = 1, f
is the XNOR of w2 and w3. Part (b) of the figure gives a corresponding circuit. The left
multiplexer in the circuit produces w2 ⊕ w3, using the result from Figure 4.6, and the right
multiplexer uses the value of w1 to select either w2 ⊕ w3 or its complement. Note that we
could have derived this circuit directly by writing the function as f = (w2 ⊕ w3) ⊕ w1.

Figure 4.9 gives an implementation of the three-input XOR function using a 4-to-1
multiplexer. Choosing w1 and w2 for the select inputs results in the circuit shown.
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(a) Truth table

0 0
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0
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(b) Circuit

w
�

Figure 4.8 Three-input XOR implemented with 2-to-1 multiplexers.

f

w1

w2

(a) Truth table (b) Circuit

0 0

0 1

1 0

1 1

0

1

1

0

0 0

0 1

1 0

1 1

1

0

0

1

w1 w2 w3 f

0

0

0

0

1

1

1

1

w3

w3

w3

w3

w3

Figure 4.9 Three-input XOR implemented with a 4-to-1 multiplexer.

4.1.2 Multiplexer Synthesis Using Shannon’s Expansion

Figures 4.6 through 4.9 illustrate how truth tables can be interpreted to implement logic
functions using multiplexers. In each case the inputs to the multiplexers are the constants
0 and 1, or some variable or its complement. Besides using such simple inputs, it is
possible to connect more complex circuits as inputs to a multiplexer, allowing functions to
be synthesized using a combination of multiplexers and other logic gates. Suppose that we
want to implement the three-input majority function in Figure 4.7 using a 2-to-1 multiplexer



December 31, 2012 09:12 vra80547_ch04 Sheet number 9 Page number 197 magenta black

4.1 Multiplexers 197

(a) Truth table

0 0

0 1

1 0

1 1

0

0

0

1

0 0

0 1

1 0

1 1

0

1

1

1

w1 w2 w3 f

0

0

0

0

1

1

1

1

(b) Circuit

0
1

fw1

w2w3

w2 w3+

f

w3

w1w2

Figure 4.10 The three-input majority function implemented using a
2-to-1 multiplexer.

in this way. Figure 4.10 shows an intuitive way of realizing this function. The truth table
can be modified as shown on the right. If w1 = 0, then f = w2w3, and if w1 = 1, then
f = w2 + w3. Using w1 as the select input for a 2-to-1 multiplexer leads to the circuit in
Figure 4.10b.

This implementation can be derived using algebraic manipulation as follows. The
function in Figure 4.10a is expressed in sum-of-products form as

f = w1w2w3 + w1w2w3 + w1w2w3 + w1w2w3

It can be manipulated into

f = w1(w2w3) + w1(w2w3 + w2w3 + w2w3)

= w1(w2w3) + w1(w2 + w3)

which corresponds to the circuit in Figure 4.10b.
Multiplexer implementations of logic functions require that a given function be decom-

posed in terms of the variables that are used as the select inputs. This can be accomplished
by means of a theorem proposed by Claude Shannon [1].
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Shannon’s Expansion Theorem Any Boolean function f (w1, . . . , wn) can be written in
the form

f (w1, w2, . . . , wn) = w1 · f (0, w2, . . . , wn) + w1 · f (1, w2, . . . , wn)

This expansion can be done in terms of any of the n variables. We will leave the proof of
the theorem as an exercise for the reader (see Problem 4.9).

To illustrate its use, we can apply the theorem to the three-input majority function,
which can be written as

f (w1, w2, w3) = w1w2 + w1w3 + w2w3

Expanding this function in terms of w1 gives

f = w1(0 · w2 + 0 · w3 + w2w3) + w1(1 · w2 + 1 · w3 + w2w3)

= w1(w2w3) + w1(w2 + w3)

which is the expression that we derived above.
For the three-input XOR function, we have

f = w1 ⊕ w2 ⊕ w3

= w1(0 ⊕ w2 ⊕ w3) + w1(1 ⊕ w2 ⊕ w3)

= w1 · (w2 ⊕ w3) + w1 · (w2 ⊕ w3)

which gives the circuit in Figure 4.8b.
In Shannon’s expansion the term f (0, w2, . . . , wn) is called the cofactor of f with respect

to w1; it is denoted in shorthand notation as fw1 . Similarly, the term f (1, w2, . . . , wn) is
called the cofactor of f with respect to w1, written fw1 . Hence we can write

f = w1fw1 + w1fw1

In general, if the expansion is done with respect to variable wi, then fwi denotes
f (w1, . . . , wi−1, 0, wi+1, . . . , wn), fwi denotes f (w1, . . . , wi−1, 1, wi+1, . . . , wn), and

f (w1, . . . , wn) = wifwi + wifwi

The complexity of the logic expression may vary depending on which variable, wi, is used,
as illustrated in Example 4.4.

Example 4.4 For the function f = w1w3 + w2w3, decomposition using w1 gives

f = w1fw1 + w1fw1

= w1(w3 + w2) + w1(w2w3)

Using w2 instead of w1 produces

f = w2fw2 + w2fw2

= w2(w1w3) + w2(w1w3 + w3)

= w2(w1w3) + w2(w1 + w3)
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Finally, using w3 gives

f = w3fw3 + w3fw3

= w3(w2) + w3(w1)

The results generated using w1 and w2 have the same cost, but the expression produced
using w3 has a lower cost. In practice, when performing decompositions of this type it is
useful to try a number of alternatives and choose the one that produces the best result.

Shannon’s expansion can be done in terms of more than one variable. For example,
expanding a function in terms of w1 and w2 gives

f (w1, . . . , wn) = w1w2 · f (0, 0, w3, . . . , wn) + w1w2 · f (0, 1, w3, . . . , wn)

+ w1w2 · f (1, 0, w3, . . . , wn) + w1w2 · f (1, 1, w3, . . . , wn)

This expansion gives a form that can be implemented using a 4-to-1 multiplexer. If Shan-
non’s expansion is done in terms of all n variables, then the result is the canonical sum-of-
products form, which was defined in Section 2.6.1.

Example 4.5Assume that we wish to implement the function

f = w1w3 + w1w2 + w1w3

using a 2-to-1 multiplexer and any other necessary gates. Shannon’s expansion using w1

gives

f = w1fw1 + w1fw1

= w1(w3) + w1(w2 + w3)

The corresponding circuit is shown in Figure 4.11a. Assume now that we wish to use a
4-to-1 multiplexer instead. Further decomposition using w2 gives

f = w1w2fw1w2 + w1w2fw1w2 + w1w2fw1w2 + w1w2fw1w2

= w1w2(w3) + w1w2(w3) + w1w2(w3) + w1w2(1)

The circuit is shown in Figure 4.11b.

Example 4.6Consider the three-input majority function

f = w1w2 + w1w3 + w2w3

We wish to implement this function using only 2-to-1 multiplexers. Shannon’s expansion
using w1 yields

f = w1(w2w3) + w1(w2 + w3 + w2w3)

= w1(w2w3) + w1(w2 + w3)
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(a) Using a 2-to-1 multiplexer

f

w2

w1

w3

f

w1

w2

w3

(b) Using a 4-to-1 multiplexer

1

Figure 4.11 The circuits synthesized in Example 4.5.

w2

0
w3

1

f

w1

Figure 4.12 The circuit synthesized in Example 4.6.

Let g = w2w3 and h = w2 + w3. Expansion of both g and h using w2 gives

g = w2(0) + w2(w3)

h = w2(w3) + w2(1)

The corresponding circuit is shown in Figure 4.12. It is equivalent to the 4-to-1 multiplexer
circuit derived using a truth table in Figure 4.7.
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4.2 Decoders

Consider the logic circuit in Figure 4.13. It has two inputs, w1 and w0, and four outputs,
y0, y1, y2, and y3. As shown in the truth table, only one of the outputs is asserted at a time,
and each output corresponds to one valuation of the inputs. Setting the inputs w1w0 to 00,
01, 10, or 11 causes the output y0, y1, y2, or y3 to be set to 1, respectively. This type of
circuit is called a binary decoder. Its inputs represent a binary number, which is decoded
to assert the corresponding output. A circuit symbol and logic circuit for this decoder are
shown in parts (b) and (c) of the figure. Each output is driven by an AND gate that decodes
the corresponding valuation of w1w0.

It is useful to include an enable input, En, in a decoder circuit, as illustrated in Fig-
ure 4.14. When enabled by setting En = 1 the decoder behaves as presented in Figure 4.13.

(b) Graphical symbol(a) Truth table

0
0
1
1

1
0
1

y0w1

0

w0

(c) Logic circuit

w1

w0

0
0
0

1

y1

1
0
0

0

y2

0
1
0

0

y3

0
0
1

0

y0

y1

y2

y3

w0

y0

w1

y1

y2

y3

Figure 4.13 A 2-to-4 decoder.
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(b) Graphical symbol(a) Truth table
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(c) Logic circuit
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0
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1
0
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0
0
1
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y0

w1 y1

y2

y3
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wn 1–

n
inputs
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2n

outputs

y0

y2n 1–

(d) An n-to-2n decoder

Figure 4.14 Binary decoder.
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But, if it is disabled by setting En = 0, then none of the outputs are asserted. Note that
only five rows are shown in the truth table, because if En = 0 then all outputs are equal
to 0 regardless of the values of w1 and w0. The truth table indicates this by showing x
when it does not matter whether the variable in question has the value 0 or 1. A graphical
symbol for this decoder is given in Figure 4.14b. Part (c) of the figure shows how the enable
capability can be included in the decoder of Figure 4.13c. A binary decoder with n inputs
has 2n outputs. A graphical symbol for an n-to-2n decoder is shown in Figure 4.14d .

A k-bit binary code in which exactly one of the bits is set to 1 at a time is referred to
as one-hot encoded, meaning that the single bit that is set to 1 is deemed to be “hot.” The
outputs of an enabled binary decoder are one-hot encoded.

We should also note that decoders can be designed to have either active-high or active-
low outputs. In our discussion, we have assumed that active-high outputs are needed.

Larger decoders can be built using the sum-of-products structure in Figure 4.14c, or
else they can be constructed from smaller decoders. Figure 4.15 shows how a 3-to-8 decoder
is built with two 2-to-4 decoders. The w2 input drives the enable inputs of the two decoders.
The top decoder is enabled if w2 = 0, and the bottom decoder is enabled if w2 = 1. This
concept can be applied for decoders of any size. Figure 4.16 shows how five 2-to-4 decoders
can be used to construct a 4-to-16 decoder. Because of its treelike structure, this type of
circuit is often referred to as a decoder tree.

Example 4.7Decoders are useful for many practical purposes. In Figure 4.2c we showed the sum-of-
products implementation of the 4-to-1 multiplexer, which requiresAND gates to distinguish
the four different valuations of the select inputs s1 and s0. Since a decoder evaluates the
values on its inputs, it can be used to build a multiplexer as illustrated in Figure 4.17. The
enable input of the decoder is not needed in this case, and it is set to 1. The four outputs of
the decoder represent the four valuations of the select inputs.

4.2.1 Demultiplexers

We showed in Section 4.1 that a multiplexer has one output, n data inputs, and � log2n �
select inputs. The purpose of the multiplexer circuit is to multiplex the n data inputs onto
the single data output under control of the select inputs. A circuit that performs the opposite
function, namely, placing the value of a single data input onto multiple data outputs, is
called a demultiplexer. The demultiplexer can be implemented using a decoder circuit. For
example, the 2-to-4 decoder in Figure 4.14 can be used as a 1-to-4 demultiplexer. In this
case the En input serves as the data input for the demultiplexer, and the y0 to y3 outputs
are the data outputs. The valuation of w1w0 determines which of the outputs is set to the
value of En. To see how the circuit works, consider the truth table in Figure 4.14a. When
En = 0, all the outputs are set to 0, including the one selected by the valuation of w1w0.
When En = 1, the valuation of w1w0 sets the appropriate output to 1.

In general, an n-to-2n decoder circuit can be used as a 1-to-n demultiplexer. However, in
practice decoder circuits are used much more often as decoders rather than as demultiplexers.
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Figure 4.15 A 3-to-8 decoder using two 2-to-4 decoders.
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Figure 4.16 A 4-to-16 decoder built using a decoder tree.
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Figure 4.17 A 4-to-1 multiplexer built using a decoder.

4.3 Encoders

An encoder performs the opposite function of a decoder. It encodes given information into
a more compact form.

4.3.1 Binary Encoders

A binary encoder encodes information from 2n inputs into an n-bit code, as indicated in
Figure 4.18. Exactly one of the input signals should have a value of 1, and the outputs
present the binary number that identifies which input is equal to 1. The truth table for a
4-to-2 encoder is provided in Figure 4.19a. Observe that the output y0 is 1 when either
input w1 or w3 is 1, and output y1 is 1 when input w2 or w3 is 1. Hence these outputs can be
generated by the circuit in Figure 4.19b. Note that we assume that the inputs are one-hot
encoded. All input patterns that have multiple inputs set to 1 are not shown in the truth
table, and they are treated as don’t-care conditions.

Encoders are used to reduce the number of bits needed to represent given information.
A practical use of encoders is for transmitting information in a digital system. Encoding
the information allows the transmission link to be built using fewer wires. Encoding is also
useful if information is to be stored for later use because fewer bits need to be stored.

4.3.2 Priority Encoders

Another useful class of encoders is based on the priority of input signals. In a priority
encoder each input has a priority level associated with it. The encoder outputs indicate the
active input that has the highest priority. When an input with a high priority is asserted, the
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Figure 4.18 A 2n-to-n binary encoder.
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Figure 4.19 A 4-to-2 binary encoder.

other inputs with lower priority are ignored. The truth table for a 4-to-2 priority encoder is
shown in Figure 4.20. It assumes that w0 has the lowest priority and w3 the highest. The
outputs y1 and y0 represent the binary number that identifies the highest priority input set
to 1. Since it is possible that none of the inputs is equal to 1, an output, z, is provided to
indicate this condition. It is set to 1 when at least one of the inputs is equal to 1. It is set to
0 when all inputs are equal to 0. The outputs y1 and y0 are not meaningful in this case, and
hence the first row of the truth table can be treated as a don’t-care condition for y1 and y0.
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Figure 4.20 Truth table for a 4-to-2 priority encoder.

The behavior of the priority encoder is most easily understood by first considering
the last row in the truth table. It specifies that if input w3 is 1, then the outputs are set to
y1y0 = 11. Because w3 has the highest priority level, the values of inputs w2, w1, and w0

do not matter. To reflect the fact that their values are irrelevant, w2, w1, and w0 are denoted
by the symbol x in the truth table. The second-last row in the truth table stipulates that
if w2 = 1, then the outputs are set to y1y0 = 10, but only if w3 = 0. Similarly, input w1

causes the outputs to be set to y1y0 = 01 only if both w3 and w2 are 0. Input w0 produces
the outputs y1y0 = 00 only if w0 is the only input that is asserted.

Alogic circuit that implements the truth table can be synthesized by using the techniques
developed in Chapter 2. However, a more convenient way to derive the circuit is to define
a set of intermediate signals, i0, . . . , i3, based on the observations above. Each signal, ik ,
is equal to 1 only if the input with the same index, wk , represents the highest-priority input
that is set to 1. The logic expressions for i0, . . . , i3 are

i0 = w3w2w1w0

i1 = w3w2w1

i2 = w3w2

i3 = w3

Using the intermediate signals, the rest of the circuit for the priority encoder has the same
structure as the binary encoder in Figure 4.19, namely

y0 = i1 + i3
y1 = i2 + i3

The output z is given by

z = i0 + i1 + i2 + i3
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4.4 Code Converters

The purpose of the decoder and encoder circuits is to convert from one type of input
encoding to a different output encoding. For example, a 3-to-8 binary decoder converts
from a binary number on the input to a one-hot encoding at the output. An 8-to-3 binary
encoder performs the opposite conversion. There are many other possible types of code
converters. One common example is a BCD-to-7-segment decoder, which was introduced
in Section 2.14. A similar decoder is often used to display hexadecimal information on
seven-segment displays. As explained in Section 3.1.2, long binary numbers are easier to
deal with visually if they are represented in the hexadecimal form. A hex-to-7-segment
decoder can be implemented as shown in Figure 4.21. Digits 0 to 9 are displayed the same
as in the case of the BCD-to-7-segment decoder. Digits 10 to 15 are displayed as A, b, C,
d, E, and F.

We should note that although the word decoder is traditionally used for such circuits, a
more appropriate term is code converter. The term decoder is more appropriate for circuits
that produce one-hot encoded outputs.

4.5 Arithmetic Comparison Circuits

Chapter 3 presented arithmetic circuits that perform addition, subtraction, and multiplication
of binary numbers. Another useful type of arithmetic circuit compares the relative sizes
of two binary numbers. Such a circuit is called a comparator. This section considers the
design of a comparator that has two n-bit inputs, A and B, which represent unsigned binary
numbers. The comparator produces three outputs, called AeqB, AgtB, and AltB. The AeqB
output is set to 1 if A and B are equal. The AgtB output is 1 if A is greater than B, and the
AltB output is 1 if A is less than B.

The desired comparator can be designed by creating a truth table that specifies the three
outputs as functions of A and B. However, even for moderate values of n, the truth table is
large. A better approach is to derive the comparator circuit by considering the bits of A and
B in pairs. We can illustrate this by a small example, where n = 4.

Let A = a3a2a1a0 and B = b3b2b1b0. Define a set of intermediate signals called
i3, i2, i1, and i0. Each signal, ik , is 1 if the bits of A and B with the same index are equal.
That is, ik = ak ⊕ bk . The comparator’s AeqB output is then given by

AeqB = i3i2i1i0

An expression for the AgtB output can be derived by considering the bits of A and B in the
order from the most-significant bit to the least-significant bit. The first bit-position, k, at
which ak and bk differ determines whether A is less than or greater than B. If ak = 0 and
bk = 1, then A < B. But if ak = 1 and bk = 0, then A > B. The AgtB output is defined by

AgtB = a3b3 + i3a2b2 + i3i2a1b1 + i3i2i1a0b0
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Figure 4.21 A hex-to-7-segment display code converter.

The ik signals ensure that only the first bits, considered from the left to the right, of A and
B that differ determine the value of AgtB.

The AltB output can be derived by using the other two outputs as

AltB = AeqB + AgtB

A logic circuit that implements the four-bit comparator circuit is shown in Figure 4.22. This
approach can be used to design a comparator for any value of n.

Comparator circuits, like most logic circuits, can be designed in different ways. Another
approach for designing a comparator circuit is presented in Example 3.9 in Chapter 3.
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Figure 4.22 A four-bit comparator circuit.

4.6 Verilog for Combinational Circuits

Having presented a number of useful building block circuits, we will now consider how
such circuits can be described in Verilog. Rather than using gates or logic expressions,
we will specify the circuits in terms of their behavior. We will also give a more rigorous
description of previously used behavioral Verilog constructs and introduce some new ones.

4.6.1 The Conditional Operator

In a logic circuit it is often necessary to choose between several possible signals or values
based on the state of some condition. A typical example is a multiplexer circuit in which
the output is equal to the data input signal chosen by the valuation of the select inputs. For
simple implementation of such choices Verilog provides a conditional operator (?:) which
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assigns one of two values depending on a conditional expression. It involves three operands
used in the syntax

conditional_expression ? true_expression : false_expression

If the conditional expression evaluates to 1 (true), then the value of true_expression is
chosen; otherwise, the value of false_expression is chosen. For example, the statement

A = (B < C) ? (D + 5) : (D + 2);

means that if B is less than C, the value of A will be D + 5, or else A will have the
value D + 2. We used parentheses in the expression to improve readability; they are not
necessary. The conditional operator can be used both in continuous assignment statements
and in procedural statements inside an always block.

Example 4.8A 2-to-1 multiplexer can be defined using the conditional operator in an assign statement
as shown in Figure 4.23. The module, named mux2to1, has the inputs w0, w1, and s, and
the output f . The signal s is used for the selection criterion. The output f is equal to w1 if
the select input s has the value 1; otherwise, f is equal to w0. Figure 4.24 shows how the
same multiplexer can be defined by using the conditional operator inside an always block.

The same approach can be used to define the 4-to-1 multiplexer from Figure 4.2. As
seen in the truth table in Figure 4.2b, if the select input s1 = 1, then f is set to either w2 or
w3 based on the value of s0. Similarly, if s1 = 0, then f is set to either w0 or w1. Figure 4.25
shows how nested conditional operators can be used to define this function. The module
is called mux4to1. Its select inputs are represented by the two-bit vector S. The first
conditional expression tests the value of bit s1. If s1 = 1, then s0 is tested and f is set to w3

if s0 = 1 and f is set to w2 if s0 = 0. This corresponds to the third and fourth rows of the
truth table in Figure 4.2b. Similarly, if s1 = 0 the conditional operator on the right chooses
f = w1 if s0 = 1 and f = w0 if s0 = 0, thus realizing the first two rows of the truth table.

module mux2to1 (w0, w1, s, f);
input w0, w1, s;
output f;

assign f = s ? w1 : w0;

endmodule

Figure 4.23 A 2-to-1 multiplexer specified using the
conditional operator.
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module mux2to1 (w0, w1, s, f);
input w0, w1, s;
output reg f;

always @(w0, w1, s)
f = s ? w1 : w0;

endmodule

Figure 4.24 An alternative specification of a 2-to-1
multiplexer using the conditional operator.

module mux4to1 (w0, w1, w2, w3, S, f);
input w0, w1, w2, w3;
input [1:0] S;
output f;

assign f = S[1] ? (S[0] ? w3 : w2) : (S[0] ? w1 : w0);

endmodule

Figure 4.25 A 4-to-1 multiplexer specified using the conditional operator.

4.6.2 The If-Else Statement

We have already used the if-else statement in previous chapters. It has the syntax

if (conditional_expression) statement;
else statement;

The conditional expression may use the operators given in Table A.1. If the expression
is evaluated to true then the first statement (or a block of statements delineated by begin
and end keywords) is executed, or else the second statement (or a block of statements) is
executed.

Example 4.9 Figure 4.26 shows how the if-else statement can be used to describe a 2-to-1 multiplexer.
The if clause states that f is assigned the value of w0 when s = 0. Else, f is assigned the
value of w1.
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module mux2to1 (w0, w1, s, f);
input w0, w1, s;
output reg f;

always @(w0, w1, s)
if (s == 0)

f = w0;
else

f = w1;

endmodule

Figure 4.26 Code for a 2-to-1 multiplexer using the
if-else statement.

The if-else statement can be used to implement larger multiplexers. A4-to-1 multiplexer
is shown in Figure 4.27. The if-else clauses set f to the value of one of the inputs w0, . . . , w3,
depending on the valuation of S.

Another way of defining the same circuit is presented in Figure 4.28. In this case, a
four-bit vector W is defined instead of single-bit signals w0, w1, w2, and w3. Also, the four
different values of S are specified as decimal rather than binary numbers.

Example 4.10Figure 4.4 shows how a 16-to-1 multiplexer can be built by using five 4-to-1 multiplexers.
Figure 4.29 presents Verilog code for this circuit using five instantiations of the mux4to1
module. The data inputs to the mux16to1 module are the 16-bit vector W , and the select
inputs are the four-bit vector S. In the Verilog code signal names are needed for the outputs
of the four 4-to-1 multiplexers on the left of Figure 4.4. A four-bit signal named M is used
for this purpose. The first multiplexer instantiated, Mux1, corresponds to the multiplexer
at the top left of Figure 4.4. Its first four ports are driven by the signals W [0], . . . , W [3].
The syntax S[1:0] is used to attach the signals S[1] and S[0] to the two-bit S port of the
mux4to1 module. The M [0] signal is connected to the multiplexer’s output port. Similarly,
Mux2, Mux3, and Mux4 are instantiations of the next three multiplexers on the left. The
multiplexer on the right of Figure 4.4 is instantiated as Mux5. The signals M [0], . . . , M [3]
are connected to its data inputs, and bits S[3] and S[2] are attached to the select inputs. The
output port generates the mux16to1 output f . Compiling the code results in the multiplexer
function

f = s3s2s1s0w0 + s3s2s1s0w1 + s3s2s1s0w2 + · · · + s3s2s1s0w14 + s3s2s1s0w15

Since the mux4to1 module is being instantiated in the code of Figure 4.29, it is nec-
essary to either include the code of Figure 4.28 in the same file as the mux16to1 module
or place the mux4to1 module in a separate file in the same directory, or a directory with a
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module mux4to1 (w0, w1, w2, w3, S, f);
input w0, w1, w2, w3;
input [1:0] S;
output reg f;

always @(*)
if (S == 2’b00)

f = w0;
else if (S == 2’b01)

f = w1;
else if (S == 2’b10)

f = w2;
else

f = w3;

endmodule

Figure 4.27 Code for a 4-to-1 multiplexer using the if-else
statement.

module mux4to1 (W, S, f);
input [0:3] W;
input [1:0] S;
output reg f;

always @(W, S)
if (S == 0)

f = W[0];
else if (S == 1)

f = W[1];
else if (S == 2)

f = W[2];
else

f = W[3];

endmodule

Figure 4.28 Alternative specification of a 4-to-1
multiplexer.

specified path so that the Verilog compiler can find it. Observe that if the code in Figure 4.27
were used as the required mux4to1 module, then we would have to list the ports separately,
as in W [0], W [1], W [2], W [3], rather than as the vector W [0:3].
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module mux16to1 (W, S, f);
input [0:15] W;
input [3:0] S;
output f;
wire [0:3] M;

mux4to1 Mux1 (W[0:3], S[1:0], M[0]);
mux4to1 Mux2 (W[4:7], S[1:0], M[1]);
mux4to1 Mux3 (W[8:11], S[1:0], M[2]);
mux4to1 Mux4 (W[12:15], S[1:0], M[3]);
mux4to1 Mux5 (M[0:3], S[3:2], f);

endmodule

Figure 4.29 Hierarchical code for a 16-to-1 multiplexer.

4.6.3 The Case Statement

The if-else statement provides the means for choosing an alternative based on the value of
an expression. When there are many possible alternatives, the code based on this statement
may become awkward to read. Instead, it is often possible to use the Verilog case statement
which is defined as

case (expression)
alternative1: statement;
alternative2: statement;
·
·
·
alternativej: statement;
[default: statement;]

endcase

The value of the controlling expression and each alternative are compared bit by bit. When
there is one or more matching alternative, the statement(s) associated with the first match
(only) is executed. When the specified alternatives do not cover all possible valuations of
the controlling expression, the optional default clause should be included. Otherwise, the
Verilog compiler will synthesize memory elements to deal with the unspecified possibilities;
we will discuss this issue in Chapter 5.

Example 4.11The case statement can be used to define a 4-to-1 multiplexer as shown in Figure 4.30. The
four values that the select vector S can have are given as decimal numbers, but they could
also be given as binary numbers.
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module mux4to1 (W, S, f);
input [0:3] W;
input [1:0] S;
output reg f;

always @(W, S)
case (S)

0: f = W[0];
1: f = W[1];
2: f = W[2];
3: f = W[3];

endcase

endmodule

Figure 4.30 A 4-to-1 multiplexer defined using the
case statement.

Example 4.12 Figure 4.31 shows how a case statement can be used to describe the truth table for a 2-to-4
binary decoder. The module is called dec2to4. The data inputs are the two-bit vector W ,
and the enable input is En. The four outputs are represented by the four-bit vector Y .

In the truth table for the decoder in Figure 4.14a, the inputs are listed in the order
En w1 w0. To represent these three signals in the controlling expression, the Verilog code
uses the concatenate operator to combine the En and W signals into a three-bit vector. The
four alternatives in the case statement correspond to the truth table in Figure 4.14a where
En = 1, and the decoder outputs have the same patterns as in the first four rows of the
truth table. The last clause uses the default keyword and sets the decoder outputs to 0000,
because it represents all other cases, namely those where En = 0.

Example 4.13 The 2-to-4 decoder can be specified using a combination of if-else and case statements as
given in Figure 4.32. If En = 0, then all four bits of the output Y are set to the value 0, else
the case alternatives are evaluated if En = 1.

Example 4.14 The tree structure of the 4-to-16 decoder in Figure 4.16 can be defined as shown in Figure
4.33. The inputs are a four-bit vector W and an enable signal En. The outputs are represented
by the 16-bit vector Y . The circuit uses five instances of the 2-to-4 decoder defined in either
Figure 4.31 or 4.32. The outputs of the left-most decoder in Figure 4.16 are denoted as the
four-bit vector M in Figure 4.33.
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module dec2to4 (W, En, Y);
input [1:0] W;
input En;
output reg [0:3] Y;

always @(W, En)
case ({En, W})

3’b100: Y = 4’b1000;
3’b101: Y = 4’b0100;
3’b110: Y = 4’b0010;
3’b111: Y = 4’b0001;
default: Y = 4’b0000;

endcase

endmodule

Figure 4.31 Verilog code for a 2-to-4 binary decoder.

module dec2to4 (W, En, Y);
input [1:0] W;
input En;
output reg [0:3] Y;

always @(W, En)
begin

if (En == 0)
Y = 4’b0000;

else
case (W)

0: Y = 4’b1000;
1: Y = 4’b0100;
2: Y = 4’b0010;
3: Y = 4’b0001;

endcase
end

endmodule

Figure 4.32 Alternative code for a 2-to-4 binary
decoder.
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module dec4to16 (W, En, Y);
input [3:0] W;
input En;
output [0:15] Y;
wire [0:3] M;

dec2to4 Dec1 (W[3:2], M[0:3], En);
dec2to4 Dec2 (W[1:0], Y[0:3], M[0]);
dec2to4 Dec3 (W[1:0], Y[4:7], M[1]);
dec2to4 Dec4 (W[1:0], Y[8:11], M[2]);
dec2to4 Dec5 (W[1:0], Y[12:15], M[3]);

endmodule

Figure 4.33 Verilog code for a 4-to-16 decoder.

Example 4.15 Another example of a case statement is given in Figure 4.34. The module, seg7, represents
the hex-to-7-segment decoder in Figure 4.21. The hexadecimal input is the four-bit vector
named hex, and the seven outputs are the seven-bit vector named leds. The case alternatives
are listed so that they resemble the truth table in Figure 4.21c. Note that there is a comment
to the right of the case statement, which labels the seven outputs with the letters from a
to g. These labels indicate to the reader the correlation between the bits of the leds vector
in the Verilog code and the seven segments in Figure 4.21b.

Example 4.16 An arithmetic logic unit (ALU) is a logic circuit that performs various Boolean and arithmetic
operations on n-bit operands. Table 4.1 specifies the functionality of a simple ALU, known
as the 74381 chip, which has been available in the form of a standard chip in the family
called the 7400-series. This ALU has 2 four-bit data inputs, A and B, a three-bit select
input, S, and a four-bit output, F . As the table shows, F is defined by various arithmetic or
Boolean operations on the inputs A and B. In this table + means arithmetic addition, and
− means arithmetic subtraction. To avoid confusion, the table uses the words XOR, OR,
and AND for the Boolean operations. Each Boolean operation is done in a bitwise fashion.
For example, F = A AND B produces the four-bit result f0 = a0b0, f1 = a1b1, f2 = a2b2,
and f3 = a3b3.

Figure 4.35 shows how the functionality of the 74381 ALU can be described in Verilog
code. The case statement shown corresponds directly to Table 4.1.

The Casex and Casez Statements
Logic circuits that we have considered so far operate using the logic values 0 and 1.

When specifying the functionality of such circuits in the form of a truth table, we sometimes
encounter cases where it does not matter whether a given logic variable has the value 0 or
1, as seen in Figures 4.14a and 4.20. It is customary to use the letter x to denote such cases,
where x represents an unknown value.
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module seg7 (hex, leds);
input [3:0] hex;
output reg [1:7] leds;

always @(hex)
case (hex) //abcdefg

0: leds = 7’b1111110;
1: leds = 7’b0110000;
2: leds = 7’b1101101;
3: leds = 7’b1111001;
4: leds = 7’b0110011;
5: leds = 7’b1011011;
6: leds = 7’b1011111;
7: leds = 7’b1110000;
8: leds = 7’b1111111;
9: leds = 7’b1111011;
10: leds = 7’b1110111;
11: leds = 7’b0011111;
12: leds = 7’b1001110;
13: leds = 7’b0111101;
14: leds = 7’b1001111;
15: leds = 7’b1000111;

endcase

endmodule

Figure 4.34 Code for a hex-to-7-segment decoder.

Table 4.1 The functionality
of the 74381
ALU.

Inputs Outputs
Operation s2 s1 s0 F

Clear 0 0 0 0 0 0 0

B−A 0 0 1 B − A

A−B 0 1 0 A − B

ADD 0 1 1 A + B

XOR 1 0 0 A XOR B

OR 1 0 1 A OR B

AND 1 1 0 A AND B

Preset 1 1 1 1 1 1 1
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// 74381 ALU
module alu (S, A, B, F);

input [2:0] S;
input [3:0] A, B;
output reg [3:0] F;

always @(S, A, B)
case (S)

0: F = 4’b0000;
1: F = B – A;
2: F = A – B;
3: F = A + B;
4: F = A ^ B;
5: F = A | B;
6: F = A & B;
7: F = 4’b1111;

endcase

endmodule

Figure 4.35 Code that represents the functionality of
the 74381 ALU chip.

It is also possible to implement circuits that can produce three different types of output
signals. In addition to the usual 0 and 1 values, there is a third value that indicates that the
output line is not connected to any defined voltage level. In this state the output behaves like
an open circuit, as explained in Appendix B. We say that the output is in the high-impedance
state, which is usually denoted by using the letter z.

In Verilog, a signal can have four possible values: 0, 1, z, or x. The z and x values can
also be denoted by the capital letters Z and X . In the case statement it is possible to use
the logic values 0, 1, z, and x in the case alternatives. A bit-by-bit comparison is used to
determine the match between the expression and one of the alternatives.

Verilog provides two variants of the case statement that treat the z and x values in
a different way. The casez statement treats all z values in the case alternatives and the
controlling expression as don’t cares. The casex statement treats all z and x values as don’t
cares.

Example 4.17 Figure 4.36 gives Verilog code for the priority encoder defined in Figure 4.20. The desired
priority scheme is realized by using a casex statement. The first alternative specifies that
the output is set to y1y0 = 3 if the input w3 is 1. This assignment does not depend on the
values of inputs w2, w1, or w0; hence their values do not matter. The other alternatives in
the casex statement are evaluated only if w3 = 0. The second alternative states that if w2

is 1, then y1y0 = 2. If w2 = 0, then the next alternative results in y1y0 = 1 if w1 = 1. If
w3 = w2 = w1 = 0 and w0 = 1, then the fourth alternative results in y1y0 = 0.
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module priority (W, Y, z);
input [3:0] W;
output reg [1:0] Y;
output reg z;

always @(W)
begin

z = 1;
casex (W)

4’b1xxx: Y = 3;
4’b01xx: Y = 2;
4’b001x: Y = 1;
4’b0001: Y = 0;
default: begin

z = 0;
Y = 2’bx;

end
endcase

end

endmodule

Figure 4.36 Verilog code for a priority encoder.

The priority encoder’s output z must be set to 1 whenever at least one of the data inputs
is 1. This output is set to 1 outside the casex statement in the always block. If none of the
four alternatives matches the value of W , then the default clause overrides the value of z
and sets it to 0. The default clause also indicates that the Y output can be set to any pattern
because it will be ignored.

4.6.4 The For Loop

If the structure of a desired circuit exhibits a certain regularity, it may be convenient to
define the circuit using a for loop. We introduced the for loop in Section 3.5.4, where it
was useful in a generic specification of a ripple-carry adder. The for loop has the syntax

for (initial_index; terminal_index; increment) statement;

A loop control variable, which has to be of type integer, is set to the value given as the
initial index. It is used in the statement or a block of statements delineated by begin and end
keywords. After each iteration, the control variable is changed as defined in the increment.
The iterations end after the control variable has reached the terminal index.
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Unlike for loops in high-level programming languages, the Verilog for loop does not
specify changes that take place in time through successive loop iterations. Instead, during
each iteration it specifies a different subcircuit. In Figure 3.25 the for loop was used to
define a cascade of full-adder subcircuits to form an n-bit ripple-carry adder. The for loop
can be used to define many other structures as illustrated by the next two examples.

Example 4.18 Figure 4.37 shows how the for loop can be used to specify a 2-to-4 decoder circuit. The
effect of the loop is to repeat the if-else statement four times, for k = 0, . . . , 3. The first
loop iteration sets y0 = 1 if W = 0 and En = 1. Similarly, the other three iterations set the
values of y1, y2, and y3 according to the values of W and En.

This arrangement can be used to specify a large n-to-2n decoder simply by increasing
the sizes of vectors W and Y accordingly, and making n − 1 be the terminal index value
of k.

Example 4.19 The priority encoder of Figure 4.20 can be defined by the Verilog code in Figure 4.38. In
the always block, the output bits y1 and y0 are first set to the don’t-care state and z is cleared
to 0. Then, if one or more of the four inputs w3, . . . , w0 is equal to 1, the for loop will set
the valuation of y1y0 to match the index of the highest priority input that has the value 1.
Note that each successive iteration through the loop corresponds to a higher priority. Verilog
semantics specify that a signal that receives multiple assignments in an always block retains
the last assignment. Thus the iteration that corresponds to the highest priority input that is
equal to 1 will override any setting of Y established during the previous iterations.

module dec2to4 (W, En, Y);
input [1:0] W;
input En;
output reg [0:3] Y;
integer k;

always @(W, En)
for (k = 0; k < = 3; k = k+1)

if ((W == k) && (En == 1))
Y[k] = 1;

else
Y[k] = 0;

endmodule

Figure 4.37 A 2-to-4 binary decoder specified using the for
loop.
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module priority (W, Y, z);
input [3:0] W;
output reg [1:0] Y;
output reg z;
integer k;

always @(W)
begin

Y = 2’bx;
z = 0;
for (k = 0; k < 4; k = k+1)

if (W[k])
begin

Y = k;
z = 1;

end
end

endmodule

Figure 4.38 A priority encoder specified using the for
loop.

4.6.5 Verilog Operators

In this section we discuss the Verilog operators that are useful for synthesizing logic circuits.
Table 4.2 lists these operators in groups that reflect the type of operation performed. A more
complete listing of the operators is given in Table A.1.

To illustrate the results produced by the various operators, we will use three-bit vectors
A[2:0], B[2:0], and C[2:0], as well as scalars f and w.

Bitwise Operators
Bitwise operators operate on individual bits of operands. The ∼ operator forms the 1’s

complement of the operand such that the statement

C = ∼A;

produces the result c2 = a2, c1 = a1, and c0 = a0, where ai and ci are the bits of the vectors
A and C.

Most bitwise operators operate on pairs of bits. The statement

C = A & B;

generates c2 = a2 · b2, c1 = a1 · b1, and c0 = a0 · b0. Similarly, the | and ∧ operators per-
form bitwise OR and XOR operations. The ∧∼ operator, which can also be written as ∼∧,
produces the XNOR such that



December 31, 2012 09:12 vra80547_ch04 Sheet number 36 Page number 224 magenta black

224 C H A P T E R 4 • Combinational-Circuit Building Blocks

Table 4.2 Verilog operators.

Operator type Operator symbols Operation performed Number of operands

Bitwise ∼ 1’s complement 1
& Bitwise AND 2
| Bitwise OR 2
∧ Bitwise XOR 2

∼ ∧ or ∧ ∼ Bitwise XNOR 2

Logical ! NOT 1
&& AND 2
‖ OR 2

Reduction & Reduction AND 1
∼& Reduction NAND 1
| Reduction OR 1

∼ | Reduction NOR 1
∧ Reduction XOR 1

∼∧ or ∧ ∼ Reduction XNOR 1

Arithmetic + Addition 2
− Subtraction 2
− 2’s complement 1
∗ Multiplication 2
/ Division 2

Relational > Greater than 2
< Less than 2

>= Greater than or equal to 2
<= Less than or equal to 2

Equality == Logical equality 2
! = Logical inequality 2

Shift >> Right shift 2
<< Left shift 2

Concatenation {,} Concatenation Any number

Replication {{}} Replication Any number

Conditional ?: Conditional 3

C = A ∼∧ B;

gives c2 = a2 ⊕ b2, c1 = a1 ⊕ b1, and c0 = a0 ⊕ b0. If the operands are of unequal size,
then the shorter operand is extended by padding 0s to the left.

A scalar function may be assigned a value as a result of a bitwise operation on two
vector operands. In this case, it is only the least-significant bits of the operands that are
involved in the operation. Hence the statement

f = A ∧ B;

yields f = a0 ⊕ b0.
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& 0 1 x 0 1 x

0 0 0 0 0 0 1 x

1 0 1 x 1 1 1 1

x 0 x x x x 1 x

0 1 x 0 1 x

0 0 1 x 0 1 0 x

1 1 0 x 1 0 1 x

x x x x x x x x

Figure 4.39 Truth tables for bitwise operators.

The bitwise operations may involve operands that include the unknown logic value x.
Then the operations are performed according to the truth tables in Figure 4.39. For example,
if P = 4’b101x and Q = 4’b1001, then P & Q = 4’b100x while P | Q = 4’b1011.

Logical Operators
The ! operator has the same effect on a scalar operand as the ∼ operator. Thus, f = !w

= ∼w. But the effect on a vector operand is different, namely if

f = !A;

then f will be equal to 1 (true) only if all bits of A are equal to 0 (false). Hence, f =
a2 + a1 + a0.

The && operator implements the AND operation such that

f = A && B;

produces f = (a2 + a1 + a0) · (b2 + b1 + b0). Similarly, using the || operator in

f = A || B;

gives f = (a2 + a1 + a0) + (b2 + b1 + b0).

Reduction Operators
The reduction operators perform an operation on the bits of a single vector operand

and produce a one-bit result. Using the & operator in

f = &A;

produces f = a2 · a1 · a0. Similarly,

f = ∧A;

gives f = a2 ⊕ a1 ⊕ a0, and so on.
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Arithmetic Operators
We have already encountered the arithmetic operators in Chapter 3. They perform

standard arithmetic operations. Thus

C = A + B;

puts the three-bit sum of A plus B into C, while

C = A − B;

puts the difference of A and B into C. The operation

C = −A;

places the 2’s complement of A into C.
The addition, subtraction, and multiplication operations are supported by most CAD

synthesis tools. However, the division operation is often not supported. When the Verilog
compiler encounters an arithmetic operator, it usually synthesizes it by using an appropriate
module from a library.

Relational Operators
The relational operators are typically used as conditions in if-else and for statements.

These operators have the same meaning as the corresponding operators in the C program-
ming language. An expression that uses the relational operators returns the value 1 if it is
evaluated as true, and the value 0 if evaluated as false. If there are any x (unknown) or z
bits in the operands, then the expression takes the value x.

Example 4.20 The use of relational operators in the if-else statement is illustrated in Figure 4.40. The
defined circuit is the four-bit comparator described in Section 4.5.

Equality Operators
The expression (A== B) is evaluated as true if A is equal to B and false otherwise. The

!= operator has the opposite effect. The result is ambiguous (x) if either operand contains
x or z values.

Shift Operators
A vector operand can be shifted to the right or left by a number of bits specified as a

constant. When bits are shifted, the vacant bit positions are filled with 0s. For example,

B = A << 1;

results in b2 = a1, b1 = a0, and b0 = 0. Similarly,

B = A >> 2;

yields b2 = b1 = 0 and b0 = a2.
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module compare (A, B, AeqB, AgtB, AltB);
input [3:0] A, B;
output reg AeqB, AgtB, AltB;

always @(A, B)
begin

AeqB = 0;
AgtB = 0;
AltB = 0;
if (A == B)

AeqB = 1;
else if (A > B)

AgtB = 1;
else

AltB = 1;
end

endmodule

Figure 4.40 Verilog code for a four-bit comparator.

Concatenate Operator
This operator concatenates two or more vectors to create a larger vector. For example,

D = {A, B};

defines the six-bit vector D = a2a1a0b2b1b0. Similarly, the concatenation

E = {3’b111, A, 2’b00};

produces the eight-bit vector E = 111a2a1a000.

Replication Operator
This operator allows repetitive concatenation of the same vector, which is replicated the

number of times indicated in the replication constant. For example, {3{A}} is equivalent to
writing {A, A, A}. The specification {4{2’b10}} produces the eight-bit vector 10101010.

The replication operator may be used in conjunction with the concatenate operator. For
instance, {2{A}, 3{B}} is equivalent to {A, A, B, B, B}. We introduced the concatenate
and replication operators in Sections 3.5.6 and 3.5.8, respectively, and illustrated their use
in specifying the adder circuits.
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Table 4.3 Precedence of Verilog operators.

Operator type Operator symbols Precedence

Complement ! ∼ − Highest precedence

Arithmetic ∗ /
+ −

Shift << >>

Relational < <= > >=
Equality == ! =
Reduction & ∼&

∧ ∼ ∧
| ∼ |

Logical &&
‖

Conditional ?: Lowest precedence

Conditional Operator
The conditional operator is discussed fully in Section 4.6.1.

Operator Precedence
The Verilog operators are assumed to have the precedence indicated in Table 4.3.

The order of precedence is from top to bottom; operators in the top row have the highest
precedence and those in the bottom row have the lowest precedence. The operators listed
in the same row have the same precedence.

The designer can use parentheses to change the precedence of operators in Verilog code
or remove any possible misinterpretation. It is a good practice to use parentheses to make
the code unambiguous and easy to read.

4.6.6 The Generate Construct

In Section 3.5.4 we introduced the generate loop capability which can be used to create
multiple instances of subcircuits. A subcircuit may be defined in a block of statements
delineated by the generate and endgenerate keywords. The subcircuit is instantiated
multiple times using a generate-index variable. This variable is defined using the genvar
keyword and it can have only positive integer values. It is not possible to use an index
declared as a normal integer variable.

Example 4.21 Figure 4.41 shows how the generate construct can be used to specify an n-bit ripple-carry
adder. The subcircuit is a full-adder defined structurally in terms of primitive gates as
introduced in Figure 3.18. The for loop causes the full-adder block to be instantiated n
times.
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module addern (carryin, X, Y, S, carryout);
parameter n = 32;
input carryin;
input [n –1:0] X, Y;
output [n –1:0] S;
output carryout;
wire [n:0] C;

genvar k;
assign C[0] = carryin;
assign carryout = C[n];
generate

for (k = 0; k < n; k = k+1)
begin: fulladd_stage

wire z1, z2, z3; //wires within full-adder
xor (S[k], X[k], Y[k], C[k]);
and (z1, X[k], Y[k]);
and (z2, X[k], C[k]);
and (z3, Y[k], C[k]);
or (C[k+1], z1, z2, z3);

end
endgenerate

endmodule

Figure 4.41 Using the generate loop to define an n-bit
ripple-carry adder.

In this example, the for statement is used in the generate block to control the selection
of the generated objects. The generate block can also contain if-else and case statements
to determine which objects are generated.

4.6.7 Tasks and Functions

In high-level programming languages it is possible to use subroutines and functions to
avoid replicating specific routines that may be needed in several places of a given program.
Verilog provides similar capabilities, known as tasks and functions. They can be used to
modularize large designs and make the Verilog code easier to understand.

Verilog Task
A task is declared by the keyword task and it comprises a block of statements that ends

with the keyword endtask. The task must be included in the module that calls it. It may
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have input and output ports. These are not the ports of the module that contains the task,
which are used to make external connections to the module. The task ports are used only
to pass values between the module and the task.

Example 4.22 In Figure 4.29 we showed the Verilog code for a 16-to-1 multiplexer that instantiates five
copies of a 4-to-1 multiplexer circuit given in a separate module named mux4to1. The same
circuit can be specified using the task approach as shown in Figure 4.42. Observe the key
differences. The task mux4to1 is included in the module mux16to1. It is called from an
always block by means of an appropriate case statement. The output of a task must be a
variable, hence g is of reg type.

module mux16to1 (W, S16, f);
input [0:15] W;
input [3:0] S16;
output reg f;

always @(W, S16)
case (S16[3:2])

0: mux4to1 (W[0:3], S16[1:0], f);
1: mux4to1 (W[4:7], S16[1:0], f);
2: mux4to1 (W[8:11], S16[1:0], f);
3: mux4to1 (W[12:15], S16[1:0], f);

endcase

// Task that specifies a 4-to-1 multiplexer
task mux4to1;

input [0:3] X;
input [1:0] S4;
output reg g;

case (S4)
0: g = X[0];
1: g = X[1];
2: g = X[2];
3: g = X[3];

endcase
endtask

endmodule

Figure 4.42 Use of a task in Verilog code.
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Verilog Function
A function is declared by the keyword function and it comprises a block of statements

that ends with the keyword endfunction. The function must have at least one input and it
returns a single value that is placed where the function is invoked.

Example 4.23Figure 4.43 shows how the code in Figure 4.42 can be written to use a function. The Verilog
compiler essentially inserts the body of the function at each place where it is called. Hence
the clause

0: f = mux4to1 (W[0:3], S16[1:0]);

becomes

module mux16to1 (W, S16, f);
input [0:15] W;
input [3:0] S16;
output reg f;

// Function that specifies a 4-to-1 multiplexer
function mux4to1;

input [0:3] X;
input [1:0] S4;

case (S4)
0: mux4to1 = X[0];
1: mux4to1 = X[1];
2: mux4to1 = X[2];
3: mux4to1 = X[3];

endcase
endfunction

always @(W, S16)
case (S16[3:2])

0: f = mux4to1 (W[0:3], S16[1:0]);
1: f = mux4to1 (W[4:7], S16[1:0]);
2: f = mux4to1 (W[8:11], S16[1:0]);
3: f = mux4to1 (W[12:15], S16[1:0]);

endcase

endmodule

Figure 4.43 The code from Figure 4.42 using a function.
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0: case (S16[1:0])
0: f = W[0];
1: f = W[1];
2: f = W[2];
3: f = W[3];

endcase

The function serves as a convenience that makes the mux16to1 module more compact.

A Verilog function can invoke another function but it cannot call a Verilog task. A task
may call another task and it may invoke a function. In Figure 4.42 we defined the task after
the always block that calls it. In contrast, in Figure 4.43 we defined the function before
the always block that invokes it. Both possibilities are allowed in the Verilog standard for
both tasks and functions. However, some tools require functions to be defined before the
statements that invoke them.

4.7 Concluding Remarks

This chapter has introduced a number of circuit building blocks. Examples using these
blocks to construct larger circuits will be presented in later chapters. To describe the
building block circuits efficiently, several Verilog constructs have been introduced. In
many cases a given circuit can be described in various ways, using different constructs. A
circuit that can be described using an if-else statement can also be described using a case
statement or perhaps a for loop. In general, there are no strict rules that dictate when one
style should be preferred over another. With experience the user develops a sense for which
types of statements work well in a particular design situation. Personal preference also
influences how the code is written.

Verilog is not a programming language, and Verilog code should not be written as if it
were a computer program. The statements discussed in this chapter can be used to create
large, complex circuits. A good way to design such circuits is to construct them using well-
defined modules, in the manner that we illustrated for the multiplexers, decoders, encoders,
and so on. Additional examples using the Verilog statements introduced in this chapter are
given in Chapters 5 and 6. In Chapter 7 we provide a number of examples of using Verilog
code to describe larger digital systems. For more information on Verilog, the reader can
consult more specialized books [2–8].

In the next chapter we introduce logic circuits that include the ability to store logic
signal values in memory elements.
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4.8 Examples of Solved Problems

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

Example 4.24Problem: Implement the function f (w1, w2, w3) = ∑
m(0, 1, 3, 4, 6, 7) by using a 3-to-8

binary decoder and an OR gate.

Solution: The decoder generates a separate output for each minterm of the required function.
These outputs are then combined in the OR gate, giving the circuit in Figure 4.44.

Example 4.25Problem: Derive a circuit that implements an 8-to-3 binary encoder.

Solution: The truth table for the encoder is shown in Figure 4.45. Only those rows for
which a single input variable is equal to 1 are shown; the other rows can be treated as don’t
care cases. From the truth table it is seen that the desired circuit is defined by the equations

y2 = w4 + w5 + w6 + w7

y1 = w2 + w3 + w6 + w7

y0 = w1 + w3 + w5 + w7

Example 4.26Problem: Implement the function

f (w1, w2, w3, w4, w5) = w1w2w4w5 + w1w2 + w1w3 + w1w4 + w3w4w5

by using a 4-to-1 multiplexer and as few other gates as possible. Assume that only the
uncomplemented inputs w1, w2, w3, w4, and w5 are available.

w0

En

y0

w1 y1

y2

y3

y7

y6

y5

y4

w2

f

1

w1

w2

w3

Figure 4.44 Circuit for Example 4.24.
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Figure 4.45 Truth table for an 8-to-3 binary encoder.
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w2 w3+

w1 w4

w2

w5

w3

1

Figure 4.46 Circuit for Example 4.26.

Solution: Since variables w1 and w4 appear in more product terms in the expression for
f than the other three variables, let us perform Shannon’s expansion with respect to these
two variables. The expansion gives

f = w1w4fw1w4 + w1w4fw1w4 + w1w4fw1w4 + w1w4fw1w4

= w1w4(w2w5) + w1w4(w3w5) + w1w4(w2 + w3) + w1w4(1)

We can use a NOR gate to implement w2w5 = w2 + w5. We also need an AND gate and an
OR gate. The complete circuit is presented in Figure 4.46.
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Figure 4.47 Binary to Gray code coversion.

Example 4.27Problem: In Chapter 2 we pointed out that the rows and columns of a Karnaugh map
are labeled using Gray code. This is a code in which consecutive valuations differ in one
variable only. Figure 4.47 depicts the conversion between three-bit binary and Gray codes.
Design a circuit that can convert a binary code into Gray code according to the figure.

Solution: From the figure it follows that

g2 = b2

g1 = b1b2 + b1b2

= b1 ⊕ b2

g0 = b0b1 + b0b1

= b0 ⊕ b1

Example 4.28Problem: In Section 4.1.2 we showed that any logic function can be decomposed using
Shannon’s expansion theorem. For a four-variable function, f (w1, . . . , w4), the expansion
with respect to w1 is

f (w1, . . . , w4) = w1fw1 + w1fw1

A circuit that implements this expression is given in Figure 4.48a.
(a) If the decomposition yields fw1 = 0, then the multiplexer in the figure can be replaced
by a single logic gate. Show this circuit.
(b) Repeat part (a) for the case where fw1 = 1.

Solution: The desired circuits are shown in parts (b) and (c) of Figure 4.48.
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(a) Shannon’s expansion of the function f.
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(b) Solution for part a.

w1

w2

w3

w4

f
f w1

(c) Solution for part b.

Figure 4.48 Circuits for Example 4.28.

Example 4.29 Problem: In Section 2.17 we said that field-programmable gate arrays (FPGAs) contain
lookup tables (LUTs) that are used to implement logic functions. Each LUT can be pro-
grammed to implement any logic function of its inputs. FPGAs are discussed in detail in
Appendix B. Many commercial FPGAs contain four-input lookup tables (4-LUTs). What
is the minimum number of 4-LUTs needed to construct a 4-to-1 multiplexer with select
inputs s1 and s0 and data inputs w3, w2, w1, and w0?

Solution: A straightforward attempt is to use directly the expression that defines the 4-to-1
multiplexer

f = s1s0w0 + s1s0w1 + s1s0w2 + s1s0w3

Let g = s1s0w0 + s1s0w1 and h = s1s0w2 + s1s0w3, so that f = g + h. This decomposition
leads to the circuit in Figure 4.49a, which requires three LUTs.
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Figure 4.49 Circuits for Example 4.29.

When designing logic circuits, one can sometimes come up with a clever idea which
leads to a superior implementation. Figure 4.49b shows how it is possible to implement
the multiplexer with just two LUTs, based on the following observation. The truth table in
Figure 4.2b indicates that when s1 = 0 the output must be either w0 or w1, as determined
by the value of s0. This can be generated by the first LUT, with the output k. The second
LUT must make the choice between w2 and w3 when s1 = 1. But, the choice can be made
only by knowing the value of s0. Since it is impossible to have five inputs in the LUT, more
information has to be passed from the first to the second LUT. Observe that when s1 = 1
the output f will be equal to either w2 or w3, in which case it is not necessary to know the
values of w0 and w1. Hence, in this case we can pass on the value of s0 through the first
LUT, rather than w0 or w1. This can be done by making the function of this LUT

k = s1(s0w0 + s0w1) + s1s0
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w3 w2 w1 w00

Shift

y3 y2 y1 y0 k

1 0 1 0 1 0 1 0 1 0

0

Figure 4.50 A shifter circuit.

Then, the second LUT performs the function

f = s1k + s1(kw3 + kw4)

Example 4.30 Problem: In digital systems it is often necessary to have circuits that can shift the bits of
a vector by one or more bit positions to the left or right. Design a circuit that can shift a
four-bit vector W = w3w2w1w0 one bit position to the right when a control signal Shift is
equal to 1. Let the outputs of the circuit be a four-bit vector Y = y3y2y1y0 and a signal k,
such that if Shift = 1 then y3 = 0, y2 = w3, y1 = w2, y0 = w1, and k = w0. If Shift = 0
then Y = W and k = 0.

Solution: The required circuit can be implemented with five 2-to-1 multiplexers as shown
in Figure 4.50. The Shift signal is used as the select input to each multiplexer.

Example 4.31 Problem: The shifter circuit in Example 4.30 shifts the bits of an input vector by one bit
position to the right. It fills the vacated bit on the left side with 0. A more versatile shifter
circuit may be able to shift by more bit positions at a time. If the bits that are shifted out are
placed into the vacated positions on the left, then the circuit effectively rotates the bits of
the input vector by a specified number of bit positions. Such a circuit is often called a barrel
shifter. Design a four-bit barrel shifter that rotates the bits by 0, 1, 2, or 3 bit positions as
determined by the valuation of two control signals s1 and s0.

Solution: The required action is given in Figure 4.51a. The barrel shifter can be imple-
mented with four 4-to-1 multiplexers as shown in Figure 4.51b. The control signals s1 and
s0 are used as the select inputs to the multiplexers.

Example 4.32 Problem: Write Verilog code that represents the circuit in Figure 4.17. Use the dec2to4
module in Figure 4.31 as a subcircuit in your code.

Solution: The code is shown in Figure 4.52. Note that the dec2to4 module can be included
in the same file as we have done in the figure, but it can also be in a separate file in the
project directory.
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(a) Truth table

(b) Circuit

0 1 2 3 0 1 2 3 0 1 2 3 0 1 2 3

Figure 4.51 A barrel shifter circuit.

Example 4.33Problem: Write Verilog code that represents the shifter circuit in Figure 4.50.

Solution: One possibility is to specify the structure of this circuit as shown in Figure 4.53.
The if-else construct is used to define the desired shifting of individual bits. A typical
Verilog compiler will implement this code with 2-to-1 multiplexers as depicted in Fig-
ure 4.50.

An alternative is to make use of the shift operator defined in Section 4.6.5, as indicated
in Figure 4.54.

Example 4.34Problem: Write Verilog code that defines the barrel shifter in Figure 4.51.

Solution: The code in Figure 4.55 is a possible solution. The rotate function is accomplished
by concatenating two copies of the input vector W and shifting the obtained 8-bit vector to
the right by the number of bit positions specified as the input S. The four least-significant
bits of the resulting 8-bit vector are the desired output Y.
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module mux4to1 (W, S, f);
input [0:3] W;
input [1:0] S;
output f;
wire [0:3] Y;

dec2to4 decoder (S, 1, Y);
assign f = |(W & Y);

endmodule

module dec2to4 (W, En, Y);
input [1:0] W;
input En;
output reg [0:3] Y;

always @(W, En)
case ({En, W})

3’b100: Y = 4’b1000;
3’b101: Y = 4’b0100;
3’b110: Y = 4’b0010;
3’b111: Y = 4’b0001;
default: Y = 4’b0000;

endcase

endmodule

Figure 4.52 Verilog code for Example 4.32.

Example 4.35 The concept of parity is widely used in digital systems for error-checking purposes. When
digital information is transmitted from one point to another, perhaps by long wires, it is
possible for some bits to become corrupted during the transmission process. For example,
the sender may transmit a bit whose value is equal to 1, but the receiver observes a bit whose
value is 0. Suppose that a data item consists of n bits. A simple error-checking mechanism
can be implemented by including an extra bit, p, which indicates the parity of the n-bit item.
Two kinds of parity can be used. For even parity the p bit is given the value such that the
total number of 1s in the n + 1 transmitted bits (comprising the n-bit data and the parity bit
p) is even. For odd parity the p bit is given the value that makes the total number of 1s odd.
The sender generates the p bit based on the n-bit data item that is to be transmitted. The
receiver checks whether the parity of the received item is correct.

Parity generating and checking circuits can be realized with XOR gates. For example,
for a four-bit data item consisting of bits x3x2x1x0, the even parity bit can be generated as

p = x3 ⊕ x2 ⊕ x1 ⊕ x0
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module shifter (W, Shift, Y, k);
input [3:0] W;
input Shift;
output reg [3:0] Y;
output reg k;

always @(W, Shift)
begin

if (Shift)
begin

Y[3] = 0;
Y[2:0] = W[3:1];
k = W[0];

end
else
begin

Y = W;
k = 0;

end
end

endmodule

Figure 4.53 Verilog code for the circuit in Figure 4.50.

At the receiving end the checking is done using

c = p ⊕ x3 ⊕ x2 ⊕ x1 ⊕ x0

If c = 0, then the received item shows the correct parity. If c = 1, then an error has occurred.
Note that observing c = 0 is not a guarantee that the received item is correct. If two or any
even number of bits have their values inverted during the transmission, the parity of the
data item will not be changed; hence the error will not be detected. But if an odd number
of bits are corrupted, then the error will be detected.

Problem: The ASCII code, discussed in Section 1.5.3, uses seven-bit patterns to represent
characters. In computer applications it is common to use one byte per character. The eighth
bit, b7, is usually set to 0 for use in digital processing. But, if the the character data is to be
transmitted from one digital system to another, it may be prudent to use bit b7 as a parity
bit. Write Verilog code that specifies a circuit that accepts an input byte (where b7 = 0) and
produces an output byte where b7 is the even parity bit.

Solution: Let X and Y be the input and output bytes, respectively. Then, the desired
solution is given in Figure 4.56.
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module shifter (W, Shift, Y, k);
input [3:0] W;
input Shift;
output reg [3:0] Y;
output reg k;

always @(W, Shift)
begin

if (Shift)
begin

Y = W >  > 1;
k = W[0];

end
else
begin

Y = W;
k = 0;

end
end

endmodule

Figure 4.54 Alternative Verilog code for the circuit in
Figure 4.50.

module barrel (W, S, Y);
input [3:0] W;
input [1:0] S;
output [3:0] Y;
wire [3:0] T;

assign {T, Y} = {W, W} >> S;

endmodule

Figure 4.55 Verilog code for the barrel shifter.

module parity (X, Y);
input [7:0] X;
output [7:0] Y;

assign Y = { X[6:0], X[6:0]};

endmodule

Figure 4.56 Verilog code for Example 4.35.
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Problems

Answers to problems marked by an asterisk are given at the back of the book.

4.1 Show how the function f (w1, w2, w3) = ∑
m(0, 2, 3, 4, 5, 7) can be implemented using a

3-to-8 binary decoder and an OR gate.

4.2 Show how the function f (w1, w2, w3) = ∑
m(1, 2, 3, 5, 6) can be implemented using a

3-to-8 binary decoder and an OR gate.

*4.3 Consider the function f = w1w3 + w2w3 + w1w2. Use the truth table to derive a circuit for
f that uses a 2-to-1 multiplexer.

4.4 Repeat Problem 4.3 for the function f = w2w3 + w1w2.

*4.5 For the function f (w1, w2, w3) = ∑
m(0, 2, 3, 6), use Shannon’s expansion to derive an

implementation using a 2-to-1 multiplexer and any other necessary gates.

4.6 Repeat Problem 4.5 for the function f (w1, w2, w3) = ∑
m(0, 4, 6, 7).

4.7 Consider the function f = w2 + w1w3 + w1w3. Show how repeated application of Shan-
non’s expansion can be used to derive the minterms of f .

4.8 Repeat Problem 4.7 for f = w2 + w1w3.

4.9 Prove Shannon’s expansion theorem presented in Section 4.1.2.

*4.10 Section 4.1.2 shows Shannon’s expansion in sum-of-products form. Using the principle of
duality, derive the equivalent expression in product-of-sums form.

*4.11 Consider the function f = w1w2 + w2w3 + w1w2w3. The cost of this minimal sum-of-
products expression is 14, which includes four gates and 10 inputs to the gates. Use
Shannon’s expansion to derive a multilevel circuit that has a lower cost and give the cost
of your circuit.

4.12 Use multiplexers to implement the circuit for stage 0 of the carry-lookahead adder in Figure
3.15 (included in the right-most shaded area).

*4.13 Derive minimal sum-of-products expressions for the outputs a, b, and c of the 7-segment
display in Figure 4.21.

4.14 Derive minimal sum-of-products expressions for the outputs d , e, f , and g of the 7-segment
display in Figure 4.21.

4.15 For the function, f , in Example 4.26 perform Shannon’s expansion with respect to variables
w1 and w2, rather than w1 and w4. How does the resulting circuit compare with the circuit
in Figure 4.46?

4.16 Consider the multiplexer-based circuit illustrated in Figure P4.1. Show how the function
f = w2w3 + w1w3 + w2w3 can be implemented using only one instance of this circuit.



December 31, 2012 09:12 vra80547_ch04 Sheet number 56 Page number 244 magenta black

244 C H A P T E R 4 • Combinational-Circuit Building Blocks

i3

i4
i5

i8

f

i2

i6

i1

i7

Figure P4.1 A multiplexer-based circuit.

4.17 Show how the function f = w1w3 + w1w3 + w2w3 + w1w2 can be realized using one or
more instances of the circuit in Figure P4.1. Note that there are no NOT gates in the circuit;
hence complements of signals have to be generated using the multiplexers in the logic block.

*4.18 Consider the Verilog code in Figure P4.2. What type of circuit does the code represent?
Comment on whether or not the style of code used is a good choice for the circuit that it
represents.

module problem4_18 (W, En, y0, y1, y2, y3);
input [1:0] W;
input En;
output reg y0, y1, y2, y3;

always @(W, En)
begin

y0 = 0;
y1 = 0;
y2 = 0;
y3 = 0;
if (En)

if (W == 0) y0 = 1;
else if (W == 1) y1 = 1;
else if (W == 2) y2 = 1;
else y3 = 1;

end

endmodule

Figure P4.2 Code for Problem 4.18.
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4.19 Write Verilog code that represents the function in Problem 4.2, using a case statement.

4.20 Write Verilog code for a 4-to-2 binary encoder.

4.21 Write Verilog code for an 8-to-3 binary encoder.

4.22 Figure P4.3 shows a modified version of the code for a 2-to-4 decoder in Figure 4.37. This
code is almost correct but contains one error. What is the error?

module dec2to4 (W, En, Y);
input [1:0] W;
input En;
output reg [0:3] Y;
integer k;

always @(W, En)
for (k = 0; k < = 3; k = k+1)

if (W == k)
Y[k] = En;

endmodule

Figure P4.3 Code for Problem 4.22.

4.23 Derive the circuit for an 8-to-3 priority encoder.

4.24 Using a casex statement, write Verilog code for an 8-to-3 priority encoder.

4.25 Repeat Problem 4.24, using a for loop.

4.26 Create a Verilog module named if2to4 that represents a 2-to-4 binary decoder using an
if-else statement. Create a second module named h3to8 that represents the 3-to-8 binary
decoder in Figure 4.15 using two instances of the if2to4 module.

4.27 Create a Verilog module named h6to64 that represents a 6-to-64 binary decoder. Use the
treelike structure in Figure 4.16, in which the 6-to-64 decoder is built using nine instances
of the h3to8 decoder created in Problem 4.26.

4.28 Write Verilog code that represents the circuit in Figure 4.17. Use the dec2to4 module in
Figure 4.31 as a subcircuit in your code.

4.29 Design a shifter circuit, similar to the one in Figure 4.50, which can shift a four-bit input
vector, W = w3w2w1w0, one bit-position to the right when the control signal Right is equal
to 1, and one bit-position to the left when the control signal Left is equal to 1. When Right
= Left = 0, the output of the circuit should be the same as the input vector. Assume that
the condition Right = Left = 1 will never occur.

4.30 Design a circuit that can multiply an eight-bit number, A = a7, . . . , a0, by 1, 2, 3 or 4 to
produce the result A, 2A, 3A or 4A, respectively.
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4.31 Write Verilog code that implements the task in Problem 4.30.

4.32 Figure 4.47 depicts the relationship between the binary and Gray codes. Design a circuit
that can convert Gray code into binary code.

4.33 Example 4.35 and Figure 4.56 show how a circuit that generates an ASCII byte suitable for
sending over a communications link may be defined. Write Verilog code for its counterpart
at the receiving end, where byte Y (which includes the parity bit) has to be converted into
byte X in which the bit x7 has to be 0. An error signal has to be produced, which is set to
0 or 1 depending on whether the parity check indicates correct or erroneous transmission,
respectively.
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5
Flip-Flops, Registers, and Counters

Chapter Objectives

In this chapter you will learn about:

• Logic circuits that can store information

• Flip-flops, which store a single bit

• Registers, which store multiple bits

• Shift registers, which shift the contents of the register

• Counters of various types

• Verilog constructs used to implement storage elements
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In previous chapters we considered combinational circuits where the value of each output depends solely on
the values of signals applied to the inputs. There exists another class of logic circuits in which the values of the
outputs depend not only on the present values of the inputs but also on the past behavior of the circuit. Such
circuits include storage elements that store the values of logic signals. The contents of the storage elements
are said to represent the state of the circuit. When the circuit’s inputs change values, the new input values
either leave the circuit in the same state or cause it to change into a new state. Over time the circuit changes
through a sequence of states as a result of changes in the inputs. Circuits that behave in this way are referred
to as sequential circuits.

In this chapter we will introduce circuits that can be used as storage elements. But first, we
will motivate the need for such circuits by means of a simple example. Suppose that we wish
to control an alarm system, as shown in Figure 5.1. The alarm mechanism responds to the
control input On/Off . It is turned on when On/Off = 1, and it is off when On/Off = 0. The
desired operation is that the alarm turns on when the sensor generates a positive voltage
signal, Set, in response to some undesirable event. Once the alarm is triggered, it must
remain active even if the sensor output goes back to zero. The alarm is turned off manually
by means of a Reset input. The circuit requires a memory element to remember that the
alarm has to be active until the Reset signal arrives.

Figure 5.2 gives a rudimentary memory element, consisting of a loop that has two
inverters. If we assume that A = 0, then B = 1. The circuit will maintain these values
indefinitely because of the feedback loop. We say that the circuit is in the state defined
by these values. If we assume that A = 1, then B = 0, and the circuit will remain in this
second state indefinitely. Thus the circuit has two possible states. This circuit is not useful,
because it lacks some practical means for changing its state. Useful circuits that exhibit
such memory behavior can be constructed with logic gates.

Memory
element

Alarm

Sensor

Reset

Set

On Off/

Figure 5.1 Control of an alarm system.

A B

Figure 5.2 A simple memory element.
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5.1 Basic Latch

Figure 5.3 presents a memory element built with NOR gates. Its inputs, Set and Reset,
provide the means for changing the state, Q, of the circuit. A more usual way of drawing
this circuit is given in Figure 5.4a, where the two NOR gates are said to be connected in
cross-coupled style. The circuit is referred to as a basic latch. Its behavior is described by
the table in Figure 5.4b. When both inputs, R and S, are equal to 0 the latch maintains its
existing state because of the feedback loop. This state may be either Qa = 0 and Qb = 1,
or Qa = 1 and Qb = 0, which is indicated in the table by stating that the Qa and Qb outputs
have values 0/1 and 1/0, respectively. Observe that Qa and Qb are complements of each
other in this case. When R = 1 and S = 0, the latch is reset into a state where Qa = 0 and
Qb = 1. When R = 0 and S = 1, the latch is set into a state where Qa = 1 and Qb = 0. The
fourth possibility is to have R = S = 1. In this case both Qa and Qb will be 0. The table in
Figure 5.4b resembles a truth table. However, since it does not represent a combinational
circuit in which the values of the outputs are determined solely by the current values of the
inputs, it is often called a characteristic table rather than a truth table.

Figure 5.4c gives a timing diagram for the latch, assuming that the propagation delay
through the NOR gates is negligible. Of course, in a real circuit the changes in the waveforms
would be delayed according to the propagation delays of the gates. We assume that initially
Qa = 0 and Qb = 1. The state of the latch remains unchanged until time t2, when S becomes
equal to 1, causing Qb to change to 0, which in turn causes Qa to change to 1 because
R + Qb = 1. The causality relationship is indicated by the arrows in the diagram. When S
goes to 0 at t3, there is no change in the state because both S and R are then equal to 0. At
t4 we have R = 1, which causes Qa to go to 0, which in turn causes Qb to go to 1 because
S + Qa = 1. At t5 both S and R are equal to 1, which forces both Qa and Qb to be equal
to 0. As soon as S returns to 0, at t6, Qb becomes equal to 1 again. At t8 we have S = 1
and R = 0, which causes Qb = 0 and Qa = 1. An interesting situation occurs at t10. From
t9 to t10 we have Qa = Qb = 0 because R = S = 1. Now if both R and S change to 0 at
t10, both Qa and Qb will go to 1. But having both Qa and Qb equal to 1 will immediately
force Qa = Qb = 0. There will be an oscillation between Qa = Qb = 0 and Qa = Qb = 1.
If the delays through the two NOR gates are exactly the same, the oscillation will continue
indefinitely. In a real circuit there will invariably be some difference in the delays through
these gates, and the latch will eventually settle into one of its two stable states, but we don’t
know which state it will be. This uncertainty is indicated in the waveforms by dashed lines.

Reset

Set Q

Figure 5.3 A memory element with NOR gates.



December 31, 2012 09:13 vra80547_ch05 Sheet number 4 Page number 250 magenta black

250 C H A P T E R 5 • Flip-Flops, Registers, and Counters

S R Qa Qb

0 0

0 1

1 0

1 1

0/1 1/0

0 1

1 0

0 0

(a) Circuit (b) Characteristic table

Time

1

0

1

0

1

0

1

0

R

S

Qa

Qb

Qa

Qb

?

?

(c) Timing diagram

R

S

t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

(no change)

Figure 5.4 A basic latch built with NOR gates.

The oscillations discussed above illustrate that even though the basic latch is a simple
circuit, careful analysis has to be done to fully appreciate its behavior. In general, any
circuit that contains one or more feedback paths, such that the state of the circuit depends
on the propagation delays through logic gates, has to be designed carefully. We discuss
timing issues in Section 5.15 and in Chapter 9.

The latch in Figure 5.4a can perform the functions needed for the memory element in
Figure 5.1, by connecting the Set signal to the S input and Reset to the R input. The Qa

output provides the desired On/Off signal. To initialize the operation of the alarm system,
the latch is reset. Thus the alarm is off. When the sensor generates the logic value 1, the
latch is set and Qa becomes equal to 1. This turns on the alarm mechanism. If the sensor
output returns to 0, the latch retains its state where Qa = 1; hence the alarm remains turned
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on. The only way to turn off the alarm is by resetting the latch, which is accomplished by
making the Reset input equal to 1.

5.2 Gated SR Latch

In Section 5.1 we saw that the basic SR latch can serve as a useful memory element. It
remembers its state when both the S and R inputs are 0. It changes its state in response
to changes in the signals on these inputs. The state changes occur at the time when the
changes in the signals occur. If we cannot control the time of such changes, then we don’t
know when the latch may change its state.

In the alarm system of Figure 5.1, it may be desirable to be able to enable or disable
the entire system by means of a control input, Enable. Thus when enabled, the system
would function as described above. In the disabled mode, changing the Set input from 0 to
1 would not cause the alarm to turn on. The latch in Figure 5.4a cannot provide the desired
operation. But the latch circuit can be modified to respond to the input signals S and R only
when Enable = 1. Otherwise, it would maintain its state.

The modified circuit is depicted in Figure 5.5a. It includes two AND gates that provide
the desired control. When the control signal Clk is equal to 0, the S ′ and R′ inputs to the
latch will be 0, regardless of the values of signals S and R. Hence the latch will maintain
its existing state as long as Clk = 0. When Clk changes to 1, the S ′ and R′ signals will be
the same as the S and R signals, respectively. Therefore, in this mode the latch will behave
as we described in Section 5.1. Note that we have used the name Clk for the control signal
that allows the latch to be set or reset, rather than call it the Enable signal. The reason is that
such circuits are often used in digital systems where it is desirable to allow the changes in
the states of memory elements to occur only at well-defined time intervals, as if they were
controlled by a clock. The control signal that defines these time intervals is usually called
the clock signal. The name Clk is meant to reflect this nature of the signal.

Circuits of this type, which use a control signal, are called gated latches. Because our
circuit exhibits set and reset capability, it is called a gated SR latch. Figure 5.5b describes
its behavior. It defines the state of the Q output at time t + 1, namely, Q(t + 1), as a
function of the inputs S, R, and Clk. When Clk = 0, the latch will remain in the state it
is in at time t, that is, Q(t), regardless of the values of inputs S and R. This is indicated
by specifying S = x and R = x, where x means that it does not matter if the signal value
is 0 or 1. When Clk = 1, the circuit behaves as the basic latch in Figure 5.4. It is set by
S = 1 and reset by R = 1. The last row of the table, where S = R = 1, shows that the state
Q(t + 1) is undefined because we don’t know whether it will be 0 or 1. This corresponds
to the situation described in Section 5.1 in conjunction with the timing diagram in Figure
5.4 at time t10. At this time both S and R inputs go from 1 to 0, which causes the oscillatory
behavior that we discussed. If S = R = 1, this situation will occur as soon as Clk goes from
1 to 0. To ensure a meaningful operation of the gated SR latch, it is essential to avoid the
possibility of having both the S and R inputs equal to 1 when Clk changes from 1 to 0.

A timing diagram for the gated SR latch is given in Figure 5.5c. It shows Clk as a
periodic signal that is equal to 1 at regular time intervals to suggest that this is how the
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Figure 5.5 Gated SR latch.
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Q
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Figure 5.6 Gated SR latch with NAND gates.

clock signal usually appears in a real system. The diagram presents the effect of several
combinations of signal values. Observe that we have labeled one output as Q and the other
as its complement Q, rather than Qa and Qb as in Figure 5.4. Since the undefined mode,
where S = R = 1, must be avoided in practice, the normal operation of the latch will have
the outputs as complements of each other. Moreover, we will often say that the latch is set
when Q = 1, and it is reset when Q = 0. A graphical symbol for the gated SR latch is given
in Figure 5.5d .

5.2.1 Gated SR Latch with NAND Gates

So far we have implemented the basic latch with cross-coupled NOR gates. We can also
construct the latch with NAND gates. Using this approach, we can implement the gated
SR latch as depicted in Figure 5.6. The behavior of this circuit is described by the table
in Figure 5.5b. Note that in this circuit, the clock is gated by NAND gates, rather than by
AND gates. Note also that the S and R inputs are reversed in comparison with the circuit
in Figure 5.5a.

5.3 Gated D Latch

In Section 5.2 we presented the gated SR latch and showed how it can be used as the memory
element in the alarm system of Figure 5.1. This latch is useful for many other applications.
In this section we describe another gated latch that is even more useful in practice. It has a
single data input, called D, and it stores the value on this input, under the control of a clock
signal. It is called a gated D latch.

To motivate the need for a gated D latch, consider the adder/subtractor unit discussed
in Chapter 3 (Figure 3.12). When we described how that circuit is used to add numbers, we
did not discuss what is likely to happen with the sum bits that are produced by the adder.
Adder/subtractor units are often used as part of a computer. The result of an addition or
subtraction operation is often used as an operand in a subsequent operation. Therefore, it
is necessary to be able to remember the values of the sum bits generated by the adder until



December 31, 2012 09:13 vra80547_ch05 Sheet number 8 Page number 254 magenta black

254 C H A P T E R 5 • Flip-Flops, Registers, and Counters

they are needed again. We might think of using the basic latches to remember these bits,
one bit per latch. In this context, instead of saying that a latch remembers the value of a
bit, it is more illuminating to say that the latch stores the value of the bit or simply “stores
the bit.” We should think of the latch as a storage element.

But can we obtain the desired operation using the basic latches? We can certainly reset
all latches before the addition operation begins. Then we would expect that by connecting
a sum bit to the S input of a latch, the latch would be set to 1 if the sum bit has the value
1; otherwise, the latch would remain in the 0 state. This would work fine if all sum bits
are 0 at the start of the addition operation and, after some propagation delay through the
adder, some of these bits become equal to 1 to give the desired sum. Unfortunately, the
propagation delays that exist in the adder circuit cause a big problem in this arrangement.
Suppose that we use a ripple-carry adder. When the X and Y inputs are applied to the adder,
the sum outputs may alternate between 0 and 1 a number of times as the carries ripple
through the circuit. The problem is that if we connect a sum bit to the S input of a latch,
then if the sum bit is temporarily a 1 and then settles to 0 in the final result, the latch will
remain set to 1 erroneously.

The problem caused by the alternating values of the sum bits in the adder could be
solved by using the gated SR latches, instead of the basic latches. Then we could arrange
that the clock signal is 0 during the time needed by the adder to produce a correct sum.
After allowing for the maximum propagation delay in the adder circuit, the clock should
go to 1 to store the values of the sum bits in the gated latches. As soon as the values have
been stored, the clock can return to 0, which ensures that the stored values will be retained
until the next time the clock goes to 1. To achieve the desired operation, we would also
have to reset all latches to 0 prior to loading the sum-bit values into these latches. This is
an awkward way of dealing with the problem, and it is preferable to use the gated D latches
instead.

Figure 5.7a shows the circuit for a gated D latch. It is based on the gated SR latch, but
instead of using the S and R inputs separately, it has just one data input, D. For convenience
we have labeled the points in the circuit that are equivalent to the S and R inputs. If D = 1,
then S = 1 and R = 0, which forces the latch into the state Q = 1. If D = 0, then S = 0
and R = 1, which causes Q = 0. Of course, the changes in state occur only when Clk = 1.

In this circuit it is impossible to have the troublesome situation where S = R = 1. In
the gated D latch, the output Q merely tracks the value of the input D while Clk = 1. As
soon as Clk goes to 0, the state of the latch is frozen until the next time the clock signal goes
to 1. Therefore, the gated D latch stores the value of the D input seen at the time the clock
changes from 1 to 0. Figure 5.7 also gives the characteristic table, the graphical symbol,
and a timing diagram for the gated D latch.

The timing diagram illustrates what happens if the D signal changes while Clk = 1.
During the third clock pulse, starting at t3, the output Q changes to 1 because D = 1. But
midway through the pulse D goes to 0, which causes Q to go to 0. This value of Q is stored
when Clk changes to 0. Now no further change in the state of the latch occurs until the
next clock pulse, at t4. The key point to observe is that as long as the clock has the value 1,
the Q output follows the D input. But when the clock has the value 0, the Q output cannot
change. The logic values are implemented as low and high voltage levels, as explained in
detail in Appendix B. Since the output of the gated D latch is controlled by the level of the
clock input, the latch is said to be level sensitive. The circuits in Figures 5.5 through 5.7 are
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Figure 5.7 Gated D latch.

level sensitive. We will show in Section 5.4 that it is possible to design storage elements
for which the output changes only at the point in time when the clock changes from one
value to the other. Such circuits are said to be edge triggered.

5.3.1 Effects of Propagation Delays

In the previous discussion we ignored the effects of propagation delays. In practical circuits
it is essential to take these delays into account. Consider the gated D latch in Figure 5.7a.
It stores the value of the D input that is present at the time the clock signal changes from
1 to 0. It operates properly if the D signal is stable (that is, not changing) at the time Clk
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Figure 5.8 Setup and hold times.

goes from 1 to 0. But it may lead to unpredictable results if the D signal also changes at
this time. Therefore, the designer of a logic circuit that generates the D signal must ensure
that this signal is stable when the critical change in the clock signal takes place.

Figure 5.8 illustrates the critical timing region. The minimum time that the D signal
must be stable prior to the negative edge of the Clk signal is called the setup time, tsu, of
the latch. The minimum time that the D signal must remain stable after the negative edge
of the Clk signal is called the hold time, th, of the latch. The values of tsu and th depend
on the technology used. Manufacturers of integrated circuit chips provide this information
on the data sheets that describe their chips. Typical values for a modern technology may
be tsu = 0.3 ns and th = 0.2 ns. We will give examples of how setup and hold times affect
the speed of operation of circuits in Section 5.15. The behavior of storage elements when
setup or hold times are violated is discussed in Chapter 7.

5.4 Edge-Triggered D Flip-Flops

In the level-sensitive latches, the state of the latch keeps changing according to the values of
input signals during the period when the clock signal is active (equal to 1 in our examples).
As we will see in Sections 5.8 and 5.9, there is also a need for storage elements that can
change their states no more than once during one clock cycle. We will now discuss circuits
that exhibit such behavior.

5.4.1 Master-Slave D Flip-Flop

Consider the circuit given in Figure 5.9a, which consists of two gated D latches. The first,
called master, changes its state while Clock = 1. The second, called slave, changes its state
while Clock = 0. The operation of the circuit is such that when the clock is high, the master
tracks the value of the D input signal and the slave does not change. Thus the value of Qm

follows any changes in D, and the value of Qs remains constant. When the clock signal
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Figure 5.9 Master-slave D flip-flop.

changes to 0, the master stage stops following the changes in the D input. At the same time,
the slave stage responds to the value of the signal Qm and changes state accordingly. Since
Qm does not change while Clock = 0, the slave stage can undergo at most one change of
state during a clock cycle. From the external observer’s point of view, namely, the circuit
connected to the output of the slave stage, the master-slave circuit changes its state at the
negative-going edge of the clock. The negative edge is the edge where the clock signal
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changes from 1 to 0. Regardless of the number of changes in the D input to the master
stage during one clock cycle, the observer of the Qs signal will see only the change that
corresponds to the D input at the negative edge of the clock.

The circuit in Figure 5.9 is called a master-slave D flip-flop. The term flip-flop denotes
a storage element that changes its output state at the edge of a controlling clock signal. The
timing diagram for this flip-flop is shown in Figure 5.9b. A graphical symbol is given in
Figure 5.9c. In the symbol we use the > mark to denote that the flip-flop responds to the
“active edge” of the clock. We place a bubble on the clock input to indicate that the active
edge for this particular circuit is the negative edge.

We can augment the circuit in Figure 5.9a by reversing the connections of the clock
signal to the master and slave stages. That is, include an inverter in the clock input to the
master stage and connect the uncomplemented clock signal to the slave stage. Now, the state
of the master stage will be transferred into the slave stage when the clock signal changes
from 0 to 1. This circuit behaves as a positive-edge-triggered master-slave D flip-flop. It
can be represented by the graphical symbol in Figure 5.9c where the bubble on the clock
input is removed.

Level-Sensitive versus Edge-Triggered Storage Elements
At this point it is useful to compare the timing in the various storage elements that

we have discussed. Figure 5.10 shows three different types of storage elements that are
driven by the same data and clock inputs. The first element is a gated D latch, which is
level sensitive. The second one is a positive-edge-triggered D flip-flop, and the third one is
a negative-edge-triggered D flip-flop. To accentuate the differences between these storage
elements, the D input changes its values more than once during each half of the clock
cycle. Observe that the gated D latch follows the D input as long as the clock is high. The
positive-edge-triggered flip-flop responds only to the value of D when the clock changes
from 0 to 1. The negative-edge-triggered flip-flop responds only to the value of D when
the clock changes from 1 to 0.

5.4.2 Other Types of Edge-Triggered D Flip-Flops

Master-slave flip-flops illustrate the concept of edge triggering very clearly. Other circuits
have been used to accomplish the same task. Consider the circuit presented in Figure 5.11a.
It requires only six NAND gates and, hence, fewer transistors than the master-slave circuit.
The operation of the circuit is as follows. When Clock = 0, the outputs of gates 2 and 3
are high. Thus P1 = P2 = 1, which maintains the output latch, comprising gates 5 and 6,
in its present state. At the same time, the signal P3 is equal to D, and P4 is equal to its
complement D. When Clock changes to 1, the following changes take place. The values
of P3 and P4 are transmitted through gates 2 and 3 to cause P1 = D and P2 = D, which
sets Q = D and Q = D. To operate reliably, P3 and P4 must be stable when Clock changes
from 0 to 1. Hence the setup time of the flip-flop is equal to the delay from the D input
through gates 4 and 1 to P3. The hold time is given by the delay through gate 3 because
once P2 is stable, the changes in D no longer matter.
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Figure 5.10 Comparison of level-sensitive and edge-triggered D storage elements.

For proper operation it is necessary to show that after Clock changes to 1 any further
changes in D will not affect the output latch as long as Clock = 1. We have to consider two
cases. Suppose first that D = 0 at the positive edge of the clock. Then P2 = 0, which will
keep the output of gate 4 equal to 1 as long as Clock = 1, regardless of the value of the D
input. The second case is if D = 1 at the positive edge of the clock. Then P1 = 0, which
forces the outputs of gates 1 and 3 to be equal to 1, regardless of the D input. Therefore,
the flip-flop ignores changes in the D input while Clock = 1.
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Figure 5.11 A positive-edge-triggered D flip-flop.

This circuit behaves as a positive-edge-triggered D flip-flop. A similar circuit, con-
structed with NOR gates, can be used as a negative-edge-triggered flip-flop.

5.4.3 D Flip-Flops with Clear and Preset

Flip-flops are often used for implementation of circuits that can have many possible states,
where the response of the circuit depends not only on the present values of the circuit’s
inputs but also on the particular state that the circuit is in at that time. We will discuss
a general form of such circuits in Chapter 6. A simple example is a counter circuit that
counts the number of occurrences of some event, perhaps passage of time. We will discuss
counters in detail in Section 5.9. A counter comprises a number of flip-flops, whose outputs
are interpreted as a number. The counter circuit has to be able to increment or decrement the
number. It is also important to be able to force the counter into a known initial state (count).
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Figure 5.12 Master-slave D flip-flop with Clear and Preset.

Obviously, it must be possible to clear the count to zero, which means that all flip-flops
must have Q = 0. It is equally useful to be able to preset each flip-flop to Q = 1, to insert
some specific count as the initial value in the counter. These features can be incorporated
into the circuits of Figures 5.9 and 5.11 as follows.

Figure 5.12a shows an implementation of the circuit in Figure 5.9a using NAND gates.
The master stage is just the gated D latch of Figure 5.7a. Instead of using another latch
of the same type for the slave stage, we can use the slightly simpler gated SR latch of
Figure 5.6. This eliminates one NOT gate from the circuit.

A simple way of providing the clear and preset capability is to add an extra input to
each NAND gate in the cross-coupled latches, as indicated in blue. Placing a 0 on the
Clear_n input will force the flip-flop into the state Q = 0. If Clear_n = 1, then this input
will have no effect on the NAND gates. Similarly, Preset_n = 0 forces the flip-flop into
the state Q = 1, while Preset_n = 1 has no effect. To denote that the Clear_n and Preset_n
inputs are active when their value is 0, we appended the letter n (for “negative”) to these
names. We should note that the circuit that uses this flip-flop should not try to force both
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Figure 5.13 Positive-edge-triggered D flip-flop with Clear and Preset.

Clear_n and Preset_n to 0 at the same time. A graphical symbol for this flip-flop is shown
in Figure 5.12b.

A similar modification can be done on the edge-triggered flip-flop of Figure 5.11a, as
indicated in Figure 5.13a. Again, both Clear_n and Preset_n inputs are active low. They
do not disturb the flip-flop when they are equal to 1.

In the circuits in Figures 5.12a and 5.13a, the effect of a low signal on either the Clear_n
or Preset_n input is immediate. For example, if Clear_n = 0 then the flip-flop goes into
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the state Q = 0 immediately, regardless of the value of the clock signal. In such a circuit,
where the Clear_n signal is used to clear a flip-flop without regard to the clock signal, we
say that the flip-flop has an asynchronous clear. In practice, it is often preferable to clear
the flip-flops on the active edge of the clock. Such synchronous clear can be accomplished
as shown in Figure 5.13c. The flip-flop operates normally when the Clear_n input is equal
to 1. But if Clear_n goes to 0, then on the next positive edge of the clock the flip-flop will
be cleared to 0. We will examine the clearing of flip-flops in more detail in Section 5.10.

5.4.4 Flip-Flop Timing Parameters

In Section 5.3.1 we discussed timing issues related to latch circuits. In practice such
issues are equally important for circuits with flip-flops. Figure 5.14a shows a positive-
edge triggered flip-flop with asynchronous clear, and part (b) of the figure illustrates some
important timing parameters for this flip-flop. Data is loaded into the D input of the flip-
flop on a positive clock edge, and this logic value must be stable during the setup time, tsu,
before the clock edge occurs. The data must remain stable during the hold time, th, after the
edge. If the setup or hold requirements are not adhered to in a circuit that uses this flip-flop,
then it may enter an unstable condition known as metastability; we discuss this concept in
Chapter 7.

As indicated in Figure 5.14, a clock-to-Q propagation delay, tcQ, is incurred before the
value of Q changes after a positive clock edge. In general, the delay may not be exactly
the same for the cases when Q changes from 1 to 0 or 0 to 1, but we assume for simplicity
that these delays are equal. For the flip-flops in a commercial chip, two values are usually
specified for tcQ, representing the maximum and minimum delays that may occur in practice.
Specifying a range of values when estimating the delays in a chip is a common practice due
to many sources of variation in delay that are caused by the chip manufacturing process.
In Section 5.15 we provide some examples that illustrate the effects of flip-flop timing
parameters on the operation of circuits.

5.5 T Flip-Flop

The D flip-flop is a versatile storage element that can be used for many purposes. By
including some simple logic circuitry to drive its input, the D flip-flop may appear to be a
different type of storage element. An interesting modification is presented in Figure 5.15a.
This circuit uses a positive-edge-triggered D flip-flop. The feedback connections make
the input signal D equal to either the value of Q or Q under the control of the signal that
is labeled T . On each positive edge of the clock, the flip-flop may change its state Q(t).
If T = 0, then D = Q and the state will remain the same, that is, Q(t + 1) = Q(t). But
if T = 1, then D = Q and the new state will be Q(t + 1) = Q(t). Therefore, the overall
operation of the circuit is that it retains its present state if T = 0, and it reverses its present
state if T = 1.
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Figure 5.14 Flip-flop timing parameters.

The operation of the circuit is specified in the form of a characteristic table in Fig-
ure 5.15b. Any circuit that implements this table is called a T flip-flop. The name T flip-flop
derives from the behavior of the circuit, which “toggles” its state when T = 1. The toggle
feature makes the T flip-flop a useful element for building counter circuits, as we will see
in Section 5.9.

5.6 JK Flip-Flop

Another interesting circuit can be derived from Figure 5.15a. Instead of using a single
control input, T , we can use two inputs, J and K , as indicated in Figure 5.16a. For this
circuit the input D is defined as

D = J Q + KQ
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Figure 5.15 T flip-flop.

A corresponding characteristic table is given in Figure 5.16b. The circuit is called a JK
flip-flop. It combines the behaviors of SR and T flip-flops in a useful way. It behaves as
the SR flip-flop, where J = S and K = R, for all input values except J = K = 1. For the
latter case, which has to be avoided in the SR flip-flop, the JK flip-flop toggles its state like
the T flip-flop.

The JK flip-flop is a versatile circuit. It can be used for straight storage purposes, just
like the D and SR flip-flops. But it can also serve as a T flip-flop by connecting the J and
K inputs together.
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Figure 5.16 JK flip-flop.

5.7 Summary of Terminology

We have used the terminology that is quite common. But the reader should be aware that
different interpretations of the terms latch and flip-flop can be found in the literature. Our
terminology can be summarized as follows:

Basic latch is a feedback connection of two NOR gates or two NAND gates, which
can store one bit of information. It can be set to 1 using the S input and reset to 0
using the R input.

Gated latch is a basic latch that includes input gating and a control input signal. The
latch retains its existing state when the control input is equal to 0. Its state may be
changed when the control signal is equal to 1. In our discussion we referred to the
control input as the clock. We considered two types of gated latches:

• Gated SR latch uses the S and R inputs to set the latch to 1 or reset it to 0,
respectively.

• Gated D latch uses the D input to force the latch into a state that has the same
logic value as the D input.
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A flip-flop is a storage element that can have its output state changed only on the edge
of the controlling clock signal. If the state changes when the clock signal goes from 0
to 1, we say that the flip-flop is positive-edge triggered. If the state changes when
the clock signal goes from 1 to 0, we say that the flip-flop is negative-edge triggered.

5.8 Registers

A flip-flop stores one bit of information. When a set of n flip-flops is used to store n bits of
information, such as an n-bit number, we refer to these flip-flops as a register. A common
clock is used for each flip-flop in a register, and each flip-flop operates as described in the
previous sections. The term register is merely a convenience for referring to n-bit structures
consisting of flip-flops.

5.8.1 Shift Register

In Section 3.6 we explained that a given number is multiplied by 2 if its bits are shifted
one bit position to the left and a 0 is inserted as the new least-significant bit. Similarly, the
number is divided by 2 if the bits are shifted one bit-position to the right. A register that
provides the ability to shift its contents is called a shift register.

Figure 5.17a shows a four-bit shift register that is used to shift its contents one bit-
position to the right. The data bits are loaded into the shift register in a serial fashion using
the In input. The contents of each flip-flop are transferred to the next flip-flop at each
positive edge of the clock. An illustration of the transfer is given in Figure 5.17b, which
shows what happens when the signal values at In during eight consecutive clock cycles are
1, 0, 1, 1, 1, 0, 0, and 0, assuming that the initial state of all flip-flops is 0.

To implement a shift register it is necessary to use flip-flops. The level-sensitive gated
latches are not suitable, because a change in the value of In would propagate through more
than one latch during the time when the clock is equal to 1.

5.8.2 Parallel-Access Shift Register

In computer systems it is often necessary to transfer n-bit data items. This may be done by
transmitting all bits at once using n separate wires, in which case we say that the transfer
is performed in parallel. But it is also possible to transfer all bits using a single wire, by
performing the transfer one bit at a time, in n consecutive clock cycles. We refer to this
scheme as serial transfer. To transfer an n-bit data item serially, we can use a shift register
that can be loaded with all n bits in parallel (in one clock cycle). Then during the next n
clock cycles, the contents of the register can be shifted out for serial transfer. The reverse
operation is also needed. If bits are received serially, then after n clock cycles the contents
of the register can be accessed in parallel as an n-bit item.
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Q1 Q2 Q3 Q4

Figure 5.17 A simple shift register.

Figure 5.18 shows a four-bit shift register that provides the parallel access. A 2-to-1
multiplexer on its D input allows each flip-flop to be connected to two different sources.
One source is the preceding flip-flop, which is needed for the shift-register operation. The
other source is the external input that corresponds to the bit that is to be loaded into the
flip-flop as a part of the parallel-load operation. The control signal Shift/Load is used to
select the mode of operation. If Shift/Load = 0, then the circuit operates as a shift register.
If Shift/Load = 1, then the parallel input data are loaded into the register. In both cases the
action takes place on the positive edge of the clock.

In Figure 5.18 we have chosen to label the flip-flops’ outputs as Q3, . . . , Q0 because
shift registers are often used to hold binary numbers. The contents of the register can be
accessed in parallel by observing the outputs of all flip-flops. The flip-flops can also be
accessed serially, by observing the values of Q0 during consecutive clock cycles while the
contents are being shifted. A circuit in which data can be loaded in series and then accessed
in parallel is called a series-to-parallel converter. Similarly, the opposite type of circuit is a
parallel-to-series converter. The circuit in Figure 5.18 can perform both of these functions.
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Figure 5.18 Parallel-access shift register.

5.9 Counters

In Chapter 3 we dealt with circuits that perform arithmetic operations. We showed how
adder/subtractor circuits can be designed, either using a simple cascaded (ripple-carry)
structure that is inexpensive but slow or using a more complex carry-lookahead structure
that is both more expensive and faster. In this section we examine special types of addition
and subtraction operations, which are used for the purpose of counting. In particular, we
want to design circuits that can increment or decrement a count by 1. Counter circuits are
used in digital systems for many purposes. They may count the number of occurrences of
certain events, generate timing intervals for control of various tasks in a system, keep track
of time elapsed between specific events, and so on.

Counters can be implemented using the adder/subtractor circuits discussed in Chapter 3
and the registers discussed in Section 5.8. However, since we only need to change the
contents of a counter by 1, it is not necessary to use such elaborate circuits. Instead, we
can use much simpler circuits that have a significantly lower cost. We will show how the
counter circuits can be designed using T and D flip-flops.

5.9.1 Asynchronous Counters

The simplest counter circuits can be built using T flip-flops because the toggle feature is
naturally suited for the implementation of the counting operation.
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Up-Counter with T Flip-Flops
Figure 5.19a gives a three-bit counter capable of counting from 0 to 7. The clock inputs

of the three flip-flops are connected in cascade. The T input of each flip-flop is connected
to a constant 1, which means that the state of the flip-flop will be reversed (toggled) at each
positive edge of its clock. We are assuming that the purpose of this circuit is to count the
number of pulses that occur on the primary input called Clock. Thus the clock input of
the first flip-flop is connected to the Clock line. The other two flip-flops have their clock
inputs driven by the Q output of the preceding flip-flop. Therefore, they toggle their state
whenever the preceding flip-flop changes its state from Q = 1 to Q = 0, which results in a
positive edge of the Q signal.

Figure 5.19b shows a timing diagram for the counter. The value of Q0 toggles once each
clock cycle. The change takes place shortly after the positive edge of the Clock signal. The
delay is caused by the propagation delay through the flip-flop. Since the second flip-flop
is clocked by Q0, the value of Q1 changes shortly after the negative edge of the Q0 signal.
Similarly, the value of Q2 changes shortly after the negative edge of the Q1 signal. If we
look at the values Q2Q1Q0 as the count, then the timing diagram indicates that the counting

T Q

QClock

T Q

Q

T Q

Q

1

Q0 Q1 Q2

Clock

Q0

Q1

Q2

Count 0 1 2 3 4 5 6 7 0

(b) Timing diagram

(a) Circuit

Figure 5.19 A three-bit up-counter.
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sequence is 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, and so on. This circuit is a modulo-8 counter. Because
it counts in the upward direction, we call it an up-counter.

The counter in Figure 5.19a has three stages, each comprising a single flip-flop. Only
the first stage responds directly to the Clock signal; we say that this stage is synchronized
to the clock. The other two stages respond after an additional delay. For example, when
Count = 3, the next clock pulse will cause the Count to go to 4. As indicated by the arrows
in the timing diagram in Figure 5.19b, this change requires the toggling of the states of
all three flip-flops. The change in Q0 is observed only after a propagation delay from the
positive edge of Clock. The Q1 and Q2 flip-flops have not yet changed; hence for a brief
time the count is Q2Q1Q0 = 010. The change in Q1 appears after a second propagation
delay, at which point the count is 000. Finally, the change in Q2 occurs after a third delay,
at which point the stable state of the circuit is reached and the count is 100. This behavior is
similar to the rippling of carries in the ripple-carry adder circuit of Figure 3.5. The circuit
in Figure 5.19a is an asynchronous counter, or a ripple counter.

Down-Counter with T Flip-Flops
A slight modification of the circuit in Figure 5.19a is presented in Figure 5.20a. The

only difference is that in Figure 5.20a the clock inputs of the second and third flip-flops are

T Q

QClock

T Q

Q

T Q

Q

1

Q0 Q1 Q2

(a) Circuit

Clock

Q0

Q1

Q2

Count 0 7 6 5 4 3 2 1 0

(b) Timing diagram

Figure 5.20 A three-bit down-counter.
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driven by the Q outputs of the preceding stages, rather than by the Q outputs. The timing
diagram, given in Figure 5.20b, shows that this circuit counts in the sequence 0, 7, 6, 5, 4,
3, 2, 1, 0, 7, and so on. Because it counts in the downward direction, we say that it is a
down-counter.

It is possible to combine the functionality of the circuits in Figures 5.19a and 5.20a
to form a counter that can count either up or down. Such a counter is called an up/down-
counter. We leave the derivation of this counter as an exercise for the reader (Problem 5.15).

5.9.2 Synchronous Counters

The asynchronous counters in Figures 5.19a and 5.20a are simple, but not very fast. If a
counter with a larger number of bits is constructed in this manner, then the delays caused
by the cascaded clocking scheme may become too long to meet the desired performance
requirements. We can build a faster counter by clocking all flip-flops at the same time,
using the approach described below.

Synchronous Counter with T Flip-Flops
Table 5.1 shows the contents of a three-bit up-counter for eight consecutive clock

cycles, assuming that the count is initially 0. Observing the pattern of bits in each row of
the table, it is apparent that bit Q0 changes on each clock cycle. Bit Q1 changes only when
Q0 = 1. Bit Q2 changes only when both Q1 and Q0 are equal to 1. In general, for an n-bit
up-counter, a given flip-flop changes its state only when all the preceding flip-flops are in
the state Q = 1. Therefore, if we use T flip-flops to realize the counter, then the T inputs
are defined as

T0 = 1

T1 = Q0

T2 = Q0Q1

Table 5.1 Derivation of the synchronous
up-counter.

0
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T3 = Q0Q1Q2

·
·
·

Tn = Q0Q1 · · · Qn−1

An example of a four-bit counter based on these expressions is given in Figure 5.21a.
Instead of using AND gates of increased size for each stage, we use a factored arrangement
as shown in the figure. This arrangement does not slow down the response of the counter,
because all flip-flops change their states after a propagation delay from the positive edge
of the clock. Note that a change in the value of Q0 may have to propagate through several
AND gates to reach the flip-flops in the higher stages of the counter, which requires a certain
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Q

T Q
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1
Q0 Q1 Q2

(a) Circuit
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Q2
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Figure 5.21 A four-bit synchronous up-counter.
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Figure 5.22 Inclusion of Enable and Clear capability.

amount of time. This time must not exceed the clock period. Actually, it must be less than
the clock period minus the setup time for the flip-flops.

Figure 5.21b gives a timing diagram. It shows that the circuit behaves as a modulo-16
up-counter. Because all changes take place with the same delay after the active edge of the
Clock signal, the circuit is called a synchronous counter.

Enable and Clear Capability
The counters in Figures 5.19 through 5.21 change their contents in response to each

clock pulse. Often it is desirable to be able to inhibit counting, so that the count remains
in its present state. This may be accomplished by including an Enable control signal, as
indicated in Figure 5.22. The circuit is the counter of Figure 5.21, where the Enable signal
controls directly the T input of the first flip-flop. Connecting the Enable also to the AND-
gate chain means that if Enable = 0, then all T inputs will be equal to 0. If Enable = 1,
then the counter operates as explained previously.

In many applications it is necessary to start with the count equal to zero. This is easily
achieved if the flip-flops can be cleared, as explained in Section 5.4.3. The clear inputs on
all flip-flops can be tied together and driven by a Clear_n control input.

Synchronous Counter with D Flip-Flops
While the toggle feature makes T flip-flops a natural choice for the implementation

of counters, it is also possible to build counters using other types of flip-flops. The JK
flip-flops can be used in exactly the same way as the T flip-flops because if the J and K
inputs are tied together, a JK flip-flop becomes a T flip-flop. We will now consider using D
flip-flops for this purpose.

It is not obvious how D flip-flops can be used to implement a counter. We will present a
formal method for deriving such circuits in Chapter 6. Here we will present a circuit structure
that meets the requirements but will leave the derivation for Chapter 6. Figure 5.23 gives
a four-bit up-counter that counts in the sequence 0, 1, 2, . . . , 14, 15, 0, 1, and so on. The
count is indicated by the flip-flop outputs Q3Q2Q1Q0. If we assume that Enable = 1, then
the D inputs of the flip-flops are defined by the expressions

D0 = Q0 ⊕ 1 = Q0

D1 = Q1 ⊕ Q0
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Figure 5.23 A four-bit counter with D flip-flops.

D2 = Q2 ⊕ Q1Q0

D3 = Q3 ⊕ Q2Q1Q0

For a larger counter the ith stage is defined by

Di = Qi ⊕ Qi−1Qi−2 · · · Q1Q0

We will show how to derive these equations in Chapter 6.
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We have included the Enable control signal in Figure 5.23 so that the counter counts the
clock pulses only if Enable = 1. In effect, the above equations are modified to implement
the circuit in the figure as follows

D0 = Q0 ⊕ Enable

D1 = Q1 ⊕ Q0 · Enable

D2 = Q2 ⊕ Q1 · Q0 · Enable

D3 = Q3 ⊕ Q2 · Q1 · Q0 · Enable

The operation of the counter is based on our observation for Table 5.1 that the state of the
flip-flop in stage i changes only if all preceding flip-flops are in the state Q = 1. This makes
the output of the AND gate that feeds stage i equal to 1, which causes the output of the XOR
gate connected to Di to be equal to Qi. Otherwise, the output of the XOR gate provides
Di = Qi, and the flip-flop remains in the same state.

We have included an extra AND gate that produces the output Z . This signal makes it
easy to concatenate two such counters to create a larger counter. It is also useful in appli-
cations where it is necessary to detect the state where the count has reached its maximum
value (all 1s) and will go to 0 in the next clock cycle.

The counter in Figure 5.23 is essentially the same as the circuit in Figure 5.22. We
showed in Figure 5.15a that a T flip-flop can be formed from a D flip-flop by providing the
extra gating that gives

D = QT + QT

= Q ⊕ T

Thus in each stage in Figure 5.23, the D flip-flop and the associated XOR gate implement
the functionality of a T flip-flop.

5.9.3 Counters with Parallel Load

Often it is necessary to start counting with the initial count being equal to 0. This state can
be achieved by using the capability to clear the flip-flops as indicated in Figure 5.22. But
sometimes it is desirable to start with a different count. To allow this mode of operation,
a counter circuit must have some inputs through which the initial count can be loaded.
Using the Clear and Preset inputs for this purpose is a possibility, but a better approach is
discussed below.

The circuit of Figure 5.23 can be modified to provide the parallel-load capability as
shown in Figure 5.24. A two-input multiplexer is inserted before each D input. One input to
the multiplexer is used to provide the normal counting operation. The other input is a data
bit that can be loaded directly into the flip-flop. A control input, Load, is used to choose the
mode of operation. The circuit counts when Load = 0. A new initial value, D3D2D1D0, is
loaded into the counter when Load = 1.
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Figure 5.24 A counter with parallel-load capability.
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5.10 Reset Synchronization

We have already mentioned that it is important to be able to clear, or reset, the contents
of a counter prior to commencing a counting operation. This can be done using the clear
capability of the individual flip-flops. But we may also be interested in resetting the count to
0 during the normal counting process. An n-bit up-counter functions naturally as a modulo-
2n counter. Suppose that we wish to have a counter that counts modulo some base that is
not a power of 2. For example, we may want to design a modulo-6 counter, for which the
counting sequence is 0, 1, 2, 3, 4, 5, 0, 1, and so on.

The most straightforward approach is to recognize when the count reaches 5 and then
reset the counter. An AND gate can be used to detect the occurrence of the count of 5.
Actually, it is sufficient to ascertain that Q2 = Q0 = 1, which is true only for 5 in our
desired counting sequence. A circuit based on this approach is given in Figure 5.25a. It

Enable
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Clock
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0

0

Clock

0 1 2 3 4 5 0 1

Clock

Count
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(a) Circuit

(b) Timing diagram

Figure 5.25 A modulo-6 counter with synchronous reset.
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uses a three-bit synchronous counter of the type depicted in Figure 5.24. The parallel-load
feature of the counter is used to reset its contents when the count reaches 5. The resetting
action takes place at the positive clock edge after the count has reached 5. It involves
loading D2D1D0 = 000 into the flip-flops. As seen in the timing diagram in Figure 5.25b,
the desired counting sequence is achieved, with each value of the count being established
for one full clock cycle. Because the counter is reset on the active edge of the clock, we
say that this type of counter has a synchronous reset.

Consider now the possibility of using the clear feature of individual flip-flops, rather
than the parallel-load approach. The circuit in Figure 5.26a illustrates one possibility. It
uses the counter structure of Figure 5.21a. Since the clear inputs are active when low, a
NAND gate is used to detect the occurrence of the count of 5 and cause the clearing of all
three flip-flops. Conceptually, this seems to work fine, but closer examination reveals a
potential problem. The timing diagram for this circuit is given in Figure 5.26b. It shows a
difficulty that arises when the count is equal to 5. As soon as the count reaches this value,
the NAND gate triggers the resetting action. The flip-flops are cleared to 0 a short time after
the NAND gate has detected the count of 5. This time depends on the gate delays in the
circuit, but not on the clock. Therefore, signal values Q2Q1Q0 = 101 are maintained for a

T Q
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T Q
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Q0 Q1 Q2

(a) Circuit
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Figure 5.26 A modulo-6 counter with asynchronous reset.
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time that is much less than a clock cycle. Depending on a particular application of such a
counter, this may be adequate, but it may also be completely unacceptable. For example, if
the counter is used in a digital system where all operations in the system are synchronized
by the same clock, then this narrow pulse denoting Count = 5 would not be seen by the rest
of the system. This is not a good way of designing circuits, because pulses of short length
often cause unforeseen difficulties in practice. The approach employed in Figure 5.26a is
said to use asynchronous reset.

The timing diagrams in Figures 5.25b and 5.26b suggest that synchronous reset is a
better choice than asynchronous reset. The same observation is true if the natural counting
sequence has to be broken by loading some value other than zero. The new value of the
count can be established cleanly using the parallel-load feature. The alternative of using
the clear and preset capability of individual flip-flops to set their states to reflect the desired
count has the same problems as discussed in conjunction with the asynchronous reset.

5.11 Other Types of Counters

In this section we discuss three other types of counters that can be found in practical
applications. The first uses the decimal counting sequence, and the other two generate
sequences of codes that do not represent binary numbers.

5.11.1 BCD Counter

Binary-coded-decimal (BCD) counters can be designed using the approach explained in
Section 5.10. A two-digit BCD counter is presented in Figure 5.27. It consists of two
modulo-10 counters, one for each BCD digit, which we implemented using the parallel-
load four-bit counter of Figure 5.24. Note that in a modulo-10 counter it is necessary to
reset the four flip-flops after the count of 9 has been obtained. Thus the Load input to each
stage is equal to 1 when Q3 = Q0 = 1, which causes 0s to be loaded into the flip-flops at
the next positive edge of the clock signal. Whenever the count in stage 0, BCD0, reaches 9
it is necessary to enable the second stage so that it will be incremented when the next clock
pulse arrives. This is accomplished by keeping the Enable signal for BCD1 low at all times
except when BCD0 = 9.

In practice, it has to be possible to clear the contents of the counter by activating some
control signal. Two OR gates are included in the circuit for this purpose. The control input
Clear can be used to load 0s into the counter. Observe that in this case Clear is active when
high.

5.11.2 Ring Counter

In the preceding counters the count is indicated by the state of the flip-flops in the counter.
In all cases the count is a binary number. Using such counters, if an action is to be taken
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Figure 5.27 A two-digit BCD counter.

as a result of a particular count, then it is necessary to detect the occurrence of this count.
This may be done using AND gates, as illustrated in Figures 5.25 through 5.27.

It is possible to devise a counterlike circuit in which each flip-flop reaches the state
Qi = 1 for exactly one count, while for all other counts Qi = 0. Then Qi indicates directly
an occurrence of the corresponding count. Actually, since this does not represent binary
numbers, it is better to say that the outputs of the flips-flops represent a code. Such a circuit
can be constructed from a simple shift register, as indicated in Figure 5.28a. The Q output
of the last stage in the shift register is fed back as the input to the first stage, which creates
a ringlike structure. If a single 1 is injected into the ring, this 1 will be shifted through
the ring at successive clock cycles. For example, in a four-bit structure, the possible codes
Q0Q1Q2Q3 will be 1000, 0100, 0010, and 0001. As we said in Section 4.2, such encoding,
where there is a single 1 and the rest of the code variables are 0, is called a one-hot code.

The circuit in Figure 5.28a is referred to as a ring counter. Its operation has to be
initialized by injecting a 1 into the first stage. This is achieved by using the Start control
signal, which presets the left-most flip-flop to 1 and clears the others to 0. We assume that
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Figure 5.28 Ring counter.

all changes in the value of the Start signal occur shortly after an active clock edge so that
the flip-flop timing parameters are not violated.

The circuit in Figure 5.28a can be used to build a ring counter with any number of
bits, n. For the specific case of n = 4, part (b) of the figure shows how a ring counter
can be constructed using a two-bit up-counter and a decoder. When Start is set to 1, the
counter is reset to 00. After Start changes back to 0, the counter increments its value in the
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normal way. The 2-to-4 decoder, described in Section 4.2, changes the counter output into
a one-hot code. For the count values 00, 01, 10, 11, 00, and so on, the decoder produces
Q0Q1Q2Q3 = 1000, 0100, 0010, 0001, 1000, and so on. This circuit structure can be used
for larger ring counters, as long as the number of bits is a power of two.

5.11.3 Johnson Counter

An interesting variation of the ring counter is obtained if, instead of the Q output, we take
the Q output of the last stage and feed it back to the first stage, as shown in Figure 5.29. This
circuit is known as a Johnson counter. An n-bit counter of this type generates a counting
sequence of length 2n. For example, a four-bit counter produces the sequence 0000, 1000,
1100, 1110, 1111, 0111, 0011, 0001, 0000, and so on. Note that in this sequence, only a
single bit has a different value for two consecutive codes.

To initialize the operation of the Johnson counter, it is necessary to reset all flip-flops,
as shown in the figure. Observe that neither the Johnson nor the ring counter will generate
the desired counting sequence if not initialized properly.

5.11.4 Remarks on Counter Design

The sequential circuits presented in this chapter, namely, registers and counters, have a
regular structure that allows the circuits to be designed using an intuitive approach. In
Chapter 6 we will present a more formal approach to design of sequential circuits and show
how the circuits presented in this chapter can be derived using this approach.

D Q

Q

Clock

D Q

Q

D Q

Q

Q0 Q1 Qn 1–

Reset_n

Figure 5.29 Johnson counter.
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5.12 Using Storage Elements with CAD Tools

This section shows how circuits with storage elements can be designed using either schematic
capture or Verilog code.

5.12.1 Including Storage Elements in Schematics

One way to create a circuit is to draw a schematic that builds latches and flip-flops from
logic gates. Because these storage elements are used in many applications, most CAD
systems provide them as prebuilt modules. Figure 5.30 shows a schematic created with
a schematic capture tool, which includes three types of flip-flops that are imported from
a library provided as part of the CAD system. The top element is a gated D latch, the
middle element is a positive-edge-triggered D flip-flop, and the bottom one is a positive-
edge-triggered T flip-flop. The D and T flip-flops have asynchronous, active-low clear and
preset inputs. If these inputs are not connected in a schematic, then the CAD tool makes
them inactive by assigning the default value of 1 to them.

When the gated D latch is synthesized for implementation in a chip, the CAD tool may
not generate the cross-coupled NOR or NAND gates shown in Section 5.2. In some chips
the AND-OR circuit depicted in Figure 5.31 may be preferable. This circuit is functionally
equivalent to the cross-coupled version in Section 5.2. One aspect of this circuit should be
mentioned. From the functional point of view, it appears that the circuit can be simplified
by removing the AND gate with the inputs Data and Latch. Without this gate, the top

Figure 5.30 Three types of storage elements in a schematic.
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Data

Clock

Latch

Figure 5.31 Gated D latch generated by CAD tools.

AND gate sets the value stored in the latch when the clock is 1, and the bottom AND gate
maintains the stored value when the clock is 0. But without this gate, the circuit has a
timing problem known as a static hazard. A detailed explanation of hazards will be given
in Chapter 11.

The circuit in Figure 5.30 can be implemented in a CPLD as shown in Figure 5.32.
The D and T flip-flops are realized using the flip-flops on the chip that are configurable as
either D or T types. The figure depicts in blue the gates and wires needed to implement the
circuit in Figure 5.30.

The results of a timing simulation for the implementation in Figure 5.32 are given in
Figure 5.33. The Latch signal, which is the output of the gated D latch implemented as
indicated in Figure 5.31, follows the Data input whenever the Clock signal is 1. Because
of propagation delays in the chip, the Latch signal is delayed in time with respect to the
Data signal. Since the Flipflop signal is the output of the D flip-flop, it changes only after
a positive clock edge. Similarly, the output of the T flip-flop, called Toggle in the figure,
toggles when Data = 1 and a positive clock edge occurs. The timing diagram illustrates
the delay from when the positive clock edge occurs at the input pin of the chip until a
change in the flip-flop output appears at the output pin of the chip. This time is called the
clock-to-output time, tco.

5.12.2 Using Verilog Constructs for Storage Elements

In Section 4.6 we described a number of Verilog constructs. We now show how these
constructs can be used to describe storage elements.

Asimple way of specifying a storage element is by using the if-else statement to describe
the desired behavior responding to changes in the levels of data and clock inputs. Consider
the always block

always @(Control, B)
if (Control)

A = B;
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Figure 5.32 Implementation of the schematic in Figure 5.30 in a CPLD.

where A is a variable of reg type. This code specifies that the value of A should be made
equal to the value of B when Control = 1. But the statement does not indicate an action that
should occur when Control = 0. In the absence of an assigned value, the Verilog compiler
assumes that the value of A caused by the if statement must be maintained when Control
is not equal to 1. This notion of implied memory is realized by instantiating a latch in the
circuit.
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Figure 5.33 Timing simulation for the storage elements in Figure 5.30.

module D_latch (D, Clk, Q);
input D, Clk;
output reg Q;

always @(D, Clk)
if (Clk)

Q = D;

endmodule

Figure 5.34 Code for a gated D latch.

Example 5.1CODE FOR A GATED D LATCH The code in Figure 5.34 defines a module named D_latch,
which has the inputs D and Clk and the output Q. The if clause defines that the Q output must
take the value of D when Clk = 1. Since no else clause is given, a latch will be synthesized
to maintain the value of Q when Clk = 0. Therefore, the code describes a gated D latch.
The sensitivity list includes Clk and D because both of these signals can cause a change in
the value of the Q output.

An always construct is used to define a circuit that responds to changes in the signals
that appear in the sensitivity list. While in the examples presented so far the always blocks
are sensitive to the levels of signals, it is also possible to specify that a response should take
place only at a particular edge of a signal. The desired edge is specified by using the Verilog
keywords posedge and negedge, which are used to implement edge-triggered circuits.

Example 5.2CODE FOR A D FLIP-FLOP Figure 5.35 defines a module named flipflop, which is a positive-
edge-triggered D flip-flop. The sensitivity list contains only the clock signal because it is
the only signal that can cause a change in the Q output. The keyword posedge specifies
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module flipflop (D, Clock, Q);
input D, Clock;
output reg Q;

always @(posedge Clock)
Q = D;

endmodule

Figure 5.35 Code for a D flip-flop.

that a change may occur only on the positive edge of Clock. At this time the output Q
is set to the value of the input D. Since posedge appears in the sensitivity list, Q will be
implemented as the output of a flip-flop.

5.12.3 Blocking and Non-Blocking Assignments

In all our Verilog examples presented so far we have used the equal sign for assignments,
as in

f = x1 & x2;

or

C = A + B;

or

Q = D;

This notation is called a blocking assignment. A Verilog compiler evaluates the statements
in an always block in the order in which they are written. If a variable is given a value by
a blocking assignment statement, then this new value is used in evaluating all subsequent
statements in the block.

Example 5.3 Consider the code in Figure 5.36. Since the always block is sensitive to the positive clock
edge, both Q1 and Q2 will be implemented as the outputs of D flip-flops. However, because
blocking assignments are involved, these two flip-flops will not be connected in cascade,
as the reader might expect. The first statement

Q1 = D;
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module example5_3 (D, Clock, Q1, Q2);
input D, Clock;
output reg Q1, Q2;

always @(posedge Clock)
begin

Q1 = D;
Q2 = Q1;

end

endmodule

Figure 5.36 Incorrect code for two cascaded flip-flops.

D Q

Q

D Q

Q

D

Clock

Q2

Q1

Figure 5.37 Circuit for Example 5.3.

sets Q1 to the value of D. This new value is used in evaluating the subsequent statement

Q2 = Q1;

which results in Q2 = Q1 = D. The synthesized circuit has two parallel flip-flops, as illus-
trated in Figure 5.37. A synthesis tool will likely delete one of these redundant flip-flops as
an optimization step.

Verilog also provides a non-blocking assignment, denoted with <=. All non-blocking
assignment statements in an always block are evaluated using the values that the variables
have when the always block is entered. Thus, a given variable has the same value for all
statements in the block. The meaning of non-blocking is that the result of each assignment
is not seen until the end of the always block.
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Example 5.4 Figure 5.38 gives the same code as in Figure 5.36, but using non-blocking assignments. In
the two statements

Q1 <= D;
Q2 <= Q1;

the variables Q1 and Q2 have some value at the start of evaluating the always block, and
then they change to a new value concurrently at the end of the always block. This code
generates a cascaded connection between flip-flops, which implements the shift register
depicted in Figure 5.39.

The differences between blocking and non-blocking assignments are illustrated further
by the following two examples.

Example 5.5 Code that involves some gates in addition to flip-flops is defined in Figure 5.40 using block-
ing assignment statements. The resulting circuit is given in Figure 5.41. Both f and g are
implemented as the outputs of D flip-flops, because the sensitivity list of the always block
specifies the event posedge Clock. Since blocking assignments are used, the updated value
of f generated by the statement f = x1 & x2 has to be seen immediately by the following
statement g = f | x3. Thus, the AND gate that produces x1 & x2 is connected to the OR
gate that feeds the g flip-flop, as shown in Figure 5.41.

Example 5.6 If non-blocking assignments are used, as given in Figure 5.42, then both f and g are updated
simultaneously. Hence, the previous value of f is used in updating the value of g, which
means that the output of the flip-flop that generates f is connected to the OR gate that feeds
the g flip-flop. This gives rise to the circuit in Figure 5.43.

module example5_4 (D, Clock, Q1, Q2);
input D, Clock;
output reg Q1, Q2;

always @(posedge Clock)
begin

Q1 < = D;
Q2 < = Q1;

end

endmodule

Figure 5.38 Code for two cascaded flip-flops.
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Figure 5.39 Circuit defined in Figure 5.38.

module example5_5 (x1, x2, x3, Clock, f, g);
input x1, x2, x3, Clock;
output reg f, g;

always @(posedge Clock)
begin

f = x1 & x2;
g = f | x3;

end

endmodule

Figure 5.40 Code for Example 5.5.
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Figure 5.41 Circuit for Example 5.5.
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module example5_6 (x1, x2, x3, Clock, f, g);
input x1, x2, x3, Clock;
output reg f, g;

always @(posedge Clock)
begin

f < = x1 & x2;
g < = f | x3;

end

endmodule

Figure 5.42 Code for Example 5.6.
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Figure 5.43 Circuit for Example 5.6.

It is interesting to consider what circuit would be synthesized if the statements that
specify f and g were reversed. For the code in Figure 5.40 the impact would be significant.
If g is evaluated first, then the second statement does not depend on the first one, because f
does not depend on g. The resulting circuit would be the same as the one in Figure 5.43. In
contrast, reversing the statement order would make no difference for the code in Figure 5.42,
in which the non-blocking assignment is used.

The use of blocking assignments for sequential circuits can easily lead to wrong results,
as demonstrated in Figure 5.37. The dependence on ordering of blocking assignments is
dangerous, as shown in the previous example. For this reason, only non-blocking assign-
ments should be used to describe sequential circuits.
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5.12.4 Non-Blocking Assignments for Combinational
Circuits

A natural question at this point is whether non-blocking assignments can be used for combi-
national circuits. The answer is that they can be used in most situations, but when subsequent
assignments in an always block depend on the results of previous assignments, the non-
blocking assignments can generate nonsensical circuits. As an example, assume that we
have a three-bit vector A = a2a1a0, and we wish to generate a combinational function f
that is equal to 1 when there are two adjacent bits in A that have the value 1. One way to
specify this function with blocking assignments is

always @(A)
begin

f = A[1] & A[0];
f = f | (A[2] & A[1]);

end

These statements produce the desired logic function, which is f = a1a0 + a2a1. Consider
now changing the code to use the non-blocking assignments

f <= A[1] & A[0];
f <= f | (A[2] & A[1]);

There are two key aspects of the Verilog semantics relevant to this code:

1. The results of non-blocking assignments are visible only after all of the statements in
the always block have been evaluated.

2. When there are multiple assignments to the same variable inside an always block, the
result of the last assignment is maintained.

In this example, f has an unspecified initial value when we enter the always block. The
first statement assigns f = a1a0, but this result is not visible to the second statement. It still
sees the original unspecified value of f . The second assignment overrides (deletes!) the
first assignment and produces the logic function f = f + a2a1. This expression does not
correspond to a combinational circuit, because it represents an AND-OR circuit in which
the OR-gate is fed back to itself. It is best to use blocking assignments when describing
combinational circuits, so as to avoid accidentally creating a sequential circuit.

5.12.5 Flip-Flops with Clear Capability

By using a particular sensitivity list and a specific style of if-else statement, it is possible
to include clear (or preset) signals on flip-flops.
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Example 5.7 ASYNCHRONOUS CLEAR Figure 5.44 gives a module that defines a D flip-flop with an
asynchronous active-low reset (clear) input. When Resetn, the reset input, is equal to 0, the
flip-flop’s Q output is set to 0. Note that the sensitivity list specifies the negative edge of
Resetn as an event trigger along with the positive edge of the clock. We cannot omit the
keyword negedge because the sensitivity list cannot have both edge-triggered and level-
sensitive signals.

Example 5.8 SYNCHRONOUS CLEAR Figure 5.45 shows how a D flip-flop with a synchronous reset
input can be described. In this case the reset signal is acted upon only when a positive
clock edge arrives. This code generates the circuit in Figure 5.13c, which has an AND gate
connected to the flip-flop’s D input.

module flipflop (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output reg Q;

always @(negedge Resetn, posedge Clock)
if (!Resetn)

Q < = 0;
else

Q < = D;

endmodule

Figure 5.44 D flip-flop with asynchronous reset.

module flipflop (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output reg Q;

always @(posedge Clock)
if (!Resetn)

Q < = 0;
else

Q < = D;

endmodule

Figure 5.45 D flip-flop with synchronous reset.
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5.13 Using Verilog Constructs for Registers and
Counters

In this section we show how registers and counters can be specified in Verilog code. Fig-
ure 5.44 gives code for a D flip-flop. One way to describe an n-bit register is to write
hierarchical code that includes n instances of the D flip-flop subcircuit. A simpler approach
is to use the same code as in Figure 5.44 and define the D input and Q output as multibit
signals.

Example 5.9AN N-BIT REGISTER Since registers of different sizes are often needed in logic circuits, it
is advantageous to define a register module for which the number of flip-flops can be easily
changed. The code for an n-bit register is given in Figure 5.46. The parameter n specifies
the number of flip-flops in the register. By changing this parameter, the code can represent
a register of any size.

Example 5.10A FOUR-BIT SHIFT REGISTER Assume that we wish to write Verilog code that represents the
four-bit parallel-access shift register in Figure 5.18. One approach is to write hierarchical
code that uses four subcircuits. Each subcircuit consists of a D flip-flop with a 2-to-1
multiplexer connected to the D input. Figure 5.47 defines the module named muxdff, which
represents this subcircuit. The two data inputs are named D0 and D1, and they are selected
using the Sel input. The if-else statement specifies that on the positive clock edge if Sel
= 0, then Q is assigned the value of D0; otherwise, Q is assigned the value of D1. An
alternative way of defining the same circuit is given in Figure 5.48. In this code, the
conditional assignment statement specifies a 2-to-1 multiplexer with the output D, which
is then connected to the flip-flop in the always block.

Figure 5.49 defines the four-bit shift register. The module Stage3 instantiates the left-
most flip-flop, which has the output Q3, and the module Stage0 instantiates the right-most
flip-flop, Q0. When L = 1, the register is loaded in parallel from the R input; and when L
= 0, shifting takes place in the left to right direction. Serial data is shifted into the most-
significant bit, Q3, from the w input.

Example 5.11ALTERNATIVE CODE FOR A FOUR-BIT SHIFT REGISTER A different style of code for the
four-bit shift register is given in Figure 5.50. Instead of using subcircuits, the shift register is
defined using the approach presented in Example 5.4. All actions take place at the positive
edge of the clock. If L = 1, the register is loaded in parallel with the four bits of input R.
If L = 0, the contents of the register are shifted to the right and the value of the input w is
loaded into the most-significant bit Q3.
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module regn (D, Clock, Resetn, Q);
parameter n = 16;
input [n –1:0] D;
input Clock, Resetn;
output reg [n –1:0] Q;

always @(negedge Resetn, posedge Clock)
if (!Resetn)

Q < = 0;
else

Q < = D;

endmodule

Figure 5.46 Code for an n-bit register with asynchronous clear.

module muxdff (D0, D1, Sel, Clock, Q);
input D0, D1, Sel, Clock;
output reg Q;

always @(posedge Clock)
if (!Sel)

Q < = D0;
else

Q < = D1;

endmodule

Figure 5.47 Code for a D flip-flop with a 2-to-1 multiplexer on
the D input.

module muxdff (D0, D1, Sel, Clock, Q);
input D0, D1, Sel, Clock;
output reg Q;

wire D;
assign D = Sel ? D1 : D0;

always @(posedge Clock)
Q < = D;

endmodule

Figure 5.48 Alternative code for a D flip-flop with a 2-to-1
multiplexer on the D input.
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module shift4 (R, L, w, Clock, Q);
input [3:0] R;
input L, w, Clock;
output wire [3:0] Q;

muxdff Stage3 (w, R[3], L, Clock, Q[3]);
muxdff Stage2 (Q[3], R[2], L, Clock, Q[2]);
muxdff Stage1 (Q[2], R[1], L, Clock, Q[1]);
muxdff Stage0 (Q[1], R[0], L, Clock, Q[0]);

endmodule

Figure 5.49 Hierarchical code for a four-bit shift register.

module shift4 (R, L, w, Clock, Q);
input [3:0] R;
input L, w, Clock;
output reg [3:0] Q;

always @(posedge Clock)
if (L)

Q < = R;
else
begin

Q[0] < = Q[1];
Q[1] < = Q[2];
Q[2] < = Q[3];
Q[3] < = w;

end

endmodule

Figure 5.50 Alternative code for a four-bit shift register.

Example 5.12AN N-BIT SHIFT REGISTER Figure 5.51 shows the code that can be used to represent shift
registers of any size. The parameter n, which has the default value 16 in the figure, sets
the number of flip-flops. The code is identical to that in Figure 5.50 with two exceptions.
First, R and Q are defined in terms of n. Second, the else clause that describes the shifting
operation is generalized to work for any number of flip-flops by using a for loop.
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module shiftn (R, L, w, Clock, Q);
parameter n = 16;
input [n –1:0] R;
input L, w, Clock;
output reg [n –1:0] Q;
integer k;

always @(posedge Clock)
if (L)

Q < = R;
else
begin

for (k = 0; k < n –1; k = k+1)
Q[k] < = Q[k+1];

Q[n –1] < = w;
end

endmodule

Figure 5.51 An n-bit shift register.

module upcount (Resetn, Clock, E, Q);
input Resetn, Clock, E;
output reg [3:0] Q;

always @(negedge Resetn, posedge Clock)
if (!Resetn)

Q < = 0;
else if (E)

Q < = Q + 1;

endmodule

Figure 5.52 Code for a four-bit up-counter.

Example 5.13 UP-COUNTER Figure 5.52 represents a four-bit up-counter with a reset input, Resetn, and
an enable input, E. The outputs of the flip-flops in the counter are represented by the vector
named Q. The if statement specifies an asynchronous reset of the counter if Resetn = 0.
The else if clause specifies that if E = 1 the count is incremented on the positive clock edge.



December 31, 2012 09:13 vra80547_ch05 Sheet number 53 Page number 299 magenta black

5.13 Using Verilog Constructs for Registers and Counters 299

Example 5.14UP-COUNTER WITH PARALLEL LOAD The code in Figure 5.53 defines an up-counter that
has a parallel-load input in addition to a reset input. The parallel data is provided as the
input vector R. The first if statement provides the same asynchronous reset as in Figure
5.52. The else if clause specifies that if L = 1 the flip-flops in the counter are loaded in
parallel from the R inputs on the positive clock edge. If L = 0, the count is incremented,
under control of the enable input E.

Example 5.15DOWN-COUNTER WITH PARALLEL LOAD Figure 5.54 shows the code for a down-counter
named downcount. A down-counter is normally used by loading it with some starting count
and then decrementing its contents. The starting count is represented in the code by the
vector R. On the positive clock edge, if L = 1 the counter is loaded with the input R, and
if L = 0 the count is decremented, under control of the enable input E.

Example 5.16UP/DOWN COUNTER Verilog code for an up/down counter is given in Figure 5.55. This
module combines the capabilities of the counters defined in Figures 5.53 and 5.54. It
includes a control signal up_down that governs the direction of counting.

module upcount (R, Resetn, Clock, E, L, Q);
input [3:0] R;
input Resetn, Clock, E, L;
output reg [3:0] Q;

always @(negedge Resetn, posedge Clock)
if (!Resetn)

Q < = 0;
else if (L)

Q < = R;
else if (E)

Q < = Q + 1;

endmodule

Figure 5.53 A four-bit up-counter with a parallel load.
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module downcount (R, Clock, E, L, Q);
parameter n = 8;
input [n –1:0] R;
input Clock, L, E;
output reg [n –1:0] Q;

always @(posedge Clock)
if (L)

Q < = R;
else if (E)

Q < = Q – 1;

endmodule

Figure 5.54 A down-counter with a parallel load.

module updowncount (R, Clock, L, E, up_down, Q);
parameter n = 8;
input [n– 1:0] R;
input Clock, L, E, up_down;
output reg [n– 1:0] Q;

always @(posedge Clock)
if (L)

Q < = R;
else if (E)

Q < = Q + (up_down ? 1 : –1);

endmodule

Figure 5.55 Code for an up/down counter.

5.13.1 Flip-Flops and Registers with Enable Inputs

We showed in Figures 5.22 and 5.23 how an enable input can be used in counter circuits
to be able to prevent the flip-flops from toggling when an active clock edge occurs. It is
also useful in many other types of circuits to be able to prevent the data stored in flip-flops
from changing when an active clock edge occurs. For D flip-flops, this capability can be
provided by adding a multiplexer to the flip-flop, as shown in Figure 5.56a. When E = 0,
the flip-flop output cannot change, because the multiplexer connects Q to the input of the
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Figure 5.56 Providing an enable input for a D flip-flop.

module rege (D, Clock, Resetn, E, Q);
input D, Clock, Resetn, E;
output reg Q;

always @(posedge Clock, negedge Resetn)
if (Resetn == 0)

Q < = 0;
else if (E)

Q < = D;

endmodule

Figure 5.57 Code for a D flip-flop with enable.

flip-flop. But if E = 1, then the multiplexer allows new data to be loaded into the flip-flop
from the D input. Instead of using the multiplexer shown in the figure, another way to
implement the enable feature is to use a two-input AND gate as illustrated in Figure 5.56b.
Then setting E = 0 prevents the clock signal from reaching the flip-flop’s clock input. This
method seems simpler than the multiplexer approach, but we will show in Section 5.15 that
it can cause problems in practical operation. We will prefer the multiplexer-based approach
over gating the clock with an AND gate.

Verilog code for a D flip-flop with an asynchronous reset input and an enable input is
given in Figure 5.57. After first specifying the reset condition, the always block uses an
else if clause to ensure that the data stored in the flip-flop can change only when E = 1.
We can extend the enable capability to registers with n bits by using n 2-to-1 multiplexers
controlled by E, as shown in Figure 5.58. The multiplexer for each flip-flop, i, selects either
the external data bit, Ri, or the flip-flop’s output, Qi.
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module regne (R, Clock, Resetn, E, Q);
parameter n = 8;
input [n–1:0] R;
input Clock, Resetn, E;
output reg [n–1:0] Q;

always @(posedge Clock, negedge Resetn)
if (Resetn == 0)

Q <= 0;
else if (E)

Q <= R;

endmodule

Figure 5.58 An n-bit register with an enable input.

5.13.2 Shift Registers with Enable Inputs

It is useful to be able to inhibit the shifting operation in a shift register by using an enable
input, E. We showed in Figure 5.18 that shift registers can be constructed with a parallel-
load capability, which is implemented using a multiplexer. Figure 5.59 shows how the
enable feature can be added by using an additional multiplexer. If the parallel-load control
input, L, is 1, the flip-flops are loaded in parallel. If L = 0, the additional multiplexer selects
new data to be loaded into the flip-flops only if the enable E is 1.

Verilog code that represents the circuit in Figure 5.59 is given in Figure 5.60. When
L = 1, the register is loaded in parallel from the R input. When L = 0 and E = 1, the data
in the shift register is shifted in a left-to-right direction.

5.14 Design Example

This section presents an example of a digital system that makes use of some of the building
blocks described in this chapter and in Chapter 4.

5.14.1 Reaction Timer

Electronic devices operate at remarkably fast speeds, with the typical delay through a logic
gate being less than 1 ns. In this example we use a logic circuit to measure the speed of a
much slower type of device—a person.

We will design a circuit that can be used to measure the reaction time of a person to
a specific event. The circuit turns on a small light, called a light-emitting diode (LED). In
response to the LED being turned on, the person attempts to press a switch as quickly as
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module shiftrne (R, L, E, w, Clock, Q);
parameter n = 4;
input [n– 1:0] R;
input L, E, w, Clock;
output reg [n– 1:0] Q;
integer k;

always @(posedge Clock)
begin

if (L)
Q < = R;

else if (E)
begin

Q[n– 1] < = w;
for (k = n– 2; k > = 0; k = k– 1)

Q[k] < = Q[k+ 1];
end

end

endmodule

Figure 5.60 A left-to-right shift register with an enable input.

possible. The circuit measures the elapsed time from when the LED is turned on until the
switch is pressed.

To measure the reaction time, a clock signal with an appropriate frequency is needed.
In this example we use a 100 Hz clock, which measures time at a resolution of 1/100 of a
second. The reaction time can then be displayed using two digits that represent fractions
of a second from 00/100 to 99/100.

Digital systems often include high-frequency clock signals to control various subsys-
tems. In this case assume the existence of an input clock signal with the frequency 102.4
kHz. From this signal we can derive the required 100 Hz signal by using a counter as a clock
divider. A timing diagram for a four-bit counter is given in Figure 5.21. It shows that the
least-significant bit output, Q0, of the counter is a periodic signal with half the frequency of
the clock input. Hence we can view Q0 as dividing the clock frequency by two. Similarly,
the Q1 output divides the clock frequency by four. In general, output Qi in an n-bit counter
divides the clock frequency by 2i+1. In the case of our 102.4 kHz clock signal, we can use
a 10-bit counter, as shown in Figure 5.61b. The counter output c9 has the required 100 Hz
frequency because 102400 Hz/1024 = 100 Hz.

The reaction timer circuit has to be able to turn an LED on and off. The graphical
symbol for an LED is shown in blue in Figure 5.61b. Small blue arrows in the symbol
represent the light that is emitted when the LED is turned on. The LED has two terminals:
the one on the left in the figure is the cathode, and the terminal on the right is the anode.
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To turn the LED on, the cathode has to be set to a sufficiently lower voltage than the anode,
which causes a current to flow through the LED. If the voltages on its two terminals are
equal, the LED is off.

Figure 5.61b shows one way to control the LED, using an inverter. If the input voltage
VLED = 0, then the voltage at the cathode is equal to VDD; hence the LED is off. But if
VLED = VDD, the cathode voltage is 0 V and the LED is on. The amount of current that
flows is limited by the value of the resistor RL. This current flows through the LED and
the inverter. Since the current flows into the inverter, we say that the inverter sinks the
current. The maximum current that a logic gate can sink without sustaining permanent
damage is usually called IOL, which stands for the “maximum current when the output is
low.” The value of RL is chosen such that the current is less than IOL. As an example
assume that the inverter is implemented inside a chip for which the value of IOL specified
in the data sheet for the chip is 12 mA. For VDD = 5 V, this leads to RL ≈ 450 � because
5 V /450 � = 11 mA (there is actually a small voltage drop across the LED when it is turned
on, but we ignore this for simplicity). The amount of light emitted by the LED is proportional
to the current flow. If 11 mA is insufficient, then the inverter should be implemented in
a driver chip, like those described in Appendix B, because drivers provide a higher value
of IOL.

The complete reaction-timer circuit is illustrated in Figure 5.61c, with the inverter
from part (b) shaded in grey. The graphical symbol for a push-button switch is shown in
the top left of the diagram. The switch normally makes contact with the top terminals, as
depicted in the figure. When depressed, the switch makes contact with the bottom terminals;
when released, it automatically springs back to the top position. In the figure the switch is
connected such that it normally produces a logic value of 1, and it produces a 0 pulse when
pressed.

When depressed, the push-button switch causes the D flip-flop to be synchronously
reset. The output of this flip-flop determines whether the LED is on or off, and it also
provides the count enable input to a two-digit BCD counter. As discussed in Section 5.11,
each digit in a BCD counter has four bits that take the values 0000 to 1001. Thus the
counting sequence can be viewed as decimal numbers from 00 to 99. A circuit for the
BCD counter is given in Figure 5.27. Each digit in the counter is connected through a code
converter to a 7-segment display, which we described in the discussion for Figure 2.63.
In Figure 5.61c the counter is clocked by the c9 output of the clock divider in part (a) of
the figure. The intended use of the reaction-timer circuit is to first assert the Reset input to
clear the flip-flop and thus turn off the LED and disable the counter. Asserting the Reset
input also clears the contents of the counter to 00. The input w normally has the value 0,
which keeps the flip-flop cleared and prevents the count value from changing. The reaction
test is initiated by setting w = 1 for one c9 clock cycle. After the next positive edge of the
clock, the flip-flop output becomes a 1, which turns on the LED. We assume that w returns
to 0 after one c9 clock cycle, but the flip-flop output remains at 1 because of the 2-to-1
multiplexer connected to the D input. The counter is then incremented every 1/100 of a
second. When the user depresses the switch, the flip-flop is cleared, which turns off the
LED and stops the counter. The two-digit display shows the elapsed time to the nearest
1/100 of a second from when the LED was turned on until the user was able to respond by
depressing the switch.
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Verilog Code
To describe the circuit in Figure 5.61c using Verilog code, we can make use of subcir-

cuits for the BCD counter and the 7-segment code converter. Code for the BCD counter,
which represents the circuit in Figure 5.27, is shown in Figure 5.62. The two-digit BCD
output is represented by the 2 four-bit signals BCD1 and BCD0. The Clear input provides
a synchronous reset for both digits in the counter. If E = 1, the count value is incremented
on the positive clock edge; and if E = 0, the count value is unchanged. Each digit can
take the values from 0000 to 1001. Figure 5.63 gives the code for the BCD-to-7-segment
decoder.

Figure 5.64 shows the code for the reaction timer. The input signal Pushn represents the
value produced by the push-button switch. The output signal LEDn represents the output
of the inverter that is used to control the LED. The two 7-segment displays are controlled
by the seven-bit signals Digit1 and Digit 0.

The flip-flop in Figure 5.61c is loaded with the value 1 if w = 1, but if w = 0 the
stored value in the flip-flop is not changed. This circuit is described by the always block in
Figure 5.64, which also includes a synchronous reset input; the reset is activated if either

module BCDcount (Clock, Clear, E, BCD1, BCD0);
input Clock, Clear, E;
output reg [3:0] BCD1, BCD0;

always @(posedge Clock)
begin

if (Clear)
begin

BCD1 < = 0;
BCD0 < = 0;

end
else if (E)

if (BCD0 == 4’b1001)
begin

BCD0 < = 0;
if (BCD1 == 4’b1001)

BCD1 < = 0;
else

BCD1 < = BCD1 + 1;
end
else

BCD0 < = BCD0 + 1;
end

endmodule

Figure 5.62 Code for the two-digit BCD counter in Figure 5.27.
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module seg7 (bcd, leds);
input [3:0] bcd;
output reg [1:7] leds;

always @(bcd)
case (bcd) //abcdefg

0: leds = 7’b1111110;
1: leds = 7’b0110000;
2: leds = 7’b1101101;
3: leds = 7’b1111001;
4: leds = 7’b0110011;
5: leds = 7’b1011011;
6: leds = 7’b1011111;
7: leds = 7’b1110000;
8: leds = 7’b1111111;
9: leds = 7’b1111011;
default: leds = 7’bx;

endcase

endmodule

Figure 5.63 Code for the BCD-to-7-segment decoder.

module reaction (Clock, Reset, c9, w, Pushn, LEDn, Digit1, Digit0);
input Clock, Reset, c9, w, Pushn;
output wire LEDn;
output wire [1:7] Digit1, Digit0;
reg LED;
wire [3:0] BCD1, BCD0;

always @(posedge Clock)
begin

if (!Pushn | | Reset)
LED < = 0;

else if (w)
LED < = 1;

end

assign LEDn = LED;
BCDcount counter (c9, Reset, LED, BCD1, BCD0);
seg7 seg1 (BCD1, Digit1);
seg7 seg0 (BCD0, Digit0);

endmodule

Figure 5.64 Code for the reaction timer.
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Figure 5.65 Simulation of the reaction timer circuit.

Pushn = 0 or Reset = 1. We have chosen to use a synchronous reset because the flip-flop
output is connected to the enable input E on the BCD counter. As we know from the
discussion in Section 5.3, it is important that all signals connected to flip-flops meet the
required setup and hold times. The push-button switch can be pressed at any time and is not
synchronized to the c9 clock signal. By using a synchronous reset for the flip-flop in Figure
5.61c, we avoid possible timing problems in the counter. Of course, the setup time of the
flip-flop itself may become violated due to the asynchronous operation of the push-button
switch. We show in Chapter 7 how this type of problem can be alleviated by adding extra
flip-flops that are used to synchronize signals.

A simulation of the reaction-timer circuit implemented in a chip is shown in Figure
5.65. Initially, Reset is asserted to clear the the flip-flop and counter. When w changes to 1,
the circuit sets LEDn to 0, which represents the LED being turned on. After some amount
of time, the switch will be depressed. In the simulation we arbitrarily set Pushn to 0 after
18 c9 clock cycles. Thus this choice represents the case when the person’s reaction time is
about 0.18 seconds. In human terms this duration is a very short time; for electronic circuits
it is a very long time. An inexpensive personal computer can perform tens of millions of
operations in 0.18 seconds!

5.14.2 Register Transfer Level (RTL) Code

At this point, we have introduced most of the Verilog constructs that are needed for synthesis.
Most of our examples give behavioral code, utilizing if-else statements, case statements, for
loops, and other procedural statements. It is possible to write behavioral code in a style that
resembles a computer program, in which there is a complex flow of control with many loops
and branches. With such code, sometimes called high-level behavioral code, it is difficult to
relate the code to the final hardware implementation; it may even be difficult to predict what
circuit a high-level synthesis tool will produce. In this book we do not use the high-level
style of code. Instead, we present Verilog code in such a way that the code can be easily
related to the circuit that is being described. Most design modules presented are fairly small,
to facilitate simple descriptions. Larger designs are built by interconnecting the smaller
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modules. This approach is usually referred to as the register-transfer level (RTL) style of
code. It is the most popular design method used in practice. RTL code is characterized by a
straightforward flow of control through the code; it comprises well-understood subcircuits
that are connected together in a simple way.

5.15 Timing Analysis of Flip-flop Circuits

In Figure 5.14 we showed the timing parameters associated with a D flip-flop. A simple
circuit that uses this flip-flop is given in Figure 5.66. We wish to calculate the maximum
clock frequency, Fmax, for which this circuit will operate properly, and also determine if the
circuit suffers from any hold time violations. In the literature, this type of analysis of circuits
is usually called timing analysis. We will assume that the flip-flop timing parameters have
the values tsu = 0.6 ns, th = 0.4 ns, and 0.8 ns ≤ tcQ ≤ 1.0 ns. A range of minimum and
maximum values is given for tcQ because, as we mentioned in Section 5.4.4, this is the usual
way of dealing with variations in delay that exist in integrated circuit chips.

To calculate the minimum period of the clock signal, Tmin = 1/Fmax, we need to con-
sider all paths in the circuit that start and end at flip-flops. In this simple circuit there is
only one such path, which starts when data is loaded into the flip-flop by a positive clock
edge, propagates to the Q output after the tcQ delay, propagates through the NOT gate, and
finally must meet the setup requirement at the D input. Therefore

Tmin = tcQ + tNOT + tsu

Since we are interested in the longest delay for this calculation, the maximum value of
tcQ should be used. For the calculation of tNOT we will assume that the delay through any
logic gate can be calculated as 1 + 0.1k, where k is the number of inputs to the gate. For a
NOT gate this gives 1.1 ns, which leads to

Tmin = 1.0 + 1.1 + 0.6 = 2.7 ns

Fmax = 1/2.7 ns = 370.37 MHz

It is also necessary to check if there are any hold time violations in the circuit. In this
case we need to examine the shortest possible delay from a positive clock edge to a change
in the value of the D input. The delay is given by tcQ + tNOT = 0.8 + 1.1 = 1.9 ns. Since
1.9 ns > th = 0.4 ns there is no hold time violation.

As another example of timing analysis of flip-flop circuits, consider the counter circuit
shown in Figure 5.67. We wish to calculate the maximum clock frequency for which this
circuit will operate properly assuming the same flip-flop timing parameters as we did for
Figure 5.66. We will again assume that the propagation delay through a logic gate can be
calculated as 1 + 0.1k.

There are many paths in this circuit that start and end at flip-flops. The longest such
path starts at flip-flop Q0 and ends at flip-flop Q3. The longest path in a circuit is often called
a critical path. The delay of the critical path includes the clock-to-Q delay of flip-flop Q0,
the propagation delay through three AND gates, and one XOR-gate delay. We must also
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account for the setup time of flip-flop Q3. This gives

Tmin = tcQ + 3(tAND) + tXOR + tsu

Using the maximum value of tcQ gives

Tmin = 1.0 + 3(1.2) + 1.2 + 0.6 ns = 6.4 ns

Fmax = 1/6.4 ns = 156.25 MHz

The shortest paths through the circuit are from each flip-flop to itself, through an XOR
gate. The minimum delay along each such path is tcQ + tXOR = 0.8 + 1.2 = 2.0 ns. Since
2.0 ns > th = 0.4 ns there are no hold time violations.

5.15.1 Timing Analysis with Clock Skew

In the above analysis we assumed that the clock signal arrived at exactly the same time
at all four flip-flops. We will now repeat this analysis assuming that the clock signal still
arrives at flip-flops Q0, Q1, and Q2 simultaneously, but that there is a delay in the arrival
of the clock signal at flip-flop Q3. Such a variation in the arrival time of a clock signal at
different flip-flops is called clock skew, tskew, and can be caused by a number of factors.

In Figure 5.67 the critical path through the circuit is from flip-flop Q0 to Q3. However,
the clock skew at Q3 has the effect of reducing this delay, because it provides additional
time before data is loaded into this flip-flop. Taking a clock skew of 1.5 ns into account, the
delay of the path from flip-flop Q0 to Q3 is given by tcQ + 3(tAND) + tXOR + tsu − tskew =
6.4 − 1.5 ns = 4.9 ns. There is now a different critical path through the circuit, which starts
at flip-flop Q0 and ends at Q2. The delay of this path gives

Tmin = tcQ + 2(tAND) + tXOR + tsu

= 1.0 + 2(1.2) + 1.2 + 0.6 ns

= 5.2 ns

Fmax = 1/5.2 ns = 192.31 MHz

In this case the clock skew results in an increase in the circuit’s maximum clock frequency.
But if the clock skew had been negative, which would be the case if the clock signal arrived
earlier at flip-flop Q3 than at other flip-flops, then the result would have been a reduced
Fmax.

Since the loading of data into flip-flop Q3 is delayed by the clock skew, it has the
effect of increasing the hold time requirement of this flip-flop to th + tskew, for all paths
that end at Q3 but start at Q0, Q1, or Q2. The shortest such path in the circuit is from
flip-flop Q2 to Q3 and has the delay tcQ + tAND + tXOR = 0.8 + 1.2 + 1.2 = 3.2 ns. Since
3.2 ns > th + tskew = 1.9 ns there is no hold time violation.

If we repeat the above hold time analysis for clock skew values tskew ≥ 3.2 − th =
2.8 ns, then hold time violations will exist. Thus, if tskew ≥ 2.8 ns the circuit will not work
reliably at any clock frequency.
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Example 5.17Consider the circuit in Figure 5.68. In this circuit, there is a path that starts at flip-flop Q1,
passes through some network of logic gates, and ends at the D input of flip-flop Q2. As
indicated in the figure, different delays may be incurred before the clock signal reaches the
flip-flops. Let �1 and �2 be the clock-signal delays for flip-flops Q1 and Q2, respectively.
The clock skew between these two flip-flops is then defined as

tskew = �2 − �1

Let the longest delay along the paths through the logic gates in the circuit be tL. Then,
the minimum allowable clock period for these two flip-flops is

Tmin = tcQ + tL + tsu − tskew

Thus, if �2 > �1, then tskew allows for an increased value of Fmax, but if �2 < �1, then
the clock skew requires a decrease in Fmax.

To calculate whether a hold time violation exists at flip-flop Q2 we need to determine
the delay along the shortest path between the flip-flops. If the minimum delay through the
logic gates in the circuit is tl , then a hold time violation occurs if

tcQ + tl < th + tskew

Here, the hold-time constraint is more difficult to meet if �2 − �1 > 0, and it is less difficult
to meet if �2 − �1 < 0.

The techniques described above for Fmax and hold time analysis can be applied to any
circuit in which the same, or related, clock signals are connected to all flip-flops. Consider
again the reaction-timer circuit in Figure 5.61. The clock divider in part (a) of the figure
generates the c9 signal, which drives the clock inputs of the flip-flops in the BCD counter.
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Figure 5.68 A general example of clock skew.
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Figure 5.69 A modified version of the reaction-timer circuit.

Since these paths start at the Q output of the c9 flip-flop but end at the clock inputs of other
flip-flops, rather than at D inputs, the above timing analysis method cannot be applied.
However, we could restructure the reaction-timer circuit as indicated in Figure 5.69. Instead
of using c9 directly as a clock for the BCD counter, a ten-input AND gate is used to generate
a signal that has the value 1 for only one of the 1024 count values from the clock divider.
This signal is then ANDed with the control flip-flop output to cause the BCD counter to be
incremented at the desired rate of 100 times per second.

In the circuit of Figure 5.69 all flip-flops are clocked directly by the Clock signal.
Therefore, the Fmax and hold time analysis can now be applied. In general, it is a good
design approach for sequential circuits to connect the clock inputs of all flip-flops to a
common clock. We discuss such issues in detail in Chapter 7.

5.16 Concluding Remarks

In this chapter we have presented circuits that serve as basic storage elements in digital
systems. These elements are used to build larger units such as registers, shift registers,
and counters. Many other texts that deal with this material are available [3–10]. We
have illustrated how circuits with flip-flops can be described using Verilog code. More
information on Verilog can be found in [11–18]. In the next chapter a more formal method
for designing circuits with flip-flops will be presented.
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Figure 5.70 Circuit for Example 5.18.

5.17 Examples of Solved Problems

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

Example 5.18Problem: Consider the circuit in Figure 5.70a. Assume that the input C is driven by a
square wave signal with a 50% duty cycle. Draw a timing diagram that shows the waveforms
at points A and B. Assume that the propagation delay through each gate is � seconds.

Solution: The timing diagram is shown in Figure 5.70b.

Example 5.19Problem: Determine the functional behavior of the circuit in Figure 5.71. Assume that
input w is driven by a square wave signal.

Solution: When both flip-flops are cleared, their outputs are Q0 = Q1 = 0. After the Clear
input goes high, each pulse on the w input will cause a change in the flip-flops as indicated
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J Q

QK

J Q

QK 11

w

Q0
Q1

Clear

FF0 FF1

Figure 5.71 Circuit for Example 5.19.

Time FF0 FF1

interval J0 K 0 Q0 J1 K 1 Q1

Clear 1 1 0 0 1 0
t1 1 1 1 1 1 0
t2 0 1 0 0 1 1
t3 1 1 0 0 1 0
t4 1 1 1 1 1 0

Figure 5.72 Summary of the behavior of the circuit in Figure 5.71.

in Figure 5.72. Note that the figure shows the state of the signals after the changes caused
by the rising edge of a pulse have taken place.

In consecutive time intervals the values of Q1 Q0 are 00, 01, 10, 00, 01, and so on.
Therefore, the circuit generates the counting sequence: 0, 1, 2, 0, 1, and so on. Hence, the
circuit is a modulo-3 counter.

Example 5.20 Problem: Design a circuit that can be used to control a vending machine. The circuit has
five inputs: Q (quarter), D (dime), N (nickel), Coin, and Resetn. When a coin is deposited
in the machine, a coin-sensing mechanism generates a pulse on the appropriate input (Q,
D, or N). To signify the occurrence of the event, the mechanism also generates a pulse on
the line Coin. The circuit is reset by using the Resetn signal (active low). When at least
30 cents has been deposited, the circuit activates its output, Z. No change is given if the
amount exceeds 30 cents.

Design the required circuit by using the following components: a six-bit adder, a six-bit
register, and any number of AND, OR, and NOT gates.



December 31, 2012 09:13 vra80547_ch05 Sheet number 71 Page number 317 magenta black

5.17 Examples of Solved Problems 317

Adder

Register S

Z

s5 0–

s5 s4 s3 s2 s1

Coin

Resetn

0

N

D

Q

Figure 5.73 Circuit for Example 5.20.

Solution: Figure 5.73 gives a possible circuit. The value of each coin is represented by a
corresponding five-bit number. It is added to the current total, which is held in register S.
The required output is

Z = s5 + s4s3s2s1

The register is clocked by the negative edge of the Coin signal. This allows for a propagation
delay through the adder, and ensures that a correct sum will be placed into the register.

In Chapter 9 we will show how this type of control circuit can be designed using a
more structured approach.
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module vend (N, D, Q, Resetn, Coin, Z);
input N, D, Q, Resetn, Coin;
output Z;
wire [4:0] X;
reg [5:0] S;

assign X[0] = N | Q;
assign X[1] = D;
assign X[2] = N;
assign X[3] = D | Q;
assign X[4] = Q;
assign Z = S[5] | (S[4] & S[3] & S[2] & S[1]);

always @(negedge Coin, negedge Resetn)
if (Resetn == 1’b0)

S < = 5’b00000;
else

S < = {1’b0, X} + S;

endmodule

Figure 5.74 Code for Example 5.21.

Example 5.21 Problem: Write Verilog code to implement the circuit in Figure 5.73.

Solution: Figure 5.74 gives the desired code.

Example 5.22 Problem: In Section 5.15 we presented a timing analysis for the counter circuit in Figure
5.67. Redesign this circuit to reduce the logic delay between flip-flops, so that the circuit
can operate at a higher maximum clock frequency.

Solution: As we showed in Section 5.15, the performance of the counter circuit is limited
by the delay through its cascaded AND gates. To increase the circuit’s performance we
can refactor the AND gates as illustrated in Figure 5.75. The longest delay path in this
redesigned circuit, which starts at flip-flop Q0 and ends at Q3, provides the minimum clock
period

Tmin = tcQ + tAND + tXOR + tsu

= 1.0 + 1.4 + 1.2 + 0.6 ns = 4.2 ns

The redesigned counter has a maximum clock frequency of Fmax = 1/4.2 ns = 238.1 MHz,
compared to the result for the original counter, which was 156.25 MHz.
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Figure 5.75 A faster 4-bit counter.

Example 5.23Problem: In Example 5.17 we showed how to perform timing analysis when there may be
different delays associated with the clock signal at each of the flip-flops in a circuit. The
circuit in Figure 5.76 includes three flip-flops, Q1, Q2, and Q3, with corresponding clock
delays �1, �2, and �3. The flip-flop timing parameters are tsu = 0.6 ns, th = 0.4 ns, and
0.8 ≤ tcQ ≤ 1 ns. Also, the delay through a logic gate is given by 1 + 0.1k, where k is the
number of inputs to the gate.

Calculate the Fmax for the circuit for the following sets of clock delays: �1 = �2 =
�3 = 0 ns; �1 = �3 = 0 ns and �2 = 0.7 ns; �1 = 1 ns, �2 = 0, and �3 = 0.5 ns. Also,
determine if there are any hold time violations in the circuit for the sets of clock delays
�1 = �2 = �3 = 0 ns, and �1 = 1 ns, �2 = 0, �3 = 0.5 ns.
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D Q

Q

Clock

D Q

Q

D Q

Q

Q1 Q2 Q3

Δ3Δ2Δ1

Figure 5.76 A circuit with clock skews.

Solution: For the values �1 = �2 = �3 = 0, there is no clock skew. Let the path delay
between two flip-flops, Qi and Qj, be TQi→Qj

. The longest path delays are calculated by
including the maximum value of tcQ at flip-flop Qi, and the setup time at flip-flop Qj, as
follows

TQ1→Q2
= tcQ + tXOR + tAND + tsu = 1 + 1.2 + 1.2 + 0.6 = 4 ns

TQ2→Q2
= tcQ + tAND + tsu = 1 + 1.2 + 0.6 = 2.8 ns

TQ2→Q3
= tcQ + tNOT + tsu = 1 + 1.1 + 0.6 = 2.7 ns

TQ3→Q1
= tcQ + tsu = 1 + 0.6 = 1.6 ns

TQ3→Q2
= tcQ + tXOR + tAND + tsu = 1 + 1.2 + 1.2 + 0.6 = 4 ns

Since the critical path delay TQ1→Q2
= TQ3→Q2

= 4 ns, then Fmax = 1/(4 × 10−9) =
250 MHz.

For the values �1 = �3 = 0, and �2 = 0.7 ns, there is clock skew for the paths between
flip-flops Q1 and Q2, as well as Q3 and Q2. Adjusting the longest delays calculated above
to account for clock skew, we have

TQ1→Q2
= 4 − tskew = 4 − (�2 − �1) = 4 − 0.7 = 3.3 ns

TQ2→Q3
= 2.7 − tskew = 2.7 − (�3 − �2) = 2.7 − (0 − 0.7) = 3.4 ns

TQ3→Q2
= 4 − tskew = 4 − (�2 − �3) = 4 − 0.7 = 3.3 ns

The critical path delay now starts at flip-flop Q2 and ends at flip-flop Q3. Since TQ2→Q3
=

3.4 ns, then Fmax = 1/(3.4 × 10−9) = 294 MHz.
For the values �1 = 1, �2 = 0, and �3 = 0.5 ns, there is clock skew for the paths

between all flip-flops. Adjusting the longest delays calculated for the case with no clock
skew, we have

TQ1→Q2
= 4 − tskew = 4 − (�2 − �1) = 4 − (0 − 1) = 5 ns

TQ2→Q3
= 2.7 − tskew = 2.7 − (�3 − �2) = 2.7 − (0.5) = 2.2 ns

TQ3→Q1
= 1.6 − tskew = 1.6 − (�1 − �3) = 1.6 − (1 − 0.5) = 1.1 ns

TQ3→Q2
= 4 − tskew = 4 − (�2 − �3) = 4 − (0 − 0.5) = 4.5 ns
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The critical path delay is from flip-flop Q1 to flip-flop Q2. Since TQ1→Q2
= 5 ns, then

Fmax = 1/(5 × 10−9) = 200 MHz.
To determine whether any hold time violations exist, we need to calculate the shortest

path delays, using the minimum value of tcQ. For �1 = �2 = �3 = 0, we have

TQ1→Q2
= tcQ + tXOR + tAND = 0.8 + 1.2 + 1.2 = 3.2 ns

TQ2→Q2
= tcQ + tAND = 0.8 + 1.2 = 2 ns

TQ2→Q3
= tcQ + tNOT = 0.8 + 1.1 = 1.9 ns

TQ3→Q1
= tcQ = 0.8 ns

TQ3→Q2
= tcQ + tXOR + tAND = 0.8 + 1.2 + 1.2 = 3.2 ns

Since the shortest path delay TQ3→Q1
= 0.8 ns > th, there is no hold time violation in the

circuit.
We showed in Section 5.15 that if the shortest path delay through a circuit is called

Tl , then a hold time violation occurs if Tl − tskew < th. Adjusting the shortest path delays
calculated above for the values �1 = 1, �2 = 0, and �3 = 0.5 gives

TQ1→Q2
= 3.2 − tskew = 3.2 − (�2 − �1) = 3.2 − (0 − 1) = 4.2 ns

TQ2→Q3
= 1.9 − tskew = 1.9 − (�3 − �2) = 1.9 − 0.5 = 1.4 ns

TQ3→Q1
= 0.8 − tskew = 0.8 − (�1 − �3) = 0.8 − (1 − 0.5) = 0.3 ns

TQ3→Q2
= 3.2 − tskew = 3.2 − (�2 − �3) = 3.2 − (0 − 0.5) = 3.7 ns

The shortest path delay is TQ3→Q1
= 0.3 ns < th, which represents a hold time violation.

Hence, the circuit may not function reliably regardless of the frequency of the clock signal.

Problems

Answers to problems marked by an asterisk are given at the back of the book.

5.1 Consider the timing diagram in Figure P5.1. Assuming that the D and Clock inputs shown
are applied to the circuit in Figure 5.10, draw waveforms for the Qa, Qb, and Qc signals.

D

Clock

Figure P5.1 Timing diagram for Problem 5.1.



December 31, 2012 09:13 vra80547_ch05 Sheet number 76 Page number 322 magenta black

322 C H A P T E R 5 • Flip-Flops, Registers, and Counters

5.2 Figure 5.4 shows a latch built with NOR gates. Draw a similar latch using NAND gates.
Derive its characteristic table and show its timing diagram.

*5.3 Show a circuit that implements the gated SR latch using NAND gates only.

5.4 Given a 100-MHz clock signal, derive a circuit using D flip-flops to generate 50-MHz
and 25-MHz clock signals. Draw a timing diagram for all three clock signals, assuming
reasonable delays.

*5.5 An SR flip-flop is a flip-flop that has set and reset inputs like a gated SR latch. Show how
an SR flip-flop can be constructed using a D flip-flop and other logic gates.

5.6 The gated SR latch in Figure 5.5a has unpredictable behavior if the S and R inputs are
both equal to 1 when the Clk changes to 0. One way to solve this problem is to create a
set-dominant gated SR latch in which the condition S = R = 1 causes the latch to be set to
1. Design a set-dominant gated SR latch and show the circuit.

5.7 Show how a JK flip-flop can be constructed using a T flip-flop and other logic gates.

*5.8 Consider the circuit in Figure P5.2. Assume that the two NAND gates have much longer
(about four times) propagation delay than the other gates in the circuit. How does this
circuit compare with the circuits that we discussed in this chapter?

A

B

C

D

E

Figure P5.2 Circuit for Problem 5.8.

5.9 Write Verilog code that represents a T flip-flop with an asynchronous clear input. Use
behavioral code, rather than structural code.

5.10 Write Verilog code that represents a JK flip-flop. Use behavioral code, rather than structural
code.
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5.11 Synthesize a circuit for the code written for Problem 5.10 by using your CAD tools. Simulate
the circuit and show a timing diagram that verifies the desired functionality.

5.12 A universal shift register can shift in both the left-to-right and right-to-left directions, and
it has parallel-load capability. Draw a circuit for such a shift register.

5.13 Write Verilog code for a universal shift register with n bits.

5.14 Design a four-bit synchronous counter with parallel load. Use T flip-flops, instead of the D
flip-flops used in Section 5.9.3.

*5.15 Design a three-bit up/down counter using T flip-flops. It should include a control input
called Up/Down. If Up/Down = 0, then the circuit should behave as an up-counter. If
Up/Down = 1, then the circuit should behave as a down-counter.

5.16 Repeat Problem 5.15 using D flip-flops.

*5.17 The circuit in Figure P5.3 looks like a counter. What is the counting sequence of this circuit?

T Q

Q

1 T Q

Q

T Q

Q

Q0 Q1 Q2

Clock

Figure P5.3 The circuit for Problem 5.17.

5.18 Consider the circuit in Figure P5.4. How does this circuit compare with the circuit in Figure
5.16? Can the circuits be used for the same purposes? If not, what is the key difference
between them?

Clock

S Q

Q

Clk

R

S Q

Q

Clk

R

Q

Q

J

K

Figure P5.4 Circuit for Problem 5.18.
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5.19 Construct a NOR-gate circuit, similar to the one in Figure 5.11a, which implements a
negative-edge-triggered D flip-flop.

5.20 Write Verilog code that represents a modulo-12 up-counter with synchronous reset.

*5.21 For the flip-flops in the counter in Figure 5.24, assume that tsu = 3 ns, th = 1 ns, and the
propagation delay through a flip-flop is 1 ns. Assume that each AND gate, XOR gate, and
2-to-1 multiplexer has the propagation delay equal to 1 ns. What is the maximum clock
frequency for which the circuit will operate correctly?

5.22 Write Verilog code that represents an eight-bit Johnson counter. Synthesize the code with
your CAD tools and give a timing simulation that shows the counting sequence.

5.23 Write Verilog code in the style shown in Figure 5.51 that represents a ring counter. Your
code should have a parameter n that sets the number of flip-flops in the counter.

5.24 A ring oscillator is a circuit that has an odd number, n, of inverters connected in a ringlike
structure, as shown in Figure P5.5. The output of each inverter is a periodic signal with a
certain period.

f

Figure P5.5 A ring oscillator.

(a) Assume that all the inverters are identical; hence they all have the same delay, called
tp. Let the output of one of the inverters be named f . Give an equation that expresses the
period of the signal f in terms of n and tp.
(b) For this part you are to design a circuit that can be used to experimentally measure the
delay tp through one of the inverters in the ring oscillator. Assume the existence of an input
called Reset and another called Interval. The timing of these two signals is shown in Figure
P5.6. The length of time for which Interval has the value 1 is known. Assume that this
length of time is 100 ns. Design a circuit that uses the Reset and Interval signals and the
signal f from part (a) to experimentally measure tp. In your design you may use logic gates
and subcircuits such as adders, flip-flops, counters, registers, and so on.

Reset

Interval

100 ns

Figure P5.6 Timing of signals for Problem 5.24.
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5.25 A circuit for a gated D latch is shown in Figure P5.7. Assume that the propagation delay
through either a NAND gate or an inverter is 1 ns. Complete the timing diagram given in
the figure, which shows the signal values with 1 ns resolution.

Q

Clock

D

Q

A

1
0

1
0

1
0

1
0

A

D

Clock

Q

Figure P5.7 Circuit and timing diagram for Problem 5.25.

*5.26 A logic circuit has two inputs, Clock and Start, and two outputs, f and g. The behavior of
the circuit is described by the timing diagram in Figure P5.8. When a pulse is received

1
0

1
0

1
0

1
0

g

f

Start

Clock

Figure P5.8 Timing diagram for Problem 5.26.
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on the Start input, the circuit produces pulses on the f and g outputs as shown in the
timing diagram. Design a suitable circuit using only the following components: a three-
bit resettable positive-edge-triggered synchronous counter and basic logic gates. For your
answer assume that the delays through all logic gates and the counter are negligible.

5.27 The following code checks for adjacent ones in an n-bit vector.

always @(A)
begin

f = A[1] & A[0];
for (k = 2; k < n; k = k+1)

f = f | (A[k] & A[k−1]);
end

With blocking assignments this code produces the desired logic function, which is f =
a1a0 + · · · + an−1an−2. What logic function is produced if we change the code to use
non-blocking assignments?

5.28 The Verilog code in Figure P5.9 represents a 3-bit linear-feedback shift register (LFSR).
This type of circuit generates a counting sequence of pseudo-random numbers that repeats
after 2n − 1 clock cycles, where n is the number of flip-flops in the LFSR. Synthesize a
circuit to implement the LFSR in a chip. Draw a diagram of the circuit. Simulate the
circuit’s behavior by loading the pattern 001 into the LFSR and then enabling the register
to count. What is the counting sequence?

module lfsr (R, L, Clock, Q);
input [0:2] R;
input L, Clock;
output reg [0:2] Q;

always @(posedge Clock)
if (L)

Q < = R;
else

Q < = {Q[2], Q[0] Q[2], Q[1]};

endmodule

Figure P5.9 Code for a linear-feedback shift register.
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5.29 Repeat Problem 5.28 for the Verilog code in Figure P5.10.

module lfsr (R, L, Clock, Q);
input [0:2] R;
input L, Clock;
output reg [0:2] Q;

always @(posedge Clock)
if (L)

Q < = R;
else

Q < = {Q[2], Q[0], Q[1] Q[2]};

endmodule

Figure P5.10 Code for a linear-feedback shift register.

5.30 The Verilog code in Figure P5.11 is equivalent to the code in Figure P5.9, except that
blocking assignments are used. Draw the circuit represented by this code. What is its
counting sequence?

module lfsr (R, L, Clock, Q);
input [0:2] R;
input L, Clock;
output reg [0:2] Q;

always @(posedge Clock)
if (L)

Q < = R;
else
begin

Q[0] = Q[2];
Q[1] = Q[0] Q[2];
Q[2] = Q[1];

end

endmodule

Figure P5.11 Code for Problem 5.30.
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5.31 The Verilog code in Figure P5.12 is equivalent to the code in Figure P5.10, except that
blocking assignments are used. Draw the circuit represented by this code. What is its
counting sequence?

module lfsr (R, L, Clock, Q);
input [0:2] R;
input L, Clock;
output reg [0:2] Q;

always @(posedge Clock)
if (L)

Q < = R;
else
begin

Q[0] = Q[2];
Q[1] = Q[0];
Q[2] = Q[1] Q[2];

end

endmodule

Figure P5.12 Code for Problem 5.31.

5.32 The circuit in Figure 5.59 gives a shift register in which the parallel-load control input
is independent of the enable input. Show a different shift register circuit in which the
parallel-load operation can be performed only when the enable input is also asserted.
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6
Synchronous Sequential Circuits

Chapter Objectives

In this chapter you will learn about:

• Design techniques for circuits that use flip-flops

• The concept of states and their implementation with flip-flops

• Synchronous control by using a clock signal

• Sequential behavior of digital circuits

• A complete procedure for designing synchronous sequential circuits

• Verilog specification of sequential circuits

• The concept of finite state machines
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In preceding chapters we considered combinational logic circuits in which outputs are determined fully by
the present values of inputs. We also discussed how simple storage elements can be implemented in the form
of flip-flops. The output of a flip-flop depends on the state of the flip-flop rather than the value of its inputs
at any given time; the inputs cause changes in the state.

In this chapter we deal with a general class of circuits in which the outputs depend on the past behavior
of the circuit, as well as on the present values of inputs. They are called sequential circuits. In most cases
a clock signal is used to control the operation of a sequential circuit; such a circuit is called a synchronous
sequential circuit. The alternative, in which no clock signal is used, is called an asynchronous sequential
circuit. Synchronous circuits are easier to design and are used in a vast majority of practical applications;
they are the topic of this chapter. Asynchronous circuits will be discussed in Chapter 9.

Synchronous sequential circuits are realized using combinational logic and one or more flip-flops. The
general structure of such a circuit is shown in Figure 6.1. The circuit has a set of primary inputs, W , and
produces a set of outputs, Z . The stored values in the flip-flops are referred to as the state, Q, of the circuit.
Under control of the clock signal, the flip-flops change their state as determined by the combinational logic
that feeds the inputs of these flip-flops. Thus the circuit moves from one state to another. To ensure that only
one transition from one state to another takes place during one clock cycle, the flip-flops have to be of the
edge-triggered type. They can be triggered either by the positive (0 to 1 transition) or by the negative (1 to 0
transition) edge of the clock. We will use the term active clock edge to refer to the clock edge that causes the
change in state.

The combinational logic that provides the input signals to the flip-flops has two sources: the primary
inputs, W , and the present (current) state of the flip-flops, Q. Thus changes in state depend on both the present
state and the values of the primary inputs.

Figure 6.1 indicates that the outputs of the sequential circuit are generated by another combinational
circuit, such that the outputs are a function of the present state of the flip-flops and of the primary inputs.
Although the outputs always depend on the present state, they do not necessarily have to depend directly on
the primary inputs. Thus the connection shown in blue in the figure may or may not exist. To distinguish
between these two possibilities, it is customary to say that sequential circuits whose outputs depend only on
the state of the circuit are of Moore type, while those whose outputs depend on both the state and the primary
inputs are of Mealy type. These names are in honor of Edward Moore and George Mealy, who investigated
the behavior of such circuits in the 1950s.

Combinational
circuit

Flip-flops

Clock

Q

W
Z

Combinational
circuit

Figure 6.1 The general form of a sequential circuit.
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Sequential circuits are also called finite state machines (FSMs), which is a more formal name that is often
found in technical literature. The name derives from the fact that the functional behavior of these circuits can
be represented using a finite number of states. In this chapter we will often use the term finite state machine,
or simply machine, when referring to sequential circuits.

6.1 Basic Design Steps

Sequential circuits are often used to control the operation of physical systems. We will
introduce the techniques for designing such circuits by means of a simple example.

Consider an application where the speed of an automatically-controlled vehicle has
to be regulated as follows. The vehicle is designed to run at some predetermined speed.
However, due to some operational conditions the speed may exceed the desirable limit, in
which case the vehicle has to be slowed down. To determine when such action is needed,
the speed is measured at regular intervals. Let a binary signal w indicate whether the speed
exceeds the required limit, such that w = 0 means that the speed is within acceptable range
and w = 1 indicates excessive speed. The desired control strategy is that if w = 1 during
two or more consecutive measurements, a control signal z must be asserted to cause the
vehicle to slow down. Thus, z = 0 allows the current speed to be maintained, while z = 1
reduces the speed. Let a signal Clock define the required timing intervals, such that the
speed is measured once during each clock cycle. Therefore, we wish to design a circuit that
meets the following specification:

1. The circuit has one input, w, and one output, z.

2. All changes in the circuit occur on the positive edge of the clock signal.

3. The output z is equal to 1 if during two immediately preceding clock cycles the input
w was equal to 1. Otherwise, the value of z is equal to 0.

From this specification it is apparent that the output z depends on both present and past
values of w. Consider the sequence of values of the w and z signals for the clock cycles
shown in Figure 6.2. The values of w are assumed to be generated by the vehicle being
controlled; the values of z correspond to our specification. Since w = 1 in clock cycle t3
and remains equal to 1 in cycle t4, then z should be set to 1 in cycle t5. Similarly, z should
be set to 1 in cycle t8 because w = 1 in cycles t6 and t7, and it should also be set to 1 in t9
because w = 1 in t7 and t8. As seen in the figure, for a given value of input w the output z
may be either 0 or 1. For example, w = 0 during clock cycles t2 and t5, but z = 0 during t2
and z = 1 during t5. Similarly, w = 1 during t1 and t8, but z = 0 during t1 and z = 1 during
t8. This means that z is not determined only by the present value of w, so there must exist
different states in the circuit that determine the value of z.

6.1.1 State Diagram

The first step in designing a finite state machine is to determine how many states are needed
and which transitions are possible from one state to another. There is no set procedure for



December 31, 2012 09:13 vra80547_ch06 Sheet number 4 Page number 334 magenta black

334 C H A P T E R 6 • Synchronous Sequential Circuits

Clock cycle: t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

w : 0 1 0 1 1 0 1 1 1 0 1
z: 0 0 0 0 0 1 0 0 1 1 0

Figure 6.2 Sequences of input and output signals.

this task. The designer must think carefully about what the machine has to accomplish. A
good way to begin is to select one particular state as a starting state; this is the state that the
circuit should enter when power is first turned on or when a reset signal is applied. For our
example let us assume that the starting state is called state A. As long as the input w is 0,
the circuit need not do anything, and so each active clock edge should result in the circuit
remaining in state A. When w becomes equal to 1, the machine should recognize this, and
move to a different state, which we will call state B. This transition takes place on the next
active clock edge after w has become equal to 1. In state B, as in state A, the circuit should
keep the value of output z at 0, because it has not yet seen w = 1 for two consecutive clock
cycles. When in state B, if w is 0 at the next active clock edge, the circuit should move back
to state A. However, if w = 1 when in state B, the circuit should change at the next active
clock edge to a third state, called C, and it should then generate an output z = 1. The circuit
should remain in state C as long as w = 1 and should continue to maintain z = 1. When
w becomes 0, the machine should move back to state A. Since the preceding description
handles all possible values of input w that the machine can encounter in its various states,
we can conclude that three states are needed to implement the desired machine.

Now that we have determined in an informal way the possible transitions between states,
we will describe a more formal procedure that can be used to design the corresponding
sequential circuit. Behavior of a sequential circuit can be described in several different
ways. The conceptually simplest method is to use a pictorial representation in the form
of a state diagram, which is a graph that depicts states of the circuit as nodes (circles)
and transitions between states as directed arcs. The state diagram in Figure 6.3 defines the
behavior that corresponds to our specification. States A, B, and C appear as nodes in the
diagram. Node A represents the starting state, and it is also the state that the circuit will reach
after an input w = 0 is applied. In this state the output z should be 0, which is indicated
as A/z = 0 in the node. The circuit should remain in state A as long as w = 0, which is
indicated by an arc with a label w = 0 that originates and terminates at this node. The first
occurrence of w = 1 (following the condition w = 0) is recorded by moving from state A to
state B. This transition is indicated on the graph by an arc originating at A and terminating
at B. The label w = 1 on this arc denotes the input value that causes the transition. In state
B the output remains at 0, which is indicated as B/z = 0 in the node.

When the circuit is in state B, it will change to state C if w is still equal to 1 at the
next active clock edge. In state C the output z becomes equal to 1. If w stays at 1 during
subsequent clock cycles, the circuit will remain in state C maintaining z = 1. However, if
w becomes 0 when the circuit is either in state B or in state C, the next active clock edge
will cause a transition to state A to take place.
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C z 1=/

Reset

B z 0=/A z 0=/w 0=

w 1=

w 1=

w 0=

w 0= w 1=

Figure 6.3 State diagram of a simple sequential circuit.

Present Next state Output
state w = 0 w = 1 z

A A B 0
B A C 0
C A C 1

Figure 6.4 State table corresponding to Figure 6.3.

In the diagram we indicated that the Reset input is used to force the circuit into state
A. We could treat Reset as just another input to the circuit, and show a transition from each
state to the starting state A under control of the input Reset. This would complicate the
diagram unnecessarily. Instead, we use a single arrow with the Reset label, as shown in
Figure 6.3, to indicate that the Reset input causes a change to the starting state regardless
of what state the circuit happens to be in.

6.1.2 State Table

Although the state diagram provides a description of the behavior of a sequential circuit
that is easy to understand, to proceed with the implementation of the circuit it is conve-
nient to translate the information contained in the state diagram into a tabular form. Figure
6.4 shows the state table for our sequential circuit. The table indicates all transitions from
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each present state to the next state for different values of the input signal. Note that the
output z is specified with respect to the present state, namely, the state that the circuit is
in at present time. Note also that we did not include the Reset input; instead, we made an
implicit assumption that the first state in the table is the starting state.

We now show the design steps that will produce the final circuit. To explain the basic
design concepts, we first go through a traditional process of manually performing each
design step. This is followed by a discussion of automated design techniques that use
modern computer aided design (CAD) tools.

6.1.3 State Assignment

The state table in Figure 6.4 defines the three states in terms of letters A, B, and C. When
implemented in a logic circuit, each state is represented by a particular valuation (combi-
nation of values) of state variables. Each state variable may be implemented in the form of
a flip-flop. Since three states have to be realized, it is sufficient to use two state variables.
Let these variables be y1 and y2.

Now we can adapt the general block diagram in Figure 6.1 to our example as shown in
Figure 6.5, to indicate the structure of the circuit that implements the required finite state
machine. Two flip-flops represent the state variables. In the figure we have not specified
the type of flip-flops to be used; this issue is addressed in the next subsection. From the
specification in Figures 6.3 and 6.4, the output z is determined only by the present state of
the circuit. Thus the block diagram in Figure 6.5 shows that z is a function of only y1 and
y2; our design is of Moore type. We need to design a combinational circuit that uses y1 and
y2 as input signals and generates a correct output signal z for all possible valuations of these
inputs.

Combinational
circuit

Combinational
circuit

Clock

y2

z

w
y1Y1

Y2

Figure 6.5 A general sequential circuit with input w, output z, and two state flip-flops.
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Present
Next state

state w = 0 w = 1 Output

y2 y1 Y2Y1 Y2Y1
z

A 00 00 01 0
B 01 00 10 0
C 10 00 10 1

11 dd dd d

Figure 6.6 State-assigned table corresponding to Figure 6.4.

The signals y1 and y2 are also fed back to the combinational circuit that determines
the next state of the FSM. This circuit also uses the primary input signal w. Its outputs are
two signals, Y1 and Y2, which are used to set the state of the flip-flops. Each active edge
of the clock will cause the flip-flops to change their state according to the values of Y1 and
Y2 at that time. Therefore, Y1 and Y2 are called the next-state variables, and y1 and y2 are
called the present-state variables. We need to design a combinational circuit with inputs
w, y1, and y2, such that for all valuations of these inputs the outputs Y1 and Y2 will cause
the machine to move to the next state that satisfies our specification. The next step in the
design process is to create a truth table that defines this circuit, as well as the circuit that
generates z.

To produce the desired truth table, we assign a specific valuation of variables y1 and y2

to each state. One possible assignment is given in Figure 6.6, where the states A, B, and C
are represented by y2y1 = 00, 01, and 10, respectively. The fourth valuation, y2y1 = 11, is
not needed in this case.

The type of table given in Figure 6.6 is usually called a state-assigned table. This table
can serve directly as a truth table for the output z with the inputs y1 and y2. Although for
the next-state functions Y1 and Y2 the table does not have the appearance of a normal truth
table, because there are two separate columns in the table for each value of w, it is obvious
that the table includes all of the information that defines Y1 and Y2 in terms of valuations
of inputs w, y1, and y2.

6.1.4 Choice of Flip-Flops and Derivation of Next-State and
Output Expressions

From the state-assigned table in Figure 6.6, we can derive the logic expressions for the
next-state and output functions. But first we have to decide on the type of flip-flops that
will be used in the circuit. The most straightforward choice is to use D-type flip-flops,
because in this case the values of Y1 and Y2 are simply clocked into the flip-flops to become
the new values of y1 and y2. In other words, if the inputs to the flip-flops are called D1

and D2, then these signals are the same as Y1 and Y2. Note that the diagram in Figure 6.5
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w
00 01 11 10

0

1

0

1 0

y2 y1

Y 1 w y1 y2=

w
00 01 11 10

0

1

0 d

1 d

y2 y1

Y 2 wy1 y2 w y1 y2+=

d

d

0

0

0

0

0

0

1

0 1

0

1

0

d

y1

z y1 y2=
0

1

y2

Y 1 w y1 y2=

Y 2 wy1 w y2+=

z y2=

w y1 y2+( )=

Ignoring don’t cares Using don’t cares

Figure 6.7 Derivation of logic expressions for the table in Figure 6.6.

corresponds exactly to this use of D-type flip-flops. For other types of flip-flops, such as
JK type, the relationship between the next-state variable and inputs to a flip-flop is not as
straightforward; we will consider this situation in Section 6.7.

The required logic expressions can be derived as shown in Figure 6.7. We use Karnaugh
maps to make it easy for the reader to verify the validity of the expressions. Recall that
in Figure 6.6 we needed only three of the four possible binary valuations to represent the
states. The fourth valuation, y2y1 = 11, will not occur in the circuit because the circuit is
constrained to move only within states A, B, and C; therefore, we may choose to treat this
valuation as a don’t-care condition. The resulting don’t-care squares in the Karnaugh maps
are denoted by d’s. Using the don’t cares to simplify the expressions, we obtain

Y1 = wy1y2

Y2 = w(y1 + y2)

z = y2

If we do not use don’t cares, then the resulting expressions are slightly more complex; they
are shown in the gray-shaded area of Figure 6.7.

Since D1 = Y1 and D2 = Y2, the logic circuit that corresponds to the preceding expres-
sions is implemented as shown in Figure 6.8. Observe that a clock signal is included, and
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D Q

Q

D Q

Q

Y2

Y1
w

Clock

z

y1

y2

Resetn

Figure 6.8 Final implementation of the sequential circuit.

the circuit is provided with an active-low reset capability. Connecting the clear input on
the flip-flops to an external Resetn signal, as shown in the figure, provides a simple means
for forcing the circuit into a known state. If we apply the signal Resetn = 0 to the circuit,
then both flip-flops will be cleared to 0, placing the FSM into the state y2y1 = 00.

6.1.5 Timing Diagram

To understand fully the operation of the circuit in Figure 6.8, let us consider its timing
diagram presented in Figure 6.9. The diagram depicts the signal waveforms that correspond
to the sequences of values in Figure 6.2.

Because we are using positive-edge-triggered flip-flops, all changes in the signals occur
shortly after the positive edge of the clock. The amount of delay from the clock edge depends
on the propagation delays through the flip-flops. Note that the input signal w is also shown
to change slightly after the active edge of the clock. This is a good assumption because in
a typical digital system an input such as w would be just an output of another circuit that is
synchronized by the same clock. We discuss the synchronization of input signals with the
clock signal in Chapter 7.
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t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

1

0

1

0

1

0

1

0

Clock

w

y1

y2

1

0
z

Figure 6.9 Timing diagram for the circuit in Figure 6.8.

A key point to observe is that even though w changes slightly after the active clock
edge, and thus the value of w is equal to 1 (or 0) for almost the entire clock cycle, no change
in the circuit will occur until the beginning of the next clock cycle when the positive edge
causes the flip-flops to change their state. Thus the value of w must be equal to 1 for two
clock cycles if the circuit is to reach state C and generate the output z = 1.

6.1.6 Summary of Design Steps

We can summarize the steps involved in designing a synchronous sequential circuit as
follows:

1. Obtain the specification of the desired circuit.

2. Derive the states for the machine by first selecting a starting state. Then, given the
specification of the circuit, consider all valuations of the inputs to the circuit and
create new states as needed for the machine to respond to these inputs. To keep track
of the states as they are visited, create a state diagram. When completed, the state
diagram shows all states in the machine and gives the conditions under which the
circuit moves from one state to another.

3. Create a state table from the state diagram. Alternatively, it may be convenient to
directly create the state table in step 2, rather than first creating a state diagram.

4. In our sequential circuit example, there were only three states; hence it was a simple
matter to create the state table that does not contain more states than necessary.
However, in practice it is common to deal with circuits that have a large number of
states. In such cases it is unlikely that the first attempt at deriving a state table will
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produce optimal results, so that we may have more states than is really necessary.
This can be corrected by a procedure that minimizes the number of states. We will
discuss the process of state minimization in Section 6.6.

5. Decide on the number of state variables needed to represent all states and perform the
state assignment. There are many different state assignments possible for a given
sequential circuit. Some assignments may be better than others. In the preceding
example we used what seemed to be a natural state assignment. We will return to this
example in Section 6.2 and show that a different assignment may lead to a simpler
circuit.

6. Choose the type of flip-flops to be used in the circuit. Derive the next-state logic
expressions to control the inputs to all flip-flops and then derive logic expressions for
the outputs of the circuit. So far we have used only D-type flip-flops. We will
consider other types of flip-flops in Section 6.7.

7. Implement the circuit as indicated by the logic expressions.

We introduced the steps used in the design of sequential circuits by using an example of
a simple controller for a vehicle. In this case the value of w reflected the speed of the vehicle.
But, we could consider this example in a more general sense, in that the value of w in each
clock cycle provides a sequence of symbols over time, where each symbol has the value 0
or 1. Our circuit can detect sequences of symbols that consist of consecutive 1s, and indicate
this by generating z = 1 following each occurrence of two consecutive 1s. Beacause the
circuit detects a specific sequence of symbols, we can say that it acts as a sequence detector.
Similar circuits can be designed to detect a variety of different sequences.

Example 6.1We have illustrated the design steps using a very simple sequential circuit. We will now
consider a slightly more complex example that is closely tied to application in computer
systems.

A computer system usually contains a number of registers that hold data during various
operations. Sometimes it is necessary to swap the contents of two registers. Typically,
this is done by using a temporary location, which is usually a third register. For example,
suppose that we want to swap the contents of registers R1 and R2. We can achieve this by
first transferring the contents of R2 into the third register, say R3. Next, we transfer the
contents of R1 into R2. Finally, we transfer the contents of R3 into R1.

Registers in a computer system are connected via an interconnection network, as shown
in Figure 6.10. In addition to the wires that connect to the network, each register has two
control signals. The Rkout signal causes the contents of register Rk to be placed into the
interconnection network. The Rkin signal causes the data from the network to be loaded
into Rk. The Rkout and Rkin signals are generated by a control circuit, which is a finite state
machine. For our example, we will design a control circuit that swaps the contents of R1
and R2, in response to an input w = 1. Therefore, the inputs to the control circuit will be
w and Clock. The outputs will be R1out , R1in, R2out , R2in, R3out , R3in, and Done which
indicates the completion of the required transfers.
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Clock

Done
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R3in

Interconnection
network

R1
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Figure 6.10 System for Example 6.1.

The desired swapping operation will be performed as follows. The contents of R2 are
first loaded into R3, using the control signals R2out = 1 and R3in = 1. Then the contents of
R1 are transferred into R2, using R1out = 1 and R2in = 1. Finally, the contents of R3 (which
are the previous contents of R2) are transferred into R1, using R3out = 1 and R1in = 1. Since
this step completes the required swap, we will set the signal Done = 1. Assume that the
swapping is performed in response to a pulse on the input w, which has a duration of one
clock cycle. Figure 6.11 gives a state diagram for a sequential circuit that generates the
output control signals in the required sequence. Note that to keep the diagram simple, we
have indicated the output signals only when they are equal to 1. In all other cases the output
signals are equal to 0.

In the starting state, A, no transfer is indicated, and all output signals are 0. The circuit
remains in this state until a request to swap arrives in the form of w changing to 1. In state
B the signals required to transfer the contents of R2 into R3 are asserted. The next active
clock edge places these contents into R3. This clock edge also causes the circuit to change
to state C, regardless of whether w is equal to 0 or 1. In this state the signals for transferring
R1 into R2 are asserted. The transfer takes place at the next active clock edge, and the
circuit changes to state D regardless of the value of w. The final transfer, from R3 to R1, is
performed on the clock edge that leaves state D, which also causes the circuit to return to
state A.

Figure 6.12 presents the same information in a state table. Since there are four states,
we can use two state variables, y2 and y1. A straightforward state assignment where the
states A, B, C, and D are assigned the valuations y2y1 = 00, 01, 10, and 11, respectively,
leads to the state-assigned table in Figure 6.13. Using this assignment and D-type flip-flops,
the next-state expressions can be derived as shown in Figure 6.14. They are

Y1 = wy1 + y1y2

Y2 = y1y2 + y1y2
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D R3out 1= R1in 1= Done 1=, ,/

w 0=
w 1=

C R1out 1= R2in 1=,/

B R2out 1= R3in 1=,/

w 1=

A No/

w 0=
w 1=

transfer

w 0=
w 1=

Reset

w 0=

Figure 6.11 State diagram for Example 6.1.

Present Next state Outputs

state w = 0 w = 1 R1out R1in R2out R2in R3out R3in Done

A A B 0 0 0 0 0 0 0
B C C 0 0 1 0 0 1 0
C D D 1 0 0 1 0 0 0
D A A 0 1 0 0 1 0 1

Figure 6.12 State table for Example 6.1.

The output control signals are derived as

R1out = R2in = y1y2

R1in = R3out = Done = y1y2

R2out = R3in = y1y2

These expressions lead to the circuit in Figure 6.15.
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Present Next state

state w = 0 w = 1
Outputs

y2 y1 Y2Y1 Y2Y1 R1out R1in R2out R2in R3out R3in Done

A 0 0 0 0 0 1 0 0 0 0 0 0 0
B 0 1 1 0 1 0 0 0 1 0 0 1 0
C 1 0 1 1 1 1 1 0 0 1 0 0 0
D 1 1 0 0 0 0 0 1 0 0 1 0 1

Figure 6.13 State-assigned table corresponding to Figure 6.12.
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w
00 01 11 10

0

1

1 1
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y2 y1

Y 2 y1 y2 y1 y2+=

Figure 6.14 Derivation of next-state expressions for Figure 6.13.

6.2 State-Assignment Problem

Having introduced the basic concepts involved in the design of sequential circuits, we should
revisit some details where alternative choices are possible. In Section 6.1.6 we suggested
that some state assignments may be better than others. To illustrate this we can reconsider
the example in Figure 6.4. We already know that the state assignment in Figure 6.6 leads
to a simple-looking circuit in Figure 6.8. But can the FSM of Figure 6.4 be implemented
with an even simpler circuit by using a different state assignment?

Figure 6.16 gives one possible alternative. In this case we represent the states A, B,
and C with the valuations y2y1 = 00, 01, and 11, respectively. The remaining valuation,
y2y1 = 10, is not needed, and we will treat it as a don’t-care condition. The next-state and
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Figure 6.15 Final implementation of the sequential circuit for Example 6.1.

Present
Next state

state w = 0 w = 1 Output

y2 y1 Y2Y1 Y2Y1
z

A 00 00 01 0
B 01 00 11 0
C 11 00 11 1

10 dd dd d

Figure 6.16 Improved state assignment for the state table in
Figure 6.4.

output expressions derived from the figure will be

Y1 = D1 = w

Y2 = D2 = wy1

z = y2
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Figure 6.17 Final circuit for the improved state assignment in Figure 6.16.

These expressions define the circuit shown in Figure 6.17. Comparing this circuit with the
one in Figure 6.8, we see that the cost of the new circuit is lower because it requires fewer
gates.

In general, circuits are much larger than our example, and different state assignments
can have a substantial effect on the cost of the final implementation. While highly desirable,
it is often impossible to find the best state assignment for a large circuit. The exhaustive
approach of trying all possible state assignments is not practical because the number of
available state assignments is huge. CAD tools usually perform the state assignment using
heuristic techniques. These techniques are usually proprietary, and their details are seldom
published.

Example 6.2 In Figure 6.13 we used a straightforward state assignment for the sequential circuit in
Figure 6.12. Consider now the effect of interchanging the valuations assigned to states C
and D, as shown in Figure 6.18. Then the next-state expressions are

Y1 = wy2 + y1y2

Y2 = y1

as derived in Figure 6.19. The output expressions are

R1out = R2in = y1y2

R1in = R3out = Done = y1y2

R2out = R3in = y1y2

These expressions lead to a slightly simpler circuit than the one given in Figure 6.15.
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Present Next state

state w = 0 w = 1
Outputs

y2 y1 Y2Y1 Y2Y1 R1out R1in R2out R2in R3out R3in Done

A 0 0 0 0 0 1 0 0 0 0 0 0 0
B 0 1 1 1 1 1 0 0 1 0 0 1 0
C 1 1 1 0 1 0 1 0 0 1 0 0 0
D 1 0 0 0 0 0 0 1 0 0 1 0 1

Figure 6.18 Improved state assignment for the state table in Figure 6.12.
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Figure 6.19 Derivation of next-state expressions for Figure 6.18.

6.2.1 One-Hot Encoding

In previous examples we used the minimum number of flip-flops to represent the states of
the FSM. Another interesting possibility is to use as many state variables as there are states.
In this method, for each state all but one of the state variables are equal to 0. The variable
whose value is 1 is deemed to be “hot.” The approach is known as the one-hot encoding
method.

Figure 6.20 shows how one-hot state assignment can be applied to the sequential circuit
of Figure 6.4. Because there are three states, it is necessary to use three state variables. The
chosen assignment is to represent the states A, B, and C using the valuations y3y2y1 = 001,
010, and 100, respectively. The remaining five valuations of the state variables are not used.
They can be treated as don’t cares in the derivation of the next-state and output expressions.
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Present Next state

state w = 0 w = 1 Output

y3 y2 y1 Y3Y2Y1 Y3Y2Y1
z

A 0 0 1 0 0 1 0 1 0 0
B 0 1 0 0 0 1 1 0 0 0
C 1 0 0 0 0 1 1 0 0 1

Figure 6.20 One-hot state assignment for the state table in
Figure 6.4.

Using this assignment, the resulting expressions are

Y1 = w

Y2 = wy1

Y3 = wy1

z = y3

Note that none of the next-state variables depends on the present-state variable y2. This
suggests that the second flip-flop and the expression Y2 = wy1 are not needed. (CAD tools
detect and eliminate such redundancies!) But even then, the derived expressions are not
simpler than those obtained using the state assignment in Figure 6.16. Although in this case
the one-hot assignment is not advantageous, there are many cases where this approach is
attractive.

Example 6.3 The one-hot state assignment can be applied to the sequential circuit of Figure 6.12 as
indicated in Figure 6.21. Four state variables are needed, and the states A, B, C, and D are
encoded as y4y3y2y1 = 0001, 0010, 0100, and 1000, respectively. Treating the remaining
12 valuations of the state variables as don’t cares, the next-state expressions are

Y1 = wy1 + y4

Y2 = wy1

Y3 = y2

Y4 = y3

It is instructive to note that we can derive these expressions simply by inspecting the state
diagram in Figure 6.11. There are two arcs leading to state A (not including the arc for the
Reset signal). These arcs mean that flip-flop y1 should be set to 1 if the FSM is already in
state A and w = 0, or if the FSM is in state D; hence Y1 = wy1 + y4. Similarly, flip-flop y2

should be set to 1 if the present state is A and w = 1; hence Y2 = wy1. Flip-flops y3 and y4

should be set to 1 if the FSM is presently in state B or C, respectively; hence Y3 = y2 and
Y4 = y3.
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Present Next state

state w = 0 w = 1
Outputs

y4 y3 y2 y1 Y4Y3Y2Y1 Y4Y3Y2Y1 R1out R1in R2out R2in R3out R3in Done

A 0 0 0 1 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
B 0 0 1 0 0 1 0 0 0 1 0 0 0 0 1 0 0 1 0
C 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 1 0 0 0
D 1 0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 1 0 1

Figure 6.21 One-hot state assignment for the state table in Figure 6.12.

The output expressions are just the outputs of the flip-flops, such that

R1out = R2in = y3

R1in = R3out = Done = y4

R2out = R3in = y2

These expressions are simpler than those derived in Example 6.2, but four flip-flops are
needed, rather than two.

An important feature of the one-hot state assignment is that it often leads to simpler
output expressions than do assignments with the minimal number of state variables. Simpler
output expressions may lead to a faster circuit. For instance, if the outputs of the sequential
circuit are just the outputs of the flip-flops, as is the case in our example, then these output
signals are valid as soon as the flip-flops change their states. If more complex output
expressions are involved, then the propagation delay through the gates that implement
these expressions must be taken into account. We will consider this issue in Section 6.8.2.

The examples considered to this point show that there are many ways to implement a
given finite state machine as a sequential circuit. Each implementation is likely to have a
different cost and different timing characteristics. In the next section we introduce another
way of modeling FSMs that leads to even more possibilities.

6.3 Mealy State Model

Our introductory examples were sequential circuits in which each state had specific values
of the output signals associated with it. As we explained at the beginning of the chapter,
such finite state machines are said to be of Moore type. We will now explore the concept
of Mealy-type machines in which the output values are generated based on both the state
of the circuit and the present values of its inputs. This provides additional flexibility in the
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design of sequential circuits. We will introduce the Mealy-type machines, using a slightly
altered version of a previous example.

The essence of the first sequential circuit in Section 6.1 is to generate an output z = 1
whenever a second occurrence of the input w = 1 is detected in consecutive clock cycles.
The specification requires that the output z be equal to 1 in the clock cycle that follows the
detection of the second occurrence of w = 1. Suppose now that we eliminate this latter
requirement and specify instead that the output z should be equal to 1 in the same clock cycle
when the second occurrence of w = 1 is detected. Then a suitable input-output sequence
may be as shown in Figure 6.22. To see how we can realize the behavior given in this table,
we begin by selecting a starting state, A. As long as w = 0, the machine should remain
in state A, producing an output z = 0. When w = 1, the machine has to move to a new
state, B, to record the fact that an input of 1 has occurred. If w remains equal to 1 when the
machine is in state B, which happens if w = 1 for at least two consecutive clock cycles, the
machine should remain in state B and produce an output z = 1. As soon as w becomes 0,
z should immediately become 0 and the machine should move back to state A at the next
active edge of the clock. Thus the behavior specified in Figure 6.22 can be achieved with
a two-state machine, which has a state diagram shown in Figure 6.23. Only two states are
needed because we have allowed the output value to depend on the present value of the
input as well as the present state of the machine. The diagram indicates that if the machine
is in state A, it will remain in state A if w = 0 and the output will be 0. This is indicated by an
arc with the label w = 0/z = 0. When w becomes 1, the output stays at 0 until the machine
moves to state B at the next active clock edge. This is denoted by the arc from A to B with
the label w = 1/z = 0. In state B the output will be 1 if w = 1, and the machine will remain
in state B, as indicated by the label w = 1/z = 1 on the corresponding arc. However, if
w = 0 in state B, then the output will be 0 and a transition to state A will take place at the

Clock cycle: t0 t1 t2 t3 t4 t5 t6 t7 t8 t9 t10

w : 0 1 0 1 1 0 1 1 1 0 1
z: 0 0 0 0 1 0 0 1 1 0 0

Figure 6.22 Sequences of input and output signals.

A

w 0= z 0=/

w 1= z 1=/Bw 0= z 0=/

Reset

w 1= z 0=/

Figure 6.23 State diagram of an FSM that realizes the task in Figure 6.22.
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next active clock edge. A key point to understand is that during the present clock cycle the
output value corresponds to the label on the arc emanating from the present-state node.

We can implement the FSM in Figure 6.23, using the same design steps as in Sec-
tion 6.1. The state table is shown in Figure 6.24. The table shows that the output z depends
on the present value of input w and not just on the present state. Figure 6.25 gives the
state-assigned table. Because there are only two states, it is sufficient to use a single state
variable, y. Assuming that y is realized as a D-type flip-flop, the required next-state and
output expressions are

Y = D = w

z = wy

The resulting circuit is presented in Figure 6.26 along with a timing diagram. The timing
diagram corresponds to the input-output sequences in Figure 6.22.

The greater flexibility of Mealy-type FSMs often leads to simpler circuit realizations.
This certainly seems to be the case in our examples that produced the circuits in Figures 6.8,
6.17, and 6.26, assuming that the design requirement is only to detect two consecutive
occurrences of input w being equal to 1. We should note, however, that the circuit in
Figure 6.26 is not the same in terms of output behavior as the circuits in Figures 6.8
and 6.17. The difference is a shift of one clock cycle in the output signal in Figure 6.26b. If
we wanted to produce exactly the same output behavior using the Mealy approach, we could
modify the circuit in Figure 6.26a by adding another flip-flop as shown in Figure 6.27. This
flip-flop merely delays the output signal, Z , by one clock cycle with respect to z, as indicated

Present Next state Output z

state w = 0 w = 1 w = 0 w = 1

A A B 0 0
B A B 0 1

Figure 6.24 State table for the FSM in Figure 6.23.

Present Next state Output

state w = 0 w = 1 w = 0 w = 1

y Y Y z z

A 0 0 1 0 0
B 1 0 1 0 1

Figure 6.25 State-assigned table for the FSM in Figure 6.24.
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(b) Timing diagram

Figure 6.26 Implementation of the FSM in Figure 6.25.

in the timing diagram. By making this change, we effectively turn the Mealy-type circuit
into a Moore-type circuit with output Z . Note that the circuit in Figure 6.27 is essentially
the same as the circuit in Figure 6.17.

Example 6.4 In Example 6.1 we considered the control circuit needed to swap the contents of two regis-
ters, implemented as a Moore-type finite state machine. The same task can be achieved
using a Mealy-type FSM, as indicated in Figure 6.28. State A still serves as the reset state.
But as soon as w changes from 0 to 1, the output control signals R2out and R3in are asserted.
They remain asserted until the beginning of the next clock cycle, when the circuit will leave
state A and change to B. In state B the outputs R1out and R2in are asserted for both w = 0
and w = 1. Finally, in state C the swap is completed by asserting R3out and R1in.

The Mealy-type realization of the control circuit requires three states. This does not
necessarily imply a simpler circuit because two flip-flops are still needed to implement
the state variables. The most important difference in comparison with the Moore-type
realization is the timing of output signals. A circuit that implements the FSM in Figure 6.28
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(b) Timing diagram

D Q

Q

Z

1
0

Z

Figure 6.27 Circuit that implements the specification in Figure 6.2.

generates the output control signals one clock cycle sooner than the circuits derived in
Examples 6.1 and 6.2.

Note also that using the FSM in Figure 6.28, the entire process of swapping the contents
of R1 and R2 takes three clock cycles, starting and finishing in state A. Using the Moore-type
FSM in Example 6.1, the swapping process involves four clock cycles before the circuit
returns to state A.

Suppose that we wish to implement this FSM using one-hot encoding. Then three
flip-flops are needed, and the states A, B, and C may be assigned the valuations y3y2y1 =
001, 010, and 100, respectively. Examining the state diagram in Figure 6.28, we can de-
rive the next-state equations by inspection. The input to flip-flop y1 should have the value
1 if the FSM is in state A and w = 0 or if the FSM is in state C; hence Y1 = wy1 + y3.
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R3out 1= R1in 1= Done 1=, ,w 0=
w 1=

R1out 1= R2in 1=,

w 1= R/ 2out 1= R3in 1=,

A

w 0=
w 1=

Reset

w 0=

B

C

Figure 6.28 State diagram for Example 6.4.

Flip-flop y2 should be set to 1 if the FSM is in state A and w = 1; hence Y2 = wy1. Flip-flop
y3 should be set to 1 if the present state is B; hence Y3 = y2. The derivation of the out-
put expressions, which we leave as an exercise for the reader, can also be done by inspection.

The preceding discussion deals with the basic principles involved in the design of
sequential circuits. Although it is essential to understand these principles, the manual
approach used in the examples is difficult and tedious when large circuits are involved. We
will now show how CAD tools are used to greatly simplify the design task.

6.4 Design of Finite State Machines Using CADTools

Sophisticated CAD tools are available for finite state machine design, and we introduce
them in this section. A rudimentary way of using CAD tools for FSM design could be
as follows: The designer employs the manual techniques described previously to derive a
circuit that contains flip-flops and logic gates from a state diagram. This circuit is entered
into the CAD system by drawing a schematic diagram or by writing structural hardware
description language (HDL) code. The designer then uses the CAD system to simulate the
behavior of the circuit and uses the CAD tools to automatically implement the circuit in a
chip, such as a PLD.

It is tedious to manually synthesize a circuit from a state diagram. Since CAD tools
are meant to obviate this type of task, more attractive ways of utilizing CAD tools for FSM
design have been developed. A better approach is to directly enter the state diagram into the
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CAD system and perform the entire synthesis process automatically. CAD tools support
this approach in two main ways. One method is to allow the designer to draw the state
diagram using a graphical tool similar to the schematic capture tool. The designer draws
circles to represent states and arcs to represent state transitions and indicates the outputs
that the machine should generate. Another and more popular approach is to write HDL
code that represents the state diagram, as described below.

Many HDLs provide constructs that allow the designer to represent a state diagram.
To show how this is done, we will provide Verilog code that represents the simple machine
designed manually as the first example in Section 6.1. Then we will use the CAD tools to
synthesize a circuit that implements the machine in a chip.

6.4.1 Verilog Code for Moore-Type FSMs

Verilog does not define a standard way of describing a finite state machine. Hence while
adhering to the required Verilog syntax, there is more than one way to describe a given
FSM. An example of Verilog code for the FSM of Figure 6.3 is given in Figure 6.29. The
code reflects directly the FSM structure in Figure 6.5. The module simple has inputs Clock,
Resetn, and w, and output z. Two-bit vectors y and Y represent the present and the next
state of the machine, respectively. The parameter statement associates the present-state
valuations used in Figure 6.6 with the symbolic names A, B, and C.

The state transitions are specified by two separate always blocks. The first block
describes the required combinational circuit. It uses a case statement to give the value of
the next state Y for each value of the present state y. Each case alternative corresponds to
a present state of the machine, and the associated if-else statement specifies the next state
to be reached according to the value of w. This portion of the code corresponds to the
combinational circuit on the left side of Figure 6.5.

Since there are only three states in our FSM, the case statement in Figure 6.29 includes
a default clause that covers the unused valuation y = 11. This clause specifies Y = 2’bxx,
which indicates to the Verilog compiler that the value of Y can be treated as a don’t-care
when y = 11. It is important to consider the effect on the compiler if we did not include
the default clause. In that case, the value of Y would not be specified at all for y = 11.
As explained in Chapter 5, the Verilog compiler assumes that a signal’s value must be kept
unchanged whenever the value is not specified by an assignment, and a memory element
should be synthesized. For the code in Figure 6.29 this means that a latch will be generated
in the combinational circuit for Y if the default clause is not included. In general, it is
always necessary to include a default clause when using a case statement that does not
cover all of its alternatives.

The second always block introduces flip-flops into the circuit. Its sensitivity list com-
prises the reset and clock signals. Asynchronous reset is performed when the Resetn input
goes to 0, placing the FSM into state A. The else clause stipulates that after each positive
clock edge the y signal should take the value of the Y signal, thus implementing the state
changes.
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module simple (Clock, Resetn, w, z);
input Clock, Resetn, w;
output z;
reg [2:1] y, Y;
parameter [2:1] A = 2’b00, B = 2’b01, C = 2’b10;

// Define the next state combinational circuit
always @(w, y)

case (y)
A: if (w) Y = B;

else Y = A;
B: if (w) Y = C;

else Y = A;
C: if (w) Y = C;

else Y = A;
default: Y = 2’bxx;

endcase

// Define the sequential block
always @(negedge Resetn, posedge Clock)

if (Resetn == 0) y < = A;
else y < = Y;

// Define output
assign z = (y == C);

endmodule

Figure 6.29 Verilog code for the FSM in Figure 6.3.

This is a Moore-type FSM in which the output z is equal to 1 only in state C. The output
is conveniently defined in a conditional assignment statement that sets z = 1 if y = C. This
realizes the combinational circuit on the right side of Figure 6.5.

6.4.2 Synthesis of Verilog Code

To give an example of the circuit produced by a synthesis tool, we synthesised the code in
Figure 6.29 for implementation in a CPLD, such as those described in Appendix B. The
synthesis resulted in two flip-flops, with inputs Y1 and Y2, and outputs y1 and y2. The
next-state expressions generated by the synthesis tool are

Y1 = wy1y2

Y2 = wy1 + wy2
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The output expression is

z = y2

These expressions correspond to the case in Figure 6.7 when the unused state pattern
y2y1 = 11 is treated as don’t-cares in the Karnaugh maps for Y1, Y2, and z.

Figure 6.30 depicts a part of the FSM circuit implemented in a CPLD. To keep the
figure simple, only the logic resources used for the two macrocells that implement y1, y2,
and z are shown. The parts of the macrocells used for the circuit are highlighted in blue.

The w input to the circuit is shown connected to one of the interconnection wires in
the CPLD. The source node in the chip that generates w is not shown. It could be either an
input pin, or else w might be the output of another macrocell, assuming that the CPLD may

y1D Q

D Q

Clock

1

11

PAL-like block

Interconnection wires

(Other macrocells are not shown)

1

0

0

z

w

Resetn

y2

Figure 6.30 Implementation of the FSM of Figure 6.3 in a CPLD.
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Figure 6.31 The circuit from Figure 6.30 in a small CPLD.

contain other circuitry that is connected to our FSM. The Clock signal is assigned to a pin
on the chip that is dedicated for use by clock signals. From this dedicated pin a global wire
distributes the clock signal to all of the flip-flops in the chip. The global wire distributes
the clock signal to the flip-flops such that the difference in the arrival time, or clock skew,
of the clock signal at each flip-flop is minimized. The concept of clock skew is discussed
in Chapter 5. A global wire is also used for the reset signal.

Figure 6.31 illustrates how the circuit might be assigned to the pins on a small CPLD.
The figure is drawn with a part of the top of the chip package cut away, revealing a conceptual
view of the two macrocells from Figure 6.30, which are indicated in blue. Our simple circuit
uses only a small portion of the device.

6.4.3 Simulating and Testing the Circuit

The behavior of the circuit implemented in the CPLD chip can be tested using timing
simulation, as depicted in Figure 6.32. The figure gives the waveforms that correspond to
the timing diagram in Figure 6.9, assuming that a 100 ns clock period is used. The Resetn
signal is set to 0 at the beginning of the simulation and then set to 1. The circuit produces
the output z = 1 for one clock cycle after w has been equal to 1 for two successive clock
cycles. When w is 1 for three clock cycles, z becomes 1 for two clock cycles, as it should
be. We show the changes in state by using the letters A, B, and C for readability purposes.
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Figure 6.32 Simulation results for the circuit in Figure 6.30.

Having examined the simulation output, we should consider the question of whether
we can conclude that the circuit functions correctly and satisfies all requirements. For our
simple example it is not difficult to answer this question because the circuit has only one
input and its behavior is straightforward. It is easy to see that the circuit works properly.
However, in general it is difficult to ascertain with a high degree of confidence whether a
sequential circuit will work properly for all possible input sequences, because a very large
number of input patterns may be possible. For large finite state machines, the designer must
think carefully about patterns of inputs that may be used in simulation for testing purposes.

6.4.4 Alternative Styles of Verilog Code

We mentioned earlier in this section that Verilog does not specify a standard way for writing
code that represents a finite state machine. The code given in Figure 6.29 is only one pos-
sibility. A slightly different version of code for our simple machine is given in Figure 6.33.
In this case, we specified the output z inside the always block that defines the required
combinational circuit. The effect is the same as in Figure 6.29.

A different approach is taken in Figure 6.34. A single always block is used. The states
are represented by a two-bit vector y. The required state transitions are given in the always
block with the sensitivity list that comprises the reset and clock signals. Asynchronous reset
is specified when Resetn goes to 0. Other transitions are defined in the case statement to
correspond directly to those in Figure 6.3. The default clause indicates that the valuation
y = y2y1 = 11 can be treated as a don’t-care condition.

The assignment statement that defines z is placed outside the always block. This
assignment cannot be made inside the always block as done in Figure 6.33. Doing so
would infer a separate flip-flop for z, which would delay the changes in z with respect to y2

by one clock cycle.
We have shown three styles of Verilog code for our FSM example. The circuit produced

by the Verilog compiler for each version of the code may be somewhat different because,
as the reader is well aware by this point, there are many ways to implement a given logic
function. However, the circuits produced from the three versions of the code provide
identical functionality.
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module simple (Clock, Resetn, w, z);
input Clock, Resetn, w;
output reg z;
reg [2:1] y, Y;
parameter [2:1] A = 2’b00, B = 2’b01, C = 2’b10;

// Define the next state and output combinational circuits
always @(w, y)
begin

case (y)
A: if (w) Y = B;

else Y = A;
B: if (w) Y = C;

else Y = A;
C: if (w) Y = C;

else Y = A;
default: Y = 2’bxx;

endcase
z = (y == C); // Define output

end

// Define the sequential block
always @(negedge Resetn, posedge Clock)

if (Resetn == 0) y < = A;
else y < = Y;

endmodule

Figure 6.33 Second version of code for the FSM in Figure 6.3.

Example 6.5 Figure 6.35 shows how the FSM in Figure 6.11 can be specified in Verilog using the style
illustrated in Figure 6.29. This FSM has four states, which are encoded using all four
possible valuations of the state variables, hence there is no need for a default clause in the
case statement.

6.4.5 Summary of Design Steps When Using CAD Tools

In Section 6.1.6 we summarized the design steps needed to derive sequential circuits man-
ually. We have now seen that CAD tools can automatically perform much of the work.
However, it is important to realize that the CAD tools have not replaced all manual steps.
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module simple (Clock, Resetn, w, z);
input Clock, Resetn, w;
output z;
reg [2:1] y;
parameter [2:1] A = 2’b00, B = 2’b01, C = 2’b10;

// Define the sequential block
always @(negedge Resetn, posedge Clock)

if (Resetn == 0) y < = A;
else

case (y)
A: if (w) y < = B;

else y < = A;
B: if (w) y < = C;

else y < = A;
C: if (w) y < = C;

else y < = A;
default: y < = 2’bxx;

endcase

// Define output
assign z = (y == C);

endmodule

Figure 6.34 Third version of code for the FSM in Figure 6.3.

With reference to the list given in Section 6.1.6, the first two steps, in which the machine
specification is obtained and a state diagram is derived, still have to be done manually.
Given the state diagram information as input, the CAD tools then automatically perform
the tasks needed to generate a circuit with logic gates and flip-flops. In addition to the
design steps given in Section 6.1.6, we should add the testing and simulation stage. We
will defer detailed discussion of this issue until Chapter 11.

6.4.6 Specifying the State Assignment in Verilog Code

In Section 6.2 we saw that the state assignment may have an impact on the complexity of
the designed circuit. An obvious objective of the state-assignment process is to minimize
the cost of implementation. The cost function that should be optimized may be simply the
number of gates and flip-flops. But it could also be based on other considerations that may
be representative of the type of chip used to implement the design.
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module control (Clock, Resetn, w, R1in, R1out, R2in, R2out, R3in, R3out, Done);
input Clock, Resetn, w;
output R1in, R1out, R2in, R2out, R3in, R3out, Done;
reg [2:1] y, Y;
parameter [2:1] A = 2’b00, B = 2’b01, C = 2’b10, D = 2’b11;

// Define the next state combinational circuit
always @(w, y)

case (y)
A: if (w) Y = B;

else Y = A;
B: Y = C;
C: Y = D;
D: Y = A;

endcase

// Define the sequential block
always @(negedge Resetn, posedge Clock)

if (Resetn == 0) y < = A;
else y < = Y;

// Define outputs
assign R2out = (y == B);
assign R3in = (y == B);
assign R1out = (y == C);
assign R2in = (y == C);
assign R3out = (y == D);
assign R1in = (y == D);
assign Done = (y == D);

endmodule

Figure 6.35 Verilog code for the FSM in Figure 6.11.

A particular state assignment can be specified in Verilog code by means of a parameter
statement as done in Figures 6.29 through 6.35. However, Verilog compilers usually have a
capability to search for different assignments that may give better results. Most compilers
are able to recognize a finite state machine when they encounter its specification in the
code that conforms to typical styles, such as those used in this chapter. When the compiler
detects an FSM, it can try to optimize its implementation by applying certain strategies
such as looking for a better state assignment, attempting to use the one-hot encoding, and
exploiting specific features of the target device. The user can either allow the compiler to
use its FSM-handling capability, or surpress it in which case the compiler simply deals with
the Verilog statements in the usual way.
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6.4.7 Specification of Mealy FSMs Using Verilog

A Mealy-type FSM can be specified in a similar manner as a Moore-type FSM. Figure 6.36
gives Verilog code for the FSM in Figure 6.23. The state transitions are described in the
same way as in our first Verilog example in Figure 6.29. The variables y and Y represent
the present and next states, which can have values A and B. Compared to the code in
Figure 6.29, the main difference is the way in which the code for the output is written.
In Figure 6.36 the output z is defined within the case statement that also defines the state
transitions. When the FSM is in state A, z should be 0, but when in state B, z should take
the value of w. Since the sensitivity list for the always block includes w, a change in w
will immediately reflect itself in the value of z if the machine is in state B, which meets the
requirements of the Mealy-type FSM.

Implementing the FSM specified in Figure 6.36 in a CPLD chip yields the same equa-
tions as we derived manually in Section 6.3. Simulation results for the synthesized circuit
appear in Figure 6.37. The input waveform for w is the same as the one we used for the
Moore-type machine in Figure 6.32. Our Mealy-type machine behaves correctly, with z
becoming 1 just after the start of the second consecutive clock cycle in which w is 1.

In the simulation results we have given in this section, all changes in the input w occur
immediately following a positive clock edge. This is based on the assumption, stated in
Section 6.1.5, that in a real circuit w would be synchronized with respect to the clock that
controls the FSM. In Figure 6.38 we illustrate a problem that may arise if w does not meet
this specification. In this case we have assumed that the changes in w take place at the
negative edge of the clock, rather than at the positive edge when the FSM changes its state.
The first pulse on the w input is 100 ns long. This should not cause the output z to become
equal to 1. But the circuit does not behave in this manner. After the signal w becomes
equal to 1, the first positive edge of the clock causes the FSM to change from state A to
state B. As soon as the circuit reaches the state B, the w input is still equal to 1 for another
50 ns, which causes z to go to 1. When w returns to 0, the z signal does likewise. Thus an
erroneous 50-ns pulse is generated on the output z.

We should pursue the consequences of this problem a little further. If z is used to drive
another circuit that is not controlled by the same clock, then the extraneous pulse is likely
to cause big problems. But if z is used as an input to a circuit (perhaps another FSM) that
is controlled by the same clock, then the 50-ns pulse will be ignored by this circuit if z = 0
before the next positive edge of the clock (accounting for the setup time).

6.5 Serial Adder Example

We will now present another simple example that illustrates the complete design process.
In Chapter 3 we discussed the addition of binary numbers in detail. We explained several
schemes that can be used to add two n-bit numbers in parallel, ranging from carry-ripple
to carry-lookahead adders. In these schemes the speed of the adder unit is an important
design parameter. Fast adders are more complex and thus more expensive. If speed is not
of great importance, then a cost-effective option is to use a serial adder, in which bits are
added a pair at a time.
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module mealy (Clock, Resetn, w, z);
input Clock, Resetn, w;
output reg z;
reg y, Y;
parameter A = 1’b0, B = 1’b1;

// Define the next state and output combinational circuits
always @(w, y)

case (y)
A: if (w)

begin
z = 0;
Y = B;

end
else
begin

z = 0;
Y = A;

end
B: if (w)

begin
z = 1;
Y = B;

end
else
begin

z = 0;
Y = A;

end
endcase

// Define the sequential block
always @(negedge Resetn, posedge Clock)

if (Resetn == 0) y < = A;
else y < = Y;

endmodule

Figure 6.36 Verilog code for the Mealy machine of Figure 6.23.

6.5.1 Mealy-Type FSM for Serial Adder

Let A = an−1an−2 · · · a0 and B = bn−1bn−2 · · · b0 be two unsigned numbers that have to be
added to produce Sum = sn−1sn−2 · · · s0. Our task is to design a circuit that will perform
serial addition, dealing with a pair of bits in one clock cycle. The process starts by adding
bits a0 and b0. In the next clock cycle, bits a1 and b1 are added, including a possible
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Figure 6.37 Simulation results for the Mealy machine.

Figure 6.38 Potential problem with asynchronous inputs to a Mealy FSM.

carry from the bit-position 0, and so on. Figure 6.39 shows a block diagram of a possible
implementation. It includes three shift registers that are used to hold A, B, and Sum as the
computation proceeds. Assuming that the input shift registers have parallel-load capability,
as depicted in Figure 5.18, the addition task begins by loading the values of A and B into
these registers. Then in each clock cycle, a pair of bits is added by the adder FSM, and
at the end of the cycle the resulting sum bit is shifted into the Sum register. We will use
positive-edge-triggered flip-flops in which case all changes take place soon after the positive
edge of the clock, depending on the propagation delays within the various flip-flops. At this
time the contents of all three shift registers are shifted to the right; this shifts the existing
sum bit into Sum, and it presents the next pair of input bits ai and bi to the adder FSM.

Now we are ready to design the required FSM. This cannot be a combinational circuit
because different actions will have to be taken, depending on the value of the carry from the
previous bit position. Hence two states are needed: let G and H denote the states where the
carry-in values are 0 and 1, respectively. Figure 6.40 gives a suitable state diagram, defined
as a Mealy model. The output value, s, depends on both the state and the present value of
the inputs a and b. Each transition is labeled using the notation ab/s, which indicates the
value of s for a given valuation ab. In state G the input valuation 00 will produce s = 0,
and the FSM will remain in the same state. For input valuations 01 and 10, the output will
be s = 1, and the FSM will remain in G. But for 11, s = 0 is generated, and the machine
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Figure 6.39 Block diagram for the serial adder.
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Reset

11 0/
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Figure 6.40 State diagram for the serial adder FSM.

moves to state H . In state H valuations 01 and 10 cause s = 0, while 11 causes s = 1. In
all three of these cases, the machine remains in H . However, when the valuation 00 occurs,
the output of 1 is produced and a change into state G takes place.

The corresponding state table is presented in Figure 6.41. A single flip-flop is needed
to represent the two states. The state assignment can be done as indicated in Figure 6.42.
This assignment leads to the following next-state and output equations

Y = ab + ay + by

s = a ⊕ b ⊕ y

Comparing these expressions with those for the full-adder in Section 3.2, it is obvious that
y is the carry-in, Y is the carry-out, and s is the sum of the full-adder. Therefore, the adder
FSM box in Figure 6.39 consists of the circuit shown in Figure 6.43. The flip-flop can be
cleared by the Reset signal at the start of the addition operation.

The serial adder is a simple circuit that can be used to add numbers of any length. The
structure in Figure 6.39 is limited in length only by the size of the shift registers.
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Present Next state Output s

state ab = 00 01 10 11 00 01 10 11

G G G G H 0 1 1 0
H G H H H 1 0 0 1

Figure 6.41 State table for the serial adder FSM.

Present
Next state Output

state ab = 00 01 10 11 00 01 10 11

y Y s

0 0 0 0 1 0 1 1 0
1 0 1 1 1 1 0 0 1

Figure 6.42 State-assigned table for Figure 6.41.

Full
adder

a

b

s

D Q

Q

carry-out

Clock

Reset

Y y

Figure 6.43 Circuit for the adder FSM in Figure 6.39.

6.5.2 Moore-Type FSM for Serial Adder

In the preceding example we saw that a Mealy-type FSM nicely meets the requirement
for implementing the serial adder. Now we will try to achieve the same objective using a
Moore-type FSM. A good starting point is the state diagram in Figure 6.40. In a Moore-type
FSM, the output must depend only on the state of the machine. Since in both states, G and
H , it is possible to produce two different outputs depending on the valuations of the inputs
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a and b, a Moore-type FSM will need more than two states. We can derive a suitable state
diagram by splitting both G and H into two states. Instead of G, we will use G0 and G1 to
denote the fact that the carry is 0 and that the sum is either 0 or 1, respectively. Similarly,
instead of H , we will use H0 and H1. Then the information in Figure 6.40 can be mapped
into the Moore-type state diagram in Figure 6.44 in a straightforward manner.

The corresponding state table is given in Figure 6.45 and the state-assigned table in
Figure 6.46. The next-state and output expressions are

Y1 = a ⊕ b ⊕ y2

Y2 = ab + ay2 + by2

s = y1

The expressions for Y1 and Y2 correspond to the sum and carry-out expressions in the
full-adder circuit. The FSM is implemented as shown in Figure 6.47. It is interesting to
observe that this circuit is very similar to the circuit in Figure 6.43. The only difference is
that in the Moore-type circuit, the output signal, s, is passed through an extra flip-flop and
thus delayed by one clock cycle with respect to the Mealy-type sequential circuit. Recall
that we observed the same difference in our previous example, as depicted in Figures 6.26
and 6.27.

A key difference between the Mealy and Moore types of FSMs is that in the former a
change in inputs reflects itself immediately in the outputs, while in the latter the outputs do
not change until the change in inputs forces the machine into a new state, which takes place
one clock cycle later. We encourage the reader to draw the timing diagrams for the circuits
in Figures 6.43 and 6.47, which will exemplify further this key difference between the two
types of FSMs.

H1 s 1=/

Reset

H0 s 0=/

01
1011

11

01
10

G1 s 1=/

G0 s 0=/

01
10 00

01

00

10

11

00

00

11

Figure 6.44 State diagram for the Moore-type serial adder FSM.
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Present Next state Output
state ab = 00 01 10 11 s

G0 G0 G1 G1 H0 0
G1 G0 G1 G1 H0 1
H0 G1 H0 H0 H1 0
H1 G1 H0 H0 H1 1

Figure 6.45 State table for the Moore-type serial adder FSM.

Present
Next state

state ab = 00 01 10 11 Output

y2 y1 Y2Y1
s

0 0 0 0 0 1 0 1 1 0 0
0 1 0 0 0 1 0 1 1 0 1
1 0 0 1 1 0 1 0 1 1 0
1 1 0 1 1 0 1 0 1 1 1

Figure 6.46 State-assigned table for Figure 6.45.
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Y 1Sum bit
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Figure 6.47 Circuit for the Moore-type serial adder FSM.
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6.5.3 Verilog Code for the Serial Adder

The serial adder can be described in Verilog by writing code for the shift registers and the
adder FSM. We will first design the shift register and then use it as a subcircuit in the serial
adder.

Shift Register Subcircuit
In the serial adder it is beneficial to have the ability to prevent the shift register contents

from changing when an active clock edge occurs. Figure 6.48 gives the code for a shift
register named shiftrne, which has an enable input, E. When E = 1, the contents of the
register are shifted left-to-right on the positive edge of the clock. Setting E = 0 prevents
the contents of the shift register from changing.

Complete Code
The code for the serial adder is shown in Figure 6.49. It instantiates three shift registers

for the inputs A and B and the output Sum. The shift registers are loaded with parallel data
when the circuit is reset. The state diagram for the adder FSM is described by two always
blocks, using the style of code in Figure 6.36. In addition to the components of the serial
adder shown in Figure 6.39, the Verilog code includes a down-counter to determine when
the adder should be halted because all n bits of the required sum are present in the output
shift register. When the circuit is reset, the counter is loaded with the number of bits in the
serial adder, n. The counter counts down to 0, and then stops and disables further changes
in the output shift register.

module shiftrne (R, L, E, w, Clock, Q);
parameter n = 8;
input [n –1:0] R;
input L, E, w, Clock;
output reg [n –1:0] Q;
integer k;

always @(posedge Clock)
if (L)

Q < = R;
else if (E)
begin

for (k = n– 1; k > 0; k = k –1)
Q[k– 1] < = Q[k];

Q[n –1] < = w;
end

endmodule

Figure 6.48 Code for a left-to-right shift register with an
enable input.
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module serial_adder(A, B, Reset, Clock, Sum);
input [7:0] A, B;
input Reset, Clock;
output wire [7:0] Sum;
reg [3:0] Count;
reg s, y, Y;
wire [7:0] QA, QB;
wire Run;
parameter G = 1’b0, H = 1’b1;

shiftrne shift_A (A, Reset, 1’b1, 1’b0, Clock, QA);
shiftrne shift_B (B, Reset, 1’b1, 1’b0, Clock, QB);
shiftrne shift_Sum (8’b0, Reset, Run, s, Clock, Sum);

// Adder FSM
// Output and next state combinational circuit
always @(QA, QB, y)

case (y)
G: begin

s = QA[0] QB[0];
if (QA[0] & QB[0]) Y = H;
else Y = G;

end
H: begin

s = QA[0] QB[0];
if ( QA[0] & QB[0]) Y = G;
else Y = H;

end
default: Y = G;

endcase

// Sequential block
always @(posedge Clock)

if (Reset) y < = G;
else y < = Y;

// Control the shifting process
always @(posedge Clock)

if (Reset) Count = 8;
else if (Run) Count = Count – 1;

assign Run = Count;

endmodule

Figure 6.49 Verilog code for the serial adder.
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The code in Figure 6.49 implements a serial adder for eight-bit numbers. The wires
QA and QB correspond to the parallel outputs of the shift registers with inputs A and B in
Figure 6.39. The variable s represents the output of the adder FSM.

In Figure 6.39 the shift registers for inputs A and B do not use a serial input or an enable
input. However, the shiftrne component, which is used for all three shift registers, includes
these ports and so signals must be connected to them. The enable input for the two shift
registers can be connected to logic value 1. The value shifted into the serial input does not
matter, so it can be connected to either 1 or 0; we have chosen to connect it to 0. The shift
registers are loaded in parallel by the Reset signal. We have chosen to use an active-high
reset signal for the circuit. The output shift register does not need a parallel data input, so
all 0s are connected to this input.

The first always block describes the state transitions and the output of the adder FSM
in Figure 6.40. The output definition follows from observing in Figure 6.40 that when the
FSM is in state G, the sum is s = a ⊕ b, and when in state H , the sum is s = a ⊕ b. The
second always block implements the flip-flop y and provides synchronous reset when Reset
= 1.

The enable input for the output shift register is named Run. It is derived from the
outputs of the down-counter specified in the third always block. When Reset = 1, Count
is initialized to the value 8. Then as long as Run = 1, Count is decremented in each clock
cycle. Run is set to 0 when Count is equal to 0, which is detected by using the reduction
OR operator.

Synthesis and Simulation of the Verilog Code

The results of synthesizing a circuit from the code in Figure 6.49 are illustrated in
Figure 6.50a. The outputs of the counter are ORed to provide the Run signal, which
enables clocking of both the output shift register and the counter. A sample of a timing
simulation for the circuit is shown in Figure 6.50b. The circuit is first reset, resulting in the
values of A and B being loaded into the input shift registers, and the value 8 loaded into the
down-counter. After each clock cycle one pair of bits of the input numbers is added by the
adder FSM, and the sum bit is shifted into the output shift register. After eight clock cycles
the output shift register contains the correct sum, and shifting is halted by the Run signal
becoming equal to 0.

6.6 State Minimization

Our introductory examples of finite state machines were so simple that it was easy to see
that the number of states that we used was the minimum possible to perform the required
function. When a designer has to design a more complex FSM, it is likely that the initial
attempt will result in a machine that has more states than is actually required. Minimizing
the number of states is of interest because fewer flips-flops may be needed to represent the
states and the complexity of the combinational circuit needed in the FSM may be reduced.
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Figure 6.50 Synthesized serial adder.
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If the number of states in an FSM can be reduced, then some states in the original
design must be equivalent to other states in their contribution to the overall behavior of the
FSM. We can express this more formally in the following definition.

Definition 6.1 – Two states Si and Sj are said to be equivalent if and only if for every
possible input sequence, the same output sequence will be produced regardless of whether
Si or Sj is the initial state.

It is possible to define a minimization procedure that searches for any states that are equiv-
alent. Such a procedure is very tedious to perform manually, but it can be automated for
use in CAD tools. We will not pursue it here, because of its tediousness. However, to pro-
vide some appreciation of the impact of state minimization, we will present an alternative
approach, which is much more efficient but not quite as broad in scope.

Instead of trying to show that some states in a given FSM are equivalent, it is often
easier to show that some states are definitely not equivalent. This idea can be exploited to
define a simple minimization procedure.

6.6.1 Partitioning Minimization Procedure

Suppose that a state machine has a single input w. Then if the input signal w = 0 is applied
to this machine in state Si and the result is that the machine moves to state Su, we will say
that Su is a 0-successor of Si. Similarly, if w = 1 is applied in the state Si and it causes the
machine to move to state Sv, we will say that Sv is a 1-successor of Si. In general, we will
refer to the successors of Si as its k-successors. When the FSM has only one input, k can
be either 0 or 1. But if there are multiple inputs to the FSM, then k represents the set of all
possible combinations (valuations) of the inputs.

From Definition 6.1 it follows that if the states Si and Sj are equivalent, then their
corresponding k-successors (for all k) are also equivalent. Using this fact, we can formulate
a minimization procedure that involves considering the states of the machine as a set and
then breaking the set into partitions that comprise subsets that are definitely not equivalent.

Definition 6.2 – A partition consists of one or more blocks, where each block comprises
a subset of states that may be equivalent, but the states in a given block are definitely not
equivalent to the states in other blocks.

Let us assume initially that all states are equivalent; this forms the initial partition, P1,
in which all states are in the same block. As the next step, we will form the partition
P2 in which the set of states is partitioned into blocks such that the states in each block
generate the same output values. Obviously, the states that generate different outputs cannot
possibly be equivalent. Then we will continue to form new partitions by testing whether
the k-successors of the states in each block are contained in one block. Those states whose
k-successors are in different blocks cannot be in one block. Thus new blocks are formed
in each new partition. The process ends when a new partition is the same as the previous
partition. Then all states in any one block are equivalent. To illustrate the procedure,
consider Example 6.6.
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Example 6.6Figure 6.51 shows a state table for a particular FSM. In an attempt to minimize the number
of states, let us apply the partitioning procedure. The initial partition contains all states in
a single block

P1 = (ABCDEFG)

The next partition separates the states that have different outputs (note that this FSM is of
Moore type), which means that the states A, B, and D must be different from the states C,
E, F , and G. Thus the new partition has two blocks

P2 = (ABD)(CEFG)

Now we must consider all 0- and 1-successors of the states in each block. For the block
(ABD), the 0-successors are (BDB), respectively. Since all of these successor states are in
the same block in P2, we should still assume that the states A, B, and D may be equivalent.
The 1-successors for these states are (CFG). Since these successors are also in the same
block in P2, we conclude that (ABD) should remain in one block of P3. Next consider the
block (CEFG). Its 0-successors are (FFEF), respectively. They are in the same block in
P2. The 1-successors are (ECDG). Since these states are not in the same block in P2, it
means that at least one of the states in the block (CEFG) is not equivalent to the others. In
particular, the state F must be different from the states C, E, and G because its 1-successor
is D, which is in a different block than C, E, and G. Hence

P3 = (ABD)(CEG)(F)

Repeating the process yields the following. The 0-successors of (ABD) are (BDB), which
are in the same block of P3. The 1-successors are (CFG), which are not in the same block.
Since F is in a different block than C and G, it follows that the state B cannot be equivalent
to states A and D. The 0- and 1-successors of (CEG) are (FFF) and (ECG), respectively.
Both of these subsets are accommodated in the blocks of P3. Therefore

P4 = (AD)(B)(CEG)(F)

Present Next state Output
state w = 0 w = 1 z

A B C 1
B D F 1
C F E 0
D B G 1
E F C 0
F E D 0
G F G 0

Figure 6.51 State table for Example 6.6.
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Present Next state Output
state w = 0 w = 1 z

A B C 1
B A F 1
C F C 0
F C A 0

Figure 6.52 Minimized state table for Example 6.6.

If we follow the same approach to check the 0- and 1-successors of the blocks (AD) and
(CEG), we find that

P5 = (AD)(B)(CEG)(F)

Since P5 = P4 and no new blocks are generated, it follows that states in each block are
equivalent. If the states in some block were not equivalent, then their k-successors would
have to be in different blocks. Therefore, states A and D are equivalent, and C, E, and G
are equivalent. Since each block can be represented by a single state, only four states are
needed to implement the FSM defined by the state table in Figure 6.51. If we let the symbol
A represent both the states A and D in the figure and the symbol C represent the states C,
E, and G, then the state table reduces to the state table in Figure 6.52.

The effect of the minimization is that we have found a solution that requires only two
flip-flops to realize the four states of the minimized state table, instead of needing three
flip-flops for the original design. The expectation is that the FSM with fewer states will be
simpler to implement, although this is not always the case.

The state minimization concept is based on the fact that two different FSMs may exhibit
identical behavior in terms of the outputs produced in response to all possible inputs. Such
machines are functionally equivalent, even though they are implemented with circuits that
may be vastly different. In general, it is not easy to determine whether or not two arbitrary
FSMs are equivalent. Our minimization procedure ensures that a simplified FSM is func-
tionally equivalent to the original one. We encourage the reader to get an intuitive feeling
that the FSMs in Figures 6.51 and 6.52 are indeed functionally equivalent by implementing
both machines and simulating their behavior using the CAD tools.

Example 6.7 As another example of minimization, we will consider the design of a sequential circuit that
could control a vending machine. Suppose that a coin-operated vending machine dispenses
candy under the following conditions:

• The machine accepts nickels and dimes.

• It takes 15 cents for a piece of candy to be released from the machine.
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Figure 6.53 Signals for the vending machine.

• If 20 cents is deposited, the machine will not return the change, but it will credit the
buyer with 5 cents and wait for the buyer to make a second purchase.

All electronic signals in the vending machine are synchronized to the positive edge of a
clock signal, named Clock. The exact frequency of the clock signal is not important for our
example, but we will assume a clock period of 100 ns. The vending machine’s coin-receptor
mechanism generates two signals, senseD and senseN , which are asserted when a dime or
a nickel is detected. Because the coin receptor is a mechanical device and thus very slow
compared to an electronic circuit, inserting a coin causes senseD or senseN to be set to 1 for a
large number of clock cycles. We will assume that the coin receptor also generates two other
signals, named D and N. The D signal is set to 1 for one clock cycle after senseD becomes
1, and N is set to 1 for one clock cycle after senseN becomes 1. The timing relationships
between Clock, senseD, senseN , D, and N are illustrated in Figure 6.53a. The hash marks
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Figure 6.54 State diagram for Example 6.7.

on the waveforms indicate that senseD or senseN may be 1 for many clock cycles. Also,
there may be an arbitrarily long time between the insertion of two consecutive coins. Note
that since the coin receptor can accept only one coin at a time, it is not possible to have both
D and N set to 1 at once. Figure 6.53b illustrates how the N signal may be generated from
the senseN signal.

Based on these assumptions, we can develop an initial state diagram in a fairly straight-
forward manner, as indicated in Figure 6.54. The inputs to the FSM are D and N, and the
starting state is S1. As long as D = N = 0, the machine remains in state S1, which is
indicated by the arc labeled D · N = 1. Inserting a dime leads to state S2, while inserting a
nickel leads to state S3. In both cases the deposited amount is less than 15 cents, which is
not sufficient to release the candy. This is indicated by the output, z, being equal to 0, as in
S2/0 and S3/0. The machine will remain in state S2 or S3 until another coin is deposited
because D = N = 0. In state S2 a nickel will cause a transition to S4 and a dime to S5.
In both of these states, sufficient money is deposited to activate the output mechanism that
releases the candy; hence the state nodes have the labels S4/1 and S5/1. In S4 the deposited
amount is 15 cents, which means that on the next active clock edge the machine should
return to the reset state S1. The condition D · N on the arc leaving S4 is guaranteed to be
true because the machine remains in state S4 for only 100 ns, which is far too short a time
for a new coin to have been deposited.
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Present Next state Output
state D N = 00 01 10 11 z

S1 S1 S3 S2 – 0
S2 S2 S4 S5 – 0
S3 S3 S6 S7 – 0
S4 S1 – – – 1
S5 S3 – – – 1
S6 S6 S8 S9 – 0
S7 S1 – – – 1
S8 S1 – – – 1
S9 S3 – – – 1

Figure 6.55 State table for Example 6.7.

The state S5 denotes that an amount of 20 cents has been deposited. The candy
is released, and on the next clock edge the FSM makes a transition to state S3, which
represents a credit of 5 cents. A similar reasoning when the machine is in state S3 leads to
states S6 through S9. This completes the state diagram for the desired FSM. A state table
version of the same information is given in Figure 6.55.

Note that the condition D = N = 1 is denoted as don’t care in the table. Note also
other don’t cares in states S4, S5, S7, S8, and S9. They correspond to cases where there is
no need to check the D and N signals because the machine changes to another state in an
amount of time that is too short for a new coin to have been inserted.

Using the minimization procedure, we obtain the following partitions

P1 = (S1, S2, S3, S4, S5, S6, S7, S8, S9)

P2 = (S1, S2, S3, S6)(S4, S5, S7, S8, S9)

P3 = (S1)(S3)(S2, S6)(S4, S5, S7, S8, S9)

P4 = (S1)(S3)(S2, S6)(S4, S7, S8)(S5, S9)

P5 = (S1)(S3)(S2, S6)(S4, S7, S8)(S5, S9)

The final partition has five blocks. Let S2 denote its equivalence to S6, let S4 denote the
same with respect to S7 and S8, and let S5 represent S9. This leads to the minimized
state table in Figure 6.56. The actual circuit that implements this table can be designed as
explained in the previous sections.

In this example we used a straightforward approach to derive the original state dia-
gram, which we then minimized using the partitioning procedure. Figure 6.57 presents
the information in the state table of Figure 6.56 in the form of a state diagram. Looking
at this diagram, the reader can probably see that it may have been quite feasible to derive
the optimized diagram directly, using the following reasoning. Suppose that the states cor-
respond to the various amounts of money deposited. In particular, the states, S1, S3, S2,
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Present Next state Output
state DN = 00 01 10 11 z

S1 S1 S3 S2 0
S2 S2 S4 S5 0
S3 S3 S2 S4 0
S4 S1 1
S5 S3 1

Figure 6.56 Minimized state table for Example 6.7.
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N
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Figure 6.57 Minimized state diagram for Example 6.7.

S4, and S5 correspond to the amounts of 0, 5, 10, 15, and 20 cents, respectively. With
this interpretation of the states, it is not difficult to derive the transition arcs that define the
desired FSM. In practice, the designer can often produce initial designs that do not have a
large number of superfluous states.

We have found a solution that requires five states, which is the minimum number of
states for a Moore-type FSM that realizes the desired vending control task. From Sec-
tion 6.3 we know that Mealy-type FSMs may need fewer states than Moore-type machines,
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Figure 6.58 Mealy-type FSM for Example 6.7.

although they do not necessarily lead to simpler overall implementations. If we use the
Mealy model, we can eliminate states S4 and S5 in Figure 6.57. The result is shown in
Figure 6.58. This version requires only three states, but the output functions become more
complicated. The reader is encouraged to compare the complexity of implementations by
completing the design steps for the FSMs in Figures 6.57 and 6.58.

6.6.2 Incompletely Specified FSMs

The partitioning scheme for minimization of states works well when all entries in the state
table are specified. Such is the case for the FSM defined in Figure 6.51. FSMs of this
type are said to be completely specified. If one or more entries in the state table are not
specified, corresponding to don’t-care conditions, then the FSM is said to be incompletely
specified. An example of such an FSM is given in Figure 6.55. As seen in Example 6.7, the
partitioning scheme works well for this FSM also. But in general, the partitioning scheme is
less useful when incompletely specified FSMs are involved, as illustrated by Example 6.8.

Example 6.8Consider the FSM in Figure 6.59 which has four unspecified entries, because we have as-
sumed that the input w = 1 will not occur when the machine is in states B or G. Accordingly,
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Present Next state Output z

state w = 0 w = 1 w = 0 w = 1

A B C 0 0
B D 0
C F E 0 1
D B G 0 0
E F C 0 1
F E D 0 1
G F 0

Figure 6.59 Incompletely specified state table for Example 6.8.

neither a state transition nor an output value is specified for these two cases. An important
difference between this FSM and the one in Figure 6.55 is that some outputs in this FSM
are unspecified, whereas in the other FSM all outputs are specified.

The partitioning minimization procedure can be applied to Mealy-type FSMs in the
same way as for Moore-type FSMs illustrated in Examples 6.6 and 6.7. Two states are
considered equivalent, and are thus placed in the same block of a partition, if their outputs
are equal for all corresponding input valuations. To perform the partitioning process, we
can assume that the unspecified outputs have a specific value. Not knowing whether these
values should be 0 or 1, let us first assume that both unspecified outputs have a value of 0.
Then the first two partitions are

P1 = (ABCDEFG)

P2 = (ABDG)(CEF)

Note that the states A, B, D, and G are in the same block because their outputs are equal to 0
for both w = 0 and w = 1. Also, the states C, E, and F are in one block because they have
the same output behavior; they all generate z = 0 if w = 0, and z = 1 if w = 1. Continuing
the partitioning procedure gives the remaining partitions

P3 = (AB)(D)(G)(CE)(F)

P4 = (A)(B)(D)(G)(CE)(F)

P5 = P4

The result is an FSM that is specified by six states.
Next consider the alternative of assuming that both unspecified outputs in Figure 6.59

have a value of 1. This would lead to the partitions
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P1 = (ABCDEFG)

P2 = (AD)(BCEFG)

P3 = (AD)(B)(CEFG)

P4 = (AD)(B)(CEG)(F)

P5 = P4

This solution involves four states. Evidently, the choice of values assigned to unspecified
outputs is of considerable importance.

We will not pursue the issue of state minimization of incompletely specified FSMs any
further. As we already mentioned, it is possible to develop a minimization technique that
searches for equivalent states based directly on Definition 6.1. This approach is described
in many books on logic design [2, 8–10, 12–14].

Finally, it is important to mention that reducing the number of states in a given FSM
will not necessarily lead to a simpler implementation. Interestingly, the effect of state
assignment, discussed in Section 6.2, may have a greater influence on the simplicity of
implementation than does the state minimization. In a modern design environment, the
designer relies on the CAD tools to implement state machines efficiently.

6.7 Design of a Counter Using the Sequential
Circuit Approach

In this section we discuss the design of a counter circuit as a finite state machine. From
Chapter 5 we already know that counters can be realized as cascaded stages of flip-flops
and some gating logic, where each stage divides the number of incoming pulses by two. To
keep our example simple, we choose a counter of small size but also show how the design
can be extended to larger sizes. The specification for the counter is

• The counting sequence is 0, 1, 2, . . . , 6, 7, 0, 1, . . .

• There exists an input signal w. The value of this signal is considered during each clock
cycle. If w = 0, the present count remains the same; if w = 1, the count is incremented.

The counter can be designed as a synchronous sequential circuit using the design techniques
introduced in the previous sections.

6.7.1 State Diagram and StateTable for a Modulo-8 Counter

Figure 6.60 gives a state diagram for the desired counter. There is a state associated with
each count. In the diagram state A corresponds to count 0, state B to count 1, and so on. We
show the transitions between the states needed to implement the counting sequence. Note
that the output signals are specified as depending only on the state of the counter at a given
time, which is the Moore model of sequential circuits.

The state diagram may be represented in the state-table form as shown in Figure 6.61.
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A 0/ B 1/ C 2/ D 3/

E 4/F 5/G 6/H 7/

Figure 6.60 State diagram for the counter.

Present Next state
Output

state w = 0 w = 1

A A B 0
B B C 1
C C D 2
D D E 3
E E F 4
F F G 5
G G H 6
H H A 7

Figure 6.61 State table for the counter.

6.7.2 State Assignment

Three state variables are needed to represent the eight states. Let these variables, denoting
the present state, be called y2, y1, and y0. Let Y2, Y1, and Y0 denote the corresponding
next-state functions. The most convenient (and simplest) state assignment is to encode
each state with the binary number that the counter should give as output in that state. Then
the required output signals will be the same as the signals that represent the state variables.
This leads to the state-assigned table in Figure 6.62.
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Present
Next state

state w = 0 w = 1
Count

y2 y1 y0 Y2Y1Y0 Y2Y1Y0
z2z1z0

A 000 000 001 000
B 001 001 010 001
C 010 010 011 010
D 011 011 100 011
E 100 100 101 100
F 101 101 110 101
G 110 110 111 110
H 111 111 000 111

Figure 6.62 State-assigned table for the counter.

The final step in the design is to choose the type of flip-flops and derive the expressions
that control the flip-flop inputs. The most straightforward choice is to use D-type flip-flops.
We pursue this approach first. Then we show the alternative of using JK-type flip-flops.

6.7.3 Implementation Using D-Type Flip-Flops

When using D-type flip-flops to realize the finite state machine, each next-state function,
Yi, is connected to the D input of the flip-flop that implements the state variable yi. The
next-state functions are derived from the information in Figure 6.62. Using Karnaugh maps
in Figure 6.63, we obtain the following implementation

D0 = Y0 = wy0 + wy0

D1 = Y1 = wy1 + y1y0 + wy0y1

D2 = Y2 = wy2 + y0y2 + y1y2 + wy0y1y2

The resulting circuit is given in Figure 6.64. It is not obvious how to extend this circuit to
implement a larger counter, because no clear pattern is discernible in the expressions for
D0, D1, and D2. However, we can rewrite these expressions as follows

D0 = wy0 + wy0

= w ⊕ y0

D1 = wy1 + y1y0 + wy0y1

= (w + y0)y1 + wy0y1

= wy0y1 + wy0y1

= wy0 ⊕ y1
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Figure 6.63 Karnaugh maps for D flip-flops for the counter.

D2 = wy2 + y0y2 + y1y2 + wy0y1y2

= (w + y0 + y1)y2 + wy0y1y2

= wy0y1y2 + wy0y1y2

= wy0y1 ⊕ y2

Then an obvious pattern emerges, which leads to the circuit in Figure 5.23.

6.7.4 Implementation Using JK-Type Flip-Flops

JK-type flip-flops provide an attractive alternative. Using these flip-flops to implement the
sequential circuit specified in Figure 6.62 requires derivation of J and K inputs for each
flip-flop. The following control is needed:

• If a flip-flop in state 0 is to remain in state 0, then J = 0 and K = d (where d means
that K can be equal to either 0 or 1).

• If a flip-flop in state 0 is to change to state 1, then J = 1 and K = d .
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Figure 6.64 Circuit diagram for the counter implemented with D flip-flops.

• If a flip-flop in state 1 is to remain in state 1, then J = d and K = 0.
• If a flip-flop in state 1 is to change to state 0, then J = d and K = 1.

Following these guidelines, we can create a truth table that specifies the required
values of the J and K inputs for the three flip-flops in our design. Figure 6.65 shows a
modified version of the state-assigned table in Figure 6.62, with the J and K input functions
included. To see how this table is derived, consider the first row in which the present state is
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Present
Flip-flop inputs

state w = 0 w = 1
Count

y2 y1 y0 Y2Y1Y0 J2 K2 J1 K1 J0 K0 Y2Y1Y0 J2 K2 J1 K1 J0 K0
z2z1z0

A 000 000 0d 0d 0d 001 0d 0d 1d 000
B 001 001 0d 0d d0 010 0d 1d d1 001
C 010 010 0d d0 0d 011 0d d0 1d 010
D 011 011 0d d0 d0 100 1d d1 d1 011
E 100 100 d0 0d 0d 101 d0 0d 1d 100
F 101 101 d0 0d d0 110 d0 1d d1 101
G 110 110 d0 d0 0d 111 d0 d0 1d 110
H 111 111 d0 d0 d0 000 d1 d1 d1 111

Figure 6.65 Excitation table for the counter with JK flip-flops.

y2y1y0 = 000. If w = 0, then the next state is also Y2Y1Y0 = 000. Thus the present value of
each flip-flop is 0, and it should remain 0. This implies the control J = 0 and K = d for all
three flip-flops. Continuing with the first row, if w = 1, the next state will be Y2Y1Y0 = 001.
Thus flip-flops y2 and y1 still remain at 0 and have the control J = 0 and K = d . However,
flip-flop y0 must change from 0 to 1, which is accomplished with J = 1 and K = d . The
rest of the table is derived in the same manner by considering each present state y2y1y0 and
providing the necessary control signals to reach the new state Y2Y1Y0.

A state-assigned table is essentially the state table in which each state is encoded using
the state variables. When D flip-flops are used to implement an FSM, the next-state entries
in the state-assigned table correspond directly to the signals that must be applied to the
D inputs. This is not the case if some other type of flip-flops is used. A table that gives
the state information in the form of the flip-flop inputs that must be “excited” to cause the
transitions to the next states is usually called an excitation table. The excitation table in
Figure 6.65 indicates how JK flip-flops can be used. In many books the term excitation
table is used even when D flip-flops are involved, in which case it is synonymous with the
state-assigned table.

Once the table in Figure 6.65 has been derived, it provides a truth table with inputs y2,
y1, y0, and w, and outputs J2, K2, J1, K1, J0, and K0. We can then derive expressions for
these outputs as shown in Figure 6.66. The resulting expressions are

J0 = K0 = w

J1 = K1 = wy0

J2 = K2 = wy0y1

This leads to the circuit shown in Figure 6.67. It is apparent that this design can be extended
easily to larger counters. The pattern Jn = Kn = wy0y1 · · · yn−1 defines the circuit for each
stage in the counter. Note that the size of the AND gate that implements the product term
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Figure 6.66 Karnaugh maps for JK flip-flops in the counter.
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Figure 6.67 Circuit diagram using JK flip-flops.

y0y1 · · · yn−1 grows with successive stages. A circuit with a more regular structure can be
obtained by factoring out the previously needed terms as we progress through the stages of
the counter. This gives

J2 = K2 = (wy0)y1 = J1y1

Jn = Kn = (wy0 · · · yn−2)yn−1 = Jn−1yn−1

Using the factored form, the counter circuit can be realized as indicated in Figure 6.68. In
this circuit all stages (except the first) look the same. Note that this circuit has the same
structure as the circuit in Figure 5.22 because connecting the J and K inputs of a flip-flop
together turns the flip-flop into a T flip-flop.

6.7.5 Example—A Different Counter

Having considered the design of an ordinary counter, we will now apply this knowl-
edge to design a slightly different counterlike circuit. Suppose that we wish to derive
a three-bit counter that counts the pulses on an input line, w. But instead of displaying the
count as 0, 1, 2, 3, 4, 5, 6, 7, 0, 1, . . . , this counter must display the count in the sequence
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Figure 6.68 Factored-form implementation of the counter.

0, 4, 2, 6, 1, 5, 3, 7, 0, 4, and so on. The count is to be represented directly by the flip-flop
values themselves, without using any extra gates. Namely, Count = Q2Q1Q0.

Since we wish to count the pulses on the input line w, it makes sense to use w as the
clock input to the flip-flops. Thus the counter circuit should always be enabled, and it
should change its state whenever the next pulse on the w line appears. The desired counter
can be designed in a straightforward manner using the FSM approach. Figures 6.69 and
6.70 give the required state table and a suitable state assignment. Using D flip-flops, we
obtain the next-state equations

D2 = Y2 = y2

D1 = Y1 = y1 ⊕ y2

D0 = Y0 = y0y1 + y0y2 + y0y1y2

= y0(y1 + y2) + y0y1y2

= y0 ⊕ y1y2

This leads to the circuit in Figure 6.71.
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Present Next Output
state state z2z1z0

A B 0 0 0
B C 1 0 0
C D 0 1 0
D E 1 1 0
E F 0 0 1
F G 1 0 1
G H 0 1 1
H A 1 1 1

Figure 6.69 State table for the counterlike example.

Present Next Output
state state

y2 y1 y0 Y2Y1Y0 z2z1z0

0 0 0 1 0 0 0 0 0
1 0 0 0 1 0 1 0 0
0 1 0 1 1 0 0 1 0
1 1 0 0 0 1 1 1 0
0 0 1 1 0 1 0 0 1
1 0 1 0 1 1 1 0 1
0 1 1 1 1 1 0 1 1
1 1 1 0 0 0 1 1 1

Figure 6.70 State-assigned table for Figure 6.69.

The reader should compare this circuit with the normal up-counter in Figure 5.23. Take
the first three stages of that counter, set the Enable input to 1, and let Clock = w. Then
the two circuits are essentially the same with one small difference in the order of bits in
the count. In Figure 5.23 the top flip-flop corresponds to the least-significant bit of the
count, whereas in Figure 6.71 the top flip-flop corresponds to the most-significant bit of
the count. This is not just a coincidence. In Figure 6.70 the required count is defined
as Count = y2y1y0. However, if the bit patterns that define the states are viewed in the
reverse order and interpreted as binary numbers, such that Count = y0y1y2, then the states
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Figure 6.71 Circuit for Figure 6.70.

A, B, C, . . . , H have the values 0, 1, 2, . . . , 7. These values are the same as the values that
are associated with the normal three-bit up-counter.

6.8 FSM as an Arbiter Circuit

In this section we present the design of an FSM that is slightly more complex than the
previous examples. The purpose of the machine is to control access by various devices
to a shared resource in a given system. Only one device can use the resource at a time.
Assume that all signals in the system can change values only following the positive edge of
the clock signal. Each device provides one input to the FSM, called a request, and the FSM
produces a separate output for each device, called a grant. A device indicates its need to use
the resource by asserting its request signal. Whenever the shared resource is not already in
use, the FSM considers all requests that are active. Based on a priority scheme, it selects
one of the requesting devices and asserts its grant signal. When the device is finished using
the resource, it deasserts its request signal.
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We will assume that there are three devices in the system, called device 1, device 2,
and device 3. It is easy to see how the FSM can be extended to handle more devices. The
request signals are named r1, r2, and r3, and the grant signals are called g1, g2, and g3. The
devices are assigned a priority level such that device 1 has the highest priority, device 2 has
the next highest, and device 3 has the lowest priority. Thus if more than one request signal
is asserted when the FSM assigns a grant, the grant is given to the requesting device that
has the highest priority.

A state diagram for the desired FSM, designed as a Moore-type machine, is depicted
in Figure 6.72. Initially, on reset the machine is in the state called Idle. No grant signals
are asserted, and the shared resource is not in use. There are three other states, called gnt1,
gnt2, and gnt3. Each of these states asserts the grant signal for one of the devices.

The FSM remains in the Idle state as long as all of the request signals are 0. In the
state diagram the condition r1r2r3 = 000 is indicated by the arc labeled 000. When one or
more request signals become 1, the machine moves to one of the grant states, according to
the priority scheme. If r1 is asserted, then device 1 will receive the grant because it has
the highest priority. This is indicated by the arc labeled 1xx that leads to state gnt1, which
sets g1 = 1. The meaning of 1xx is that the request signal r1 is 1, and the values of signals

Idle

000

1xx

Reset

gnt1 g1/ 1=

x1x

gnt2 g2/ 1=

xx1

gnt3 g3/ 1=

0xx 1xx

01xx0x

001xx0

Figure 6.72 State diagram for the arbiter.
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r2 and r3 are irrelevant because of the priority scheme. As before, we use the symbol x
to indicate that the value of the corresponding variable can be either 0 or 1. The machine
stays in state gnt1 as long as r1 is 1. When r1 = 0, the arc labeled 0xx causes a change on
the next positive clock edge back to state Idle, and g1 is deasserted. If other requests are
active at this time, then the FSM will change to a new grant state after the next clock edge.

The arc that causes a change to state gnt2 is labeled 01x. This label adheres to the
priority scheme because it represents the condition that r2 = 1, but r1 = 0. Similarly, the
condition for entering state gnt3 is given as 001, which indicates that the only request signal
asserted is r3.

The state diagram is repeated in Figure 6.73. The only difference between this diagram
and Figure 6.72 is the way in which the arcs are labeled. Figure 6.73 uses a simpler labeling
scheme that is more intuitive. For the condition that leads from state Idle to state gnt1, the
arc is labeled as r1, instead of 1xx. This label means that if r1 = 1, the FSM changes to
state gnt1, regardless of the other inputs. The arc with the label r1r2 that leads from state
Idle to gnt2 represents the condition r1r2 = 01, while the value of r3 is irrelevant. There is
no standardized scheme for labeling the arcs in state diagrams. Some designers prefer the
style of Figure 6.72, while others prefer a style more similar to Figure 6.73.

r1r2

r1r2 r3

Idle

Reset

gnt1 g1/ 1=

gnt2 g2/ 1=

gnt3 g3/ 1=

r1r1

r1

r2

r3

r2

r3

r1r2 r3

Figure 6.73 Alternative style of state diagram for the arbiter.
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Figure 6.74 gives the Verilog code for the machine. The three request and grant signals
are specified as three-bit vectors r and g. The FSM transitions are described using a case
statement in the style used for Figure 6.29. In the state Idle, the required priority scheme is
described by using a nested casex statement. If r1 = 1, then the next state for the machine
is gnt1. If r1 is not asserted, then the alternative is evaluated, which stipulates that if r2 = 1,

module arbiter (r, Resetn, Clock, g);
input [1:3] r;
input Resetn, Clock;
output wire [1:3] g;
reg [2:1] y, Y;
parameter Idle = 2’b00, gnt1 = 2’b01, gnt2 = 2’b10, gnt3 = 2’b11;

// Next state combinational circuit
always @(r, y)

case (y)
Idle: casex (r)

3’b000: Y = Idle;
3’b1xx: Y = gnt1;
3’b01x: Y = gnt2;
3’b001: Y = gnt3;
default: Y = Idle;

endcase
gnt1: if (r[1]) Y = gnt1;

else Y = Idle;
gnt2: if (r[2]) Y = gnt2;

else Y = Idle;
gnt3: if (r[3]) Y = gnt3;

else Y = Idle;
default: Y = Idle;

endcase

// Sequential block
always @(posedge Clock)

if (Resetn == 0) y < = Idle;
else y < = Y;

// Define output
assign g[1] = (y == gnt1);
assign g[2] = (y == gnt2);
assign g[3] = (y == gnt3);

endmodule

Figure 6.74 Verilog code for the arbiter.
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then the next state will be gnt2. Each successive alternative considers a lower-priority
request signal only if all of the higher-priority request signals are not asserted.

The transitions for each grant state are straightforward. The FSM stays in state gnt1
as long as r1 = 1; when r1 = 0, the next state is Idle. The other grant states have the same
structure.

The grant signals, g1, g2, and g3 are defined at the end. The value of g1 is set to 1 when
the machine is in state gnt1, and otherwise g1 is set to 0. Similarly, each of the other grant
signals is 1 only in the appropriate grant state.

6.9 Analysis of Synchronous Sequential Circuits

In addition to knowing how to design a synchronous sequential circuit, the designer has to
be able to analyze the behavior of an existing circuit. The analysis task is much simpler
than the synthesis task. In this section we will show how analysis may be performed.

To analyze a circuit, we simply reverse the steps of the synthesis process. The outputs
of the flip-flops represent the present-state variables. Their inputs determine the next state
that the circuit will enter. From this information we can construct the state-assigned table
for the circuit. This table leads to a state table and the corresponding state diagram by
giving a name to each state. The type of flip-flops used in the circuit is a factor, as we will
see in the examples that follow.

Example 6.9D-TYPE FLIP-FLOPS Figure 6.75 gives an FSM that has two D flip-flops. Let y1 and y2 be
the present-state variables and Y1 and Y2 the next-state variables. The next-state and output
expressions are

Y1 = wy1 + wy2

Y2 = wy1 + wy2

z = y1y2

Since there are two flip-flops, the FSM has at most four states. A good starting point in
the analysis is to assume an initial state of the flip-flops such as y1 = y2 = 0. From the
expressions for Y1 and Y2, we can derive the state-assigned table in Figure 6.76a. For
example, in the first row of the table y1 = y2 = 0. Then w = 0 causes Y1 = Y2 = 0, and
w = 1 causes Y1 = 1 and Y2 = 0. The output for this state is z = 0. The other rows are
derived in the same manner. Labeling the states as A, B, C, and D yields the state table
in Figure 6.76b. From this table it is apparent that following the reset condition the FSM
produces the output z = 1 whenever three consecutive 1s occur on the input w. Therefore,
the FSM acts as a sequence detector for this pattern.
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D Q

Q

D Q

Q

Clock

Resetn

y2

y1

Y 2

Y 1

w

z

Figure 6.75 Circuit for Example 6.9.

Present
Next state

state w = 0 w = 1
Output

y2 y1 Y2Y1 Y2Y1
z

0 0 0 0 0 1 0
0 1 0 0 1 0 0
1 0 0 0 1 1 0
1 1 0 0 1 1 1

(a)State-assigned table

Present Next state Output
state w = 0 w = 1 z

A A B 0
B A C 0
C A D 0
D A D 1

(b) State table

Figure 6.76 Tables for the circuit in Figure 6.75.
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Example 6.10JK-TYPE FLIP-FLOPS Now consider the circuit in Figure 6.77, which has two JK flip-flops.
The expressions for the inputs to the flip-flops are

J1 = w

K1 = w + y2

J2 = wy1

K2 = w

The output is given by z = y1y2.
From these expressions we can derive the excitation table in Figure 6.78. Interpreting

the entries in this table, we can construct the state-assigned table. For example, consider
y2y1 = 00 and w = 0. Then, since J2 = J1 = 0 and K2 = K1 = 1, both flip-flops will re-
main in the 0 state; hence Y2 = Y1 = 0. If y2y1 = 00 and w = 1, then J2 = K2 = 0 and
J1 = K1 = 1, which leaves the y2 flip-flop unchanged and sets the y1 flip-flop to 1; hence
Y2 = 0 and Y1 = 1. If y2y1 = 01 and w = 0, then J2 = J1 = 0 and K2 = K1 = 1, which
resets the y1 flip-flop and results in the state y2y1 = 00; hence Y2 = Y1 = 0. Similarly, if
y2y1 = 01 and w = 1, then J2 = 1 and K2 = 0 sets y2 to 1; hence Y2 = 1, while J1 = K1 = 1
toggles y1; hence Y1 = 0. This leads to the state y2y1 = 10. Completing this process, we
find that the resulting state-assigned table is the same as the one in Figure 6.76a. The
conclusion is that the circuits in Figures 6.75 and 6.77 implement the same FSM.

J Q

Q

Clock

Resetn

y2

y1

J 2

J 1
w

z

K

J Q

QK
K2

K1

Figure 6.77 Circuit for Example 6.10.
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Present Flip-flop inputs

state w = 0 w = 1 Output

y2 y1 J2 K2 J1 K1 J2 K2 J1 K1
z

0 0 0 1 0 1 0 0 1 1 0
0 1 0 1 0 1 1 0 1 1 0
1 0 0 1 0 1 0 0 1 0 0
1 1 0 1 0 1 1 0 1 0 1

Figure 6.78 The excitation table for the circuit in Figure 6.77.

Clock

Resetn

y2

y1w

z

T 2

D1
D Q

Q

T Q

Q

Figure 6.79 Circuit for Example 6.11.

Example 6.11 MIXED FLIP-FLOPS There is no reason why one cannot use a mixture of flip-flop types in
one circuit. Figure 6.79 shows a circuit with one D and one T flip-flop. The expressions
for this circuit are

D1 = w(y1 + y2)

T2 = wy2 + wy1y2

z = y1y2
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Present Flip-flop inputs

state w = 0 w = 1
Output

y2 y1 T2 D1 T2 D1
z

0 0 0 0 0 1 0
0 1 0 0 1 0 0
1 0 1 0 0 1 0
1 1 1 0 0 1 1

Figure 6.80 The excitation table for the circuit in Figure 6.79.

From these expressions we derive the excitation table in Figure 6.80. Since it is a T flip-
flop, y2 changes its state only when T2 = 1. Thus if y2y1 = 00 and w = 0, then because
T2 = D1 = 0 the state of the circuit will not change. An example of where T2 = 1 is when
y2y1 = 01 and w = 1, which causes y2 to change to 1; D1 = 0 makes y1 = 0, hence Y2 = 1
and Y1 = 0. The other cases where T2 = 1 occur when w = 0 and y2y1 = 10 or 11. In
both of these cases D1 = 0. Hence the T flip-flop changes its state from 1 to 0, while the D
flip-flop is cleared, which means that the next state is Y2Y1 = 00. Completing this analysis
we again obtain the state-assigned table in Figure 6.76a. Thus this circuit is yet another
implementation of the FSM represented by the state table in Figure 6.76b.

6.10 Algorithmic State Machine (ASM) Charts

The state diagrams and tables used in this chapter are convenient for describing the behavior
of FSMs that have only a few inputs and outputs. For larger machines the designers often
use a different form of representation, called the algorithmic state machine (ASM) chart.

An ASM chart is a type of flowchart that can be used to represent the state transitions
and generated outputs for an FSM. The three types of elements used in ASM charts are
depicted in Figure 6.81.

• State box – A rectangle represents a state of the FSM. It is equivalent to a node in the
state diagram or a row in the state table. The name of the state is indicated outside the
box in the top-left corner. The Moore-type outputs are listed inside the box. These are
the outputs that depend only on the values of the state variables that define the state;
we will refer to them simply as Moore outputs. It is customary to write only the name
of the signal that has to be asserted. Thus it is sufficient to write z, rather than z = 1, to
indicate that the output z must have the value 1. Also, it may be useful to indicate an
action that must be taken; for example, Count ← Count + 1 specifies that the contents
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Output signals
or actions

(Moore type)

State name

Condition
expression

0 (False) 1 (True)

Conditional outputs
or actions (Mealy type)

(a) State box (b) Decision box

(c) Conditional output box

Figure 6.81 Elements used in ASM charts.

of a counter have to be incremented by 1. Of course, this is just a simple way of saying
that the control signal that causes the counter to be incremented must be asserted. We
will use this way of specifying actions in larger systems that are discussed in Chapter 7.

• Decision box – A diamond indicates that the stated condition expression is to be tested
and the exit path is to be chosen accordingly. The condition expression consists of
one or more inputs to the FSM. For example, w indicates that the decision is based
on the value of the input w, whereas w1 · w2 indicates that the true path is taken if
w1 = w2 = 1 and the false path is taken otherwise.

• Conditional output box – An oval denotes the output signals that are of Mealy type.
These outputs depend on the values of the state variables and the inputs of the FSM;
we will refer to these outputs simply as Mealy outputs. The condition that determines
whether such outputs are generated is specified in a decision box.

Figure 6.82 gives the ASM chart that represents the FSM in Figure 6.3. The transitions
between state boxes depend on the decisions made by testing the value of the input variable
w. In each case if w = 0, the exit path from a decision box leads to state A. If w = 1, then
a transition from A to B or from B to C takes place. If w = 1 in state C, then the FSM
stays in that state. The chart specifies a Moore output z, which is asserted only in state C,
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w

w

w
0 1

0

1

0

1

A

B

C

z

Reset

Figure 6.82 ASM chart for the FSM in Figure 6.3.

as indicated in the state box. In states A and B, the value of z is 0 (not asserted), which is
implied by leaving the corresponding state boxes blank.

Figure 6.83 provides an example with Mealy outputs. This chart represents the FSM
in Figure 6.23. The output, z, is equal to 1 when the machine is in state B and w = 1. This
is indicated using the conditional output box. In all other cases the value of z is 0, which
is implied by not specifying z as an output of state B for w = 0 and state A for w equal to 0
or 1.

Figure 6.84 gives the ASM chart for the arbiter FSM in Figure 6.73. The decision box
drawn below the state box for Idle specifies that if r1 = 1, then the FSM changes to state
gnt1. In this state the FSM asserts the output signal g1. The decision box to the right of
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w

w
0 1

0

1

A

B

Reset

z

Figure 6.83 ASM chart for the FSM in Figure 6.23.

the state box for gnt1 specifies that as long as r1 = 1, the machine stays in state gnt1, and
when r1 = 0, it changes to state Idle. The decision box labeled r2 that is drawn below the
state box for Idle specifies that if r2 = 1, then the FSM changes to state gnt2. This decision
box can be reached only after first checking the value of r1 and following the arrow that
corresponds to r1 = 0. Similarly, the decision box labeled r3 can be reached only if both r1

and r2 have the value 0. Hence the ASM chart describes the required priority scheme for
the arbiter.

ASM charts are similar to traditional flowcharts. Unlike a traditional flowchart, the
ASM chart includes timing information because it implicitly specifies that the FSM changes
(flows) from one state to another only after each active clock edge. The examples of ASM
charts presented here are quite simple. We have used them to introduce the ASM chart
terminology by giving examples of state, decision, and conditional-output boxes. Another
term sometimes applied to ASM charts is ASM block, which refers to a single state box and
any decision and conditional-output boxes that the state box may be connected to. TheASM
charts can be used to describe complex circuits that include one or more finite state machines
and other circuitry such as registers, shift registers, counters, adders, and multipliers. We
will use ASM charts as an aid for designing more complex circuits in Chapter 7.



December 31, 2012 09:13 vra80547_ch06 Sheet number 75 Page number 405 magenta black

6.11 Formal Model for Sequential Circuits 405

r1

r3
0 1

1
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Reset

r2

r1

r3

r2

gnt1

gnt2

gnt3

1

1

1

0

0

0

g1

g2

g3

0

0

1

Figure 6.84 ASM chart for the arbiter FSM in Figure 6.73.

6.11 Formal Model for Sequential Circuits

This chapter has presented the synchronous sequential circuits using a rather informal
approach because this is the easiest way to grasp the concepts that are essential in designing
such circuits. The same topics can also be presented in a more formal manner, which has
been the style adopted in many books that emphasize the switching theory aspects rather
than the design using CAD tools. A formal model often gives a concise specification that
is difficult to match in a more descriptive presentation. In this section we will describe a
formal model that represents a general class of sequential circuits, including those of the
synchronous type.

Figure 6.85 represents a general sequential circuit. The circuit has W = {w1, w2, . . . ,

wn} inputs, Z = {z1, z2, . . . , zm} outputs, y = {y1, y2, . . . , yk} present-state variables, and
Y = {Y1, Y2, . . . , Yk} next-state variables. It can have up to 2k states, S = {S1, S2, . . . , S2k }.
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Combinational
circuit

Yk

Y1

yk

y1

w1

wn

z1

zm

Outputs

Next-state
variables

Present-state
variables

Inputs

Figure 6.85 The general model for a sequential circuit.

There are delay elements in the feedback paths for the state-variables which ensure that y
will take the values of Y after a time delay �. In the case of synchronous sequential
circuits, the delay elements are flip-flops, which change their state on the active edge of a
clock signal. Thus the delay � is determined by the clock period. The clock period must
be long enough to allow for the propagation delay in the combinational circuit, in addition
to the setup and hold parameters of the flip-flops.

Using the model in Figure 6.85, a synchronous sequential circuit, M , can be defined
formally as a quintuple

M = (W , Z, S, ϕ, λ)

where

• W , Z , and S are finite, nonempty sets of inputs, outputs, and states, respectively.
• ϕ is the state transition function, such that S(t + 1) = ϕ[W (t), S(t)].
• λ is the output function, such that λ(t) = λ[S(t)] for the Moore model and λ(t) =

λ[W (t), S(t)] for the Mealy model.

This definition assumes that the time between t and t + 1 is one clock cycle.
We will see in Chapter 9 that the delay � need not be controlled by a clock. In

asynchronous sequential circuits the delays are due solely to the propagation delays through
various gates.
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6.12 Concluding Remarks

The existence of closed loops and delays in a sequential circuit leads to a behavior that is
characterized by the set of states that the circuit can reach. The present values of the inputs
are not the sole determining factor in this behavior, because a given valuation of inputs may
cause the circuit to behave differently in different states.

The propagation delays through a sequential circuit must be taken into account. The
design techniques presented in this chapter are based on the assumption that all changes in
the circuit are triggered by the active edge of a clock signal. Such circuits work correctly
only if all internal signals are stable when the clock signal arrives. Thus the clock period
must be longer than the longest propagation delay in the circuit.

Synchronous sequential circuits are used extensively in practical designs. They are
supported by the commonly used CAD tools. All textbooks on the design of logic circuits
devote considerable space to synchronous sequential circuits. Some of the more notable
references are [1–14].

In Chapter 9 we will present a different class of sequential circuits, which do not use
flip-flops to represent the states of the circuit and do not use clock pulses to trigger changes
in the states.

6.13 Examples of Solved Problems

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

Example 6.12Problem: Design an FSM that has an input w and an output z. The machine is a sequence
detector that produces z = 1 when the previous two values of w were 00 or 11; otherwise
z = 0.

Solution: Section 6.1 presents the design of an FSM that detects the occurrence of con-
secutive 1s. Using the same approach, the desired FSM can be specified using the state
diagram in Figure 6.86. State C denotes the occurrence of two or more 0s, and state E
denotes two or more 1s. The corresponding state table is shown in Figure 6.87.

A straightforward state assignment leads to the state-assigned table in Figure 6.88. The
codes y3y2y1 = 101, 110, 111 can be treated as don’t-care conditions. Then the next-state
expressions are

Y1 = wy1y3 + wy2y3 + wy1y2 + wy1y2

Y2 = y1y2 + y1y2 + wy2y3

Y3 = wy3 + wy1y2

The output expression is

z = y3 + y1y2



December 31, 2012 09:13 vra80547_ch06 Sheet number 78 Page number 408 magenta black

408 C H A P T E R 6 • Synchronous Sequential Circuits

A / 0 B / 0 C / 1

D / 0 E / 1

Reset

0 0
0

1
0

1
0

1

1

1

Figure 6.86 State diagram for Example 6.12.

Present Next state Output
state w = 0 w = 1 z

A B D 0
B C D 0
C C D 1
D B E 0
E B E 1

Figure 6.87 State table for the FSM in Figure 6.86.

These expressions seem to be unnecessarily complex, suggesting that we may attempt to
find a better state assignment. Observe that state A is reached only when the machine is reset
by means of the Reset input. So, it may be advantageous to assign the four codes in which
y3 = 1 to the states B, C, D, and E. The result is the state-assigned table in Figure 6.89.
From it, the next-state and output expressions are

Y1 = wy2 + wy3y2

Y2 = w

Y3 = 1

z = y1

Since Y3 = 1, we do not need the flip-flop y3, and the expression for Y1 simplifies to w ⊕ y2.
This is a much better solution.
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Present
Next state

state w = 0 w = 1
Output

y3 y2 y1 Y3Y2Y1 Y3Y2Y1
z

A 000 001 011 0
B 001 010 011 0
C 010 010 011 1
D 011 001 100 0
E 100 001 100 1

Figure 6.88 State-assigned table for the FSM in Figure 6.87.

Present
Next state

state w = 0 w = 1
Output

y3 y2 y1 Y3Y2Y1 Y3Y2Y1
z

A 000 100 110 0
B 100 101 110 0
C 101 101 110 1
D 110 100 111 0
E 111 100 111 1

Figure 6.89 An improved state assignment for the FSM in
Figure 6.87.

Example 6.13Problem: Implement the sequence detector of Example 6.12 by using two FSMs. One
FSM detects the occurrence of consecutive 1s, while the other detects consecutive 0s.

Solution: A good realization of the FSM that detects consecutive 1s is given in Figure 6.17.
The next-state and output expressions are

Y1 = w

Y2 = wy1

zones = y2

A similar FSM that detects consecutive 0s is defined in Figure 6.90. Its expressions are

Y3 = w

Y4 = wy3

zzeros = y4
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Present Output
state w = 0 w = 1 z zeros

D E D 0
E F D 0
F F D 1

(a) State table

Present
Next state

state w = 0 w = 1 Output

y4 y3 Y4Y3 Y4Y3
z zeros

D 00 01 00 0
E 01 11 00 0
F 11 11 00 1

10 dd dd d

(b) State-assigned table

Next state

Figure 6.90 FSM that detects a sequence of two zeros.

The output of the combined circuit is

z = zones + zzeros

Example 6.14 Problem: Derive a Mealy-type FSM that can act as a sequence detector described in
Example 6.12.

Solution: Astate diagram for the desired FSM is depicted in Figure 6.91. The corresponding
state table is presented in Figure 6.92. Two flip-flops are needed to implement this FSM.
A state-assigned table is given in Figure 6.93, which leads to the next-state and output
expressions

Y1 = 1

Y2 = w

z = wy1y2 + wy2
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Reset

0/0

1/0

0/0

0/1

1/0

1/1

A B

C

Figure 6.91 State diagram for Example 6.14.

Present Next state Output z

state w = 0 w = 1 w = 0 w = 1

A B C 0 0
B B C 1 0
C B C 0 1

Figure 6.92 State table for the FSM in Figure 6.91.

Present Next state Output

state w = 0 w = 1 w = 0 w = 1

y2 y1 Y2Y1 Y2Y1 z z

A 00 01 11 0 0
B 01 01 11 1 0
C 11 01 11 0 1

Figure 6.93 State-assigned table for the FSM in Figure 6.92.
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Example 6.15 Problem: Implement the state-assigned table in Figure 6.89 using JK-type flip-flops.

Solution: Figure 6.94 shows the excitation table. It results in the following next-state and
output expressions

J1 = wy2 + wy3y2

K1 = wy2 + wy1y2

J2 = w

K2 = w

J3 = 1

K3 = 0

z = y1

Example 6.16 Problem: Write Verilog code to implement the FSM in Figure 6.86.

Solution: Using the style of code given in Figure 6.29, the required FSM can be specified
as shown in Figure 6.95.

Example 6.17 Problem: Write Verilog code to implement the FSM in Figure 6.91.

Solution: Using the style of code given in Figure 6.36, the Mealy-type FSM can be speci-
fied as shown in Figure 6.96.

Example 6.18 Problem: In computer systems it is often desirable to transmit data serially, namely, one
bit at a time, to save on the cost of interconnecting cables. This means that parallel data at

Present
Flip-flop inputs

state w = 0 w = 1
Output

y3 y2 y1 Y3Y2Y1 J3 K3 J2 K2 J1 K1 Y3Y2Y1 J3 K3 J2 K2 J1 K1
z

A 000 100 1d 0d 0d 110 1d 1d 0d 0
B 100 101 d0 0d 1d 110 d0 1d 0d 0
C 101 101 d0 0d d0 110 d0 1d d1 1
D 110 100 d0 d1 0d 111 d0 d0 1d 0
E 111 100 d0 d1 d1 111 d0 d0 d0 1

Figure 6.94 Excitation table for the FSM in Figure 6.89 with JK flip-flops.
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module sequence (Clock, Resetn, w, z);
input Clock, Resetn, w;
output z;
reg [3:1] y, Y;
parameter [3:1] A = 3’b000, B = 3’b001, C = 3’b010, D = 3’b011, E = 3’b100;

// Define the next state combinational circuit
always @(w, y)

case (y)
A: if (w) Y = D;

else Y = B;
B: if (w) Y = D;

else Y = C;
C: if (w) Y = D;

else Y = C;
D: if (w) Y = E;

else Y = B;
E: if (w) Y = E;

else Y = B;
default: Y = 3’bxxx;

endcase

// Define the sequential block
always @(negedge Resetn, posedge Clock)

if (Resetn == 0) y < = A;
else y < = Y;

// Define output
assign z = (y == C) (y == E);

endmodule

Figure 6.95 Verilog code for the FSM in Figure 6.86.

one end must be transmitted serially, and at the other end the received serial data has to be
turned back into parallel form. Suppose that we wish to transmit ASCII characters in this
manner. As explained in Chapter 1, the standard ASCII code uses seven bits to define each
character. Usually, a character occupies one byte, in which case the eighth bit can either
be set to 0 or it can be used to indicate the parity of the other bits to ensure a more reliable
transmission.

Parallel-to-serial conversion can be done by means of a shift register. Assume that a
circuit accepts parallel data, B = b7, b6, . . . , b0, representing ASCII characters. Assume
also that bit b7 is set to 0. The circuit is supposed to generate a parity bit, p, and send it
instead of b7 as a part of the serial transfer. Figure 6.97 gives a possible circuit. An FSM is
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module seqmealy (Clock, Resetn, w, z);
input Clock, Resetn, w;
output reg z;
reg [2:1] y, Y;
parameter [2:1] A = 2’b00, B = 2’b01, C = 2’b11;

// Define the next state and output combinational circuits
always @(w, y)

case (y)
A: if (w)

begin
z = 0; Y = C;

end
else
begin

z = 0; Y = B;
end

B: if (w)
begin

z = 0; Y = C;
end
else
begin

z = 1; Y = B;
end

C: if (w)
begin

z = 1; Y = C;
end
else
begin

z = 0; Y = B;
end

default:
begin

z = 0; Y = 2’bxx;
end

endcase

// Define the sequential block
always @(negedge Resetn, posedge Clock)

if (Resetn == 0) y < = A;
else y < = Y;

endmodule

Figure 6.96 Verilog code for the FSM in Figure 6.91.
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D Q

Q

output
Serial

Load

Clock

0

1

Shift register

FSM

Counter

b0b6b7

Parallel input

Reset

c0

c2

c1

p

w

Clear Sel

Figure 6.97 Parallel-to-serial converter.

used to generate the parity bit, which is included in the output stream by using a multiplexer.
A three-bit counter is used to determine when the p bit is transmitted, which happens when
the count reaches 7. Design the desired FSM.

Solution: As the bits are shifted out of the shift register, the FSM examines the bits and
keeps track of whether there has been an even or odd number of 1s. It sets p to 1 if there is
odd parity. Hence, the FSM must have two states. Figure 6.98 presents the state table, the
state-assigned table, and the resulting circuit. The next state expression is

Y = wy + wy

The output p is just equal to y.
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Present Next state Output
state w = 0 w = 1 p

Seven Seven Sodd 0
Sodd Sodd Seven 1

(a) State table

Present
Next state

state w = 0 w = 1 Output

y Y Y
p

0 0 1 0
1 1 0 1

(b) State-assigned table

(c) Circuit

D Q

QClock

Reset

p
yY

w

Figure 6.98 FSM for parity generation.

Problems

Answers to problems marked by an asterisk are given at the back of the book.

*6.1 An FSM is defined by the state-assigned table in Figure P6.1. Derive a circuit that realizes
this FSM using D flip-flops.

*6.2 Derive a circuit that realizes the FSM defined by the state-assigned table in Figure P6.1
using JK flip-flops.
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Present Next state

state w = 0 w = 1 Output

y2 y1 Y2Y1 Y2Y1
z

0 0 1 0 1 1 0

0 1 0 1 0 0 0

1 0 1 1 0 0 0

1 1 1 0 0 1 1

Figure P6.1 State-assigned table for Problems 6.1 and 6.2.

6.3 Derive the state diagram for an FSM that has an input w and an output z. The machine has
to generate z = 1 when the previous four values of w were 1001 or 1111; otherwise, z = 0.
Overlapping input patterns are allowed. An example of the desired behavior is

w : 010111100110011111

z : 000000100100010011

6.4 Write Verilog code for the FSM described in Problem 6.3.

*6.5 Derive a minimal state table for a single-input and single-output Moore-type FSM that
produces an output of 1 if in the input sequence it detects either 110 or 101 patterns.
Overlapping sequences should be detected.

*6.6 Repeat Problem 6.5 for a Mealy-type FSM.

6.7 Derive the circuits that implement the state tables in Figures 6.51 and 6.52. What is the
effect of state minimization on the cost of implementation?

6.8 Derive the circuits that implement the state tables in Figures 6.55 and 6.56. Compare the
costs of these circuits.

6.9 A sequential circuit has two inputs, w1 and w2, and an output, z. Its function is to compare
the input sequences on the two inputs. If w1 = w2 during any four consecutive clock cycles,
the circuit produces z = 1; otherwise, z = 0. For example

w1 : 0110111000110

w2 : 1110101000111

z : 0000100001110

Derive a suitable circuit.

6.10 Write Verilog code for the FSM described in Problem 6.9.

6.11 A given FSM has an input, w, and an output, z. During four consecutive clock pulses,
a sequence of four values of the w signal is applied. Derive a state table for the FSM
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that produces z = 1 when it detects that either the sequence w : 0010 or w : 1110 has been
applied; otherwise, z = 0. After the fourth clock pulse, the machine has to be again in the
reset state, ready for the next sequence. Minimize the number of states needed.

*6.12 Derive a minimal state table for an FSM that acts as a three-bit parity generator. For every
three bits that are observed on the input w during three consecutive clock cycles, the FSM
generates the parity bit p = 1 if and only if the number of 1s in the three-bit sequence is
odd.

6.13 Write Verilog code for the FSM described in Problem 6.12.

6.14 Draw timing diagrams for the circuits in Figures 6.43 and 6.47, assuming the same changes
in a and b signals for both circuits. Account for propagation delays.

*6.15 Show a state table for the state-assigned table in Figure P6.1, using A, B, C, D for the four
rows in the table. Give a new state-assigned table using a one-hot encoding. For A use the
code y4y3y2y1 = 0001. For states B, C, D use the codes 0010, 0100, and 1000, respectively.
Synthesize a circuit using D flip-flops.

6.16 Show how the circuit derived in Problem 6.15 can be modified such that the code y4y3y2y1 =
0000 is used for the reset state, A, and the other codes for state B, C, D are changed as needed.
(Hint: You do not have to resynthesize the circuit!)

*6.17 In Figure 6.59 assume that the unspecified outputs in states B and G are 0 and 1, respectively.
Derive the minimized state table for this FSM.

6.18 In Figure 6.59 assume that the unspecified outputs in states B and G are 1 and 0, respectively.
Derive the minimized state table for this FSM.

6.19 Derive circuits that implement the FSMs defined in Figures 6.57 and 6.58. Can you draw
any conclusions about the complexity of circuits that implement Moore and Mealy types
of machines?

6.20 Design a counter that counts pulses on line w and displays the count in the sequence
0, 2, 1, 3, 0, 2, . . . . Use D flip-flops in your circuit.

*6.21 Repeat Problem 6.20 using JK flip-flops.

*6.22 Repeat Problem 6.20 using T flip-flops.

6.23 Design a modulo-6 counter, which counts in the sequence 0, 1, 2, 3, 4, 5, 0, 1, . . . . The
counter counts the clock pulses if its enable input, w, is equal to 1. Use D flip-flops in your
circuit.

6.24 Repeat Problem 6.23 using JK flip-flops.

6.25 Repeat Problem 6.23 using T flip-flops.

6.26 Design a three-bit counterlike circuit controlled by the input w. If w = 1, then the counter
adds 2 to its contents, wrapping around if the count reaches 8 or 9. Thus if the present
state is 8 or 9, then the next state becomes 0 or 1, respectively. If w = 0, then the counter
subtracts 1 from its contents, acting as a normal down-counter. Use D flip-flops in your
circuit.
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6.27 Repeat Problem 6.26 using JK flip-flops.

6.28 Repeat Problem 6.26 using T flip-flops.

*6.29 Derive the state table for the circuit in Figure P6.2. What sequence of input values on wire
w is detected by this circuit?

D Q

Q

w
D Q

QClock

z

Figure P6.2 Circuit for Problem 6.29.

6.30 Write Verilog code for the FSM shown in Figure 6.57, using the style of code in Figure 6.29.

6.31 Repeat Problem 6.30, using the style of code in Figure 6.34.

6.32 Write Verilog code for the FSM shown in Figure 6.58, using the style of code in Figure 6.29.

6.33 Repeat Problem 6.32, using the style of code in Figure 6.34.

6.34 Write Verilog code for the FSM shown in Figure P6.1.

6.35 Represent the FSM in Figure 6.57 in form of an ASM chart.

6.36 Represent the FSM in Figure 6.58 in form of an ASM chart.

6.37 The arbiter FSM defined in Section 6.8 (Figure 6.72) may cause device 3 to never get
serviced if devices 1 and 2 continuously keep raising requests, so that in the Idle state it
always happens that either device 1 or device 2 has an outstanding request. Modify the
proposed FSM to ensure that device 3 will get serviced, such that if it raises a request, the
devices 1 and 2 will be serviced only once before the device 3 is granted its request.
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6.38 Write Verilog code for the FSM designed in Problem 6.37.

6.39 Write Verilog code to specify the circuit in Figure 6.97.

6.40 Section 6.5 presents a design for the serial adder. Derive a similar circuit that functions as
a serial subtractor which produces the difference of operands A and B. (Hint: Use the rule
for finding 2’s complements in Section 3.3.1 to generate the 2’s complement of B.)

6.41 Write Verilog code that defines the serial subtractor designed in Problem 6.40.

6.42 In Section 6.2 we stated that trying all possible state assignments in order to find the best
one is impractical. Determine the number of possible state assignments for an FSM that
has n states and for which k = log2n state variables are used.

References

1. J. F. Wakerly, Digital Design Principles and Practices, 4th ed. (Prentice-Hall:
Englewood Cliffs, N.J., 2005).

2. R. H. Katz and G. Borriello, Contemporary Logic Design, 2nd ed., (Pearson
Prentice-Hall: Upper Saddle River, N.J., 2005).

3. C. H. Roth Jr., Fundamentals of Logic Design, 5th ed., (Thomson/Brooks/Cole:
Belmont, Ca., 2004).

4. M. M. Mano, Digital Design, 3rd ed. (Prentice-Hall: Upper Saddle River, NJ, 2002).

5. A. Dewey, Analysis and Design of Digital Systems with VHDL, (PWS Publishing Co.:
1997).

6. D. D. Gajski, Principles of Digital Design, (Prentice-Hall: Upper Saddle River, NJ,
1997).

7. J. P. Daniels, Digital Design from Zero to One, (Wiley: New York, 1996).

8. V. P. Nelson, H. T. Nagle, B. D. Carroll, and J. D. Irwin, Digital Logic Circuit
Analysis and Design, (Prentice-Hall: Englewood Cliffs, NJ, 1995).

9. F. J. Hill and G. R. Peterson, Computer Aided Logical Design with Emphasis on VLSI,
4th ed., (Wiley: New York, 1993).

10. J. P. Hayes, Introduction to Logic Design, (Addison-Wesley: Reading, MA, 1993).

11. E. J. McCluskey, Logic Design Principles, (Prentice-Hall: Englewood Cliffs, NJ,
1986).

12. T. L. Booth, Digital Networks and Computer Systems, (Wiley: New York, 1971).

13. Z. Kohavi, Switching and Finite Automata Theory, (McGraw-Hill: New York, 1970).

14. J. Hartmanis and R. E. Stearns, Algebraic Structure Theory of Sequential Machines,
(Prentice-Hall: Englewood Cliffs, NJ, 1966).



December 31, 2012 09:13 vra80547_ch07 Sheet number 1 Page number 421 magenta black

421

c h a p t e r

7
Digital System Design

Chapter Objectives

In this chapter you will learn about aspects of digital system design, including

• Bus structure

• A simple processor

• Usage of ASM charts

• Clock synchronization and timing issues

• Flip-flop timing at the chip level
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In the previous chapters we showed how to design many types of simple circuits, such as multiplexers,
decoders, flip-flops, registers, and counters, which can be used as building blocks. In this chapter we provide
examples of more complex circuits that can be constructed using the building blocks as subcircuits. Such
larger circuits form a digital system. For practical reasons our examples of digital systems will not be large,
but the design techniques presented are applicable to systems of any size.

A digital system consists of two main parts, called the datapath circuit and the control circuit. The
datapath circuit is used to store and manipulate data and to transfer data from one part of the system to
another. Datapath circuits comprise building blocks such as registers, shift registers, counters, multiplexers,
decoders, adders, and so on. The control circuit controls the operation of the datapath circuit. In Chapter 6
we referred to the control circuits as finite state machines. We will give several examples of digital systems
and show how to design their datapath and control circuits.

7.1 Bus Structure

Digital systems often contain a set of registers used to store data. As already discussed in
Chapter 6, such registers can be interconnected via an interconnection network as illustrated
in Figure 6.10. There are many ways of implementing an interconnection network. In this
section we will present one of the commonly used schemes.

Suppose that a digital system has a number of n-bit registers, and that it must be possible
to transfer data from any register to any other register. Asimple way of providing the desired
interconnectivity may be to connect each register to a common set of n wires, which are
used to transfer data into and out of the registers. This common set of wires is usually
called a bus. If common paths are used to transfer data from multiple sources to multiple
destinations, it is necessary to ensure that only one register acts as a source at any given
time and other registers do not interfere. We will present two plausible arrangements for
implementing the bus structure.

7.1.1 Using Tri-State Drivers to Implement a Bus

Outputs of two ordinary logic gates cannot be connected together, because a short circuit
would result if one gate forces the output value 1 while the other gate forces the value 0.
Therefore, some special gates are needed if the outputs of two registers are to be connected
to a common set of wires. A commonly used circuit element for this purpose is shown
in Figure 7.1a. It has a data input w, an output f, and an enable input e. Its operation is
illustrated by the equivalent circuit in part (b). The triangular symbol in the figure represents
a noninverting driver, which is a circuit that performs no logic operation and its output
simply replicates the input signal. Its purpose is to provide additional electrical driving
capability. In conjunction with the output switch, it behaves as indicated in Figure 7.1c.
When e = 1, the output reflects the logic value on the data input. But, when e = 0, the output
is electrically disconnected from the data input, which is referred to as a high impedance
state and it is usually denoted by the letter Z (or z). Because this circuit element exhibits
three distinct states, 0, 1, and Z, it is called a tri-state driver (or buffer). Appendix B explains
how it can be implemented with transistors.
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(b) Equivalent circuit (c) Truth table

w f

e

(a) Symbol

0
0
1
1

0
1
0
1

Z
Z
0
1

fe ww f

e = 0

e = 1
w f

Figure 7.1 Tri-state driver.

Consider a system that contains k n-bit registers, R1 to Rk. Figure 7.2 shows how these
registers can be connected using tri-state drivers to implement the bus structure. The data
outputs of each register are connected to tri-state drivers. When selected by their enable
signals, the drivers place the contents of the corresponding register onto the bus wires. We
showed in Figure 5.56 how an enable input can be added to a register. If the enable input
is set to 1, then the contents of the register will be changed on the next active edge of the
clock. In Figure 7.2 the enable input on each register is labeled L, which stands for load.
The signal that controls the load input for a register Rj is denoted as Rjin, while the signal
that controls the associated tri-state driver is called Rjout . These signals are generated by a
control circuit.

In addition to registers, in a real system other types of circuit blocks would be connected
to the bus. The figure shows how n bits of data from an external source can be placed on
the bus, using the control input Extern.

It is essential to ensure that only one circuit block attempts to place data onto the
bus wires at any given time. The control circuit must ensure that only one of the tri-state
driver enable signals, R1out, . . . , Rkout , is asserted at a given time. The control circuit also
produces the signals R1in, . . . , Rkin, which determine when data is loaded into each register.
In general, the control circuit could perform a number of functions, such as transferring the
data stored in one register into another register and controlling the processing of data in
various functional units of the system. Figure 7.2 shows an input signal named Function that
instructs the control circuit to perform a particular task. The control circuit is synchronized
by a clock input, which is the same clock signal that controls the k registers.

Figure 7.3 provides a more detailed view of how the registers from Figure 7.2 can be
connected to a bus. To keep the picture simple, 2 two-bit registers are shown, but the same
scheme can be used for larger registers. For register R1, two tri-state drivers enabled by
R1out are used to connect each flip-flop output to a wire in the bus. The D input on each
flip-flop is connected to a 2-to-1 multiplexer, whose select input is controlled by R1in. If
R1in = 0, the flip-flops are loaded from their Q outputs; hence the stored data does not
change. But if R1in = 1, data is loaded into the flip-flops from the bus.

The system in Figure 7.2 can be used in many different ways, depending on the design
of the control circuit and on how many registers and other circuit blocks are connected to
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R1in Rkin

Bus

Clock

R1out R2in R2out Rkout

Control circuit
Function

R1 R2 Rk

Data

Extern

L L L

Figure 7.2 A digital system with k registers.

the bus. As a simple example, consider a system that has three registers, R1, R2, and R3.
We will specify a control circuit that performs a single function—it swaps the contents of
registers R1 and R2, using R3 for temporary storage.

The required swapping is done in three steps, each needing one clock cycle. In the first
step the contents of R2 are transferred into R3. Then the contents of R1 are transferred into
R2. Finally, the contents of R3, which are the original contents of R2, are transferred into
R1. We have already designed the control circuit for this task in Example 6.1, in the form
of a finite state machine.

Note that we say that the contents of one register, Ri, are “transferred” into another
register, Rj. This jargon is commonly used to indicate that the new contents of Rj will be
a copy of the contents of Ri. The contents of Ri are not changed as a result of the transfer.
Therefore, it would be more precise to say that the contents of Ri are “copied” into Rj.

7.1.2 Using Multiplexers to Implement a Bus

In Figure 7.2 we used tri-state drivers to control access to the bus. An alternative approach
is to use multiplexers, as depicted in Figure 7.4. The outputs of each register are connected
to a multiplexer. This multiplexer’s output is connected to the inputs of the registers, thus
realizing the bus. The multiplexer select inputs determine which register’s contents appear
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Data

R1in

Multiplexers

R2in Rkin

Bus

Clock

S j 1–

S0

R1 R2 Rk

Figure 7.4 Using multiplexers to implement a bus.

on the bus. Although the figure shows just one multiplexer symbol, we actually need one
multiplexer for each bit in the registers. For example, assume that there are 4 eight-bit
registers, R1 to R4, plus the externally-supplied eight-bit Data. To interconnect them, we
need eight 5-to-1 multiplexers.

The control circuit can be designed as a finite state machine as mentioned in the previous
subsection. However, instead of using the control signals Rjout to place the contents of
register Rj onto the bus, we have to generate the select inputs for the multiplexers.

The tri-state driver and multiplexer approaches for implementing a bus are both equally
valid. However, some types of chips, such as FPGAs, do not contain a sufficient number of
tri-state drivers to realize even moderately large buses. In such chips the multiplexer-based
approach is the only practical alternative. In practice, circuits are designed with CAD tools.
If the designer describes the circuit using tri-state drivers, but there are not enough such
drivers in the target device, then the CAD tools automatically produce an equivalent circuit
that uses multiplexers.

7.1.3 Verilog Code for Specification of Bus Structures

This section presents Verilog code for our circuit example that swaps the contents of two
registers. We first give the code for the style of circuit in Figure 7.2 that uses tri-state drivers
to implement the bus and then give the code for the style of circuit in Figure 7.4 that uses
multiplexers. Figure 7.5 gives the code for an n-bit register of the type in Figure 7.3. The
number of bits in the register is set by the parameter n, which has the default value of 8.
The register is specified such that if the input L = 1, then the flip-flops are loaded from the
n-bit input R. Otherwise, the flip-flops retain their presently stored values.

Figure 7.6 gives the code for a subcircuit that represents n tri-state drivers, each enabled
by the input E. The inputs to the drivers are the n-bit signal Y , and the outputs are the n-bit
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module regn (R, L, Clock, Q);
parameter n = 8;
input [n –1:0] R;
input L, Clock;
output reg [n –1:0] Q;

always @(posedge Clock)
if (L)

Q < = R;

endmodule

Figure 7.5 Code for an n-bit register of the type in
Figure 7.3.

module trin (Y, E, F);
parameter n = 8;
input [n –1:0] Y;
input E;
output wire [n –1:0] F;

assign F = E ? Y : ’bz;

endmodule

Figure 7.6 Code for an n-bit tri-state module.

signal F . The conditional assignment statement specifies that the output of each driver is
set to F = Y if E = 1; otherwise, the output is set to the high impedance value z. The
conditional assignment statement uses an unsized number to define the high impedance
case. The Verilog compiler will make the size of this number the same as the size of vector
Y , namely n. We cannot define the number as n’bz because the size of a sized number
cannot be given as a parameter.

The code in Figure 7.7 represents a digital system like the one in Figure 7.2, with 3
eight-bit registers, R1, R2, and R3. The circuit in Figure 7.2 includes tri-state drivers that
are used to place n bits of externally supplied Data on the bus. In Figure 7.7, these drivers
are instantiated in the module tri_ext. Each of the eight drivers is enabled by the input
signal Extern, and the data inputs on the drivers are attached to the eight-bit signal Data.
When Extern = 1, the value of Data is placed on the bus, which is represented by the signal
BusWires. The BusWires vector represents the circuit’s output as well as the internal bus
wiring. We declared this vector to be of tri type rather than of wire type. The keyword tri
is treated in the same way as the keyword wire by the Verilog compiler. The designation tri
makes it obvious to a reader that the synthesized connections will have tri-state capability.
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module swap (Resetn, Clock, w, Data, Extern, RinExt1, RinExt2, RinExt3, BusWires, Done);
parameter n = 8;
input Resetn, Clock, w, Extern, RinExt1, RinExt2, RinExt3;
input [n–1:0] Data;
output tri [n–1:0] BusWires;
output Done;
wire [n–1:0] R1, R2, R3;
wire R1in, R1out, R2in, R2out, R3in, R3out;
reg [2:1] y, Y;
parameter [2:1] A = 2’b00, B = 2’b01, C = 2’b10, D = 2’b11;

// Define the next state combinational circuit for FSM
always @(w, y)

case (y)
A: if (w) Y = B;

else Y = A;
B: Y = C;
C: Y = D;
D: Y = A;

endcase

// Define the sequential block for FSM
always @(negedge Resetn, posedge Clock)

if (Resetn == 0) y < = A;
else y < = Y;

// Define outputs of FSM
assign R2out = (y == B);
assign R3in = (y == B);
assign R1out = (y == C);
assign R2in = (y == C);
assign R3out = (y == D);
assign R1in = (y == D);
assign Done = (y == D);

// Instantiate registers
regn reg 1 (BusWires, RinExt1 | R1in, Clock, R1);
regn reg 2 (BusWires, RinExt2 | R2in, Clock, R2);
regn reg 3 (BusWires, RinExt3 | R3in, Clock, R3);
// Instantiate tri-state drivers
trin tri ext (Data, Extern, BusWires);
trin tri 1 (R1, R1out, BusWires);
trin tri 2 (R2, R2out, BusWires);
trin tri 3 (R3, R3out, BusWires);

endmodule

Figure 7.7 A digital system like the one in Figure 7.2.
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We assume that three control signals named RinExt1, RinExt2, and RinExt3 exist,
which allow the externally supplied data to be loaded from the bus into register R1, R2, or
R3. These signals are not shown in Figure 7.2, to keep the figure simple, but they would
be generated by the same external circuit block that produces Extern and Data. When
RinExt1 = 1, the data on the bus is loaded into register R1; when RinExt2 = 1, the data is
loaded into R2; and when RinExt3 = 1, the data is loaded into R3.

The FSM that implements the control circuit for our swapping task example is included
in Figure 7.7. Since our control circuit performs only one operation, we have not included
the Function input from Figure 7.2. We have assumed that an input signal named w exists,
which is set to 1 for one clock cycle to start the swapping task. We have also assumed that
at the end of the swapping task, which is indicated by the Done signal being asserted, the
control circuit returns to the starting state.

Verilog Code Using Multiplexers
Figure 7.8 shows how the code in Figure 7.7 can be modified to use multiplexers instead

of tri-state drivers. Using the circuit structure shown in Figure 7.4, the bus is implemented
with eight 4-to-1 multiplexers. Three of the data inputs on each 4-to-1 multiplexer are
connected to one bit from registers R1, R2, and R3. The fourth data input is connected
to one bit of the Data input signal to allow externally supplied data to be written into the
registers.

The same FSM control circuit is used. However, the control signals R1out, R2out,
and R3out are not needed because tri-state drivers are not used. Instead, the required
multiplexers are defined in an if-else statement by specifying the source of data based on
the state of the FSM. Hence, when the FSM is in state A, the selected input to the multiplexers
is Data. When the state is B, the register R2 provides the input data to the multiplexers,
and so on.

7.2 Simple Processor

A second example of a digital system like the one in Figure 7.2 is shown in Figure 7.9.
It has four n-bit registers, R0, . . . , R3, that are connected to the bus with tri-state drivers.
External data can be loaded into the registers from the n-bit Data input, which is connected
to the bus using tri-state drivers enabled by the Extern control signal. The system also
includes an adder/subtractor module. One of its data inputs is provided by an n-bit register,
A, that is attached to the bus, while the other data input, B, is directly connected to the bus.
If the AddSub signal has the value 0, the module generates the sum A + B; if AddSub = 1,
the module generates the difference A − B. To perform the subtraction, we assume that
the adder/subtractor includes the required XOR gates to form the 2’s complement of B, as
discussed in Section 3.3. The register G stores the output produced by the adder/subtractor.
The A and G registers are controlled by the signals Ain, Gin, and Gout .

The system in Figure 7.9 can perform various functions, depending on the design of
the control circuit. As an example, we will design a control circuit that can perform the four
operations listed in Table 7.1. The left column in the table shows the name of an operation
and its operands; the right column indicates the function performed in the operation. For
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module swapmux (Resetn, Clock, w, Data, RinExt1, RinExt2, RinExt3, BusWires, Done);
parameter n = 8;
input Resetn, Clock, w, RinExt1, RinExt2, RinExt3;
input [n–1:0] Data;
output reg [n–1:0] BusWires;
output Done;
wire [n–1:0] R1, R2, R3;
wire R1in, R2in, R3in;
reg [2:1] y, Y;
parameter [2:1] A = 2’b00, B = 2’b01, C = 2’b10, D = 2’b11;

// Define the next state combinational circuit for FSM
always @(w, y)

case (y)
A: if (w) Y = B;

else Y = A;
B: Y = C;
C: Y = D;
D: Y = A;

endcase

// Define the sequential block for FSM
always @(negedge Resetn, posedge Clock)

if (Resetn == 0) y < = A;
else y < = Y;

// Define control signals
assign R3in = (y == B);
assign R2in = (y == C);
assign R1in = (y == D);
assign Done = (y == D);

// Instantiate registers
regn reg 1 (BusWires, RinExt1 | R1in, Clock, R1);
regn reg 2 (BusWires, RinExt2 | R2in, Clock, R2);
regn reg 3 (BusWires, RinExt3 | R3in, Clock, R3);

// Define the multiplexers
always @(y, Data, R1, R2, R3)

if (y == A) BusWires = Data;
else if (y == B) BusWires = R2;
else if (y == C) BusWires = R1;
else BusWires = R3;

endmodule

Figure 7.8 Using multiplexers to implement the bus structure.
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Table 7.1 Operations performed
in the processor.

Operation Function performed

Load Rx, Data Rx ← Data

Move Rx, Ry Rx ← [Ry]
Add Rx, Ry Rx ← [Rx] + [Ry]
Sub Rx, Ry Rx ← [Rx] − [Ry]

the Load operation the meaning of Rx ← Data is that the data on the external Data input
is transferred across the bus into any register, Rx, where Rx can be R0 to R3. The Move
operation copies the data stored in register Ry into register Rx. In the table the square
brackets, as in [Rx], refer to the contents of a register. Since only a single transfer across
the bus is needed, both the Load and Move operations require only one step (clock cycle) to
be completed. The Add and Sub operations require three steps, as follows: In the first step
the contents of Rx are transferred across the bus into register A. Then in the next step, the
contents of Ry are placed onto the bus. The adder/subtractor module performs the required
function, and the results are stored in register G. Finally, in the third step the contents of G
are transferred into Rx.

A digital system that performs the types of operations listed in Table 7.1 is usually
called a processor. The specific operation to be performed at any given time is indicated
using the control circuit input named Function. The operation is initiated by setting the w
input to 1, and the control circuit asserts the Done output when the operation is completed.

In Figure 7.2 we used an FSM to implement the control circuit. It is possible to use a
similar design for the system in Figure 7.9. To illustrate another approach, we will base the
design of the control circuit on a counter. This circuit has to generate the required control
signals in each step of each operation. Since the longest operations (Add and Sub) need
three steps (clock cycles), a two-bit counter can be used. Figure 7.10 shows a two-bit up-
counter connected to a 2-to-4 decoder. Decoders are discussed in Chapter 4. The decoder
is enabled at all times by setting its enable (En) input permanently to the value 1. Each of
the decoder outputs represents a step in an operation. When no operation is currently being
performed, the count value is 00; hence the T0 output of the decoder is asserted. In the first
step of an operation, the count value is 01, and T1 is asserted. During the second and third
steps of the Add and Sub operations, T2 and T3 are asserted, respectively.

In each of steps T0 to T3, various control signal values have to be generated by the
control circuit, depending on the operation being performed. Figure 7.11 shows that the
operation is specified with six bits, which form the Function input. The two left-most bits,
F = f1 f0, are used as a two-bit number that identifies the operation. To represent Load,
Move, Add, and Sub, we use the codes f1 f0 = 00, 01, 10, and 11, respectively. The inputs
Rx1Rx0 are a binary number that identifies the Rx operand, while Ry1Ry0 identifies the Ry
operand. The Function inputs are stored in a six-bit Function Register when the FRin signal
is asserted.
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Figure 7.10 A part of the control circuit for the processor.
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Figure 7.11 also shows three 2-to-4 decoders that are used to decode the information
encoded in the F , Rx, and Ry inputs. We will see shortly that these decoders are included
as a convenience because their outputs provide simple-looking logic expressions for the
various control signals.

The circuits in Figures 7.10 and 7.11 form a part of the control circuit. Using the input
w and the signals T0, . . . , T3, I0, . . . , I3, X0, . . . , X3, and Y0, . . . , Y3, we will show how to
derive the rest of the control circuit. It has to generate the outputs Extern, Done, Ain, Gin,
Gout , AddSub, R0in, . . . , R3in, and R0out, . . . , R3out . The control circuit also has to generate
the Clear and FRin signals used in Figures 7.10 and 7.11.

Clear and FRin are defined in the same way for all operations. Clear is used to ensure
that the count value remains at 00 as long as w = 0 and no operation is being executed. Also,
it is used to clear the count value to 00 at the end of each operation. Hence an appropriate
logic expression is

Clear = w T0 + Done

The FRin signal is used to load the values on the Function inputs into the Function Register
when w changes to 1. Hence

FRin = wT0

The rest of the outputs from the control circuit depend on the specific step being performed
in each operation. The values that have to be generated for each signal are shown in
Table 7.2. Each row in the table corresponds to a specific operation, and each column
represents one time step. The Extern signal is asserted only in the first step of the Load
operation. Therefore, the logic expression that implements this signal is

Extern = I0T1

Done is asserted in the first step of Load and Move, as well as in the third step of Add and
Sub. Hence

Done = (I0 + I1)T1 + (I2 + I3)T3

Table 7.2 Control signals asserted in each operation/time step.

T1 T2 T3

(Load): I0 Extern, Rin = X ,

Done

(Move): I1 Rin = X , Rout = Y ,

Done

(Add): I2 Rout = X , Ain Rout = Y , Gin, Gout , Rin = X ,

AddSub = 0 Done

(Sub): I3 Rout = X , Ain Rout = Y , Gin, Gout , Rin = X ,

AddSub = 1 Done
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The Ain, Gin, and Gout signals are asserted in the Add and Sub operations. Ain is asserted in
step T1, Gin is asserted in T2, and Gout is asserted in T3. The AddSub signal has to be set to
0 in the Add operation and to 1 in the Sub operation. This is achieved with the following
logic expressions

Ain = (I2 + I3)T1

Gin = (I2 + I3)T2

Gout = (I2 + I3)T3

AddSub = I3

The values of R0in, . . . , R3in are determined using either the X0, . . . , X3 signals or the
Y0, . . . , Y3 signals. In Table 7.2 these actions are indicated by writing either Rin = X or
Rin = Y . The meaning of Rin = X is that R0in = X0, R1in = X1, and so on. Similarly, the
values of R0out, . . . , R3out are specified using either Rout = X or Rout = Y .

We will develop the expressions for R0in and R0out by examining Table 7.2 and then
show how to derive the expressions for the other register control signals. The table shows
that R0in is set to the value of X0 in the first step of both the Load and Move operations and
in the third step of both the Add and Sub operations, which leads to the expression

R0in = (I0 + I1)T1X0 + (I2 + I3)T3X0

Similarly, R0out is set to the value of Y0 in the first step of Move. It is set to X0 in the first
step of Add and Sub and to Y0 in the second step of these operations, which gives

R0out = I1T1Y0 + (I2 + I3)(T1X0 + T2Y0)

The expressions for R1in and R1out are the same as those for R0in and R0out except that X1

and Y1 are used in place of X0 and Y0. The expressions for R2in, R2out , R3in, and R3out are
derived in the same way.

The circuits shown in Figures 7.10 and 7.11, combined with the circuits represented
by the above expressions, implement the control circuit in Figure 7.9.

Processors are extremely useful circuits that are widely used. We have presented only
the most basic aspects of processor design. However, the techniques presented can be
extended to design realistic processors, such as modern microprocessors. The interested
reader can refer to books on computer organization for more details on processor design
[1–2].

Verilog Code
In this section we give two different styles of Verilog code for describing the system

in Figure 7.9. The first style uses tri-state drivers to represent the bus, and it gives the logic
expressions shown above for the outputs of the control circuit. The second style of code
uses multiplexers to represent the bus, and it uses case statements that correspond to Table
7.2 to describe the outputs of the control circuit.

Verilog code for a two-bit up-counter, named upcount, is shown in Figure 7.12. It has
a synchronous reset input, which is active high. Other subcircuits that we use in the Verilog
code for the processor are the dec2to4, regn, and trin modules in Figures 4.31, 7.5, and 7.6.
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module upcount (Clear, Clock, Q);
input Clear, Clock;
output reg [1:0] Q;

always @(posedge Clock)
if (Clear)

Q < = 0;
else

Q < = Q + 1;

endmodule

Figure 7.12 A two-bit up-counter with synchronous reset.

Complete code for the processor is given in Figure 7.13. The instantiated modules
counter and decT represent the subcircuits in Figure 7.10. Note that we have assumed that
the circuit has an active-high reset input, Reset, which is used to initialize the counter to
00. The statement assign Func = {F, Rx, Ry} uses the concatenate operator to create the
six-bit signal Func, which represents the inputs to the Function Register in Figure 7.11.
The functionreg module represents the Function Register with the data inputs Func and the
outputs FuncReg. The instantiated modules decI, decX, and decY represent the decoders in
Figure 7.11. Following these statements the previously derived logic expressions for the
outputs of the control circuit are given. For R0in, . . . , R3in and R0out, . . . , R3out , a for loop
is used to produce the expressions.

At the end of the code, the adder/subtractor module is defined and the tri-state drivers
and registers in the processor are instantiated.

Using Multiplexers and Case Statements
We showed in Figure 7.4 that a bus can be implemented with multiplexers, rather than

tri-state drivers. Verilog code that describes the processor using this approach is shown
in Figure 7.14. The code illustrates a different way of describing the control circuit in the
processor. It does not give logic expressions for the signals Extern, Done, and so on, as
in Figure 7.13. Instead, case statements are used to represent the information shown in
Table 7.2. Each control signal is first assigned the value 0 as a default. This is required
because the case statements specify the values of the control signals only when they should
be asserted, as we did in Table 7.2. As explained in Chapter 5, when the value of a
signal is not specified, the signal retains its current value. This implied memory results
in a feedback connection, representing a latch, in the synthesized circuit. We avoid this
problem by providing the default value of 0 for each of the control signals involved in the
case statements.

In Figure 7.13 the decoders decT and decI are used to decode the Count signal and the
stored values of the F input, respectively. The decT decoder has the outputs T0, . . . , T3,
and decI produces I0, . . . , I3. In Figure 7.14 these two decoders are not used, because they
do not serve a useful purpose in this code. Instead, the signal I is defined as a two-bit
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module proc (Data, Reset, w, Clock, F, Rx, Ry, Done, BusWires);
input [7:0] Data;
input Reset, w, Clock;
input [1:0] F, Rx, Ry;
output wire [7:0] BusWires;
output Done;
reg [0:3] Rin, Rout;
reg [7:0] Sum;
wire Clear, AddSub, Extern, Ain, Gin, Gout, FRin;
wire [1:0] Count;
wire [0:3] T, I, Xreg, Y;
wire [7:0] R0, R1, R2, R3, A, G;
wire [1:6] Func, FuncReg;
integer k;

upcount counter (Clear, Clock, Count);
dec2to4 decT (Count, 1’b1, T);

assign Clear = Reset | Done | ( w & T[0]);
assign Func = {F, Rx, Ry};
assign FRin = w & T[0];

regn functionreg (Func, FRin, Clock, FuncReg);
defparam functionreg.n = 6;

dec2to4 decI (FuncReg[1:2], 1’b1, I);
dec2to4 decX (FuncReg[3:4], 1’b1, Xreg);
dec2to4 decY (FuncReg[5:6], 1’b1, Y);

assign Extern = I[0] & T[1];
assign Done = ((I[0] | I[1]) & T[1]) | ((I[2] | I[3]) & T[3]);
assign Ain = (I[2] | I[3]) & T[1];
assign Gin = (I[2] | I[3]) & T[2];
assign Gout = (I[2] | I[3]) & T[3];
assign AddSub = I[3];

.  .  . continued in Part b.

Figure 7.13 Code for the processor (Part a).

signal, and the two-bit signal Count is used instead of T . These signals are used in the case
statements. The code sets I to the value of the two left-most bits in the Function Register,
which correspond to the stored values of the input F .

There are two nested levels of case statements. The first one enumerates the possible
values of Count. For each alternative in this case statement, which represents a column
in Table 7.2, there is a nested case statement that enumerates the four values of I . As
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// RegCntl
always @(I, T, Xreg, Y)

for (k = 0; k < 4; k = k+1)
begin

Rin[k] = ((I[0] | I[1]) & T[1] & Xreg[k]) |
((I[2] | I[3]) & T[3] & Xreg[k]);

Rout[k] = (I[1] & T[1] & Y[k]) | ((I[2] | I[3]) &
((T[1] & Xreg[k]) | (T[2] & Y[k])));

end

trin tri ext (Data, Extern, BusWires);
regn reg 0 (BusWires, Rin[0], Clock, R0);
regn reg 1 (BusWires, Rin[1], Clock, R1);
regn reg 2 (BusWires, Rin[2], Clock, R2);
regn reg 3 (BusWires, Rin[3], Clock, R3);

trin tri 0 (R0, Rout[0], BusWires);
trin tri 1 (R1, Rout[1], BusWires);
trin tri 2 (R2, Rout[2], BusWires);
trin tri 3 (R3, Rout[3], BusWires);
regn reg A (BusWires, Ain, Clock, A);

// alu
always @(AddSub, A, BusWires)

if (!AddSub)
Sum = A + BusWires;

else
Sum = A – BusWires;

regn reg G (Sum, Gin, Clock, G);
trin tri G (G, Gout, BusWires);

endmodule

Figure 7.13 Code for the processor (Part b).

indicated by the comments in the code, the nested case statements correspond exactly to
the information given in Table 7.2.

At the end of Figure 7.14, the bus structure is described with an if-else statement which
represents multiplexers that place the appropriate data onto BusWires, depending on the
values of Rout , Gout , and Extern.

We synthesized a circuit to implement the code in Figure 7.14 in a chip. Figure 7.15
gives an example of the results of a timing simulation. Each clock cycle in which w = 1 in
this timing diagram indicates the start of an operation. In the first such operation, at 250 ns
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module proc (Data, Reset, w, Clock, F, Rx, Ry, Done, BusWires);
input [7:0] Data;
input Reset, w, Clock;
input [1:0] F, Rx, Ry;
output reg [7:0] BusWires;
output reg Done;
reg [7:0] Sum;
reg [0:3] Rin, Rout;
reg Extern, Ain, Gin, Gout, AddSub;
wire [1:0] Count, I;
wire [0:3] Xreg, Y;
wire [7:0] R0, R1, R2, R3, A, G;
wire [1:6] Func, FuncReg, Sel;

wire Clear = Reset Done ( w & Count[1] & Count[0]);
upcount counter (Clear, Clock, Count);
assign Func = {F, Rx, Ry};
wire FRin = w & Count[1] & Count[0];
regn functionreg (Func, FRin, Clock, FuncReg);

defparam functionreg.n = 6;
assign I = FuncReg[1:2];
dec2to4 decX (FuncReg[3:4], 1’b1, Xreg);
dec2to4 decY (FuncReg[5:6], 1’b1, Y);

always @(Count, I, Xreg, Y)
begin

Extern = 1’b0; Done = 1’b0; Ain = 1’b0; Gin = 1’b0;
Gout = 1’b0; AddSub = 1’b0; Rin = 4’b0; Rout = 4’b0;
case (Count)

2’b00: ; //no signals asserted in time step T0
2’b01: //define signals in time step T1

case (I)
2’b00: begin //Load

Extern = 1’b1; Rin = Xreg; Done = 1’b1;
end

2’b01: begin //Move
Rout = Y; Rin = Xreg; Done = 1’b1;

end
default: begin //Add, Sub

Rout = Xreg; Ain = 1’b1;
end

endcase
.  .  . continued in Part b.

Figure 7.14 Alternative code for the processor (Part a).
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2’b10: //define signals in time step T2
case(I)

2’b10: begin //Add
Rout = Y; Gin = 1’b1;

end
2’b11: begin //Sub

Rout = Y; AddSub = 1’b1; Gin = 1’b1;
end

default: ; //Add, Sub
endcase

2’b11:
case (I)

2’b10, 2’b11: begin
Gout = 1’b1; Rin = Xreg; Done = 1’b1;

end
default: ; //Add, Sub

endcase
endcase

end

regn reg_0 (BusWires, Rin[0], Clock, R0);
regn reg_1 (BusWires, Rin[1], Clock, R1);
regn reg_2 (BusWires, Rin[2], Clock, R2);
regn reg_3 (BusWires, Rin[3], Clock, R3);
regn reg_A (BusWires, Ain, Clock, A);

.  .  . continued in Part c.

Figure 7.14 Alternative code for the processor (Part b).

in the simulation time, the values of both inputs F and Rx are 00. Hence the operation
corresponds to “Load R0, Data.” The value of Data is 2A, which is loaded into R0 on the
next positive clock edge. The next operation loads 55 into register R1, and the subsequent
operation loads 22 into R2. At 850 ns the value of the input F is 10, while Rx = 01 and
Ry = 00. This operation is “Add R1, R0.” In the following clock cycle, the contents of
R1 (55) appear on the bus. This data is loaded into register A by the clock edge at 950 ns,
which also results in the contents of R0 (2A) being placed on the bus. The adder/subtractor
module generates the correct sum (7F), which is loaded into register G at 1050 ns. After
this clock edge the new contents of G (7F) are placed on the bus and loaded into register
R1 at 1150 ns. Two more operations are shown in the timing diagram. The one at 1250
ns (“Move R3, R1”) copies the contents of R1 (7F) into R3. Finally, the operation starting
at 1450 ns (“Sub R3, R2”) subtracts the contents of R2 (22) from the contents of R3 (7F),
producing the correct result, 7F − 22 = 5D.
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// alu
always @(AddSub, A, BusWires)
begin

if (!AddSub)
Sum = A + BusWires;

else
Sum = A – BusWires;

end

regn reg_G (Sum, Gin, Clock, G);
assign Sel = {Rout, Gout, Extern};

always @(Sel, R0, R1, R2, R3, G, Data)
begin

if (Sel == 6’b100000)
BusWires = R0;

else if (Sel == 6’b010000)
BusWires = R1;

else if (Sel == 6’b001000)
BusWires = R2;

else if (Sel == 6’b000100)
BusWires = R3;

else if (Sel == 6’b000010)
BusWires = G;

else BusWires = Data;
end

endmodule

Figure 7.14 Alternative code for the processor (Part c).

7.3 A Bit-Counting Circuit

We introduced algorithmic state machine (ASM) charts in Section 6.10 and showed how
they can be used to describe finite state machines. ASM charts can also be used to describe
digital systems that include both datapath and control circuits. We will illustrate how the
ASM charts can be used as an aid in designing digital systems by using them in the remaining
examples in this chapter.

Suppose that we wish to count the number of bits in a register, A, that have the value 1.
Figure 7.16 shows pseudo-code for a step-by-step procedure, or algorithm, that can be
used to perform the required task. It assumes that A is stored in a register that can shift its
contents in the left-to-right direction. The answer produced by the algorithm is stored in



December 31, 2012 09:13 vra80547_ch07 Sheet number 22 Page number 442 magenta black

442 C H A P T E R 7 • Digital System Design

Figure 7.15 Timing simulation for the Verilog code in Figure 7.14.

B = 0;
while A 0 do

if a0 = 1 then
B= B+1;

end if;
Right-shift A;

end while;

=�

Figure 7.16 Pseudo-code for the bit counter.

the variable named B. The algorithm terminates when A does not contain any more 1s, that
is when A = 0. In each iteration of the while loop, if the least-significant bit (LSB) of A is
1, then B is incremented by 1; otherwise, B is not changed. The contents of A are shifted
one bit to the right at the end of each loop iteration.

Figure 7.17 gives an ASM chart that represents the algorithm in Figure 7.16. The state
box for the starting state, S1, specifies that B is initialized to 0. We assume that an input
signal, s, exists, which is used to indicate when the data to be processed has been loaded
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Figure 7.17 ASM chart for the pseudo-code in Figure 7.16.

into A, so that the machine can start. The decision box labeled s stipulates that the machine
remains in state S1 as long as s = 0. The conditional output box with Load A written inside
it indicates that A is loaded from external data inputs if s = 0 in state S1.

When s becomes 1, the machine changes to state S2. The decision box below the state
box for S2 checks whether A = 0. If so, the bit-counting operation is complete; hence the
machine should change to state S3. If not, the FSM remains in state S2. The decision
box at the bottom of the chart checks the value of a0. If a0 = 1, B is incremented, which
is indicated in the chart as B ← B + 1. If a0 = 0, then B is not changed. In state S3, B
contains the result, which is the number of bits in A that were 1. An output signal, Done, is
set to 1 to indicate that the algorithm is finished; the FSM stays in S3 until s goes back to 0.

ASM Chart Implied Timing Information
In Chapter 6 we said that ASM charts are similar to traditional flowcharts, except that

theASM chart implies timing information. We can use the bit-counting example to illustrate
this concept. Consider the ASM block for state S2, which is shaded in blue in Figure 7.17.
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In a traditional flowchart, when state S2 is entered, the value of A would first be shifted to
the right. Then we would examine the value of A and if A’s LSB is 1, we would immediately
add 1 to B. But, since the ASM chart represents a sequential circuit, changes in A and B,
which represent the outputs of flip-flops, take place after the active clock edge. The same
clock signal that controls changes in the state of the machine also controls changes in A
and B. When the machine is in state S1, the next active clock edge will only perform the
action specified inside the state box for S1, which is B ← 0. Hence in state S2, the decision
box that tests whether A = 0, as well as the box that checks the value of a0, check the bits
in A before they are shifted. If A = 0, then the FSM will change to state S3 on the next
clock edge (this clock edge also shifts A, which has no effect because A is already 0 in this
case.) On the other hand, if A �= 0, then the FSM does not change to S3, but remains in
S2. At the same time, A is still shifted, and B is incremented if a0 has the value 1. These
timing issues are illustrated in Figure 7.21, which represents a simulation result for a circuit
that implements the ASM chart. We show how the circuit is designed in the following
discussion.

Datapath Circuit
By examining theASM chart for the bit-counting circuit, we can infer the type of circuit

elements needed to implement its datapath. We need a shift register that shifts left-to-right
to implement A. It must have the parallel-load capability because of the conditional output
box in state S1 that loads data into the register. An enable input is also required because
shifting should occur only in state S2. A counter is needed for B, and it needs a parallel-load
capability to initialize the count to 0 in state S1. It is not wise to rely on the counter’s reset
input to clear B to 0 in state S1. In practice, the reset signal is used in a digital system for
only two purposes: to initialize the circuit when power is first applied, or to recover from
an error. The machine changes from state S3 to S1 as a result of s = 0; hence we should
not assume that the reset signal is used to clear the counter.

The datapath circuit is depicted in Figure 7.18. The serial input to the shift register, w,
is connected to 0, because it is not needed. The load and enable inputs on the shift register
are driven by the signals LA and EA. The parallel input to the shift register is named Data,
and its parallel output is A. An n-input NOR gate is used to test whether A = 0. The output
of this gate, z, is 1 when A = 0. Note that the figure indicates the n-input NOR gate by
showing a single input connection to the gate, with the label n attached to it. The counter
has log2(n) bits, with parallel inputs connected to 0 and parallel outputs named B. It also
has a parallel-load input LB and enable input EB control signals.

Control Circuit
For convenience we can draw a second ASM chart that represents only the FSM needed

for the control circuit, as shown in Figure 7.19. The FSM has the inputs s, a0, and z and
generates the outputs EA, LB, EB, and Done. In state S1, LB is asserted, so that 0 is loaded
in parallel into the counter. Note that for the control signals, like LB, instead of writing LB
= 1, we simply write LB to indicate that the signal is asserted. We assume that external
circuitry drives LA to 1 when valid data is present at the parallel inputs of the shift register,
so that the shift register contents are initialized before s changes to 1. In state S2, EA is
asserted to cause a shift operation, and the count enable for B is asserted only if a0 = 1.
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Figure 7.18 Datapath for the ASM chart in Figure 7.17.

Verilog Code
The bit-counting circuit can be described in Verilog code as shown in Figure 7.20. We

have chosen to define A as an eight-bit vector and B as a four-bit vector signal. The ASM
chart in Figure 7.19 can be directly translated into code that describes the required control
circuit. The signal y is used to represent the present state of the FSM, and Y represents the
next state. The FSM is described with three always blocks: the block labeled State_table
specifies the state transitions, the block labeled State_flipflops represents the state flip-flops,
and the block labeled FSM_outputs specifies the generated outputs in each state. A default
value is specified at the beginning of the FSM_outputs block for each output signal, and
then individual output values are specified in the case statement. For example, the default
value of EA is 0, and EA is set to 1 only in state S2. Thus, A will be shifted only when the
FSM is in state S2 and an active clock edge occurs.

The fourth always block defines the up-counter that implements B. The shift register
for A is instantiated at the end of the code; its specification is given in Figure 5.60, but the
parameter value has to be n = 8. Finally, the z signal is defined using the reduction NOR
operator.

We implemented the code in Figure 7.20 in a chip and performed a timing simulation.
Figure 7.21 gives the results of the simulation for A = 00111011. After the circuit is reset,
the input signal LA is set to 1, and the desired data, (3B)16, is placed on the Data input.
When s changes to 1, the next active clock edge causes the FSM to change to state S2. In
this state, each active clock edge increments B if a0 is 1, and shifts A. When A = 0, the
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Figure 7.19 ASM chart for the bit counter control circuit.

next clock edge causes the FSM to change to state S3, where Done is set to 1 and B has the
correct result, B = 5. To check more thoroughly that the circuit is designed correctly, we
should try different values of input data.

7.4 Shift-and-Add Multiplier

We presented a circuit that multiplies two unsigned n-bit binary numbers in Figure 3.35.
The circuit uses a two-dimensional array of identical subcircuits, each of which contains a
full-adder and an AND gate. For large values of n, this approach may not be appropriate
because of the large number of gates needed. Another approach is to use a shift register
in combination with an adder to implement the traditional method of multiplication that
is done by “hand.” Figure 7.22a illustrates the manual process of multiplying two binary
numbers. The product is formed by a series of addition operations. For each bit i in the
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module bitcount (Clock, Resetn, LA, s, Data, B, Done);
input Clock, Resetn, LA, s;
input [7:0] Data;
output reg [3:0] B;
output reg Done;
wire [7:0] A;
wire z;
reg [1:0] Y, y;
reg EA, EB, LB;

// control circuit

parameter S1 = 2’b00, S2 = 2’b01, S3 = 2’b10;

always @(s, y, z)
begin: State_table

case (y)
S1: if (!s) Y = S1;

else Y = S2;
S2: if (z == 0) Y = S2;

else Y = S3;
S3: if (s) Y = S3;

else Y = S1;
default: Y = 2’bxx;

endcase
end

always @(posedge Clock, negedge Resetn)
begin: State_flipflops

if (Resetn == 0)
y <= S1;

else
y <= Y;

end

. . . continued in Part b.

Figure 7.20 Verilog code for the bit-counting circuit (Part a).

multiplier that is 1, we add to the product the value of the multiplicand shifted to the left i
times. This algorithm can be described in pseudo-code as shown in Figure 7.22b, where A
is the multiplicand, B is the multiplier, and P is the product.

An ASM chart that represents the algorithm in Figure 7.22b is given in Figure 7.23.
We assume that an input s is used to control when the machine begins the multiplication
process. As long as s is 0, the machine stays in state S1 and the data for A and B can be
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always @(y, A[0])
begin: FSM_outputs

// defaults
EA = 0; LB = 0; EB = 0; Done = 0;
case (y)

S1: LB = 1;
S2: begin

EA = 1;
if (A[0]) EB = 1;
else EB = 0;

end
S3: Done = 1;

endcase
end

// datapath circuit

// counter B
always @(negedge Resetn, posedge Clock)

if (!Resetn)
B <= 0;

else if (LB)
B <= 0;

else if (EB)
B <= B + 1;

shiftrne ShiftA (Data, LA, EA, 1’b0, Clock, A);
assign z = A;

endmodule

Figure 7.20 Verilog code for the bit-counting circuit (Part b).

loaded from external inputs. In state S2 we test the value of the LSB of B, and if it is 1, we
add A to P. Otherwise, P is not changed. The machine moves to state S3 when B contains
0, because P has the final product in this case. For each clock cycle in which the machine
is in state S2, we shift the value of A to the left, as specified in the pseudo-code in Figure
7.22b. We shift the contents of B to the right so that in each clock cycle b0 can be used to
decide whether or not A should be added to P.

Datapath Circuit
We can now define the datapath circuit. To implement A we need a right-to-left shift

register that has 2n bits. A 2n-bit register is needed for P, and it must have an enable input
because the assignment P ← P + A in state S2 is inside a conditional output box. A 2n-bit
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Figure 7.21 Simulation results for the bit-counting circuit.
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11×
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(a) Manual method

P = 0;
for i = 0 to n � 1 do

if bi = 1 then
P = P + A;

end if ;
Left-shift A;

end for ;

(b) Pseudo-code

Figure 7.22 An algorithm for multiplication.



December 31, 2012 09:13 vra80547_ch07 Sheet number 30 Page number 450 magenta black

450 C H A P T E R 7 • Digital System Design

Shift left A, Shift right B Done

P P A+← B 0= ?

P 0←

s

Load A

b0

Reset

S3

0

1

0

1

0

1
s

S1

S2

1

0

Load B

Figure 7.23 ASM chart for the multiplier.

adder is needed to produce P + A. Note that P is loaded with 0 in state S1, and P is loaded
from the output of the adder in state S2. We cannot assume that the reset input is used to
clear P, because the machine changes from state S3 back to S1 based on the s input, not the
reset input. Hence a 2-to-1 multiplexer is needed for each input to P, to select either 0 or
the appropriate sum bit from the adder. An n-bit left-to-right shift register is needed for B,
and an n-input NOR gate can be used to test whether B = 0.

Figure 7.24 shows the datapath circuit and labels the control signals for the shift reg-
isters. The input data for the shift register that holds A is named DataA. Since the shift
register has 2n bits, the most-significant n data inputs are connected to 0. A single multi-
plexer symbol is shown connected to the register that holds P. This symbol represents 2n
2-to-1 multiplexers that are each controlled by the Psel signal.

Control Circuit
An ASM chart that represents only the control signals needed for the multiplier is given

in Figure 7.25. In state S1, Psel is set to 0 and EP is asserted, so that register P is cleared.
When s = 0, parallel data can be loaded into shift registers A and B by an external circuit
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Figure 7.24 Datapath circuit for the multiplier.

that controls their parallel-load inputs LA and LB. When s = 1, the machine changes to state
S2, where Psel is set to 1 and shifting of A and B is enabled. If b0 = 1, the enable for P
is asserted. The machine changes to state S3 when z = 1, and then remains in S3 and sets
Done to the value 1 as long as s = 1.

Verilog Code
Verilog code for the multiplier is given in Figure 7.26. The number of bits in A and B is

set by the parameter n. For registers that are 2n bits wide, the number of bits is set to n + n.
By changing the value of the parameters, the code can be used for numbers of any size.
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Figure 7.25 ASM chart for the multiplier control circuit.

The always blocks labeled State_table and State_flipflops define the state transitions and
state flip-flops, respectively. The control circuit outputs are specified in the always block
labeled FSM_outputs. The parallel data input on the shift register A is 2n bits wide, but
DataA is only n bits wide. Hence the concatenate operation {{n{1’b0}}, DataA} is used to
prepend n zeros onto DataA for loading into the shift register. The multiplexer needed for
register P is defined using a for loop that defines 2n 2-to-1 multiplexers. Figure 7.27 gives
a simulation result for the circuit generated from the code. After the circuit is reset, LA and
LB are set to 1, and the numbers to be multiplied are placed on the DataA and DataB inputs.
After s is set to 1, the FSM (y) changes to state S2, where it remains until B = 0. For each
clock cycle in state S2, A is shifted to the left, and B is shifted to the right. In three of the
clock cycles in state S2, the contents of A are added to P, corresponding to the three bits
in B that have the value 1. When B = 0, the FSM changes to state S3 and P contains the
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module multiply (Clock, Resetn, LA, LB, s, DataA, DataB, P, Done);
parameter n = 8;
input Clock, Resetn, LA, LB, s;
input [n–1:0] DataA, DataB;
output [n+n–1:0] P;
output reg Done;
wire z;
reg [n+n–1:0] DataP;
wire [n+n–1:0] A, Sum;
reg [1:0] y, Y;
wire [n–1:0] B;
reg EA, EB, EP, Psel;
integer k;

// control circuit

parameter S1 = 2’b00, S2 = 2’b01, S3 = 2’b10;

always @(s, y, z)
begin: State_table

case (y)
S1: if (s == 0) Y = S1;

else Y = S2;
S2: if (z == 0) Y = S2;

else Y = S3;
S3: if (s == 1) Y = S3;

else Y = S1;
default: Y = 2’bxx;

endcase
end

always @(posedge Clock, negedge Resetn)
begin: State_flipflops

if (Resetn == 0)
y <= S1;

else
y <= Y;

end

. . . continued in Part b.

Figure 7.26 Verilog code for the multiplier circuit (Part a).
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always @(s, y, B[0])
begin: FSM_outputs

// defaults
EA = 0; EB = 0; EP = 0; Done = 0; Psel = 0;
case (y)

S1: EP = 1;
S2: begin

EA = 1; EB = 1; Psel = 1;
if (B[0]) EP = 1;
else EP = 0;

end
S3: Done = 1;

endcase
end

//datapath circuit

shiftrne ShiftB (DataB, LB, EB, 1’b0, Clock, B);
defparam ShiftB.n = 8;

shiftlne ShiftA ({{n{1’b0}}, DataA}, LA, EA, 1’b0, Clock, A);
defparam ShiftA.n = 16;

assign z = (B == 0);
assign Sum = A + P;

// define the 2n 2-to-1 multiplexers
always @(Psel, Sum)

for (k = 0; k < n+n; k = k+1)
DataP[k] = Psel ? Sum[k] : 1’b0;

regne RegP (DataP, Clock, Resetn, EP, P);
defparam RegP.n = 16;

endmodule

Figure 7.26 Verilog code for the multiplier circuit (Part b).

correct product, which is (64)16 × (19)16 = (9C4)16. The decimal equivalent of this result
is 100 × 25 = 2500.

The number of clock cycles that the circuit requires to generate the final product is
determined by the left-most digit in B that is 1. It is possible to reduce the number of clock
cycles needed by using more complex shift registers for A and B. If the two right-most bits
in B are both 0, then both A and B could be shifted by two bit positions in one clock cycle.
Similarly, if the three lowest digits in B are 0, then a three bit-position shift can be done,
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Figure 7.27 Simulation results for the multiplier circuit.

and so on. A shift register that can shift by multiple bit positions at once can be built using
a barrel shifter. We leave it as an exercise for the reader to modify the multiplier to make
use of a barrel shifter.

7.5 Divider

The preceding example implements the traditional method of performing multiplication by
hand. In this example we will design a circuit that implements the traditional long-hand
division. Figure 7.28a gives an example of long-hand division. The first step is to try to
divide the divisor 9 into the first digit of the dividend 1, which does not work. Next, we
try to divide 9 into 14, and determine that 1 is the first digit in the quotient. We perform
the subtraction 14 − 9 = 5, bring down the last digit from the dividend to form 50, and
then determine that the next digit in the quotient is 5. The remainder is 50 − 45 = 5, and
the quotient is 15. Using binary numbers, as illustrated in Figure 7.28b, involves the same
process, with the simplification that each digit of the quotient can be only 0 or 1.

Given two unsigned n-bit numbers A and B, we wish to design a circuit that produces
two n-bit outputs Q and R, where Q is the quotient A/B and R is the remainder. The
procedure illustrated in Figure 7.28b can be implemented by shifting the digits in A to the
left, one digit at a time, into a shift register R. After each shift operation, we compare R with
B. If R ≥ B, a 1 is placed in the appropriate bit position in the quotient and B is subtracted
from R. Otherwise, a 0 bit is placed in the quotient. This algorithm is described using
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(a) An example using decimal numbers (b) Using binary numbers

R = 0;
for i = 0 to n � 1 do

Left-shift R || A;
if R B then

qi = 1;
R = R � B ;

else
qi = 0 ;

end if;
end for;

(c) Pseudo-code

Figure 7.28 An algorithm for division.

pseudo-code in Figure 7.28c. The notation R||A is used to represent a 2n-bit shift register
formed using R as the left-most n bits and A as the right-most n bits.

In the long-division pseudo-code, each loop iteration results in setting a digit qi to either
1 or 0. A straightforward way to accomplish this is to shift 1 or 0 into the least-significant
bit of Q in each loop iteration. An ASM chart that represents the divider circuit is shown
in Figure 7.29. The signal C represents a counter that is initialized to n − 1 in the starting
state S1. In state S2, both R and A are shifted to the left, and then in state S3, B is subtracted
from R if R ≥ B. The machine changes to state S4 when C = 0.

Datapath Circuit
We need n-bit shift registers that shift right to left for A, R, and Q. An n-bit register is

needed for B, and a subtractor is needed to produce R − B. We can use an adder module in
which the carry-in is set to 1 and B is complemented. The carry-out, cout , of this module
has the value 1 if the condition R ≥ B is true. Hence the carry-out can be connected to the
serial input of the shift register that holds Q, so that it is shifted into Q in state S3. Since
R is loaded with 0 in state S1 and from the outputs of the adder in state S3, a multiplexer
is needed for the parallel data inputs on R. The datapath circuit is depicted in Figure 7.30.
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Figure 7.29 ASM chart for the divider.

Note that the down-counter needed to implement C and the NOR gate that outputs a 1 when
C = 0 are not shown in the figure.

Control Circuit
An ASM chart that shows only the control signals needed for the divider is given in

Figure 7.31. In state S3 the value of cout determines whether or not the sum output of the
adder is loaded into R. The shift enable on Q is asserted in state S3. We do not have to
specify whether 1 or 0 is loaded into Q, because cout is connected to Q’s serial input in
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Figure 7.30 Datapath circuit for the divider.

the datapath circuit. We leave it as an exercise for the reader to write Verilog code that
represents the ASM chart in Figure 7.31 and the datapath circuit in Figure 7.30.

Enhancements to the Divider Circuit
Using the ASM chart in Figure 7.31 causes the circuit to loop through states S2 and

S3 for 2n clock cycles. If these states can be merged into a single state, then the number of
clock cycles needed can be reduced to n. In state S3, if cout = 1, we load the sum output
(result of the subtraction) from the adder into R, and (assuming z = 0) change to state S2.
In state S2 we then shift R (and A) to the left. To combine S2 and S3 into a new state, called
S2, we need to be able to place the sum into the left-most bits of R while at the same time
shifting the MSB of A into the LSB of R. This step can be accomplished by using a separate
flip-flop for the LSB of R. Let the output of this flip-flop be called rr0. It is initialized to 0
when s = 0 in state S1. Otherwise, the flip-flop is loaded from the MSB of A. In state S2,
if cout = 0, R is shifted left and rr0 is shifted into R. But if cout = 1, R is loaded in parallel
from the sum outputs of the adder.

Figure 7.32 illustrates how the division example from Figure 7.28b can be performed
using n clock cycles. The table in the figure shows the values of R, rr0, A, and Q in each step
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Figure 7.31 ASM chart for the divider control circuit.

of the division. In the datapath circuit in Figure 7.30, we use a separate shift register for Q.
This register is not actually needed, because the digits in the quotient can be shifted into the
least-significant bit of the register used for A. In Figure 7.32 the digits of Q that are shifted
into A are shown in blue. The first row in the table represents loading of initial data into
registers A (and B) and clearing R and rr0 to 0. In the second row of the table, labeled clock
cycle 0, the diagonal blue arrow shows that the left-most bit of A (1) is shifted into rr0. The
number in R||rr0 is now 000000001, which is smaller than B (1001). In clock cycle 1, rr0 is
shifted into R, and the MSB of A is shifted into rr0. Also, as shown in blue, a 0 is shifted into
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Figure 7.32 An example of division using n = 8 clock cycles.

the LSB of Q (A). The number in R||rr0 is now 000000010, which is still smaller than B.
Hence, in clock cycle 2 the same actions are performed as for clock cycle 1. These actions
are also performed in clock cycles 3 and 4, at which point R||rr0 = 000010001. Since this is
larger than B, in clock cycle 5 the result of the subtraction 000010001 − 1001 = 00001000
is loaded into R. The MSB of A (1) is still shifted into rr0, and a 1 is shifted into Q. In clock
cycles 6, 7, and 8, the number in R||rr0 is larger than B; hence in each of these cycles the
result of the subtraction R||rr0 − B is loaded into R, and a 1 is loaded into Q. After clock
cycle 8 the correct result, Q = 00001111 and R = 00000101, is obtained. The bit rr0 is not
a part of the final result.

An ASM chart that shows the values of the required control signals for the enhanced
divider is depicted in Figure 7.33. The signal ER0 is used in conjunction with the flip-flop
that has the output rr0. When ER0 = 0, the value 0 is loaded into the flip-flop. When ER0
is set to 1, the MSB of shift register A is loaded into the flip-flop. In state S1, if s = 0, then
LR is asserted to initialize R to 0. Registers A and B can be loaded with data from external
inputs. When s changes to 1, the machine makes a transition to state S2 and at the same
time shifts R||R0||A to the left. In state S2, if cout = 1, then R is loaded in parallel from
the sum outputs of the adder. At the same time, R0||A is shifted left (rr0 is not shifted into
R in this case). If cout = 0, then R||R0||A is shifted left. The ASM chart shows how the
parallel-load and enable inputs on the registers have to be controlled to achieve the desired
operation.

The datapath circuit for the enhanced divider is illustrated in Figure 7.34. As discussed
for Figure 7.32, the digits of the quotient Q are shifted into register A. Note that one of
the n-bit data inputs on the adder module is composed of the n − 1 least-significant bits in
register R concatenated with bit rr0 on the right.
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Figure 7.33 ASM chart for the enhanced divider control circuit.

Verilog Code
Figure 7.35 shows Verilog code that represents the enhanced divider. The parameter n

sets the number of bits in the operands. The State_table, State_flipflops, and FSM_outputs
always blocks describe the control circuit, as in the previous examples. The shift registers
and counters in the datapath circuit are instantiated at the bottom of the code. The signal
rr0 in Figure 7.32 is represented in the code by the signal R0. This signal is implemented
as the output of the muxdff component; the code for this subcircuit is shown in Figure 5.47.
Note that the adder that produces the Sum signal has one input defined as the concatenation
of R with R0. The multiplexer needed for the input to R is represented by the DataR signal.
This multiplexer is defined in the last statement of the code.
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Figure 7.34 Datapath circuit for the enhanced divider.
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module divider (Clock, Resetn, s, LA, EB, DataA, DataB, R, Q, Done);
parameter n = 8, logn = 3;
input Clock, Resetn, s, LA, EB;
input [n–1:0] DataA, DataB;
output [n–1:0] R, Q;
output reg Done;
wire Cout, z, R0;
wire [n–1:0] DataR;
wire [n:0] Sum;
reg [1:0] y, Y;
wire [n–1:0] A, B;
wire [logn–1:0] Count;
reg EA, Rsel, LR, ER, ER0, LC, EC;
integer k;

// control circuit

parameter S1 = 2’b00, S2 = 2’b01, S3 = 2’b10;

always @(s, y, z)
begin: State_table

case (y)
S1: if (s == 0) Y = S1;

else Y = S2;
S2: if (z == 0) Y = S2;

else Y = S3;
S3: if (s == 1) Y = S3;

else Y = S1;
default: Y = 2’bxx;

endcase
end

always @(posedge Clock, negedge Resetn)
begin: State_flipflops

if (Resetn == 0)
y <= S1;

else
y <= Y;

end

. . . continued in Part b.

Figure 7.35 Verilog code for the divider circuit (Part a).
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always @(y, s, Cout, z)
begin: FSM_outputs

// defaults
LR = 0; ER = 0; ER0 = 0; LC = 0; EC = 0; EA = 0;
Rsel = 0; Done = 0;
case (y)

S1: begin
LC = 1; ER = 1;
if (s == 0)
begin

LR = 1; ER0 = 0;
end
else
begin

LR = 0; EA = 1; ER0 = 1;
end

end
S2: begin

Rsel = 1; ER = 1; ER0 = 1; EA = 1;
if (Cout) LR = 1;
else LR = 0;
if (z == 0) EC = 1;
else EC = 0;

end
S3: Done = 1;

endcase
end

. . . continued in Part c.

Figure 7.35 Verilog code for the divider circuit (Part b).

A simulation result for the circuit produced from the code is given in Figure 7.36. The
data A = A6 and B = 8 is loaded, and then s is set to 1. The circuit changes to state S2
and concurrently shifts R, R0, and A to the left. The output of the shift register that holds A
is labeled Q in the simulation results because this shift register contains the quotient when
the division operation is complete. On the first three active clock edges in state S2, the
number represented by R||R0 is less than the number in B (8); hence R||R0||A is shifted
left on each clock edge, and 0 is shifted into Q. In the fourth consecutive clock cycle for
which the FSM has been in state S2, the contents of R are 00000101 = (5)10, and R0 is
0; hence R||R0 = 000001010 = (10)10. On the next active clock edge, the output of the
adder, which is 10 − 8 = 2, is loaded into R, and 1 is shifted into Q. After n clock cycles in
state S2, the circuit changes to state S3, and the correct result, Q = 14 = (20)10 and R = 6,
is obtained.
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//datapath circuit

regne RegB (DataB, Clock, Resetn, EB, B);
defparam RegB.n = n;

shiftlne ShiftR (DataR, LR, ER, R0, Clock, R);
defparam ShiftR.n = n;

muxdff FF_R0 (1’b0, A[n–1], ER0, Clock, R0);
shiftlne ShiftA (DataA, LA, EA, Cout, Clock, A);

defparam ShiftA.n = n;
assign Q = A;
downcount Counter (Clock, EC, LC, Count);

defparam Counter.n = logn;

assign z = (Count == 0);
assign Sum = {1’b0, R[n–2:0], R0} + {1’b0, B} + 1;
assign Cout = Sum[n];

// define the n 2-to-1 multiplexers
assign DataR = Rsel ? Sum : 0;

endmodule

Figure 7.35 Verilog code for the divider circuit (Part c).

Figure 7.36 Simulation results for the divider circuit.
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7.6 Arithmetic Mean

Assume that k n-bit numbers are stored in a set of registers R0, . . . , Rk−1. We wish to design
a circuit that computes the mean M of the numbers in the registers. The pseudo-code for
a suitable algorithm is shown in Figure 7.37a. Each iteration of the loop adds the contents
of one of the registers, denoted Ri, to a Sum variable. After the sum is computed, M is
obtained as Sum/k. We assume that integer division is used, so a remainder R, not shown
in the code, is produced as well.

An ASM chart is given in Figure 7.37b. While the start input, s, is 0, the registers can
be loaded from external inputs. When s becomes 1, the machine changes to state S2, where
it remains while C �= 0, and computes the summation (C is a counter that represents i in
Figure 7.37a). When C = 0, the machine changes to state S3 and computes M = Sum/k.
From the previous example, we know that the division operation requires multiple clock
cycles, but we have chosen not to indicate this in the ASM chart. After computing the
division operation, state S4 is entered and Done is set to 1.

Datapath Circuit

The datapath circuit for this task is more complex than in our previous examples. It is
depicted in Figure 7.38. We need a register with an enable input to hold Sum. For simplicity,
assume that the sum can be represented in n bits without overflowing. A multiplexer is
required on the data inputs on the Sum register, to select 0 in state S1 and the sum outputs
of an adder in state S2. The Sum register provides one of the data inputs to the adder. The
other input has to be selected from the data outputs of one of the k registers. One way
to select among the registers is to connect them to the data inputs of a k-to-1 multiplexer
that is connected to the adder. The select lines on the multiplexer can be controlled by the
counter C. To compute the division operation, we can use the divider circuit designed in
Section 7.5.

The circuit in Figure 7.38 is based on k = 4, but the same circuit structure can be
used for larger values of k. Note that the enable inputs on the registers R0 through R3 are
connected to the outputs of a 2-to-4 decoder that has the two-bit input RAdd, which stands
for “register address.” The decoder enable input is driven by the ER signal. All registers
are loaded from the same input lines, Data. Since k = 4, we could perform the division
operation simply by shifting Sum two bits to the right, which can be done in one clock cycle
with a shift register that shifts by two digits. To obtain a more general circuit that works
for any value of k, we use the divider circuit designed in Section 7.5.

Control Circuit

Figure 7.39 gives anASM chart for the FSM needed to control the circuit in Figure 7.38.
While in state S1, data can be loaded into registers R0, . . . , Rk−1. But no control signals
have to be asserted for this purpose, because the registers are loaded under control of the
ER and RAdd inputs, as discussed above. When s = 1, the FSM changes to state S2, where
it asserts the enable ES on the Sum register and allows C to decrement. When the counter
reaches 0 (z = 1), the machine enters state S3, where it asserts the LA and EB signals to
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Sum = 0;
for i = k � 1 down to 0 do

Sum = Sum + R i

end for ;
M = Sum k ;

(a) Pseudo-code
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Figure 7.37 An algorithm for finding the mean of k numbers.
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Figure 7.38 Datapath circuit for the mean operation.
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Figure 7.39 ASM chart for the mean operation control circuit.

load the Sum and k into the A and B inputs of the divider circuit, respectively. The FSM then
enters state S4 and asserts the Div signal to start the division operation. When it is finished,
the divider circuit sets zz = 1, and the FSM moves to state S5. The mean M appears on
the Q and R outputs of the divider circuit. The Div signal must still be asserted in state S5
to prevent the divider circuit from reinitializing its registers. Note that in the ASM chart in
Figure 7.37b, only one state is shown for computing M = Sum/k, but in Figure 7.39, states
S3 and S4 are used for this purpose. It is possible to combine states S3 and S4, which we
will leave as an exercise for the reader (Problem 7.10).
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7.7 Sort Operation

Given a list of k unsigned n-bit numbers stored in a set of registers R0, . . . , Rk−1, we wish to
design a circuit that can sort the list (contents of the registers) in ascending order. Pseudo-
code for a simple sorting algorithm is shown in Figure 7.40. It is based on finding the smallest
number in the sublist Ri, . . . , Rk−1 and moving that number into Ri, for i = 1, 2, . . . , k − 2.
Each iteration of the outer loop places the number in Ri into A. Each iteration of the inner
loop compares this number to the contents of another register Rj. If the number in Rj is
smaller than A, the contents of Ri and Rj are swapped and A is changed to hold the new
contents of Ri.

An ASM chart that represents the sorting algorithm is shown in Figure 7.41. In the
initial state S1, while s = 0 the registers are loaded from external data inputs and a counter
Ci that represents i in the outer loop is cleared. When the machine changes to state S2, A is
loaded with the contents of Ri. Also, Cj, which represents j in the inner loop, is initialized
to the value of i. State S3 is used to initialize j to the value i + 1, and state S4 loads the
value of Rj into B. In state S5, A and B are compared, and if B < A, the machine moves to
state S6. States S6 and S7 swap the values of Ri and Rj. State S8 loads A from Ri. Although
this step is necessary only for the case where B < A, the flow of control is simpler if this
operation is performed in both cases. If Cj is not equal to k − 1, the machine changes from
S8 to S4, thus remaining in the inner loop. If Cj = k − 1 and Ci is not equal to k − 2, then
the machine stays in the outer loop by changing to state S2.

Datapath Circuit

There are many ways to implement a datapath circuit that meets the requirements of
the ASM chart in Figure 7.41. One possibility is illustrated in Figures 7.42 and 7.43.
Figure 7.42 shows how the registers R0, . . . , Rk−1 can be connected to registers A and B
using 4-to-1 multiplexers. We assume the value k = 4 for simplicity. Registers A and B are
connected to a comparator subcircuit and, through multiplexers, back to the inputs of the

for i = 0 to k 2 do
A = Ri ;
for j = i C 1 to k 1 do

B = R j ;
if B A then

Ri = B ;
R j = A;
A = Ri ;

end if;
end for;

end for;

<

Figure 7.40 Pseudo-code for the sort operation.
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Figure 7.41 ASM chart for the sort operation.
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Figure 7.42 A part of the datapath circuit for the sort operation.

registers R0, . . . , Rk−1. The registers can be loaded with initial (unsorted) data using the
DataIn lines. The data is written (loaded) into each register by asserting the WrInit control
signal and placing the address of the register on the RAdd input. The tri-state driver driven
by the Rd control signal is used to output the contents of the registers on the DataOut output.

The signals Rin0, . . . , Rink−1 are controlled by the 2-to-4 decoder shown in Figure
7.43. If Int = 1, the decoder is driven by one of the counters Ci or Cj. If Int = 0, then the
decoder is driven by the external input RAdd. The signals zi and zj are set to 1 if Ci = k − 2
and Cj = k − 1, respectively. An ASM chart that shows the control signals used in the
datapath circuit is given in Figure 7.44.
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Figure 7.43 A part of the datapath circuit for the sort operation.

Verilog Code
Verilog code for the sorting operation is presented in Figure 7.45. The FSM that

controls the sort operation is described in the same way as in previous examples, using the
always blocks State_table, State_ flipflops, and FSM_outputs. Following these blocks, the
code instantiates the registers R0 to R3, as well as A and B. The counters Ci and Cj have the
instance names OuterLoop and InnerLoop, respectively. The multiplexers with the outputs
CMux and IMux are specified using the conditional operator. The 4-to-1 multiplexer in
Figure 7.42 is defined by the case statement that specifies the value of the ABData signal
for each value of IMux. The 2-to-4 decoder in Figure 7.43 with the outputs Rin0, . . . , Rin3

is defined by the case statement that sets the value of the concatenated signals {Rin3, Rin2,
Rin1, Rin0}. Finally, the code specifies the values of the zi and zj signals, and defines the
tri-state drivers for the DataOut output.
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Figure 7.44 ASM chart for the control circuit.
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module sort (Clock, Resetn, s, WrInit, Rd, DataIn, RAdd, DataOut, Done);
parameter n = 4;
input Clock, Resetn, s, WrInit, Rd;
input [n–1:0] DataIn;
input [1:0] RAdd;
output [n–1:0] DataOut;
output reg Done;
wire [1:0] Ci, Cj, CMux, IMux;
wire [n–1:0] R0, R1, R2, R3, A, B, RData, ABMux;
wire BltA, zi, zj;
reg Int, Csel, Wr, Ain, Bin, Bout;
reg LI, LJ, EI, EJ, Rin0, Rin1, Rin2, Rin3;
reg [3:0] y, Y;
reg [n–1:0] ABData;

// control circuit
parameter S1 = 4’b0000, S2 = 4’b0001, S3 = 4’b0010, S4 = 4’b0011;
parameter S5 = 4’b0100, S6 = 4’b0101, S7 = 4’b0110, S8 = 4’b0111, S9 = 4’b1000;

always @(s, BltA, zj, zi, y)
begin: State_table

case (y)
S1: if (s == 0) Y = S1;

else Y = S2;
S2: Y = S3;
S3: Y = S4;
S4: Y = S5;
S5: if (BltA) Y = S6;

else Y = S8;
S6: Y = S7;
S7: Y = S8;
S8: if (!zj) Y = S4;

else if (!zi) Y = S2;
else Y = S9;

S9: if (s) Y = S9;
else Y = S1;

default: Y = 4’bx;
endcase

end

. . . continued in Part b.

Figure 7.45 Verilog code for the sorting circuit (Part a).
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always @(posedge Clock, negedge Resetn)
begin: State_flipflops

 (Resetn == 0)
y <= S1;

else
y <= Y;

end

always @(y, zj, zi)
begin: FSM_outputs

// defaults
Int = 1; Done = 0; LI = 0; LJ = 0; EI = 0; EJ = 0; Csel = 0;
Wr = 0; Ain = 0; Bin = 0; Bout = 0;
case (y)

S1: begin LI = 1; Int = 0; end
S2: begin Ain = 1; LJ = 1; end
S3: EJ = 1;
S4: begin Bin = 1; Csel = 1; end
S5:; // no outputs asserted in this state
S6: begin Csel = 1; Wr = 1; end
S7: begin Wr = 1; Bout = 1; end
S8: begin

Ain = 1;
if (!zj) EJ = 1;
else
begin

EJ = 0;
if (!zi) EI = 1;
else EI = 0;

end
end

S9: Done = 1;
endcase

end

. . . continued in Part c.

Figure 7.45 Verilog code for the sorting circuit (Part b).

We implemented the code in Figure 7.45 in an FPGAchip. Figure 7.46 gives an example
of a simulation result. Part (a) of the figure shows the first half of the simulation, from 0
to 1.25 μs, and part (b) shows the second half, from 1.25 μs to 2.5 μs. After resetting the
circuit, WrInit is set to 1 for four clock cycles, and unsorted data is written into the four
registers using the DataIn and RAdd inputs. After s is changed to 1, the FSM changes to
state S2. States S2 to S4 load A with the contents of R0 (3) and B with the contents of
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//datapath circuit

regne Reg0 (RData, Clock, Resetn, Rin0, R0);
defparam Reg0.n = n;

regne Reg1 (RData, Clock, Resetn, Rin1, R1);
defparam Reg1.n = n;

regne Reg2 (RData, Clock, Resetn, Rin2, R2);
defparam Reg2.n = n;

regne Reg3 (RData, Clock, Resetn, Rin3, R3);
defparam Reg3.n = n;

regne RegA (ABData, Clock, Resetn, Ain, A);
defparam RegA.n = n;

regne RegB (ABData, Clock, Resetn, Bin, B);
defparam RegB.n = n;

assign BltA = (B < A) ? 1 : 0;
assign ABMux = (Bout == 0) ? A : B;
assign RData = (WrInit == 0) ? ABMux : DataIn;

upcount OuterLoop (2’b00, Resetn, Clock, EI, LI, Ci);
upcount InnerLoop (Ci, Resetn, Clock, EJ, LJ, Cj);

assign CMux = (Csel == 0) ? Ci : Cj;
assign IMux = (Int == 1) ? CMux : RAdd;

. . . continued in Part d .

Figure 7.45 Verilog code for the sorting circuit (Part c).

R1 (2). State S5 compares B with A, and since B < A, the FSM uses states S6 and S7 to
swap the contents of registers R0 and R1. In state S8, A is reloaded from R0, which now
contains 2. Since zj is not asserted, the FSM increments the counter Cj and changes back
to state S4. Register B is now loaded with the contents of R2 (4), and the FSM changes to
state S5. Since B = 4 is not less than A = 2, the machine changes to S8 and then back to
S4. Register B is now loaded with the contents of R3 (1), which is then compared against
A = 2 in state S5. The contents of R0 and R3 are swapped, and the machine changes to S8.
At this point, the register contents are R0 = 1, R1 = 3, R2 = 4, and R3 = 2. Since zj = 1
and zi = 0, the FSM performs the next iteration of the outer loop by changing to state S2.
Jumping forward in the simulation time, in Figure 7.46b the circuit reaches the state in
which Ci = 2, Cj = 3, and the FSM is in state S8. The FSM then changes to state S9 and
sets Done to the value 1. The correctly sorted data is read out of the registers by setting the
signal Rd = 1 and using the RAdd inputs to select each of the registers.
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always @(WrInit, Wr, IMux, R0, R1, R2, R3)
begin

case (IMux)
0: ABData = R0;
1: ABData = R1;
2: ABData = R2;
3: ABData = R3;

endcase

if (WrInit Wr)
case (IMux)

0: {Rin3, Rin2, Rin1, Rin0} = 4’b0001;
1: {Rin3, Rin2, Rin1, Rin0} = 4’b0010;
2: {Rin3, Rin2, Rin1, Rin0} = 4’b0100;
3: {Rin3, Rin2, Rin1, Rin0} = 4’b1000;

endcase
else {Rin3, Rin2, Rin1, Rin0} = 4’b0000;

end

assign zi = (Ci == 2);
assign zj = (Cj == 3);
assign DataOut = (Rd == 0) ? ’bz : ABData;

endmodule

Figure 7.45 Verilog code for the sorting circuit (Part d ).

7.8 Clock Synchronization and Timing Issues

In previous sections we presented several examples of logic circuits that illustrate how a
designer may approach the task of designing larger systems. In this section we will examine
some timing aspects of such systems.

7.8.1 Clock Distribution

In Chapter 5 we discussed the need to deal with the clock skew problem. For proper
operation of synchronous sequential circuits, it is essential to minimize the clock skew as
much as possible. Chips that contain many flip-flops, such as PLDs, use carefully designed
networks of wires to distribute the clock signal to the flip-flops. Figure 7.47 gives an
example of a clock-distribution network. Each node labeled ff represents the clock input
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(a) Loading the registers and starting the sort operation

(b) Completing the sort operation and reading the registers

Figure 7.46 Simulation results for the sort operation.
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Figure 7.47 An H tree clock distribution network.

of a flip-flop; for clarity, the flip-flops are not shown. The buffer on the left of the figure
produces the clock signal. This signal is distributed to the flip-flops such that the length of
the wire between each flip-flop and the clock source is the same. Due to the appearance of
sections of the wires, which resemble the letter H, the clock distribution network is known
as an H tree. In PLDs the term global clock refers to the clock network. A PLD chip
usually provides one or more global clocks that can be connected to all flip-flops. When
designing a circuit to be implemented in such a chip, a good design practice is to connect
all the flip-flops in the circuit to a single global clock.

It is useful to be able to ensure that a sequential circuit is reset into a known state when
power is first applied to the circuit. A good design practice is to connect the asynchronous
reset (clear) inputs of all flip-flops to a wiring network that provides a low-skew reset signal.
PLDs usually provide a global reset wiring network for this purpose.
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7.8.2 Flip-Flop Timing Parameters

We discussed the timing parameters for storage elements in Chapter 5. Data to be clocked
into a flip-flop must be stable tsu before the active clock edge and must remain stable th after
the clock edge. A change in the value of the output Q appears after the clock-to-Q delay,
tcQ. An output delay time, tod , is required for the change in Q to propagate to an output pin
on the chip. These timing parameters account for the behavior of an individual flip-flop
without considering how the flip-flop is connected to other circuitry in an integrated circuit
chip.

Figure 7.48 depicts a flip-flop as part of an integrated circuit. Connections are shown
from the flip-flop’s clock, D, and Q terminals to pins on the chip package. There is an input
buffer associated with each pin on the chip. Other circuitry may also be connected to the
flip-flop; the shaded box represents a combinational circuit connected to D. The propagation
delays between the pins on the chip package and the flip-flop are labeled in the figure as
tData, tClock , and tod .

In digital systems the output signals from one chip are used as the input signals to
another chip. Often the flip-flops in all chips are driven by a common clock that has low
skew. The signals must propagate from the Q outputs of flip-flops in one chip to the D
inputs of flip-flops in another chip. To ensure that all timing specifications are met, it is
necessary to consider the output delays in one chip and the input delays in another.

The tco delay determines how long it takes from when an active clock edge occurs at
the clock pin on the chip package until a change in the output of a flip-flop appears at an
output pin on the chip. This delay consists of three main parts. The clock signal must first
propagate from its input pin on the chip to the flip-flop’s Clock input. This delay is labeled
tClock in Figure 7.48. After the clock-to-Q delay tcQ, the flip-flop produces a new output,
which takes tod to propagate to the output pin. An example of timing parameters taken from
a commercial CPLD chip is tClock = 1.5 ns, tcQ = 1 ns, and tod = 2 ns. These parameters
give the delay from the active clock edge to the change on the output pin as tco = 4.5 ns.

D Q

Data

Clock

Chip package pin

A

B

tClock

tData

Out

tod

Figure 7.48 A flip-flop in an integrated circuit chip.



December 31, 2012 09:13 vra80547_ch07 Sheet number 62 Page number 482 magenta black

482 C H A P T E R 7 • Digital System Design

Data

Clock

A

3 ns
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1.5 ns

B

Figure 7.49 Flip-flop timing in a chip.

If chips are separated by a large distance, the propagation delays between them must
be taken into consideration. But in most cases the distance between chips is small, and the
propagation time of signals between the chips is negligible. Once a signal reaches the input
pin on a chip, the relative values of tData and tClock (see Figure 7.48) must be considered.
For example, in Figure 7.49 we assume that tData = 4.5 ns and tClock = 1.5 ns. The setup
time for the flip-flops in the chip is specified as tsu = 3 ns. In the figure the Data signal
changes from low to high 3 ns before the positive clock edge, which should meet the setup
requirements. The Data signal takes 4.5 ns to reach the flip-flop, whereas the Clock signal
takes only 1.5 ns. The signal labeled A and the clock signal labeled B reach the flip-flop
at the same time. The setup time requirement is violated, and the flip-flop may become
unstable. To avoid this condition, it is necessary to increase the setup time as seen from
outside the chip.

The hold time for flip-flops is also affected by chip-level delays. The result is usually a
reduction in the hold time, rather than an increase. For example, with the timing parameters
in Figure 7.49 assume that the hold time is th = 2 ns. Assume that the signal at the Data pin
on the chip changes value at exactly the same time that an active edge occurs at the Clock
pin. The change in the Clock signal will reach node B 4.5 − 1.5 = 3 ns before the change
in Data reaches node A. Hence even though the external change in Data is coincident with
the clock edge, the required hold time of 2 ns is not violated.

For large circuits, ensuring that flip-flop timing parameters are properly adhered to is
a challenge. Both the timing parameters of the flip-flops themselves and the relative delays
incurred by the clock and data signals must be considered. CAD systems provide tools that
can check the setup and hold times at all flip-flops automatically. This task is done using
timing simulation, as well as special-purpose timing-analysis tools.

7.8.3 Asynchronous Inputs to Flip-Flops

In our examples of synchronous sequential circuits, we have assumed that changes in all
input signals occur shortly after an active clock edge. The rationale for this assumption is
that the inputs to one circuit are produced as the outputs of another circuit, and the same
clock signal is used for both circuits. In practice, some of the inputs to a circuit may be
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Figure 7.50 Asynchronous inputs.

generated asynchronously with respect to the clock signal. If these signals are connected
to the D input of a flip-flop, then the setup or hold times may be violated.

When a flip-flop’s setup or hold times are violated, the flip-flop’s output may assume a
voltage level that does not correspond to either logic value 0 or 1. We say that the flip-flop is
in a metastable state. The flip-flop eventually settles in one of the stable states, 0 or 1, but the
time required to recover from the metastable state is not predictable. A common approach
for dealing with asynchronous inputs is illustrated in Figure 7.50. The asynchronous data
input is connected to a two-bit shift register. The output of the first flip-flop, labeled A in
the figure, will sometimes become metastable. But if the clock period is sufficiently long,
then A will recover to a stable logic value before the next clock pulse occurs. Hence the
output of the second flip-flop will not become metastable and can safely be connected to
other parts of the circuit. The synchronization circuit introduces a delay of one clock cycle
before the signal can be used by the rest of the circuit.

Commercial chips, such as PLDs, specify the minimum allowable clock period that has
to be used for the circuit in Figure 7.50 to solve the metastability problem. In practice, it is
not possible to guarantee that node A will always be stable before a clock edge occurs. The
data sheets specify a probability of node A being stable, as a function of the clock period.
We will not pursue this issue further; the interested reader can refer to references [10, 11]
for a more detailed discussion.

7.8.4 Switch Debouncing

Inputs to a logic circuit are sometimes generated by mechanical switches. A problem with
such switches is that they bounce away from their contact points when changed from one
position to the other. Figure 7.51a shows a single-pole single-throw switch that provides
an input to a logic circuit. If the switch is open, then the Data signal has the value 1. When
the switch is thrown to the closed position, Data becomes 0, but the switch bounces for
some time, causing Data to oscillate between 1 and 0. The bouncing typically persists for
about 10 ms.

One approach to deal with this problem is to add a capacitor, C, between the Data node
and ground. When the switch is open, C is charged to the voltage VDD. When the switch is
thrown to the closed position, C is quickly discharged to 0 V (ground) through the switch
which has a resistance close to zero ohm. Now, when the switch contact bounces away
from its closed position, C will start to charge toward VDD again. But, this charging will be
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(a) Single-pole single-throw switch
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(b) Single-pole double-throw switch with a basic SR latch

Figure 7.51 Switch debouncing circuit.

slower due to the resistor R. By choosing the right sizes of R and C, it is possible to prevent
the Data node from significantly changing its voltage during bouncing.

Another possible solution is to use a circuit, such as a counter, to measure an appropri-
ately long delay to wait for the bouncing to stop (see Problem 7.20).

A good approach for dealing with switch bouncing is depicted in Figure 7.51b. It uses a
single-pole double-throw switch and a basic SR latch to generate an input to a logic circuit.
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When the switch is in the bottom position, the R input on the latch is 0 and Data = 0. When
the switch is thrown to the top position, the S input on the latch becomes 0, which sets
Data to 1. If the switch bounces away from the top position, the inputs to the latch become
R = S = 1 and the value Data = 1 is stored by the latch. When the switch is thrown to
the bottom position, Data changes to 0 and this value is stored in the latch if the switch
bounces. Note that when a switch bounces, it cannot bounce fully between the S and R
terminals; it only bounces slightly away from one of the terminals and then back to it.

7.9 Concluding Remarks

This chapter has provided several examples of digital systems that include one or more
FSMs as well as building blocks like adders, registers, shift registers, and counters. We have
shown how ASM charts can be used as an aid for designing a digital system, and we have
shown how the circuits can be described using Verilog code. A number of practical issues
have been discussed, such as clock distribution, synchronization of asynchronous inputs,
and switch debouncing. Some notable books that also deal with the material presented in
this chapter include [3–10].

Problems

7.1 In Section 7.1 we showed a digital system with three registers, R1 to R3, and we designed a
control circuit that can be used to swap the contents of registers R1 and R2. Give an ASM
chart that represents this digital system and the swap operation.

7.2 (a) For the ASM chart derived in Problem 7.1, show another ASM chart that specifies the
required control signals to control the datapath circuit. Assume that multiplexers are used
to implement the bus that connects the registers, as shown in Figure 7.4.
(b) Write complete Verilog code for the system in Problem 7.1, including the control circuit
described in part (a).
(c) Synthesize a circuit from the Verilog code written in part (b) and show a timing simulation
that illustrates correct functionality of the circuit.

7.3 In Section 7.2 we designed a processor that performs the operations listed in Table 7.1.
Design a modified circuit that performs an additional operation Swap Rx, Ry. This operation
swaps the contents of registers Rx and Ry. Use three bits f2 f1 f0 to represent the input F
shown in Figure 7.11 because there are now five operations, rather than four. Add a new
register, named Tmp, into the system, to be used for temporary storage during the swap
operation. Show logic expressions for the outputs of the control circuit, as was done in
Section 7.2.

7.4 In Section 7.2 we gave the design for a circuit that works as a processor. Give an ASM
chart that describes the functionality of this processor.
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7.5 (a) For the ASM chart derived in Problem 7.4, show another ASM chart that specifies
the required control signals to control the datapath circuit in the processor. Assume that
multiplexers are used to implement the bus that connects the registers, R0 to R3, in the
processor.
(b) Write complete Verilog code for the system in Problem 7.4, including the control circuit
described in part (a).
(c) Synthesize a circuit from the Verilog code written in part (b) and show a timing simulation
that illustrates correct functionality of the circuit.

7.6 TheASM chart in Figure 7.17, which describes the bit-counting circuit, includes Moore-type
outputs in states S1, S2, and S3, and it has a Mealy-type output in state S2.
(a) Show how the ASM chart can be modified such that it has only Moore-type outputs in
state S2.
(b) Give the ASM chart for the control circuit corresponding to part (a).
(c) Give Verilog code that represents the modified control circuit.

7.7 Figure 7.24 shows the datapath circuit for the shift-and-add multiplier. It uses a shift register
for B so that b0 can be used to decide whether or not A should be added to P. A different
approach is to use a normal register to hold operand B and to use a counter and multiplexer
to select bit bi in each stage of the multiplication operation.
(a) Show the ASM chart that uses a normal register for B, instead of a shift register.
(b) Show the datapath circuit corresponding to part (a).
(c) Give the ASM chart for the control circuit corresponding to part (b).
(d) Give Verilog code that represents the multiplier circuit.

7.8 Write Verilog code for the divider circuit that has the datapath in Figure 7.30 and the control
circuit represented by the ASM chart in Figure 7.31.

7.9 Section 7.5 shows how to implement the traditional long division that is done by “hand.”
A different approach for implementing integer division is to perform repeated subtraction
as indicated in the pseudo-code in Figure P7.1.
(a) Give an ASM chart that represents the pseudo-code in Figure P7.1.
(b) Show the datapath circuit corresponding to part (a).
(c) Give the ASM chart for the control circuit corresponding to part (b).
(d) Give Verilog code that represents the divider circuit.
(e) Discuss the relative merits and drawbacks of your circuit in comparison with the circuit
designed in Section 7.5.

Q = 0;
R = A;
while ((R B) > 0) do

R = R B ;
Q = Q + 1;

end while;

Figure P7.1 Pseudo-code for integer division.
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7.10 In the ASM chart in Figure 7.39, the two states S3 and S4 are used to compute the mean
M = Sum/k. Show a modified ASM chart that combines states S3 and S4 into a single
state, called S3.

7.11 Write Verilog code for the FSM represented by your ASM chart defined in Problem 7.10.

7.12 In the ASM chart in Figure 7.41, we specify the assignment Cj ← Ci in state S2, and then
in state S3 we increment Cj by 1. Is it possible to eliminate state S3 if the assignment
Cj ← Ci + 1 is performed in S2? Explain any implications that this change has on the
control and datapath circuits.

7.13 Figure 7.40 gives pseudo-code for the sorting operation in which the registers being sorted
are indexed using variables i and j. In the ASM chart in Figure 7.41, variables i and j are
implemented using the counters Ci and Cj. A different approach is to implement i and j
using two shift registers.
(a) Redesign the circuit for the sorting operation using the shift registers instead of the
counters to index registers R0, . . . , R3.
(b) Give Verilog code for the circuit designed in part (a).
(c) Discuss the relative merits and drawbacks of your circuit in comparison with the circuit
that uses the counters Ci and Cj.

7.14 Design a circuit that finds the log2 of an operand that is stored in an n-bit register. Show
all steps in the design process and state any assumptions made. Give Verilog code that
describes your circuit.

7.15 The circuit designed in Section 7.6 uses an adder to compute the sum of the contents of
the registers. The divider subcircuit used to compute M = Sum/k also includes an adder.
Show how the circuit can be redesigned so that it contains only a single adder subcircuit
that is used both for the summation operation and the division operation. Show only the
extra circuitry needed to connect to the adder; and explain its operation.

7.16 Give Verilog code for the circuit designed in Problem 7.15, including both the datapath and
control circuits.

7.17 The pseudo-code for the sorting operation given in Figure 7.40 uses registers A and B to
hold the contents of the registers being sorted. Show pseudo-code for the sorting operation
that uses only register A to hold temporary data during the sorting operation. Give a
corresponding ASM chart that represents the datapath and control circuits needed. Use
multiplexers to interconnect the registers, in the style shown in Figure 7.42. Give a separate
ASM chart that represents the control circuit.

7.18 Give Verilog code for the sorting circuit designed in Problem 7.17.

7.19 Consider the design of a circuit that controls the traffic lights at the intersection of two roads.
The circuit generates the outputs G1, Y 1, R1 and G2, Y 2, R2. These outputs represent the
states of the green, yellow, and red lights, respectively, on each road. A light is turned on
if the corresponding output signal has the value 1. The lights have to be controlled in the
following manner: when G1 is turned on it must remain on for a time period called t1 and
then be turned off. Turning off G1 must result in Y 1 being immediately turned on; it should
remain on for a time period called t2 and then be turned off. When either G1 or Y 1 is on, R2
must be on and G2 and Y 2 must be off. Turning off Y 1 must result in G2 being immediately
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turned on for the t1 time period. When G2 is turned off, Y 2 is turned on for the t2 time
period. Of course, when either G2 or Y 2 is turned on, R1 must be turned on and G1 and
Y 1 must be off.
(a) Give an ASM chart that describes the traffic-light controller. Assume that two down-
counters exist, one that is used to measure the t1 delay and another that is used to measure
t2. Each counter has parallel-load and enable inputs. These inputs are used to load an
appropriate value representing either the t1 or t2 delay and then allow the counter to count
down to 0.
(b) Give an ASM chart for the control circuit for the traffic-light controller.
(c) Write complete Verilog code for the traffic-light controller, including the control circuit
from part (a) and counters to represent t1 and t2. Use any convenient clock frequency to
clock the circuit and assume convenient count values to represent t1 and t2. Give simulation
results that illustrate the operation of your circuit.

7.20 Assume that you need to use a single-pole single-throw switch as shown in Figure 7.51a.
Show how a counter can be used as a means of debouncing the Data signal produced by the
switch. (Hint: Design an FSM that has Data as an input and produces the output z, which
is the debounced version of Data. Assume that you have access to a Clock input signal with
the frequency 102.4 kHz, which can be used as needed.)

7.21 Clock signals can be generated using special purpose chips. One example of such a chip
is the 555 programmable timer, which is depicted in Figure P7.2. By choosing particular
values for the resistors Ra and Rb and the capacitor C1, the 555 timer can be used to produce

5 V
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7

6
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C1

0.01μF

Clock
(output)

Figure P7.2 The 555 programmable timer chip.
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a desired clock signal. It is possible to choose both the period of the clock signal and its
duty cycle. The term duty cycle refers to the percentage of the clock period for which the
signal is high. The following equations define the clock signal produced by the chip

Clock period = 0.7(Ra + 2Rb)C1

Duty cycle = Ra + Rb

Ra + 2Rb

(a) Determine the values of Ra, Rb, and C1 needed to produce a clock signal with a 50
percent duty cycle and a frequency of about 500 kHz.
(b) Repeat part (a) for a duty cycle of 75 percent.
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Chapter Objectives

In this chapter you will learn about:

• Synthesis of logic functions

• Analysis of logic circuits

• Algorithmic techniques for the optimization of logic functions

• Cubical representation of logic functions

• Representation of logic functions using binary decision diagrams
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In Chapter 2 we showed how to find the lowest-cost implementations of logic functions by using either
algebraic manipulation or Karnaugh maps. The reader is probably convinced that it is not at all obvious
how to apply the theorems of Boolean algebra to find a minimum-cost circuit. Karnaugh maps provide a
systematic way of manually deriving minimum-cost implementations of simple logic functions, but they
become impractical for functions of many variables.

If CAD tools are used to design logic circuits, the task of minimizing the cost of implementation does not
fall to the designer; the tools perform the necessary optimizations automatically. Even so, it is important to
know something about this process. Most CAD tools have many features and options that are under control
of the user. To know when and how to apply these options, the user must have an understanding of what the
tools do.

In this chapter we will introduce some of the optimization techniques implemented in CAD tools and
show how these techniques can be automated. We first discuss synthesis techniques that can be used to produce
multilevel logic circuits, rather than just the two-level sum-of-products and product-of-sums forms that we
studied in Chapter 2. Then we will describe a cubical representation of logic functions, as well as a graphical
representation called binary decision diagrams (BDDs). We will discuss some algorithmic approaches for
circuit optimization that are based on these representations.

8.1 Multilevel Synthesis

In the previous chapters we have usually implemented logic functions in the sum-of-
products or product-of-sums form. Logic circuits of this type have two levels of gates.
In the sum-of-products form, the first level comprises AND gates that are connected to
a second-level OR gate. In the product-of-sums form, the first-level OR gates feed the
second-level AND gate. We have assumed that both true and complemented versions of the
input variables are available so that NOT gates are not needed to complement the variables.

A two-level realization is usually efficient for functions of a few variables. However,
as the number of inputs increases, a two-level circuit may result in logic gates that have too
many inputs. Whether or not this is an issue depends on the type of technology that is used
to implement the circuit. For example, consider the following function:

f (x1, . . . , x7) = x1x3x6 + x1x4x5x6 + x2x3x7 + x2x4x5x7

This is a minimum-cost SOP expression. Now consider implementing f in two types of
chips: a CPLD and an FPGA. Figure 8.1 shows a logic element in a typical CPLD, like
those shown in Appendix B. The figure indicates in blue the circuitry used to realize the
function f . The CPLD architecture is well-suited for SOP implementations.

Next, consider implementing f in an FPGA. For this example we will assume an FPGA
in which the logic elements are four-input lookup tables (LUTs). As discussed in Appendix
B, a four-input LUT can implement any logic function that has up to four inputs. Since the
SOP expression for f requires three- and four-input AND operations and a four-input OR,
each of these logic operations could be realized in a separate LUT. Four LUTs would be
needed for the AND operations, plus one additional LUT for the OR operation, giving five
LUTs in total.
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Part of a logic element

(from interconnection wires)

x1 x2 x3 x4 x5 x6 x7 unused

f

Figure 8.1 Implementation in a CPLD.

A more efficient implementation in the FPGA architecture can be obtained if f is
expressed in a form that has more than two levels of logic operations. Such a form is
called a multilevel logic expression. There are several different approaches for synthesis
of multilevel circuits. We will discuss two important techniques known as factoring and
functional decomposition.

8.1.1 Factoring

The distributive property of Boolean algebra allows us to factor the preceding expression
for f as follows

f = x1x6(x3 + x4x5) + x2x7(x3 + x4x5)

= (x1x6 + x2x7)(x3 + x4x5)

The corresponding circuit can be realized using only two LUTs, as shown in Figure 8.2. The
first LUT implements the expression g = (x1x6 + x2x7), and the second LUT implements
f = g · (x3 + x4x5).

Fan-in Problem
In the preceding example, the number of inputs, or fan-in, of each LUT is restricted

to four because of the FPGA architecture. But even if we were to make a custom chip to
implement a circuit it would still be necessary to limit the fan-in of gates. This limit is
caused by practical issues related to transistor technology, which is discussed in Appendix
B. Suppose that the available gates in a custom chip have a maximum fan-in of four. Then,
if a logic expression includes a seven-input product term, we would have to use 2 four-input
AND gates, as indicated in Figure 8.3.
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x6
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Figure 8.2 Using three LUTs after factoring.

7 inputs

Figure 8.3 Using four-input AND gates to realize a seven-input
product term.

Factoring can be used to deal with the fan-in problem. As an example, consider the
function

f = x1x2x3x4x5x6 + x1x2x3x4x5x6

This is a minimal sum-of-products expression. Using the approach of Figure 8.3, we will
need four AND gates and one OR gate to implement this expression. A better solution is to
factor the expression as follows

f = x1x4x6(x2x3x5 + x2x3x5)

Then three AND gates and one OR gate suffice for realization of the required function, as
shown in Figure 8.4.

Example 8.1 In practical situations a designer of logic circuits often encounters specifications that natu-
rally lead to an initial design where the logic expressions are in a factored form. Suppose
we need a circuit that meets the following requirements. There are four inputs: x1, x2, x3,
and x4. An output, f1, must have the value 1 if at least one of the inputs x1 and x2 is equal
to 1 and both x3 and x4 are equal to 1; it must also be 1 if x1 = x2 = 0 and either x3 or x4

is 1. In all other cases f1 = 0. A different output, f2, is to be equal to 1 in all cases except
when both x1 and x2 are equal to 0 or when both x3 and x4 are equal to 0.
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Figure 8.4 A factored circuit.

From this specification, the function f1 can be expressed as

f1 = (x1 + x2)x3x4 + x1x2(x3 + x4)

This expression can be simplified to

f1 = x3x4 + x1x2(x3 + x4)

which the reader can verify by using a Karnaugh map.
The second function, f2, is most easily defined in terms of its complement, such that

f 2 = x1x2 + x3x4

Then using DeMorgan’s theorem gives

f2 = (x1 + x2)(x3 + x4)

which is the minimum-cost expression for f2; the cost increases significantly if the SOP
form is used.

Because our objective is to design the lowest-cost combined circuit that implements f1
and f2, it seems that the best result can be achieved if we use the factored forms for both
functions, in which case the sum term (x3 + x4) can be shared. Moreover, observing that
x1x2 = x1 + x2, the sum term (x1 + x2) can also be shared if we express f1 in the form

f1 = x3x4 + x1 + x2(x3 + x4)

Then the combined circuit, shown in Figure 8.5, comprises three OR gates, three AND
gates, one NOT gate, and 13 inputs, for a total cost of 20.
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x1

x2

x3

x4

f1

f2

Figure 8.5 Circuit for Example 8.1.

8.1.2 Functional Decomposition

In the preceding examples, which illustrated the factoring approach, multilevel circuits
were used to deal with fan-in limitations. However, such circuits may be preferable to
their two-level equivalents even if fan-in is not a problem. In some cases the multilevel
circuits may reduce the cost of implementation. On the other hand, they usually imply
longer propagation delays, because they use multiple stages of logic gates. We will explore
these issues by means of illustrative examples.

Complexity of a logic circuit can often be reduced by decomposing a two-level circuit
into subcircuits, where one or more subcircuits implement functions that may be used in
several places to construct the final circuit. To achieve this objective, a two-level logic
expression is replaced by two or more new expressions, which are then combined to define
a multilevel circuit. We can illustrate this idea by a simple example.

Example 8.2 Consider the four-variable function f shown in the Karnaugh map in Figure 8.6a. The map
indicates how the f can be realized in minimum SOP form, leading to the expression

f = x1x3x4 + x1x3x4 + x2x3x4 + x2x3x4

This expression has seven gates and 18 inputs to gates, for a total cost of 25. The reader
should observe that in this case we have assumed that inputs are available only in their true
form, and have therefore included the cost of NOT gates needed to complement x3 and x4.

To perform functional decomposition we need to find one or more subfunctions that
depend on only a subset of the input variables. In this example we will attempt to find a
subfunction that depends only on the inputs x3 and x4. Factoring x1 from the first two terms
and x2 from the last two terms, we have

f = x1(x3x4 + x3x4) + x2(x3x4 + x3x4)
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(b) Multilevel circuit 
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(a) Product terms

Figure 8.6 The function for Example 8.2.

Now let g(x3, x4) = x3x4 + x3x4 and observe that g = x3x4 + x3x4. The decomposed func-
tion f can be written as

f = x1g + x2g

Observing that g = x3 ⊕ x4 leads to the circuit shown in Figure 8.6b. It has five logic gates
plus nine inputs to gates, leading to a total cost of 13. The cost of this multilevel circuit is
significantly lower than that of the SOP implementation of f . The trade-off is an increased
propagation delay because the circuit has an extra level of logic.

Instead of using algebraic manipulation to find subfunctions, a more systematic ap-
proach can be followed by examining the Karnaugh map. Figure 8.7a highlights subfunc-
tion g in blue. This subfunction depends only on the variables that define the rows of the
Karnaugh map, namely x3 and x4. We have

g = x3x4 + x3x4

= x3 ⊕ x4

Since g is in the rightmost column of the map, where x1 = 1 and x2 = 0, the part of f
defined by g is given by (x1x2) · g. Now, we can observe that the second column in the
Karnaugh map represents the subfunction g, and the third column is a subfunction equal to
1. Thus, f can be implemented using a three-variable function h(x1, x2, g) such that

f (x1, x2, x3, x4) = h[x1, x2, g(x3, x4)]
= (x1x2) · g + (x1x2) · g + (x1x2) · 1

The structure of this decomposition is illustrated in Figure 8.7b. We can optimize the
expression for h as shown in Figure 8.7c. The result is

h = x1g + x2g

which is the same decomposition that we derived above by using algebraic manipulation.
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(b) The structure of decomposition 

Figure 8.7 Subfunctions used in decomposition.

In Figure 8.7a we identified subfunctions by first looking at the columns of the map.
The same decomposition could also have been derived by first examining the rows of the
map, which is the approach that we explore in the following example.

Example 8.3 Figure 8.8a defines a five-variable function f in the form of a Karnaugh map. Examining
the rows of the map, we can see that there are only two distinct patterns, which means
that only two subfunctions are needed to implement the rows. The second and fourth rows
have one pattern, highlighted in blue, while the first and third rows have the other pattern.
Consider the second row. It depends only on the variables that define columns in each row,
namely, x1, x2, and x5. Let a subfunction g(x1, x2, x5) represent the pattern in this row. This
subfunction is just

g = x1 + x2 + x5

because the pattern has a 1 wherever any of these variables is equal to 1. To specify the
location of rows where the pattern g occurs, which is in rows 2 and 4, we use the variables
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Figure 8.8 Decomposition for Example 8.3.

x3 and x4. The terms x3x4 and x3x4 identify the second and fourth rows, respectively. Thus
the expression (x3x4 + x3x4) · g represents the part of f that is defined in rows 2 and 4.

Next, we have to find a realization for the pattern in rows 1 and 3. This pattern has
a 1 only in the cell where x1 = x2 = x5 = 0, which corresponds to the term x1x2x5. But
we can make a useful observation that this term is just a complement of g. The location
of rows 1 and 3 is identified by terms x3x4 and x3x4, respectively. Thus the expression
(x3x4 + x3x4) · g represents f in rows 1 and 3.

We can make one other useful observation. The expressions (x3x4 + x3x4) and (x3x4 +
x3x4) are complements of each other. Therefore, if we let k(x3, x4) = x3x4 + x3x4, the
complete decomposition of f can be stated as

f (x1, x2, x3, x4, x5) = h[g(x1, x2, x5), k(x3, x4)]
= kg + kg = k ⊕ g

where g = x1 + x2 + x5

k = x3x4 + x3x4 = x3 ⊕ x4
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The resulting circuit is given in Figure 8.8b. It requires a total of three gates and seven
inputs to gates, for a total cost of 10. The largest fan-in of any gate is three.

For comparison, a minimum-cost sum-of-products expression for f is

f = x1x3x4 + x1x3x4 + x2x3x4 + x2x3x4 + x3x4x5 + x3x4x5 + x1x2x3x4x5 + x1x2x3x4x5

The corresponding circuit requires a total of 14 gates (including the five NOT gates to
complement the primary inputs) and 41 inputs, giving a total cost of 55. The fan-in for the
output OR gate is eight. Obviously, functional decomposition results in a much simpler
implementation of this function.

In the two preceding examples, the decomposition is such that a decomposed subfunc-
tion depends on some primary input variables, whereas the remainder of the implementation
depends on the rest of the variables. Such decompositions are called disjoint decomposi-
tions in the technical literature. It is possible to have a non-disjoint decomposition, where
the variables of the subfunction are also used in realizing the remainder of the circuit. The
following example illustrates this possibility.

Example 8.4 Suppose that we wish to implement the XOR function using only NAND gates. Figure 8.9a
shows a SOP implementation of this function, and part (b) of the figure gives a NAND-
NAND circuit that has the same structure.

Let us now try to exploit functional decomposition to find a better implementation of
XOR using only NAND gates. Let the symbol ↑ represent the NAND operation so that
x1 ↑ x2 = x1 · x2. A sum-of-products expression for the XOR function is

x1 ⊕ x2 = x1x2 + x1x2

From the discussion in Section 2.7, this expression can be written in terms of NAND
operations as

x1 ⊕ x2 = (x1 ↑ x2) ↑ (x1 ↑ x2)

This expression requires five NAND gates, and it is implemented by the circuit in Figure
8.9b. Observe that an inverter is implemented using a two-input NAND gate by tying the
two inputs together.

To find a decomposition, we can manipulate the term (x1 ↑ x2) as follows:

(x1 ↑ x2) = (x1x2) = (x1(x1 + x2)) = (x1 ↑ (x1 + x2))

We can perform a similar manipulation for (x1 ↑ x2) to generate

x1 ⊕ x2 = (x1 ↑ (x1 + x2)) ↑ ((x1 + x2) ↑ x2)

DeMorgan’s theorem states that x1 + x2 = x1 ↑ x2; hence we can write

x1 ⊕ x2 = (x1 ↑ (x1 ↑ x2)) ↑ ((x1 ↑ x2) ↑ x2)
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(a) Sum-of-products implementation
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(c) Optimal NAND gate implementation

Figure 8.9 Implementation of XOR.

Now we have a decomposition

x1 ⊕ x2 = (x1 ↑ g) ↑ (g ↑ x2)

g = x1 ↑ x2

The corresponding circuit, which requires only four NAND gates, is given in Figure 8.9c.
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Practical Issues
Functional decomposition is a powerful technique for reducing the complexity of cir-

cuits. A big problem in functional decomposition is finding the possible subfunctions. For
functions of many variables, an enormous number of possibilities should be tried. This
situation precludes attempts at finding optimal solutions. Instead, heuristic approaches that
lead to acceptable solutions are used.

Full discussion of functional decomposition and factoring is beyond the scope of this
book. An interested reader may consult other references [1–4]. Modern CAD tools use the
concept of decomposition extensively.

8.1.3 Multilevel NAND and NOR Circuits

In Section 2.7 we showed that two-level circuits consisting of AND and OR gates can
be easily converted into circuits that can be realized with NAND and NOR gates, using
the same gate arrangement. In particular, an AND-OR (sum-of-products) circuit can be
realized as a NAND-NAND circuit, while an OR-AND (product-of-sums) circuit becomes
a NOR-NOR circuit. The same conversion approach can be used for multilevel circuits.
We will illustrate this approach by an example.

Example 8.5 Figure 8.10a gives a four-level circuit consisting of AND and OR gates. Let us first derive
a functionally equivalent circuit that comprises only NAND gates. Each AND gate is
converted to a NAND by inverting its output. Each OR gate is converted to a NAND by
inverting its inputs. This is just an application of DeMorgan’s theorem, as illustrated in
Figure 2.26. Figure 8.10b shows the necessary inversions in blue. Note that an inversion is
applied at both ends of a given wire. Now each gate becomes a NAND gate. This accounts
for most of the inversions added to the original circuit. But, there are still four inversions
that are not a part of any gate; therefore, they must be implemented separately. These
inversions are at inputs x1, x5, x6, and x7 and at the output f . They can be implemented as
two-input NAND gates, where the inputs are tied together. The resulting circuit is shown
in Figure 8.10c.

A similar approach can be used to convert the circuit in Figure 8.10a into a circuit that
comprises only NOR gates. An OR gate is converted to a NOR gate by inverting its output.
An AND becomes a NOR if its inputs are inverted, as indicated in Figure 2.26. Using this
approach, the inversions needed for our sample circuit are shown in blue in Figure 8.11a.
Then each gate becomes a NOR gate. The three inversions at inputs x2, x3, and x4 can be
realized as two-input NOR gates, where the inputs are tied together. The resulting circuit
is presented in Figure 8.11b.

It is evident that the basic topology of a circuit does not change substantially when
converting from AND and OR gates to either NAND or NOR gates. However, it may be
necessary to insert additional gates to serve as NOT gates that implement inversions not
absorbed as a part of other gates in the circuit.
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(a) Circuit with AND and OR gates

(b) Inversions needed to convert to NANDs

(c) NAND-gate circuit

Figure 8.10 Conversion to a NAND-gate circuit.
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(a) Inversions needed to convert to NORs

(b) NOR-gate circuit

Figure 8.11 Conversion to a NOR-gate circuit.

8.2 Analysis of Multilevel Circuits

The preceding section showed that it may be advantageous to implement logic functions
using multilevel circuits. It also presented the most commonly used approaches for syn-
thesizing functions in this way. In this section we will consider the task of analyzing an
existing circuit to determine the function that it implements.

For two-level circuits the analysis process is simple. If a circuit has an AND-OR
(NAND-NAND) structure, then its output function can be written in the SOP form by
inspection. Similarly, it is easy to derive a POS expression for an OR-AND (NOR-NOR)
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circuit. The analysis task is more complicated for multilevel circuits because it is difficult to
write an expression for the function by inspection. We have to derive the desired expression
by tracing the circuit and determining its functionality. The tracing can be done either
starting from the input side and working towards the output, or by starting at the output side
and working back towards the inputs. At intermediate points in the circuit, it is necessary
to evaluate the subfunctions realized by the logic gates.

Example 8.6Figure 8.12 replicates the circuit from Figure 8.10a. To determine the function f imple-
mented by this circuit, we can consider the functionality at internal points that are the outputs
of various gates. These points are labeled P1 to P5 in the figure. The functions realized at
these points are

P1 = x2x3

P2 = x5 + x6

P3 = x1 + P1 = x1 + x2x3

P4 = x4P2 = x4(x5 + x6)

P5 = P4 + x7 = x4(x5 + x6) + x7

Then f can be evaluated as

f = P3P5

= (x1 + x2x3)(x4(x5 + x6) + x7)

Applying the distributive property to eliminate the parentheses gives

f = x1x4x5 + x1x4x6 + x1x7 + x2x3x4x5 + x2x3x4x6 + x2x3x7

Note that the expression represents a circuit comprising sixAND gates, one OR gate, and 25
inputs. The cost of this two-level circuit is higher than the cost of the circuit in Figure 8.12,
but the circuit has lower propagation delay.

x2

x1

x3

x4

x5

x6

x7

f

P3

P1

P4

P5
P2

Figure 8.12 Circuit for Example 8.6.
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Example 8.7 In Example 8.3 we derived the circuit in Figure 8.8b. This circuit is reproduced in Fig-
ure 8.13, except that we have replaced the XOR and XNOR gates from Figure 8.8b with
their equivalent SOP form. The internal points in Figure 8.13 are labeled from P1 to P10 as
shown. The following subfunctions occur

P1 = x1 + x2 + x5

P2 = x4

P3 = x3

P4 = x3P2

P5 = x4P3

P6 = P4 + P5

P7 = P1

P8 = P6

P9 = P1P6

P10 = P7P8

We can derive f by tracing the circuit from the output towards the inputs as follows

f = P9 + P10

= P1P6 + P7P8

= (x1 + x2 + x5)(P4 + P5) + P1P6

x1

x2

x5

x4

fx3

P1

P4

P5

P6 P8

P2

P3

P9

P10

P7

Figure 8.13 Circuit for Example 8.7.
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= (x1 + x2 + x5)(x3P2 + x4P3) + x1x2x5P4P5

= (x1 + x2 + x5)(x3x4 + x4x3) + x1x2x5(x3 + P2)(x4 + P3)

= (x1 + x2 + x5)(x3x4 + x3x4) + x1x2x5(x3 + x4)(x4 + x3)

= x1x3x4 + x1x3x4 + x2x3x4 + x2x3x4 + x5x3x4 + x5x3x4

+ x1x2x5x3x4 + x1x2x5x4x3

This is the same expression as stated in Example 8.3.

Example 8.8Circuits based on NAND and NOR gates are slightly more difficult to analyze because each
gate involves an inversion. Figure 8.14a depicts a simple NAND-gate circuit that illustrates
the effect of inversions. We can convert this circuit into a circuit with AND and OR gates
using the reverse of the approach described in Example 8.5. Bubbles that denote inversions
can be moved, according to DeMorgan’s theorem, as indicated in Figure 8.14b. Then the
circuit can be converted into the circuit in part (c) of the figure, which consists of AND and
OR gates. Observe that in the converted circuit, the inputs x3 and x5 are complemented.
From this circuit the function f is determined as

f = (x1x2 + x3)x4 + x5

= x1x2x4 + x3x4 + x5

It is not necessary to convert a NAND circuit into a circuit with AND and OR gates to
determine its functionality. We can use the approach from Examples 8.6 and 8.7 to derive
f as follows. Let P1, P2, and P3 label the internal points as shown in Figure 8.14a. Then

P1 = x1x2

P2 = P1x3

P3 = P2x4

f = P3x5 = P3 + x5

= P2x4 + x5 = P2x4 + x5

= P1x3x4 + x5 = (P1 + x3)x4 + x5

= (x1x2 + x3)x4 + x5

= (x1x2 + x3)x4 + x5

= x1x2x4 + x3x4 + x5
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(c) Circuit with AND and OR gates

(b) Moving bubbles to convert to ANDs and ORs

(a) NAND-gate circuit

x3

Figure 8.14 Circuit for Example 8.8.

Example 8.9 The circuit in Figure 8.15 consists of NAND and NOR gates. It can be analyzed as follows.

P1 = x2x3

P2 = x1P1 = x1 + P1

P3 = x3x4 = x3 + x4
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Figure 8.15 Circuit for Example 8.9.

P4 = P2 + P3

f = P4 + x5 = P4x5

= P2 + P3 · x5

= (P2 + P3)x5

= (x1 + P1 + x3 + x4)x5

= (x1 + x2x3 + x3 + x4)x5

= (x1 + x2 + x3 + x4)x5

= x1x5 + x2x5 + x3x5 + x4x5

Note that in deriving the second to the last line, we used property 16a in Section 2.5 to
simplify x2x3 + x3 into x2 + x3.

Analysis of circuits is much simpler than synthesis. With a little practice one can
develop an ability to easily analyze even fairly complex circuits.

We have now covered a considerable amount of material on synthesis and analysis of
logic functions. We have used the Karnaugh map as a vehicle for illustrating the concepts
involved in finding optimal implementations of logic functions. We have also shown that
logic functions can be realized in a variety of forms, both with two levels of logic and with
multiple levels. In a modern design environment, logic circuits are synthesized using CAD
tools, rather than by hand. The concepts that we have discussed in this chapter are quite
general; they are representative of the strategies implemented in CAD algorithms. As we
have said before, the Karnaugh map scheme for representing logic functions is not appro-
priate for use in CAD tools. In the next section we discuss two alternative representations
of logic functions, which are suitable for use in CAD algorithms.
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8.3 Alternative Representations of Logic
Functions

So far in this book, we have encountered four different forms for representing logic func-
tions: truth tables, algebraic expressions, Venn diagrams, and Karnaugh maps. Two other
possibilities are introduced in this section, called cubical notation and binary decision dia-
grams.

8.3.1 Cubical Representation

Cubical notation represents an n-variable logic function by mapping it onto an n-dimensional
cube. We can illustrate this representation by first introducing some simple examples of
cubes.

Two-Dimensional Cube
A two-dimensional cube is shown in Figure 8.16. The four corners in the cube are

called vertices, which correspond to the four rows of a truth table. Each vertex is identified
by two coordinates. The horizontal coordinate is assumed to correspond to variable x1, and
vertical coordinate to x2. Thus vertex 00 is the bottom-left corner, which corresponds to
row 0 in the truth table. Vertex 01 is the top-left corner, where x1 = 0 and x2 = 1, which
corresponds to row 1 in the truth table, and so on for the other two vertices.

We will map a function onto the cube by indicating with blue circles those vertices for
which f = 1. In Figure 8.16 f = 1 for vertices 01, 10, and 11. We can express the function
as a set of vertices, using the notation f = {01, 10, 11}. The function f is also shown in
the form of a truth table in the figure.

An edge joins two vertices for which the labels differ in the value of only one variable.
Therefore, if two vertices for which f = 1 are joined by an edge, then this edge represents
that portion of the function just as well as the two individual vertices. For example, f = 1
for vertices 10 and 11. They are joined by the edge that is labeled 1x. It is customary to use
the letter x to denote the fact that the corresponding variable can be either 0 or 1. Hence 1x
means that x1 = 1, while x2 can be either 0 or 1. Similarly, vertices 01 and 11 are joined
by the edge labeled x1, indicating that x1 can be either 0 or 1, but x2 = 1. The reader must

x2x1

0
0
1
1

0
1
0
1

f

0
1
1
1

01

00

11

10

x2

x1

x1

1x

Figure 8.16 Representation of f (x1, x2) = ∑
m(1, 2, 3).
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not confuse the use of the letter x for this purpose, in contrast to the subscripted use where
x1 and x2 refer to the variables.

Two vertices being represented by a single edge is the embodiment of the combining
property 14a from Section 2.5. The edge 1x is the logical OR of vertices 10 and 11. It
essentially defines the term x1, which is the sum of minterms x1x2 and x1x2. The property
14a indicates that

x1x2 + x1x2 = x1

Therefore, finding edges for which f = 1 is equivalent to applying the combining property.
Of course, this is also analogous to finding pairs of adjacent cells in a Karnaugh map for
which f = 1.

The edges 1x and x1 define fully the function in Figure 8.16; hence we can represent
the function as f = {1x, x1}. This corresponds to the logic expression

f = x1 + x2

which is also obvious from the truth table in the figure.

Three-Dimensional Cube
Figure 8.17 illustrates a three-dimensional cube. The x1, x2, and x3 coordinates are as

shown on the left. Each vertex is identified by a specific valuation of the three variables.
The function f mapped onto the cube is the function from Figure 2.48, which was used in
Figure 2.52b. There are five vertices for which f = 1, namely, 000, 010, 100, 101, and
110. These vertices are joined by the five edges shown in blue, namely, x00, 0x0, x10, 1x0,
and 10x. Because the vertices 000, 010, 100, and 110 include all valuations of x1 and x2,
when x3 is 0, they can be specified by the term xx0. This term means that f = 1 if x3 = 0,
regardless of the values of x1 and x2. Notice that xx0 represents the front side of the cube,
which is shaded in blue.

x2

x1

x3

000

001

010

011

110

101

100

111

x10

1x00x0

x00

10x

xx0

Figure 8.17 Representation of f (x1, x2, x3) = ∑
m(0, 2, 4, 5, 6).
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From the preceding discussion it is evident that the function f can be represented in
several ways. Some of the possibilities are

f = {000, 010, 100, 101, 110}

= {0x0, 1x0, 101}

= {x00, x10, 101}

= {x00, x10, 10x}

= {xx0, 10x}

In a physical realization each of the above terms is a product term implemented by an
AND gate. Obviously, the minimum-cost circuit is obtained if f = {xx0, 10x}, which is
equivalent to the logic expression

f = x3 + x1x2

This is the expression that we derived using the Karnaugh map in Figure 2.52b.

Four-Dimensional Cube
Graphical images of two- and three-dimensional cubes are easy to draw. A four-

dimensional cube is more difficult. It consists of 2 three-dimensional cubes with their
corners connected. A simple way to visualize a four-dimensional cube is to have one cube
placed inside the other cube, as depicted in Figure 8.18. We have assumed that the x1, x2,
and x3 coordinates are the same as in Figure 8.17, while x4 = 0 defines the outer cube and
x4 = 1 defines the inner cube. Figure 8.18 indicates how the function f3 of Figure 2.54
is mapped onto the four-dimensional cube. To avoid cluttering the figure with too many
labels, we have labeled only those vertices for which f3 = 1. Again, all edges that connect
these vertices are highlighted in blue.

There are two groups of four adjacent vertices for which f3 = 1 that can be represented
as planes. The group comprising 0000, 0010, 1000, and 1010 is represented by x0x0. The
group 0010, 0011, 0110, and 0111 is represented by 0x1x. These planes are shaded in the
figure. The function f3 can be represented in several ways, for example

f3 = {0000, 0010, 0011, 0110, 0111, 1000, 1010, 1111}

= {00x0, 10x0, 0x10, 0x11, x111}

= {x0x0, 0x1x, x111}

Since each x indicates that the corresponding variable can be ignored, because it can be
either 0 or 1, the simplest circuit is obtained if f = {x0x0, 0x1x, x111}, which is equivalent
to the expression

f3 = x2x4 + x1x3 + x2x3x4

We derived the same expression in Figure 2.54.

n-Dimensional Cube
A function that has n variables can be mapped onto an n-dimensional cube. Although

it is impractical to draw graphical images of cubes that have more than four variables, it
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0000 1000

1010

0110

0011

0010

0111 1111

0x1x

x0x0

x111

Figure 8.18 Representation of function f3 from Figure 2.54

is not difficult to extend the ideas introduced above to a general n-variable case. Because
visual interpretation is not possible and because we normally use the word cube only for
a three-dimensional structure, many people use the word hypercube to refer to structures
with more than three dimensions. We will continue to use the word cube in our discussion.

It is convenient to refer to a cube as being of a certain size that reflects the number of
vertices in the cube. Vertices have the smallest size. Each variable has a value of 0 or 1 in
a vertex. A cube that has an x in one variable position is larger because it consists of two
vertices. For example, the cube 1x01 consists of vertices 1001 and 1101. A cube that has
two x’s consists of four vertices, and so on. A cube that has k x’s consists of 2k vertices.

An n-dimensional cube has 2n vertices. Two vertices are adjacent if they differ in the
value of only one coordinate. Because there are n coordinates (axes in the n-dimensional
cube), each vertex is adjacent to n other vertices. The n-dimensional cube contains cubes of
lower dimensionality. Cubes of the lowest dimension are vertices. Because their dimension
is zero, we will call them 0-cubes. Edges are cubes of dimension 1; hence we will call them
1-cubes. A side of a three-dimensional cube is a 2-cube. An entire three-dimensional cube
is a 3-cube, and so on. In general, we will refer to a set of 2k adjacent vertices as a k-cube.

From the examples in Figures 8.17 and 8.18, it is apparent that the largest possible
k-cubes that exist for a given function are equivalent to its prime implicants. In Section 8.4
we will discuss minimization techniques that use the cubical representation of functions.
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8.3.2 Binary Decision Diagrams

Binary decision diagrams (BDDs) represent logic functions in the form of a graph. BDDs
are attractive for use in CAD tools because a logic function can be represented as a BDD
without requiring a lot of memory space. To illustrate how we can derive a BDD for
a function f , consider the two-variable truth table shown in Figure 8.19a. A graph that
corresponds to this truth table is given in part (b) of the figure in the form of a decision tree.
The circular nodes in this tree represent the input variables x1 and x2. The node x1 is the root
of the tree. Each node has two associated edges. For a node xi the edge labeled 0 represents
xi = 0, and the edge labeled 1 corresponds to xi = 1. The square nodes are the terminal
nodes of the tree. Each terminal node specifies whether f = 0 or f = 1. Each path from
the root node to a terminal node corresponds to a row in the truth table. For example, the
top row of the truth table in Figure 8.19a has x1 = x2 = 0 and f = 1. In the decision tree

x2

1
0

x1

x2

0 1

0 1

0

1

1

x2

0

x1

x2

1

0 1

1

0

1

0 1

x2

1
0

x1

0 1

0 1

f

1

0

1

1

0

0

1

1

0

1

0

1

(a) Truth table

x1 x2

(c) Reducing nodes

(b) Decision tree

(d) BDD

Figure 8.19 Derivation of a binary decision diagram (BDD).
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the corresponding path starts at the node x1, follows the edge labeled 0 to the subsequent
node x2, and then follows the edge labeled 0 to the terminal node 1.

The decision tree is not an efficient way of representing a logic function, because the
size of the tree doubles with each input variable. But we can reduce the number of nodes
in the tree as illustrated in Figure 8.19c. Here, we have merged identical terminal nodes
such that there is only one terminal node representing each of the values 0 and 1. We can
then recognize that the node x2 on the righthand side of the tree is redundant and can be
removed, because both of its edges lead to the same subsequent node. After all identical
nodes and redundant nodes have been removed from the decision tree, the resulting tree is
referred to in the technical literature as a binary decision diagram (BDD). A BDD for the
truth table in Figure 8.19a is given in Figure 8.19d . It provides a compact representation
of the logic function, and can also be used to provide a low-cost implementation. In Figure
8.19d we can see that f has the value 1 if x1 = 1 or if x1 = 0 and x2 = 0. Hence, we
can write f = x1 + x1x2 = x1 + x2. In general, a BDD can be used to provide various
implementations of a function, which may be in either two-level or multilevel form.

Examples of BDDs for the logical AND and OR functions are given in Figure 8.20.
Part (a) of the figure represents the function f = x1x2 and part (b) represents f = x1 + x2. It
is easy to extend these BDDs to represent larger AND and OR functions. Figure 8.21 shows
how we can derive BDDs for XOR functions. Part (a) gives a decision tree for the function
f = x1 ⊕ x2. When identical terminal nodes in the decision tree are merged, no redundant
nodes are created. The resulting BDD is shown in part (b) of the figure. Part (c) shows
how this BDD can be extended to represent the three-input XOR function f = x1 ⊕ x2 ⊕ x3.
Note that the terminal node 1 is reached from the root node x1 by following paths on which
the total number of edges labeled 1 is odd, as required for the XOR function.

Derivation of BDDs using Shannon’s Expansion
As shown in Figures 8.19 and 8.21, it is possible to derive a BDD by removing redundant

nodes and merging identical nodes in a decision tree. Although this method can be used
for any logic function, it is tedious when the function has more than a few input variables.

x2

0
1

x1

0 1

0 1

(a) AND (b) OR

x2

1
0

x1

10

10

Figure 8.20 BDDs for the AND and OR functions.
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(b) BDD
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(c) 3-input BDD

Figure 8.21 Derivation of BDDs for XOR functions.

Another way of deriving a BDD is to make use of Shannon’s expansion theorem, which
we introduced in Section 4.1.2. Recall that Shannon’s expansion states that any Boolean
function f (x1, x2, . . . , xi, . . . , xn) can be written in the form

f (x1, x2, . . . , xi, . . . , xn) = xi fxi + xi fxi

where fxi = f (x1, x2, . . . , 0, . . . , xn) and fxi = f (x1, x2, . . . , 1, . . . , xn).
Consider the function f = x1 + x2x3. Shannon’s expansion with respect to the input

x1 gives f = x1fx1 + x1fx1 , which can be represented using the graph in Figure 8.22a. The
cofactors fx1 and fx1 can be evaluated as follows:
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x2

fx2
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Figure 8.22 Derivation of BDDs for f = x1 + x2x3.

fx1 = 0 + x2x3 = x2x3

fx1 = 1 + x2x3 = 1

We can now derive our BDD as shown in Figure 8.22b. The subfunction fx1 = x2x3, which
is highlighted in a blue color, uses the BDD for the two-input AND function that we showed
in Figure 8.20a.
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A useful property of BDDs is that for a given order of the input variables there is only
one possible BDD. Using the terminology from Chapter 2, this means that for a given order
of the inputs a BDD is a canonical representation of the function. However, we should
consider the effect on a BDD if we change the order of variables. Figure 8.22c corresponds
to the Shannon’s expansion of f using the order x2, x1, x3. Now, node x2 is the root of the
tree and its edges point to the cofactors of f with respect to x2. We have

fx2 = x1 + 0 · x3 = x1

fx2 = x1 + 1 · x3 = x1 + x3

These expressions lead to the BDD in Figure 8.22d . The edge labeled 0 from node x2 points
to the subfunction x1. The edge labeled 1 from node x2 points to the subfunction x1 + x3,
which is highlighted in blue. This subfunction uses the same BDD that we showed for the
two-input OR function in Figure 8.20b.

Comparing the BDDs in parts (b) and (d ) of Figure 8.22, we see that the complexity
of a BDD for a given function can be affected by the order of variables. In Figure 8.22b
there are five nodes in the BDD, while in Figure 8.22d there are six nodes. CAD tools that
implement BDDs usually employ heuristic techniques which attempt to find a good order
of the input variables when deriving BDDs.

Example 8.10 Assume that we are given the BDD in Figure 8.22d , and that we wish to determine the effect
on this BDD of swapping the positions of nodes x1 and x2, so that x1 becomes the root of the
BDD. The swapping operation can be performed as indicated in Figure 8.23. The first step

1

(a) BDD ordered  x2 , x1 , x3
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1
0
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1
0

0 1
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1

(b) Truth table

x1 x2

x3
x3
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1

x2

0

x1
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1

0 1

0

0

x3x3

0

(c) Order x1, x2, x3

Figure 8.23 Reordering the nodes in a BDD.
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is to isolate the nodes x1 and x2 from the rest of the BDD, as shown by the dotted blue line
in Figure 8.23a. Then, we enumerate the valuations of the inputs x1 and x2 on each path
that crosses this boundary, and determine which successor node is reached. The truth table
in Figure 8.23b provides the required information. It shows that the path with x1x2 = 00
leads to the terminal node 0, the path with x1x2 = 01 leads to node x3, and the remaining
paths lead to the terminal node 1. We can now create the diagram shown in part (c) of the
figure, ensuring that all combinations of x1x2 lead to the correct successor nodes. We now
remove the redundant node x2 on the righthand side of the diagram, leading to the BDD in
Figure 8.22b.

Example 8.11Consider the SOP expression f = x1x3 + x1x4 + x2x4 + x2x3 + x1x2x3x4. We wish to create
a BDD for this function with the input order x1, x2, x3, x4. The first step is to use Shannon’s
expansion with respect to input x1, which is f = x1fx1 + x1fx1 . The cofactors are

fx1 = 0 · x3 + 0 · x4 + x2x4 + x2x3 + 1 · x2x3x4

= x2x4 + x2x3 + x2x3x4

fx1 = 1 · x3 + 1 · x4 + x2x4 + x2x3 + 0 · x2x3x4

= x3 + x4 + x2x4 + x2x3 = x3 + x4

For the cofactor fx1 = x3 + x4 we can use the BDD from Figure 8.20b. But for the cofactor
fx1 = x2x4 + x2x3 + x2x3x4 it is useful to apply Shannon’s expansion again, with respect to
input x2. This gives

fx1x2 = 0 · x4 + 0 · x3 + 1 · x3x4 = x3x4

fx1x2 = 1 · x4 + 1 · x3 + 0 · x3x4 = x3 + x4

Now, we can use the BDDs in parts (a) and (b) of Figure 8.20 for the cofactors fx1x2 and fx1x2 ,
respectively. The above steps lead to the diagram in Figure 8.24a, where the BDD for the
subfunction x3 + x4 is highlighted in blue. This subfunction is used for both the cofactor
fx1 , which is reached when x1 = 1, and the cofactor fx1x2 , which is reached when x1 = 0 and
x2 = 1. The BDD for the subfunction x3x4 is shown on the lefthand side of Figure 8.24a.
This subfunction is used for the cofactor fx1x2 and is reached when x1 = x2 = 0.

Merging the identical terminal nodes in the graph in Figure 8.24a, and also merging
the two identical copies of node x4, leads to the BDD shown in Figure 8.24b. Since this
BDD specifies that f is defined by the subfunction x3 + x4 when x1 = 1 or x2 = 1, and
f is defined by the subfunction x3x4 when x1 = x2 = 0, then we can write the multilevel
expression

f = (x1 + x2) · (x3 + x4) + x1x2(x3x4)

It is easy to see how this expression relates to the SOP form above.
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Figure 8.24 Derivation of a BDD for the function in Example 8.11.

Practical use of BDDs
We have presented only a few introductory concepts related to BDDs, in an attempt

to give the reader an appreciation for this method of representing logic functions. More
detailed information can be found in various references, including [7–10]. The BDD concept
has been implemented in a number of software programs that are available through the
internet. These programs are often referred to as BDD packages. They provide many
useful functions, including the ability to create BDDs for logic functions, reorder the inputs
to optimize these BDDs, and perform logical operations using BDDs. Although a detailed
discussion of these BDD packages is beyond the scope of this book, the user is encouraged to
search for available packages and experiment with the provided functionality. Two popular
packages that are often included as part of CAD tools for logic synthesis are called BuDDy
[11] and CUDD [12].

8.4 Optimization Techniques Based on Cubical
Representation

In this section we introduce optimization techniques that utilize the cubical representation
for logic functions. Cubical representation is well suited for implementation of minimiza-
tion algorithms that can be programmed and run efficiently on computers. Such algorithms
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are included in modern CAD tools. While the CAD tools can be used effectively without
detailed knowledge of how their minimization algorithms are implemented, the reader may
find it interesting to gain some insight into how this may be accomplished.

8.4.1 A Tabular Method for Minimization

A tabular approach for minimization was proposed in the 1950s by Willard Quine [5] and
Edward McCluskey [6]. It became popular under the name Quine-McCluskey method.
While it is not efficient enough to be used in modern CAD tools, it is a simple method
that illustrates the key issues. We will present it using the cubical notation discussed in
Section 8.3.

Generation of Prime Implicants
As mentioned in Section 8.3, the prime implicants of a given logic function f are the

largest possible k-cubes for which f = 1. For incompletely specified functions, which
include a set of don’t-care vertices, the prime implicants are the largest k-cubes for which
either f = 1 or f is unspecified.

Assume that the initial specification of f is given in terms of minterms for which f = 1.
Also, let the don’t-cares be specified as minterms. This allows us to create a list of vertices
for which either f = 1 or it is a don’t-care condition. We can compare these vertices in
pairwise fashion to see if they can be combined into larger cubes. Then we can attempt to
combine these new cubes into still larger cubes and continue the process until we find the
prime implicants.

The basis of the method is the combining property of Boolean algebra

xixj + xixj = xi

If we have two cubes that are identical in all variables (coordinates) except one, for which
one cube has the value 0 and the other has 1, then these cubes can be combined into a larger
cube. For example, consider f (x1, . . . , x4) = {1000, 1001, 1010, 1011}. The cubes 1000
and 1001 differ only in variable x4; they can be combined into a new cube 100x. Similarly,
1010 and 1011 can be combined into 101x. Then we can combine 100x and 101x into a
larger cube 10xx, which means that the function can be expressed simply as f = x1x2.

Figure 8.25 shows how we can generate the prime implicants of the function, f , in
Figure 2.58. The function is defined as

f (x1, . . . , x4) =
∑

m(0, 4, 8, 10, 11, 12, 13, 15)

There are no don’t-care conditions. Since larger cubes can be generated only from the
minterms that differ in just one variable, we can reduce the number of pairwise comparisons
by placing the minterms into groups such that the cubes in each group have the same number
of 1s, and sort the groups by the number of 1s. Thus, it will be necessary to compare
each cube in a given group only with all cubes in the immediately preceding group. In
Figure 8.25, the minterms are ordered in this way in list 1. (Note that we indicated the
decimal equivalents of the minterms as well, to facilitate our discussion.) The minterms,
which are also called 0-cubes as explained in Section 8.3, can be combined into 1-cubes
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Figure 8.25 Generation of prime implicants for the function in Figure 2.58.

shown in list 2. To make the entries easily understood we indicated the minterms that are
combined to form each 1-cube. Next, we check if the 0-cubes are included in the 1-cubes
and place a check mark beside each cube that is included. We now generate 2-cubes from
the 1-cubes in list 2. The only 2-cube that can be generated is xx00, which is placed in
list 3. Again, the check marks are placed against the 1-cubes that are included in the 2-cube.
Since there exists just one 2-cube, there can be no 3-cubes for this function. The cubes in
each list without a check mark are the prime implicants of f . Therefore, the set, P, of prime
implicants is

P = {10x0, 101x, 110x, 1x11, 11x1, xx00}
= {p1, p2, p3, p4, p5, p6}

Determination of a Minimum Cover
Having generated the set of all prime implicants, it is necessary to choose a minimum-

cost subset that covers all minterms for which f = 1. As a simple measure we will assume
that the cost is directly proportional to the number of inputs to all gates, which means to
the number of literals in the prime implicants chosen to implement the function.

To find a minimum-cost cover, we construct a prime implicant cover table in which there
is a row for each prime implicant and a column for each minterm that must be covered.
Then we place check marks to indicate the minterms covered by each prime implicant.
Figure 8.26a shows the table for the prime implicants derived in Figure 8.25. If there is a
single check mark in some column of the cover table, then the prime implicant that covers
the minterm of this column is essential and it must be included in the final cover. Such
is the case with p6, which is the only prime implicant that covers minterms 0 and 4. The
next step is to remove the row(s) corresponding to the essential prime implicants and the
column(s) covered by them. Hence we remove p6 and columns 0, 4, 8, and 12, which leads
to the table in Figure 8.26b.
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(a) Initial prime implicant cover table
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(b) After the removal of essential prime implicants
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(c) After the removal of dominated rows

Figure 8.26 Selection of a cover for the function in Figure 2.58.

Now, we can use the concept of row dominance to reduce the cover table. Observe that
p1 covers only minterm 10 while p2 covers both 10 and 11. We say that p2 dominates p1.
Since the cost of p2 is the same as the cost of p1, it is prudent to choose p2 rather than p1,
so we will remove p1 from the table. Similarly, p5 dominates p3, hence we will remove
p3 from the table. Thus, we obtain the table in Figure 8.26c. This table indicates that we
must choose p2 to cover minterm 10 and p5 to cover minterm 13, which also takes care of
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covering minterms 11 and 15. Therefore, the final cover is

C = {p2, p5, p6}
= {101x, 11x1, xx00}

which means that the minimum-cost implementation of the function is

f = x1x2x3 + x1x2x4 + x3x4

This is the same expression as the one derived from Figure 2.58.
In this example we used the concept of row dominance to reduce the cover table. We

removed the dominated rows because they cover fewer minterms and the cost of their prime
implicants is the same as the cost of the prime implicants of the dominating rows. However,
a dominated row should not be removed if the cost of its prime implicant is less than the
cost of the dominating row’s prime implicant.

The tabular method can be used with don’t-care conditions as illustrated in the following
example.

Example 8.12 The don’t-care minterms are included in the initial list in the same way as the minterms for
which f = 1. Consider the function

f (x1, . . . , x4) =
∑

m(0, 2, 5, 6, 7, 8, 9, 13) + D(1, 12, 15)

We encourage the reader to derive a Karnaugh map for this function as an aid in visual-
izing the derivation that follows. Figure 8.27 depicts the generation of prime implicants,
producing the result

P = {00x0, 0x10, 011x, x00x, xx01, 1x0x, x1x1}
= {p1, p2, p3, p4, p5, p6, p7}

The initial prime implicant cover table is shown in Figure 8.28a. The don’t-care
minterms are not included in the table because they do not have to be covered. There are no
essential prime implicants. Examining this table, we see that column 8 has check marks in
the same rows as column 9. Moreover, column 9 has an additional check mark in row p5.
Hence column 9 dominates column 8. We refer to this as the concept of column dominance.
When one column dominates another, we can remove the dominating column, which is
column 9 in this case. Note that this is in contrast to rows where we remove dominated
(rather than dominating) rows. The reason is that when we choose a prime implicant to
cover the minterm that corresponds to the dominated column, this prime implicant will
also cover the minterm corresponding to the dominating column. In our example, choosing
either p4 or p6 covers both minterms 8 and 9. Similarly, column 13 dominates column 5,
hence column 13 can be deleted.

After removing columns 9 and 13, we obtain the reduced table in Figure 8.28b. In
this table row p4 dominates p6 and row p7 dominates p5. This means that p5 and p6 can be
removed, giving the table in Figure 8.28c. Now, p4 and p7 are essential to cover minterms
8 and 5, respectively. Thus, the table in Figure 8.28d is obtained, from which it is obvious
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Figure 8.27 Generation of prime implicants for the function in Example 8.12.

that p2 covers the remaining minterms 2 and 6. Note that row p2 dominates both rows p1

and p3.
The final cover is

C = {p2, p4, p7}
= {0x10, x00x, x1x1}

and the function is implemented as

f = x1x3x4 + x2x3 + x2x4

In Figures 8.26 and 8.28, we used the concept of row and column dominance to reduce
the cover table. This is not always possible, as illustrated in the following example.

Example 8.13Consider the function

f (x1, . . . , x4) =
∑

m(0, 3, 10, 15) + D(1, 2, 7, 8, 11, 14)

The prime implicants for this function are

P = {00xx, x0x0, x01x, xx11, 1x1x}
= {p1, p2, p3, p4, p5}
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Figure 8.28 Selection of a cover for the function in Example 8.12.
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Figure 8.29 Selection of a cover for the function in
Example 8.13.

The initial prime implicant cover table is shown in Figure 8.29a. There are no essential prime
implicants. Also, there are no dominant rows or columns. Moreover, all prime implicants
have the same cost because each of them is implemented with two literals. Thus, the table
does not provide any clues that can be used to select a minimum-cost cover.

A good practical approach is to use the concept of branching. We can choose any prime
implicant, say p3, and first choose to include this prime implicant in the final cover. Then
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we can determine the rest of the final cover in the usual way and compute its cost. Next we
try the other possibility by excluding p3 from the final cover and determine the resulting
cost. We compare the costs and choose the less expensive alternative.

Figure 8.29b gives the cover table that is left if p3 is included in the final cover. The
table does not include minterms 3 and 10 because they are covered by p3. The table indicates
that a complete cover must include either p1 or p2 to cover minterm 0 and either p4 or p5 to
cover minterm 15. Therefore, a complete cover can be

C = {p1, p3, p4}
The alternative of excluding p3 leads to the cover table in Figure 8.29c. Here, we see that
a minimum-cost cover requires only two prime implicants. One possibility is to choose p1

and p5. The other possibility is to choose p2 and p4. Hence a minimum-cost cover is just

Cmin = {p1, p5}
= {00xx, 1x1x}

The function is realized as

f = x1x2 + x1x3

Summary of the Tabular Method
The tabular method can be summarized as follows:

1. Starting with a list of cubes that represent the minterms where f = 1 or a don’t-care
condition, generate the prime implicants by successive pairwise comparisons of the
cubes.

2. Derive a cover table which indicates the minterms where f = 1 that are covered by
each prime implicant.

3. Include the essential prime implicants (if any) in the final cover and reduce the table
by removing both these prime implicants and the covered minterms.

4. Use the concept of row and column dominance to reduce the cover table further. A
dominated row is removed only if the cost of its prime implicant is greater than or
equal to the cost of the dominating row’s prime implicant.

5. Repeat steps 3 and 4 until the cover table is either empty or no further reduction of
the table is possible.

6. If the reduced cover table is not empty, then use the branching approach to determine
the remaining prime implicants that should be included in a minimum cost cover.

The tabular method illustrates how an algebraic technique can be used to generate the
prime implicants. It also shows a simple approach for dealing with the covering problem,
to find a minimum-cost cover. The method has some practical limitations. In practice,
functions are seldom defined in the form of minterms. They are usually given either in the
form of algebraic expressions or as sets of cubes. The need to start the minimization process
with a list of minterms means that the expressions or sets have to be expanded into this
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form. This list may be very large. As larger cubes are generated, there will be numerous
comparisons performed and the computation will be slow. Using the cover table to select
the optimal set of prime implicants is also computationally intensive when large functions
are involved.

Many algebraic techniques have been developed, which aim to reduce the time that it
takes to generate the optimal covers. While most of these techniques are beyond the scope
of this book, we will briefly discuss one possible approach in the next section. A reader who
intends to use the CAD tools, but is not interested in the details of automated minimization,
may skip this section without loss of continuity.

8.4.2 A Cubical Technique for Minimization

Assume that the initial specification of a function f is given in terms of implicants that are not
necessarily either minterms or prime implicants. Then it is convenient to define an operation
that will generate other implicants that are not given explicitly in the initial specification,
but which will eventually lead to the prime implicants of f . One such possibility is known
as the ∗-product operation, which is usually pronounced the “star-product” operation. We
will refer to it simply as the ∗-operation.

∗-Operation
The ∗-operation provides a simple way of deriving a new cube by combining two cubes

that differ in the value of only one variable. Let A = A1A2 · · · An and B = B1B2 · · · Bn be
two cubes that are implicants of an n-variable function. Thus each coordinate Ai and Bi

is specified as having the value 0, 1, or x. There are two distinct steps in the ∗-operation.
First, the ∗-operation is evaluated for each pair Ai and Bi, in coordinates i = 1, 2, . . . , n,
according to the table in Figure 8.30. Then based on the results of using the table, a set of
rules is applied to determine the overall result of the ∗-operation. The table in Figure 8.30
defines the coordinate ∗-operation, Ai ∗ Bi. It specifies the result of Ai ∗ Bi for each possible
combination of values of Ai and Bi. This result is the intersection (i.e., the common part)
of A and B in this coordinate. Note that when Ai and Bi have the opposite values (0 and 1,
or vice versa), the result of the coordinate ∗-operation is indicated by the symbol ø. We say
that the intersection of Ai and Bi is empty. Using the table, the complete ∗-operation for A
and B is defined as follows:

C = A ∗ B, such that

o

o0 0

1 1

10 x

10 x
BiAi

0

1

x

Ai Bi*

Figure 8.30 The coordinate ∗-operation.
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1. C = ø if Ai ∗ Bi = ø for more than one i.

2. Otherwise, Ci = Ai ∗ Bi when Ai ∗ Bi �= ø, and Ci = x for the coordinate where
Ai ∗ Bi = ø.

For example, let A = {0x0} and B = {111}. Then A1 ∗ B1 = 0 ∗ 1 = ø, A2 ∗ B2 = x ∗ 1 =
1, and A3 ∗ B3 = 0 ∗ 1 = ø. Because the result is ø in two coordinates, it follows from
condition 1 that A ∗ B = ø. In other words, these two cubes cannot be combined into
another cube, because they differ in two coordinates.

As another example, consider A = {11x} and B = {10x}. In this case A1 ∗ B1 = 1 ∗ 1 =
1, A2 ∗ B2 = 1 ∗ 0 = ø, and A3 ∗ B3 = x ∗ x = x. According to condition 2 above, C1 = 1,
C2 = x, and C3 = x, which gives C = A ∗ B = {1xx}. A larger 2-cube is created from two
1-cubes that differ in one coordinate only.

The result of the ∗-operation may be a smaller cube than the two cubes involved in the
operation. Consider A = {1x1} and B = {11x}. Then C = A ∗ B = {111}. Notice that C
is included in both A and B, which means that this cube will not be useful in searching for
prime implicants. Therefore, it should be discarded by the minimization algorithm.

As a final example, consider A = {x10} and B = {0x1}. Then C = A ∗ B = {01x}. All
three of these cubes are the same size, but C is not included in either A or B. Hence C has
to be considered in the search for prime implicants. The reader may find it helpful to draw
a Karnaugh map to see how cube C is related to cubes A and B.

Using the ∗-Operation to Find Prime Implicants
The essence of the ∗-operation is to find new cubes from pairs of existing cubes. In

particular, it is of interest to find new cubes that are not included in the existing cubes. A
procedure for finding the prime implicants may be organized as follows.

Suppose that a function f is specified by means of a set of implicants that are represented
as cubes. Let this set be denoted as the cover Ck of f . Let ci and cj be any two cubes in
Ck . Then apply the ∗-operation to all pairs of cubes in Ck ; let Gk+1 be the set of newly
generated cubes. Hence

Gk+1 = ci ∗ cj for all ci, cjε Ck

Now a new cover for f may be formed by using the cubes in Ck and Gk+1. Some of these
cubes may be redundant because they are included in other cubes; they should be removed.
Let the new cover be

Ck+1 = Ck ∪ Gk+1 − redundant cubes

where ∪ denotes the logical union of two sets, and the minus sign (−) denotes the removal
of elements of a set. If Ck+1 �= Ck , then a new cover Ck+2 is generated using the same
process. If Ck+1 = Ck , then the cubes in the cover are the prime implicants of f . For an
n-variable function, it is necessary to repeat the step at most n times.

Redundant cubes that have to be removed are identified through pairwise comparison
of cubes. Cube A = A1A2 · · · An should be removed if it is included in some cube B =
B1B2 · · · Bn, which is the case if Ai = Bi or Bi = x for every coordinate i.
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Example 8.14Consider the function f (x1, x2, x3) of Figure 2.56. Assume that f is initially specified as
a set of vertices that correspond to the minterms, m0, m1, m2, m3, and m7. Hence let the
initial cover be C0 = {000, 001, 010, 011, 111}. Using the ∗-operation to generate a new
set of cubes, we obtain G1 = {00x, 0x0, 0x1, 01x, x11}. Then C1 = C0 ∪ G1 – redundant
cubes. Observe that each cube in C0 is included in one of the cubes in G1; therefore, all
cubes in C0 are redundant. Thus C1 = G1.

The next step is to apply the ∗-operation to the cubes in C1, which yields G2 = {000,
001, 0xx, 0x1, 010, 01x, 011}. Note that all of these cubes are included in the cube 0xx;
therefore, all but 0xx are redundant. Now it is easy to see that

C2 = C1 ∪ G2 – redundant terms

= {x11, 0xx}

since all cubes of C1, except x11, are redundant because they are covered by 0xx.
Applying the ∗-operation to C2 yields G3 = {011} and

C3 = C2 ∪ G3 – redundant terms

= {x11, 0xx}

Since C3 = C2, the conclusion is that the prime implicants of f are the cubes {x11, 0xx},
which represent the product terms x2x3 and x1. This is the same set of prime implicants that
we derived using a Karnaugh map in Figure 2.56.

Observe that the derivation of prime implicants in this example is similar to the tabular
method explained in Section 8.4.1 because the starting point was a function, f , given as a
set of minterms.

Example 8.15As another example, consider the four-variable function of Figure 2.57. Assume that this
function is initially specified as the cover C0 = {0101, 1101, 1110, 011x, x01x}. Then
successive applications of the ∗-operation and removing the redundant terms gives

C1 = {x01x, x101, 01x1, x110, 1x10, 0x1x}

C2 = {x01x, x101, 01x1, 0x1x, xx10}

C3 = C2

Therefore, the prime implicants are x2x3, x2x3x4, x1x2x4, x1x3, and x3x4.

Determination of Essential Prime Implicants
From a cover that consists of all prime implicants, it is necessary to extract a minimal

cover. As we saw in Section 2.12.2, all essential prime implicants must be included in the
minimal cover. To find the essential prime implicants, it is useful to define an operation
that determines a part of a cube (implicant) that is not covered by another cube. One such
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operation is called the #-operation (pronounced the “sharp operation”), which is defined as
follows.

#-Operation
Again, let A = A1A2 · · · An and B = B1B2 · · · Bn be two cubes (implicants) of an n-

variable function. The sharp operation A#B leaves as a result “that part of A that is not
covered by B.” Similar to the ∗-operation, the #-operation has two steps: Ai#Bi is evaluated
for each coordinate i, and then a set of rules is applied to determine the overall result.
The sharp operation for each coordinate is defined in Figure 8.31. After this operation is
performed for all pairs (Ai, Bi), the complete #-operation is defined as follows:

C = A#B, such that

1. C = A if Ai#Bi = ø for some i.

2. C = ø if Ai#Bi = ε for all i.

3. Otherwise, C = ⋃
i(A1, A2, . . . , Bi, . . . , An) , where the union is for all i for which

Ai = x and Bi �= x.

The first condition corresponds to the case where cubes A and B do not intersect at all;
namely, A and B differ in the value of at least one variable, which means that no part of A
is covered by B. For example, let A = 0x1 and B = 11x. The coordinate #-products are
A1#B1 = ø, A2#B2 = 0, and A3#B3 = ε. Then from rule 1 it follows that 0x1 # 11x = 0x1.
The second condition reflects the case where A is fully covered by B. For example, 0x1
# 0xx = ø. The third condition is for the case where only a part of A is covered by B. In
this case the #-operation generates one or more cubes. Specifically, it generates one cube
for each coordinate i that is x in Ai, but is not x in Bi. Each cube generated is identical to
A, except that Ai is replaced by Bi. For example, 0xx # 01x = 00x, and 0xx # 010 ={00x,
0x1}.

We will now show how the #-operation can be used to find the essential prime impli-
cants. Let P be the set of all prime implicants of a given function f . Let pi denote one prime
implicant in the set P and let DC denote the don’t-care vertices for f . (We use superscripts
to refer to different prime implicants in this section because we are using subscripts to refer
to coordinate positions in cubes.) Then pi is an essential prime implicant if and only if

pi # (P − pi) # DC �= ø

o

01

10 x
BiAi

0

1

x

Ai Bi#ε ε
ε ε

ε

o

Figure 8.31 The coordinate #-operation.
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This means that pi is essential if there exists at least one vertex for which f = 1 that is
covered by pi, but not by any other prime implicant. The #-operation is also performed with
the set of don’t-care cubes because vertices in pi that correspond to don’t-care conditions
are not essential to cover. The meaning of pi # (P − pi) is that the #-operation is applied
successively to each prime implicant in P. For example, consider P = {p1, p2, p3, p4} and
DC = {d1, d2}. To check whether p3 is essential, we evaluate

((((p3 # p1) # p2) # p4) # d 1) # d 2

If the result of this expression is not ø, then p3 is essential.

Example 8.16In Example 8.14 we determined that the cubes x11 and 0xx are the prime implicants of
the function f in Figure 2.56. We can discover whether each of these prime implicants is
essential as follows

x11 # 0xx = 111 �= ø

0xx # x11 = {00x, 0x0} �= ø

The cube x11 is essential because it is the only prime implicant that covers the vertex
111, for which f = 1. The prime implicant 0xx is essential because it is the only one that
covers the vertices 000, 001, and 010. This can be seen in the Karnaugh map in Figure 2.56.

Example 8.17In Example 8.15 we found that the prime implicants of the function in Figure 2.57 are P =
{x01x, x101, 01x1, 0x1x, xx10}. Because this function has no don’t-cares, we compute

x01x # (P – x01x) = 1011 �= ø

This is computed in the following steps: x01x # x101 = x01x, then x01x # 01x1 = x01x,
then x01x # 0x1x = 101x, and finally 101x # xx10 = 1011. Similarly, we obtain

x101 # (P – x101) = 1101 �= ø

01x1 # (P – 01x1) = ø

0x1x # (P – 0x1x) = ø

xx10 # (P – xx10) = 1110 �= ø

Therefore, the essential prime implicants are x01x, x101, and xx10 because they are the
only ones that cover the vertices 1011, 1101, and 1110, respectively. This is obvious from
the Karnaugh map in Figure 2.57.

When checking whether a cube A is essential, the #-operation with one of the cubes in
P − A may generate multiple cubes. If so, then each of these cubes has to be checked using
the #-operation with all of the remaining cubes in P − A.
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Complete Procedure for Finding a Minimal Cover
Having introduced the ∗- and #-operations, we can now outline a complete procedure

for finding a minimal cover for any n-variable function. Assume that the function f is
specified in terms of vertices for which f = 1; these vertices are often referred to as the
ON-set of the function. Also, assume that the don’t-care conditions are specified as a DC-set.
Then the initial cover for f is a union of the ON and DC sets.

Prime implicants of f can be generated using the ∗-operation, and the #-operation can
be used to find the essential prime implicants. If the essential prime implicants cover the
entire ON-set, then they form the minimum-cost cover for f . Otherwise, it is necessary to
include other prime implicants until all vertices in the ON-set are covered.

A nonessential prime implicant pi should be deleted if there exists a less-expensive
prime implicant pj that covers all vertices of the ON-set that are covered by pi. If the
remaining nonessential prime implicants have the same cost, then a possible heuristic ap-
proach is to arbitrarily select one of them, include it in the cover, and determine the rest of
the cover. Then an alternative cover is generated by excluding this prime implicant, and
the lower-cost cover is chosen for implementation. We already used this approach, which
is often referred to as the branching heuristic, in Sections 2.12.2 and 8.4.1.

The preceding discussion can be summarized in the form of the following minimization
procedure:

1. Let C0 = ON ∪ DC be the initial cover of function f and its don’t-care conditions.

2. Find all prime implicants of C0 using the ∗-operation; let P be this set of prime
implicants.

3. Find the essential prime implicants using the #-operation. A prime implicant pi is
essential if pi # (P − pi) # DC �= ø. If the essential prime implicants cover all
vertices of the ON-set, then these implicants form the minimum-cost cover.

4. Delete any nonessential pi that is more expensive (i.e., a smaller cube) than some
other prime implicant pj if pi # DC # pj = ø.

5. Choose the lowest-cost prime implicants to cover the remaining vertices of the
ON-set. Use the branching heuristic on the prime implicants of equal cost and retain
the cover with the lowest cost.

Example 8.18 To illustrate the minimization procedure, we will use the function

f (x1, x2, x3, x4, x5) =
∑

m(0, 1, 4, 8, 13, 15, 20, 21, 23, 26, 31) + D(5, 10, 24, 28)

To help the reader follow the discussion, this function is also shown in the form of a
Karnaugh map in Figure 8.32.

Instead of f being specified in terms of minterms, let us assume that f is given as the
following SOP expression

f = x1x3x4x5 + x1x2x3x4x5 + x1x2x3x4x5 + x1x2x3x5 + x1x2x3x5 + x1x3x4x5 + x2x3x4x5
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Figure 8.32 The function for Example 8.18.

Also, we will assume that don’t-cares are specified using the expression

DC = x1x2x4x5 + x1x2x3x4x5 + x1x2x3x4x5

Thus, the ON-set expressed as cubes is

ON = {0x000, 11010, 00001, 011x1, 101x1, 1x111, x0100}

and the don’t-care set is

DC = {11x00, 01010, 00101}

The initial cover C0 consists of the ON-set and the DC-set:

C0 = {0x000, 11010, 00001, 011x1, 101x1, 1x111, x0100, 11x00, 01010, 00101}

Using the ∗-operation, the subsequent covers obtained are

C1 = {0x000, 011x1, 101x1, 1x111, x0100, 11x00, 0000x, 00x00, x1000, 010x0, 110x0,

x1010, 00x01, x1111, 0x101, 1010x, x0101, 1x100, 0010x}

C2 = {0x000, 011x1, 101x1, 1x111, 11x00, x1111, 0x101, 1x100, x010x, 00x0x, x10x0}

C3 = C2

Therefore, P = C2.
Using the #-operation, we find that there are two essential prime implicants: 00x0x

(because it is the only one that covers the vertex 00001) and x10x0 (because it is the only one
that covers the vertex 11010). The minterms of f covered by these two prime implicants
are m(0, 1, 4, 8, 26).

Next, we find that 1x100 can be deleted because the only ON-set vertex that it covers is
10100 (m20), which is also covered by x010x and the cost of this prime implicant is lower.
Note that having removed 1x100, the prime implicant x010x becomes essential because
none of the other remaining prime implicants covers the vertex 10100. Therefore, x010x
has to be included in the final cover. It covers m(20, 21).
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There remains to find prime implicants to cover m(13, 15, 23, 31). Using the branching
heuristic, the lowest-cost cover is obtained by including the prime implicants 011x1 and
1x111. Thus the final cover is

Cminimum = {00x0x, x10x0, x010x, 011x1, 1x111}

The corresponding sum-of-products expression is

f = x1x2x4 + x2x3x5 + x2x3x4 + x1x2x3x5 + x1x3x4x5

Although this procedure is tedious when performed by hand, it is not difficult to write a
computer program to implement the algorithm automatically. The reader should check
the validity of our solution by finding the optimal realization from the Karnaugh map in
Figure 8.32.

8.4.3 Practical Considerations

The purpose of the above discussion was to give the reader some idea about how mini-
mization of logic functions may be automated for use in CAD tools. We chose a scheme
that is not too difficult to explain. From the practical point of view, this scheme has some
drawbacks. The main difficulty is that the number of cubes that must be considered in the
process can be extremely large.

If the goal of minimization is relaxed so that it is not imperative to find a minimum-cost
implementation, then it is possible to derive heuristic techniques that produce good results
in reasonable time. A technique of this type forms the basis of the widely used Espresso
program, which is available from the University of California at Berkeley via the World
Wide Web. Espresso is a two-level optimization program. Both input to the program and
its output are specified in the format of cubes. Instead of using the ∗-operation to find the
prime implicants, Espresso uses an implicant-expansion technique. (See Problem 8.25 for
an illustration of the expansion of implicants.) A comprehensive explanation of Espresso
is given in [14], while simplified outlines can be found in [2, 13].

The University of California at Berkeley has provided software programs that can be
used for design of multilevel circuits, called MIS [15], SIS [16], and ABC [17]. They allow
a user to apply various multilevel optimization techniques to a logic circuit. The user can
experiment with different optimization strategies by applying techniques such as factoring
and decomposition to all or part of a circuit.

Numerous commercial CAD systems are on the market. Some companies whose pro-
ducts are widely used areAltera, Cadence Design Systems, Mentor Graphics, Synopsys, and
Xilinx. Information on their products is available on the World Wide Web. Each company
provides logic synthesis software that can be used to target various types of chips, such as
FPGAs, gate arrays, standard cells, and custom chips. Because there are many possible
ways to synthesize a given circuit, as we saw in the previous sections, each commercial
product uses a proprietary logic optimization strategy based on heuristic methods.
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To describe CAD tools, some new terminology has been invented. In particular, we
should mention two terms that are widely used in industry: technology-independent logic
synthesis and technology mapping. The first term refers to techniques that are applied when
optimizing a circuit without considering the resources available in the target chip. Most
of the techniques presented in this chapter are of this type. The second term, technology
mapping, refers to techniques that are used to ensure that the circuit produced by logic
synthesis can be realized using the logic resources available in the target chip. A good
example of technology mapping is the transformation from a circuit in the form of logic
operations such as AND and OR into a circuit that consists of only NAND operations. This
type of technology mapping is done when targeting a circuit to a gate array that contains
only NAND gates. Another example is the translation from logic operations to lookup
tables, which is done when targeting a design to an FPGA.

Chapter 10 discusses the CAD tools in detail. It presents a typical design flow that a
designer may use to implement a digital system.

8.5 Concluding Remarks

This chapter has attempted to provide the reader with an understanding of various aspects
of synthesis for logic functions. In the next chapter we discuss asynchronous sequential
circuits. In the design of these circuits we will make use of many of the synthesis techniques
covered in the previous chapters, as well as the cubical notation that we introduced in this
chapter.

8.6 Examples of Solved Problems

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

Example 8.19Problem: Consider the four-input logic function

f = x1x2x4 + x2x3x4 + x1x2x3

Show how this function can be implemented in an FPGA that has three-input LUTs.

Solution: A straightforward implementation requires 4 three-input LUTs. Three of these
LUTs are used for the AND operations, and the final LUT implements the OR operation.
But, if the function is synthesized as

f = x2 · (x1x4 + x3x4) + x2 · (x1x3)

then only three LUTs are needed, as illustrated in Figure 8.33. The first LUT produces
the subfunction g = x1x4 + x3x4, the second LUT generates h = x1x3, and the final LUT
produces f = x2 · g + x2 · h.
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Figure 8.33 The function in Example 8.19.

Example 8.20 Problem: In Example 8.11 we created a BDD for the function f = x1x3 + x1x4 + x2x4 +
x2x3 + x1x2x3x4. Use functional decomposition to derive a multilevel implementation of
f . Consider subfunctions of the inputs x3 and x4.

Solution: Figure 8.34 shows f in the form of a Karnaugh map. It has the subfunction
h = x3x4 in the first column, and the subfunction g = x3 + x4 in the second, third, and
fourth columns. Hence

f = (x1x2) · h + (x1x2 + x1x2 + x1x2) · g

= (x1x2) · x3x4 + (x1 + x2) · (x3 + x4)

This is the same expression that was derived from the BDD in Example 8.11. It is possible
to simplify this expression. Let k = (x1 + x2), so that

f = k · x3x4 + k · (x3 + x4)

= k · x3x4 + k · x3 + k · x4

= k · x3x4 + k · x3x4 + k · x3 + k · x4

= (k + k) · x3x4 + k · (x3 + x4)

= x3x4 + k · (x3 + x4)

Here, we have used the absorption rule 13a from Section 2.5 to expand k · x3 into the two
terms k · x3x4 + k · x3, which then leads to a simplification. Resubstituting k = (x1 + x2)

gives

f = x3x4 + (x1 + x2) · (x3 + x4)

We can also derive this decomposition of f by examining the rows of the Karnaugh map
in Figure 8.34 and identifying subfunctions of variables x1 and x2. The second and fourth
rows are the subfunction k = x1 + x2, and the third row is the subfunction equal to 1. Thus
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Figure 8.34 The function for Example 8.20.

f = (x3x4 + x3x4) · k + (x3x4) · 1

= (x3x4) · k + (x3x4) · k + (x3x4) · k + x3x4

= (x3x4 + x3x4 + x3x4) · k + x3x4

= (x3 + x4) · k + x3x4

= (x3 + x4) · (x1 + x2) + x3x4

Example 8.21Problem: Show how Shannon’s expansion can be used to create a BDD for the function
f = x1x3 + x2x4, with the input order x1, x2, x3, x4.

Solution: Shannon’s expansion with respect to x1 gives f = x1fx1 + x1fx1 . The cofactors
are

fx1 = 0 · x3 + x2x4 = x2x4

fx1 = 1 · x3 + x2x4 = x3 + x2x4

For the cofactor fx1 = x3 + x2x4 it is useful to apply Shannon’s expansion again, with respect
to input x2. This gives

fx1x2 = x3 + 0 · x4 = x3

fx1x2 = x3 + 1 · x4 = x3 + x4

The resulting BDD is shown in Figure 8.35. The BDD for fx1 = x2x4 is highlighted in blue.
The BDD for fx1 is on the righthand side of the figure, with the subfunction fx1x2 = x3 on the
0-edge from node x2 and the subfunction for fx1x2 = x3 + x4 on the 1-edge from node x2.
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Figure 8.35 The BDD for Example 8.21.

Example 8.22 Problem: Create a BDD for the function used in Example 8.21 with the input order x1,

x3, x2, x4.

Solution: We can derive the BDD by swapping the inputs x2 and x3 in the BDD of Figure
8.35. The first step is to isolate the part of the BDD that contains nodes x2 and x3, as shown
by the dotted lines in Figure 8.36a. There are two edges, labeled E1 and E2, that enter this
part of the BDD. There is no reordering needed for edge E1, because it does not depend
on node x3. But for edge E2, it is useful to create the truth table shown in Figure 8.36b to
enumerate the paths in the BDD that start at E2. The path representing x2x3 = 00 leads to
the terminal node 0, the path for x2x3 = 10 leads to node x4, and the remaining two paths
lead to the terminal node 1.

We can now create the graph shown in Figure 8.37a, ensuring that all paths from edge
E2 reach the correct destination nodes shown in the truth table. Removing the redundant
node x2 on the righthand side of this graph, and also merging the two remaining identical
copies of node x2, results in the BDD in Figure 8.37b. This BDD is simpler than the one in
Figure 8.35.

Example 8.23 Problem: Use the tabular method of Section 8.4.1 to derive a minimum-cost SOPexpression
for the function

f (x1, . . . , x4) = x1x3x4 + x3x4 + x1x2x4 + x1x2x3x4

assuming that there are also don’t-cares defined as D = ∑
(9, 12, 14).
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Figure 8.38 Generation of prime implicants for the function in Example 8.23.

Solution: The tabular method requires that we start with the function defined in the form
of minterms. As found in Figure 2.68, the function f can also be represented as

f (x1, . . . , x4) =
∑

m(0, 1, 3, 4, 7, 11, 13, 15) + D(9, 12, 14)

The corresponding eleven 0-cubes are placed in list 1 in Figure 8.38.
Now, perform a pairwise comparison of all 0-cubes to determine the 1-cubes shown

in list 2, which are obtained by combining pairs of 0-cubes. Note that all 0-cubes are
included in the 1-cubes, as indicated by the checkmarks in list 1. Next, perform a pairwise
comparison of all 1-cubes to obtain the 2-cubes in list 3. Some of these 2-cubes can be
generated in multiple ways, but it is not useful to list a 2-cube more than once (for example,
x0x1 in list 3 can be obtained by combining from list 2 the cubes 1,3 and 9,11 or by using
the cubes 1,9 and 3,11). Note that all but three 1-cubes are included in the 2-cubes. It is not
possible to generate any 3-cubes, hence all terms that are not included in some other term
(the unchecked terms in list 2 and all terms in list 3) are the prime implicants of f . The set
of prime implicants is

P = {000x, 0x00, x100, x0x1, xx11, 1xx1, 11xx}
= {p1, p2, p3, p4, p5, p6, p7}

To find the minimum-cost cover for f , construct the table in Figure 8.39a which shows
all prime implicants and the minterms that must be covered, namely those for which f = 1.
A checkmark is placed to indicate that a minterm is covered by a particular prime implicant.
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Figure 8.39 Selection of a cover for the function in Example 8.23.

Since minterm 7 is covered only by p5, this prime implicant must be included in the final
cover. Observe that row p2 dominates row p3, hence the latter can be removed. Similarly,
row p6 dominates row p7. Removing rows p5, p3, and p7, as well as columns 3, 7, 11, and
15 (which are covered by p5), leads to the reduced table in Figure 8.39b. In this table, p2

and p6 are essential. They cover minterms 0, 4, and 13. Thus, it remains only to cover
minterm 1, which can be done by choosing either p1 or p4. Since p4 has a lower cost, it
should be chosen. Therefore, the final cover is

C = {p2, p4, p5, p6}
= {0x00, x0x1, xx11, 1xx1}

and the function is implemented as

f = x1x3x4 + x2x4 + x3x4 + x1x4
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Example 8.24 Problem: Use the ∗-product operation to find all prime implicants of the function

f (x1, . . . , x4) = x1x3x4 + x3x4 + x1x2x4 + x1x2x3x4

assuming that there are also don’t-cares defined as D = ∑
(9, 12, 14).

Solution: The ON-set for this function is

ON = {0x00, xx11, 00x1, 1101}

The initial cover, consisting of the ON-set and the don’t-cares, is

C0 = {0x00, xx11, 00x1, 1101, 1001, 1100, 1110}

Using the ∗-operation, the subsequent covers obtained are

C1 = {0x00, xx11, 00x1, 000x, x100, 11x1, 10x1, 111x, x001, 1x01, 110x, 11x0}

C2 = {0x00, xx11, 000x, x100, x0x1, 1xx1, 11xx}

C3 = C2

Therefore, the set of all prime implicants is

P = {x1x3x4, x3x4, x1x2x3, x2x3x4, x2x4, x1x4, x1x2}

Example 8.25 Problem: Find the minimum-cost implementation for the function

f (x1, . . . , x4) = x1x3x4 + x3x4 + x1x2x4 + x1x2x3x4

assuming that there are also don’t-cares defined as D = ∑
(9, 12, 14).

Solution: This is the same function used in Examples 8.23 and 8.24. In those examples,
we found that the minimum-cost SOP implementation is

f = x3x4 + x1x3x4 + x2x4 + x1x4

which requires four AND gates, one OR gate, and 13 inputs to the gates, for a total cost
of 18.

The minimum-cost POS implementation is

f = (x3 + x4)(x1 + x4)(x1 + x2 + x3 + x4)

which requires three OR gates, one AND gate, and 11 inputs to the gates, for a total cost
of 15.

We can also consider a multilevel realization for the function. Applying the factoring
concept to the above SOP expression yields

f = (x1 + x2 + x3)x4 + x1x3x4
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Figure 8.40 Circuit for Example 8.26.

This implementation requires two AND gates, two OR gates, and 10 inputs to the gates, for
a total cost of 14. Compared to the SOP and POS implementations, this has the lowest cost
in terms of gates and inputs, but it results in a slower circuit because there are three levels
of gates through which the signals must propagate.

Example 8.26Problem: In several commercial FPGAs the logic blocks are four-input LUTs. Two such
LUTs, connected as shown in Figure 8.40, can be used to implement functions of seven
variables by using the decomposition

f (x1, . . . , x7) = f [g(x1, . . . , x4), x5, x6, x7]
It is easy to see that functions such as f = x1x2x3x4x5x6x7 and f = x1 + x2 + x3 + x4 +
x5 + x6 + x7 can be implemented in this form. Show that there exist other seven-variable
functions that cannot be implemented with 2 four-input LUTs.

Solution: The truth table for a seven-variable function can be arranged as depicted in
Figure 8.41. There are 27 = 128 minterms. Each valuation of the variables x1, x2, x3, and
x4 selects one of the 16 columns in the truth table, while each valuation of x5, x6, and x7

selects one of 8 rows. Since we have to use the circuit in Figure 8.40, the truth table for
f can also be defined in terms of the subfunction g. In this case, it is g that selects one of
the 16 columns in the truth table, instead of x1, x2, x3, and x4. Since g can have only two
possible values, 0 and 1, we can have only two columns in the truth table. This is possible
if there exist only two distinct patterns of 1s and 0s in the 16 columns in Figure 8.40.
Therefore, only a relatively small subset of seven-variable functions can be realized with
just two LUTs.
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Figure 8.41 A possible format for truth tables of seven-variable
functions.

Problems

Answers to problems marked by an asterisk are given at the back of the book.

*8.1 Implement the logic circuit in Figure 8.6b using NAND gates only.

*8.2 Implement the logic circuit in Figure 8.6b using NOR gates only.

8.3 Implement the logic circuit in Figure 8.8b using NAND gates only.

8.4 Implement the logic circuit in Figure 8.8b using NOR gates only.

*8.5 Consider the function f = x3x5 + x1x2x4 + x1x2x4 + x1x3x4 + x1x3x4 + x1x2x5 + x1x2x5.
Derive a minimum-cost circuit that implements this function using NOT, AND, and OR
gates.

8.6 Derive a minimum-cost circuit that implements the function f (x1, . . . , x4) = ∑
m(4, 7, 8,

11) + D(12, 15).

8.7 Find the simplest realization of the function f (x1, . . . , x4) = ∑
m(0, 3, 4, 7, 9, 10, 13, 14),

assuming that the logic gates have a maximum fan-in of two.

*8.8 Find the minimum-cost circuit for the function f (x1, . . . , x4) = ∑
m(0, 4, 8, 13, 14, 15).

Assume that the input variables are available in uncomplemented form only. (Hint: Use
functional decomposition.)

8.9 Use functional decomposition to find the best implementation of the function f (x1, . . . ,

x5) = ∑
m(1, 2, 7, 9, 10, 18, 19, 25, 31) + D(0, 15, 20, 26). How does your implementa-

tion compare with the lowest-cost SOP implementation? Give the costs.

8.10 In Figure 8.7 we decomposed the function f by first identifying subfunctions in the columns
of the Karnaugh map. Repeat this decomposition by first identifying subfunctions in the
rows of the Karnaugh map.
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8.11 In Figure 8.8 we decomposed the function f by first identifying subfunctions in the rows
of the Karnaugh map. Repeat this decomposition by first identifying subfunctions in the
columns of the Karnaugh map.

*8.12 Create a BDD for the function in Figure 8.6 using the input order x1, x2, x3, x4.

8.13 Repeat Problem 8.12 using the input order x4, x3, x2, x1.

8.14 Create a BDD for the function in Figure 8.8 using the input order x1, x2, x3, x4, x5.

8.15 Repeat Problem 8.14 using the input order x5, x4, x3, x2, x1.

8.16 For the function f = x1x3 + x2x4 in Example 8.21 show how to use Shannon’s expansion
to derive the BDD in Figure 8.37b.

8.17 Show how to swap the variables x2 and x3 in the BDD in Figure 8.37b to derive the BDD
in Figure 8.35.

*8.18 Use the tabular method discussed in Section 8.4.1 to find a minimum cost SOP realization
for the function

f (x1, . . . , x4) =
∑

m(0, 2, 4, 5, 7, 8, 9, 15)

8.19 Repeat Problem 8.18 for the function

f (x1, . . . , x4) =
∑

m(0, 4, 6, 8, 9, 15) + D(3, 7, 11, 13)

8.20 Repeat Problem 8.18 for the function

f (x1, . . . , x4) =
∑

m(0, 3, 4, 5, 7, 9, 11) + D(8, 12, 13, 14)

8.21 Show that the following distributive-like rules are valid

(A · B)#C = (A#C) · (B#C)

(A + B)#C = (A#C) + (B#C)

8.22 Use the cubical representation and the method discussed in Section 8.4.2 to find a minimum-
cost SOP realization of the function f (x1, . . . , x4) = ∑

m(0, 2, 4, 5, 7, 8, 9, 15).

8.23 Repeat Problem 8.22 for the function f (x1, . . . , x5) = x1x3x5 + x1x2x3 + x2x3x4x5 +
x1x2x3x4 + x1x2x3x4x5 + x1x2x4x5 + x1x3x4x5.

8.24 Use the cubical representation and the method discussed in Section 8.4.2 to find a minimum-
cost SOP realization of the function f (x1, . . . , x4) defined by the ON-set ON = {00x0, 100x,
x010, 1111} and the don’t-care set DC = {00x1, 011x}.

8.25 In Section 8.4.2 we showed how the ∗-product operation can be used to find the prime
implicants of a given function f . Another possibility is to find the prime implicants by
expanding the implicants in the initial cover of the function. An implicant is expanded
by removing one literal to create a larger implicant (in terms of the number of vertices
covered). A larger implicant is valid only if it does not include any vertices for which
f = 0. The largest valid implicants obtained in the process of expansion are the prime
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x2x3 x1x3 x1x2

x3 x2 x3 x1 x x2 1

x1x2x3

NONONONO

Figure P8.1 Expansion of implicant x1x2x3.

implicants. Figure P8.1 illustrates the expansion of the minterm x1x2x3 of the function used
in Example 8.14. Note from Figure 2.56 that

f = x1x2x3 + x1x2x3 + x1x2x3

In Figure P8.1 the word NO is used to indicate that the expanded term is not valid,
because it includes one or more vertices from f . From the graph it is clear that the largest
valid implicants that arise from this expansion are x2x3 and x1; they are prime implicants
of f .

Expand the other four minterms given in the initial cover in Example 8.14 to find all
prime implicants of f . What is the relative complexity of this procedure compared to the
∗-product technique?

8.26 Repeat Problem 8.25 for the function in Example 8.15. Expand the implicants given in the
initial cover C0.

8.27 Find the minimum-cost circuit consisting only of two-input NAND gates for the function
f (x1, . . . , x4) = ∑

m(0, 1, 2, 3, 4, 6, 8, 9, 12). Assume that the input variables are avail-
able in both uncomplemented and complemented forms. (Hint: Consider the complement
of the function.)

8.28 Repeat Problem 8.27 for the function f (x1, . . . , x4) = ∑
m(2, 3, 6, 8, 9, 12).

8.29 Find the minimum-cost circuit consisting only of two-input NOR gates for the function
f (x1, . . . , x4) = ∑

m(6, 7, 8, 10, 12, 14, 15). Assume that the input variables are available
in both uncomplemented and complemented forms. (Hint: Consider the complement of
the function.)

8.30 Repeat Problem 8.29 for the function f (x1, . . . , x4) = ∑
m(2, 3, 4, 5, 9, 10, 11, 12, 13, 15).
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9
Asynchronous Sequential Circuits

Chapter Objectives

In this chapter you will learn about:

• Sequential circuits that are not synchronized by a clock

• Analysis of asynchronous sequential circuits

• Synthesis of asynchronous sequential circuits

• The concept of stable and unstable states

• Hazards that cause incorrect behavior of a circuit

• Timing issues in digital circuits
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In Chapter 6 we covered the design of synchronous sequential circuits in which the state variables are
represented by flip-flops that are controlled by a clock. The clock is a periodic signal that consists of pulses.
Changes in state can occur on the positive or negative edge of each clock pulse. Since they are controlled by
pulses, synchronous sequential circuits are said to operate in pulse mode. In this chapter we present sequential
circuits that do not operate in pulse mode and do not use flip-flops to represent state variables. These circuits
are called asynchronous sequential circuits.

In an asynchronous sequential circuit, changes in state are not triggered by clock pulses. Instead, changes
in state are dependent on whether each of the inputs to the circuit has the logic level 0 or 1 at any given time.
To achieve reliable operation, the inputs to the circuit must change in a specific manner. In this introductory
discussion we will concentrate on the simplest case in which a constraint is imposed that the inputs must
change one at a time. Moreover, there must be sufficient time between the changes in input signals to allow
the circuit to reach a stable state, which is achieved when all internal signals stop changing. A circuit that
adheres to these constraints is said to operate in the fundamental mode.

Asynchronous circuits are much more difficult to design than synchronous circuits. Specialized tech-
niques, which are beyond the scope of this book, have been developed for dealing with large asynchronous
circuits. Our main reason for the discussion in this chapter is the fact that the asynchronous circuits, even
in their simplest form, provide an excellent vehicle for gaining a deeper understanding of the operation of
digital circuits in general. In particular, they illustrate the timing issues caused by propagation delays in logic
circuits.

The design approaches presented in this chapter are classical techniques that are suitable only for very
small circuits. They are easy to understand and they demonstrate the problems that arise from timing con-
straints. In synchronous circuits these problems are avoided by using a clock as a synchronizing mechanism.

9.1 Asynchronous Behavior

To introduce asynchronous sequential circuits, we will reconsider the basic latch circuit in
Figure 5.3. This Set-Reset (SR) latch is redrawn in Figure 9.1a. The feedback loop gives
rise to the sequential nature of the circuit. It is an asynchronous circuit because changes in
the value of the output, Q, occur without having to wait for a synchronizing clock pulse. In
response to a change in either the S (Set) or R (Reset) input, the value of Q will change after
a short propagation time through the NOR gates. In Figure 9.1a the combined propagation
delay through the two NOR gates is represented by the box labeled �. Then, the NOR
gate symbols represent ideal gates with zero delay. Using the notation in Chapter 6, Q
corresponds to the present state of the circuit, represented by the present-state variable, y.
The value of y is fed back through the circuit to generate the value of the next-state variable,
Y , which represents the next state of the circuit. After the � time delay, y takes the value
of Y . Observe that we have drawn the circuit in a style that conforms to the general model
for sequential circuits presented in Figure 6.85.

By analyzing the SR latch, we can derive a state-assigned table, as illustrated in Figure
9.1b. When the present state is y = 0 and the inputs are S = R = 0, the circuit produces
Y = 0. Since y = Y , the state of the circuit will not change. We say that the circuit is stable
under these input conditions. Now assume that R changes to 1 while S remains at 0. The
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R

S Q
Y y

(a) Circuit with modeled gate delay

(b) State-assigned table

Present Next state

state 0100=SR

Yy Y Y Y

10 11

0 0 0 1 0

1 1 0 1 0

Figure 9.1 Analysis of the SR latch.

circuit still generates Y = 0 and remains stable. Assume next that S changes to 1 and R
remains at 1. The value of Y is unchanged, and the circuit is stable. Then let R change to 0
while S remains at 1. This input valuation, SR = 10, causes the circuit to generate Y = 1.
Since y �= Y , the circuit is not stable. After the � time delay, the circuit changes to the new
present state y = 1. Once this new state is reached, the value of Y remains equal to 1 as
long as SR = 10. Hence the circuit is again stable. The analysis for the present state y = 1
can be completed using similar reasoning.

The concept of stable states is very important in the context of asynchronous sequential
circuits. For a given valuation of inputs, if a circuit reaches a particular state and remains in
this state, then the state is said to be stable. To clearly indicate the conditions under which
the circuit is stable, it is customary to encircle the stable states in the table, as illustrated in
Figure 9.1b.

From the state-assigned table, we can derive the state table in Figure 9.2a. The state
names A and B represent the present states y = 0 and y = 1, respectively. Since the output
Q depends only on the present state, the circuit is a Moore-type FSM. The state diagram
that represents the behavior of this FSM is shown in Figure 9.2b.

The preceding analysis shows that the behavior of an asynchronous sequential circuit
can be represented as an FSM in a similar way as the synchronous sequential circuits in
Chapter 6. Consider now performing the opposite task. That is, given the state table in
Figure 9.2a, we can synthesize an asynchronous circuit as follows: After performing the
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Present Next state Output
state S R = 00 01 10 11 Q

A A A B A 0

B B A B A 1

(a) State table

10
00

11
01
00

10

A 0/ B 1/

11
01

SR

(b) State diagram

Figure 9.2 FSM model for the SR latch.

state assignment, we have the state-assigned table in Figure 9.1b. This table represents a
truth table for Y , with the inputs y, S, and R. Deriving a minimal product-of-sums expression
yields

Y = R · (S + y)

If we were deriving a synchronous sequential circuit using the methods in Chapter 6, then
Y would be connected to the D input of a flip-flop and a clock signal would be used to
control the time when the changes in state take place. But since we are synthesizing an
asynchronous circuit, we do not insert a flip-flop in the feedback path. Instead, we create a
circuit that realizes the preceding expression using the necessary logic gates, and we feed
back the output signal as the present-state input y. Implementation using NOR gates results
in the circuit in Figure 9.1a. This simple example suggests that asynchronous circuits and
synchronous circuits can be synthesized using similar techniques. However, we will see
shortly that for more complex asynchronous circuits, the design task is considerably more
difficult.

To further explore the nature of asynchronous circuits, it is interesting to consider how
the behavior of the SR latch can be represented in the form of a Mealy model. As depicted
in Figure 9.3, the outputs produced when the circuit is in a stable state are the same as
in the Moore model, namely 0 in state A and 1 in state B. Consider now what happens
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Present Next state Output, Q

state SR = 00 01 10 11 00 01 10 11

A A A B A 0 0 – 0

B B A B A 1 – 1 –

(a) State table

10 1/
00 1/

11 0/
01 0/
00 0/

10 –/

A B

01 –/
11 –/

SR/Q

(b) State diagram

Figure 9.3 Mealy representation of the SR latch.

when the state of the circuit changes. Suppose that the present state is A and that the input
valuation SR changes from 00 to 10. As the state table specifies, the next state of the FSM
is B. When the circuit reaches state B, the output Q will be 1. But in the Mealy model, the
output is supposed to be affected immediately by a change in the input signals. Thus while
still in state A, the change in SR to 10 should result in Q = 1. We could have written a 1
in the corresponding entry in the top row of the state table, but we have chosen to leave
this entry unspecified instead. The reason is that since Q will change to 1 as soon as the
circuit reaches state B, there is little to be gained in trying to make Q go to 1 a little sooner.
Leaving the entry unspecified allows us to assign either 0 or 1 to it, which may make the
circuit that implements the state table somewhat simpler. A similar reasoning leads to the
conclusion that the two output entries where a change from B to A takes place can also be
left unspecified.

Using the state assignment y = 0 for A and y = 1 for B, the state-assigned table rep-
resents a truth table for both Y and Q. The minimal expression for Y is the same as for the
Moore model. To derive an expression for Q, we need to set the unspecified entries to 0 or
1. Assigning a 0 to the unspecified entry in the first row and 1 to the two unspecified entries
in the second row produces Q = y and results in the circuit in Figure 9.1a.

Terminology
In the preceding discussion we used the same terminology as in the previous chapter

on synchronous sequential circuits. However, when dealing with asynchronous sequential
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circuits, it is customary to use two different terms. Instead of a “state table,” it is more
common to speak of a flow table, which indicates how the changes in state flow as a result
of the changes in the input signals. Instead of a “state-assigned table,” it is usual to refer
to a transition table or an excitation table. We will use the terms flow table and excitation
table in this chapter. A flow table will define the state changes and outputs that must be
generated. An excitation table will depict the transitions in terms of the state variables. The
term excitation table derives from the fact that a change from a stable state is performed by
“exciting” the next-state variables to start changing towards a new state.

9.2 Analysis of Asynchronous Circuits

To gain familiarity with asynchronous circuits, it is useful to analyze a few examples. We
will keep in mind the general model in Figure 6.85, assuming that the delays in the feedback
paths are a representation of the propagation delays in the circuit. Then each gate symbol
will represent an ideal gate with zero delay.

Example 9.1 GATED D LATCH In Chapters 5 and 6, we used the gated D latch as a key component in
circuits that are controlled by a synchronizing clock. It is instructive to analyze this latch as
an asynchronous circuit, where the clock is just one of the inputs. It is reasonable to assume
that the signals on the D and clock inputs do not change at the same time, thus meeting the
basic requirement of asynchronous circuits.

Figure 9.4a shows the gated D latch drawn in the style of the model of Figure 6.85. This
circuit was introduced in Figure 5.7 and discussed in Section 5.3. The next-state expression
for this circuit is

Y = (C ↑ D) ↑ ((C ↑ D) ↑ y)

= CD + Cy + Dy

The term Dy in this expression is redundant and could be deleted without changing the logic
function of Y . Hence the minimal expression is

Y = CD + Cy

The reason that the circuit implements the redundant term Dy is that this term solves a race
condition known as a hazard; we will discuss hazards in detail in Section 9.6.

Evaluating the expression for Y for all valuations of C, D, and y leads to the excitation
table in Figure 9.4b. Note that the circuit changes its state only when C = 1 and D is
different from the present state, y. In all other cases the circuit is stable. Using the symbols
A and B to represent the states y = 0 and y = 1, we obtain the flow table and the state
diagram shown in parts (c) and (d).
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D

C

Q
Y y

(a) Circuit

Present Next state

state C D = 00 01 10 11
y Y Y Y Y Q

0 0 0 0 1 0

1 1 1 0 1 1

(b) Excitation table

Present Next state

state C D = 00 01 10 11 Q

A A A A B 0

B B B A B 1

(c) Flow table

x1
0x

x0
0x

11

A 0/ B 1/

10

CD

(d) State diagram

Figure 9.4 The gated D latch.
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Example 9.2 MASTER-SLAVE D FLIP-FLOP In Example 9.1 we analyzed the gated D latch as an asyn-
chronous circuit. Actually, all practical circuits are asynchronous. However, if the circuit’s
behavior is tightly controlled by a clock signal, then simpler operating assumptions can
be used, as we did in Chapter 6. Recall that in a synchronous sequential circuit all sig-
nals change values in synchronization with the clock signal. Now we will analyze another
synchronous circuit as if it were an asynchronous circuit.

Two gated D latches are used to implement the master-slave D flip-flop, as illustrated in
Figure 5.9. This circuit is reproduced in Figure 9.5. We can analyze the circuit by treating
it as a series connection of two gated D latches. Using the results from Example 9.1, the
simplified next-state expressions can be written as

Ym = CD + Cym

Ys = Cym + Cys

where the subscripts m and s refer to the master and slave stages of the flip-flop. These
expressions lead to the excitation table in Figure 9.6a. Labeling the four states as S1 through
S4, we derive the flow table in Figure 9.6b. A state-diagram form of this information is
given in Figure 9.7.

Let us consider the behavior of this FSM in more detail. The state S1, where ymys = 00,
is stable for all input valuations except CD = 11. When C = 1, the value of D is stored in
the master stage; hence CD = 11 causes the flip-flop to change to S3, where ym = 1 and
ys = 0. If the D input now changes back to 0, while the clock remains at 1, the flip-flop
moves back to the state S1. The transitions between S1 and S3 indicate that if C = 1,
the output of the master stage, Qm = ym, tracks the changes in the D input signal without
affecting the slave stage. From S3 the circuit changes to S4 when the clock goes to 0. In S4
both master and slave stages are set to 1 because the information from the master stage is
transferred to the slave stage on the negative edge of the clock. Now the flip-flop remains
in S4 until the clock goes to 1 and the D input changes to 0, which causes a change to S2.
In S2 the master stage is cleared to 0, but the slave stage remains at 1. Again the flip-flop
may change between S2 and S4 because the master stage will track the changes in the D
input signal while C = 1. From S2 the circuit changes to S1 when the clock goes low.

In Figures 9.6 and 9.7, we indicated that the flip-flop has only one output Q, which one
sees when the circuit is viewed as a negative-edge-triggered flip-flop. From the observer’s

D

Clk

Q

Q

D

C

Q
ysym

Master Slave

Q

D

Clk

Q

Q

Figure 9.5 Circuit for the master-slave D flip-flop.
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Present Next state

state C D = 00 01 10 11 Output

ym ys YmYs
Q

00 0�0 0�0 0�0 10 0

01 00 00 0�1 11 1

10 11 11 00 1�0 0

11 1�1 1�1 01 1�1 1

(a) Excitation table

Present Next state Output
state C D = 00 01 10 11 Q

S1 S�1 S�1 S�1 S3 0

S2 S1 S1 S�2 S4 1

S3 S4 S4 S1 S�3 0

S4 S�4 S�4 S2 S�4 1

(b) Flow table

Present Next state Output
state C D = 00 01 10 11 Q

S1 S�1 S�1 S�1 S3 0

S2 S1 S�2 S4 1

S3 S4 S1 S�3 0

S4 S�4 S�4 S2 S�4 1

(c) Flow table with unspecified entries

Figure 9.6 Excitation and flow tables for Example 9.2.

point of view, the flip-flop has only two states, 0 and 1. But internally, the flip-flop consists
of the master and slave parts, which gives rise to the four states described above.

We should also examine the basic assumption that the inputs must change one at a time.
If the circuit is stable in state S2, for which CD = 10, it is impossible to go from this state
to S1 under the influence of the input valuation CD = 01 because this simultaneous change
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x1
0x10

11

S2 1/ S4 1/
10

11x0
0x

11

S1 0/ S3 0/
10

0x0x

CD

Figure 9.7 State diagram for the master-slave D flip-flop.

in both inputs cannot occur. Thus in the second row of the flow table, instead of showing
S2 changing to S1 under CD = 01, this entry can be labeled as unspecified. The change
from S2 to S1 can be caused only by CD changing from 10 to 00. Similarly, if the circuit
is in state S3, where CD = 11, it cannot change to S4 by having CD = 00. This entry can
also be left unspecified in the table. The resulting flow table is shown in Figure 9.6c.

If we reverse the analysis procedure and, using the state assignment in Figure 9.6a,
synthesize logic expressions for Ym and Ys, we get

Ym = CD + Cym + ymD

Ys = Cym + Cys + ymys

The terms ymD and ymys in these expressions are redundant. As mentioned earlier, they are
included in the circuit to avoid race conditions, which are discussed in Section 9.6.

Example 9.3 Consider the circuit in Figure 9.8. It is represented by the following expressions

Y1 = y1y2 + w1y2 + w1w2y1

Y2 = y1y2 + w1y2 + w2 + w1w2y1

z = y1y2

The corresponding excitation and flow tables are given in Figure 9.9.
Some transitions in the flow table will not occur in practice because of the assumption

that both w1 and w2 cannot change simultaneously. In state A the circuit is stable under the
valuation w2w1 = 00. Its inputs cannot change to 11 without passing through the valuations
01 or 10, in which case the new state would be B or C, respectively. Thus the transition
from A under w2w1 = 11 can be left unspecified. Similarly, if the circuit is stable in state
B, in which case w2w1 = 01, it is impossible to force a change to state D by changing the
inputs to w2w1 = 10. This entry should also be unspecified. If the circuit is stable in state C
under w2w1 = 11, it is not possible to go to A by changing the inputs directly to w2w1 = 00.
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zy1

y2

Y 1

Y 2

w1

w2

Figure 9.8 Circuit for Example 9.3.

However, the transition to A is possible by changing the inputs one at a time because the
circuit remains stable in C for both w2w1 = 01 and w2w1 = 10.

A different situation arises if the circuit is stable in state D under w2w1 = 00. It may
seem that the entry under w2w1 = 11 should be unspecified because this input change
cannot be made from the stable state D. But suppose that the circuit is stable in state B
under w2w1 = 01. Now let the inputs change to w2w1 = 11. This causes a change to state
D. The circuit indeed changes to D, but it is not stable in this state for this input condition.
As soon as it arrives into state D, the circuit proceeds to change to state C as required by
w2w1 = 11. It is then stable in state C as long as both inputs remain at 1. The conclusion
is that the entry that specifies the change from D to C under w2w1 = 11 is meaningful and
should not be omitted. The transition from the stable state B to the stable state C, which
passes through state D, illustrates that it is not imperative that all transitions be directly from
one stable state to another. A state through which a circuit passes en route from one stable
state to another is called an unstable state. Transitions that involve passing through an
unstable state are not harmful as long as the unstable state does not generate an undesirable
output signal. For example, if a transition is between two stable states for which the output
signal should be 0, it would be unacceptable to pass through an unstable state that causes
the output to be 1. Even though the circuit changes through the unstable state very quickly,
the short glitch in the output signal is likely to be troublesome. This is not a problem in our
example. When the circuit is stable in B, the output is z = 0. When the inputs change to
w2w1 = 11, the transition to state D maintains the output at 0. It is only when the circuit
finally changes into state C that z will change to 1. Therefore, the change from z = 0 to
z = 1 occurs only once during the course of these transitions.
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Present Next state

state w2w1 = 00 01 10 11 Output

y2 y1 Y2Y1 Y2Y1 Y2Y1 Y2Y1
z

00 0�0 01 10 11 0

01 11 0�1 11 11 0

10 00 1�0 1�0 1�0 1

11 1�1 10 10 10 0

(a) Excitation table

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� B C D 0

B D B� D D 0

C A C� C� C� 1

D D� C C C 0

(b) Flow table

Figure 9.9 Excitation and flow tables for the circuit in Figure 9.8.

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� B C 0

B D B� D 0

C A C� C� C� 1

D D� C C C 0

Figure 9.10 Modified flow table for Example 9.3.

A modified flow table, showing the unspecified transitions, is presented in Figure 9.10.
The table indicates the behavior of the circuit in Figure 9.8 in terms of state transitions. If
we don’t know what the circuit is supposed to do, it may be difficult to discover the practical
application for a given circuit. Fortunately, in practice the purpose of the circuit is known,
and the analysis is done by the designer to ascertain that the circuit performs as desired. In
our example it is apparent that the circuit generates the output z = 1 in state C, which it
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reaches as a result of some input patterns that are detected using the other three states. The
state diagram derived from Figure 9.10 is shown in Figure 9.11.

This diagram actually implements a control mechanism for a simple vending machine
that accepts two types of coins, say, dimes and nickels, and dispenses merchandise such as
candy. If w1 represents a nickel and w2 represents a dime, then a total of 10 cents must be
deposited to get the FSM into state C where the candy is released. The coin mechanism
accepts only one coin at a time, which means that w2w1 = 11 can never occur. Therefore,
the transition discussed above, from B to C, through the unstable state D would not occur.
Observe that both states B and D indicate that 5 cents has been deposited. State B indicates
that a nickel is presently being sensed by the coin receptor, while D indicates that 5 cents
has been deposited and the coin receptor is presently empty. In state D it is possible to
deposit either a nickel or a dime, both leading to state C. No distinction is made between
the two types of coins in state D; hence the machine would not give change if 15 cents
is deposited. From state A a dime leads directly to state C. Knowing that the condition
w2w1 = 11 will not occur allows the flow table to be specified as shown in Figure 9.12. If

01

x1
1x

10

w2w1

A 0/

C 1/

B 0/

D 0/ 00

00

00
00
11

x1
1x

01

Figure 9.11 State diagram for Example 9.3.

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� B C 0

B D B� 0

C A C� C� 1

D D� C C 0

w2 dime w1 nickel

Figure 9.12 Flow table for a simple vending machine.
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we were to synthesize the sum-of-products logic expressions for Y1 and Y2, using the state
assignment in Figure 9.9a, we would end up with the circuit in Figure 9.8.

Steps in the Analysis Process
We have demonstrated the analysis process using illustrative examples. The required

steps can be stated as follows:

• A given circuit is interpreted in the form of the general model in Figure 6.85. That is,
each feedback path is cut, and a delay element is inserted at the point where the cut
is made. The input signal to the delay element represents a corresponding next-state
variable, Yi, while the output signal is the present-state variable, yi. A cut can be made
anywhere in a particular loop formed by the feedback connection, as long as there is
only one cut per (state variable) loop. Thus the number of cuts that should be made
is the smallest number that results in there being no feedback anywhere in the circuit
except from the output of a delay element. This minimal number of cuts is sometimes
referred to as the cut set. Note that the analysis based on a cut made at one point in a
given loop may not produce the same flow table as an analysis on a cut made at some
other point in this loop. But both flow tables would reflect the same functional behavior
in terms of the applied inputs and generated outputs.

• Next-state and output expressions are derived from the circuit.
• The excitation table corresponding to the next-state and output expressions is derived.
• Aflow table is obtained, associating some (arbitrary) names with the particular encoded

states.
• A corresponding state diagram is derived from the flow table if desired.

9.3 Synthesis of Asynchronous Circuits

Synthesis of asynchronous sequential circuits follows the same basic steps used to synthesize
the synchronous circuits, which were discussed in Chapter 6. There are some differences
due to the asynchronous nature, which make the asynchronous circuits more difficult to
design. We will explain the differences by investigating a few design examples. The basic
steps are

• Devise a state diagram for an FSM that realizes the required functional behavior.
• Derive the flow table and reduce the number of states if possible.
• Perform the state assignment and derive the excitation table.
• Obtain the next-state and output expressions.
• Construct a circuit that implements these expressions.

When devising a state diagram, or perhaps the flow table directly, it is essential to ensure
that when the circuit is in a stable state, the correct output signals are generated. Should it
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be necessary to pass through an unstable state, this state must not produce an undesirable
output signal.

Minimization of states is not straightforward. A minimization procedure is described
in Section 9.4.

State assignment is not done with the sole purpose of reducing the cost of the final circuit.
In asynchronous circuits some state assignments may cause the circuit to be unreliable. We
will explain this problem using the examples that follow.

Example 9.4SERIAL PARITY GENERATOR Suppose that we want to design a circuit that has an input
w and an output z, such that when pulses are applied to w, the output z is equal to 0 if the
number of previously applied pulses is even and z is equal to 1 if the number of pulses is
odd. Hence the circuit acts as a serial parity generator.

Let A be the state that indicates that an even number of pulses has been received.
Using the Moore model, the output z will be equal to 0 when the circuit is in state A. As
long as w = 0, the circuit should remain in A, which is specified by a transition arc that
both originates and terminates in state A. Thus A is stable when w = 0. When the next
pulse arrives, the input w = 1 should cause the FSM to move to a new state, say, B, which
produces the output z = 1. When the FSM reaches B, it must remain stable in this state as
long as w = 1. This is specified by a transition arc that originates and terminates in B. The
next input change occurs when w goes to 0. In response the FSM must change to a state
where z = 1 and which corresponds to the fact that a complete pulse has been observed,
namely, that w has changed from 1 to 0. Let this state be C; it must be stable under the input
condition w = 0. The arrival of the next pulse makes w = 1, and the FSM must change
to a state, D, that indicates that an even number of pulses has been observed and that the
last pulse is still present. The state D is stable under w = 1, and it causes the output to be
z = 0. Finally, when w returns to 0 at the end of the pulse, the FSM returns to state A, which
indicates an even number of pulses and w equal to 0 at the present time. The resulting state
diagram is shown in Figure 9.13a.

A key point to understand is why it is necessary to have four states rather than just two,
considering that we are merely trying to distinguish between the even and odd number of
input pulses. States B and C cannot be combined into a single state even though they both
indicate that an odd number of pulses has been observed. Suppose we had simply tried
to use state B alone for this purpose. Then it would have been necessary to add an arc
with a label 0 that originates and terminates in state B, which is fine. The problem is that
without state C, there would have to be a transition from state B directly to D if the input
is w = 1 to respond to the next change in the input when a new pulse arrives. It would be
impossible to have B both stable under w = 1 and have a change to D effected for the same
input condition. Similarly, we can show that the states A and D cannot be combined into a
single state.

Figure 9.13b gives the flow table that corresponds directly to the state diagram. In
many cases the designer can derive a flow table directly. We are using the state diagram
mostly because it provides a simpler visual picture of the effect of the transitions in an FSM.

The next step is to assign values to the states in terms of the state variables. Since there
are four states in our FSM, there have to be at least two state variables. Let these variables



December 31, 2012 09:14 vra80547_ch09 Sheet number 16 Page number 566 magenta black

566 C H A P T E R 9 • Asynchronous Sequential Circuits

1

1

0

A 0/

D 0/

B 1/

C 1/ 0

0

0

1

1

(a) State diagram

Present Next state Output
state w = 0 w = 1 z

A A B 0

B C B 1

C C D 1

D A D 0

(b) Flow table

Figure 9.13 Parity-generating asynchronous FSM.

be y1 and y2. As a first attempt at the state assignment, let the states A, B, C, and D be
encoded as y2y1 = 00, 01, 10, and 11, respectively. This assignment leads to the excitation
table in Figure 9.14a. Unfortunately, it has a major flaw. The circuit that implements this
table is stable in state D = 11 under the input condition w = 1. But consider what happens
next if the input changes to w = 0. According to the excitation table, the circuit should
change to state A = 00 and remain stable in this state. The problem is that in going from
y2y1 = 11 to y2y1 = 00 both state variables must change their values. This is unlikely to
occur at exactly the same time. In an asynchronous circuit the values of the next-state
variables are determined by networks of logic gates with varying propagation delays. Thus
we should expect that one state variable will change slightly before the other, which could
put the circuit into a state where it may react to the input in an undesirable way. Suppose that
y1 changes first. Then the circuit goes from y2y1 = 11 to y2y1 = 10. As soon as it reaches
this state, C, it will attempt to remain there if w = 0, which is a wrong outcome. On the
other hand, suppose that y2 changes first. Then there will be a change from y2y1 = 11 to
y2y1 = 01, which corresponds to state B. Since w = 0, the circuit will now try to change to
y2y1 = 10. This again requires that both y1 and y2 change; assuming that y1 changes first
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Present Next state

state w = 0 w = 1 Output

y2 y1 Y2Y1
z

00 0�0 01 0

01 10 0�1 1

10 1�0 11 1

11 00 1�1 0

(a) Poor state assignment

Present Next state

state w = 0 w = 1 Output

y2 y1 Y2Y1
z

00 0�0 01 0

01 11 0�1 1

11 1�1 10 1

10 00 1�0 0

(b) Good state assignment

Figure 9.14 State assignment for Figure 9.13b.

in the transition from y2y1 = 01, the circuit will find itself in the state y2y1 = 00, which is
the correct destination state, A. This discussion indicates that the required transition from
D to A will be performed correctly if y2 changes before y1, but it will not work if y1 changes
before y2. The result depends on the outcome of the “race” to change between the signals
y1 and y2.

The uncertainty caused by multiple changes in the state variables in response to an
input that should lead to a predictable change from one stable state to another has to be
eliminated. The term race condition is used to refer to such unpredictable behavior. We
will discuss this issue in detail in Section 9.5.

Race conditions can be eliminated by treating the present-state variables as if they were
inputs to the circuit, meaning that only one state variable is allowed to change at a time. For
our example the assignment A = 00, B = 01, C = 11, and D = 10 achieves this objective.
The resulting excitation table is presented in Figure 9.14b. The reader should verify that
all transitions involve changing a single state variable.
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From Figure 9.14b the next-state and output expressions are

Y1 = wy2 + wy1 + y1y2

Y2 = wy2 + wy1 + y1y2

z = y1

The last product term in the expressions for Y1 and Y2 is included to deal with possible
hazards, which are discussed in Section 9.6. The corresponding circuit is shown in Fig-
ure 9.15.

It is interesting to consider how the serial parity generator could be implemented using
a synchronous approach. All that is needed is a single flip-flop that changes its state with
the arrival of each input pulse. The positive-edge-triggered D flip-flop in Figure 9.16

y1

y2

w

z

Figure 9.15 Circuit that implements the FSM in Figure 9.13b.

w

zD Q

Q

Figure 9.16 Synchronous solution for Example 9.4.
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accomplishes the task, assuming that the flip-flop is initially set to Q = 0. The logic
complexity of the flip-flop is exactly the same as the circuit in Figure 9.15. Indeed, if we
use the preceding expressions for Y1 and Y2 and substitute C for w, D for y2, ym for y1, and
ys for y2, we end up with the excitation expressions shown for the master-slave D flip-flop in
Example 9.2. The circuit in Figure 9.15 is actually a negative-edge-triggered master-slave
flip-flop, with the complement of its Q output (y2) connected to its D input. The output z is
connected to the output of the master stage of the flip-flop.

Example 9.5MODULO-4 COUNTER Chapters 5 and 6 described how counters can be implemented
using flip-flops. Now we will synthesize a counter as an asynchronous sequential circuit.
Figure 9.17 depicts a state diagram for a modulo-4 up-counter, which counts the number
of pulses on an input line, w. The circuit must be able to react to all changes in the input
signal; thus it must take specific actions at both the positive and negative edges of each
pulse. Therefore, eight states are needed to deal with the edges in four consecutive pulses.

The counter begins in state A and stays in this state as long as w = 0. When w changes
to 1, a transition to state B is made and the circuit remains stable in this state as long as
w = 1. When w goes back to 0, the circuit moves to state C and remains stable until w
becomes 1 again, which causes a transition to state D, and so on. Using the Moore model,
the states correspond to specific counts. There are two states for each particular count: the
state that the FSM enters when w changes from 0 to 1 at the start of a pulse and the state that
the FSM enters when w goes back to 0 at the end of the pulse. States B and C correspond
to the count of 1, states D and E to 2, and states F and G to 3. States A and H represent the
count of 0.

Figure 9.18 shows the flow and excitation tables for the counter. The state assignment
is chosen such that all transitions between states require changing the value of only one

1

1

0

A 0/

H 0/

B 1/

G 3/

0

0

1

1
C 1/

F 3/

D 2/

E 2/

1

0 1

0

0

1

1

0

0

Figure 9.17 State diagram for a modulo-4 counter.
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Present Next state Output
state w = 0 w = 1 z

A A� B 0

B C B� 1

C C� D 1

D E D� 2

E E� F 2

F G F� 3

G G� H 3

H A H�

�

�

�

�

�

�

�

�

0

(a) Flow table

Present Next state

state w = 0 w = 1 Output Mod-8 output

y3 y2 y1 Y3Y2Y1
z2z1 z3z2z1

000 000 001 00 000

001 011 001 01 001

011 011 010 01 010

010 110 010 10 011

110 110 111 10 100

111 101 111 11 101

101 101 100 11 110

100 000 100 00 111

(b) Excitation table (c) Output for counting
the edges

Figure 9.18 Flow and excitation tables for a modulo-4 counter.
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state variable to eliminate the possibility of race conditions. The output is encoded as a
binary number, using variables z2 and z1. From the excitation table the next-state and output
expressions are

Y1 = wy1 + wy2y3 + wy2y3 + y1y2y3 + y1y2y3

= wy1 + (w + y1)(y2y3 + y2y3)

Y2 = wy2 + wy1y3 + y1y2 + y2y3

Y3 = wy3 + y1y3 + y1y2w + y2y3

z1 = y1

z2 = y1y3 + y1y2

These expressions define the circuit that implements the required modulo-4 pulse counter.
In the preceding derivation we designed a circuit that changes its state on every edge

of the input signal w, requiring a total of eight states. Since the circuit is supposed to count
the number of complete pulses, which contain a rising and a falling edge, the output count
z2z1 changes its value only in every second state. This FSM behaves like a synchronous
sequential circuit in which the output count changes only as a result of w changing from 0
to 1.

Suppose now that we want to count the number of times the signal w changes its value,
that is, the number of its edges. The state transitions specified in Figures 9.17 and 9.18
define an FSM that can operate as a modulo-8 counter for this purpose. We only need to
specify a distinct output in each state, which can be done as shown in Figure 9.18c. The
values of z3z2z1 indicate the counting sequence 0, 1, 2, . . . , 7, 0. Using this specification
of the output and the state assignment in Figure 9.18b, the resulting output expressions are

z1 = y1 ⊕ y2 ⊕ y3

z2 = y2 ⊕ y3

z3 = y3

Example 9.6A SIMPLE ARBITER In computer systems it is often useful to have some resource shared
by a number of different devices. Usually, the resource can be used by only one device at a
time. When various devices need to use the resource, they have to request to do so. These
requests are handled by an arbiter circuit. When there are two or more outstanding requests,
the arbiter may use some priority scheme to choose one of them, as already discussed in
Section 6.8.

We will now consider an example of a simple arbiter implemented as an asynchronous
sequential circuit. To keep the example small, suppose that two devices are competing
for the shared resource, as indicated in Figure 9.19a. Each device communicates with the
arbiter by means of two signals—Request and Grant. When a device needs to use the shared
resource, it raises its Request signal to 1. Then it waits until the arbiter responds with the
Grant signal.

Figure 9.19b illustrates a commonly used scheme for communication between two
entities in the asynchronous environment, known as handshake signaling. Two signals are
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Arbiter

Request1

Grant1

Request2

Grant2

Device 1

Device 2

Shared
resource

(a) Arbitration structure

Request (r)

Grant (g)

(b) Handshake signaling

Figure 9.19 Arbitration example.

used to provide the handshake. A device initiates the activity by raising a request, r = 1.
When the shared resource is available, the arbiter responds by issuing a grant, g = 1. When
the device receives the grant signal, it proceeds to use the requested shared resource. When
it completes its use of the resource, it drops its request by setting r = 0. When the arbiter
sees that r = 0, it deactivates the grant signal, making g = 0. The arrows in the figure
indicate the cause-effect relationships in this signaling scheme; a change in one signal
causes a change in the other signal. The time elapsed between the changes in the cause-
effect signals depends on the specific implementation of the circuit. A key point is that
there is no need for a synchronizing clock.

A state diagram for our simple arbiter is given in Figure 9.20. There are two inputs, the
request signals r1 and r2, and two outputs, the grant signals g1 and g2. The diagram depicts
the Moore model of the required FSM, where the arcs are labeled as r2r1 and the state
outputs as g2g1. The quiescent state is A, where there are no requests. State B represents the
situation in which Device 1 is given permission to use the resource, and state C denotes the
same for Device 2. Thus B is stable if r2r1 = 01, and C is stable if r2r1 = 10. To conform
to the rules of asynchronous circuit design, we will assume that the inputs r1 and r2 become
activated one at a time. Hence, in state A it is impossible to have a change from r2r1 = 00
to r2r1 = 11. The situation where r2r1 = 11 occurs only when a second request is raised
before the device that has the grant signal completes its use of the shared resource, which
can happen in states B and C. If the FSM is stable in either state B or C, it will remain in
this state if both r1 and r2 go to 1.

The flow table is given in Figure 9.21a, and the excitation table is presented in Fig-
ure 9.21b. It is impossible to choose a state assignment such that all changes between states
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A 0/ 0 B 01/

C 10/

00
11

00
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10

01

10
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r2r1

Figure 9.20 State diagram for the arbiter.

Present Next state Output
state r2r1 = 00 01 10 11 g2g1

A A� B C – 00

B A B� C B� 01

C A B C� C� 10

(a) Flow table

Present Next state

state r2r1 = 00 01 10 11 Output

y2 y1 Y2Y1
g2g1

A 00 0�0 01 10 – 00

B 01 00 0�1 10 0�1 01

C 10 00 01 1�0 1�0 10

D 11 – 01 10 – dd

(b) Excitation table

Figure 9.21 Implementation of the arbiter.
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A, B, and C involve a change in a single state variable only. In the chosen assignment
the transitions to or from state A are handled properly, but the transitions between states
B and C involve changes in the values of both state variables y1 and y2. Suppose that the
circuit is stable in state B under input valuation r2r1 = 11. Now let the inputs change to
r2r1 = 10. This should cause a change to state C, which means that the state variables must
change from y2y1 = 01 to 10. If y1 changes faster than y2, then the circuit will find itself
momentarily in state y2y1 = 00, which leads to the desired final state because from state A
there is a specified transition to C under the input valuation 10. But if y2 changes faster
than y1, the circuit will reach the state y2y1 = 11, which is not defined in the flow table. To
make sure that even in this case the circuit will proceed to the required destination C, we
can include the state y2y1 = 11, labeled D, in the excitation table and specify the required
transition as shown in the figure. A similar situation arises when the circuit is stable in C
under r2r1 = 11, and it has to change to B when r2 changes from 1 to 0.

The output values for the extra state D are indicated as don’t cares. Whenever a specific
output is changing from 0 to 1 or from 1 to 0, exactly when this change takes place is not
important if the correct value is produced when the circuit is in a stable state. The don’t-care
specification may lead to a simpler realization of the output functions. It is important to
ensure that unspecified outputs will not result in a value that may cause erroneous behavior.
From Figure 9.21b it is possible that during the short time when the circuit passes through
the unstable state D the outputs become g2g1 = 11. This is harmless in our example because
the device that has just finished using the shared resource will not try to use it again until its
grant signal has returned to 0 to indicate the end of the handshake with the arbiter. Observe
that if this condition occurs when changing from B to C, then g1 remains 1 slightly longer
and g2 becomes 1 slightly earlier. Similarly, if the transition is from C to B, then the change
in g1 from 0 to 1 happens slightly earlier and g2 changes to 0 slightly later. In both of these
cases there is no glitch on either g1 or g2.

From the excitation table the following next-state and output expressions are derived

Y1 = r2r1 + r1y2

Y2 = r2r1 + r2y2

g1 = y1

g2 = y2

Rewriting the first two expressions as

Y1 = r1(r2 + y2)

= r1r2y2

Y2 = r2(r1 + y2)

produces the circuit in Figure 9.22. Observe that this circuit responds very quickly to the
changes in the input signals. This behavior is in sharp contrast to the arbiter discussed in
Section 6.8 in which the synchronizing clock determines the minimum response time.

The difficulty with the race condition that arises in state changes between B and C can
be resolved in another way. We can simply prevent the circuit from reaching an unspecified
state. Figure 9.23a shows a modified flow table in which transitions between states B and
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y2

g1

g2

r1
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Figure 9.22 The arbiter circuit.

Present Next state Output
state r2r1 = 00 01 10 11

g2g1

A A� B C – 00

B A B� A B� 01

C A A C� C� 10

(a) Modified flow table

Present Next state

state r2r1 = 00 01 10 11
Output

y2 y1 Y2Y1
g2g1

00 0�0 01 10 – 00

01 00 0�1 00 0�1 01

10 00 00 1�0 1�0 10

(b) Modified excitation table

Figure 9.23 An alternative for avoiding a critical race in
Figure 9.21a.
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C are made via state A. If the circuit is stable in B and the input valuation changes from
r2r1 = 11 to 10, a change to A will occur first. As soon as the circuit reaches A, which is not
stable for the input valuation 10, it will proceed to the stable state C. The detour through
the unstable state A is acceptable because in this state the output is g2g1 = 00, which is
consistent with the desired operation of the arbiter. The change from C to B is handled
using the same approach. From the modified excitation table in Figure 9.23b, the following
next-state expressions are derived

Y1 = r1y2

Y2 = r1r2y1 + r2y2

These expressions give rise to a circuit different from the one in Figure 9.22. However,
both circuits implement the functionality required in the arbiter.

Next we will attempt to design the same arbiter using the Mealy model specification.
From Figure 9.20 it is apparent that the states B and C are fundamentally different because
for the input r2r1 = 11 they must produce two different outputs. But state A is unique only
to the extent that it generates the output g2g1 = 00 whenever r2r1 = 00. This condition
could be specified in both B and C if the Mealy model is used. Figure 9.24 gives a suitable
state diagram. The flow and excitation tables are presented in Figure 9.25, which lead to
the following expressions

Y = r2r1 + r1y + r2y

g1 = r1y

g2 = r2y

Despite needing a single state variable, this circuit requires more gates for implementation
than does the Moore version in Figure 9.22.

An important notion in the above examples is that it is necessary to pay careful attention
to the state assignment, to avoid races in changing of the values of the state variables. Sec-
tion 9.5 deals with this issue in more detail.

We made the basic assumption that the request inputs to the arbiter FSM change their
values one at a time, which allows the circuit to reach a stable state before the next change
takes place. If the devices are totally independent, they can raise their requests at any time.
Suppose that each device raises a request every few seconds. Since the arbiter circuit needs
only a few nanoseconds to change from one stable state to another, it is quite unlikely that
both devices will raise their requests so close to each other that the arbiter circuit will produce
erroneous outputs. However, while the probability of an error caused by the simultaneous

1x 10/
00 00/

x1 01/
00 00/

10 0–/

B C

01 0 –/

Figure 9.24 Mealy model for the arbiter FSM.
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Present Next state Output g2g1

state r2r1 = 00 01 10 11 00 01 10 11

B B� B� C B� 00 01 – 0 01

C C� B C� C� 00 0– 10 10

(a) Flow diagram

Present Next state Output

state r2r1 = 00 01 10 11 00 01 10 11
y Y g2g1

0 0� 0� 1 0� 00 01 d0 01

1 1� 0 1� 1� 00 0d 10 10

(b) Excitation table

Figure 9.25 Mealy model implementation of the arbiter FSM.

arrival of requests is extremely low, it is not zero. If this small possibility of an error cannot
be tolerated, then it is possible to feed the request signals through a special circuit called
the mutual exclusion (ME) element. This circuit has two inputs and two outputs. If both
inputs are 0, then both outputs are 0. If only one input is 1, then the corresponding output
is 1. If both inputs are 1, the circuit makes one output go to 1 and keeps the other at 0.
Using the ME element would change the design of the arbiter slightly; because the valuation
r2r1 = 11 would never occur, all entries in the corresponding column in Figure 9.21 would
be don’t cares. The ME element and the issue of simultaneous changes in input signals are
discussed in detail in reference [6]. Finally, we should note that a similar problem arises
in synchronous circuits in which one or more inputs are generated by a circuit that is not
controlled by a common clock, as discussed in Section 7.8.3.

9.4 State Reduction

In Chapter 6 we saw that reducing the number of states needed to realize the functionality
of a given FSM usually leads to fewer state variables, which means that fewer flip-flops are
required in the corresponding synchronous sequential circuit. In asynchronous sequential
circuits it is also useful to try to reduce the number of states because this usually results in
simpler implementations.
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When designing an asynchronous FSM, the initial flow table is likely to have many
unspecified (don’t-care) entries, because the designer has to obey the restriction that only
one input variable can change its value at a time. For example, suppose that we want to
design the FSM for the simple vending machine considered in Example 9.3. Recall that
the machine accepts nickels and dimes and dispenses candy when 10 cents is deposited;
the machine does not give change if 15 cents is deposited. An initial state diagram for
this FSM can be derived in straightforward fashion by enumerating all possible sequences
of depositing the coins to give a sum of at least 10 cents. Figure 9.26a shows a possible
diagram, defined as a Moore model. Starting in a reset state, A, the FSM remains in this
state as long as no coin is deposited. This is denoted by an arc labeled 0 to indicate that
N = D = 0. Now let an arc with the label N denote that the coin-sensing mechanism has
detected a nickel and has generated a signal N = 1. Similarly, let D denote that a dime has
been deposited. If N = 1, then the FSM has to move to a new state, say, B, and it must
remain stable in this state as long as N has the value of 1. Since B corresponds to 5 cents
being deposited, the output in this state has to be 0. If a dime is deposited in state A, then the
FSM must move to a different state, say, C. The machine should stay in C as long as D = 1,
and it should release the candy by generating the output of 1. These are the only possible
transitions from state A, because it is impossible to insert two coins at the same time, which
means that DN = 11 can be treated as a don’t-care condition. Next, in state B there must
be a return to the condition DN = 00 because the coin-sensing mechanism will detect the
second coin some time after the first coin has cleared the mechanism. This behavior is
consistent with the requirement that only one input variable can change at a time; hence it
is not allowed to go from DN = 01 to DN = 10. The input DN = 10 cannot occur in state
B and should be treated as a don’t care. The input DN = 00 takes the FSM to a new state,
D, which indicates that 5 cents has been deposited and that there is no coin in the sensing
mechanism. In state D it is possible to deposit either a nickel or a dime. If DN = 01, the
machine moves to state E, which denotes that 10 cents has been deposited and generates
the output of 1. If DN = 10, the machine moves to state F , which also generates the output
of 1. Finally, when the FSM is in any of the states C, E, or F , the only possible input is
DN = 00, which returns the machine to state A.

The flow table for this FSM is given in Figure 9.26b. It shows explicitly all don’t-care
entries. Such unspecified entries provide a certain amount of flexibility that can be exploited
in reducing the number of states. Note that in each row of this table there is only one stable
state. Such tables, where there is only one stable state for each row, are often referred to as
primitive flow tables.

Several techniques have been developed for state reduction. In this section we will
describe a two-step process. In the first step we will apply the partitioning procedure from
Section 6.6.1, assuming that the potentially equivalent rows in a flow table must produce
the same outputs. As an additional constraint, for two rows to be potentially equivalent any
unspecified entries must be in the same next-state columns. Thus combining the equivalent
states into a single state will not remove the don’t cares and the flexibility that they provide.
In the second step, the rows are merged exploiting the unspecified entries. Two rows can be
merged if they have no conflicting next-state entries. This means that their next-state entries
for any given valuation of inputs are either the same, or one of them is unspecified, or both
rows indicate a stable state. If the Moore model is used, then the two rows (states) must
produce the same outputs. If the Mealy model is used, then the two states must produce the
same outputs for any input valuations for which both states are stable.
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A 0/

B 0/ C 1/

D 0/

E 1/ F 1/

0
0

0

0 0

0

D

N

N

N

N

D

D

0

D

(a) Initial state diagram

Present Next state Output
state D N = 00 01 10 11 z

A A B C – 0

B D B – – 0

C A – C – 1

D D E F – 0

E A E – – 1

F A – F – 1

(b) Initial flow table

Figure 9.26 Derivation of an FSM for the simple vending machine.

Example 9.7We will now show how the flow diagram in Figure 9.26b can be reduced to the optimized
form in Figure 9.12. The first step in the state-reduction process is the partitioning procedure
from Section 6.6.1. States A and D are stable under the input valuation DN = 00, producing
the output of 0; they also have the unspecified entries in the same position. States C and F
are stable under DN = 10, generating z = 1, and they have the same unspecified entries.
States B and E have the same unspecified entries, but when they are stable under DN = 01
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the state B produces z = 0 while E generates z = 1; they are not equivalent. Therefore, the
initial partition is

P1 = (AD)(B)(CF)(E)

The successors of A and D are (A, D) for DN = 00, (B, E) for 01, and (C, F) for 10. Since
the (B, E) pair is not in the same block of P1, it follows that A and D are not equivalent.
The successors of C and F are (A, A) for 00 and (C, F) for 10; each pair is in a single block.
Thus the second partition is

P2 = (A)(D)(B)(CF)(E)

The successors of C and F in P2 are in the same block of P2, which means that

P3 = P2

The conclusion is that rows C and F are equivalent. Combining them into a single row and
changing all Fs into Cs gives the flow table in Figure 9.27.

Next we can try to merge some rows in the flow table by exploiting the existence of
unspecified entries. The only row that can be merged with others is C. It can be merged
with either A or E, but not both. Merging C with A would mean that the new state has to
generate z = 0 when it is stable under the input valuation 00 and has to produce z = 1 when
stable under 10. This can be achieved only by using the Mealy model. The alternative is to
merge C and E, in which case the new state is stable under DN = 01 and 10, producing the
output of 1. This can be achieved with the Moore model. Merging C and E into a single
state C and changing all Es into Cs yields the reduced flow table in Figure 9.12. Observe
that when C and E are merged, the new row C must include all specifications in both rows
C and E. Both rows specify A as the next state if DN = 00. Row E specifies a stable state
for DN = 01; hence the new row (called C) must also specify a stable state for the same
valuation. Similarly, row C specifies a stable state for DN = 10, which must be reflected
in the new row. Therefore, the next-state entries in the new row are A, C , and C for the
input valuations 00, 01, and 10, respectively.

Present Next state Output
state DN = 00 01 10 11 z

A A� B C – 0

B D B� – –

– –

0

C A – C� – 1

D D� E C – 0

E A E� 1

Figure 9.27 First-step reduction of the FSM in Figure 9.26b.
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Merging Procedure
In Example 9.7 it was easy to decide which rows should be merged because the only

possibilities are to merge row C with either A or E. We chose to merge C and E because
this can be done preserving the Moore model, which is likely to lead to a simpler expression
that realizes the output z.

In general, there can be many possibilities for merging rows in larger flow tables. In
such cases it is necessary to have a more structured procedure for making the choice. A
useful procedure can be defined using the concept of compatibility of states.

Definition 9.1 – Two states (rows in a flow table), Si and Sj, are said to be compatible if
there are no state conflicts for any input valuation. Thus for each input valuation, one of
the following conditions must be true:

• both Si and Sj have the same successor, or
• both Si and Sj are stable, or
• the successor of Si or Sj, or both, is unspecified.

Moreover, both Si and Sj must have the same output whenever specified.

Consider the primitive flow table in Figure 9.28. Let us examine the compatibility be-
tween different states, assuming that we would like to retain the Moore-type specification
of outputs for this FSM. State A is compatible only with state H . State B is compatible
with states F and G. State C is not compatible with any other state. State D is compatible
with state E; so are state F with G and state G with H . In other words, the following com-
patible pairs exist: (A, H ), (B, F), (B, G), (D, E), (F, G), and (G, H ). The compatibility
relationship among various states can be represented conveniently in the form of a merger
diagram, as follows:

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� H B – 0

B F – B� C 0

C – H –

– –

C� 1

D A D� – E 1

E – D G E� 1

F F� D – – 0

G F – G� – 0

H H� E 0

Figure 9.28 A primitive flow table.
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• Each row of the flow table is represented as a point, labeled by the name of the row.
• A line is drawn connecting any two points that correspond to compatible states (rows).

From the merger diagram the best merging possibility can be chosen, and the reduced flow
table can be derived.

Figure 9.29 gives the merger diagram for the primitive flow table in Figure 9.28. The
diagram indicates that row A can be merged with H , but only if H is not merged with G,
because there is no line joining A and G. Row B can be merged with rows F and G. Since
it is also possible to merge F and G, it follows that B, F , and G are pairwise compatible.
Any set of rows that are pairwise compatible for all pairs in the set can be merged into a
single state. Thus states B, F , and G can be merged into a single state, but only if states G
and H are not merged. State C cannot be merged with any other state. States D and E can
be merged.

A prudent strategy is to merge the states so that the resulting flow table has as few states
as possible. In our example the best choice is to merge the compatibles (A, H ), (B, F, G),
and (D, E), which leads to the reduced flow table in Figure 9.30. When a new row is

EG

B

F

C

H

A D

Figure 9.29 Merger diagram for the flow table in Figure 9.28, which
preserves the Moore model.

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� A� B D 0

B B� D B� C 0

C – A – C� 1

D A D� B D� 1

Figure 9.30 Reduced Moore-type flow table for the FSM in
Figure 9.28.
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created by merging two or more rows, all entries in the new row have to be specified to
cover the individual requirements of the constituent rows. Replacing rows A and H with a
new row A requires making A stable for both w2w1 = 00 and 01, because the old A has to
be stable for 00 and H has to be stable for 01. It also requires specifying B as the next-state
for w2w1 = 10 and E as the next state for w2w1 = 11. Since the old state E becomes D,
after merging D and E, the new row A must have the next-state entries A , A , B, and
D for the input valuations 00, 01, 10, and 11, respectively. Replacing rows B, F, and G
with a new row B requires making B stable for w2w1 = 00 and 10. The next-state entry
for w2w1 = 01 has to be D to satisfy the requirement of the old state F . The next-state
entry for w2w1 = 11 has to be C, as dictated by the old state B. Observe that the old state G
imposes no requirements for transitions under w2w1 = 01 and 11, because its corresponding
next-state entries are unspecified. Row C remains the same as before except that the name
of the next-state entry for w2w1 = 01 has to be changed from H to A. Rows D and E are
replaced by a new row D, using similar reasoning. Note that the flow table in Figure 9.30
is still of Moore type.

So far we considered merging only those rows that would allow us to retain the Moore-
type specification of the FSM in Figure 9.28. If we are willing to change to the Mealy
model, then other possibilities exist for merging. Figure 9.31 shows the complete merger
diagram for the FSM of Figure 9.28. Black lines connect the compatible states that can
be merged into a new state that has a Moore-type output; this corresponds to the merger
diagram in Figure 9.29. Blue lines connect the states that can be merged only if Mealy-type
outputs are used.

In this case going to the Mealy model is unlikely to result in a simpler circuit. Although
several merger possibilities exist, they all require at least four states in the reduced flow
table, which is not any better than the solution obtained in Figure 9.30. For example, one
possibility is to perform the merge based on the partition (A, H ), (B, C, G) (D, E) (F).

G

A

F

C

H

B

D

E

Figure 9.31 Complete merger diagram for Figure 9.28.
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Another possibility is to use (A, C) (B, F) (D, E) (G, H ). We will not pursue these possi-
bilities and will discuss the issues involved in specifying the Mealy-type outputs in Exam-
ple 9.9.

State Reduction Procedure
We can summarize the steps needed to generate the reduced flow table from a primitive

flow table as follows:

1. Use the partitioning procedure to eliminate the equivalent states in a primitive flow
table.

2. Construct a merger diagram for the resulting flow table.

3. Choose subsets of compatible states that can be merged, trying to minimize the
number of subsets needed to cover all states. Each state must be included in only one
of the chosen subsets.

4. Derive the reduced flow table by merging the rows in chosen subsets.

5. Repeat steps 2 to 4 to see whether further reductions are possible.

Choosing an optimal subset of compatible states for merging can be a very complicated
task because for large FSMs there may be many possibilities that should be investigated. A
trial-and-error approach is a reasonable way to tackle this problem.

Example 9.8 Consider the initial flow table in Figure 9.32. To apply the partitioning procedure, we
identify state pairs (A, G), (B, L), and (H , K) as being potentially equivalent rows, because
both rows in each pair have the same outputs and their don’t-care entries are in the same
column. The remaining rows are distinct in this respect. Therefore, the first partition is

P1 = (AG)(BL)(C)(D)(E)(F)(HK)(J )

Now the successors of (A, G) are (A, G) for w2w1 = 00, (F, B) for 01, and (C, J ) for 10.
Since F and B, as well as C and J , are not in the same block, it follows that A and G are
not equivalent. The successors of (B, L) are (A, A), (B, L), and (H , K), respectively. All
are in single blocks. The successors of (H , K) are (L, B), (E, E), and (H , K), which are all
contained in single blocks. Therefore, the second partition is

P2 = (A)(G)(BL)(C)(D)(E)(F)(HK)(J )

Repeating the successor test shows that the successors of (B, L) and (H , K) are still in single
blocks; hence

P3 = P2

Combining rows B and L under the name B and rows H and K under the name H leads to
the flow table in Figure 9.33.

A merger diagram for this flow table is given in Figure 9.34. It indicates that rows B
and H should be merged into one row, which we will label as B. The merger diagram also
suggests that rows D and E should be merged; we will call the new row D. The remaining
rows present more than one choice for merging. Rows A and F can be merged, but in that
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Present Next state Output
state w2w1 = 00 01 10 11 z

A A� F C – 0

B A B� – H 1

C G – C� D 0

D – F – D� 1

E G – E� D 1

F – F� –

–

K 0

G G� B J – 0

H – L E H� 1

J G – J� – 0

K – B E K� 1

L A L� K 1

Figure 9.32 Flow table for Example 9.8.

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� F C – 0

B A B� – H 1

C G – C� D 0

D – F – D� 1

E G – E� D 1

F – F� – H 0

G G� B J – 0

H –

– –

B E H� 1

J G J� 0

Figure 9.33 Reduction obtained by using the partitioning
procedure.
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GF

A

J

C

E

D

H

B

Figure 9.34 Merger diagram for Figure 9.33.

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� A� C B 0

B A B� D B� 1

C G –

–

C� D 0

D G A D� D� 1

G G� B G� 0

Figure 9.35 Reduction obtained from the merger diagram in
Figure 9.34.

CB D GA

Figure 9.36 Merger diagram for Figure 9.35.

case F and J cannot be merged. Rows C and J can be merged, or G and J can be merged.
We will choose to merge the rows A and F into a new row called A and rows G and J into
a new row G. The merger choice is indicated in blue in the diagram. The resultant flow
table is shown in Figure 9.35. To see whether this table offers any further opportunities
for merging, we can construct the merger diagram in Figure 9.36. From this diagram it is
apparent that rows C and G can be merged; let the new row be called C. This leads to the
flow table in Figure 9.37, which cannot be reduced any more.



December 31, 2012 09:14 vra80547_ch09 Sheet number 37 Page number 587 magenta black

9.4 State Reduction 587

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� A� C B 0

B A B� D B� 1

C C� B C� D 0

D C A D� D� 1

Figure 9.37 Reduced flow table for Example 9.8.

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� G E – 0

B K – B� D 0

C F C� – H 1

D – C E D� 0

E A – E� D 1

F F� C J –

–

0

G K G� – D 1

H – – E H� 1

J F – J� D 0

K K� C B 0

Figure 9.38 Flow table for Example 9.9.

Example 9.9Consider the flow table in Figure 9.38. Applying the partitioning procedure to this table
gives

P1 = (AFK)(BJ )(CG)(D)(E)(H )

P2 = (A)(FK)(BJ )(C)(G)(D)(E)(H )

P3 = P2

Combining B and J into a new state B, and F and K into F , gives the flow table in Fig-
ure 9.39.

Figure 9.40a gives a merger diagram for this flow table, indicating the possibilities for
merger if the Moore model of the FSM is to be preserved. In this case B and F can be
merged, as well as C and H , resulting in a six-row flow table.
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Present Next state Output
state w2w1 = 00 01 10 11 z

A A� G E – 0

B F – B� D 0

C F C� – H 1

D –

–

C E D� 0

E A –

–

E� D 1

F F� C B – 0

G F G� – D 1

H E H� 1

Figure 9.39 Reduction resulting from the partitioning procedure.

DB CA

EF HG

(a) Preserving the Moore model

GH CA

BD FE

(b) Complete merger diagram

Figure 9.40 Merger diagrams for Figure 9.39.
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Next we should consider the merging possibilities if we are willing to change to the
Mealy model. When going from the Moore model to the Mealy model, a stable state in
the Mealy model must generate the same output as it had in the Moore model. It is also
important to ensure that transitions in the Mealy model will not produce undesirable glitches
in the output signal.

Figure 9.41 indicates how the FSM of Figure 9.39 can be represented in the Mealy
form. The next-state entries are unchanged. In Figure 9.41, for each stable state the output
value must be the same as for the corresponding row of the Moore-type table. For example,
z = 0 when the state A is stable under w2w1 = 00. Also, z = 0 when the states B, D, and F
are stable under w2w1 = 10, 11, and 00, respectively. Similarly, z = 1 when C, E, G, and
H are stable under w2w1 = 01, 10, 01, and 11, respectively. If a transition from one stable
state to another requires the output to change from 0 to 1, or from 1 to 0, then the exact
time when the change takes place is not important, as we explained in Section 9.1 when
discussing Figure 9.3. For instance, suppose that the FSM is stable in A under w2w1 = 00,
producing z = 0. If the inputs then change to w2w1 = 01, a transition to state G must be
made, where z = 1. Since it is not essential that z becomes 1 before the circuit reaches the
state G, the output entry in row A that corresponds to this transition can be treated as a don’t
care; therefore, it is left unspecified in the table. From the stable state A, it is also possible
to change to E, which allows specifying another don’t care because z changes from 0 to 1.
A different situation arises in row B. Suppose that the circuit is stable in B under w2w1 = 10
and that the inputs change to 11. This has to cause a change to stable state D, and z must
remain at 0 throughout the change in states. Hence the output in row B under w2w1 = 11 is
specified as 0. If it were left unspecified, to be used as a don’t care, then it is possible that
in the implementation of the circuit this don’t care may be treated as a 1. This would cause
a glitch in z, which would change 0 → 1 → 0 as the circuit moves from B to D when the
inputs change from 10 to 11. The same situation occurs for the transition from B to F when

Present Next state Output z

state w2w1 = 00 01 10 11 00 01 10 11

A A� G E – 0 – – –

B F – B� D 0 – 0 0

C F C� – H – 1 – 1

D –

–

C E D� – – – 0

E A – E� D – –

– – –

1 –

F F� C B – 0 – 0 –

G F G� – D – 1 – –

H E H� 1 1

Figure 9.41 The FSM of Figure 9.39 specified in the form of the
Mealy model.
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the inputs change from 10 to 00. We can use the same reasoning to determine other output
entries in Figure 9.41.

From Figure 9.41 we can derive the merger diagram in Figure 9.40b. The blue lines
connect the rows that can be merged only by specifying the output in the Mealy style. The
black lines connect the rows that can be merged even if the outputs are of Moore type;
they correspond to the diagram in Figure 9.40a. Choosing the subsets of compatible states
(A, H ), (B, G), (C, F), and (D, E), the FSM can be represented using only four states.
Merging the states A and H into a new state A, states B and G into B, states C and F into
C, and D and E into D, we obtain the reduced flow table in Figure 9.42. Each entry in this
table meets the requirements specified in the corresponding rows that were merged.

Example 9.10 As another example consider the flow table in Figure 9.43. The partitioning procedure gives

P1 = (AF)(BEG)(C)(D)(H )

P2 = (AF)(BE)(G)(C)(D)(H )

P3 = P2

Present Next state Output z

state w2w1 = 00 01 10 11 00 01 10 11

A A� B D A� 0 –

––

1 1

B C B� B� D 0 1 0 0

C C� C� B A 0 1 0 1

D A C D� D� 1 0

Figure 9.42 Reduced flow table for Example 9.9.

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� B C – 0

B F B� – H 0

C F – C� H 0

D D� G C – 1

E A E� – H 0

F F� E C – 0

G D G� –

–

H 0

H G C H� 1

Figure 9.43 Flow table for Example 9.10.
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Replacing state F with A, and state E with B, results in the flow table in Figure 9.44. The
corresponding merger diagram is presented in Figure 9.45. It is apparent that states A, B,
and C can be merged and replaced with a new state A. Also D, G, and H can be merged
into a new state D. The result is the reduced flow table in Figure 9.46, which has only two
rows. Again we have used the Mealy model because the merged stable states D and H have
z = 1 while G has z = 0.

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� B C – 0

B A B� – H 0

C A – C� H 0

D D� G C – 1

G D G� –

–

H 0

H G C H� 1

Figure 9.44 Reduction after the partitioning procedure.

H

B

C

G

D

A

Figure 9.45 Merger diagram for Figure 9.44.

Present Next state Output z

state w2w1 = 00 01 10 11 00 01 10 11

A A� A� A� D 0 0 0 –

–D D� D� A D� 1 0 1

Figure 9.46 Reduced flow diagram for Example 9.10.
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9.5 State Assignment

The examples in Section 9.3 illustrate that the state assignment task for asynchronous
FSMs is complex. The time needed to change the value of a state variable depends on
the propagation delays in the circuit. Thus it is impossible to ensure that a change in the
values of two or more variables will take place at exactly the same time. To achieve reliable
operation of the circuit, the state variables should change their values one at a time in
controlled fashion. This is accomplished by designing the circuit such that a change from
one state to another entails a change in one state variable only.

States in FSMs are encoded as bit strings that represent different valuations of the state
variables. The number of bit positions in which two given bit strings differ is called the
Hamming distance between the strings. For example, for bit strings 0110 and 0100 the
Hamming distance is 1, while for 0110 and 1101 it is 3. Using this terminology, an ideal
state assignment has a Hamming distance of 1 for all transitions from one stable state to
another. When the ideal state assignment is not possible, an alternative that makes use of
unspecified states and/or transitions through unstable states must be sought. Sometimes it
is necessary to increase the number of state variables to provide the needed flexibility.

Example 9.11 Consider the parity-generating FSM in Figure 9.13. Two possible state assignments for this
FSM are given in Figure 9.14. The transitions between states, as specified in Figure 9.13b,
can be described in pictorial form as shown in Figure 9.47. Each row of the flow table is
represented by a point. The four points needed to represent the rows are placed as vertices
of a square. Each vertex has an associated code that represents a valuation of the state
variables, y2y1. The codes shown in the figure, with y2y1 = 00 in the lower-left corner and
so on, correspond to the coordinates of the two-dimensional cube presented in Section 8.3.1.
Figure 9.47a shows what happens if the state assignment in Figure 9.14a is used; namely,
if A = 00, B = 01, C = 10, and D = 11. There is a transition from A to B if w = 1, which
requires a change in y1 only. A transition from C to D occurs if w = 1, which also requires
a change in y1 only. However, a transition from B to C caused by w = 0 involves a change
in the values of both y2 and y1. Similarly, both state variables must change in going from
D to A if w = 0. A change in both variables corresponds to a diagonal path in the diagram.

Figure 9.47b shows the effect of the state assignment in Figure 9.14b, which reverses
the valuations assigned to C and D. In this case all four transitions are along the edges
of the two-dimensional cube, and they involve a change in only one of the state variables.
This is the desirable state assignment.

Example 9.12 The flow table for an arbiter FSM is given in Figure 9.21a. Transitions for this FSM are
shown in Figure 9.48a, using the state assignment A = 00, B = 01, and C = 10. In this case
multiple transitions are possible between the states. For example, there are two transitions
between A and B: from B to A if r2r1 = 00 and from A to B if r2r1 = 01. Again there is a
diagonal path, corresponding to transitions between B and C, which should be avoided. A
possible solution is to introduce a fourth state, D, as indicated in Figure 9.48b. Now the
transitions between B and C can take place via the unstable state D. Thus instead of going
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(a) Corresponding to Figure 9.14a

(b) Corresponding to Figure 9.14b

C 10= D 11=

A 00= B 01=

w 0= w 0=

w 1=

w 1=

D 10= C 11=

A 00= B 01=

w 0= w 0=

w 1=

w 1=

Figure 9.47 Transitions in Figure 9.13.

directly from B to C when r2r1 = 10, the circuit will go first from B to D and then from D
to C.

Using the arrangement in Figure 9.48b requires modifying the flow table as shown
in Figure 9.49. The state D is not stable for any input valuation. It cannot be reached if
r2r1 = 00 or 11; hence these entries are left unspecified in the table. Also observe that we
have specified the output g2g1 = 10 for state D, rather than leaving it unspecified. When
a transition from one stable state to another takes place via an unstable state, the output of
the unstable state must be the same as the output of one of the two stable states involved
in the transition to ensure that a wrong output is not generated while passing through the
unstable state.

It is interesting to compare this flow table with the excitation table in Figure 9.21b,
which is also based on using the extra state D. In Figure 9.21b the state D specifies the
necessary transitions should the circuit accidentally find itself in this state as a result of a
race in changing the values of both state variables. In Figure 9.49 the state D is used in
orderly transitions, which are not susceptible to any race conditions.
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(a) Transitions in Figure 9.21a

(b) Using the extra state D

C 10=

A 00= B 01=

00
10

01

01

C 10= D 11=

A 00= B 01=

00 10

10

01

01

0110

10

00

00

Figure 9.48 Transitions for the arbiter FSM in Figure 9.21.

Present Next state Output
state r2r1 = 00 01 10 11 g2g1

A A� B C –

––

00

B A B� D B� 01

C A D C� C� 10

D B C 10

Figure 9.49 Modified flow table based on the transitions in
Figure 9.48b.
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9.5.1 Transition Diagram

A diagram that illustrates the transitions specified in a flow table is called a transition dia-
gram. In some books such diagrams are called state-adjacency diagrams. These diagrams
provide a convenient aid in searching for a suitable state assignment.

A good state assignment results if the transition diagram does not have any diagonal
paths. A general way of stating this requirement is to say that it must be possible to embed
the transition diagram onto a k-dimensional cube, because in a cube all transitions between
adjacent vertices involve the Hamming distance of 1. Ideally, a transition diagram for an
FSM with n state variables can be embedded onto an n-dimensional cube, as is the case in
the examples in Figures 9.47b and 9.48b. If this is not possible, then it becomes necessary
to introduce additional state variables, as we will see in later examples.

The diagrams in Figures 9.47 and 9.48 present all information pertinent to transitions
between the states in the given FSMs. For larger FSMs such diagrams take on a cluttered
appearance. A simpler form can be used instead, as described below.

A transition diagram has to show the state transitions for each valuation of the input
variables. The direction of a transition, for example from A to B or from B to A, is not
important, because it is only necessary to ensure that all transitions involve the Hamming
distance of 1. The transition diagram has to show the effect of individual transitions into
each stable state, which may involve passing through unstable states. For a given row of a
flow table, it is possible to have two or more stable-state entries for different input valuations.
It is useful to identify the transitions leading into these stable states with distinct labels in a
transition diagram. To give each stable-state entry a distinct label, we will denote the stable-
state entries with numbers 1, 2, 3, . . . . Thus if state A is stable for two input valuations, we
will replace the label A with 1 for one input valuation and with 2 for the other valuation.

Figure 9.50 shows a relabeled version of the flow table in Figure 9.21a. We have
arbitrarily chosen to label A as 1, the two appearances of B as 2 and 3, and the two
appearances of C as 4 and 5. All entries in each next-state column are labeled using this
scheme. The transitions identified by these labels are presented in Figure 9.51a. The same
information is given in Figure 9.48a. Actually, the diagram in Figure 9.48a contains more
information because arrowheads show the direction of each transition. Note also that the
edges in that diagram are labeled with input values r2r1, whereas the edges in Figure 9.51a
are labeled with numerical stable-state labels as explained above.

Present Next state Output
state r2r1 = 00 01 10 11 g2g1

A 1� 2 4 – 00

B 1 2� 4 3� 01

C 1 2 4� 5� 10

Figure 9.50 Relabeled flow table of Figure 9.21a.
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(a) Transitions in Figure 9.50

(b) Complete transition diagram

C 10=

A 00= B 01=1 2,

1 4, 2 4,

C 10=

A 00= B 01=1 2 4, ,

1 4 2, , 2 4 1, ,

(c) Selected transition diagram

C 10=

A 00= B 01=1 2 4, ,

1 4 2, ,

Figure 9.51 Transition diagrams for Figure 9.50.

Figure 9.50 indicates that the stable state 2, which is one instance of the stable state
B, can be reached either from state A or from state C. There is a corresponding label 2 on
the paths connecting the vertices in the diagram in Figure 9.51a. The difficulty from the
state-assignment point of view is that the path from C to B is diagonal. In Example 9.12
this problem was resolved by introducing a new state D. By examining the flow table in
Figure 9.50 more closely, we can see that the functional behavior of the required arbiter
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FSM can be achieved if the transition from C to B takes place via state A. Namely, if the
circuit is stable in C, then the input r2r1 = 01 can cause the change to A, from which the
circuit immediately proceeds to state B. We can indicate the possibility of using this path
by placing the label 2 on the edge that connects C and A in Figure 9.51a.

Asimilar situation exists for the transition from B to C, which is labeled 4. An alternative
path can be realized by causing the circuit to go from state B to state A if r2r1 = 10 and
then immediately proceed to C. This can be indicated by placing the label 4 on the edge
that connects B and A in Figure 9.51a.

A possibility of having an alternative path for a transition exists whenever two states
have the same uncircled label in the relabeled flow diagram. In Figure 9.50 there is a
third such possibility if r2r1 = 00, using the label 1. This possibility is not useful because
changing from either B or C to A involves a change in only one state variable using the
state assignment in Figure 9.51a. Hence there would be no benefit in having a transition
between B and C for this input valuation.

To depict the possibility of having alternative paths, we will indicate in blue the cor-
responding transitions on the diagram. Thus a complete transition diagram will show all
direct transitions to stable states in black and possible indirect transitions through unstable
states in blue. Figure 9.51b shows the complete transition diagram for the flow table in
Figure 9.21a.

The transition diagram in Figure 9.51b cannot be embedded on the two-dimensional
cube, because some transitions require a diagonal path. The blue label 1 on the path between
B and C is of no concern, because it represents only an alternative path that does not have
to be used. But the transitions between B and C labeled 2 and 4 are required. The diagram
shows an alternative path, through A, having the labels 2 and 4. Therefore, the alternative
path can be used, and the diagonal connection in the diagram can be eliminated. This leads
to the transition diagram in Figure 9.51c, which can be embedded on the two-dimensional
cube. The conclusion is that the state assignment A = 00, B = 01, and C = 10 is good, but
the flow table must be modified to specify the transitions through alternative paths. The
modified table is the same as the flow table designed earlier using an ad hoc approach,
shown in Figure 9.23a.

As a final comment on this example, note the impact of alternative paths on the out-
puts produced by the FSM. If r2r1 = 01, then a change from a stable state C through
unstable A to stable B generates the outputs g2g1 = 10 → 00 → 01, rather than 10 → 01
as specified in Figure 9.21a. For the arbiter FSM this presents no problem, as explained in
Example 9.6.

Procedure for Deriving Transition Diagrams

The transition diagram is derived from a flow table as follows:

• Derive the relabeled flow table as explained above. For a given input valuation, all
transitions that lead to the same stable state are labeled with the same number. Tran-
sitions through unstable states that eventually lead to a stable state are given the same
number as the stable-state entry.

• Represent each row of the flow table by a vertex.



December 31, 2012 09:14 vra80547_ch09 Sheet number 48 Page number 598 magenta black

598 C H A P T E R 9 • Asynchronous Sequential Circuits

• Join two vertices, Vi and Vj, by an edge if they have the same number in any column
of the relabeled flow table.

• For each column in which Vi and Vj have the same number, label the edge between
Vi and Vj with that number. We will use black labels for direct transitions to circled
(stable) states and blue labels when the next-state entries for both Vi and Vj in the flow
table are uncircled.

Note that the first point says that in the relabeled flow table the transitions through unstable
states are given the label of the stable state to which they lead for a given input valuation.
For example, to derive a transition diagram starting from the flow table in Figure 9.23a,
the table would be relabeled to give the table in Figure 9.50. The transition from stable A
to stable B, when r2r1 = 01, has the label 2. The same label is given to the transition from
stable C to unstable A because this transition ultimately leads to stable B.

9.5.2 Exploiting Unspecified Next-State Entries

Unspecified entries in a flow table provide some flexibility in finding good state assignments.
The following example presents a possible approach. The example also illustrates all steps
in the derivation of a transition diagram.

Example 9.13 Consider the flow table in Figure 9.52a. This FSM has seven stable-state entries. Labeling
these entries in order, from 1 to 7, results in the table in part (b) of the figure. In this case
states 1 and 2 correspond to state A, 3 and 4 to state B, 5 and 6 to state C, and 7 to state
D. In the column w2w1 = 00 there is a transition from C to A, which is labeled 1, and a
transition from D to B, which is labeled 3, because 1 and 3 are the successor stable states
in these transitions. Similarly, in column 11 there are transitions from B to C and from D
to A, which are labeled 6 and 2, respectively. In column 01 there is a transition from A to
B, which is labeled 4. State C is stable for this input valuation; it is labeled 5. There is no
transition specified that leads to this stable state. The state can be reached only if C is stable
under w2w1 = 11, which is labeled 6, and then the inputs change to w2w1 = 01. Note that
the FSM remains stable in C if the inputs change from 11 to 01, or vice versa. Column
10 illustrates how unstable states are treated. From the stable state A, a transition to the
unstable state C is specified. As soon as the FSM reaches state C, it proceeds to change to
the stable state D, which is labeled 7. Thus 7 is used as the label for the entire transition
sequence from A to C to D.

Taking rows A, B, C, and D as the four vertices, a first attempt at drawing the transition
diagram is given in Figure 9.53a. The diagram shows transitions between all pairs of states,
which seems to suggest that it is impossible to have a state assignment where all transitions
are characterized by a Hamming distance of 1. If the state assignment A = 00, B = 01,
C = 11, and D = 10 is used, then the diagonal transition between A and C, or B and D,
requires both state variables to change their values. The diagonal path from B to D with
the label 7 is not needed, because an alternative path from B to D exists under label 7 that
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Present Next state Output
state w2w1 = 00 01 10 11 z2z1

A A� B C A� 00

B B� B� D C 01

C A C� D C� 10

D B – D� A 11

(a) Flow table

Present Next state Output
state w2w1 = 00 01 10 11 z2z1

A 1� 4 7 2� 00

B 3� 4� 7 6 01

C 1 5� 7 6� 10

D 3 – 7� 2 11

(b) Relabeled flow table

Figure 9.52 Flow tables for Example 9.13.

passes either through state A or through state C. Unfortunately, the diagonal paths labeled
1 and 3 cannot be removed, because there are no alternative paths for these transitions.

As the next attempt at finding a suitable state assignment, we will reverse the codes
given to B and C, which yields the transition diagram in Figure 9.53b. Now the same
argument about the alternative paths labeled 7 indicates that the diagonal from C to D can
be omitted. Also, the label 7 on the diagonal between A and B can be omitted. However, this
diagonal must remain because of the label 4 for which there is no alternative path between A
and B. Looking at the flow table in Figure 9.52b, we see an unspecified entry in the column
w2w1 = 01. This entry can be exploited by replacing it with the label 4, in which case the
transition graph would show the label 4 on the edges connecting A and D, as well as B and
D. Thus the diagonal between A and B could be removed, producing the transition diagram
in Figure 9.53c. This diagram can be embedded on a two-dimensional cube, which means
that the state assignment A = 00, B = 11, C = 01, and D = 10 can be used.

For the transition diagram in Figure 9.53c to be applicable, the flow table for the FSM
must be modified as shown in Figure 9.54a. The unspecified entry in Figure 9.52a now
specifies a transition to state B. According to Figure 9.53c, the change from state A to B
under input valuation w2w1 = 01 must pass through state D; hence the corresponding entry
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(a) First transition diagram

(b) Second transition diagram

D 10=

A 00= B 01=4 7,

2 7, 6 7,

(c) Augmented transition diagram

C 11=

1 7,

3 7,

7

D 10=

A 00= C 01=1 7,

2 7, 6 7,

B 11=

4 7,

7

3 7,

D 10=

A 00= C 01=1 7,

2 7 4, , 6 7,

B 11=3 7 4, ,

Figure 9.53 Transition diagrams for Figure 9.52.

in the first row is modified to ensure that this will take place. Also, when w2w1 = 10, the
FSM must go to state D. If it happens to be in state C, then this change has to occur either
via state A or state B. We have chosen the path via state B in Figure 9.54a.

The original flow table in Figure 9.52a is defined in the form of the Moore model.
The modified flow table in Figure 9.54a requires the use of the Mealy model because
the previously described transitions through unstable states must produce correct outputs.
Consider first the change from A if w2w1 = 01. While stable in state A, the circuit must
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Present Next state Output z2z1

state w2w1 = 00 01 10 11 00 01 10 11

A A D D A 00 00 11 00

B B B D C 01 01 11 01

C A C B C – 0 10 1– 10

D B B D A – 1 0– 11 00

(a) Modified flow table

Present Next state Output

state w2w1 = 00 01 10 11 00 01 10 11

y2y1 Y2Y1 z2z1

A 00 00 10 10 00 00 00 11 00

B 11 11 11 10 01 01 01 11 01

C 01 00 01 11 01 – 0 10 1– 10

D 10 11 11 10 00 – 1 0– 11 00

(b) Excitation table

� �

��

��

�

� �

��

��

�

Figure 9.54 Realization of the FSM in Figure 9.52a.

produce the output z2z1 = 00. Upon reaching the stable state B, the output must become
01. The problem is that this transition requires a short visit to state D, which in the Moore
model would produce z2z1 = 11. Thus a glitch would be generated on the output signal z2,
which would undergo the change 0 → 1 → 0. To avoid this undesirable glitch, the output
in state D must be z2 = 0 for this input valuation, which requires the use of the Mealy model
as shown in the Figure 9.54a. Observe that while z2 must be 0 in D for w2w1 = 01, z1 can
be either 0 or 1 because it is changing from 0 in state A to 1 in state B. Therefore, z1 can be
left unspecified so that this case can be treated as a don’t-care condition. A similar situation
arises when the circuit changes from C to D via B if w2w1 = 10. The output must change
from 10 to 11, which means that z2 must remain at 1 throughout this change, including the
short time in state B where the Moore model output would be 01.

The modified flow table and the chosen state assignment lead to the excitation table in
Figure 9.54b. From this table the next-state and output expressions are derived, as in the
examples in Section 9.3.
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9.5.3 State Assignment Using Additional State Variables

In Figure 9.52a there is an unspecified transition that can be exploited to find a suitable
state assignment, as shown in Section 9.5.2. In general, such flexibility may not exist. It
may be impossible to find a race-free state assignment using log2n state variables for a flow
table that has n rows. The problem can be solved by adding extra state variables. This can
be done in three ways, as illustrated in the examples that follow.

Example 9.14 USING EXTRA UNSTABLE STATES Consider the FSM specified by the flow table in Fig-
ure 9.55a. The flow table is relabeled in part (b) of the figure. A corresponding transition
diagram is depicted in Figure 9.56a. It indicates that there are transitions between all pairs
of vertices (rows). No rearrangement of the existing vertices would allow mapping of the
transition diagram onto a two-dimensional cube.

Let us now introduce one more state variable so that we can look for a way to map the
transition diagram onto a three-dimensional cube. With three state variables the assignment
for state A can be a Hamming distance of 1 different from the assignments for B, C,

Present Next state Output
state w2w1 = 00 01 10 11 z2z1

A A� A� C B 00

B A B� D B� 01

C C� B C� D 10

D C A D� D� 11

(a) Flow table

Present Next state Output
state w2w1 = 00 01 10 11 z2z1

A 1� 2� 6 4 00

B 1 3� 7 4� 01

C 5� 3 6� 8 10

D 5 2 7� 8� 11

(b) Relabeled flow table

Figure 9.55 FSM for Example 9.14.
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(a) Transition diagram

(b) Augmented transition diagram

A

D C5 8,

2 3

(c) Embedded transition diagram

B

76

1 4,

A

D C5 8,

2

3

B

76

1 4,

5 8,

3

7

G

E

D

A B

E

FC

G

7

5 8,

1 4,

3

3
2

7

y2

y3

y1

F

6

5 8,

Figure 9.56 Transition diagrams for Figure 9.55.

and D. For example, we could have A = 000, B = 001, C = 100, and D = 010. But it
would then be impossible to have the pairs (B, C), (B, D), and (C, D) within the Hamming
distance of 1. The solution here is to insert extra vertices in the transition paths, as shown in
Figure 9.56b. Vertex E separates B from D, while vertices F and G break the paths (B, C)

and (C, D). The labels associated with the transitions are attached to both segments of a
broken path. The resulting transition diagram can be embedded onto a three-dimensional
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cube as indicated in Figure 9.56c, where the black portion of the cube comprises the desired
paths. Now the transition from B to D takes place via vertex E if w2w1 = 10 (label 7). The
transition from C to B occurs via F if w2w1 = 01 (label 3). The transition from C to D goes
through G if w2w1 = 11 (label 8), and the transition from D to C goes via G if w2w1 = 00
(label 5). Therefore, the flow table has to be modified as shown in Figure 9.57a. The three
extra states are unstable because the circuit will not remain in these states for any valuation

Present Next state Output
state w2w1 = 00 01 10 11 z2z1

A A� A� C B 00

B A B� E B� 01

C C� F C� G 10

D G A D� D� 11

E – – D – – 1

F – B – – 01

G C – – D 1–

(a) Modified flow table

Present Next state

state w2w1 = 00 01 10 11 Output

y3 y2 y1 Y3Y2Y1
z2z1

A 000 000 000 100 001 00

B 001 000 001 011 001 01

C 100 100 101 100 110 10

D 010 110 000 010 010 11

E 011 – – 010 – – 1

F 101 – 001 – – 01

G 110 100 – – 010 1–

(b) Excitation table

Figure 9.57 Modified tables for Example 9.14.
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of the inputs. The circuit will merely pass through these states in the process of changing
from one stable state to another. Observe that each of the states E, F , and G is needed
to facilitate the transitions caused by only one or two valuations of inputs. Thus it is not
necessary to specify the actions that might be caused by other input valuations, because
such situations will never occur in a properly functioning circuit.

The outputs in Figure 9.57a can be specified using the Mealy model. It is essential
that a proper output is generated when passing through unstable states, to avoid undesirable
glitches in the output signals.

If we assign the state variables as shown on the right of Figure 9.56c, the modified flow
table leads to the excitation table in Figure 9.57b. From this table, deriving the next-state
and output expressions is a straightforward task.

Example 9.15USING PAIRS OF EQUIVALENT STATES Another approach is to increase the flexibility in
state assignment by introducing an equivalent new state for each existing state. Thus state
A can be replaced with two states A1 and A2 such that the final circuit produces the same
outputs for A1 and A2 as it would for A. Similarly, other states can be replaced by equivalent
pairs of states. Figure 9.58 shows how a three-dimensional cube can be used to find a good
state assignment for a four-row flow table. The four equivalent pairs are arranged so that the
minimum Hamming distance of 1 exists between all pairs. For example, the pair (B1, B2)

has the Hamming distance of 1 with respect to A1 (or A2), C2, and D2.
The transition diagram in Figure 9.56a can be embedded onto the three-dimensional

cube as shown in Figure 9.58. Since there is a choice of two vertices on the cube for each
vertex in the transition diagram in Figure 9.56a, the embedded transition diagram does not
involve any diagonal paths. Using this assignment of states, the flow table in Figure 9.55a
has to be modified as presented in Figure 9.59a. The entries in the table are made to
allow each transition in the original flow table to be realized using a transition between
the corresponding pairs of equivalent states. Both states in an equivalent pair are stable
for the input valuations for which the original state is stable. Thus A1 and A2 are stable if
w2w1 = 00 or 01, B1 and B2 are stable if w2w1 = 01 or 11, and so on. At any given time

B1

A1 A2

B2

D1C1

C2

1 4,

5 8,

2

5 8,
1 4,

7

y2

y3

y1

D2

6

3

Figure 9.58 Embedded transition diagram if two nodes per row
are used.
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Present Next state Output
state w2w1 = 00 01 10 11 z2z1

A1 A1 A1 C1 B1 00

A2 A2 A2 A1 B2 00

B1 A1 B1 B2 B1 01

B2 A2 B2 D2 B2 01

C1 C1 C2 C1 D1 10

C2 C2 B1 C2 D2 11

D1 C1 A2 D1 D1 11

D2 C2 D1 D2 D2 11

(a) Modified flow table

Present Next state

state w2w1 = 00 01 10 11 Output

y3 y2 y1 Y3Y2Y1
z2z1

A1 000 000 000 100 010 00

A2 001 001 001 000 011 00

B1 010 000 010 011 010 01

B2 011 001 011 111 011 01

C1 100 100 110 100 101 10

C2 110 110 010 110 111 10

D1 101 100 001 101 101 11

D2 111 110 101 111 111 11

(b) Excitation table

Figure 9.59 Modified flow and excitation tables for Example 9.15.
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the FSM may be in either of the two equivalent states that represent an original state. Then
a change to another state must be possible from either of these states. For example, Figure
9.55a specifies that the FSM must change from the stable state A to state B if the input is
w2w1 = 11. The equivalent transition in the modified flow table is the change from state
A1 to B1 or from state A2 to B2. If the FSM is stable in A and the input changes from 00
to 10, then a change to C is required. The equivalent transition in the modified flow table
is from state A1 to C1; if the FSM happens to be in state A2, it will first have to change to
A1. The remaining entries in Figure 9.59a are derived using the same reasoning.

The outputs are specified using the Moore model, because the only unstable states are
those involved in changing from one member of the equivalent pair to another, and both
members generate the same outputs. For instance, in the previously described transition
from A to C, if the starting point is A2, it is necessary to go first to A1 and then to C1. Even
though A1 is unstable for w2w1 = 10, there is no problem because its output is the same as
that of A2. Therefore, if the original flow table is defined using the Moore model, then the
modified flow table can also be done using the Moore model.

Using the assignment of the state variables in Figure 9.58 gives the excitation table in
Figure 9.59b.

9.5.4 One-Hot State Assignment

The previously described schemes based on embedding the flow table in a cube may lead
to an optimal state assignment, but they require a trial-and-error approach that becomes
awkward for large machines. A straightforward, but more expensive, alternative is to use
one-hot codes. If each row in the flow table of an FSM is assigned a one-hot code, then
race-free state transitions can be achieved by passing through unstable states that are at a
Hamming distance of 1 from the two stable states involved in the transition. For example,
suppose that state A is assigned the code 0001 and state B the code 0010. Then a race-free
transition from A to B can pass through an unstable state 0011. Similarly, if C is assigned
the code 0100, then a transition from A to C can be done via the unstable state 0101.

Using this approach, the flow table in Figure 9.55a can be modified as illustrated in
Figure 9.60. The four states, A, B, C, and D, are assigned one-hot codes. As seen in the
figure, it is necessary to introduce six unstable states, E through J , to handle the necessary
transitions. These unstable states have to be specified only for the specific transitions,
whereas for other input valuations they may be treated as don’t cares.

The outputs can be specified using the Moore model. In some cases it does not matter
when a particular output signal changes its value. For instance, state E is used to facilitate
the transition from state A to C. Since z2z1 = 00 in A and 10 in C, it is not important if z2

changes when passing through state E.
While straightforward to implement, the one-hot encoding is expensive because it

requires n state variables to implement an n-row flow table. Simplicity of design and the
cost of implementation often provide a challenging trade-off in designing logic circuits!
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State Present Next state Output
assignment state w2w1 = 00 01 10 11 z2z1

0001 A A� A� E F 00

0010 B F B� G B� 01

0100 C C� H C� I 10

1000 D I J D� D� 11

0101 E – – C – – 0

0011 F A – – B 0 –

1010 G – – D – – 1

0110 H – B – –

– – –

01

1100 I C – – D 1 –

1001 J A 00

Figure 9.60 State assignment with one-hot encoding.

1 1 0 0

1 0 0 1

(a) Static hazard

(b) Dynamic hazard

1

0

1

0

Figure 9.61 Definition of hazards.

9.6 Hazards

In asynchronous sequential circuits it is important that undesirable glitches on signals should
not occur. The designer must be aware of the possible sources of glitches and ensure that
the transitions in a circuit will be glitch free. The glitches caused by the structure of a given
circuit and propagation delays in the circuit are referred to as hazards. Two types of hazards
are illustrated in Figure 9.61.

A static hazard exists if a signal is supposed to remain at a particular logic value when
an input variable changes its value, but instead the signal undergoes a momentary change
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in its required value. As shown in Figure 9.61a, one type of static hazard is when the signal
at level 1 is supposed to remain at 1 but dips to 0 for a short time. Another type is when the
signal is supposed to remain at level 0 but rises momentarily to 1, thus producing a glitch.

A different type of hazard may occur when a signal is supposed to change from 1 to 0
or from 0 to 1. If such a change involves a short oscillation before the signal settles into its
new level, as illustrated in Figure 9.61b, then a dynamic hazard is said to exist.

9.6.1 Static Hazards

Figure 9.62a shows a circuit with a static hazard. Suppose that the circuit is in the state
where x1 = x2 = x3 = 1, in which case f = 1. Now let x1 change from 1 to 0. Then the
circuit is supposed to maintain f = 1. But consider what happens when the propagation
delays through the gates are taken into account. The change in x1 will probably be observed
at point p before it will be seen at point q because the path from x1 to q has an extra gate
(NOT) in it. Thus the signal at p will become 0 before the signal at q becomes equal to 1.
For a short time both p and q will be 0, causing f to drop to 0 before it recovers back to 1.
This gives rise to the signal depicted on the left side of Figure 9.61a.

The glitch on f can be prevented as follows. The circuit implements the function

f = x1x2 + x1x3

The corresponding Karnaugh map is given in Figure 9.62b. The two product terms realize
the prime implicants encircled in black. The hazard explained above occurs when there is
a transition from the prime implicant x1x2 to the prime implicant x1x3. The hazard can be
eliminated by including the third prime implicant, encircled in blue. (This is the consensus
term, defined in Property 17a in Section 2.5.) Then the function would be implemented as

f = x1x2 + x1x3 + x2x3

Now the change in x1 from 1 to 0 would have no effect on the output f because the product
term x2x3 would be equal to 1 if x2 = x3 = 1, regardless of the value of x1. The resulting
hazard-free circuit is depicted in Figure 9.62c.

A potential hazard exists wherever two adjacent 1s in a Karnaugh map are not covered
by a single product term. Therefore, a technique for removing hazards is to find a cover
in which some product term includes each pair of adjacent 1s. Then, since a change in an
input variable causes a transition between two adjacent 1s, no glitch can occur because both
1s are included in a product term.

In asynchronous sequential circuits a hazard can cause the circuit to change to an
incorrect stable state. Example 9.16 illustrates this situation.

Example 9.16In Example 9.2 we analyzed the circuit that realizes a master-slave D flip-flop. From the
excitation table in Figure 9.6a, one could attempt to synthesize a minimum-cost circuit that
realizes the required functions, Ym and Ys. This would give
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x1 x2
x3 00 01 11 10

1

0

1

(b) Karnaugh map

1

f

x3

(a) Circuit with a hazard

1

1

x1

x2 p

q

x3

x1

x2

f

(c) Hazard-free circuit

Figure 9.62 An example of a static-hazard.

Ym = CD + Cym

= (C ↑ D) ↑ (C ↑ ym)

Ys = Cym + Cys

= (C ↑ ym) ↑ (C ↑ ys)

The corresponding circuit is presented in Figure 9.63a. At first glance this circuit may seem
more attractive than the flip-flops discussed in Chapter 5 because it is less expensive. The
problem is that the circuit contains a static hazard.
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00 01 11 10

1

1 1

00

01

11

10

(b) Karnaugh maps for Ym and Ys  in Figure 9.6a

11

1

ym ys

CD

1

1

00 01 11 10

1

1 1

00

01

11

10

11 1

ym ys

CD

11

D

C

Y m

Y s

ym

ys

p

q

r

D

C

Y m

Y s

ym

ys

(a) Minimum-cost circuit

(c) Hazard-free circuit

Q

Q

Figure 9.63 Two-level implementation of master-slave D flip-flop.
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Figure 9.63b shows the Karnaugh maps for the functions Ym and Ys. The minimum-cost
implementation is based on the prime implicants encircled in black. To see how this circuit
is affected by static hazards, assume that presently Ys = 1 and C = D = 1. The circuit
generates Ym = 1. Now let C change from 1 to 0. For the flip-flop to behave properly, Ys

must remain equal to 1. In Figure 9.63a, when C changes to 0, both p and r become 1.
Due to the delay through the NOT gate, q may still be 1, causing the circuit to generate
Ym = Ys = 0. The feedback from Ym will maintain q = 1. Hence the circuit remains in an
incorrect stable state with Ys = 0.

To avoid the hazards, it is necessary to also include the terms encircled in blue, which
gives rise to the expressions

Ym = CD + Cym + Dym

Ys = Cym + Cys + ymys

The resulting circuit, implemented with NAND gates, is shown in Figure 9.63c.
Note that we can obtain another NAND-gate implementation by rewriting the expres-

sions for Ym and Ys as

Ym = CD + (C + D)ym

= (C ↑ D) ↑ ((C + D) ↑ ym)

= (C ↑ D) ↑ ((C ↑ D) ↑ ym)

Ys = Cym + (C + ym)ys

= (C ↑ ym) ↑ ((C ↑ ym) ↑ ys)

These expressions correspond exactly to the circuit in Figure 5.12.

Example 9.17 From the previous examples, it seems that static hazards can be avoided by including all
prime implicants in a sum-of-products circuit that realizes a given function. This is indeed
true. But it is not always necessary to include all prime implicants. It is only necessary
to include product terms that cover the adjacent pairs of 1s. There is no need to cover the
don’t-care vertices.

Consider the function in Figure 9.64. Ahazard-free circuit that implements this function
should include the encircled terms, which gives

f = x1x3 + x2x3 + x3x4

The prime implicant x1x2 is not needed to prevent hazards, because it would account only
for the two 1s in the left-most column. These 1s are already covered by x1x3.

Example 9.18 Static hazards can also occur in other types of circuits. Figure 9.65a depicts a product-
of-sums circuit that contains a hazard. If x1 = x3 = 0 and x2 changes from 0 to 1, then f
should remain at 0. However, if the signal at p changes earlier than the signal at q, then p
and q will both be equal to 1 for a short time, causing a glitch 0 → 1 → 0 on f .

In a POS circuit, it is the transitions between adjacent 0s that may lead to hazards. Thus
to design a hazard-free circuit, it is necessary to include sum terms that cover all pairs of
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x1 x2
x3 x4 00 01 11 10

1

1 11

00

01

11

10

11

1 1

dd

d

Figure 9.64 Function for Example 9.17.

adjacent 0s. In this example the term in blue in the Karnaugh map must be included, giving

f = (x1 + x2)(x2 + x3)(x1 + x3)

The circuit is shown in Figure 9.65c.

9.6.2 Dynamic Hazards

A dynamic hazard causes glitches on 0 → 1 or 1 → 0 transitions of an output signal. An
example is given in Figure 9.66. Assuming that all NAND gates have equal delays, a
timing diagram can be constructed as shown. The time elapsed between two vertical lines
corresponds to a gate delay. The output f exhibits a glitch that should be avoided.

It is interesting to consider the function implemented by this circuit, which is

f = x1x2 + x3x4 + x1x4

This is the minimum-cost sum-of-products expression for the function. If implemented in
this form, the circuit would not have either a static or a dynamic hazard.

A dynamic hazard is caused by the structure of the circuit, where there exist multiple
paths for a given signal change to propagate along. If the output signal changes its value
three times, 0 → 1 → 0 → 1 in the example, then there must be at least three paths along
which a change from a primary input can propagate. A circuit that has a dynamic hazard
must also have a static hazard in some part of it. As seen in Figure 9.66b, there is a static
hazard involving the signal on wire b.

Dynamic hazards are encountered in multilevel circuits obtained using factoring or
decomposition techniques, which were discussed in Chapter 8. Such hazards are neither
easy to detect nor easy to deal with. The designer can avoid dynamic hazards simply by
using two-level circuits and ensuring that there are no static hazards.
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x1 x2
x3 00 01 11 10

1

0

1

(b) Karnaugh map

1

f

x3

(a) Circuit with a hazard

0

0

x2

x1 p

q

x3

x2

x1

f

(c) Hazard-free circuit

00

1

1

Figure 9.65 Static hazard in a POS circuit.

9.6.3 Significance of Hazards

A glitch in an asynchronous sequential circuit can cause the circuit to enter an incorrect
state and possibly become stable in that state. Therefore, the circuitry that generates the
next-state variables must be hazard free. It is sufficient to eliminate hazards due to changes
in the value of a single variable because the basic premise in an asynchronous sequential
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(a) Circuit

x2

x1

x3

x4

b

a

c
d

f

x2 x3 x4, ,

x1

b

a

c

d

f

One gate delay

(b) Timing diagram

Figure 9.66 Circuit with a dynamic hazard.

circuit is that the values of both the primary inputs and the state variables must change one
at a time.

In combinational circuits, discussed in Chapters 3 and 4, we did not worry about
hazards, because the output of a circuit depends solely on the values of the inputs. In
synchronous sequential circuits the input signals must be stable within the setup and hold
times of flip-flops. It does not matter whether glitches occur outside the setup and hold
times with respect to the clock signal.
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9.7 A Complete Design Example

In the previous sections we examined the various design aspects of asynchronous sequential
circuits. In this section we give a complete design example, which covers all necessary steps.

9.7.1 The Vending-Machine Controller

The control mechanism of a vending machine is a good vehicle for illustrating a possible
application of a digital circuit. We used it in the synchronous environment in Chapter 6. A
small example of a vending machine served as an object of analysis in Section 9.2. Now
we will consider a vending-machine controller similar to the one in Example 6.7 to see how
it can be implemented using an asynchronous sequential circuit. The specification for the
controller is:

• It accepts nickels and dimes.
• A total of 15 cents is needed to release the candy from the machine.
• No change is given if 20 cents is deposited.

Coins are deposited one at a time. The coin-sensing mechanism generates signals
N = 1 and D = 1 when it sees a nickel or a dime, respectively. It is impossible to have
N = D = 1 at the same time. Following the insertion of a coin for which the sum equals
or exceeds 15 cents, the machine releases the candy and resets to the initial state.

Figure 9.67 shows a state diagram for the required FSM. It is derived using a straight-
forward approach in which all possible sequences of depositing nickels and dimes are
enumerated in a treelike structure. To keep the diagram uncluttered, the labels D and N
denote the input conditions DN = 10 and DN = 01, respectively. The condition DN = 00
is labeled simply as 0. The candy is released in states F , H , and K , which are reached after
15 cents has been deposited, and in states I and L, upon a deposit of 20 cents.

The corresponding flow table is given in Figure 9.68. It can be reduced using the
partitioning procedure as follows

P1 = (ADGJ )(BE)(C)(FIL)(HK)

P2 = (A)(D)(GJ )(B)(E)(C)(FIL)(HK)

P3 = P2

Using G to represent the equivalent states G and J , F to represent F , I , and L, and H to
represent H and K yields a partially reduced flow table in Figure 9.69. The merger diagram
for this table is presented in Figure 9.70. It indicates that states C and E can be merged, as
well as F and H . Thus the reduced flow table is obtained as shown in Figure 9.71a. The
same information is depicted in the form of a state diagram in Figure 9.72.

Next a suitable state assignment must be found. The flow table is relabeled in Fig-
ure 9.71b to associate a unique number with each stable state. Then the transition diagram
in Figure 9.73a is obtained. Since we wish to try to embed the diagram onto a three-
dimensional cube, eight vertices are shown in the figure. The diagram shows two diagonal
transitions. The transition between D and G (label 7) does not matter, because it is only an
alternative path. The transition from A to C (label 4) is required, and it can be realized via
unused states as indicated in blue in Figure 9.73b. Therefore, the transition diagram can be



December 31, 2012 09:14 vra80547_ch09 Sheet number 67 Page number 617 magenta black

9.7 A Complete Design Example 617

A 0/

B 0/
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0

0

0

0

0

Figure 9.67 Initial state diagram for the vending-machine controller.

embedded onto a three-dimensional cube as shown. Using the state assignment from this
figure, the excitation table in Figure 9.74 is derived.

The Karnaugh maps for the next-state functions are given in Figure 9.75. From these
maps the following hazard-free expressions are obtained

Y1 = Ny2 + Ny1 + Dy1 + y1y3 + y1y2

Y2 = Ny1 + Ny2 + y1y3 + Dy2y3 + Dy2y3

Y3 = Dy1 + y2y3 + Ny1y2 + Dy3N

All product terms in these expressions are needed for a minimum-cost POS implementation
except for y1y2, which is included to prevent hazards in the expression for Y1. The output
expression is

z = y1y2y3
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Present Next state Output
state DN = 00 01 10 11 z

A A� B C – 0

B D B� – – 0

C J – C� – 0

D D� E F – 0

E G E� – – 0

F A – F� – 1

G G� H I – 0

H A H� – – 1

I A – I� –

– –

1

J J� K L – 0

K A K� – – 1

L A L� 1

Figure 9.68 Initial flow table for the vending-machine controller.

Present Next state Output
state DN = 00 01 10 11 z

A A� B C – 0

B D B� – – 0

C G – C� – 0

D D� E F – 0

E G E� – –

– –

0

F A – F� – 1

G G� H F – 0

H A H� 1

Figure 9.69 First step in state minimization.
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B

H

A

F

D

G

C

E

Figure 9.70 Merger diagram for Figure 9.69.

Present Next state Output
state DN = 00 01 10 11 z

A A� B C – 0

B D B� – – 0

C G C� C� – 0

D D� C F – 0

F A F� F� – 1

G G� F F – 0

(a) Minimized flow table

Present Next state Output
state DN = 00 01 10 11 z

A 1� 2 4 – 0

B 5 2� – – 0

C 8 3� 4� – 0

D 5� 3 7 – 0

F 1 6� 7� – 1

G 8� 6 7 – 0

(b) Relabeled flow table

Figure 9.71 Reduced flow tables.
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Figure 9.72 State diagram for the vending-machine controller.
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Figure 9.73 Determination of the state assignment.
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Present Next state

state DN = 00 01 10 11 Output

y3 y2 y1 Y3Y2Y1
z

A 000 000 010 100 – 0

B 010 011 010 –– 0

C 111 101 111 111 – 0

D 011 011 111 001 – 0

F 001 000 001 001 – 1

G 101 101 001 001 – 0

100 – – 110 –

– – –

0

110 111 0

Figure 9.74 Excitation table based on the state assignment in
Figure 9.73b.

9.8 Concluding Remarks

Asynchronous sequential circuits are more difficult to design than the synchronous sequen-
tial circuits. The difficulties with race conditions present a problem that must be handled
carefully. At the present time there is little CAD support for designing asynchronous cir-
cuits. For these reasons, most designers resort to synchronous sequential circuits in practical
applications.

An important advantage of asynchronous circuits is their speed of operation. Since
there is no clock involved, the speed of operation depends only on the propagation delays
in the circuit. In an asynchronous system that comprises several circuits, some circuits may
operate faster than others, thus potentially improving the overall performance of the system.
In contrast, in synchronous systems the clock period has to be long enough to accommodate
the slowest circuit, and it has a large effect on the performance.

Asynchronous circuit techniques are also useful in designing systems that consist of
two or more synchronous circuits that operate under the control of different clocks. The
signals exchanged between such circuits often appear to be asynchronous in nature.

From the reader’s point of view, it is useful to view asynchronous circuits as an excellent
vehicle for gaining a deeper understanding of the operation of digital circuits in general.
These circuits illustrate the consequences of propagation delays and race conditions that
may be inherent in the structure of a circuit. They also illustrate the concept of stability,
demonstrated through the existence of stable and unstable states. For further discussion of
asynchronous sequential circuits, the reader may consult references [1–6].
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(b) Map for Y2

(c) Map for Y3

Figure 9.75 Karnaugh maps for the functions in Figure 9.74.
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9.9 Examples of Solved Problems

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

Example 9.19Problem: Derive a flow table that describes the behavior of the circuit in Figure 9.76.

Solution: Modelling the propagation delay in the gates of the circuit as shown in Figure 9.8,
the circuit in Figure 9.76 can be described by the following next-state and output expressions

Y1 = w1w2 + w2y1 + w1y1y2

Y2 = w2 + w1y1 + w1y2

z = y2

These expressions lead to the excitation table in Figure 9.77a. Assuming the state assign-
ment A = 00, B = 01, C = 10, and D = 11, yields the flow table in Figure 9.77b.

y1

y2
z

w1

w2

Figure 9.76 Circuit for Example 9.19.



December 31, 2012 09:14 vra80547_ch09 Sheet number 74 Page number 624 magenta black

624 C H A P T E R 9 • Asynchronous Sequential Circuits

Present Next state

state w2w1 = 00 01 10 11 Output

y2 y1 Y2Y1 Y2Y1 Y2Y1 Y2Y1
z

00 0�0 01 10 10 0

01 11 0�1 10 10 0

10 00 11 1�0 1�0 1

11 1�1 1�1 1�1 10 1

(a) Excitation table

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� B C C 0

B D B� C C 0

C A D C� C� 1

D D� D� D� C 1

(b) Flow table implemented by the circuit

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� B C C 0

B D B� – C 0

C A D C� C� 1

D D� D� D� C 1

(c) Final flow table

Figure 9.77 Excitation and flow tables for the circuit in Figure 9.76.
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Since in a given stable state, inputs to the circuit can only change one at a time,
some entries in the flow table may be designated as unspecified. Such is the case when
the circuit is stable in state B and input values are w2w1 = 01. Now, both inputs cannot
change simultaneously, which means that the corresponding entry in the flow table should
be designated as unspecified. However, a different situation arises when the circuit is stable
in state A and input values are w2w1 = 00. In this case, we cannot indicate the transition
in column w2w1 = 11 as unspecified. The reason is that if the circuit is in stable state B,
it has to be able to change to state C when w2 changes from 0 to 1. States B and C are
implemented as y2y1 = 01 and y2y1 = 10, respectively. Since both state variables must
change their values, the route from 01 to 10 will take place either via 11 or 00, depending
on the delays in different paths in the circuit. If y2 changes first, the circuit will pass through
unstable state D and then settle in the stable state C. But, if w1 changes first, the circuit
has to pass through unstable state A before reaching state C. Hence, the transition to state
C in the first row must be specified. This is an example of a safe race, where the circuit
reaches the correct destination state regardless of propagation delays in different paths of
the circuit. The final flow table is presented in Figure 9.77c.

Example 9.20Problem: Are there any hazards in the circuit in Figure 9.76?

Solution: Figure 9.78 gives Karnaugh maps for the next-state expressions derived in Ex-
ample 9.19. As seen from the maps, all prime implicants are included in the expression for
Y1. But, the expression for Y2 includes only three of the four available prime implicants.
There is a static hazard when w2y2y1 = 011 and w1 changes from 0 to 1 (or 1 to 0). This
hazard can be removed by adding the fourth prime implicant, y1y2, to the expression for Y2.

y1 y2 00 01 11 10

1 1

1 1 1

1 1 1 1

1 1 1

00

01

11

10

00 01 11 10

1

1

1 1 1

1 1

00

01

11

10

Y1 Y2

w1 w2
y1 y2

w1 w2

Figure 9.78 Karnaugh maps for the circuit in Figure 9.76.
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Example 9.21 Problem: A circuit has an input w and an output z. A sequence of pulses is applied on input
w. The output has to replicate every second pulse, as illustrated in Figure 9.79. Design a
suitable circuit.

Solution: Figure 9.80 shows a possible state diagram and the corresponding flow table.
Compare this with the FSM defined in Example 9.4 in Figure 9.13, which specifies a serial
parity generator. The only difference is in the output signal. In our case, z = 1 only in
state B. Therefore, the next-state expressions are the same as in Example 9.4. The output
expression is

z = y1y2

w

z

Figure 9.79 Waveforms for Example 9.21.

A / 0 B / 1

C / 0D / 0

w = 1
0 1

0

0

1

0

1

(a) State diagram

Present Next state Output
state w = 0 w = 1 z

A A B 0

B C B 1

C C D 0

D A D 0

(b) Flow table

Figure 9.80 State diagram and flow table for Example 9.21.
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Present Next state Output
state w2w1 = 00 01 10 11 z

A A� E C – 0

B – E H B� 1

C G –

–

C� F 0

D A D� – B 1

E G E� – B 0

F – D C F� 0

G G� E C – 0

H A H� B 1

Figure 9.81 Flow table for Example 9.22.

Example 9.22Problem: Consider the flow table in Figure 9.81. Reduce this flow table and find a state
assignment that allows this FSM to be realized as simply as possible, preserving the Moore
model. Derive an excitation table.

Solution: Using the partioning procedure on the flow table in Figure 9.81 gives

P1 = (ACEFG)(BDH )

P2 = (AG)(B)(C)(D)(E)(F)(H )

P3 = P2

Combining A and G produces the flow table in Figure 9.82. A merger diagram for this table
is shown in Figure 9.83. Merging the states (A, E), (C, F), and (D, H ) leads to the reduced
flow table in Figure 9.84. To find a good state assignment, we relabel this flow table as
indicated in Figure 9.85, and construct the transition diagram in Figure 9.86a. The only
problem in this diagram is the transition from state D to state A, labeled as 1. A change from
D to A can be made via state C if we specify so in the flow table. Then, a direct transition
from D to A is not needed, as depicted in Figure 9.86b. The resulting flow table and the
corresponding excitation table are shown in Figure 9.87.

Example 9.23Problem: Derive a hazard-free minimum-cost SOP implementation for the function

f (x1, . . . , x5) =
∑

m(2, 3, 14, 17, 19, 25, 26, 30) + D(10, 23, 27, 31)

Solution: The Karnaugh map for the function is given in Figure 9.88. From it, the required
expression is derived as

f = x1x3x5 + x2x4x5 + x1x2x3x4 + x2x3x4x5

The first three product terms cover all 1s in the map. The fourth term is needed to avoid
having a hazard when x2x3x4x5 = 0011 and x1 changes from 0 to 1 (or 1 to 0). Thus, each
pair of adjacent 1s is covered by some prime implicant in the expression.
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Present Next state Output
state w2w1 = 00 01 10 11 z

A A� E C – 0

B – E H B� 1

C A –

–

C� F 0

D A D� – B 1

E A E� – B 0

F – D C F� 0

H A H� B 1

Figure 9.82 Reduction after the partitioning procedure.

F

C

H

D

E

A B

Figure 9.83 Merger diagram for the flow table in Figure 9.82.

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� A� C B 0

B – A D B� 1

C A D C� C� 0

D A D� D� B 1

Figure 9.84 Reduced flow table for the FSM in Figure 9.82.
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Present Next state Output
state w2w1 = 00 01 10 11 z

A 1� 2� 4 3 0

B – 2 7 3� 1

C 1 6 4� 5� 0

D 1 6� 7� 3 1

Figure 9.85 Relabeled flow table of Figure 9.84.

(a) Initial transition diagram

(b) Augmented transition diagram

C = 10

A = 00 B = 01

D = 111, 6

3, 7

2, 3

1, 4
1, 3

C = 10

A = 00 B = 01

D = 111, 6

3, 7

2, 3

1, 4

Figure 9.86 Transition diagrams for Figure 9.85.
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Present Next state Output
state w2w1 = 00 01 10 11 z

A A� A� C B 0

B – A D B� 1

C A D C� C� 0

D C D� D� B 1

(a) Final flow table

Present Next state

state w2w1 = 00 01 10 11 Output

y2 y1 Y2Y1 Y2Y1 Y2Y1 Y2Y1
z

00 0�0 0�0 10 01 0

01 – 00 11 0�1 1

10 00 11 1�0 1�0 0

11 10 1�1 1�1 01 1

(b) Excitation table

Figure 9.87 Excitation and flow tables for Example 9.22.

x1 x2
x3 x4 00 01 11 10

11

1

00

01

11

10

x1 x2
x3 x4 00 01 11 10

11

11

00

01

11

10

x5 1=x5 0=

d

1

d

d d

Figure 9.88 Karnaugh map for Example 9.23.
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Problems

Answers to problems marked by an asterisk are given at the back of the book.

*9.1 Derive a flow table that describes the behavior of the circuit in Figure P9.1. Compare your
solution with the tables in Figure 9.21. Is there any similarity?

w1

w2

z1

z2

y1

y2

Figure P9.1 Circuit for Problem 9.1.

9.2 Consider the circuit in Figure P9.2. Draw the waveforms for the signals C, z1, and z2.
Assume that C is a square-wave clock signal and that each gate has a propagation delay
�. Express the behavior of the circuit in the form of a flow table that would produce the
desired signals. (Hint: Use the Mealy model.)

z1

z2

C

Figure P9.2 Circuit for Problem 9.2.

9.3 Derive the minimal flow table that specifies the same functional behavior as the flow table
in Figure P9.3.

9.4 Derive the minimal Moore-type flow table that specifies the same functional behavior as
the flow table in Figure P9.4.
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Present Next state Output
state w2w1 = 00 01 10 11 z

A A� B C – 0

B D B� – – 0

C P – C� – 0

D D� E F – 0

E G E� – – 0

F M – F� – 0

G G� H I – 0

H J H� – – 0

I A – I� – 1

J J� K L – 0

K A K� – – 1

L A – L� – 1

M M� N O – 0

N A N� – – 1

O A – O� – 1

P P� R S – 0

R T R� – – 0

S A – S� –

– –

1

T T� U V – 0

U A U� – – 1

V A V� 1

Figure P9.3 Flow table for Problem 9.3.

9.5 Find a suitable state assignment using as few states as possible and derive the next-state
and output expressions for the flow table in Figure 9.42.

9.6 Find a suitable state assignment for the flow table in Figure 9.42, using pairs of equivalent
states, as explained in Example 9.15. Derive the next-state and output expressions.

9.7 Find a state assignment for the flow table in Figure 9.42, using one-hot encoding. Derive
the next-state and output expressions.

*9.8 Implement the FSM specified in Figure 9.39, using the merger diagram in Figure 9.40a.
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Present Next state Output
state w2w1 = 00 01 10 11 z

A A� B C – 0

B K B� – H 0

C F – C� M 0

D D� E J – 1

E A E� – M 0

F F� L J – 0

G D G� – H 0

H –

–

G J H� 1

J F – J� H 0

K K� L C – 1

L A L� – H 0

M G C M� 1

Figure P9.4 Flow table for Problem 9.4.

9.9 Find a suitable state assignment for the FSM defined by the flow table in Figure P9.5.
Derive the next-state and output expressions for the FSM using this state assignment.

Present Next state Output
state w2w1 = 00 01 10 11 z

A A� B C – 0

B D B� – G 0

C F – C� G 0

D D� E C – 1

E A E� – G 0

F F� E C –

–

0

G B C G� 1

Figure P9.5 Flow table for Problem 9.9.

*9.10 Find a hazard-free minimum-cost implementation of the function

f (x1, . . . , x4) =
∑

m(0, 4, 11, 13, 15) + D(2, 3, 5, 10)
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9.11 Repeat Problem 9.10 for the function

f (x1, . . . , x5) =
∑

m(0, 4, 5, 24, 25, 29) + D(8, 13, 16, 21)

*9.12 Find a hazard-free minimum-cost POS implementation of the function

f (x1, . . . , x4) = �M (0, 2, 3, 7, 10) + D(5, 13, 15)

9.13 Repeat Problem 9.12 for the function

f (x1, . . . , x5) = �M (2, 6, 7, 25, 28, 29) + D(0, 8, 9, 10, 11, 21, 24, 26, 27, 30)

*9.14 Consider the circuit in Figure P9.6. Does this circuit exhibit any hazards?

A
B

C

D

E

f

g

Figure P9.6 Circuit for Problem 9.14.

9.15 Design an original circuit that exhibits a dynamic hazard.

9.16 A control mechanism for a vending machine accepts nickels and dimes. It dispenses mer-
chandise when 20 cents is deposited; it does not give change if 25 cents is deposited.
Design the FSM that implements the required control, using as few states as possible. Find
a suitable state assignment and derive the next-state and output expressions.

*9.17 Design an asynchronous circuit that meets the following specifications. The circuit has two
inputs: a clock input c and a control input w. The output, z, replicates the clock pulses when
w = 1; otherwise, z = 0. The pulses appearing on z must be full pulses. Consequently, if
c = 1 when w changes from 0 to 1, then the circuit will not produce a partial pulse on z, but
will wait until the next clock pulse to generate z = 1. If c = 1 when w changes from 1 to 0,
then a full pulse must be generated; that is, z = 1 as long as c = 1. Figure P9.7 illustrates
the desired operation.

9.18 Repeat Problem 9.17 but with the following change in the specification. While w = 1, the
output z should have only one pulse; if several pulses occur on c, only the first one should
be reproduced on z.

9.19 Example 9.6 describes a simple arbiter for two devices contending for a shared resource.
Design a similar arbiter for three devices that use a shared resource. In case of simultaneous
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c

w

z

Figure P9.7 Waveforms for Problem 9.17.

requests, namely, if one device has been granted access to the shared resource and before it
releases its request the other two devices make requests of their own, let the priority of the
devices be Device 1 > Device 2 > Device 3.

9.20 In the discussion of Example 9.6, we mentioned a possible use of the mutual exclusion
element (ME) to prevent both request inputs to the FSM being equal to 1 at the same time.
Design an arbiter circuit for this case.

9.21 In Example 9.21 we designed a circuit that replicates every second pulse on input w as a
pulse on output z. Design a similar circuit that replicates every third pulse.

9.22 In Example 9.22 we merged states D and H to implement the FSM in Figure 9.82. An
alternative was to merge states B and H , according to the merger diagram in Figure 9.83.
Derive an implementation using this choice. Derive the resulting excitation table.
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c h a p t e r

10
Computer Aided Design Tools

Chapter Objectives

In this chapter you will learn how CAD tools can be used to design
and implement a logic circuit. The discussion deals with the synthesis
and physical design stages in a typical CAD system, including

• Netlist extraction

• Technology mapping

• Placement

• Routing

• Static timing analysis



December 31, 2012 09:14 vra80547_ch10 Sheet number 2 Page number 638 magenta black

638 C H A P T E R 10 • Computer Aided Design Tools

We introduced CAD tools in Section 2.9, and have discussed them briefly in other chapters. The word tool
in this context means a software program that allows a user to perform a particular task. In this chapter we
describe some of the tools in a typical CAD system in more detail, by showing how a small design example
is processed and optimized as it passes through different stages in the CAD flow.

10.1 Synthesis

Figure 10.1, which is reproduced from Figure 2.35, gives an overview of a CAD system. A
description of the desired circuit is prepared, usually in the form of a hardware description
language like Verilog HDL. The Verilog code is then processed by the synthesis stage
of the CAD system. Synthesis is the process of generating a logic circuit from the user’s
specification. Figure 10.2 shows three typical phases that are found in the synthesis process.

10.1.1 Netlist Generation

The netlist generation phase checks the syntax of the code, and reports any errors such as
undefined signals, missing parentheses, and wrong keywords. Once all errors are fixed a
circuit netlist is generated as determined by the semantics of the Verilog code. The netlist
uses logic expressions to describe the circuit, and includes components such as adders,
flip-flops, and finite state machines.

10.1.2 Gate Optimization

The next phase is gate optimization, which performs the kinds of logic optimizations de-
scribed in the preceding chapters. These optimizations manipulate the netlist to obtain an
equivalent, but better circuit according to the optimization goals. As we said previously,
the measurement of what makes one circuit better than another may be based on the cost
of the circuit, its speed of operation, or a combination of both.

As an example of results produced by the synthesis phases discussed so far, consider
the Verilog code for the addersubtractor module in Figure 10.3, which specifies a circuit
that can add or subtract n-bit numbers and accumulate the result in a register. From this
code the synthesis tool produces a netlist that corresponds to the circuit in Figure 10.4. The
input numbers, A = an−1, . . . , a0 and B = bn−1, . . . , b0, are placed into registers Areg and
Breg prior to being used in addition or subtraction operations. These registers synchronize
the operation of the circuit if A and B are externally provided asynchronous inputs. The
control input Sel determines the mode of operation. If Sel = 0, then A is selected as an input
to the adder; if Sel = 1, then the result register Zreg is selected. The control input AddSub
determines whether the operation is addition or subtraction. The flip-flops in Figure 10.4 for
registers A, B, Sel, AddSub, and Overflow are inferred from the code at the bottom of Figure
10.3a. Multiplexers are produced from the mux2to1 module, and an adder is generated
from the adderk module in Figure 10.3b. The exclusive-OR gates connected to register B,
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Design conception

Verilog HDLSchematic capture

DESIGN ENTRY

Design correct?

Functional simulation

No

Yes

Synthesis

Timing requirements met?

Physical design

Timing simulation

Chip configuration

Yes

No

Figure 10.1 A typical CAD system.
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Netlist Generation

Gate Optimization

Synthesis

Technology Mapping

Figure 10.2 The stages included in a synthesis tool.

and the XOR function for the Overflow output are generated from the code near the middle
of the addersubtractor module.

10.1.3 Technology Mapping

The final phase of synthesis is technology mapping. This phase determines how each
component in the netlist can be realized in the resources available in the target chip, such
as an FPGA. A logic block for a typical FPGA is depicted in Figure 10.5a. It contains a
four-input LUT and a flip-flop, and has two outputs. A multiplexer is provided to allow
loading of the flip-flop from the LUT or directly from input In3. Another multiplexer allows
the stored value in the flip-flop to be fed back to one input of the LUT. There are a number of
different ways, or modes, in which this logic block can be used. The most straightforward
choice is to implement a function of up to four inputs in the LUT, and store this function’s
value in the flip-flop; both the LUT and flip-flop can provide outputs from the logic block.
Parts b to e of the figure illustrate four other modes of using the block. In parts b and c only
the LUT or the flip-flop is used, but not both. In part d only the LUT provides an output of
the logic block, and one of the LUT’s inputs is connected to the flip-flop.

FPGAs often contain dedicated circuitry for implementation of fast adder circuits.
Figure 10.5e shows one way in which such circuitry can be realized. The LUT is used in
two halves, where one half produces the sum function of three LUT inputs and the other half
produces the carry function of these inputs. The sum function can provide an output of the
block or be stored in the flip-flop, and the carry function provides a special output signal.
This carry output connects directly to a neighboring logic block that uses it as a carry input.
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// Top-level module
module addersubtractor (A, B, Clock, Reset, Sel, AddSub, Z, Overflow);

parameter n = 16;
input [n–1:0] A, B;
input Clock, Reset, Sel, AddSub;
output [n–1:0] Z;
output Overflow;
reg SelR, AddSubR, Overflow;
reg [n–1:0] Areg, Breg, Zreg;
wire [n–1:0] G, H, M, Z;
wire carryout, over_flow;

// Define combinational logic circuit
assign H = Breg {n{AddSubR}};
mux2to1 multiplexer (Areg, Z, SelR, G);

defparam multiplexer.k = n;
adderk nbit_adder (AddSubR, G, H, M, carryout);

defparam nbit_adder.k = n;
assign over_flow = carryout G[n–1] H[n–1] M[n–1];
assign Z = Zreg;

// Define flip-flops and registers
always @(posedge Reset or posedge Clock)

if (Reset == 1)
begin

Areg <= 0; Breg <= 0; Zreg <= 0;
SelR <= 0; AddSubR <= 0; Overflow <= 0;

end
else
begin

Areg <= A; Breg <= B; Zreg <= M;
SelR <= Sel; AddSubR <= AddSub; Overflow <= over_flow;

end
endmodule
... continued in Part b

Figure 10.3 Verilog code for an accumulator circuit (Part a).

This block in turn generates the next stage of carry output, and so on. In this way, direct
connections between neighboring logic blocks are used to form fast carry chains.

Figure 10.6 shows a part of the results of technology mapping for the netlist generated
for Figure 10.4. Each logic block is highlighted with a blue square, and has a label on the
lower left corner that indicates which mode in Figure 10.5 is being used. The figure shows
bit h0 from Figure 10.4, which is produced by a logic block in mode d . This block uses
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// k-bit 2-to-1 multiplexer
module mux2to1 (V, W, Selm, F);

parameter k = 8;
input [k–1:0] V, W;
input Selm;
output [k–1:0] F;
reg [k–1:0] F;

always @(V or W or Selm)
if (Selm == 0) F = V;
else F = W;

endmodule

// k-bit adder
module adderk (carryin, X, Y, S, carryout);

parameter k = 8;
input [k–1:0] X, Y;
input carryin;
output [k–1:0] S;
output carryout;
reg [k–1:0] S;
reg carryout;

always @(X or Y or carryin)
{carryout, S} = X + Y + carryin;

endmodule

Figure 10.3 Verilog code for an accumulator circuit (Part b).

a flip-flop to store the value of primary input b0, and implements an XOR function in its
LUT, which is needed in subtraction operations to complement the number B. One input of
the XOR is provided by the logic block in mode c that stores in a flip-flop the value of the
AddSub input. This flip-flop also drives 15 other logic blocks that implement h1, . . . , h15,
but these blocks are not shown in the figure.

The AddSub flip-flop is connected to the carry-in of the first logic block in the adder.
This block uses mode e to produce sum and carry outputs. The sum is stored in a flip-flop
that produces z0, and the carry feeds the next stage of the adder. The figure shows the carry
function in the form

c1 = (c0 ⊕ h0) · h0 + (c0 ⊕ h0) · g0

This expression is functionally equivalent to the one used in Chapter 3, which has the form
c1 = c0h0 + c0g0 + h0g0, but it represents more closely how the carry chain is built in an
FPGA. The last logic block of the adder in Figure 10.6 does not use its flip-flop, because
the sum output has to be connected directly to the logic block that implements the Overflow
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m0mn 1–

a0an 1–

n-bit adder

n-bit register

F/F

n-bit register

F/F

areg0aregn 1–

n-bit register

z0zn 1–

g0gn 1–

n-bit 2-to-1 MUX

A =

G =

M =

Z =

Areg = breg0bregn 1–Breg =

SelR

carryin

b0bn 1–B =

h0hn 1–H =

Sel AddSub

hn 1–

carryout

F/F

Overflow

AddSubR

Zreg

zreg0zregn 1–Zreg =over_ flow

Figure 10.4 Circuit specified by the code in Figure 10.3.

signal. The sum output cannot be provided from both the combinational and registered
outputs concurrently, so a separate logic block in mode c is needed for the z15 signal.

Figure 10.6 shows only a few of the logic blocks that a technology mapping tool would
create for implementing our circuit. In general, there are many different ways in which
technology mapping can be done, and each method will lead to equivalent, but different
circuits. The reader can consult references [1–3] for a detailed discussion of technology
mapping approaches.
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In1

In2

In3

LUT

In4

(a) An FPGA logic element.

(b) Combinational mode (c) Synchronous mode

(d) Synchronous feedback mode (e) Arithmetic (synchronous) mode

D Q

Out1

Out2

Figure 10.5 Different modes of an FPGA logic block.

10.2 Physical Design

The next stages following synthesis in Figure 10.1 are functional simulation and physical
design. As we said in Section 2.9, functional simulation involves applying test patterns to
the synthesized netlist and checking to see if it produces the correct outputs. The simulation
assumes that there are no propagation delays in the circuit, because the intent is to evaluate
the basic functionality rather than timing. The netlist used by a functional simulator could
be either the version before technology mapping, or after.

Once the netlist produced by synthesis is functionally correct, the physical design
stage can be performed. This stage determines exactly how the synthesized netlist will be
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Placement

Routing

Physical Design

Static Timing Analysis

Figure 10.7 Phases in physical design.

implemented in the target chip. As illustrated in Figure 10.7, three phases are involved:
placement, routing, and static timing analysis.

10.2.1 Placement

The placement phase chooses a location on the target device for each logic block in the
technology-mapped netlist. An example of a placement result is given in Figure 10.8. It
shows an array of logic blocks in a small portion of an FPGA chip. The white squares
represent unoccupied blocks and the grey squares show the placement of blocks that imple-
ment the circuit of Figure 10.4. There is a total of 53 logic blocks in this circuit, including
the ones shown in Figure 10.6. Also shown in Figure 10.8 is the placement of some of the
primary inputs to the circuit, which are assigned to pins around the chip periphery.

To find a good placement solution a number of different locations have to be considered
for each logic block. For a large circuit, which may contain tens of thousands of blocks,
this is a hard problem to solve. To appreciate the complexity involved, consider how many
different placement solutions are possible for a given circuit. Assume that the circuit has
N logic blocks, and it is to be placed in an FPGA that also contains exactly N blocks. A
placement tool has N choices for the location of the first block that it selects. There remain
N − 1 choices for the second block, N − 2 choices for the third, and so on. Multiplying
these choices gives a total of (N )(N − 1) · · · (1) = N ! possible placement solutions. For
even moderate values, N ! is a huge number, which means that heuristic techniques must be
used to find a good solution while considering only a small fraction of the total number of
choices. A typical commercial placement tool operates by constructing an initial placement
configuration and then moving logic blocks to different locations in an iterative manner.
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Figure 10.8 Placement of the circuit in Figure 10.6.

For each iteration the quality of the solution is assessed by using metrics that estimate the
speed of operation of the implemented circuit, or its cost. The placement problem has been
studied extensively and is described in detail in references [4–7].

10.2.2 Routing

Once a location in the chip is chosen for each logic block in a circuit, the routing phase
connects the blocks together by using the wires that exist in the chip. An example of a
routing solution for the placement in Figure 10.8 is given in Figure 10.9. In addition to
showing the logic blocks, this figure also displays some of the wires in the chip. Wires
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Figure 10.9 Routing for the placement in Figure 10.8.

that are being used by the implemented circuit are shaded in grey. The figure depicts both
individual wires, which may be of various lengths, and bundles of wires, which are shown as
grey rectangles. The routing CAD tool tries to make the best use of various kinds of wires,
such as efficient connections for carry chains. Figure 10.9 shows an example of the carry
chain path from Figure 10.6. Black lines highlight the carry chain wires, which connect
through the stages of the adder, ending at the Overflow register. A detailed discussion of
routing tools can be found in references [3], [5–6], and [8].

10.2.3 Static Timing Analysis

After routing is complete the timing delays for the implemented circuit are known, because
the CAD system computes the timing delays of all blocks and wires in the chip. A static
timing analysis tool examines this delay information and produces a set of tables that
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quantify the circuit’s performance. An example of a timing analysis result is given in
Table 10.1, which lists four parameters: Fmax, tsu, tco, and th. The Fmax value specifies the
maximum operating frequency of the circuit’s clock. This value is determined by the path
with the longest propagation delay, often called the critical path, between any two flip-flops
in the circuit. As shown in Sections 5.15 and 7.8, the path delay must account for the delays
through logic blocks and wires, as well as the flip-flop clock-to-Q delay (tcQ) and setup (tsu)
parameters. In our example the critical path delay is 1/261.1 × 106 = 3.83 ns. The last
two columns in the Fmax row show that the path starts at the AddSub flip-flop and ends at
the Overflow flip-flop shown in Figure 10.6.

Most CAD systems allow users to specify the timing constraints for their circuit. In
Table 10.1 we assume the user has specified that the circuit clock has to operate correctly
up to a frequency of 200 MHz. The difference between this requirement and the result that
is obtained by the CAD tools is referred to as slack. In the table, the requirement is that
the propagation delays must not exceed 1/200 × 106 = 5 ns; the result is 3.83 ns, which
gives a slack value of 1.17 ns. This positive slack means that the constraints have been
met with some room to spare. If the obtained result had a negative slack, then the user’s
requirements would not have been met, and it would be necessary to modify the Verilog
code or settings used in the CAD tool to try to meet the constraints.

The other rows in Table 10.1 show the timing results for the design’s primary inputs
and outputs. The tsu result indicates the worst-case setup requirement is 2.356 ns, from
pin b0 to flip-flop breg0. This parameter means that the b0 signal must have a stable value
at least 2.356 ns before each active edge of the clock signal at its assigned pin. Since the
designer specified a worst-case setup constraint of 10 ns, the obtained result means that the
implemented circuit exceeds (meets) the requirement by a slack value of 7.644 ns. The
worst-case clock-to-output delay for our circuit is 6.772 ns, from flip-flop zreg0 to pin z0.
This means that the propagation delay from an active edge of the clock signal at its pin to a
corresponding change in the z0 signal at its pin is 6.772 ns. Since the designer’s constraint
specifies that a 10 ns tco is allowed, the available slack is 3.228 ns.

The last row in Table 10.1 gives a maximum hold time of 0.24 ns, for the path from
pin b1 to flip-flop breg1. Hence, the signal at pin b1 must maintain a stable value for at least
0.24 ns after each active edge at the clock pin. We assume that no constraint was set for
this parameter, thus no slack value is shown.

Table 10.1 A summary of static timing analysis results.

Parameter Actual Required Slack From To

Fmax 261.1 MHz 200 MHz 1.17 ns AddSub Overflow
tsu 2.356 ns 10.0 ns 7.644 ns b0 breg0

tco 6.772 ns 10.0 ns 3.228 ns zreg0 z0

th 0.240 ns N/A N/A b1 breg1
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Table 10.1 lists only the worst-case paths for Fmax, tsu, tco, and th. The implemented
circuit will have a number of other paths that have smaller delays and greater slack values.
A static timing analysis tool typically provides additional tables for each parameter, which
list more paths.

The final stage of the CAD flow in Figure 10.1 is timing simulation. In this stage both
the circuit’s functional and timing behavior can be simulated. When performing timing
simulation the CAD tools include estimates of timing delays for all logic elements, routing
wires, and other resources that exist in the target device.

10.3 Concluding Remarks

In this chapter we explained briefly a typical design flow made possible by the existence of
powerful CAD tools. We considered only the most important subset of the tools available
in commercial CAD systems. To learn more the reader can consult references [1–8], or
visit the web sites of CAD tool suppliers. Table 10.2 lists some of the major vendors of
CAD tools, and shows their web addresses and the names of some popular products.

Table 10.2 Major CAD tool products.

Vendor Name WWW Locator Product Names

Altera altera.com Quartus II
Mentor Graphics mentorgraphics.com ModelSim, Precision
Synopsys synopsys.com Design Compiler, VCS
Xilinx xilinx.com ISE, Vivado
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11
Testing of Logic Circuits

Chapter Objectives

In this chapter you will be introduced to:

• Various techniques for testing of digital circuits

• Representation of typical faults in a circuit

• Derivation of tests needed to test the behavior of a circuit

• Design of circuits for easy testability
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In the previous chapters we have discussed the design of logic circuits. Following a sound design procedure,
we expect that the designed circuit will perform as required. But how does one verify that the final circuit
indeed achieves the design objectives? It is essential to ascertain that the circuit exhibits the required functional
behavior and that it meets any timing constraints that are imposed on the design. We have discussed the timing
issues in several places in the book. In this chapter we will discuss some testing techniques that can be used
to verify the functionality of a given circuit.

There are several reasons for testing a logic circuit. When the circuit is first developed, it is necessary
to verify that the designed circuit meets the required functional and timing specifications. When multiple
copies of a correctly designed circuit are being manufactured, it is essential to test each copy to ensure that
the manufacturing process has not introduced any flaws. It is also necessary to test circuits used in equipment
that is installed in the field when it is suspected that there may be something wrong.

The basis of all testing techniques is to apply predefined sets of inputs, called tests, to a circuit and
compare the outputs observed with the patterns that a correctly functioning circuit is supposed to produce.
The challenge is to derive a relatively small number of tests that provide an adequate indication that the circuit
is correct. The exhaustive approach of applying all possible tests is impractical for large circuits because
there are too many possible tests.

11.1 Fault Model

A circuit functions incorrectly when there is something wrong with it, such as a transistor
fault or an interconnection wiring fault. Many things can go wrong, leading to a variety of
faults. A transistor switch can break so that it is permanently either closed or open. A wire
in the circuit can be shorted to VDD or to ground, or it can be simply broken. There can be an
unwanted connection between two wires. A logic gate may generate a wrong output signal
because of a fault in the circuitry that implements the gate. Dealing with many different
types of faults is cumbersome. Fortunately, it is possible to restrict the testing process to
some simple faults, and obtain generally satisfactory results.

11.1.1 Stuck-at Model

Most circuits discussed in this text use logic gates as the basic building blocks. A good
model for representing faults in such circuits is to assume that all faults manifest themselves
as some wires (inputs or outputs of gates) being permanently stuck at logic value 0 or 1.
We indicate that a wire, w, has an undesirable signal that always corresponds to the logic
value 0 by saying that w is stuck-at-0, which is denoted as w/0. If w has an undesirable
signal that is always equal to logic 1, then w is stuck-at-1, which is denoted as w/1.

An obvious example of a stuck-at fault is when an input to a gate is incorrectly connected
to a power supply, either VDD or ground. But the stuck-at model is also useful for dealing
with faults of other types, which often cause the same problems as if a wire were stuck at
a particular logic value. The exact impact of a fault in the circuitry that implements a logic
gate depends on the particular technology used. We will restrict our attention to the stuck-at
faults and will examine the testing process assuming that these are the only faults that can
occur.
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11.1.2 Single and Multiple Faults

A circuit can be faulty because it has either a single fault or possibly many faults. Dealing
with multiple faults is difficult because each fault can occur in many different ways. A
pragmatic approach is to consider single faults only. Practice has shown that a set of tests
that can detect all single faults in a given circuit can also detect the vast majority of multiple
faults.

A fault is detected if the output value produced by the faulty circuit is different from
the value produced by the good circuit when an appropriate test is applied as input. Each
test is supposed to be able to detect the occurrence of one or more faults. A complete set of
tests used for a given circuit is referred to as the test set.

11.1.3 CMOS Circuits

CMOS logic circuits present some special problems in terms of faulty behavior. The
transistors may fail in permanently open or shorted (closed) state. Many such failures
manifest themselves as stuck-at faults. But some produce entirely different behavior. For
example, transistors that fail in the shorted state may cause a continuous flow of current from
VDD to ground, which can create an intermediate output voltage that may not be determined
as either logic 0 or 1. Transistors failing in the open state may lead to conditions where the
output capacitor retains its charge level because the switch that is supposed to discharge it
is broken. The effect is that a combinational CMOS circuit starts behaving as a sequential
circuit.

Specific techniques for testing of CMOS circuits are beyond the scope of this book. An
introductory discussion of this topic can be found in references [1–3]. Testing of CMOS
circuits has been the subject of considerable research [4–6]. We will assume that a test
set developed using the stuck-at model will provide an adequate coverage of faults in all
circuits.

11.2 Complexity of a Test Set

There is large difference in testing combinational and sequential circuits. Combinational
circuits can be tested adequately regardless of their design. Sequential circuits present a
much greater challenge because the behavior of a circuit under test is influenced not only
by the tests that are applied to the external inputs but also by the states that the circuit is
in when the tests are applied. It is very difficult to test a sequential circuit designed by a
designer who does not take its testability into account. However, it is possible to design
such circuits to make them more easily testable, as we will discuss in Section 11.6. We will
start by considering the testing of combinational circuits.

An obvious way to test a combinational circuit is to apply a test set that comprises all
possible input valuations. Then it is only necessary to check if the output values produced
by the circuit are the same as specified in a truth table that defines the circuit. This approach
works well for small circuits, where the test set is not large, but it becomes totally impractical
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for large circuits with many input variables. Fortunately, it is not necessary to apply all 2n

valuations as tests for an n-input circuit. A complete test set, capable of detecting all single
faults, usually comprises a much smaller number of tests.

Figure 11.1a gives a simple three-input circuit for which we want to determine the
smallest test set. An exhaustive test set would include all eight input valuations. This
circuit involves five wires, labeled a, b, c, d , and f in the figure. Using our fault model,
each wire can be stuck either at 0 or 1.

Figure 11.1b enumerates the utility of the eight input valuations as possible tests for
the circuit. The valuation w1w2w3 = 000 can detect the occurrence of a stuck-at-1 fault on
wires a, d , and f . In a good circuit this test results in the output f = 0. However, if any
of the faults a/1, d/1, or f /1 occurs, then the circuit will produce f = 1 when the input
valuation 000 is applied. The test 001 causes f = 0 in the good circuit, and it results in

f

a

a/0 a/1 b/0 b/1 c/0 c/1 d/0 d/1 f /0 f /1

b

c
d

w1

w1w2 w3

w2

w3

(a) Circuit

Test Fault detected

000

001

010

011

100

101

110

111

(b) Faults detected by the various input valuations

Figure 11.1 Fault detection in a simple circuit.
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f = 1 if any of the faults a/1, b/1, d/1, or f /1 occurs. This test can detect the occurrence
of four different faults. We say that it covers these faults. The last test, 111, can detect only
one fault, f /0.

A minimal test set that covers all faults in the circuit can be derived from the table by
inspection. Some faults are covered by only one test, which means that these tests must be
included in the test set. The fault b/1 is covered only by 001. The fault c/1 is covered only
by 010. The faults b/0, c/0, and d/0 are covered only by 011. Therefore, these three tests
are essential. For the remaining faults there is a choice of tests that can be used. Selecting
the tests 001, 010, and 011 covers all faults except a/0. This fault can be covered by three
different tests. Choosing 100 arbitrarily, a complete test set for the circuit is

Test set = {001, 010, 011, 100}
The conclusion is that all possible stuck-at faults in this circuit can be detected using four
tests, rather than the eight tests that would be used if we simply tried to test the circuit using
its complete truth table.

The size of the complete test set for a given n-input circuit is generally much smaller
than 2n. But this size may still be unacceptably large in practical terms. Moreover, deriving
the minimal test set is likely to be a daunting task for even moderately sized circuits.
Certainly, the simple approach of Figure 11.1 is not practical. In the next section we will
explore a more interesting approach.

11.3 Path Sensitizing

Deriving a test set by considering the individual faults on all wires in a circuit, as done in
Section 11.2, is not attractive from the practical point of view. There are too many wires
and too many faults to consider. A better alternative is to deal with several wires that form
a path as an entity that can be tested for several faults using a single test. It is possible to
activate a path so that the changes in the signal that propagates along the path have a direct
impact on the output signal.

Figure 11.2 illustrates a path from input w1 to output f , through three gates, which
consists of wires a, b, c, and f . The path is activated by ensuring that other paths in the
circuit do not determine the value of the output f . Thus the input w2 must be set to 1 so
that the signal at b depends only on the value at a. The input w3 must be 0 so that it does

f

a
b

c

w1

w2 1=

w3 0=

w4 1=

Figure 11.2 A sensitized path.
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not affect the NOR gate, and w4 must be 1 to not affect the AND gate. Then if w1 = 0 the
output will be f = 1, whereas w1 = 1 will cause f = 0. Instead of saying that the path from
w1 to f is activated, a more specific term is used in technical literature, which says that the
path is sensitized.

To sensitize a path through an input of an AND or NAND gate, all other inputs must
be set to 1. To sensitize a path through an input of an OR or NOR gate, all other inputs
must be 0.

Consider now the effect of faults along a sensitized path. The fault a/0 in Figure
11.2 will cause f = 1 even if w1 = 1. The same effect occurs if the faults b/0 or c/1 are
present. Thus the test w1w2w3w4 = 1101 detects the occurrence of faults a/0, b/0, and c/1.
Similarly, if w1 = 0, the output should be f = 1. But if any of the faults a/1, b/1, or c/0
is present, the output will be f = 0. Hence these three faults are detectable using the test
0101. The presence of any stuck-at fault along the sensitized path is detectable by applying
only two tests.

The number of paths in a given circuit is likely to be much smaller than the number
of individual wires. This suggests that it may be attractive to derive a test set based on the
sensitized paths. This possibility is illustrated in the next example.

Example 11.1 PATH-SENSITIZED TESTS Consider the circuit in Figure 11.3. This circuit has five paths.
The path w1 − c − f is sensitized by setting w2 = 1 and w4 = 0. It doesn’t matter whether
w3 is 0 or 1, because w2 = 1 causes the signal on wire b to be equal to 0, which forces
d = 0 regardless of the value of w3. Thus the path is sensitized by setting w2w3w4 = 1x0,
where the symbol x means that the value of w3 does not matter. Now the tests w1w2w3w4 =
01x0 and 11x0 detect all faults along this path. The second path, w2 − c − f , is tested using
1000 and 1100. The path w2 − b − d − f is tested using 0010 and 0110. The tests for the
path w3 − d − f are x000 and x010. The fifth path, w4 − f , is tested with 0x00 and 0x01.
Instead of using all ten of these tests, we can observe that the test 0110 serves also as the
test 01x0, the test 1100 serves also as 11x0, the test 1000 serves also as x000, and the test
0010 serves also as x010. Therefore, the complete test set is

Test set = {0110, 1100, 1000, 0010, 0x00, 0x01}

f

b

c

d

w1

w2

w3

w4

Figure 11.3 Circuit for Example 11.1.
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While this approach is simpler, it is still impractical for large circuits. But the concept of
path sensitizing is very useful, as we will see in the discussion that follows.

11.3.1 Detection of a Specific Fault

Suppose that we suspect that the circuit in Figure 11.3 has a fault where the wire b is stuck-
at-1. A test that determines the presence of this fault can be obtained by sensitizing a path
that propagates the effect of the fault to the output, f , where it can be observed. The path
goes from b to d to f . It is necessary to set w3 = 1, w4 = 0, and c = 0. The latter can be
accomplished by setting w1 = 0. If b is stuck-at-1, then it is necessary to apply an input
that would normally produce the value of 0 on the wire b, so that the output values in good
and faulty circuits would be different. Hence w2 must be set to 1. Therefore, the test that
detects the b/1 fault is w1w2w3w4 = 0110.

In general, the fault on a given wire can be detected by propagating the effect of the
fault to the output, sensitizing an appropriate path. This involves assigning values to other
inputs of the gates along the path. These values must be obtainable by assigning specific
values to the primary inputs, which may not always be possible. Example 11.2 illustrates
the process.

Example 11.2FAULT PROPAGATION As the effect of a fault propagates through the gates along a
sensitized path, the polarity of the signal will change when passing through an inverting
gate. Let the symbol D denote a stuck-at-0 fault in general. The effect of the stuck-at-0
fault will be unaltered when passed through an AND or OR gate. If D is on an input of an
AND (OR) gate and the other inputs are set to 1 (0), then the output of the gate will behave
as having D on it. But if D is on an input of a NOT, NAND, or NOR gate, then the output
will appear to be stuck-at-1, which is denoted as D.

Figure 11.4 shows how the effect of a fault can be propagated using the D and D
symbols. Suppose first that there is a stuck-at-0 fault on wire b; that is, b/0. We want to
propagate the effect of this fault along the path b − h − f . This can be done as indicated
in Figure 11.4b. Setting g = 1 propagates the fault to the wire h. Then h appears to be
stuck-at-1, denoted by D. Next the effect is propagated to f by setting k = 1. Since the last
NAND also inverts the signal, the output becomes equal to D, which is equivalent to f /0.
Thus in a good circuit the output should be 1, but in a faulty circuit it will be 0. Next we must
ascertain that it is possible to have g = 1 and k = 1 by assigning the appropriate values to
the primary input variables. This is called the consistency check. By setting c = 0, both g
and k will be forced to 1, which can be achieved with w3 = w4 = 1. Finally, to cause the
propagation of the fault D on wire b, it is necessary to apply a signal that causes b to have
the value 1, which means that either w1 or w2 has to be 0. Then the test w1w2w3w4 = 0011
detects the fault b/0.

Suppose next that the wire g is stuck-at-1, denoted by D. We can try to propagate the
effect of this fault through the path g − h − f by setting b = 1 and k = 1. To make b = 1,
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Figure 11.4 Detection of faults.

we set w1 = w2 = 0. To make k = 1, we have to make c = 0. But it is also necessary to
cause the propagation of the D fault on g by means of a signal that makes g = 0 in the good
circuit. This can be done only if b = c = 1. The problem is that at the same time we need
c = 0, to make k = 1. Therefore, the consistency check fails, and the fault g/1 cannot be
propagated in this way.

Another possibility is to propagate the effect of the fault along two paths simultaneously,
as shown in Figure 11.4c. In this case the fault is propagated along the paths g − h − f and



December 31, 2012 09:14 vra80547_ch11 Sheet number 9 Page number 661 magenta black

11.4 Circuits with Tree Structure 661

g − k − f . This requires setting b = 1 and c = 1, which also happens to be the condition
needed to cause the propagation as explained above. The test 0000 achieves the desired
objective of detecting g/1. Observe that if D (or D) appears on both inputs of a NAND
gate, the output value will be D (or D).

The idea of propagating the effect of faults using path sensitizing has been exploited in
a number of methods for derivation of test sets for fault detection. The scheme illustrated
in Figure 11.4 indicates the essence of the D-algorithm, which was one of the first practical
schemes developed for fault detection purposes [7]. Other techniques have grown from this
basic approach [8].

11.4 Circuits with Tree Structure

Circuits with a treelike structure, where each gate has a fan-out of 1, are particularly easy
to test. The most common forms of such circuits are the sum-of-products or product-of-
sums. Since there is a unique path from each primary input to the output of the circuit, it is
sufficient to derive the tests for faults on the primary inputs. We will illustrate this concept
by means of the sum-of-products circuit in Figure 11.5.

If any input of an AND gate is stuck-at-0, this condition can be detected by setting all
inputs of the gate to 1 and ensuring that the other AND gates produce 0. This makes f = 1
in the good circuit, and f = 0 in the faulty circuit. Three such tests are needed because
there are three AND gates.

Testing for stuck-at-1 faults is slightly more involved. An input of an AND gate is
tested for the stuck-at-1 fault by driving it with the logic value 0, while the other inputs of
the gate have the logic value 1. Thus a good gate produces the output of 0, and a faulty

f
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w3

w4

w2

w3

w4

w1

w2

w3

Figure 11.5 Circuit with a tree structure.
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Product term Test
No. w1w3w4 w2w3w4 w1w2w3 w1w2w3w4

1 1 1 1 0 1 0 0 0 0 1 0 0 0
Stuck-at-0 2 0 1 0 1 1 1 1 1 0 0 1 0 1

tests
3 0 0 0 1 0 1 1 1 1 0 1 1 1

4 0 1 1 1 1 0 1 1 0 0 1 0 0

5 1 0 1 1 0 0 0 1 1 1 1 1 0
Stuck-at-1 6 1 1 0 0 1 1 0 0 0 1 0 0 1

tests
7 1 0 0 1 0 1 0 1 1 1 1 1 1

8 0 0 0 0 0 1 1 0 1 0 0 1 1

Figure 11.6 Derivation of tests for the circuit in Figure 11.5.

gate generates 1. At the same time, the other AND gates must have the output of 0, which
is accomplished by making at least one input of these gates equal to 0.

Figure 11.6 shows the derivation of the necessary tests. The first three tests are for
the stuck-at-0 faults. Test 4 detects a stuck-at-1 fault on either the first input of the top
AND gate or the third inputs of the other two gates. Observe that in each case the tested
input is driven by logic 0, while the other inputs are equal to 1. This yields the test vector
w1w2w3w4 = 0100. Clearly, it is useful to test inputs on as many gates as possible using a
single test vector. Test 5 detects a fault on either the second input of the top gate or the first
input of the bottom gate; it does not test any inputs of the middle gate. The required test
pattern is 1110. Three more tests are needed to detect stuck-at-1 faults on the remaining
inputs of the AND gates. Therefore, the complete test set is

Test set = {1000, 0101, 0111, 0100, 1110, 1001, 1111, 0011}

11.5 Random Tests

So far we have considered the task of deriving a deterministic test set for a given circuit,
primarily relying on the path-sensitizing concept. In general, it is difficult to generate such
test sets when circuits become larger. A useful alternative is to choose the tests at random,
which we will explore in this section.

Figure 11.7 gives all functions of two variables. For an n-variable function, there are
22n

possible functions; hence there are 222 = 16 two-variable functions. Consider the XOR
function, implemented as shown in Figure 11.8. Let us consider the possible stuck-at-0 and
stuck-at-1 faults on wires b, c, d , h, and k in this circuit. Each fault transforms the circuit
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w1w2 f0 f1 f2 f3 f4 f5 f6 f7 f8 f9 f10 f11 f12 f13 f14 f15

00 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

01 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

10 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

11 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Figure 11.7 All two-variable functions.

w1

w2

d
b

c

h

k

f

Figure 11.8 The XOR circuit.

into a faulty circuit that implements a function other than XOR, as indicated in Figure 11.9.
To test the circuit, we can apply one or more input valuations to distinguish the good circuit
from the possible faulty circuits listed in Figure 11.9. Choose arbitrarily w1w2 = 01 as the
first test. This test will distinguish the good circuit, which must generate f = 1, from the
faulty circuits that realize f0, f2, f3, and f10, because each of these would generate f = 0.
Next, arbitrarily choose the test w1w2 = 11. This test distinguishes the good circuit from the
faulty circuits that realize f5, f7, and f15, in addition to f3, which we have already tested for
using w1w2 = 01. Let the third test be w1w2 = 10; it will distinguish the good circuit from
f4 and f12. These three tests, chosen in a seemingly random way, detect all faulty circuits
that involve the faults in Figure 11.9. Moreover, note that the first two tests distinguish
seven of the nine possible faulty circuits.

This example suggests that it may be possible to derive a suitable test set by selecting
the tests randomly. How effective can random testing be? Looking at Figure 11.7, we
see that any of the four possible tests distinguishes the correct function from eight faulty
functions, because they produce different output values for this input valuation. These
eight faulty functions detectable by a single test are one-half of the total number of possible
functions (222−1 for the two-variable case). The test cannot distinguish between the correct
function and the seven faulty functions that produce the same output value. The application
of the second test distinguishes four of the remaining seven functions because they produce
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Fault Circuit implements

b/ 0 f5 = w2

b/ 1 f10 = w2

c/ 0 f3 = w1

c/ 1 f12 = w1

d/ 0 f0 = 0

d/ 1 f7 = w1 + w2

h/ 0 f15 = 1

h/ 1 f4 = w1w2

k/ 0 f15 = 1

k/ 1 f2 = w1w2

Figure 11.9 The effect of various faults.

an output value that is different from the correct function. Thus each application of a
new test essentially cuts in half the number of faulty functions that have not been detected.
Consequently, the probability that the first few tests will detect a large portion of all possible
faults is high. More specifically, the probability that each faulty circuit can be detected by
the first test is

P1 = 1

222 − 1
· 222−1 = 8

15
= 0.53

This is the ratio of the number of faulty circuits that produce an output value different from
the good circuit, to the total number of faulty circuits.

This reasoning is readily extended to n-variable functions. In this case the first test
detects 22n−1 out of a total of 22n − 1 possible faulty functions. Therefore, if m tests are
applied, the probability that a faulty circuit will be detected is

Pm = 1

22n − 1
·

m∑

i=1

22n−i

This expression is depicted in graphical form in Figure 11.10. The conclusion is that random
testing is very effective and that after a few tens of tests the existence of a fault is likely to
be detected even in very large circuits.

Random testing works particularly well for circuits that do not have high fan-in. If
fan-in is high, then it may be necessary to resort to other testing schemes. For example,
suppose that an AND gate has a large number of inputs. Then there is a problem with
detecting stuck-at-1 faults on its inputs, which may not be covered by random tests. But it
is possible to test for these faults using the approach described in Section 11.4.
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Figure 11.10 Effectiveness of random testing.

The simplicity of random testing is a very attractive feature. For this reason, coupled
with good effectiveness of tests, this technique is often used in practice.

11.6 Testing of Sequential Circuits

As seen in the previous sections, combinational circuits can be tested effectively, using
either deterministic or random test sets. It is much more difficult to test sequential circuits.
The presence of memory elements allows a sequential circuit to be in various states, and the
response of the circuit to externally applied test inputs depends on the state of the circuit.

A combinational circuit can be tested by comparing its behavior with the functionality
specified in the truth table. An equivalent attempt would be to test a sequential circuit
by comparing its behavior with the functionality specified in the state table. This entails
checking that the circuit performs correctly all transitions between states and that it produces
a correct output. This approach may seem easy, but in reality it is extremely difficult. A
big problem is that it is difficult to ascertain that the circuit is in a specific state if the state
variables are not observable on the external pins of the circuit, which is usually the case.
Yet for each transition to be tested, it is necessary to verify with complete certainty that the
correct destination state was reached. Such an approach may work for very small sequential
circuits, but it is not feasible for practical-size circuits. A much better approach is to design
the sequential circuits so that they are easily testable.

11.6.1 Design for Testability

A synchronous sequential circuit comprises the combinational circuit that implements the
output and next-state functions, as well as the flip-flops that hold the state information
during a clock cycle. A general model for the sequential circuits is shown in Figure 6.85.
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The inputs to the combinational network are the primary inputs, w1 through wn, and the
present state variables, y1 through yk . The outputs of the network are the primary outputs,
z1 through zm, and the next-state variables, Y1 through Yk . The combinational network
could be tested using the techniques presented in the previous sections if it were possible
to apply tests on all of its inputs and observe the results on all of its outputs. Applying the
test vectors to the primary inputs poses no difficulty. Also, it is easy to observe the values
on the primary outputs. The question is how to apply the test vectors on the present-state
inputs and how to observe the values on the next-state outputs.

Apossible approach is to include a two-way multiplexer in the path of each present-state
variable so that the input to the combinational network can be either the value of the state
variable (obtained from the output of the corresponding flip-flop) or the value that is a part
of the test vector. A significant drawback of this approach is that the second input of each
multiplexer must be directly accessible through external pins, which requires many pins if
there are many state variables. An attractive alternative is to provide a connection that allows
shifting the test vector into the circuit one bit at a time, thus trading off pin requirements
for the time it takes to perform a test. Several such schemes have been proposed, one of
which is described below.

Scan-Path Technique
A popular technique, called the scan path, uses multiplexers on flip-flop inputs to allow

the flip-flops to be used either independently during normal operation of the sequential
circuit, or as a part of a shift register for testing purposes. Figure 11.11 presents the general
scan-path structure for a circuit with three flip-flops. A 2-to-1 multiplexer connects the D
input of each flip-flop either to the corresponding next-state variable or to the serial path
that connects all flip-flops into a shift register. The control signal Normal/Scan selects the
active input of the multiplexer. During the normal operation the flip-flop inputs are driven
by the next-state variables, Y1, Y2, and Y3.

For testing purposes the shift-register connection is used to scan in the portion of each
test vector that involves the present-state variables, y1, y2, and y3. This connection has Qi

connected to Di+1. The input to the first flip-flop is the externally accessible pin Scan-in.
The output comes from the last flip-flop, which is provided on the Scan-out pin.

The scan-path technique involves the following steps:

1. The operation of the flip-flops is tested by scanning into them a pattern of 0s and 1s,
for example, 01011001, in consecutive clock cycles, and observing whether the same
pattern is scanned out.

2. The combinational circuit is tested by applying test vectors on w1w2 · · · wny1y2y3 and
observing the values generated on z1z2 · · · zmY1Y2Y3. This is done as follows:

• The y1y2y3 portion of the test vector is scanned into the flip-flops during three
clock cycles, using Normal/Scan = 1.

• The w1w2 · · · wn portion of the test vector is applied as usual and the normal
operation of the sequential circuit is performed for one clock cycle, by setting
Normal/Scan = 0. The outputs z1z2 · · · zm are observed. The generated values of
Y1Y2Y3 are loaded into the flip-flops at this time.

• The select input is changed to Normal/Scan = 1, and the contents of the
flip-flops are scanned out during the next three clock cycles, which makes the
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Figure 11.11 Scan-path arrangement.

Y1Y2Y3 portion of the test result observable externally. At the same time, the next
test vector can be scanned in to reduce the total time needed to test the circuit.

The next example shows a specific circuit that is designed for scan-path testing.

Example 11.3Figure 6.75 shows a circuit that recognizes a specific input sequence, which was discussed
in Section 6.9. The circuit can be made easily testable by modifying it for scan path as
shown in Figure 11.12. The combinational part, consisting of four AND and two OR gates,
is the same in both figures.

The flip-flops can be tested by scanning through them a sequence of 0s and 1s as
explained above. The combinational circuit can be tested by applying test vectors on w,
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Figure 11.12 Circuit for Example 11.3.

y1, and y2. Let us use the random-testing approach, choosing arbitrarily four test vectors
wy1y2 = 001, 110, 100, and 111. To apply the first test vector, the pattern y1y2 = 01 is
scanned into the flip-flops during two clock cycles. Then for one clock cycle, the circuit
is made to operate in the normal mode with w = 0. This essentially applies the vector
wy1y2 = 001 to the AND-OR circuit. The result of this test should be z = 0, Y1 = 0, and
Y2 = 0. The value of z can be observed directly. The values of Y1 and Y2 are loaded into the
respective flip-flops, and they are scanned out during the next two clock cycles. As these
values are being scanned out, the next test pattern y1y2 = 10 can be scanned in. Thus it
takes five cycles to perform one test, but the last two cycles are overlapped with the second
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test. The third and fourth tests are performed in the same way. The total time needed to
perform all four tests is 14 clock cycles.

The preceding approach is based on testing a sequential circuit by testing its combina-
tional part using the techniques developed in the previous sections. The scan-path facility
makes it also possible to test the sequential circuit by making it go through all transitions
specified in the state table. The circuit can be placed into a given state simply by scanning
into the flip-flops the valuation of the state variables that denotes this state. The result of
the transition can be checked by observing the primary outputs and by scanning out the
valuation that presents the destination state. We leave it to the reader to develop the details
of this approach (see Problem 11.16).

One limitation of the scan-path technique is that it does not work well if the asyn-
chronous preset and reset features of the flip-flops are used during normal operation. We
have already suggested that it is better to use synchronous preset and reset. If the designer
wishes to use the asynchronous preset and reset capability, then a testable circuit can be
designed using techniques such as the level-sensitive scan design [1, 9]. The reader can
consult the references for a description of this technique.

11.7 Built-in Self-Test

Until now we have assumed that testing of logic circuits is done by externally applying the
test inputs and comparing the results with the expected behavior of the circuit. This requires
connecting external equipment to the circuit under test. An interesting question is whether
it is possible to incorporate the testing capability within the circuit itself so that no external
equipment is needed. Such built-in capability would allow the circuit to be self-testable.
This section presents a scheme that provides the built-in self-test (BIST) capability.

Figure 11.13 shows a possible BIST arrangement in which a test vector generator
produces the test vectors that must be applied to the circuit under test. In Section 11.5
we explained that randomly chosen test vectors give good results, with the fault coverage
depending on the number of tests performed. For each test vector applied to the circuit, it is
necessary to determine the required response of the circuit. The response of a good circuit
may be determined using the simulator tool of a CAD system. The expected responses to
the applied tests must be stored on the chip so that a comparison can be made when the
circuit is being tested.

x0

Test
vector

generator

Circuit
under
test

Test
result

compressor

Signature

xn 1–

p0

pm 1–

Figure 11.13 The testing arrangement.
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A practical approach for generating the test vectors on-chip is to use pseudorandom
tests, which have the same characteristics as random tests but are produced deterministically
and can be repeated at will. The generator for pseudorandom tests is easily constructed
using a feedback shift-register circuit. A small example of a possible generator is given in
Figure 11.14. A four-bit shift register, with the signals from the first and fourth stages fed
back through an XOR gate, generates 15 different patterns during successive clock cycles.
If the shift register is set at the beginning to x3x2x1x0 = 1000, then the generated patterns
are as shown in part (b) of the figure. Observe that the pattern 0000 cannot be used, because
the circuit would be locked in this pattern indefinitely.

The circuit in Figure 11.14 is representative of a class of circuits known as linear
feedback shift registers (LFSRs). Using feedback from the various stages of an n-bit shift
register, connected to the first stage by means of XOR gates, it is possible to generate a
sequence of 2n − 1 patterns that have the characteristics of randomly generated numbers.
Such circuits are used extensively in error-correcting codes. The theory of operation of these
circuits is presented in a number of books [1–3, 10]. A table of the feedback connections for

x3

f
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x2

x1
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x2 x1 x0
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(a) Circuit

1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1

0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0

0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0

0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0

1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 1

(b) Generated sequence

Figure 11.14 Pseudorandom binary sequence generator (PRBSG).
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various values of n, which generate a maximum-length pseudorandom sequence, is given
in Peterson and Weldon [11].

The pseudorandom binary sequence generator (PRBSG) gives a simple method of
generating tests. The required response of the circuit under test can be determined by using
the simulator tool of the CAD system. The remaining question is how to check whether
the circuit indeed produces the required response. It is not attractive to have to store a
large number of responses to the tests on a chip that also includes the main circuit. A
practical solution is to compress the results of the tests into a single pattern. This can
be done using an LFSR circuit. Instead of just providing the feedback signals as the
input, a compressor circuit includes the output signals produced by the circuit under test.
Figure 11.15 shows a single-input compressor circuit (SIC), which uses the same feedback
connections as the PRBSG of Figure 11.14. The input p is the output of a circuit under test.
After applying a number of test vectors, the resulting values of p drive the SIC and, coupled
with the LFSR functionality, produce a four-bit pattern. The pattern generated by the SIC
is called a signature of the tested circuit for the given sequence of tests. The signature
represents a single pattern that may be interpreted as a result of all the applied tests. It can
be compared against a predetermined pattern to see if the tested circuit is working properly.
Storing a single n-bit pattern for comparison purposes presents only a small overhead. The
randomizing nature of the compressor circuits based on LFSRs provides a good coverage
of patterns that may result from a faulty circuit [12].

If the circuit under test has more than one output, then an LSFR with multiple inputs
can be used. Figure 11.16 illustrates how four inputs, p0 through p3, can be added to the
basic circuit of Figure 11.14. Again the four-bit signature provides a good mechanism for
distinguishing among different sequences of four-bit patterns that may appear on the inputs
of this multiple-input compressor circuit (MIC).

A complete BIST scheme for a sequential circuit may be implemented as indicated in
Figure 11.17. The scan-path approach is used to provide a testable circuit. The test pat-
terns that would normally be applied on the primary inputs W = w1w2 · · · wn are generated
internally as the patterns on X = x1x2 · · · xn. Multiplexers are needed to allow switching
from W to X , as inputs to the combinational circuit. A pseudorandom binary sequence
generator, PRBSG-X , generates the test patterns for X . The portion of the tests applied

p
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D Q
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D Q

Q

D Q

Q

Figure 11.15 Single-input compressor circuit (SIC).
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Figure 11.17 BIST in a sequential circuit.
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via the next-state signals, y, is generated by the second PRBS generator, PRBSG-y. These
patterns are scanned into the flip-flops as explained in Section 11.6.

The test outputs are compressed using the two compressor circuits. The patterns on
the primary outputs, Z = z1z2 · · · zm, are compressed using the MIC circuit, and those on
the next-state wires Y = Y1Y2 · · · Yk , by the SIC circuit. These circuits produce the Z-
signature and Y -signature, respectively. The testing procedure is the same as given in
Example 11.3 except that the comparison with the test result that a good circuit is supposed
to give is done only once; at the end of the testing process the two signatures are com-
pared with the stored patterns. Figure 11.17 does not show the circuitry needed to store
these patterns and perform the comparison. Instead of storing the signature patterns of the
required results as a part of the designed circuit, it is possible to shift out the contents of
MIC and SIC shift registers onto two output pins and to perform the necessary compari-
son with the expected signatures externally. Note that using signature testing in this way
reduces the testing time significantly, compared to the time it would take to test the circuit
by scanning out the results of individual tests and comparing them with predetermined
patterns.

The effectiveness of the BIST approach depends on the length of the LFSR generator
and compressor circuits. Longer shift registers give better results [13]. One reason for
failing to detect that the circuit under test may be faulty is that the pseudorandomly generated
tests do not have perfect coverage of all possible faults. Another reason is that a signature
generated by compressing the outputs of a faulty circuit may coincidentally end up being
the same as the signature of the good circuit. This can occur because the compression
process results in a loss of some information, such that two distinct output patterns may be
compressed into the same signature. This is known as the aliasing problem.

11.7.1 Built-in Logic Block Observer

The essence of BIST is to have internal capability for generation of tests and for compression
of the results. Instead of using separate circuits for these two functions, it is possible to
design a single circuit that serves both purposes. Figure 11.18 shows the structure of a
possible circuit, known as the built-in logic block observer (BILBO) [14]. This four-bit
circuit has the same feedback connections as the circuit of Figure 11.14.

The BILBO circuit has four modes of operation, which are controlled by the mode bits,
M1 and M2. The modes are as follows:

• M1M2 = 11 — Normal system mode in which all flip-flops are independently controlled
by the signals on inputs p0 through p3. In this mode each flip-flop may be used to
implement a state variable of a finite state machine by using p0 to p3 as y0 to y3.

• M1M2 = 00 — Shift-register mode in which the flip-flops are connected into a shift
register. This mode allows test vectors to be scanned in, and the results of applied tests
to be scanned out, if the control input G/S is equal to 1. If G/S = 0, then the circuit
acts as the PRBS generator.

• M1M2 = 10 — Signature mode in which a series of patterns applied on inputs p0

through p3 are compressed into a signature available as a pattern on q0 through q3.
• M1M2 = 01 — Reset mode in which all flip-flops are reset to 0.
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Figure 11.19 Using BILBO circuits for testing.

An efficient way of using BILBO circuits is presented in Figure 11.19. A combinational
circuit can be tested by partitioning it into two (or more) parts. A BILBO circuit is used to
provide inputs to one part and to accept outputs from the other part. The testing process
involves a two-phase approach. First, BILBO1 is used as a PRBS generator that provides
test patterns for combinational network 1 (CN1). During this time BILBO2 acts as a
compressor and produces a signature for the test. The signature is shifted out by placing
BILBO2 into the shift-register mode. Next, the roles of BILBO1 and BILBO2 are reversed,
and the process is repeated to test CN2.

The detailed steps in the testing process are

1. Scan the initial test pattern into BILBO1 and reset all flip-flops in BILBO2.

2. Use BILBO1 as the PRBS generator for a given number of clock cycles and use
BILBO2 to produce a signature.

3. Scan out the contents of BILBO2 and externally compare the signature; then scan
into it the initial test pattern for testing CN2. Reset the flip-flops in BILBO1.

4. Use BILBO2 as the PRBS generator for a given number of clock cycles and use
BILBO1 to produce a signature.

5. Scan out the signature in BILBO1 and externally compare it with the required pattern.

The BILBO circuits are used in this way for testing purposes. At other times the normal
system mode is used.

11.7.2 Signature Analysis

We have explained the use of signatures in the context of implementing an efficient built-
in testing mechanism. The main idea of compressing a long sequence of test results into
a single signature was originally developed as the basis for an instrument manufactured
by Hewlett-Packard in the 1970s, known as the Signature Analyzer [15]. Thus the name
signature analysis was coined to refer to the testing schemes that use signatures to represent
the results of applied tests.
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Signature analysis is particularly suitable for digital systems that naturally include
an ability to generate the desired test patterns. Such is the case with computer systems in
which various parts of the system can be stimulated by test patterns produced under software
control.

11.7.3 Boundary Scan

The testing techniques discussed in the previous sections are equally applicable to circuits
that are implemented on single chips or on printed circuit boards that contain a number of
chips. A circuit can be tested only if it is possible to apply the tests to it and observe the
outputs produced. This involves having access to the primary inputs and outputs.

When chips are soldered onto a printed circuit board, it often becomes impossible to
attach test probes to pins. This hinders the testing process unless some indirect access to the
pins is provided. The scan-path concept can be extended to the board level to deal with the
problem. Suppose that each primary input or output pin on a chip is connected through a D
flip-flop and that a provision is made for a test mode in which all flip-flops can be connected
into a shift register. Then the test information can be scanned in and scanned out using the
shift-register path, via two pins that serve as serial input and output. Connecting the serial
output pin of one chip to the serial input pin of another chip results in the pins of all chips
being connected into a board-wide shift register for testing purposes. This approach has
become popular in practice and has been embodied into the IEEE Standard 1149.1 [16].

11.8 Printed Circuit Boards

Design and testing techniques presented in this book can be applied to any logic circuit,
whether the circuit is realized on a single chip or its implementation involves a number
of chips placed on a printed circuit board (PCB). In this section we discuss some practical
issues that arise when one or more circuits that form a larger digital system are implemented
on a PCB.

A typical PCB contains multiple layers of wiring. When the board is manufactured, the
wiring pattern on each layer is generated. The layers are separated by insulating material
and pressed together in sandwichlike fashion to form the board. Connections between
different wiring levels are made through holes that are provided for this purpose. Chips
and other components are then soldered to the top and possibly to the bottom layers.

In preceding chapters we have discussed in considerable detail the CAD tools used
for designing circuits that can be implemented on a single chip, such as an FPGA. For a
multiple-chip implementation, we need a different set of CAD tools to design a PCB that
incorporates the chips and connections needed to realize the complete digital system. Such
tools are available from a number of companies, for example, Cadence Design Systems
and Mentor Graphics. These tools can automatically determine where each chip should be
placed on the PCB, but the designer can also specify the location of particular chips. This
is called the placement process. Given a specific placement of chips and other components
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(such as connectors and capacitors), the tools generate a layout for each layer of wiring
traces that provide the required connections on the board. This process is referred to as
routing. Again the designer can intervene and manually route some connections. However,
since the number of connections can be in the tens of thousands, it is crucial to obtain a
good automated solution.

In addition to the design issues discussed in the previous chapters, a large circuit
implemented on a PCB is subject to some other constraints. Signals on the wiring traces
may be affected by noise problems caused by crosstalk, spikes in the power supply voltage,
and reflections from the end points of long traces.

Crosstalk
Two closely spaced wires that run parallel to each other are capacitively coupled, and

a pulse on one wire can induce a similar (but usually much smaller) pulse on the adjoining
wire. This is referred to as crosstalk. Its existence is undesirable because it contributes to
noise problems.

When drawing timing diagrams, we usually draw ideal waveforms with sharp edges,
which have well-defined voltage levels for the logic values 0 and 1. In an actual circuit the
corresponding signals may depart significantly from the desired behavior. As explained in
Appendix B, noise in a circuit can affect voltage levels, which can be troublesome. For
example, if at some point in time the noise diminishes the value of a signal that should be
at logic 1 to a level where this signal is interpreted by the next gate as being logic 0, then a
malfunction in the circuit is likely to occur. Since the noise effects tend to be random, they
are often difficult to detect.

To minimize crosstalk, it is prudent to avoid having long wires running parallel in close
proximity to each other. This may be difficult to achieve because of limited space on a PCB
and the need to provide a large number of wires. Using additional layers (planes) of wiring
helps in coping with crosstalk problems.

Power Supply Noise
When a CMOS circuit changes its state, there is a momentary flow of current in the

circuit, which is manifested as a current pulse on the power supply (VDD and Ground) wires.
Since a wiring trace on a PCB has a small “line inductance,” such a current pulse causes a
voltage spike (short pulse) on these lines. The cumulative effect of such voltage spikes can
cause a malfunction of the circuit.

The induced voltage spikes can be reduced significantly by connecting a small capacitor
between the VDD and Ground wires, in close proximity to the chip that causes the spikes
to occur. Since these spikes have the characteristic of a very high frequency signal, the
path through the capacitor is essentially a short circuit for them. Thus the voltage spikes
“bypass” the power supply lines and do not affect other chips connected to the same lines.
Such capacitors are called bypass capacitors. They do not affect the DC voltage on the
power supply lines.

Reflections and Terminations
Wiring traces on a PCB act as simple wires in circuits when the clock frequency is

low. However, at higher clock frequencies it becomes necessary to worry about so-called
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transmission-line effects. When a signal propagates along a long wire, it is attenuated due
to the small resistance of the wire, it picks up crosstalk that manifests itself as noise, and it
may be reflected when it reaches the end of the wire. The reflection causes a problem if its
effect does not die down before the next active clock edge. The discussion of transmission-
line effects is beyond the scope of this book. We will only mention that the reflection of
signals can be prevented by placing a suitable “termination” component on the line. This
termination can be as simple as a resistor whose resistance matches the apparent resistance
of the line, known as the characteristic impedance of the line. Other forms of termination
are also possible. For details of such schemes, the reader may consult other references
[17–18].

11.8.1 Testing of PCBs

The manufactured PCB has to be tested thoroughly. Flaws in the manufacturing process
may cause some connections to be broken and others to be shorted by a solder blob that
touches two adjacent wires. There may be problems caused by design errors that were not
discovered during the design process. Finally, some chips and other components on the
PCB may be defective.

Power Up
The first step is to turn on the power supply. In the worst case this may cause some

chip to be destroyed because of a fatal short-circuit condition (in an extreme case a chip
package may actually blow apart). Assuming that this is not the case, it is essential to check
if any of the chips is becoming inordinately hot. Overheating is a symptom of a serious
problem that must be corrected.

It is also necessary to check that the power and ground connections are properly made
on each chip and that the voltage level is as specified.

Reset
The next step is to reset all circuitry on the PCB to reach a predetermined starting

point. This typically implies resetting the flip-flops, which is usually achieved by asserting
a common reset line. It is important to verify that the starting state is correctly established.

Low-Level Functional Testing
Since practical circuits can be extremely complex, it is prudent to test the basic func-

tionality first. A key test is to verify that the control signals are working correctly.
Using the divide-and-conquer approach, simple functions are tested first, followed by

the more complex ones.

Full Functional Testing
Having verified the operation of smaller subcircuits, it is necessary to test the func-

tionality of the entire system on the PCB. The number of errors often depends on the
thoroughness of the simulation done during the design process. In general, it is difficult
to simulate large digital systems fully, so some errors are likely to be found on the PCB.
Typical errors are due to
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• Manufacturing errors, such as wrong wiring traces, blown components, or incorrect
power supply voltage.

• Incorrect specifications.
• Designer’s misinterpretation of information on the data sheets that describe some chips.
• Incorrect information on the data sheets provided by the chip manufacturer.

As mentioned earlier, PCBs contain multiple layers of wiring. Each layer may have several
thousands of wires in it. Finding and fixing errors can be a difficult and time-consuming
task, especially if errors involve wires in internal (as opposed to the top or bottom) wiring
layers.

Timing
It is next necessary to verify the timing of the circuit. A good strategy is to start with

a slow clock. If the circuit works properly, then the clock frequency is gradually increased
until the required operating frequency is reached.

Timing problems arise because of propagation delays through various paths in a circuit.
These delays are caused by the logic gates and the wiring that interconnects them. It is
essential to ensure that all data inputs to flip-flops in the circuit are stable before the active
edge of the clock signal arrives, as required by the setup time.

Reliability
A digital system is expected to operate reliably for a long time. Its reliability may be

affected by several factors, such as timing, noise, and crosstalk problems.
The timing of signals has to provide some safety margin to allow for small changes in

propagation delays. If the timing is too tight, then it is likely that the circuit will operate
correctly for some period of time, but will eventually fail because of a timing error. The
timing of chips may change with temperature, so failures can occur if thermal constraints
are not adhered to. Cooling is usually provided by means of fans.

11.8.2 Instrumentation

Testing of circuits implemented in PCBs requires some specialized instruments.

Oscilloscope
The details of individual signals can be examined using an oscilloscope. This instru-

ment displays the voltage waveform of a signal, showing the potential problems with respect
to propagation delay and noise. The waveform displayed on an oscilloscope shows the ac-
tual voltage levels of the signal; it does not depict the simplified view of ideal waveforms
that have perfectly square edges. If the user wants to see only the logic values of a signal
(0 or 1), then a different type of instrument called a logic analyzer can be used.

Logic Analyzer
While an oscilloscope allows simultaneous examination of a few signals, a logic an-

alyzer allows examination of tens or even hundreds of signals at the same time. It takes
inputs from a set of points in the circuit, by means of probes attached to these points, and
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digitizes and displays the detected signals in the form of waveforms on a screen. A powerful
feature of the logic analyzer is that it has internal storage capable of recording a sequence
of changes in the signals over a substantial period of time. Then any segment of this infor-
mation can be displayed as desired by the operator. Typically, it is possible to record a few
milliseconds’ worth of events, which involves many cycles of a normal digital clock.

Looking at the waveforms taken when the circuit under test is working properly is not
helpful in the debugging process. It is essential to see the waveforms generated when a
malfunction takes place. The logic analyzer can be “triggered” to record a window of events
that occurred before and after the trigger event. The user must specify the trigger event.
For example, suppose that a malfunction is suspected to be caused by two control signals,
A and B, being asserted at the same time, even though the design specification requires that
these signals be mutually exclusive. A useful trigger point can then be established as the
time when the AND of A and B has the value 1. Finding suitable trigger events can be
difficult, and the user must rely on intuition and experience.

To use a logic analyzer effectively, it must be possible to connect the probes to some
useful (for testing purposes) points in the circuit. Thus it is important to provide such “test”
points when a PCB is being designed.

11.9 Concluding Remarks

Manufactured products must be tested to ensure that they perform as expected. All of the
techniques discussed in this chapter are relevant for this type of testing. The development
of tests and the required responses is based on the assumption that the circuits are designed
correctly. Thus it is the validity of the physical implementation that is being tested.

Another aspect of testing occurs during the design process. The designer has to ascertain
that the designed circuit meets the specifications. From the testing point of view, this poses
a significant problem because there exists no provably good circuit that can be used to
generate the desired tests. CAD tools are helpful in deriving tests for a designed circuit, but
they cannot determine whether the circuit is indeed what the designer intended to achieve
in terms of its functionality. A design error usually results in a circuit that has somewhat
different functionality than required by the specification.

Small circuits can be tested fully to verify their functionality. A combinational circuit
can be tested to see if it performs according to its truth table. A sequential circuit can be
tested by checking the transitions specified in the state table. This is much easier to do if the
circuit is designed for testability, as explained in Section 11.6.1. Large circuits cannot be
tested exhaustively, because a vast number of tests would have to be applied. In this case
the designer’s ingenuity is needed to determine a manageable set of tests that will hopefully
demonstrate the correctness of the circuit.

Problems

*11.1 Derive a table similar to Figure 11.1b for the circuit in Figure P11.1 to show the coverage
of the various stuck-at-0 and stuck-at-1 faults by the eight possible tests. Find a minimal
test set for this circuit.
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w1

w2

f
w3

Figure P11.1 Circuit for Problem 11.1.

11.2 Repeat Problem 11.1 for the circuit in Figure P11.2.

w1

w2

f
w3

w4

Figure P11.2 Circuit for Problem 11.2.

*11.3 Devise a test to distinguish between two circuits that implement the following expressions

f = x1x2x3 + x2x3x4 + x1x2x4 + x1x3x4

g = (x1 + x2)(x3 + x4)

11.4 Consider the circuit in Figure P11.3. Sensitize each path in this circuit to obtain a complete
test set that comprises a minimum number of tests.

w1

w2

f

w3

w4 w5

Figure P11.3 Circuit for Problem 11.4.

*11.5 For the circuit of Figure 11.4a, show the tests that can detect each of the faults: w1/0, w4/1,
g/0, and c/1.
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11.6 Suppose that the tests w1w2w3w4 = 0100, 1010, 0011, 1111, and 0110 are chosen randomly
to test the circuit in Figure 11.3. What percentage of single faults are detected using these
tests?

11.7 Repeat Problem 11.6 for the circuit in Figure 11.4a.

11.8 Repeat Problem 11.6 for the circuit in Figure 11.5.

*11.9 Consider the circuit in Figure P11.4. Are all single stuck-at-0 and stuck-at-1 faults in this
circuit detectable? If not, explain why.

w1

w2 f

w3

Figure P11.4 Circuit for Problem 11.9.

11.10 Prove that in a circuit in which all gates have a fan-out of 1, any set of tests that detects all
single faults on the input wires detects all single faults in the entire circuit.

*11.11 The circuit in Figure P11.5 determines the parity of a four-bit data unit. Derive a minimal
test set that can detect all single stuck-at-0 and stuck-at-1 faults in this circuit. Would your
test set work if the XOR gates are implemented using the circuit in Figure 8.9c? Can your
result be extended to a general case that involves n-bit data units?

w1

w2

p

w3

w4

Figure P11.5 Circuit for Problem 11.11.

*11.12 Derive a test set that can detect all single faults in the decoder circuit in Figure 4.14c.

11.13 List all single faults in the circuit in Figure 11.4a that can be detected using each of the tests
w1w2w3w4 = 1100, 0010, and 0110.
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11.14 Sensitize each path in the combinational part of the circuit in Figure 11.12 to obtain a
complete test set that comprises as few tests as possible. Show how your test set can be
applied to test this circuit. How many clock cycles are needed to perform the necessary
tests?

11.15 Derive an ASM chart that represents the flow of control needed to test the circuit in Fig-
ure 11.12.

11.16 The circuit in Figure 11.12 provides an easily testable implementation of the FSM in Fig-
ure 6.76. In Example 11.3 we showed how this circuit may be tested by testing the combi-
national part using randomly chosen tests. A different approach to testing may be to attempt
to determine whether the circuit actually realizes the functionality specified in the state table
in Figure 6.76b. This can be done by making the circuit go through all transitions given
in the state table. For example, after applying the Resetn = 0 signal, the circuit begins in
state A. It must be verified that the circuit is indeed forced into state A by scanning out
the expected valuation y2y1 = 00. Next each transition must be checked. To verify the
transition A → A if w = 0, it is necessary to make the input w equal to 0 and allow the
normal operation to take place for one clock cycle by making Normal/Scan = 0. The value
of the output z must be observed. This is followed by scanning out the values of y2 and y1

to see if y2y1 = 00. At the same time, the valuation for the next test should be scanned in.
If this test involves verifying that B → A if w = 0, then the valuation y2y1 = 01 is scanned
in. This process continues until all transitions have been verified.

Indicate in the form of a table the values of the signals Normal/Scan, Scan-in, Scan-out,
w, and z, as well as the transition tested, for each clock cycle necessary to perform the
complete test for this circuit.

11.17 Write Verilog code that represents the circuit in Figure 11.12.

11.18 Derive an ASM chart that describes the control needed to test a digital system that uses the
BILBO structure in Figures 11.18 and 11.19.
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a p p e n d i x

A
Verilog Reference

This appendix describes the features of Verilog used in this book. It is meant to serve as a
convenient reference for the reader, hence only brief descriptions are provided, along with
examples. The reader is encouraged to first study the introduction to Verilog in Section 2.10.

This appendix is not meant to be a comprehensive Verilog manual. While we discuss
almost all the features of Verilog that are useful in the synthesis of logic circuits, we do not
discuss many of the features that are useful only for simulation of circuits. Although the
omitted features are not needed for any of the examples used in this book, a reader who
wishes to learn more about Verilog can refer to specialized texts [1–7].

How to Write Verilog Code
The tendency for the novice is to write Verilog code that resembles a computer program,

containing many variables and loops. It is difficult to determine what logic circuit the CAD
tools will produce when synthesizing such code. The task of a synthesis tool is to analyze
a piece of Verilog code and determine, according to the semantics of the language, what
circuit can be used to implement the code. Consider a code fragment such as

if (s == 0)
f = w0;

else
f = w1;

We can understand the semantics by considering each statement in sequence, in the way
that a simulation tool would. The code results in f being assigned the value of either w0 or
w1, depending on the value of s. A synthesis tool would usually implement this behavior
using a multiplexer circuit.

In general, synthesis tools have to recognize certain structures in code, like the above
multiplexer. From the practical point of view, this will work only if users write code that
conforms to a commonly used style. The beginning Verilog user should therefore adopt
the style of code recommended by experienced designers. This book contains more than
120 examples of Verilog code that represent a wide range of logic circuits. In all of these
examples the code is easily related to the described logic circuit. The reader is encouraged
to adopt the same style of code. A good approach is to “write Verilog code that obviously
represents the intended circuit.”
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Although Verilog is a fairly straightforward language to learn and use, the novice
designer will tend to make some common errors in syntax and semantics. A list of typical
errors is given in Section A.15, as well as a set of guidelines that expert Verilog coders
recommend as good style for writing clear and effective code.

Once complete Verilog code is written for a particular design, it is useful to analyze the
resulting circuit synthesized by the CAD tools. Much can be learned about Verilog, logic
circuits, and logic synthesis through this process.

A.1 Documentation in Verilog Code

Documentation can be included in Verilog code by writing a comment. A short comment
begins with the double slash, //, and continues to the end of the line. A long comment can
span multiple lines and is contained inside the delimiters /* and */. Examples of comments
are

// This is a short comment
/*This is a long Verilog comment

that spans two lines */

A.2 White Space

White space characters, such as SPACE and TAB, and blank lines are ignored by the Verilog
compiler. Multiple statements can be written on a single line, such as

f = w0; if (s == 1) f = w1;

Although legal, this code is hard to read and uses poor style. Placing each statement on a
separate line, and using indentation within blocks of code, such as an if-else statement, are
good ways to increase the readability of code.

A.3 Signals in Verilog Code

In Verilog, a signal in a circuit is represented as a net or a variable with a specific type. The
term net is derived from the electrical jargon, where it refers to the interconnection of two
or more points in a circuit. A net or variable declaration has the form

type [range] signal_name{, signal_name};

The square brackets indicate an optional field, and the curly brackets indicate that additional
entries are permitted. We will use this syntax throughout the appendix. The signal_name
is an identifier, as defined in the next section. Without the range field the declared net or
variable is scalar and represents a single-bit signal. The range is used to specify vectors
that correspond to multibit signals, as explained in Section A.6.



December 31, 2012 09:07 vra80547_appa Sheet number 3 Page number 687 magenta black

A.5 Signal Values, Numbers, and Parameters 687

A.4 Identifier Names

Identifiers are the names of variables and other elements in Verilog code. The rules for
specifying identifiers are simple: any letter or digit may be used, as well as the _ underscore
and $ characters. There are two caveats: an identifier must not begin with a digit and it
should not be a Verilog keyword. Examples of legal identifiers are f, x1, x_y, and Byte.
Some examples of illegal names are 1x, +y, x*y, and 258. Verilog is case sensitive, hence
k is not the same as K, and BYTE is not the same as Byte.

For special purposes Verilog allows a second form of identifier, called an escaped iden-
tifier. Such identifiers begin with the (\) backslash character, which can then be followed
by any printable ASCII characters except white spaces. Examples of escaped identifiers
are \123, \sig-name, and \a+b. Escaped identifiers should not be used in normal Verilog
code; they are intended for use in code produced automatically when other languages are
translated into Verilog.

A.5 Signal Values, Numbers, and Parameters

Verilog supports scalar nets and variables that represent individual signals, and vectors that
correspond to multiple signals. Each individual signal can have four possible values:

0 = logic value 0
1 = logic value 1
z = tri-state (high impedance)
x = unknown value

The z and x values can also be denoted by the capital letters Z and X. The value x can be
used to denote a don’t-care condition in Verilog code; the symbol ? can also be used for
this purpose. The value of a vector variable is specified by giving a constant of the form

[size][’radix]constant

where size is the number of bits in the constant, and radix is the number base. Supported
radices are

d = decimal
b = binary
h = hexadecimal
o = octal

When no radix is specified, the default is decimal. If size specifies more bits than are needed
to represent the given constant, then in most cases the constant is padded with zeros. The
exceptions to this rule are when the first character of the constant is either x or z, in which
case the padding is done using that value. Some examples of constants include
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0 the number 0
10 the decimal number 10
’b10 the binary number 10 = (2)10

’h10 the hex number 10 = (16)10

4’b100 the binary number 0100 = (4)10

4’bx an unknown 4-bit value xxxx
8’b1000_0011 _ can be inserted for readability
8’hfx equivalent to 8’b1111_xxxx

A.5.1 Parameters

A parameter associates an identifier name with a constant. Let the Verilog code include the
following declarations:

parameter n = 4;
parameter S0 = 2’b00, S1 = 2’b01, S2 = 2’b10, S3 = 2’b11;

Then the identifier n can be used in place of the number 4, the name S0 can be substituted
for the value 2’b00, and so on. An important use of parameters is in the specification of
parameterized subcircuits, which is described in Section A.12.

A.6 Net and Variable Types

Verilog defines a number of types of nets and variables. These types are defined by the
language itself, and user-defined types are not permitted.

A.6.1 Nets

A net represents a node in a circuit. To distinguish between different types of circuit nodes
there exist several types of nets, called wire, tri, and a number of others that are not needed
for synthesis, and are not used in this book.

The wire type is employed to connect an output of one logic element in a circuit to an
input of another logic element. The following are examples of scalar wire declarations.

wire x;
wire Cin, AddSub;

A vector wire represents multiple nodes, such as

wire [3:0] S;
wire [1:2] Array;
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The square brackets are the syntax for specifying a vector’s range. The range [Ra:Rb] can
be either increasing or decreasing, as shown. In either case, Ra is the index of the most-
significant (leftmost) bit in the vector, and Rb is the index of the least-significant (rightmost)
bit. The indices Ra and Rb can be either positive or negative integers.

The net S can be used as a four-bit quantity, or each bit can be referred to individually
as S[3], S[2], S[1], and S[0]. If a value is assigned to S such as S = 4’b0011, the result
is S[3] = 0, S[2] = 0, S[1] = 1, and S[0] = 1. The assignment of a single bit in a vector
to another net, such as f = S[0], is called a bit-select operation. A range of values from
one vector can be assigned to another vector, which is called a part-select operation. If
we assign Array = S[2:1], this produces Array[1] = S[2] and Array[2] = S[1]. The index
used in a bit-select operation can involve a variable, such as S[i], while the indices used
with a part-select operation have to be constant expressions, such as S[2:1].

The tri type denotes circuit nodes that are connected in a tri-state fashion. Examples
of tri nets are

tri z;
tri [7:0] DataOut;

These nets are treated in the same manner as the wire type, and they are used only to enhance
the readability of code that includes tri-state gates.

A.6.2 Variables

Nets provide a means for interconnecting logic elements, but they do not allow a circuit
to be described in terms of its behavior. For this purpose, Verilog provides variables. A
variable can be assigned a value in one Verilog statement, and it retains this value until it
is overwritten in a subsequent assignment statement. There are two types of variables, reg
and integer. Consider the code fragment

Count = 0;
for (k = 0; k < 4; k = k + 1)

if (S[k])
Count = Count + 1;

The for and if statements are described in Section A.11. This code stores in Count the
number of bits in S that have the value 1. Since it models the behavior of a circuit, Count
has to be declared as a variable, rather than a simple wire. If Count has three bits, then the
declaration is

reg [2:0] Count;

The keyword reg does not denote a storage element, or register. In Verilog code, reg
variables can be used to model either combinational or sequential parts of a circuit. In our
example, the variable k serves as a loop index. Such variables are declared as type integer
in the statement

integer k;

Integer variables are useful for describing the behavior of a module, but they do not directly
correspond to nodes in a circuit. In this book we use integers as loop control variables.
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A.6.3 Memories

A memory is a two-dimensional array of bits. Verilog allows such a structure to be declared
as a variable (reg or integer) that is an array of vectors, such as

reg [7:0] R [3:0];

This statement defines R as four eight-bit variables named R[3], R[2], R[1], and R[0].
Two-level indexing, such as R[3][7], can be used. There is also support for higher

dimension arrays. A three-dimensional array may be declared as

reg [7:0] R [3:0] [1:0];

This statement defines a three-dimensional array of bits.

A.7 Operators

Verilog has a large number of operators, as shown in Table A.1. The first column gives
the category, the second column indicates how each operator is used, and the third column
specifies the number of bits produced in the result. To aid in describing the table, we use

Table A.1 Verilog operators and bit lengths.

Category Examples Bit Length

Bitwise ∼ A, +A, −A L(A)
A & B, A | B, A ∼∧ B, A ∧∼ B MAX (L(A), L(B))

Logical !A, A&&B, A ‖ B 1 bit

Reduction &A, ∼ &A, |A, ∼ |A, ∧∼ A, ∼∧ A 1 bit

Relational A == B, A! = B, A > B, A < B 1 bit
A >= B, A <= B
A === B, A! == B

Arithmetic A + B, A − B, A ∗ B, A/B MAX (L(A), L(B))
A % B

Shift A << B, A >> B L(A)

Concatenate {A, . . . , B} L(A) + · · · + L(B)

Replication {B{A}} B ∗ L(A)

Condition A ? B : C MAX (L(B), L(C))
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operands named A, B, and C, which may be either vectors or scalars. The syntax ∼A means
that the ∼ operator is applied to the variable A, and the syntax L(A) means that the result
has the same number of bits (length) as in A.

Most of the operators in Table A.1 are also listed in Table 4.2 and described in detail
in Section 4.6.5. The bitwise operators are 1’s complement (∼), unary plus (+), 2’s com-
plement (−), AND (&), OR (|), XOR (∧), and XNOR (∼∧ or ∧∼). The bitwise operators
produce multibit results, usually with the same number of bits as the operands. For example,
if A = a1a0, B = b1b0, and C = c1c0, then the operation C = A & B results in c1 = a1 & b1

and c0 = a0 & b0. Note that unary plus just denotes a positive number; it has no effect.
The logical operators generate a one-bit result. They are NOT (!), AND (&&), and OR

(| |). If the operand of ! is a vector, then !A produces 1 (True) only if all bits in A are 0;
otherwise !A gives 0 (False). The result of A && B is 1 if both A and B are nonzero, while
A | | B produces 1 unless both A and B are zero. If an operand is ambiguous (contains an
x), the result is x. The logical operators are normally used in conditional statements such
as if ((A < B) && (B < C)).

The reduction operators use the same symbols as some of the bitwise operators, but have
only one operand. The reduction &A produces the AND of all of the bits in A, while ∼&A
produces the NAND. Similarly, the other reduction operators produce single-bit Boolean
results.

The relational operators give a 1 (True) or 0 (False) result based on the specified
comparison of A and B. For synthesis of logic circuits A and B are usually wire or reg
types, and Verilog treats them as unsigned numbers. If integer variables are supported,
they may be treated as signed numbers. The result of a relational operation is ambiguous
(x) if either operand has any unspecified digits. An exception is for the === and !==
operators, which check for equality and inequality, respectively. These operators compare
equality of x and z digits in addition to 0 and 1 digits.

Verilog includes the normal arithmetic operators +, −, *, and /. The modulus operator
(%) is also included, but it is usually not supported for synthesis, except for use in calculating
a compile-time constant. The operation A % B returns the remainder of the integer division
A ÷ B. Arithmetic operands of type wire and reg are treated as unsigned numbers. If the
two operands are of unequal size, zero digits are padded on the left, and bits are truncated
if the result has fewer digits than the largest operand. Integer variables are considered as
2’s complement numbers.

The << and >> operators perform logical shifts to the left and right, respectively. For
a left shift, zeros are shifted into the LSB, while for a right shift, zeros are shifted into the
MSB. For synthesis, the operand B should be a constant.

The {,} concatenate operator allows vectors to be combined to produce a larger resulting
vector. Any operand that is a constant must have a specified size, as in 4’b0011. Operands
can be repeated multiple times by using the replication operator. The operation {{3{A}},
{2{B}}} is equivalent to {A, A, A, B, B}. The replication operator can be used to form an
n-bit vector of digits: the operation {n{1’b1}} represents n ones.

The last item in Table A.1 is the ? : conditional operator. The result of A ? B : C is
equal to B if operand A evaluates to 1 (True); otherwise, the result is C. In the case that A
evaluates to x, the conditional operator generates a bitwise output; each bit in the result is
1 if the corresponding bits in both B and C are 1, 0 if these bits are 0, and x otherwise.
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The precedence of Verilog operators follows similar rules as in arithmetic and Boolean
algebra. For example, * has precedence over +, and & has precedence over |. A complete
listing of the precedence rules is given in Table 4.3.

A.8 Verilog Module

A circuit or subcircuit described with Verilog code is called a module. Figure A.1 gives the
general structure of a module declaration. The module has a name, module_name, which
can be any valid identifier, followed by a list of ports. The term port is adopted from the
electrical jargon, in which it refers to an input or output connection in an electrical circuit.
The ports can be of type input, output, or inout (bidirectional), and can be either scalar or
vector. Examples of ports are

input Cin, x, y;
input [3:0] X, Y;
output Cout, s;
inout [7:0] Bus;
output [3:0] S;

wire Cout, s;
wire [7:0] Bus;
reg [3:0] S;

As shown, output and inout ports have an associated type. We assume that Cout, s, and
Bus are nets in this example, while S is a variable. The wire declarations can actually be

module module name [(port name{, port name})];
[parameter declarations]
[input declarations]
[output declarations]
[inout declarations]
[wire or tri declarations]
[reg or integer declarations]
[function or task declarations]
[assign continuous assignments]
[initial block]
[always blocks]
[gate instantiations]
[module instantiations]

endmodule

Figure A.1 The general form of a module.
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omitted, because Verilog assumes that signals are nets by default. However, any port used
as a variable must be explicitly declared as such.

Instead of using a separate statement to declare that the variable S is of reg type, we
can include this declaration in the statement that specifies S to be an output, as follows:

output reg [3:0] S;

This is the style we use throughout the book.
As Figure A.1 indicates, a module may contain any number of net (wire or tri) or

variable (reg or integer) declarations, and a variety of other types of statements that are
described later in this appendix.

Figure A.2 gives the Verilog code for a module fulladd, which represents a full-adder
circuit. (The full-adder is discussed in Section 3.2.) The input port Cin is the carry-in,
and the bits to be added are the input ports x and y. The output ports are the sum, s, and
the carry-out, Cout. The functionality of the full-adder is described with logic equations
preceded by the keyword assign, which is discussed in Section A.10.

There is usually more than one way to describe a given circuit using Verilog. Figure
A.3 gives another version of the fulladd module, in which the functionality is specified by
using the concatenate and addition operators. The statement

assign {Cout, s} = x + y + Cin;

assigns the least-significant bit in the result x + y + Cin to the output s and the most-
significant bit to Cout. The circuits generated from the modules in Figures A.2 and A.3 are
the same.

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

assign s = x y Cin;
assign Cout = (x & y) | (Cin & x) | (Cin & y);

endmodule

Figure A.2 A full-adder module.

module fulladd (Cin, x, y, s, Cout);
input Cin, x, y;
output s, Cout;

endmodule

assign {Cout, s} = x + y + Cin;

Figure A.3 A full-adder module defined using the
+ operator.
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A.9 Gate Instantiations

Verilog includes predefined modules that implement basic logic gates. These gates allow a
circuit’s structure to be described using gate instantiation statements of the form

gate_name [instance_name] (output_port, input_port{, input_port});

The gate_name specifies the desired type of gate, and the instance_name is any unique
identifier. Each gate may have a different number of ports, with the output port listed first,
followed by a variable number of input ports. An example of using gates to realize a full-
adder is given in FigureA.4. The code defines four wire nets, z1 to z4, that connect the gates
together, and each gate has a specified instance name. Figure A.5 shows a simpler version,
in which instance names are not included and the declarations of z1 to z4 are omitted. Since
the nets are not explicitly declared, they are implicitly assumed to be of type wire.

The logic gates supported in Verilog are summarized in Table A.2. The second col-
umn describes the function of each gate, and the rightmost column gives an example of
instantiating the gate. Verilog allows gates with any number of inputs to be specified, but
some CAD systems set practical limits. The notif and bufif gates represent tri-state buffers
(drivers). The gate notif0 is an inverting tri-state buffer with active-low enable, and notif1
provides the same functionality with an active-high enable. The bufif0 and bufif1 gates are
tri-state buffers that do not invert the output.

For simulation purposes, it is possible to set a parameter of the gate that represents its
propagation delay. As an example, the following statement instantiates a three-input AND
gate with a delay of five time units (the units of time are determined by the simulator being
used):

and #(5) And3 (z, x1, x2, x3);

This type of delay parameter has no meaning when using Verilog for synthesis of logic
circuits.

// Structural specification of a full-adder
module fulladd (Cin, x, y, s, Cout);

input Cin, x, y;
output s, Cout;
wire z1, z2, z3, z4;

and And1 (z1, x, y);
and And2 (z2, x, Cin);
and And3 (z3, y, Cin);
or Or1 (Cout, z1, z2, z3);
xor Xor1 (z4, x, y);
xor Xor2 (s, z4, Cin);

endmodule

Figure A.4 A full-adder described using gate instantiation.
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// Structural specification of a full-adder
module fulladd (Cin, x, y, s, Cout);

input Cin, x, y;
output s, Cout;

and (z1, x, y);
and (z2, x, Cin);
and (z3, y, Cin);
or (Cout, z1, z2, z3);
xor (z4, x, y);
xor (s, z4, Cin);

endmodule

Figure A.5 A simplified version of Figure A.4.

Table A.2 Verilog gates.

Name Description Usage

and f = (a · b · · · ·) and ( f , a, b, . . .)

nand f = (a · b · · · ·) nand ( f , a, b, . . .)

or f = (a + b + · · ·) or ( f , a, b, . . .)

nor f = (a + b + · · ·) nor ( f , a, b, . . .)

xor f = (a ⊕ b ⊕ · · ·) xor ( f , a, b, . . .)

xnor f = (a � b � · · ·) xnor ( f , a, b, . . .)

not f = a not ( f , a)

buf f = a buf ( f , a)

notif0 f = (!e ? a : ’bz) notif0 ( f , a, e)

notif1 f = (e ? a : ’bz) notif1 ( f , a, e)

bufif0 f = (!e ? a : ’bz) bufif0 ( f , a, e)

bufif1 f = (e ? a : ’bz) bufif1 ( f , a, e)
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A.10 Concurrent Statements

In any hardware description language, including Verilog, the concept of a concurrent state-
ment means that the code may include a number of such statements, and each represents
a part of the circuit. We use the word concurrent because the statements are considered
in parallel and the ordering of statements in the code does not matter. Gate instantiations
are one type of concurrent statements. This section introduces another type of concurrent
statement, called the continuous assignment.

A.10.1 Continuous Assignments

While gate instantiations allow the description of a circuit’s structure, continuous assign-
ments permit the description of a circuit’s function. The general form of this statement
is

assign net_assignment{, net_assignment};

The net_assignment can be any expression involving the operators listed in Table A.1.
Examples of continuous assignments are

assign Cout = (x & y) | (x & Cin) | (y & Cin);
assign s = x ∧ y ∧ z;

Although they are not needed in terms of operator precedence, the parentheses in the ex-
pression for Cout are included for clarity. Multiple assignments can be specified in one
assign statement, using commas to separate the assignments, as in

assign Cout = (x & y) | (x & Cin) | (y & Cin),
s = x ∧ y ∧ z;

An example of a multibit assignment is

wire [1:3] A, B, C;
...

assign C = A & B;

This results in c1 = a1b1, c2 = a2b2, and c3 = a3b3.
The arithmetic assignment

wire [3:0] X, Y, S;
...

assign S = X + Y;

represents a four-bit adder without carry-in and carry-out. If we declare a carry-in and
carry-out,

wire carryin, carryout;

then the statement
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module adder sign (X, Y, S, S2s);
input [3:0] X, Y;
output [7:0] S, S2s;

assign S = X + Y,
S2s = {{4{X[3]}}, X} + {{4{Y[3]}}, Y};

endmodule

Figure A.6 An example of arithmetic assignments and sign extension.

assign {carryout, S} = X + Y + carryin;

represents the four-bit adder with carry-in and carry-out. We mentioned in Section A.7 that
Verilog treats the wire type as an unsigned number. Since a five-bit result is needed in
{carryout, S}, each operand is padded with a zero. When using Verilog for synthesis, it is
up to the compiler to determine, or infer, that a four-bit adder with carry-out is needed and
to recognize the carry-in.

A complete example of arithmetic assignments is given in Figure A.6. There are two
four-bit inputs, X and Y , and two eight-bit outputs, S and S2s. To produce the eight-bit
sum S = X + Y the Verilog compiler automatically pads X and Y with four zeros. The
assignment to S2s shows how a signed (2’s complement) result can be generated. Recall
from Section 3.3 that the leftmost bit in a 2’s complement number is the sign bit. The
assignment to S2s uses the concatenate and replication operators to pad X and Y with four
copies of their most-significant bit, thereby performing sign extensions.

As an example, assume that X = 0011 and Y = 1101. The unsigned result is S =
0011 + 1101 = 00010000, or S = 3 + 13 = 16. The signed result is S2s = 0011 + 1101 =
00000000, or S2s = 3 + (−3) = 0.

A.10.2 Using Parameters

Figure A.6 specifies an adder for four-bit numbers. We can make this code more general
by introducing a parameter that sets the number of bits in the adder. Figure A.7 gives the
code for an n-bit adder module, addern. The number of bits to be added is defined with the
parameter keyword, introduced in Section A.5. The value of n defines the bit widths of X ,
Y , S, and S2s.

It is possible to combine a continuous assignment with a wire declaration. For example,
the sum, s, and carry-out, c, of a half-adder could be defined as

wire s = x ∧ y,
c = x & y;

Verilog allows parameters, such as delays, to be associated with continuous assign-
ments. These parameters have no meaning for synthesis, but we mention them for com-
pleteness. Consider the statement
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module addern (X, Y, S, S2s);
parameter n = 4;
input X, Y;
output [2*n−1:0] S, S2s;

assign S = X + Y,
S2s = {{n{X[n 1]}}, X} + {{n{Y[n 1]}}, Y};

endmodule

[n 1:0]

Figure A.7 Using a parameter in an n-bit adder.

wire #8 s = x ∧ y,
#5 c = x & y;

These assignments specify that the operation x ∧ y has an associated propagation delay of
eight time units, and x & y has a delay of five units. Such delays, which are useful only for
simulation purposes, can also be associated with wires, as in

wire #2 c;
assign #5 c = x & y;

This code specifies that two time units of delay are incurred on the wire c in addition to the
five time units for the AND gate that produces x & y.

A.11 Procedural Statements

In addition to the concurrent statements described in the previous section, Verilog also
provides procedural statements (also called sequential statements). Whereas concurrent
statements are executed in parallel, procedural statements are evaluated in the order in which
they appear in the code. Verilog syntax requires that procedural statements be contained
inside an always block.

A.11.1 Always and Initial Blocks

An always block is a construct that contains one or more procedural statements. It has the
form
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always @(sensitivity_list)
[begin]

[procedural assignment statements]
[if-else statements]
[case statements]
[while, repeat, and for loops]
[task and function calls]

[end]

Verilog includes several types of procedural statements. These statements permit the de-
scription of a circuit in terms of its behavior in a much more powerful way than is possible
with continuous assignments or gate instantiations.

When multiple statements are included in an always block, the begin and end keywords
are needed; otherwise, these keywords can be omitted. The begin and end keywords are
also used with other Verilog constructs. We refer to the statements delimited by begin and
end as a begin-end block.

The sensitivity_list is a list of signals that directly affect the output results generated
by the always block. A simple example of an always block is

always @(x, y)
begin

s = x ∧ y;
c = x & y;

end

Since the output variables s and c depend on x and y, these signals are included in the
sensitivity list, separated by a comma or by the keyword or. We use the comma in this
book, but it should be noted that in the original version of Verilog it was necessary to use
the keyword or. When specifying a combinational circuit by using an always block, it is
possible to write simply

always @∗
which indicates that all input signals used in the always block are included in the sensitivity
list. In the examples in this book we explicitly show the signals in the sensitivity list to
make it easier to understand the Verilog code.

The semantics of the always block are as follows: if the value of a signal in the
sensitivity list changes, then the statements inside the always block are evaluated in the
order presented.

For simulation purposes, Verilog also provides the initial construct. The initial and
always constructs have the same form, but the statements inside the initial construct are
executed only once, at the start of a simulation. Initial constructs are not meaningful for
synthesis, hence we do not discuss them further.

A Verilog module may include several always blocks, each representing a part of the
circuit being modeled. While the statements inside each always block are evaluated in
order, there is no meaningful order among the different always blocks. In this sense, each
entire always block can be considered as a concurrent statement, because a Verilog compiler
evaluates all always blocks concurrently.
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Procedural Assignment Statements
Any signal assigned a value inside an always block has to be a variable of type reg

or integer. A value is assigned to a variable with a procedural assignment statement.
There are two kinds of assignments: blocking assignments, denoted by the = symbol, and
non-blocking assignments, denoted by the <= symbol. The term blocking means that
the assignment statement completes and updates its left-hand side before the subsequent
statement is evaluated. This concept is best explained in the context of simulation. Consider
the blocking assignments

S = X + Y;
p = S[0];

At simulation time ti the statements are evaluated, in order. The first statement sets S
using the current values of X and Y , and then the second statement sets p according to this
new value of S. Verilog also provides non-blocking assignments, specified as

S <= X + Y;
p <= S[0];

In this case, at simulation time ti the statements are still evaluated in order, but they both
use the values of variables that exist at the start of the simulation time ti. The first statement
determines a new value for S based on the current values of X and Y , but S is not actually
changed to this value until all statements in the associated always block have been evaluated.
Therefore, the value of p at time ti is based on the value of S at time ti−1. We can summarize
the difference between blocking and non-blocking assignments as follows. For blocking
assignments, the values of variables seen at time ti by each statement are the new values
set in ti by any preceding statements in the always block. For non-blocking assignments,
the values of variables seen at time ti are the values set in time ti−1.

Although we introduced the concepts of blocking and non-blocking assignments in
the context of simulation, the semantics are the same for synthesis. For combinational
circuits, only blocking assignments should be used, as we will explain in Section A.11.7.
We give a number of examples of combinational circuits in the following sections and also
introduce the if-else, case, and loop statements. Section A.14 focuses on sequential circuits
and explains that they should be designed with non-blocking assignments.

A.11.2 The If-Else Statement

The general form of the if-else statement is given in Figure A.8. If expression1 is True,
then the first statement is evaluated. When multiple statements are involved, they have to
be included inside a begin-end block.

The else if and else clauses are optional. Verilog syntax specifies that when else if or
else are included, they are paired with the most recent unfinished if or else if.
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if (expression1)
begin

statement;
end
else if (expression2)
begin

statement;
end
else
begin

statement;
end

Figure A.8 The form of the if-else statement.

An example of an if-else statement used for combinational logic is

always @(w0, w1, s)
if (s == 0)

f = w0;
else

f = w1;

which defines a 2-to-1 multiplexer with data inputs w0 and w1, select input s, and output f .

A.11.3 Statement Ordering

Another way of describing the 2-to-1 multiplexer with an if-else statement is presented in
Figure A.9. Instead of using an else clause, this code first makes the default assignment
f = w0 and then changes this assignment to f = w1 if s has the value 1. The Verilog
semantics specify that a signal assigned multiple values in an always construct retains the
last assignment. This example highlights the importance of the ordering of statements in
an always block. If the statements are reversed, as in

always @(w0, w1, s)
begin

if ( s == 1 )
f = w1;

f = w0;
end

then the if statement would be evaluated first and the assignment f = w0 would be per-
formed last. Hence, the code would always result in f being set to the value of w0.
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module mux2to1 (w0, w1, s, f);
input w0, w1, s;
output reg f;

always @(w0, w1, s)
begin

f = w0;
if (s == 1)

f = w1;
end

endmodule

Figure A.9 Code for a 2-to-1 multiplexer.

Implied Memory
Consider the always block

always @( w0, w1, s )
begin

if (s == 1)
f = w1;

end

This is the same as the code in Figure A.9, except that the default assignment f = w0; has
been removed. Since the code does not specify a value for the variable f when s is 0, the
Verilog semantics specify that f must retain its current value. A synthesized circuit has to
implement the functionality

f = s · w1 + s · f

Hence, when s = 0, the value of w1 is “remembered” by a latch at the output f. This effect
is called implied memory. We will show shortly that implied memory is the key concept
used to describe sequential circuits.

A.11.4 The Case Statement

The form of a case statement is illustrated in Figure A.10. The bits in expression, called the
controlling expression, are checked for a match with each alternative. The first successful
match causes the associated statements to be evaluated. Each digit in each alternative
is compared for an exact match of the four values 0, 1, x, and z. A special case is the
default clause, which takes effect if no other alternative matches. When using Verilog for
simulation, an alternative can be a general expression, but for synthesis these items are
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case (expression)
alternative1: begin

statement;
end

alternative2: begin
statement;

end
[default: begin

statement;
end]

endcase

Figure A.10 The general form of the case statement.

restricted to a single constant, such as 1’b0:, or a list of constants separated by commas,
such as 1, 2, 3:.

An example of a case statement is

always @(w0, w1, s)
case (s)

1’b0: f = w0;
1’b1: f = w1;

endcase

This code represents the same 2-to-1 multiplexer described in Section A.11.2 using the
if-else statement. When using Verilog for simulation, it is necessary to give alternatives for
all possible valuations of the controlling expression. A default has to be included for any
valuations not explicitly covered by the listed alternatives. In this example, s can have the
four values 0, 1, x, or z; hence, we could include a default to handle the cases s = x and
s = z. We have not included the default clause here because we are concerned only with
synthesis, and the synthesis tools require only the bit values 0 and 1 to be considered.

Figure A.11 demonstrates the use of a case statement to specify truth tables. This code
represents the same full-adder that is described in Figures A.2 and A.3. The controlling
expression in the case statement is the concatenated bits {Cin, x, y}, and the alternatives
correspond to the rows of the truth table in Figure 3.3a.

The case statement is also important for representing some types of sequential circuits,
such as finite state machines, which are discussed in Section A.14.

A.11.5 Casez and Casex Statements

In the case statement, the values x or z in an alternative are checked for an exact match with
the same values in the controlling expression. The casez statement adds more flexibility,
by treating a z digit in an alternative as a don’t-care condition. The casex statement treats
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// Full adder
module fulladd (Cin, x, y, s, Cout);

input Cin, x, y;
output reg s, Cout;

always @(Cin, x, y)
begin

case ( {Cin, x, y} )
3’b000: {Cout, s} = ’b00;
3’b001: {Cout, s} = ’b01;
3’b010: {Cout, s} = ’b01;
3’b011: {Cout, s} = ’b10;
3’b100: {Cout, s} = ’b01;
3’b101: {Cout, s} = ’b10;
3’b110: {Cout, s} = ’b10;
3’b111: {Cout, s} = ’b11;

endcase
end

endmodule

Figure A.11 Using a case statement to specify a truth table.

both x and z as don’t cares. The alternatives do not have to be mutually exclusive. If they
are not, then the first matching item has priority. Figure A.12 shows how casex can be used
to describe a priority encoder with the 4-bit input W and the outputs Y and f . The priority
encoder is defined in Figure 4.20 (the output z in Figure 4.20 is named f in the Verilog code
in Figure A.12). The first alternative, 1xxx, specifies that if w3 has the value 1, then the
other inputs are treated as don’t cares, hence the output is set to Y = 3. Similarly, the other
alternatives describe the desired priority scheme.

A.11.6 Loop Statements

Verilog includes four types of loop statements: for, while, repeat, and forever. Synthesis
tools typically support the for loop, which has the general form

for (initial_index; terminal_index; increment)
begin

statement;
end

This syntax is very similar to the for loop in the C programming language. The initial_index
is evaluated once, before the first loop iteration, and typically performs the initialization
of the integer loop control variable, such as k = 0. In each loop iteration, the begin-end
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module priority (W, Y, f);
input [3:0] W;
output reg [1:0] Y;
output f;

assign f = (W != 0);
always @(W)
begin

casex (W)
’b1xxx: Y = 3;
’b01xx: Y = 2;
’b001x: Y = 1;
default: Y = 0;

endcase
end

endmodule

Figure A.12 A priority encoder described using a
casex statement.

block is performed, and then the increment statement is evaluated. A typical increment
statement is k = k + 1. Finally, the terminal_index condition is checked, and if it is True
(1), then another loop iteration is done. For synthesis, the terminal_index condition has to
compare the loop index to a constant value, such as k < 8.

An example of using a for loop to describe an n-bit ripple-carry adder is presented in
Figure A.13. The effect of the loop is to repeat its begin-end block for the specified values
of k. In this example, each loop iteration, k, defines a full-adder with the inputs xk , yk , and
ck , and the outputs sk and ck+1. It is possible to define the integer k (parameters can also
be defined in this way) inside the always block if the begin-end block has a label. For
example,

always @(X, Y, carryin)
begin: fulladders

integer k;
C[0] = carryin;
for (k = 0; k <= n−1; k = k+1)
begin

S[k] = X[k] ∧ Y[k] ∧ C[k];
C[k+1] = (X[k] & Y[k]) | (C[k] & X[k]) | (C[k] & Y[k]);

end
carryout = C[n];

end
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module ripple (carryin, X, Y, S, carryout);
parameter n = 4;
input carryin;
input [n–1:0] X, Y;
output reg [n–1:0] S;
output reg carryout;
reg [n:0] C;
integer k;

always @(X, Y, carryin)
begin

C[0] = carryin;
for (k = 0; k <= n–1; k = k+1)
begin

S[k] = X[k] Y[k] C[k];
C[k+1] = (X[k] & Y[k]) (C[k] & X[k]) (C[k] & Y[k]);

end
carryout = C[n];

end

endmodule

Figure A.13 An n-bit ripple-carry adder using a for loop.

A second for-loop example is given in Figure A.14. This code produces a count of the
number of bits in the n-bit input X that have the value 1. Unrolling the loop, the first two
iterations give

Count = Count + X[0];
Count = Count + X[1];

The first statement produces the value Count = 0 + X [0] = X [0]. The second assignment
then gives Count = X [0] + X [1], and so on for the other loop iterations. At the end of the
loop, we have

Count = X[0] + X[1] + · · · + X[n−1]

Asynthesis tool generates a circuit that has a cascade of adders to implement this expression.
For example, for n = 3 a possible circuit that employs two-bit adders is shown in Figure
A.15.

Figure A.16 shows the general forms of the while and repeat loops. The while loop
has the same structure as the corresponding statement in the C language, and the repeat
loop simply specifies a number of times to repeat its begin-end block. The forever loop,
not shown in the figure, loops endlessly.
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module bit_count (X, Count);
parameter n = 4;
parameter logn = 2;
input [n–1:0] X;
output reg [logn:0] Count;
integer k;

always @(X)
begin

Count = 0;
for (k = 0; k < n; k = k+1)

Count = Count + X[k];
end

endmodule

Figure A.14 A bit-counting example.

x0x1 y0

0

y1

s0s1

2-bit adder

X[1] 0 X[0]

x0x1 y0y1

s0s1

2-bit adder

0 X[2]

Count [0]Count [1]

Figure A.15 A circuit that implements the code in
Figure A.14.
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while (condition)
begin

statement;
end

...

repeat (constant value)
begin

statement;
end

Figure A.16 The general forms of the while and
repeat statements.

A.11.7 Blocking versus Non-blocking Assignments for
Combinational Circuits

All our previous examples of combinational circuits used blocking assignments, which is
a good way to design such circuits. A natural question is whether combinational circuits
can be described using non-blocking assignments. The answer is that this would work in
many cases, but if subsequent assignments depend on the results of preceding assignments,
non-blocking assignments can produce nonsensical combinational circuits. As an example,
consider changing the for loop in FigureA.14 to use non-blocking assignments, as indicated
in Figure A.17. For simplicity assume that n = 3, so that the unrolled loop is

Count <= Count + X[0];
Count <= Count + X[1];
Count <= Count + X[2];

Since non-blocking assignments are involved, each subsequent assignment statement sees
the starting value of Count = 0 rather than a new Count value produced by the previous
statements. The for loop thus degenerates to

Count <= 0 + X[0];
Count <= 0 + X[1];
Count <= 0 + X[2];

When there are multiple assignments to the same variable in an always block, Verilog
semantics specify that the variable retains its last assignment. Therefore, the code produces
the wrong result Count = X [2].
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always @(X)
begin

Count = 0;
for (k = 0; k < n; k = k+1)

Count <= Count + X[k];
end

Figure A.17 Using non-blocking assignments for a
combinational circuit.

A.12 Using Subcircuits

A Verilog module can be included as a subcircuit in another module. For this to work,
both modules must be defined in the same file or else the Verilog compiler must be told
where each module is located (the mechanism for doing this varies from one compiler to the
next). The general form of a module instantiation statement is similar to a gate instantiation
statement

module_name [#(parameter overrides)] instance_name (
.port_name ( [expression] ) {, .port_name ( [expression] )} );

The instance_name can be any legal Verilog identifier and the port connections specify how
the module is connected to the rest of the circuit. The same module can be instantiated
multiple times in a given design provided that each instance name is unique. The #(param-
eter overrides) can be used to set the values of parameters defined inside the module_name
module. We discuss this feature in the next section. Each port_name is the name of a
port in the subcircuit, and each expression specifies a connection to that port. The syntax
.port_name is provided so that the order of signals listed in the instantiation statement does
not have to be the same as the order of the ports given in the module statement of the
subcircuit. In Verilog jargon, this is called named port connections. If the port connections
are given in the same order as in the subcircuit, then .port_name is not needed. This format
is called ordered port connections.

An example is presented in Figure A.18. It gives the code for a four-bit ripple-carry
adder built using four instances of the fulladd subcircuit in Figure A.2. The inputs to the
adder are carryin and two four-bit numbers X and Y . The output is the four-bit sum, S, and
carryout. A three-bit signal, C, represents the carries from stages 0, 1, and 2. This signal is
declared as a wire vector with three bits.

The adder4 module instantiates four copies of the full-adder subcircuit. In the first three
instantiation statements, we use ordered port connections because the signals are listed in
the same order as given in the declaration of the fulladd module in Figure A.2. The last
instantiation statement gives an example of named port connections. The port connections
used in the instantiation statements specify how the fulladd instances are interconnected by
nets to create the adder module.

FigureA.19 gives an example of a hierarchical Verilog file containing two modules. The
bottom module, seg7, specifies the BCD-to-7-segment code converter shown in Figure 2.63.
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module adder4 (carryin, X, Y, S, carryout);
input carryin;
input [3:0] X, Y;
output [3:0] S;
output carryout;
wire [3:1] C;

fulladd stage0 (carryin, X[0], Y[0], S[0], C[1]);
fulladd stage1 (C[1], X[1], Y[1], S[1], C[2]);
fulladd stage2 (C[2], X[2], Y[2], S[2], C[3]);
fulladd stage3 (.Cout(carryout), .s(S[3]), .y(Y[3]), .x(X[3]), .Cin(C[3]));

endmodule

Figure A.18 An example of module instantiation.

It has the four-bit bcd input, which represents a binary-coded-decimal digit, and the seven-
bit leds output, which is intended to drive the seven segments a to g on a digit-oriented
display. Three copies of the seven-segment decoder are instantiated in the top module,
group. It has a 12-bit input, Digits, and a 21-bit output, Lights, that are connected to the
three instantiated subcircuits.

A.12.1 Subcircuit Parameters

When a subcircuit includes parameters, their default values can be changed in an instan-
tiation statement. Figure A.20 gives a module with two eight-bit inputs, X and Y , and a
four-bit output, C. The module determines the number of bits in X and Y that are identical.
The code first uses the bitwise XNOR operation to generate a signal T that has 1s in the bit
positions where X and Y have identical values. Then it instantiates the subcircuit specified
in Figure A.14 to count the number of 1s in T. The syntax #(8,3) overrides the default
values of the subcircuit parameters in the order given in the code. Since Figure A.14 first
defines the parameter n, followed by logn, then #(8,3) sets n = 8 and logn = 3. If only one
parameter is specified, such as #(8), it overrides the first parameter given in the subcircuit.
The parameters can also be referred to by name, as in #(.n(8), .logn(3)).

An alternative syntax for overriding parameter values is shown in Figure A.21. Here,
the subcircuit parameters are specified by the separate statement

defparam cbits.n = 8, cbits.logn = 3;

This statement is not a part of the instantiation statement; hence, it can appear anywhere
in the code. The intended subcircuit is identified uniquely by its instance name, cbits.
If the defparam statement is in a separate module from the corresponding instantiation
statement, the subcircuit module name should be specified in addition to the instance name.
An example is

defparam bit_count.cbits.n = 8, bit_count.cbits.logn = 3;
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module group (Digits, Lights);
input [11:0] Digits;
output [1:21] Lights;

seg7 digit0 (Digits[3:0], Lights[1:7]);
seg7 digit1 (Digits[7:4], Lights[8:14]);
seg7 digit2 (Digits[11:8], Lights[15:21]);

endmodule

module seg7(bcd, leds);
input [3:0] bcd;
output reg [1:7] leds;

always @(bcd)
case (bcd) //abcdefg

0: leds = 7’b1111110;
1: leds = 7’b0110000;
2: leds = 7’b1101101;
3: leds = 7’b1111001;
4: leds = 7’b0110011;
5: leds = 7’b1011011;
6: leds = 7’b1011111;
7: leds = 7’b1110000;
8: leds = 7’b1111111;
9: leds = 7’b1111011;
default: leds = 7’bx;

endcase

endmodule

Figure A.19 An example of a hierarchical design file.

module common (X, Y, C);
input [7:0] X, Y;
output [3:0] C;
wire [7:0] T;

// Make T[i] = 1 if X[i] == Y[i]
assign T = X Y;

bit count #(8,3) cbits (T, C);

endmodule

Figure A.20 Overriding module parameters using #.
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module common (X, Y, C);
input [7:0] X, Y;
output [3:0] C;
wire [7:0] T;

// Make T[i] = 1 if X[i] == Y[i]
assign T = X ∧ Y;

bit count cbits (T, C);
defparam cbits.n = 8, cbits.logn = 3;

endmodule

Figure A.21 Overriding module parameters using the
defparam statement.

A.12.2 The Generate Capability

Figure A.18 instantiates four copies of the fulladd subcircuit to form a four-bit ripple-carry
adder. A natural extension of this code is to add a parameter that sets the number of bits
needed and then use a loop to instantiate the required subcircuits. This can be achieved
with the generate construct.

The generate construct has the simplified form

generate
[for loops]
[if-else statements]
[case statements]
[instantiation statements]

endgenerate

This construct enhances the flexibility of Verilog modules, because it allows instantiation
statements to be included inside for loops and if-else statements. If a for loop is included
in the generate block, the loop index variable has to be declared of type genvar. A genvar
variable is similar to an integer variable, but it can have only positive values and it can be
used only inside generate blocks.

Figure A.22 shows the ripple_g module, which instantiates n fulladd modules. Each
instance generated in the for loop will have a unique instance name produced by the compiler
based on the for loop label. The generated names are addbit[0].stage, . . . , addbit[n −
1].stage. This code produces the same result as the code in Figure A.13.

The generate construct can include concurrent statements and procedural statements,
but its main advantage is in the instantiation of gates and modules inside for loops and
if-else statements.
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module ripple_g (carryin, X, Y, S, carryout);
parameter n = 4;
input carryin;
input [n–1:0] X, Y;
output [n–1:0] S;
output carryout;
wire [n:0] C;

genvar i;
assign C[0] = carryin;
assign carryout = C[n];

generate
for (i = 0; i <= n–1; i = i+1)
begin:addbit

fulladd stage (C[i], X[i], Y[i], S[i], C[i+1]);
end

endgenerate

endmodule

Figure A.22 An n-bit ripple-carry adder using the generate
statement.

A.13 Functions and Tasks

Figure 4.4 shows how a 16-to-1 multiplexer module can be created by instantiating five
4-to-1 multiplexers. Another way of modeling this circuit is to use a Verilog function which
has the general form

function [range | integer] function_name;
[input declarations]
[parameter, reg, integer declarations]
begin

statement;
end

endfunction

The purpose of a function is to allow the code to be written in a modular fashion
without defining separate modules. A function is defined within a module, and it is called
either in a continuous assignment statement or in a procedural assignment statement inside
that module. A function can have more than one input, but it does not have an output,
because the function name itself serves as the output variable. Figure A.23 shows how the
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module mux_f (W, S16, f);
input [0:15] W;
input [3:0] S16;
output reg f;
reg [0:3] M;

function mux4to1;
input [0:3] W;
input [1:0] S;

if (S == 0) mux4to1 = W[0];
else if (S == 1) mux4to1 = W[1];
else if (S == 2) mux4to1 = W[2];
else if (S == 3) mux4to1 = W[3];

endfunction

always @(W, S16)
begin

M[0] = mux4to1(W[0:3], S16[1:0]);
M[1] = mux4to1(W[4:7], S16[1:0]);
M[2] = mux4to1(W[8:11], S16[1:0]);
M[3] = mux4to1(W[12:15], S16[1:0]);
f = mux4to1(M[0:3], S16[3:2]);

end

endmodule

Figure A.23 An example of a function.

16-to-1 multiplexer module can be written using a function. To see how this code works,
consider the assignment

f = mux4to1(M[0:3], S16[3:2]);

The effect of the function call is to have the Verilog compiler replace the assignment
statement with the function body. The in-line equivalent of the above function call is

if (S16[3:2] == 0) f = M[0];
else if (S16[3:2] == 1) f = M[1];
else if (S16[3:2] == 2) f = M[2];
else if (S16[3:2] == 3) f = M[3];

Similarly, each function call is inserted in-line, with the substitution of appropriate bits
from S16, W , and M.
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A second example of a function is shown in Figure A.24. The group_ f module is
equivalent to the group module in Figure A.19. Where the group module instantiates three
copies of the seg7 subcircuit, group_ f achieves the same effect by using a function. Since
it returns a seven-bit value, the function is defined with the syntax

function [1:7] leds;

Consider again the 16-to-1 multiplexer example in Figure A.23. Another method of
writing this code appears in Figure A.25. This code uses a Verilog task, which is similar
to a function. While a function returns a value, a task does not; it has input and output
variables, like a module. A task can be called only from inside an always (or initial) block.

module group_f (Digits, Lights);
input [11:0] Digits;
output reg [1:21] Lights;

function [1:7] leds;
input [3:0] bcd;
begin

case (bcd) // abcdef g
0: leds = 7’b1111110;
1: leds = 7’b0110000;
2: leds = 7’b1101101;
3: leds = 7’b1111001;
4: leds = 7’b0110011;
5: leds = 7’b1011011;
6: leds = 7’b1011111;
7: leds = 7’b1110000;
8: leds = 7’b1111111;
9: leds = 7’b1111011;
default: leds = 7’bx;

endcase
end

endfunction

always @(Digits)
begin

Lights[1:7] = leds(Digits[3:0]);
Lights[8:14] = leds(Digits[7:4]);
Lights[15:21] = leds(Digits[11:8]);

end

endmodule

Figure A.24 Using a function to implement the group module.
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module mux_t (W, S16, f);
input [0:15] W;
input [3:0] S16;
output reg f;
reg [0:3] M;

task mux4to1;
input [0:3] W;
input [1:0] S;
output Result;
begin

if (S == 0) Result = W[0];
else if (S == 1) Result = W[1];
else if (S == 2) Result = W[2];
else if (S == 3) Result = W[3];

end
endtask

always @(W, S16)
begin

mux4to1(W[0:3], S16[1:0], M[0]);
mux4to1(W[4:7], S16[1:0], M[1]);
mux4to1(W[8:11], S16[1:0], M[2]);
mux4to1(W[12:15], S16[1:0], M[3]);
mux4to1(M[0:3], S16[3:2], f);

end

endmodule

Figure A.25 An example of a task.

In a similar way as described above for the Verilog function, the compiler essentially inserts
the code for the task body at the point in the code where it is called.

Functions and tasks are not crucial for designing Verilog code, but they facilitate the
writing of modular code without using separate modules. One advantage of functions
and tasks is that they can be called from an always block, whereas these blocks are not
allowed to contain instantiation statements. These features of Verilog become increasingly
important as the size of the code being developed increases.

A.14 Sequential Circuits

While combinational circuits can be modeled with either continuous assignment or pro-
cedural assignment statements, sequential circuits can be described only with procedural
statements. We now give some examples of sequential circuits.
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A.14.1 A Gated D Latch

Figure A.26 gives the code for a gated D latch. The sensitivity list for the always block
includes both the data input, D, and clock, clk. The if statement specifies that Q should
be set to the value of D whenever clk is 1. There is no else clause in the if statement. As
we explained in Section A.11.3, this situation implies that Q should retain its present value
when the if condition is not met.

A.14.2 D Flip-Flop

Figure A.27 shows how flip-flops are described in Verilog. The always construct uses the
special sensitivity list @(posedge Clock). This event expression tells the Verilog compiler
that any reg variable assigned a value in the always construct is the output of a D flip-flop.
The code in the figure generates a flip-flop with the input D and the output Q that is sensitive
to the positive clock edge. A negative-edge sensitive flip-flop is specified by @(negedge
Clock).

We said in SectionA.11.1 that sequential circuits should be described with non-blocking
assignments, and we used this type of assignment in Figure A.27. The behavior of blocking
and non-blocking assignments for sequential circuits is discussed in Section A.14.5.

module latch (D, clk, Q);
input D, clk;
output reg Q;

always @(D, clk)
if (clk)

Q = D;

endmodule

Figure A.26 A gated D latch.

module flipflop (D, Clock, Q);
input D, Clock;
output reg Q;

always @(posedge Clock)
Q <= D;

endmodule

Figure A.27 A D flip-flop.
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A.14.3 Flip-Flops with Reset

Figure A.28 gives an always block that is similar to the one in Figure A.27. It describes a D
flip-flop with an asynchronous reset (clear) input, Resetn. When Resetn = 0, the flip-flop
output Q is set to 0. Appending the letter n to a signal name is a popular convention to
denote an active-low signal.

Verilog syntax requires that a sensitivity list contains either all edge-sensitive events
or all level-sensitive events but not a mixture; hence, the reset condition is checked using
negedge Resetn. An active-high reset would require the event posedge Reset and the if-else
statement would then check for the condition (Reset == 1).

In general, Verilog offers a variety of ways to describe a given circuit. But, for speci-
fying flip-flops, the format of the code is quite strict. Only minor variations of the code in
Figures A.27 and A.28 can be made and still infer the desired flip-flops. For instance, the
if-else statement could alternatively specify if (!Resetn), but this has to be the first state-
ment in the always block. Note that nothing is special about the variable name Clock; the
keyword posedge and the format of the rest of the always block are what allow the Verilog
compiler to recognize the flip-flop clock signal.

Figure A.29 shows how a flip-flop with a synchronous reset input can be described.
Since only the posedge Clock event appears in the sensitivity list of the always block, the
reset operation has to be synchronized to the clock edge.

A.14.4 Registers

One possible approach for describing a multibit register is to create an entity that instantiates
multiple flip-flops. A more convenient method is illustrated in Figure A.30. It gives the
same code shown in Figure A.28 but using the four-bit input D and the four-bit output Q.
The code describes a four-bit register with asynchronous clear.

Figure A.31 shows how the code in Figure A.30 can be extended to represent an n-bit
register with an enable input, E. The number of flip-flops is set by the parameter n. When
the active clock edge occurs, the flip-flops in the register cannot change their stored values
if the enable E is 0. If E = 1, the register responds to the active clock edge in the normal
way.

module flipflop_ar (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output reg Q;

always @(posedge Clock, negedge Resetn)
if (Resetn == 0)

Q <= 0;
else

Q <= D;

endmodule

Figure A.28 A D flip-flop with asynchronous reset.
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module flipflop_sr (D, Clock, Resetn, Q);
input D, Clock, Resetn;
output reg Q;

always @(posedge Clock)
if (Resetn == 0)

Q <= 0;
else

Q <= D;

endmodule

Figure A.29 A D flip-flop with synchronous reset.

module reg4 (D, Clock, Resetn, Q);
input [3:0] D;
input Clock, Resetn;
output reg [3:0] Q;

always @(posedge Clock, negedge Resetn)
if (Resetn == 0)

Q <= 4’b0000;
else

Q <= D;

endmodule

Figure A.30 A four-bit register with asynchronous clear.

module regne (D, Clock, Resetn, E, Q);
parameter n = 4;
input [n–1:0] D;
input Clock, Resetn, E;
output reg [n–1:0] Q;

always @(posedge Clock, negedge Resetn)
if (Resetn == 0)

Q <= 0;
else if (E)

Q <= D;

endmodule

Figure A.31 An n-bit register with asynchronous clear and enable.
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A.14.5 Shift Registers

An example of code that defines a three-bit shift register is provided in Figure A.32. The
lines of code are numbered for ease of reference. The shift register has a serial input, w, and
parallel outputs, Q. The right-most bit in the register is Q[3], and the left-most bit is Q[1].
Shifting is performed in the right-to-left direction. All assignments to Q are synchronized
to the clock edge by the (posedge Clock) event, hence Q represents the outputs of flip-flops.
The statement in line 6 specifies that Q[3] is assigned the value of w. The semantics of the
non-blocking assignments mean that the subsequent statements do not see the new value
of Q[3] until the next time the always block is evaluated (in the following clock cycle). In
line 7, the current value of Q[3], before it is shifted as a result of line 6, is assigned to Q[2].
Line 8 completes the shift operation by assigning the current value of Q[2] to Q[1], before
it is changed as a result of line 7.

The key point that has to be appreciated in the code in FigureA.32 is that the assignments
in lines 6 to 8 do not take effect until the end of the always block. Hence, all flip-flops
change their values at the same time, as required in the shift register. We could write the
statements in lines 6 to 8 in any order without changing the meaning of the code.

Blocking Assignments for Sequential Circuits
We said previously that blocking assignments should not be used for sequential circuits.

As an example of the semantics involved, Figure A.33 gives the always block from Figure
A.32 with blocking assignments. The first assignment sets Q[3] = w. Since blocking
assignments are involved, the next statement sees this new value of Q[3]; hence, it produces
Q[2] = Q[3] = w. Similarly, the final assignment gives Q[1] = Q[2] = w. The code does
not describe the desired shift register, but rather loads all flip-flops with the value on the
input w.

For the code in Figure A.33 to correctly describe a shift register, the ordering of the
three assignments has to be reversed. Then the first assignment sets Q[1] to the value of
Q[2], the second sets Q[2] to the value of Q[3], and so on. Each successive assignment is
not affected by the one that precedes it; hence, the semantics of blocking assignments cause
no problem.

1 module shift3 (w, Clock, Q);
2 input w, Clock;
3 output reg [1:3] Q;

4 always @(posedge Clock)
5 begin
6 Q[3] <= w;
7 Q[2] <= Q[3];
8 Q[1] <= Q[2];
9 end

10 endmodule

Figure A.32 A three-bit shift register.
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module shift3 (w, Clock, Q);
input w, Clock;
output reg [1:3] Q;

always @(posedge Clock)
begin

Q[3] = w;
Q[2] = Q[3];
Q[1] = Q[2];

end

endmodule

Figure A.33 Wrong code for a three-bit shift register.

module count4 (Clock, Resetn, E, Q);
input Clock, Resetn, E;
output reg [3:0] Q;

always @(posedge Clock, negedge Resetn)
if (Resetn == 0)

Q <= 0;
else if (E)

Q <= Q + 1;

endmodule

Figure A.34 Code for a four-bit counter.

To avoid the confusing dependence on the ordering of statements, blocking assignments
should be avoided when modeling sequential circuits. Also, because they imply differing
semantics, blocking and non-blocking assignments should never be mixed in a single always
construct.

A.14.6 Counters

Figure A.34 presents the code for a four-bit counter with an asynchronous reset input. The
counter also has an enable input, E. On the positive clock edge, if E is 1, the count is
incremented. If E = 0, the counter holds its current value.
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Figure A.35 The accumulator circuit.

A.14.7 An Example of a Sequential Circuit

An example of a sequential circuit is given in Figure A.35. It adds together the values of the
k-bit input X over successive clock cycles, and stores the sum of these values into a k-bit
register. Such a circuit is often called an accumulator. To store the result of each addition
operation, the circuit includes a k-bit register with an asynchronous reset input, Resetn. It
also has an enable input, E, which is controlled by a down-counter. The down-counter has
an asynchronous load input and a count enable input. The circuit is operated by first setting
Resetn to 0, which resets the contents of the k-bit register to 0 and loads the down-counter
with an m-bit number on the Y input.

Then, in each clock cycle, the counter is decremented, and the sum outputs from the
adder are loaded into the register. When the counter reaches 0, the enable inputs on both
the register and counter are set to 0 by the OR gate. The circuit remains in this state until
it is reset again. The final value stored in the register is the sum of the values of X in each
of the Y clock cycles.

We designed the accumulator circuit by using two subcircuits described in this ap-
pendix: ripple (Figure A.13) and regne (Figure A.31). The complete code is given in
Figure A.36. It uses the parameter k to set the number of bits in the input X , and parameter
m to specify the number of bits in the counter. Using these parameters in the code makes
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module accum (X, Y, Clock, Resetn, Result);
parameter k = 8;
parameter m = 4;
input [k–1:0] X;
input [m–1:0] Y;
input Clock, Resetn;
output [k–1:0] Result;
wire [k–1:0] Sum;
wire Cout, Go;
reg [m–1:0] C;

ripple u1 (.carryin(0), .X(X), .Y(Result), .S(Sum), .carryout(Cout));
defparam u1.n = k;

regne u2 (.D(Sum), .Clock(Clock), .Resetn(Resetn), .E(Go), .Q(Result));
defparam u2.n = 8;

always @(posedge Clock, negedge Resetn)
if (Resetn == 0)

C <= Y;
else if (Go)

C <= C – 1;

assign Go = C;

endmodule

Figure A.36 Code for a k-bit accumulator circuit.

it easy to change the bit width at a later time if desired. The code defines the signal Sum
to represent the outputs of the adder; for simplicity, we ignore the possibility of arithmetic
overflow and assume that the sum will fit into k bits. The m-bit signal C represents the
outputs from the down-counter. The Go signal is connected to the enable inputs on the
register and counter.

A.14.8 Moore-Type Finite State Machines

Figure A.37 gives the state diagram of a simple Moore machine. Verilog code for this
machine is shown in Figure A.38. The two-bit vector y represents the present state of the
machine, and the state codes are defined as parameters. Some CAD synthesis systems
provide a means of requesting that the state assignment be chosen automatically, but we
have specified the assignment manually in this example.

The present state signal y corresponds to the outputs of the state flip-flops, and the
signal Y represents the inputs to the flip-flops, which define the next state. The code has two
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Figure A.37 State diagram of a simple Moore-type FSM.

always blocks. The top one describes a combinational circuit and uses a case statement to
specify the values that Y should have for each value of y. The other always block represents
a sequential circuit, which specifies that y is assigned the value of Y on the positive clock
edge. The always block also specifies that y should take the value A when Resetn is 0,
which provides the asynchronous reset.

Since the machine is of the Moore type, the output z can be defined using the assignment
statement z = (y == C) that depends only on the present state of the machine. This statement
is provided as a continuous assignment at the end of the code, but it could alternatively have
been given inside the top always block that represents the combinational part of the FSM.
This assignment statement cannot be placed inside the bottom always block. Doing so
would cause z to be the output of a separate flip-flip, rather than a combinational function
of y. This circuit would set z to 1 one clock cycle later than required when the machine
enters state C.

An alternative version of the code for the Moore machine is given in Figure A.39. This
code uses a single always block to define both the combinational and sequential parts of
the finite state machine. In practice, the code in Figure A.38 is used more commonly.

A.14.9 Mealy-Type Finite State Machines

A state diagram for a simple Mealy machine is shown in Figure A.40, and the corresponding
code is given in Figure A.41. The code has the same structure as in Figure A.38 except
that the output z is defined within the top always block. The case statement specifies that,
when the FSM is in state A, z should be 0, but when in state B, z should take the value of
w. Since the top always block represents a combinational circuit, the output z can change
value as soon as the input w changes, as required for the Mealy machine.
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module moore (Clock, w, Resetn, z);
input Clock, w, Resetn;
output z;
reg [1:0] y, Y;
parameter A = 2’b00, B = 2’b01, C = 2’b10;

always @(w, y)
begin

case (y)
A: if (w == 0) Y = A;

else Y = B;
B: if (w == 0) Y = A;

else Y = C;
C: if (w == 0) Y = A;

else Y = C;
default: Y = 2’bxx;

endcase
end

always @(posedge Clock, negedge Resetn)
begin

if (Resetn == 0)
y <= A;

else
y <= Y;

end

assign z = (y == C);

endmodule

Figure A.38 Code for a Moore machine.

A.15 Guidelines for Writing Verilog Code

Modern digital systems are large and complex. A good approach in designing such systems
is to decompose them into smaller, manageable parts. Each part can then be designed by
making use of the popular subcircuit building blocks that we describe in this book.

When using Verilog for synthesis, it is essential to write code such that the compiler
will generate the intended circuit. For example, code for combinational circuits like adders,
multiplexers, encoders, and decoders should be written as illustrated in Chapters 3 and 4.
Flip-flops, registers, and counters should be described with the style of code presented
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module moore (Clock, w, Resetn, z);
input Clock, w, Resetn;
output z;
reg [1:0] y;
parameter A = 2’b00, B = 2’b01, C = 2’b10;

always @(posedge Clock, negedge Resetn)
begin

if (Resetn == 0)
y <= A;

else
case (y)

A: if (w == 0) y <= A;
else y <= B;

B: if (w == 0) y <= A;
else y <= C;

C: if (w == 0) y <= A;
else y <= C;

default: y <= 2’bxx;
endcase

end

assign z = (y == C);

endmodule

Figure A.39 Alternative version of the code for a Moore machine.

A

w 0= z 0=/

w 1= z 1=/Bw 0= z 0=/

Reset

w 1= z 0=/

Figure A.40 State diagram of a Mealy-type FSM.

in Chapter 5; and finite-state machine code should be expressed in the manner shown in
Chapter 6. Chapter 7 gives some examples of how larger circuits can be constructed by
employing these common building blocks. This approach of writing HDL code such that the
system is built by interconnecting common, relatively simple subcircuits is often referred
to as the register-transfer level (RTL) style of code. It is the most popular design method
used in practice. The rest of this section lists some common errors found in Verilog code
and gives some useful guidelines.
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module mealy (Clock, w, Resetn, z);
input Clock, w, Resetn;
output reg z;
reg y, Y;
parameter A = 1’b0, B = 1’b1;

always @(w, y)
case (y)

A: if (w == 0)
begin

Y = A;
z = 0;

end
else
begin

Y = B;
z = 0;

end
B: if (w == 0)

begin
Y = A;
z = 0;

end
else
begin

Y = B;
z = 1;

end
endcase

always @(posedge Clock, negedge Resetn)
if (Resetn == 0)

y <= A;
else

y <= Y;

endmodule

Figure A.41 Code for a Mealy machine.
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Missing Begin-End
The always construct requires begin and end delimiters if there are multiple statements

in the block. The compiler does not take indentation into consideration! For example the
always block

always @(w0, w1, s)
if ( s == 1 )

f = w1;
f = w0;

has one statement in it, not two.

Missing Semicolon
Every Verilog statement must end with a semicolon.

Missing { }
The replication operator requires a lot of brackets. A common mistake is to write

{3{A}, 2{B}} instead of {{3{A}}, {2{B}}}.

Accidental Assignment
The statement

always @(w0, w1, s)
begin

if ( s = 1 )
f = w1;

f = w0;
end

does not test the value of s. It sets s to the value 1.

Incomplete Sensitivity List
Consider the always block

always @(x)
begin

s = x ∧ y;
c = x & y;

end

When using Verilog for synthesis, this code produces the desired circuit, which is a half-
adder. However, if this code is used for simulation of circuits, the values of s and c are
updated only as a result of changes in the value of x. Changes in y will have no effect,
because y is not included in the sensitivity list. To avoid mismatches between simulation
results and synthesized circuits, always blocks for combinational circuits should include
all signals used on the right-hand side of assignments in the block.
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Variables versus Nets
Only nets can serve as the targets of continuous assignment statements. Variables

assigned values inside an always block have to be of type reg or integer. It is not possible to
make an assignment to a signal both inside an always block and via a continuous assignment
statement.

Assignments in Multiple always Blocks
In a module that has multiple always blocks, all the always blocks are concurrent with

respect to one another. Therefore, a given variable should never be assigned a value in
more than one always block. Doing so would mean that there exist multiple concurrent
assignments to this variable, which makes no sense.

Blocking versus Non-blocking Assignments
When describing a combinational circuit in an always construct, it is best to use only

blocking assignments (see Section A.11.7). For sequential circuits, non-blocking assign-
ments should be used (see Section A.14.5). Blocking and non-blocking assignments should
not be mixed in a single always block.

It is not possible to model both a combinational output and a sequential output in a
single always block. The sequential output requires an edge-triggered event control, such
as @(posedge Clock), and this means that all variables assigned a value in the always block
will be implemented as the outputs of flip-flops.

Module Instantiation
A defparam statement must reference the instance name of a module, but not just the

subcircuit’s module name. The code

bit_count cbits (T, C);
defparam bit_count.n = 8, bit_count.logn = 3;

is illegal, while the code

bit_count cbits (T, C);
defparam cbits.n = 8, cbits.logn = 3;

is syntactically correct.

Label, Net, and Variable Names
It is illegal to use any Verilog keyword as a label, net, or variable name. For example,

it is illegal to name a signal input or output.

Labeled Begin-End Blocks
It is legal to define a variable or parameter inside a begin-end block, but only if the

block has a label. The code
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always @(X)
begin

integer k;
Count = 0;
for (k = 0; k < n; k = k+1)

Count = Count + X[k];
end

is illegal, while the code

always @(X)
begin: label

integer k;
Count = 0;
for (k = 0; k < n; k = k+1)

Count = Count + X[k];
end

is syntactically correct.

Implied Memory
As shown in Section A.14.1, implied memory is used to describe storage elements.

Care must be taken to avoid unintentional implied memory. The code

always @(LA)
if (LA == 1)

EA = 1;

results in implied memory for the EA variable. If this is not desired, then the code can be
fixed by writing

always @(LA)
if (LA == 1)

EA = 1;
else

EA = 0;

Implied memory also applies to case statements. The code

always @(W)
case (W)

2’b01: EA = 1;
2’b10: EB = 1;

endcase
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does not specify the value of the EA variable when W is not equal to 01, and it does not
specify the value of EB when W is not equal to 10. To avoid having implied memory for
both EA and EB, these variables should be assigned default values, as in the code

always @(W)
begin

EA = 0; EB = 0;
case (W)

2’b01: EA = 1;
2’b10: EB = 1;

endcase
end

A.16 Concluding Remarks

This appendix describes the important features of Verilog that are useful for the synthesis of
logic circuits. As mentioned earlier, we do not discuss many features of Verilog which are
useful only for simulation of circuits or for other purposes. A reader who wishes to learn
more about using Verilog can refer to specialized books [1–7].
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a p p e n d i x

B
Implementation Technology

This appendix provides a detailed discussion of integrated circuit technology. We show
how transistors operate as simple switches, and how logic gates are built using transistors.
We also describe the structure of integrated circuit chips that are used to implement logic
circuits, including programmable logic devices, gate arrays, and memory chips. Finally, we
study some fundamental properties of electronic circuits, including current flow and power
dissipation.

Let us first consider how logic variables can be physically represented as signals in
electronic circuits. Our discussion will be restricted to binary variables, which can take
on only the values 0 and 1. In a circuit these values can be represented either as levels of
voltage or current. Both alternatives are used in different technologies. We will focus on
the simplest and most popular representation, using voltage levels.

The most obvious way of representing two logic values as voltage levels is to define a
threshold voltage; any voltage below the threshold represents one logic value, and voltages
above the threshold correspond to the other logic value. It is an arbitrary choice as to
which logic value is associated with the low and high voltage levels. Usually, logic 0 is
represented by the low voltage levels and logic 1 by the high voltages. This is known as
a positive logic system. The opposite choice, in which the low voltage levels are used to
represent logic 1 and the higher voltages are used for logic 0 is known as a negative logic
system. In this book we use only the positive logic system, but negative logic is discussed
briefly in Section B.4.

Using the positive logic system, the logic values 0 and 1 are referred to simply as “low”
and “high.” To implement the threshold-voltage concept, a range of low and high voltage
levels is defined, as shown in Figure B.1. The figure gives the minimum voltage, called VSS ,
and the maximum voltage, called VDD, that can exist in the circuit. We will assume that VSS

is 0 volts, corresponding to electrical ground, denoted Gnd. The voltage VDD represents the
power supply voltage. The most common levels for VDD are between 5 volts and 1 volt. In
this appendix we will mostly use the value VDD = 5 V. Figure B.1 indicates that voltages
in the range Gnd to V0,max represent logic value 0. The name V0,max means the maximum
voltage level that a logic circuit must recognize as low. Similarly, the range from V1,min

to VDD corresponds to logic value 1, and V1,min is the minimum voltage level that a logic
circuit must interpret as high. The exact levels of V0,max and V1,min depend on the particular
technology used; a typical example might set V0,max to 40 percent of VDD and V1,min to 60
percent of VDD. The range of voltages between V0,max and V1,min is undefined. Logic signals
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Figure B.1 Representation of logic values by voltage levels.

do not normally assume voltages in this range except in transition from one logic value to
the other. We will discuss the voltage levels used in logic circuits in more depth in Section
B.8.3.

B.1 Transistor Switches

Logic circuits are built with transistors. A full treatment of transistor behavior is beyond
the scope of this text; it can be found in electronics textbooks, such as [1] and [2]. For
the purpose of understanding how logic circuits are built, we can assume that a transistor
operates as a simple switch. Figure B.2a shows a switch controlled by a logic signal,
x. When x is low, the switch is open, and when x is high, the switch is closed. The most
popular type of transistor for implementing a simple switch is the metal oxide semiconductor
field-effect transistor (MOSFET). There are two different types of MOSFETs, known as n-
channel, abbreviated NMOS, and p-channel, denoted PMOS.

Figure B.2b gives a graphical symbol for an NMOS transistor. It has four electrical
terminals, called the source, drain, gate, and substrate. In logic circuits the substrate (also
called body) terminal is connected to Gnd. We will use the simplified graphical symbol in
Figure B.2c, which omits the substrate node. There is no physical difference between the
source and drain terminals. They are distinguished in practice by the voltage levels applied
to the transistor; by convention, the terminal with the lower voltage level is deemed to be
the source.



December 31, 2012 09:07 vra80547_appb Sheet number 3 Page number 735 magenta black

B.1 Transistor Switches 735

DrainSource

x = “low” x = “high”

(a) A simple switch controlled by the input x
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Figure B.2 NMOS transistor as a switch.

A detailed explanation of how the transistor operates will be presented in Section B.8.1.
For now it is sufficient to know that it is controlled by the voltage VG at the gate terminal.
If VG is low, then there is no connection between the source and drain, and we say that the
transistor is turned off. If VG is high, then the transistor is turned on and acts as a closed
switch that connects the source and drain terminals. In Section B.8.2 we show how to
calculate the resistance between the source and drain terminals when the transistor is turned
on, but for now assume that the resistance is 0 �.

PMOS transistors have the opposite behavior of NMOS transistors. The former are
used to realize the type of switch illustrated in Figure B.3a, where the switch is open when
the control input x is high and closed when x is low. A symbol is shown in Figure B.3b.
In logic circuits the substrate of the PMOS transistor is connected to VDD, leading to the
simplified symbol in Figure B.3c. If VG is high, then the PMOS transistor is turned off and
acts like an open switch. When VG is low, the transistor is turned on and acts as a closed
switch that connects the source and drain. In the PMOS transistor the source is the node
with the higher voltage.

Figure B.4 summarizes the typical use of NMOS and PMOS transistors in logic circuits.
An NMOS transistor is turned on when its gate terminal is high, while a PMOS transistor
is turned on when its gate is low. When the NMOS transistor is turned on, its drain is
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Figure B.3 PMOS transistor as a switch.

pulled down to Gnd, and when the PMOS transistor is turned on, its drain is pulled up to
VDD. Because of the way the transistors operate, an NMOS transistor cannot be used to
pull its drain terminal completely up to VDD. Similarly, a PMOS transistor cannot be used
to pull its drain terminal completely down to Gnd. We discuss the operation of MOSFETs
in considerable detail in Section B.8.

B.2 NMOS Logic Gates

The first schemes for building logic gates with MOSFETs became popular in the 1970s
and relied on either PMOS or NMOS transistors, but not both. Since the early 1980s, a
combination of both NMOS and PMOS transistors has been used. We will first describe
how logic circuits can be built using NMOS transistors because these circuits are easier
to understand. Such circuits are known as NMOS circuits. Then we will show how
NMOS and PMOS transistors are combined in the presently popular technology known as
complementary MOS, or CMOS.

In the circuit in Figure B.5a, when Vx = 0 V the NMOS transistor is turned off. No
current flows through the resistor R, and Vf = 5 V. On the other hand, when Vx = 5 V, the
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Figure B.4 NMOS and PMOS transistors in logic circuits.

transistor is turned on and pulls Vf to a low voltage level. The exact voltage level of Vf

in this case depends on the amount of current that flows through the resistor and transistor.
Typically, Vf is about 0.2 V (see Section B.8.3). If Vf is viewed as a function of Vx, then the
circuit is an NMOS implementation of a NOT gate. In logic terms this circuit implements
the function f = x. Figure B.5b gives a simplified circuit diagram in which the connection
to the positive terminal on the power supply is indicated by an arrow labeled VDD and the
connection to the negative power-supply terminal is indicated by the Gnd symbol. We will
use this simplified style of circuit diagram for the figures that follow.

The purpose of the resistor in the NOT gate circuit is to limit the amount of current that
flows when Vx = 5 V. Rather than using a resistor for this purpose, a transistor is normally
used. We will discuss this issue in more detail in Section B.8.3. In subsequent diagrams
a dashed box is drawn around the resistor R as a reminder that it is implemented using a
transistor.

Figure B.5c presents the graphical symbols for a NOT gate. The symbol on the left
shows the input, output, power, and ground terminals, and the symbol on the right is
simplified to show only the input and output terminals. In practice only the simplified
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(b) Simplified circuit diagram
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Figure B.5 A NOT gate built using NMOS technology.

symbol is used. Another name often used for the NOT gate is inverter. We use both names
interchangeably in this book.

In Section 2.1 we saw that a series connection of switches corresponds to the logicAND
function, while a parallel connection represents the OR function. Using NMOS transistors,
we can implement the series connection as depicted in Figure B.6a. If Vx1 = Vx2 = 5 V,
both transistors will be on and Vf will be close to 0 V. But if either Vx1 or Vx2 is 0, then no
current will flow through the series-connected transistors and Vf will be pulled up to 5 V.
The resulting truth table for f , provided in terms of logic values, is given in Figure B.6b.
The circuit realizes a NAND gate. Its graphical symbols are shown in part (c) of the figure.

The parallel connection of NMOS transistors is given in Figure B.7a. Here, if either
Vx1 = 5 V or Vx2 = 5 V, then Vf will be close to 0 V. Only if both Vx1 and Vx2 are 0 will Vf

be pulled up to 5 V. A corresponding truth table is given in Figure B.7b, which shows that
the circuit realizes the NOR function. The graphical symbols for the NOR gate appear in
part (c) of the figure.

Figure B.8 indicates how an AND gate is built in NMOS technology by following
a NAND gate with an inverter. Node A realizes the NAND of inputs x1 and x2, and f
represents the AND function. In a similar fashion an OR gate is realized as a NOR gate
followed by an inverter, as depicted in Figure B.9.
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Figure B.6 NMOS realization of a NAND gate.

B.3 CMOS Logic Gates

So far we have considered the implementation of logic gates using NMOS transistors. For
each of the circuits that has been presented, it is possible to derive an equivalent circuit
that uses PMOS transistors. However, it is more interesting to consider how both NMOS
and PMOS transistors can be used together. The most popular such approach is known as
CMOS technology. We will see in Section B.8 that CMOS technology offers some attractive
practical advantages in comparison to NMOS technology.

In NMOS circuits the logic functions are realized by arrangements of NMOS transistors,
combined with a pull-up device that acts as a resistor. We will refer to the part of the circuit
that involves NMOS transistors as the pull-down network (PDN). Then the structure of the
circuits in Figures B.5 through B.9 can be characterized by the block diagram in Figure
B.10. The concept of CMOS circuits is based on replacing the pull-up device with a pull-up
network (PUN) that is built using PMOS transistors, such that the functions realized by the
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Figure B.7 NMOS realization of a NOR gate.

PDN and PUN networks are complements of each other. Then a logic circuit, such as a
typical logic gate, is implemented as indicated in Figure B.11. For any given valuation of
the input signals, either the PDN pulls Vf down to Gnd or the PUN pulls Vf up to VDD. The
PDN and the PUN have equal numbers of transistors, which are arranged so that the two
networks are duals of one another. Wherever the PDN has NMOS transistors in series, the
PUN has PMOS transistors in parallel, and vice versa.

The simplest example of a CMOS circuit, a NOT gate, is shown in Figure B.12. When
Vx = 0 V, transistor T2 is off and transistor T1 is on. This makes Vf = 5 V, and since T2 is
off, no current flows through the transistors. When Vx = 5 V, T2 is on and T1 is off. Thus
Vf = 0 V, and no current flows because T1 is off.

A key point is that no current flows in a CMOS inverter when the input is either low or
high. This is true for all CMOS circuits; no current flows, and hence no power is dissipated
under steady state conditions. This property has led to CMOS becoming the most popular
technology in use today for building logic circuits. We will discuss current flow and power
dissipation in detail in Section B.8.6.

Figure B.13 provides a circuit diagram of a CMOS NAND gate. It is similar to the
NMOS circuit presented in Figure B.6 except that the pull-up device has been replaced by
the PUN with two PMOS transistors connected in parallel. The truth table in the figure
specifies the state of each of the four transistors for each logic valuation of inputs x1 and
x2. The reader can verify that the circuit properly implements the NAND function. Under
static conditions no path exists for current flow from VDD to Gnd.
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(a) Circuit
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Figure B.8 NMOS realization of an AND gate.

The circuit in Figure B.13 can be derived from the logic expression that defines the
NAND operation, f = x1x2. This expression specifies the conditions for which f = 1;
hence it defines the PUN. Since the PUN consists of PMOS transistors, which are turned
on when their control (gate) inputs are set to 0, an input variable xi turns on a transistor if
xi = 0. From DeMorgan’s law, we have

f = x1x2 = x1 + x2

Thus f = 1 when either input x1 or x2 has the value 0, which means that the PUN must have
two PMOS transistors connected in parallel. The PDN must implement the complement of
f , which is

f = x1x2

Since f = 1 when both x1 and x2 are 1, it follows that the PDN must have two NMOS
transistors connected in series.
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(a) Circuit
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(b) Truth table
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Figure B.9 NMOS realization of an OR gate.
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Figure B.10 Structure of an NMOS circuit.
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Figure B.11 Structure of a CMOS circuit.
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Figure B.12 CMOS realization of a NOT gate.

The circuit for a CMOS NOR gate is derived from the logic expression that defines the
NOR operation

f = x1 + x2 = x1x2

Since f = 1 only if both x1 and x2 have the value 0, then the PUN consists of two PMOS
transistors connected in series. The PDN, which realizes f = x1 + x2, has two NMOS
transistors in parallel, leading to the circuit shown in Figure B.14.
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Figure B.13 CMOS realization of a NAND gate.

(a) Circuit

Vf

VDD

(b) Truth table and transistor states

on
on

on
off

0
1

0
0
1
1

0
1

off

off

on

off

off
on

f

off

on

1
0
0
0

off
off
on

on

Vx1

Vx2

T 1

T 2

T 3 T 4

x1 x2 T 1 T 2 T 3 T 4

Figure B.14 CMOS realization of a NOR gate.
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Figure B.15 CMOS realization of an AND gate.

A CMOS AND gate is built by connecting a NAND gate to an inverter, as illustrated
in Figure B.15. Similarly, an OR gate is constructed with a NOR gate followed by a NOT
gate.

The above procedure for deriving a CMOS circuit can be applied to more general logic
functions to create complex gates. This process is illustrated in the following two examples.

Example B.1Consider the function

f = x1 + x2x3

Since all variables appear in their complemented form, we can directly derive the PUN.
It consists of a PMOS transistor controlled by x1 in parallel with a series combination of
PMOS transistors controlled by x2 and x3. For the PDN we have

f = x1 + x2x3 = x1(x2 + x3)

This expression gives the PDN that has an NMOS transistor controlled by x1 in series with
a parallel combination of NMOS transistors controlled by x2 and x3. The circuit is shown
in Figure B.16.
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Figure B.16 The circuit for Example B.1.

Example B.2 Consider the function

f = x1 + (x2 + x3)x4

Then

f = x1(x2x3 + x4)

These expressions lead directly to the circuit in Figure B.17.

The circuits in Figures B.16 and B.17 show that it is possible to implement fairly
complex logic functions using combinations of series and parallel connections of transistors
(acting as switches), without implementing each series or parallel connection as a complete
AND (using the structure introduced in Figure B.15) or OR gate.

B.3.1 Speed of Logic Gate Circuits

In the preceding sections we have assumed that transistors operate as ideal switches that
present no resistance to current flow. Hence, while we have derived circuits that realize
the functionality needed in logic gates, we have ignored the important issue of the speed of
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Figure B.17 The circuit for Example B.2.

operation of the circuits. In reality transistor switches have a significant resistance when
turned on. Also, transistor circuits include capacitors, which are created as a side effect
of the manufacturing process. These factors affect the amount of time required for signal
values to propagate through logic gates. We provide a detailed discussion of the speed of
logic circuits, as well as a number of other practical issues, in Section B.8.

B.4 Negative Logic System

In the discussion for Figure B.1, we said that logic values are represented as two distinct
ranges of voltage levels. We are using the convention that the higher voltage levels represent
logic value 1 and the lower voltages represent logic value 0. This convention is known
as the positive logic system, and it is the one used in most practical applications. In this



December 31, 2012 09:07 vra80547_appb Sheet number 16 Page number 748 magenta black

748 A P P E N D I X B • Implementation Technology

(a) Circuit

Vf

VDD

(b) Voltage levels

L
H

L
L
H
H

L
H

H
H
H
L

Vx1

Vx2

V x1
V x2

V f

Figure B.18 Voltage levels in the circuit in Figure B.13.

section we briefly consider the negative logic system in which the association between
voltage levels and logic values is reversed.

Let us reconsider the CMOS circuit in Figure B.13, which is reproduced in Figure
B.18a. Part (b) of the figure gives a truth table for the circuit, but the table shows voltage
levels instead of logic values. In this table, L refers to the low voltage level in the circuit,
which is 0 V, and H represents the high voltage level, which is VDD. This is the style of
truth table that manufacturers of integrated circuits often use in data sheets to describe the
functionality of the chips. It is entirely up to the user of the chip as to whether L and H are
interpreted in terms of logic values such that L = 0 and H = 1, or L = 1 and H = 0.

Figure B.19a illustrates the positive logic interpretation in which L = 0 and H = 1.
As we already know from the discussions of Figure B.13, the circuit represents a NAND
gate under this interpretation. The opposite interpretation is shown in Figure B.19b. Here
negative logic is used so that L = 1 and H = 0. The truth table specifies that the circuit
represents a NOR gate in this case. Note that the truth table rows are listed in the opposite
order from what we normally use, to be consistent with the L and H values in Figure B.18b.
Figure B.19b also gives the logic gate symbol for the NOR gate, which includes small
triangles on the gate’s terminals to indicate that the negative logic system is used.

As another example, consider again the circuit in Figure B.15. Its truth table, in terms
of voltage levels, is given in Figure B.20a. Using the positive logic system, this circuit
represents an AND gate, as indicated in Figure B.20b. But using the negative logic system,
the circuit represents an OR gate, as depicted in Figure B.20c.

It is possible to use a mixture of positive and negative logic in a single circuit, which
is known as a mixed logic system. In practice, the positive logic system is used in most
applications. We do not consider the negative logic system in the main body of the book.
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(a) Positive logic truth table and gate symbol
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Figure B.19 Interpretation of the circuit in Figure B.18.

B.5 Standard Chips

In Chapter 1 we mentioned that several different types of integrated circuit chips are avail-
able for implementation of logic circuits. We now discuss the available choices in some
detail.

B.5.1 7400-Series Standard Chips

An approach used widely until the mid-1980s was to connect together multiple chips, each
containing only a few logic gates. A wide assortment of chips, with different types of logic
gates, is available for this purpose. They are known as 7400-series parts because the chip
part numbers always begin with the digits 74. An example of a 7400-series part is given
in Figure B.21. Part (a) of the figure shows a type of package that the chip is provided in,
called a dual-inline package (DIP). Part (b) illustrates the 7404 chip, which comprises six
NOT gates. The chip’s external connections are called pins or leads. Two pins are used
to connect to VDD and Gnd , and other pins provide connections to the NOT gates. Many
7400-series chips exist, and they are described in the data books produced by manufacturers
of these chips [3–7]. Diagrams of some of the chips are also included in several textbooks,
such as [8–12].
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Figure B.20 Interpretation of the circuit in Figure B.15.

The 7400-series chips are produced in standard forms by a number of integrated circuit
manufacturers, using agreed-upon specifications. Competition among various manufactur-
ers works to the designer’s advantage because it tends to lower the price of chips and ensures
that parts are always readily available. For each specific 7400-series chip, several variants
are built with different technologies. For instance, the part called 74LS00 is built with a
technology called transistor-transistor logic (TTL), which is described in [1], whereas the
74HC00 is fabricated using CMOS technology. In general, the most popular chips used
today are the CMOS variants.

As an example of how a logic circuit can be implemented using 7400-series chips,
consider the function f = x1x2 + x2x3. A NOT gate is required to produce x2, as well as 2
two-input AND gates and a two-input OR gate. Figure B.22 shows three 7400-series chips
that can be used to implement the function. We assume that the three input signals x1, x2,
and x3 are produced as outputs by some other circuitry that can be connected by wires to



December 31, 2012 09:07 vra80547_appb Sheet number 19 Page number 751 magenta black

B.5 Standard Chips 751

(a) Dual-inline package

(b) Structure of 7404 chip

VDD

Gnd

Figure B.21 A 7400-series chip.

the three chips. Notice that power and ground connections are included for all three chips.
This example makes use of only a portion of the gates available in the three chips, hence
the remaining gates can be used to realize other functions.

Because of their low logic capacity, the standard chips are seldom used in practice today,
with one exception. Many modern products include standard chips that contain drivers.
Drivers (also sometimes called buffers) are logic gates that are usually used to improve the
speed of circuits. An example of a driver chip is depicted in Figure B.23. It is the 74244
chip, which comprises eight tri-state drivers. We describe how tri-state drivers work in
Section 7.1.1. Rather than showing how the drivers are arranged inside the chip package,
as we did for the NOT gates in Figure B.21, we show only the pin numbers of the package
pins that are connected to the drivers. The package has 20 pins, and they are numbered
with pin 1 in the lower-left corner, and pin 20 in the upper-left corner. The Gnd and VDD

connections are provided on pins 10 and 20, respectively, similar to the arrangement shown
in Figure B.21. Many other driver chips also exist. For example, the 162244 chip has 16
tri-state drivers. It is part of a family of devices that are similar to the 7400-series chips
but with twice as many gates in each chip. These chips are available in multiple types of
packages, with the most popular being a small-outline integrated circuit (SOIC) package.
An SOIC package has a similar shape to a DIP, but the SOIC is considerably smaller in
physical size.

As integrated circuit technology has improved over time, a system of classifying chips
according to their size has evolved. The earliest chips produced, such as the 7400-series,
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Figure B.22 An implementation of f = x1x2 + x2x3.
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Figure B.23 The 74244 driver chip.
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comprise only a few logic gates. The technology used to produce these chips is referred to
as small-scale integration (SSI). Chips that include slightly more logic circuitry, typically
about 10 to 100 gates, represent medium-scale integration (MSI). Until the mid-1980s
chips that were too large to qualify as MSI were classified as large-scale integration (LSI).
In recent years the concept of classifying circuits according to their size has become of
little practical use. Most integrated circuits today contain many thousands or millions of
transistors. Regardless of their exact size, these large chips are said to be made with very
large scale integration (VLSI) technology. The trend in digital hardware products is to
integrate as much circuitry as possible onto a single chip. Thus most of the chips used
today are built with VLSI technology, and the older types of chips are used rarely.

B.6 Programmable Logic Devices

The function provided by each of the 7400-series parts is fixed and cannot be tailored to suit
a particular design situation. This fact, coupled with the limitation that each chip contains
only a few logic gates, makes these chips inefficient for building large logic circuits. It is
possible to manufacture chips that contain relatively large amounts of logic circuitry with
a structure that is not fixed. Such chips were first introduced in the 1970s and are called
programmable logic devices (PLDs).

APLD is a general-purpose chip for implementing logic circuits. It contains a collection
of logic circuit elements that can be customized in different ways. A PLD can be viewed as
a “black box” that contains logic gates and programmable switches, as illustrated in Figure
B.24. The programmable switches allow the logic gates inside the PLD to be connected
together to implement whatever logic circuit is needed.

Logic gates
and

programmable
switches

Inputs
(logic variables)

Outputs
(logic functions)

Figure B.24 Programmable logic device as a black box.
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B.6.1 Programmable Logic Array (PLA)

Several types of PLDs are commercially available. The first developed was the pro-
grammable logic array (PLA). The general structure of a PLA is depicted in Figure B.25.
Based on the idea that logic functions can be realized in sum-of-products form, a PLA
comprises a collection of AND gates that feeds a set of OR gates. As shown in the figure,
the PLA’s inputs x1, . . . , xn pass through a set of drivers (which provide both the true value
and complement of each input) into a circuit block called an AND plane, or AND array.
The AND plane produces a set of product terms P1, . . . , Pk . Each of these terms can be
configured to implement any AND function of x1, . . . , xn. The product terms serve as the
inputs to an OR plane, which produces the outputs f1, . . . , fm. Each output can be config-
ured to realize any sum of P1, . . . , Pk and hence any sum-of-products function of the PLA
inputs.

A more detailed diagram of a small PLA is given in Figure B.26, which shows a PLA
with three inputs, four product terms, and two outputs. Each AND gate in the AND plane
has six inputs, corresponding to the true and complemented versions of the three input
signals. Each connection to an AND gate is programmable; a signal that is connected to
an AND gate is indicated with a wavy line, and a signal that is not connected to the gate is
shown with a broken line. The circuitry is designed such that any unconnected AND-gate
inputs do not affect the output of the AND gate. In commercially available PLAs, several

f1

AND plane OR plane

Input drivers

inverters
and

P1

Pk

fm

x1 x2 xn

x1 x1 xn xn

Figure B.25 General structure of a PLA.
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Figure B.26 Gate-level diagram of a PLA.

methods of realizing the programmable connections exist. Detailed explanation of how a
PLA can be built using transistors is given in Section B.10.

In Figure B.26 the AND gate that produces P1 is shown connected to the inputs x1 and
x2. Hence P1 = x1x2. Similarly, P2 = x1x3, P3 = x1x2x3, and P4 = x1x3. Programmable
connections also exist for the OR plane. Output f1 is connected to product terms P1, P2,
and P3. It therefore realizes the function f1 = x1x2 + x1x3 + x1x2x3. Similarly, output f2 =
x1x2 + x1x2x3 + x1x3. Although Figure B.26 depicts the PLA programmed to implement
the functions described above, by programming the AND and OR planes differently, each
of the outputs f1 and f2 could implement various functions of x1, x2, and x3. The only
constraint on the functions that can be implemented is the size of the AND plane because
it produces only four product terms. Commercially available PLAs come in larger sizes
than we have shown here. Typical parameters are 16 inputs, 32 product terms, and eight
outputs.
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Figure B.27 Customary schematic for the PLA in Figure B.26.

Although Figure B.26 illustrates clearly the functional structure of a PLA, this style of
drawing is awkward for larger chips. Instead, it has become customary in technical literature
to use the style shown in Figure B.27. Each AND gate is depicted as a single horizontal
line attached to an AND-gate symbol. The possible inputs to the AND gate are drawn as
vertical lines that cross the horizontal line. At any crossing of a vertical and horizontal
line, a programmable connection, indicated by an X, can be made. Figure B.27 shows the
programmable connections needed to implement the product terms in Figure B.26. Each
OR gate is drawn in a similar manner, with a vertical line attached to an OR-gate symbol.
The AND-gate outputs cross these lines, and corresponding programmable connections can
be formed. The figure illustrates the programmable connections that produce the functions
f1 and f2 from Figure B.26.

The PLA is efficient in terms of the area needed for its implementation on an integrated
circuit chip. For this reason, PLAs are often included as part of larger chips, such as
microprocessors. In this case a PLA is created so that the connections to the AND and OR
gates are fixed, rather than programmable. In Section B.10 we will show that both fixed
and programmable PLAs can be created with similar structures.
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B.6.2 Programmable Array Logic (PAL)

In a PLA both the AND and OR planes are programmable. Historically, the programmable
switches presented two difficulties for manufacturers of these devices: they were hard to
fabricate correctly, and they reduced the speed-performance of circuits implemented in the
PLAs. These drawbacks led to the development of a similar device in which the AND plane
is programmable, but the OR plane is fixed. Such a chip is known as a programmable array
logic (PAL) device.

An example of a PAL with three inputs, four product terms, and two outputs is given
in Figure B.28. The product terms P1 and P2 are hardwired to one OR gate, and P3 and
P4 are hardwired to the other OR gate. The PAL is shown programmed to realize the two
logic functions f1 = x1x2x3 + x1x2x3 and f2 = x1x2 + x1x2x3. In comparison to the PLA in
Figure B.27, the PAL offers less flexibility; the PLA allows up to four product terms per
OR gate, whereas the OR gates in the PAL have only two inputs. To compensate for the
reduced flexibility, PALs are manufactured in a range of sizes, with various numbers of
inputs and outputs, and different numbers of inputs to the OR gates.

An example of a commonly used PAL is called the 22V10 [13], which is depicted in
Figure B.29. There are 11 input pins that feed the AND plane, and an additional input that
can also serve as a clock input. The OR gates are of variable size, ranging from 8 to 16 inputs.

f 1

P1

P2

f 2

x1 x2 x3

AND plane

P3

P4

Figure B.28 An example of a PAL.
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Figure B.29 The 22V10 PAL device.

Each output pin has a tri-state driver, which allows the pin to optionally be used as an input
pin. Extra circuitry is connected to each OR gate and is referred to as a macrocell.

Figure B.30 shows one of the macrocells in the 22V10 PAL. It connects the OR gate
to one input on an XOR gate, which feeds a D flip-flop. Since the other input to the XOR
gate can be programmed to be 0 or 1, it can be used to complement the OR-gate output.
A 2-to-1 multiplexer allows bypassing of the flip-flop, and the tri-state driver can be either
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Figure B.30 The 22V10 macrocell.

permanently enabled or connected to a product term from the AND plane. Either the Q
output from the flip-flop or the output of the tri-state driver can be connected to the AND
plane. If the tri-state driver is disabled, then the corresponding pin can be used as an input.

A number of companies manufacture PLAs or PALs, or other, similar types of simple
PLDs (SPLDs), including Altera, Atmel, and Lattice. An interested reader can examine the
information that these companies provide on their web sites.

B.6.3 Programming of PLAs and PALs

In Figures B.27 and B.28, each connection between a logic signal in a PLA or PAL and the
AND/OR gates is shown as an X. We describe how these switches are implemented using
transistors in Section B.10. Users’ circuits are implemented in the devices by configuring,
or programming, these switches. Commercial chips contain a few thousand programmable
switches, hence it is not feasible for a user of these chips to specify manually the desired
programming state of each switch. Instead, CAD systems are employed for this purpose.
For CAD systems that support targeting of circuits to PLDs, the tools have the capability
to automatically produce the necessary information for programming each of the switches
in the device. A computer system that runs the CAD tools may be connected by a cable
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to a dedicated programming unit. Once the user has completed the design of a circuit, the
CAD tools generate a file, often called a programming file or fuse map, that specifies the
state that each switch in the PLD should have, to realize correctly the designed circuit. The
PLD is placed into the programming unit, and the programming file is transferred from the
computer system. The programming unit places the chip into a special programming mode
and configures each switch individually.

PLAs or PALs used as part of a logic circuit usually reside with other chips on a printed
circuit board (PCB). The procedure described above assumes that the chip can be removed
from the circuit board for programming in the programming unit. Removal is made possible
by using a socket on the PCB, as illustrated in Figure B.31. Although PLAs and PALs are
available in the DIP packages shown in Figure B.21a, they are also available in another
popular type of package, called a plastic-leaded chip carrier (PLCC), which is depicted in
Figure B.31. On all four of its sides, the PLCC package has pins that “wrap around” the
edges of the chip, rather than extending straight down as in the case of a DIP. The socket
that houses the PLCC is attached by solder to the circuit board, and the PLCC is held in the
socket by friction.

Instead of relying on a programming unit to configure a chip, it would be advantageous
to be able to perform the programming while the chip is still attached to its circuit board. This
method of programming is called in-system programming (ISP). It is not usually provided
for PLAs or PALs, but is available for the more sophisticated chips that are described below.

Printed circuit b
oard

Figure B.31 A PLCC package with socket.
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B.6.4 Complex Programmable Logic Devices (CPLDs)

PLAs and PALs are useful for implementing a wide variety of small digital circuits. Each
device can be used to implement circuits that do not require more than the number of inputs,
product terms, and outputs that are provided in the particular chip. These chips are limited
to fairly modest sizes, typically supporting a combined number of inputs plus outputs of not
more than 32. For implementation of circuits that require more inputs and outputs, either
multiple PLAs or PALs can be employed or else a more sophisticated type of chip, called
a complex programmable logic device (CPLD), can be used.

A CPLD comprises multiple circuit blocks on a single chip, with internal wiring re-
sources to connect the circuit blocks. Each circuit block is similar to a PLA or a PAL; we
will refer to the circuit blocks as PAL-like blocks. An example of a CPLD is given in Figure
B.32. It includes four PAL-like blocks that are connected to a set of interconnection wires.
Each PAL-like block is also connected to a subcircuit labeled I/O block, which is attached
to a number of the chip’s input and output pins.

Figure B.33 shows an example of the wiring structure and the connections to a PAL-like
block in a CPLD. The PAL-like block includes 3 macrocells (real CPLDs typically have
about 16 macrocells in a PAL-like block), each consisting of a four-input OR gate (real
CPLDs usually provide between 5 and 20 inputs to each OR gate). The OR-gate output is
connected to an XOR gate; the other input to this gate can be programmably connected to 1
or 0; if 1, then the XOR gate complements the OR-gate output, and if 0, then the XOR gate
has no effect. The macrocell also includes a flip-flop, a multiplexer, and a tri-state driver.
Each tri-state driver is connected to a pin on the CPLD package. The tri-state driver allows
each pin to be used either as an output from the CPLD or as an input.

PAL-like
block

I/
O

 b
lo

ck

PAL-like
block

I/O
 block

PAL-like
block

I/
O

 b
lo

ck

PAL-like
block

I/O
 block

Interconnection wires

Figure B.32 Structure of a complex programmable logic device (CPLD).
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D Q

D Q

D Q

PAL-like block (details not shown)

PAL-like block

Figure B.33 A section of the CPLD in Figure B.32.

The interconnection wiring contains programmable switches that are used to connect
the PAL-like blocks. Each of the horizontal wires can be connected to some of the vertical
wires that it crosses. One detail to note is that when a pin is used as an input, the macrocell
associated with that pin cannot be used and is therefore wasted. Some CPLDs include
additional connections between the macrocells and the interconnection wiring that avoids
wasting macrocells in such situations.

Commercial CPLDs range in size from only 2 PAL-like blocks to more than 100 PAL-
like blocks. They are available in a variety of packages, including the PLCC package that
is shown in Figure B.31. Figure B.34a shows another type of package used to house CPLD
chips, called a quad flat pack (QFP). Like a PLCC package, the QFP package has pins on all
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(a) CPLD in a Quad Flat Pack (QFP) package

Printed
circuit board

To computer

(b) JTAG programming

Figure B.34 CPLD packaging and programming.

four sides, but whereas the PLCC’s pins wrap around the edges of the package, the QFP’s
pins extend outward from the package, with a downward-curving shape. The QFP’s pins
are much thinner than those on a PLCC, which means that the package can support a larger
number of pins; QFPs are available with more than 200 pins, whereas PLCCs are limited
to fewer than 100 pins.

Most CPLDs contain the same type of programmable switches that are used in SPLDs,
which are described in Section B.10. Programming of the switches may be accomplished
using the same technique described in Section B.6.3, in which the chip is placed into a
special-purpose programming unit. However, this programming method is rather inconve-
nient for large CPLDs for two reasons. First, large CPLDs may have more than 200 pins
on the chip package, and these pins are often fragile and easily bent. Second, to be pro-
grammed in a programming unit, a socket is required to hold the chip. Sockets for large QFP
packages are very expensive; they may cost more than the CPLD device itself. For these
reasons, CPLD devices usually support the ISP technique. A small connector is included
on the PCB that houses the CPLD, and a cable is connected between that connector and a
computer system. The CPLD is programmed by transferring the programming information
generated by a CAD system through the cable, from the computer into the CPLD. The
circuitry on the CPLD that allows this type of programming has been standardized by the
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IEEE and is usually called a JTAG port. It uses four wires to transfer information between
the computer and the device being programmed. The term JTAG stands for Joint TestAction
Group. Figure B.34b illustrates the use of a JTAG port for programming two CPLDs on a
circuit board. The CPLDs are connected together so that both can be programmed using
the same connection to the computer system. Once a CPLD is programmed, it retains the
programmed state permanently, even when the power supply for the chip is turned off. This
property is called nonvolatile programming.

CPLDs are used for the implementation of many types of digital circuits. In industrial
designs that employ some type of PLD device, CPLDs are used often, while SPLDs are
becoming less common. A number of companies offer CPLDs, including Altera, Lattice,
and Xilinx. Information about these products is available on the internet.

B.6.5 Field-Programmable Gate Arrays

The types of chips described above, 7400 series, SPLDs, and CPLDs, are useful for imple-
mentation of small or moderately-sized logic circuits. One way to quantify a circuit’s size
is to assume that the circuit is to be built using only simple logic gates and then estimate
how many of these gates are needed. A commonly used measure is the total number of
two-input NAND gates that would be needed to build the circuit; this measure is often
called the number of equivalent gates.

Using the equivalent-gates metric, the size of a 7400-series chip is simple to measure
because each chip contains only simple gates. For SPLDs and CPLDs the typical measure
used is that each macrocell represents about 20 equivalent gates. Thus a typical PAL that
has eight macrocells can accommodate a circuit that needs up to about 160 gates, and a
large CPLD that has 500 macrocells can implement circuits of up to about 10,000 equivalent
gates.

By modern standards, a logic circuit with 10,000 gates is not large. To implement
larger circuits, it is convenient to use a different type of chip that has a larger logic capacity.
A field-programmable gate array (FPGA) is a programmable logic device that supports
implementation of relatively large logic circuits. FPGAs are quite different from SPLDs and
CPLDs because FPGAs do not contain AND or OR planes. Instead, FPGAs provide logic
elements for implementation of the required functions. The general structure of an FPGA
is illustrated in Figure B.35a. It contains three main types of resources: logic elements, I/O
blocks for connecting to the pins of the package, and interconnection wires and switches.
The logic elements are arranged in a two-dimensional array, and the interconnection wires
are organized as horizontal and vertical routing channels between rows and columns of
logic blocks. The routing channels contain wires and programmable switches that allow
the logic elements to be interconnected in many ways. Figure B.35a shows two locations
for programmable switches; the blue boxes adjacent to logic elements hold switches that
connect the logic element input and output terminals to the interconnection wires, and the
blue boxes that are diagonally between logic elements connect one interconnection wire to
another (such as a vertical wire to a horizontal wire). Programmable connections also exist
between the I/O blocks and the interconnection wires. The actual number of programmable
switches and wires in an FPGA varies in commercially available chips.
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(b) Pin grid array (PGA) package (bottom view)

Logic block Interconnection switches

(a) General structure of an FPGA
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Figure B.35 A field-programmable gate array (FPGA).

FPGAs can be used to implement logic circuits of more than a million equivalent gates
in size. Examples of commercial FPGA products can be found on the websites provided by
Altera and Xilinx, which are the leading providers of these chips. FPGA chips are available
in a variety of packages, including the PLCC and QFP packages described earlier. Fig-
ure B.35b depicts another type of package, called a pin grid array (PGA). A PGA package
may have up to a few hundred pins in total, which extend straight outward from the bottom of
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the package, in a grid pattern. Another version of this packaging technology is known as
the ball grid array (BGA). In a BGA the pins are small round balls, instead of posts. The
advantage of BGA packages is that the pins are very small; hence more pins can be provided
on a relatively small package.

Each logic element in an FPGA typically has a small number of inputs and outputs.
A variety of FPGA products are on the market, featuring different types of logic elements.
The most commonly used logic element is a lookup table (LUT), which contains storage
cells that are used to store the truth table of a logic function. Each cell is capable of holding
a single logic value, either 0 or 1. LUTs of various sizes may be created, where the size is
defined by the number of inputs. Figure B.36a shows the structure of a small LUT. It has
two inputs, x1 and x2, and one output, f . It is capable of implementing any logic function of
two variables. Because a two-variable truth table has four rows, this LUT has four storage
cells. One cell corresponds to the output value in each row of the truth table. The input
variables x1 and x2 are used as the select inputs of three multiplexers that provide the content
of one of the four storage cells as the output of the LUT. We discuss storage cells in Sec-
tion B.9.

(a) Circuit for a two-input LUT

x1

x2

f

0/1

0/1

0/1

0/1

0
0
1
1

0
1
0
1

1
0
0
1

x1 x2

(b) f 1 x1 x2 x1 x2+=

(c) Storage cell contents in the LUT
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0

0

1

f 1

f 1

Figure B.36 A two-input lookup table (LUT).
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To see how a logic function can be realized in the two-input LUT, consider the truth table
in Figure B.36b. The function f1 from this table can be stored in the LUT as illustrated in
Figure B.36c. The arrangement of multiplexers in the LUT correctly realizes the function f1.
When x1 = x2 = 0, the output of the LUT is driven by the top storage cell, which represents
the entry in the truth table for x1x2 = 00. Similarly, for all valuations of x1 and x2, the logic
value stored in the storage cell corresponding to the entry in the truth table chosen by the
particular valuation appears on the LUT output.

Figure B.37 shows a three-input LUT. It has eight storage cells because a three-variable
truth table has eight rows. In commercial FPGA chips, LUTs usually have between four
and six inputs, which require 16 and 64 storage cells, respectively. In addition to a LUT,
FPGA logic elements usually include a flip-flip as indicated in Figure B.38.

x1

f

0/1

0/1

0/1

0/1

0/1

0/1

0/1

0/1

x2

x3

Figure B.37 A three-input LUT.
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Clock
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Flip-flop
In1

In2

In3
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Figure B.38 Inclusion of a flip-flop in an FPGA logic element.
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For a logic circuit to be realized in an FPGA, each logic function in the circuit must be
small enough to fit within a single logic element. In practice, a user’s circuit is automati-
cally translated into the required form by using CAD tools (see Chapter 10). When a circuit
is implemented in an FPGA, the logic elements are programmed to realize the necessary
functions and the routing channels are programmed to make the required interconnections
between logic elements. FPGAs are configured by using the ISP method, which we ex-
plained in Section B.6.4. The storage cells in the LUTs in an FPGA are volatile, which
means that they lose their stored contents whenever the power supply for the chip is turned
off. Hence the FPGA has to be programmed every time power is applied. Often a small
memory chip that holds its data permanently, called a programmable read-only memory
(PROM), is included on the circuit board that houses the FPGA. The storage cells in the
FPGA are loaded automatically from the PROM when power is applied to the chips.

A small FPGA that has been programmed to implement a circuit is depicted in Figure
B.39. The FPGA has two-input LUTs, and there are four wires in each routing channel.
The figure shows the programmed states of both the logic elements and wiring switches
in a section of the FPGA. Programmable wiring switches are indicated by an X. Each
switch shown in blue is turned on and makes a connection between a horizontal and vertical
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0
0
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Figure B.39 A section of a programmed FPGA.



December 31, 2012 09:07 vra80547_appb Sheet number 37 Page number 769 magenta black

B.7 Custom Chips, Standard Cells, and Gate Arrays 769

wire. The switches shown in black are turned off. We describe how the switches are
implemented by using transistors in Section B.10.1. The truth tables programmed into
the logic elements in the top row of the FPGA correspond to the functions f1 = x1x2 and
f2 = x2x3. The logic element in the bottom right of the figure is programmed to produce
f = f1 + f2 = x1x2 + x2x3.

B.7 Custom Chips, Standard Cells, and Gate Arrays

The programmable switches in a PLD provide the important benefit of user programmability,
but they consume a significant amount of space on the chip and lead to increased cost.
They also result in a reduction in the speed of operation of circuits, and an increase in
power consumption. In this section we will introduce some high-capacity integrated circuit
technologies that do not contain programmable switches.

To provide the largest number of logic gates, highest circuit speed, or lowest power, a
so-called custom chip can be manufactured. Whereas a PLD is prefabricated, containing
logic gates and programmable switches that are programmed to realize a user’s circuit, a
custom chip is created from scratch. The designer of a custom chip has complete flexibility
to decide the size of the chip, the number of transistors the chip contains, the placement of
each transistor on the chip, and the way the transistors are connected together. The process
of defining exactly where on the chip each transistor and wire is situated is called chip
layout. For a custom chip the designer may create any layout that is desired. A custom chip
requires a large amount of design effort and is therefore expensive. Consequently, such
chips are produced only when standard parts like FPGAs do not meet the requirements. To
justify the expense of a custom chip, the product being designed must be expected to sell in
sufficient quantities to recoup the cost. Two examples of products that are usually realized
with custom chips are microprocessors and memory chips.

In situations where the chip designer does not need complete flexibility for the layout
of each individual transistor in a custom chip, some of the design effort can be avoided by
using a technology known as standard cells. Chips made using this technology are often
called application-specific integrated circuits (ASICs). An example of a small section of an
ASIC is depicted in Figure B.40. CAD tools are used to automatically place the standard
cells into rows and to create interconnecting wires in the routing channels between the rows.
Many variants of standard cells are usually provided, including basic logic gates, latches,
flip-flops, and so on. The available standard cells are prebuilt and are stored in a library that
can be accessed by the designer. In Figure B.40 the interconnection wires are drawn in two
colors. This scheme is used because metal wires can be created on integrated circuits in
multiple layers, which makes it possible for two wires to cross one another without creating
a short circuit. The blue wires represent one layer of metal wires, and the black wires are a
different layer. Each blue square represents a hard-wired connection (called a via) between
a wire on one layer and a wire on the other layer. In current technology it is possible to
have ten or more layers of metal wiring. Some of the metal layers can be placed on top of
the transistors in the logic gates, resulting in a more efficient chip layout.
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Figure B.40 A section of two rows in a standard-cell chip.

Like a custom chip, a standard-cell chip is created from scratch according to a user’s
specifications. The circuitry shown in Figure B.40 implements the two logic functions
that we realized in a PLA in Figure B.26, namely, f1 = x1x2 + x1x3 + x1x2x3 and f2 =
x1x2 + x1x2x3 + x1x3. Because of the expense involved, a standard-cell chip would never
be created for a small circuit such as this one, and thus the figure shows only a portion
of a much larger chip. The layout of individual gates (standard cells) is predesigned and
fixed. The chip layout can be created automatically by CAD tools because of the regular
arrangement of the logic gates (cells) in rows. A typical chip has many long rows of logic
gates with a large number of wires between each pair of rows. The I/O blocks around the
periphery connect to the pins of the chip package, such as a QFP, PGA, or BGA package.

Another technology, similar to standard cells, is the gate-array technology. In a gate
array parts of the chip are prefabricated, and other parts are custom fabricated for a par-
ticular user’s circuit. This concept exploits the fact that integrated circuits are fabricated
in a sequence of steps, some steps to create transistors and other steps to create wires to
connect the transistors together. In gate-array technology, the manufacturer performs most
of the fabrication steps, typically those involved in the creation of the transistors, without
considering the requirements of a user’s circuit. This process results in a silicon wafer
of partially finished chips, called the gate-array template. Later the template is modified,
usually by fabricating wires that connect the transistors together, to create a user’s circuit
in each finished chip. The gate-array approach provides cost savings in comparison to the
custom-chip approach because the gate-array manufacturer can amortize the cost of chip
fabrication over a large number of template wafers, all of which are identical. Many vari-
ants of gate-array technology exist. Some have relatively large logic cells, while others are
configurable at the level of a single transistor.

An example of a gate-array template is given in Figure B.41. The gate array contains a
two-dimensional array of logic cells. The chip’s general structure is similar to a standard-
cell chip except that in the gate array all logic cells are identical. Although the types of logic
cells used in gate arrays vary, one common example is a two- or three-input NAND gate.
In some gate arrays empty spaces exist between the rows of logic cells to accommodate
the wires that will be added later to connect the logic cells together. However, most gate
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Figure B.41 A sea-of-gates gate array.

arrays do not have spaces between rows of logic cells, and the interconnection wires are
fabricated on top of the logic cells. This design is possible because, as discussed for Figure
B.40, metal wires can be created on a chip in multiple layers. This approach is known as the
sea-of-gates technology. Figure B.42 depicts a small section of a gate array that has been
customized to implement the logic function f = x2x3 + x1x3. As we showed in Section 2.7,
it is easy to verify that this circuit with only NAND gates is equivalent to the AND-OR
form of the circuit.

B.8 Practical Aspects

In this section we provide more detailed information on several aspects of digital circuits.
We describe how transistors are fabricated in silicon and give a detailed explanation of how
transistors operate. We discuss the robustness of logic circuits and discuss the important
issues of signal propagation delays and power dissipation in logic gates.

B.8.1 MOSFET Fabrication and Behavior

To understand the operation of NMOS and PMOS transistors, we need to consider how
they are built in an integrated circuit. Integrated circuits are fabricated on silicon wafers. A
silicon wafer is usually 6, 8, or 12 inches in diameter and is somewhat similar in appearance
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Figure B.42 The logic function f1 = x2x3 + x1x3 in the gate array of Figure B.41.

to an audio compact disc (CD). Many integrated circuit chips are fabricated on one wafer,
and the wafer is then cut to provide the individual chips.

Silicon is an electrical semiconductor, which means that it can be manipulated such
that it sometimes conducts electrical current and at other times does not. A transistor is
fabricated by creating areas in the silicon substrate that have an excess of either positive
or negative electrical charge. Negatively charged areas are called type n, and positively
charged areas are type p. Figure B.43 illustrates the structure of an NMOS transistor. It has
type n silicon for both the source and drain terminals, and type p for the substrate terminal.
Metal wiring is used to make electrical connections to the source and drain terminals.

When MOSFETs were invented, the gate terminal was made of metal. Now a material
known as polysilicon is used. Like metal, polysilicon is a conductor. The gate is electrically
isolated from the rest of the transistor by a layer of silicon dioxide (SiO2), which is a type
of glass that acts as an electrical insulator between the gate terminal and the substrate of
the transistor. The transistor’s operation is governed by electrical fields caused by voltages
applied to its terminals, as discussed below.

In Figure B.43 the voltage levels applied at the source, gate, and drain terminals are
labeled VS , VG, and VD, respectively. Consider first the situation depicted in Figure B.43a
in which both the source and gate are connected to Gnd (VS = VG = 0 V). The type n source
and type n drain are isolated from one another by the type p substrate. In electrical terms two
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Figure B.43 Physical structure of an NMOS transistor.

diodes exist between the source and drain. One diode is formed by the p–n junction between
the substrate and source, and the other diode is formed by the p–n junction between the
substrate and drain. These back-to-back diodes represent a very high resistance (about 1012

� [1]) between the drain and source that prevents current flow. We say that the transistor
is turned off, or cut off, in this state.

Next consider the effect of increasing the voltage at the gate terminal with respect to
the voltage at the source. Let VGS represent the gate-to-source voltage. If VGS is greater
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than a certain minimum positive voltage, called the threshold voltage VT , then the transistor
changes from an open switch to a closed switch, as explained below. The exact level of VT

depends on many factors, but it is typically about 0.2 VDD.
The transistor’s state when VGS > VT is illustrated in Figure B.43b. The gate terminal

is connected to VDD, resulting in VGS = 5 V. The positive voltage on the gate attracts free
electrons that exist in the type n source terminal, as well as in other areas of the transistor,
toward the gate. Because the electrons cannot pass through the layer of glass under the
gate, they gather in the region of the substrate between the source and drain, which is called
the channel. This concentration of electrons inverts the silicon in the area of the channel
from type p to type n, which effectively connects the source and the drain. The size of
the channel is determined by the length and width of the gate. The channel length L is the
dimension of the gate between the source and drain, and the channel width W is the other
dimension. The channel can also be thought of as having a depth, which is dependent on
the applied voltages at the source, gate, and drain.

No current can flow through the gate node of the transistor, due to the layer of glass
that insulates the gate from the substrate. A current ID may flow from the drain node to
the source. For a fixed value of VGS > VT , the value of ID depends on the voltage applied
across the channel VDS . If VDS = 0 V, then no current flows. As VDS is increased, ID

increases approximately linearly with the applied VDS , as long as VD is sufficiently small
to provide at least VT volts across the drain end of the channel, that is VGD > VT . In this
range of voltages, namely, 0 < VDS < (VGS − VT ), the transistor is said to operate in the
triode region, also called the linear region. The relationship between voltage and current
is approximated by the equation

ID = k ′
n

W

L

[
(VGS − VT )VDS − 1

2
V 2

DS

]
[B.1]

The symbol k ′
n is called the process transconductance parameter. It is a constant that

depends on the technology being used and has the units A/V 2.
As VD is increased, the current flow through the transistor increases, as given by Equa-

tion B.1, but only to a certain point. When VDS = VGS − VT , the current reaches its max-
imum value. For larger values of VDS , the transistor is no longer operating in the triode
region. Since the current is at its saturated (maximum) value, we say that the transistor is in
the saturation region. The current is now independent of VDS and is given by the expression

ID = 1

2
k ′

n

W

L
(VGS − VT )2 [B.2]

Figure B.44 shows the shape of the current-voltage relationship in the NMOS transistor
for a fixed value of VGS > VT . The figure indicates the point at which the transistor leaves
the triode region and enters the saturation region, which occurs at VDS = VGS − VT .

Example B.3 Assume the values k ′
n = 60 μA/V2, W/L = 2.0 μm/0.5 μm, VS = 0 V, VG = 5 V, and

VT = 1 V. If VD = 2.5 V, the current in the transistor is given by Equation B.1 as ID ≈ 1.7
mA. If VD = 5 V, the saturation current is calculated using Equation B.2 as ID ≈ 2 mA.
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Figure B.44 The current-voltage relationship in the NMOS transistor.

The PMOS Transistor
The behavior of PMOS transistors is the same as for NMOS except that all voltages and

currents are reversed. The source terminal of the PMOS transistor is the terminal with the
higher voltage level (recall that for an NMOS transistor the source terminal is the one with
the lower voltage level), and the threshold voltage required to turn the transistor on has a
negative value. PMOS transistors have the same physical construction as NMOS transistors
except that wherever the NMOS transistor has type n silicon, the PMOS transistor has type
p, and vice versa. For a PMOS transistor the equivalent of Figure B.43a is to connect
both the source and gate nodes to VDD, in which case the transistor is turned off. To turn
the PMOS transistor on, equivalent to Figure B.43b, we would set the gate node to Gnd,
resulting in VGS = −5 V.

Because the channel is type p silicon, instead of type n, the physical mechanism for
current conduction in PMOS transistors is different from that in NMOS transistors. A
detailed discussion of this concept is beyond the scope of this book, but one implication has
to be mentioned. Equations B.1 and B.2 use the parameter k ′

n. The corresponding parameter
for a PMOS transistor is k ′

p, but current flows more readily in type n silicon than in type p,
with the result that in a typical technology k ′

p ≈ 0.4 × k ′
n. For a PMOS transistor to have

current capacity equal to that of an NMOS transistor, we must use W/L of about two to
three times larger in the PMOS transistor. In logic gates the sizes of NMOS and PMOS
transistors are usually chosen to account for this factor.

B.8.2 MOSFET On-Resistance

In Section B.1 we considered MOSFETs as ideal switches that have infinite resistance
when turned off and zero resistance when on. The actual resistance in the channel when the
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transistor is turned on, referred to as the on-resistance, is given by VDS/ID. Using Equation
B.1 we can calculate the on-resistance in the triode region, as shown below.

Example B.4 Consider a CMOS inverter in which the input voltage Vx is equal to 5 V. The NMOS transistor
is turned on, and the output voltage Vf is close to 0 V. Hence VDS for the NMOS transistor
is close to zero and the transistor is operating in the triode region. In the curve in Figure
B.44, the transistor is operating at a point very close to the origin. Although the value of
VDS is small, it is not exactly zero. In the next section we explain that VDS would typically
be about 0.1 mV. Hence the current ID is not exactly zero; it is defined by Equation B.1. In
this equation we can ignore the term involving V 2

DS because VDS is small. In this case the
on-resistance is approximated by

RDS = VDS/ID = 1/

[
k ′

n

W

L
(VGS − VT )

]
[B.3]

Assuming the values k ′
n = 60 μA/V2, W/L = 2.0 μm/0.5 μm, VGS = 5 V, and VT = 1 V,

we get RDS ≈ 1 k�.

B.8.3 Voltage Levels in Logic Gates

In Figure B.1 we showed that the logic values are represented by a range of voltage levels.
We now consider the issue of voltage levels more carefully.

The high and low voltage levels in a logic family can be characterized by the operation
of its basic inverter. Figure B.45a reproduces the circuit in Figure B.5 for an inverter built

VDD

(b) Vx = 5 V

Istat

R

RDS

Vf VOL=

(a) NMOS NOT gate

Vf

VDD

Vx

Figure B.45 Voltage levels in the NMOS inverter.
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with NMOS technology. When Vx = 0 V, the NMOS transistor is turned off. No current
flows; hence Vf = 5 V. When Vx = VDD, the NMOS transistor is turned on. To calculate
the value of Vf , we can represent the NMOS transistor by a resistor with the value RDS , as
illustrated in Figure B.45b. Then Vf is given by the voltage divider

Vf = VDD
RDS

RDS + R

Example B.5Assume that R = 25 k�. Using the result from Example B.4, RDS = 1 k�, which gives
Vf ≈ 0.2 V.

As indicated in Figure B.45b, a current Istat flows through the NMOS inverter under
the static condition Vx = VDD. This current is given by

Istat = Vf /RDS = 0.2 V/1 k� = 0.2 mA

This static current has important implications, which we discuss in Section B.8.6.
In practice, the pull-up device R is usually implemented using a PMOS transistor. Such

circuits are referred to as pseudo-NMOS circuits. They are fully compatible with CMOS
circuits; hence a single chip may contain both CMOS and pseudo-NMOS gates. Example
B.17 discusses a circuit for a pseudo-NMOS inverter and shows how to calculate its output
voltage levels.

The CMOS Inverter
It is customary to use the symbols VOH and VOL to characterize the voltage levels in

a logic circuit. The meaning of VOH is the voltage produced when the output is high.
Similarly, VOL refers to the voltage produced when the output is low. As discussed above,
in the NMOS inverter VOH = VDD and VOL is about 0.2 V.

Consider again the CMOS inverter in Figure B.12a. Its output-input voltage relation-
ship is summarized by the voltage transfer characteristic shown in Figure B.46. The curve
gives the steady-state value of Vf for each value of Vx. When Vx = 0 V, the NMOS transistor
is off. No current flows; hence Vf = VOH = VDD. When Vx = VDD, the PMOS transistor is
off, no current flows, and Vf = VOL = 0 V. For completeness we should mention that even
when a transistor is turned off, a small current, called the leakage current, may flow through
it. This current has a slight effect on VOH and VOL. For example, a typical value of VOL is
0.1 mV, rather than 0 V [1].

Figure B.46 includes labels at the points where the output voltage begins to change
from high to low, and vice versa. The voltage VIL represents the point where the output
voltage is high and the slope of the curve equals −1. This voltage level is defined as the
maximum input voltage level that the inverter will interpret as low, hence producing a
high output. Similarly, the voltage VIH , which is the other point on the curve where the
slope equals −1, is the minimum input voltage level that the inverter will interpret as high,
hence producing a low output. The parameters VOH , VOL, VIL, and VIH are important for
quantifying the robustness of a logic family, as discussed below.
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Vf

Vx

VOL 0 V=

VOH VDD=

VT VIL VIH VDD VT–( ) VDD

VDD

2

Slope 1–=

Figure B.46 The voltage transfer characteristic for the CMOS inverter.

B.8.4 Noise Margin

Consider the two NOT gates shown in Figure B.47a. Let us refer to the gates on the left
and right as N1 and N2, respectively. Electronic circuits are constantly subjected to random
perturbations, called noise, which can alter the output voltage levels produced by the gate
N1. It is essential that this noise not cause the gate N2 to misinterpret a low logic value as
a high one, or vice versa. Consider the case where N1 produces its low voltage level VOL.
The presence of noise may alter the voltage level, but as long as it remains less than VIL,
it will be interpreted correctly by N2. The ability to tolerate noise without affecting the
correct operation of the circuit is known as noise margin. For the low output voltage, we
define the low noise margin as

NML = VIL − VOL

A similar situation exists when N1 produces its high output voltage VOH . Any existing
noise in the circuit may alter the voltage level, but it will be interpreted correctly by N2 as
long as the voltage is greater than VIH . The high noise margin is defined as

NMH = VOH − VIH
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(b) The capacitive load at node A

Vf

VDD

Vx

VDD

C

x f
A

(a) A NOT gate driving another NOT gate

VA

N 1 N 2

Figure B.47 Parasitic capacitance in integrated circuits.

Example B.6For a given technology the voltage transfer characteristic of the basic inverter determines the
levels VOH , VOL, VIL, and VIH . For CMOS we showed in Figure B.46 that VOH = VDD and
VOL = 0 V. By finding the two points where the slope of the voltage transfer characteristic
is equal to −1, it can be shown [1] that VIL

∼= 1
8 (3VDD + 2VT ) and VIH

∼= 1
8 (5VDD − 2VT ).

For the typical value VT = 0.2 VDD, this gives

NML = NMH = 0.425 × VDD

Hence the available noise margin depends on the power supply voltage level. For VDD = 5
V, the noise margin is 2.1 V, and for VDD = 3.3 V, the noise margin is 1.4 V.

B.8.5 Dynamic Operation of Logic Gates

In Figure B.47a the node between the two gates is labeled A. Because of the way in which
transistors are constructed in silicon, N2 has the effect of contributing to a capacitive load
at node A. Figure B.43 shows that transistors are constructed by using several layers of
different materials. Wherever two types of material meet or overlap inside the transistor, a
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capacitor may be effectively created. This capacitance is called parasitic, or stray, capaci-
tance because it results as an undesired side effect of transistor fabrication. In Figure B.47
we are interested in the capacitance that exists at node A. A number of parasitic capacitors
are attached to this node, some caused by N1 and others caused by N2. One significant
parasitic capacitor exists between the input of inverter N2 and ground. The value of this
capacitor depends on the sizes of the transistors in N2. Each transistor contributes a gate
capacitance, Cg = W × L × Cox. The parameter Cox, called the oxide capacitance, is a
constant for the technology being used and has the units fF/μm2. Additional capacitance
is caused by the transistors in N1 and by the metal wiring that is attached to node A. It
is possible to represent all of the parasitic capacitance by a single equivalent capacitance
between node A and ground [2]. In Figure B.47b this equivalent capacitance is labeled C.

The existence of stray capacitance has a negative effect on the speed of operation of
logic circuits. Voltage across a capacitor cannot change instantaneously. The time needed to
charge or discharge a capacitor depends on the size of the capacitance C and on the amount
of current through the capacitor. In the circuit of Figure B.47b, when the PMOS transistor in
N1 is turned on, the capacitor is charged to VDD; it is discharged when the NMOS transistor
is turned on. In each case the current flow ID through the involved transistor and the value
of C determine the rate of charging and discharging the capacitor.

Chapter 2 introduced the concept of a timing diagram, and Figure 2.10 shows a timing
diagram in which waveforms have perfectly vertical edges in transition from one logic
level to the other. In real circuits, waveforms do not have this “ideal” shape, but instead
have the appearance of those in Figure B.48. The figure gives a waveform for the input Vx

in Figure B.47b and shows the resulting waveform at node A. We assume that Vx is initially at

Propagation delay

VDD

VDD

Gnd

Gnd

Vx

VA

50% 50%

90%

Propagation delay

10%

tr

50%

90%

50%

10%

tf

Figure B.48 Voltage waveforms for logic gates.
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the voltage level VDD and then makes a transition to 0. Once Vx reaches a sufficiently low
voltage, N1 begins to drive voltage VA toward VDD. Because of the parasitic capacitance,
VA cannot change instantaneously and a waveform with the shape indicated in the figure
results. The time needed for VA to change from low to high is called the rise time, tr , which
is defined as the time elapsed from when VA is at 10 percent of VDD until it reaches 90
percent of VDD. Figure B.48 also defines the total amount of time needed for the change at
Vx to cause a change in VA. This interval is called the propagation delay, often written tp,
of the inverter. It is the time from when Vx reaches 50 percent of VDD until VA reaches the
same level.

After remaining at 0 V for some time, Vx then changes back to VDD, causing N1 to
discharge C to Gnd. In this case the transition time at node A pertains to a change from
high to low, which is referred to as the fall time, tf , from 90 percent of VDD to 10 percent
of VDD. As indicated in the figure, there is a corresponding propagation delay for the new
change in Vx to affect VA. In a given logic gate, the relative sizes of the PMOS and NMOS
transistors are usually chosen such that tr and tf have about the same value.

Equations B.1 and B.2 specify the amount of current flow through an NMOS transistor.
Given the value of C in Figure B.47, it is possible to calculate the propagation delay for a
change in VA from high to low. For simplicity, assume that Vx is initially 0 V; hence the
PMOS transistor is turned on, and VA = 5 V. Then Vx changes to VDD at time 0, causing the
PMOS transistor to turn off and the NMOS to turn on. The propagation delay is defined as
the time required to discharge C through the NMOS transistor to the voltage VDD/2. When
Vx first changes to VDD, VA = 5 V; hence the NMOS transistor will have VDS = VDD and
will be in the saturation region. The current ID is given by Equation B.2. Once VA drops
below VDD − VT , the NMOS transistor will enter the triode region where ID is given by
Equation B.1. For our purposes, we can approximate the current flow as VA changes from
VDD to VDD/2 by finding the average of the values given by Equation B.2 with VDS = VDD

and Equation B.1 with VDS = VDD/2. Using the basic expression for the time needed to
charge a capacitor (see Example B.15), we have

tp = C�V

ID
= CVDD/2

ID

Substituting for the average value of ID as discussed above, yields [1]

tp ∼= 1.7 C

k ′
n

W
L VDD

[B.4]

This expression specifies that the speed of the circuit depends both on the value of C and
on the dimensions of the transistor. The delay can be reduced by making C smaller or by
making the ratio W/L larger. The expression shows the propagation time when the output
changes from a high level to a low level. The low-to-high propagation time is given by the
same expression but using k ′

p and W/L of the PMOS transistor.
In logic circuits, L is usually set to the minimum value that is permitted according to the

specifications of the fabrication technology used. The value of W is chosen depending on
the amount of current flow, hence propagation delay, that is desired. Figure B.49 illustrates
two sizes of transistors. Part (a) depicts a minimum-size transistor, which would be used
in a circuit wherever capacitive loading is small or where speed of operation is not critical.
Figure B.49b shows a larger transistor, which has the same length as the transistor in part (a)
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+

(a) Small transistor

L

W1

L

W2

(b) Larger transistor

Figure B.49 Transistor sizes.

but a larger width. There is a trade-off involved in choosing transistor sizes, because a
larger transistor takes more space on a chip than a smaller one. Also, increasing W not
only increases the amount of current flow in the transistor but also results in an increase
in the parasitic capacitance (recall that the capacitance Cg between the gate terminal and
ground is proportional to W × L), which tends to offset some of the expected improvement
in performance. In logic circuits large transistors are used where high capacitive loads must
be driven and where signal propagation delays must be minimized.

Example B.7 In the circuit in Figure B.47, assume that C = 70 fF and that W/L = 2.0 μm/0.5 μm. Also,
k ′

n = 60 μA/V2 and VDD = 5 V. Using Equation B.4, the high-to-low propagation delay of
the inverter is tp ≈ 0.1 ns.

B.8.6 Power Dissipation in Logic Gates

In an electronic circuit it is important to consider the amount of electrical power consumed
by the transistors. Integrated circuit technology allows fabrication of billions of transistors
on a single chip; hence the amount of power used by an individual transistor must be small.
Power dissipation is an important consideration in all applications of logic circuits, but it
is crucial in situations that involve battery-operated equipment, such as portable computers
and the like.

Consider again the NMOS inverter in Figure B.45. When Vx = 0, no current flows and
hence no power is used. But when Vx = 5 V, power is consumed because of the current
Istat . The power consumed in the steady state is given by PS = IstatVDD. In Example B.5
we calculated Istat = 0.2 mA. The power consumed is then PS = 0.2 mA × 5 V = 1.0 mW.
If we assume that a chip contains, say, the equivalent of 10,000 inverters, then the total
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power consumption is 10 W! Because of this large power consumption, NMOS-style gates
are used only in special-purpose applications, which we discuss in Section B.8.9.

To distinguish between power consumed during steady-state conditions and power
consumed when signals are changing, it is customary to define two types of power. Static
power is dissipated by the current that flows in the steady state, and dynamic power is
consumed when the current flows because of changes in signal levels. NMOS circuits
consume static power as well as dynamic power, while CMOS circuits consume mostly
dynamic power. Note that we mentioned in Section B.8.3 that a small amount of current,
called leakage current, flows through transistors that are turned off. Although this leakage
current causes static power dissipation even when using CMOS circuits, we do not consider
this effect further in our discussion.

Consider the CMOS inverter presented in Figure B.12a. When the input Vx is low, no
current flows because the NMOS transistor is off. When Vx is high, the PMOS transistor is
off and again no current flows. Hence no current flows in a CMOS circuit under steady-state
conditions. Current does flow in CMOS circuits, however, for a short time when signals
change from one voltage level to another.

Figure B.50a depicts the following situation. Assume that Vx has been at 0 V for some
time; hence Vf = 5 V. Now let Vx change to 5 V. The NMOS transistor turns on, and it
pulls Vf toward Gnd. Because of the parasitic capacitance C at node f , voltage Vf does not
change instantaneously, and current ID flows through the NMOS transistor for a short time
while the capacitor is being discharged. A similar situation occurs when Vx changes from
5 V to 0, as illustrated in Figure B.50b. Here the capacitor C initially has 0 volts across it
and is then charged to 5 V by the PMOS transistor. Current flows from the power supply
through the PMOS transistor while the capacitor is being charged.

The voltage transfer characteristic for the CMOS inverter, shown in Figure B.46, in-
dicates that a range of input voltage Vx exists for which both transistors in the inverter are

VDD

Vf

Vx

ID
Vx

Vf

ID

(a) Current flow when input Vx

changes from 0 V to 5 V

(b) Current flow when input Vx

changes from 5 V to 0 V

Figure B.50 Dynamic current flow in CMOS circuits.
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turned on. Within this voltage range, specifically VT < Vx < (VDD − VT ), current flows
from VDD to Gnd through both transistors. This current is often referred to as the short-
circuit current in the gate. In comparison to the amount of current used to (dis)charge the
capacitor C, the short-circuit current is negligible in most cases.

The power used by a single CMOS inverter is extremely small. Consider again the
situation in Figure B.50a when Vf = VDD. The amount of energy stored in the capacitor is
equal to CV 2

DD/2 (see Example B.12). When the capacitor is discharged to 0 V, this stored
energy is dissipated in the NMOS transistor. Similarly, for the situation in Figure B.50b, the
energy CV 2

DD/2 is dissipated in the PMOS transistor when C is charged up to VDD. Thus for
each cycle in which the inverter charges and discharges C, the amount of energy dissipated
is equal to CV 2

DD. Since power is defined as energy used per unit time, the power dissipated
in the inverter is the product of the energy used in one discharge/charge cycle times the
number of such cycles per second, f . Hence the dynamic power consumed is

PD = fCV 2
DD

In practice, the total amount of dynamic power used in CMOS circuits is significantly lower
than the total power needed in other technologies, such as NMOS. For this reason, virtually
all large integrated circuits fabricated today are based on CMOS technology.

Example B.8 For a CMOS inverter, assume that C = 70 fF and f = 100 MHz. The dynamic power
consumed by the gate is PD = 175 μW. If we assume that a chip contains the equivalent of
10,000 inverters and that, on average, 20 percent of the gates change values at any given time,
then the total amount of dynamic power used in the chip is PD = 0.2 × 10,000 × 175 μW =
0.35 W.

B.8.7 Passing 1s and 0s Through Transistor Switches

In Figure B.4 we showed that NMOS transistors are used as pull-down devices and PMOS
transistors are used as pull-up devices. We now consider using the transistors in the opposite
way, that is, using an NMOS transistor to drive an output high and using a PMOS transistor
to drive an output low.

Figure B.51a illustrates the case of an NMOS transistor for which both the gate terminal
and one side of the switch are driven to VDD. Let us assume initially that both VG and node
A are at 0 V, and we then change VG to 5 V. Node A is the transistor’s source terminal
because it has the lowest voltage. Since VGS = VDD, the transistor is turned on and drives
node A toward VDD. When the voltage at node A rises, VGS decreases until the point when
VGS is no longer greater than VT . At this point the transistor turns off. Thus in the steady
state VA = VDD − VT , which means that an NMOS transistor can only partially pass a high
voltage signal.

A similar situation occurs when a PMOS transistor is used to pass a low voltage level,
as depicted in Figure B.51b. Here assume that initially both VG and node B are at 5 V. Then
we change VG to 0 V so that the transistor turns on and drives the source node (node B)
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Figure B.51 NMOS and PMOS transistors used in the opposite way
from Figure B.4.

(a) An AND gate circuit
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Figure B.52 A poor implementation of a CMOS AND gate.

toward 0 V. When node B is decreased to VT , the transistor turns off; hence the steady-state
voltage is equal to VT .

In Section B.1 we said that for an NMOS transistor the substrate (body) terminal is
connected to Gnd and for a PMOS transistor the substrate is connected to VDD. The voltage
between the source and substrate terminals, VSB, which is called the substrate bias voltage,
is normally equal to 0 V in a logic circuit. But in Figure B.51 both the NMOS and PMOS
transistors have VSB = VDD. The bias voltage has the effect of increasing the threshold
voltage in the transistor VT by a factor of about 1.5 or higher [2, 1]. This issue is known as
the body effect.

Consider the logic gate shown in Figure B.52. In this circuit the VDD and Gnd connec-
tions are reversed from the way in which they were used in previously discussed circuits.
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When both Vx1 and Vx2 are high, then Vf is pulled up to the high output voltage, VOH =
VDD − 1.5VT . If VDD = 5 V and VT = 1 V, then VOH = 3.5 V. When either Vx1 or Vx2 is
low, then Vf is pulled down to the low output voltage, VOL = 1.5VT , or about 1.5 V. As
shown by the truth table in the figure, the circuit represents an AND gate. In comparison to
the normal AND gate shown in Figure B.15, the circuit in Figure B.52 appears to be better
because it requires fewer transistors. But a drawback of this circuit is that it offers a lower
noise margin because of the poor levels of VOH and VOL.

Another important weakness of the circuit in Figure B.52 is that it causes static power
dissipation, unlike a normal CMOS AND gate. Assume that the output of such an AND gate
drives the input of a CMOS inverter. When Vf = 3.5 V, the NMOS transistor in the inverter
is turned on and the inverter output has a low voltage level. But the PMOS transistor in
the inverter is not turned off, because its gate-to-source voltage is −1.5 V, which is larger
than VT . Static current flows from VDD to Gnd through the inverter. A similar situation
occurs when the AND gate produces the low output Vf = 1.5 V. Here the PMOS transistor
in the inverter is turned on, but the NMOS transistor is not turned off. The AND gate
implementation in Figure B.52 is not used in practice.

B.8.8 Transmission Gates

In Section B.8.7 we showed that an NMOS transistor passes 0 well and 1 poorly, while a
PMOS transistor passes 1 well and 0 poorly. It is possible to combine an NMOS and a
PMOS transistor into a single switch that is capable of driving its output terminal either
to a low or high voltage equally well. Figure B.53a gives the circuit for a transmission
gate. As indicated in parts (b) and (c) of the figure, it acts as a switch that connects x to f .
Switch control is provided by the select input s and its complement s. The switch is turned
on by setting Vs = 5 V and Vs = 0. When Vx is 0, the NMOS transistor will be turned on
(because VGS = Vs − Vx = 5 V) and Vf will be 0. On the other hand, when Vx is 5 V, then
the PMOS transistor will be on (VGS = Vs − Vx = −5 V) and Vf will be 5 V. A graphical
symbol for the transmission gate is given in Figure B.53d .

Transmission gates can be used in a variety of applications. The examples below show
how they can be used to implement multiplexers, XOR gates, and latch circuits.

Example B.9 We showed a circuit that uses transmission gates to implement a multiplexer in Figure 4.1d ,
which is reproduced in Figure B.54. The select input s is used to choose whether the output
f should have the value of input w1 or w2. If s = 0, then f = w1; if s = 1, then f = w2.

Example B.10 The XOR function in sum-of-products form is

x1 ⊕ x2 = x1x2 + x1x2

which leads to a circuit with two NOT gates, 2 two-input AND gates, and a two-input
OR gate. We know from Section B.3 that each AND and OR gate requires six transistors,
while a NOT gate needs two transistors. Hence 22 transistors are required to implement



December 31, 2012 09:07 vra80547_appb Sheet number 55 Page number 787 magenta black

B.8 Practical Aspects 787

(a) Circuit

fx

(b) Truth table

Z
x

0
1

fs

s

s

s 0=

s 1=

x

x

f = Z

f = x

(c) Equivalent circuit (d) Graphical symbol

fx

s

s

Figure B.53 A transmission gate.
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Figure B.54 A 2-to-1 multiplexer built using transmission
gates.

this circuit in CMOS technology. It is possible to greatly reduce the number of transistors
needed by making use of transmission gates. Figure B.55 gives a circuit for an XOR gate
that uses the multiplexer structure shown in Figure B.54. The output f is set to the value
of x2 when x1 = 0 by the top transmission gate. The bottom transmission gate sets f to
x2 when x1 = 1. This circuit needs only six transistors. We discuss the notion of using
multiplexers to implement logic functions in Section 4.1.
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x1
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f x1 x2⊕=

Figure B.55 Implementation of an XOR gate.

Example B.11 Consider the circuit in Figure B.56, which includes two transmission gates. One trans-
mission gate, TG1, is used to connect the Data input terminal to point A in the circuit.
The second, TG2, is used as a switch in the feedback loop that maintains the state of the
circuit. The transmission gates are controlled by the Load signal. If Load = 1, then TG1
is on and the point A will have the same value as the Data input. Since the value presently
stored at Output may not be the same value as Data, the feedback loop is broken by having
TG2 turned off when Load = 1. When Load changes to 0, then TG1 turns off and TG2
turns on. The feedback path is closed and the memory element will retain its state as long
as Load = 0. This circuit implements a gated D latch. It is equivalent to the circuit with
NAND gates shown in Figure 5.7, with the Load input in Figure B.56 acting as the Clk input.

B.8.9 Fan-in and Fan-out in Logic Gates

The fan-in of a logic gate is defined as the number of inputs to the gate. Depending on
how a logic gate is constructed, it may be impractical to increase the number of inputs
beyond a small value. For example, consider the NMOS NAND gate in Figure B.57, which
has k inputs. We wish to consider the effect of k on the propagation delay tp through the
gate. Assume that all k NMOS transistors have the same width W and length L. Because
the transistors are connected in series, we can consider them to be equivalent to one long
transistor with length k × L and width W . Using Equation B.4 (which can be applied to
both CMOS and NMOS gates), the propagation delay is given by

tp ∼= 1.7 C

k ′
n

W
L VDD

× k

Here C is the equivalent capacitance at the output of the gate, including the parasitic
capacitance contributed by each of the k transistors. The performance of the gate can be
improved somewhat by increasing W for each NMOS transistor. But this change further
increases C and comes at the expense of chip area. Another drawback of the circuit is that
each NMOS transistor has the effect of increasing VOL, hence reducing the noise margin. It
is practical to build NAND gates in this manner only if the fan-in is small.



December 31, 2012 09:07 vra80547_appb Sheet number 57 Page number 789 magenta black

B.8 Practical Aspects 789

A B
OutputData

Load

TG1

TG2

Figure B.56 Using transmission gates to implement a gated D latch.

Vf

VDD

Vx2

Vx1

Vx3

Vxk

Figure B.57 High fan-in NMOS NAND gate.
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Figure B.58 High fan-in NMOS NOR gate.

As another example of fan-in, Figure B.58 shows an NMOS k-input NOR gate. In this
case the k NMOS transistors connected in parallel can be viewed as one large transistor
with width k × W and length L. According to Equation B.4, the propagation delay should
be decreased by the factor k. However, the parallel-connected transistors increase the load
capacitance C at the gate’s output and, more importantly, it is extremely unlikely that all of
the transistors would be turned on when Vf is changing from a high to low level. It is thus
practical to build high fan-in NOR gates in NMOS technology. We should note, however,
that in an NMOS gate the low-to-high propagation delay may be slower than the high-to-
low delay as a result of the current-limiting effect of the pull-up device (see Examples B.13
and B.14).

High fan-in CMOS logic gates always require either k NMOS or k PMOS transistors
in series and are therefore never practical. In CMOS the only reasonable way to construct
a high fan-in gate is to use two or more lower fan-in gates. For example, one way to realize
a six-input AND gate is as 2 three-input AND gates that connect to a two-input AND gate.
It is possible to build a six-input CMOS AND gate using fewer transistors than needed with
this approach, but we leave this as an exercise for the reader (see Problem B.4).

Fan-out
Figure B.48 illustrated timing delays for one NOT gate driving another. In real circuits

each logic gate may be required to drive several others. The number of other gates that a
specific gate drives is called its fan-out. An example of fan-out is depicted in Figure B.59a,
which shows an inverter N1 that drives the inputs of n other inverters. Each of the other
inverters contributes to the total capacitive loading on node f . In part (b) of the figure,
the n inverters are represented by one large capacitor Cn. For simplicity, assume that each
inverter contributes a capacitance C and that Cn = n × C. Equation B.4 shows that the
propagation delay increases in direct proportion to n.

Figure B.59c illustrates how n affects the propagation delay. It assumes that a change
from logic value 1 to 0 on signal x occurs at time 0. One curve represents the case where
n = 1, and the other curve corresponds to n = 4. Using the parameters from Example B.7,
when n = 1, we have tp = 0.1 ns. Then for n = 4, tp ≈ 0.4 ns. It is possible to reduce tp
by increasing the W/L ratios of the transistors in N1.
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Figure B.59 The effect of fan-out on propagation delay.

Drivers
In circuits in which a logic gate has to drive a large capacitive load, drivers are often

used to improve performance. A driver is a logic gate with one input, x, and one output,
f , which produces f = x. The simplest implementation of a driver uses two inverters, as
shown in Figure B.60a. Drivers can be created with different amounts of drive capability,
depending on the sizes of the transistors (see Figure B.49). In general, because they are
used for driving higher-than-normal capacitive loads, drivers have transistors that are larger
than those in typical logic gates. The graphical symbol for a noninverting driver is given
in Figure B.60b.
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(a) Implementation of a driver
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(b) Graphical symbol

Figure B.60 A noninverting driver.

Another type of driver is the inverting driver. It produces the same output as an inverter,
f = x, but is built with relatively large transistors. The graphical symbol for the inverting
driver is the same as for the NOT gate; an inverting driver is just a NOT gate that is capable
of driving large capacitive loads. In Figure B.59 for large values of n an inverting driver
could be used for the inverter labeled N1.

In addition to their use for improving the speed performance of circuits, drivers are
also used when high current flow is needed to drive external devices. Drivers can handle
relatively large amounts of current flow because they are built with large transistors. A
common example of this use of drivers is to control a light-emitting diode (LED). We
describe an example of this application of drivers in Section 5.14.1.

In general, fan-out, capacitive loading, and current flow are important issues that the
designer of a digital circuit must consider carefully. In practice, the decision as to whether
or not drivers are needed in a circuit is made with the aid of CAD tools.

B.8.10 Tri-state Drivers

As we showed in Figure 7.1, a tri-state driver has one input, w, one output, f , and a control
input, called enable, e. When e = 0, the driver is completely disconnected from the output
f , but when e = 1, the driver provides the value of w on the output f . Figure B.61 shows
a possible implementation of a tri-state driver using NOT gates and a transmission gate.
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Figure B.61 Tri-state driver.
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Figure B.62 Four types of tri-state drivers.

Figure B.62 depicts several types of tri-state drivers. The driver in part (b) has the
same behavior as the driver in part (a), except that when e = 1, it produces f = w. Part (c)
of the figure gives a tri-state driver for which the enable signal has the opposite behavior;
that is, when e = 0, f = w, and when e = 1, f = Z . The term often used to describe this
type of behavior is to say that the enable is active low. The driver in Figure B.62d also
features an active-low enable, and it produces f = w when e = 0.

As a small example of how tri-state drivers can be used, consider the circuit in Figure
B.63. In this circuit the output f is equal to either w1 or w2, depending on the value of s.
When s = 0, f = w1, and when s = 1, f = w2. Thus, this circuit implements a 2-to-1
multiplexer.

In the circuit of Figure B.63, the outputs of the tri-state drivers are wired together. This
connection is possible because the control input s is connected so that one of the two drivers
is guaranteed to be in the high-impedance state. The w1 driver is active only when s = 0,
and the w2 driver is active only when s = 1. It would be disastrous to allow both drivers
to be active at the same time. Doing so would create a short circuit between VDD and Gnd
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fw1

w2
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Figure B.63 An application of tri-state drivers.

as soon as the two drivers produce different values. For example, assume that w1 = 1 and
w2 = 0. The w1 driver produces the output VDD, and the w2 driver produces Gnd. A short
circuit is formed between VDD and Gnd, through the transistors in the tri-state drivers. The
amount of current that flows through such a short circuit is usually sufficient to destroy the
circuit.

The kind of wired connection used for the tri-state drivers is not possible with ordinary
logic gates, because their outputs are always active; hence a short circuit would occur. As
we already know, for normal logic circuits the equivalent result of the wired connection is
achieved by using an OR gate to combine signals, as is done in the sum-of-products form.

B.9 Static Random Access Memory (SRAM)

In Chapter 5 we introduced several types of circuits that can be used to store data. Assume
that we need to store a large number, m, of data items, each of which consists of n bits. One
possibility is to use an n-bit register that consists of n D flip-flops for each data item. We
would need to design circuitry to control access to each register, both for loading (writing)
data into it and for reading data out.

When m is large, it is awkward to use individual registers to store the data. A better
approach is to make use of a static random access memory (SRAM) block. An SRAM block
is a two-dimensional array of SRAM cells, where each cell can store one bit of information.
If we need to store m items with n bits each, we can use an array of m × n SRAM cells.
The dimensions of the SRAM array are called its aspect ratio.

An SRAM block may contain a large number of SRAM cells, so it is important for
each cell to take as little space on an integrated circuit chip as possible. For this reason,
the storage cell should use as few transistors as possible. One popular storage cell used in
practice is depicted in Figure B.64. It operates as follows. To store data into the cell, the
Sel input is set to 1, and the data value to be stored is placed on the Data input. The SRAM
cell may include a separate input for the complement of the data, indicated by the transistor
shown in blue in the figure. For simplicity we assume that this transistor is not included
in the cell. After waiting long enough for the data to propagate through the feedback path
formed by the two NOT gates, Sel is changed to 0. The stored data then remains in the
feedback loop indefinitely. A possible problem is that when Sel = 1, the value of Data
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Figure B.64 An SRAM cell.

Sel1
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Data0Data1

Figure B.65 A 2 × 2 array of SRAM cells.

may not be the same as the value being driven by the small NOT gate in the feedback path.
Hence the transistor controlled by Sel may attempt to drive the stored data to one logic
value while the output of the small NOT gate has the opposite logic value. To resolve this
problem, the NOT gate in the feedback path is built using small (weak) transistors, so that
its output can be overridden with new data.

To read data stored in the cell, we simply set Sel to 1. In this case the Data node would
not be driven to any value by external circuitry, so that the SRAM cell can place the stored
data on this node. The Data signal is passed through a driver, not shown in the figure, and
provided as an output of the SRAM block.

An SRAM block contains an array of SRAM cells. Figure B.65 shows an array with
two rows of two cells each. In each column of the array, the Data nodes of the cells are
connected together. Each row, i, has a separate select input, Seli, that is used to read or
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write the contents of the cells in that row. Larger arrays are formed by connecting more
cells to Seli in each row and by adding more rows. The SRAM block must also contain
circuitry that controls access to each row in the array. Figure B.66 depicts a 2m × n array
of the type in Figure B.65, with a decoder that drives the Sel inputs in each row of the array.
The inputs to the decoder are called Address inputs. This term derives from the notion
that the location of a row in the array can be thought of as the “address” of the row. The
decoder has m Address inputs and produces 2m select outputs. If the Write control input is 1,
then the tri-state drivers at the top of the figure are enabled and the data bits on the inputs
dn−1, . . . , d0 are stored in the cells of the row selected by the Address inputs. If the Read
control input is 1, then the tri-state drivers at the bottom of Figure B.66 are enabled and the
data stored in the row selected by the Address inputs appears on the qn−1, . . . , q0 outputs. In
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Figure B.66 A 2m × n SRAM block.
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many practical applications the data inputs and data outputs are connected together. Thus
the Write and Read inputs must never have the value 1 at the same time.

The design of memory blocks has been the subject of intensive research and develop-
ment. We have described only the basic operation of one type of memory block. The reader
can refer to books on computer organization for more information [14, 15].

B.9.1 SRAM Blocks in PLDs

Most FPGA chips contain SRAM blocks that can be used as part of logic circuits imple-
mented in the chips. One popular chip has a number of SRAM blocks, each of which
contains 4096 SRAM cells. The SRAM blocks can be configured to provide different as-
pect ratios, depending on the needs of the design being implemented. Aspect ratios from
512 × 8 to 4096 × 1 can be realized using a single SRAM block, and multiple blocks can
be combined to form larger memory arrays. To include SRAM blocks in a circuit, designers
use prebuilt modules that are provided in a library as part of the CAD tools, or they write
Verilog code from which synthesis tools can infer memory blocks.

B.10 Implementation Details for SPLDs, CPLDs,
and FPGAs

We introduced PLDs in Section B.6. In the chip diagrams shown in that section, the
programmable switches are represented using the symbol X. We now show how these
switches are implemented using transistors.

In commercial SPLDs two main technologies are used to manufacture the programmable
switches. The oldest technology is based on using metal-alloy fuses as programmable links.
In this technology each pair of horizontal and vertical wires that cross is connected by a
small metal fuse. When the chip is programmed, for every connection that is not wanted
in the circuit being implemented, the associated fuse is melted. The programming process
is not reversible, because the melted fuses are destroyed. We will not elaborate on this
technology, because it has mostly been replaced by another method.

In currently produced PLAs and PALs, programmable switches are implemented using
a special type of programmable transistor. Because CPLDs comprise PAL-like blocks, the
technology used in SPLDs is also applicable to CPLDs. We will illustrate the main ideas
by first describing PLAs. For a PLA to be useful for implementing a wide range of logic
functions, it should support both functions of only a few variables and functions of many
variables. In Section B.8.9 we discussed the issue of fan-in of logic gates. We showed that
when the fan-in is high, the best type of gate to use is the NMOS NOR gate. Hence PLAs
are usually based on this type of gate.

As a small example of PLA implementation, consider the circuit in Figure B.67. The
horizontal wire labeled S1 is the output of an NMOS NOR gate with the inputs x2 and
x3. Thus S1 = x2 + x3. Similarly, S2 and S3 are the outputs of NOR gates that produce
S2 = x1 + x3 and S3 = x1 + x2 + x3. The three NOR gates that produce S1, S2, and S3
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Figure B.67 An example of a NOR-NOR PLA.

are arranged in a regular structure that is efficient to create on an integrated circuit. This
structure is called a NOR plane. The NOR plane is extended to larger sizes by adding
columns for additional inputs and adding rows for more NOR gates.

The signals S1, S2, and S3 serve as inputs to a second NOR plane. This NOR plane is
turned 90 degrees clockwise with respect to the first NOR plane to make the diagram easier
to draw. The NOR gate that produces the output f1 has the inputs S1 and S2. Thus

f1 = S1 + S2 = (x2 + x3) + (x1 + x3)

Using DeMorgan’s theorem, this expression is equivalent to the product-of-sums expression

f1 = S1S2 = (x2 + x3)(x1 + x3)

Similarly, the NOR gate with output f2 has inputs S1 and S3. Therefore,

f2 = S1 + S3 = (x2 + x3) + (x1 + x2 + x3)
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which is equivalent to

f2 = S1S3 = (x2 + x3)(x1 + x2 + x3)

The style of PLA illustrated in Figure B.67 is called a NOR-NOR PLA. Alternative
implementations also exist, but because of its simplicity, the NOR-NOR style is the most
popular choice. The reader should note that the PLA in Figure B.67 is not programmable—
with the transistors connected as shown, it realizes only the two specific logic functions f1
and f2. But the NOR-NOR structure can be used in a programmable version of the PLA, as
explained below.

Strictly speaking, the term PLA should be used only for the fixed type of PLA de-
picted in Figure B.67. The proper technical term for a programmable type of PLA is
field-programmable logic array (FPLA). However, it is common usage to omit the F . Fig-
ure B.68a shows a programmable version of a NOR plane. It has n inputs, x1, . . . , xn,
and k outputs, S1, . . . , Sk . At each crossing point of a horizontal and vertical wire there
exists a programmable switch. The switch comprises two transistors connected in series, an
NMOS transistor and an electrically erasable programmable read-only memory (EEPROM)
transistor.

The programmable switch is based on the behavior of the EEPROM transistor. Elec-
tronics textbooks, such as [1, 2], give detailed explanations of how EEPROM transistors
operate. Here we will provide only a brief description. A programmable switch is depicted
in Figure B.68b, and the structure of the EEPROM transistor is given in Figure B.68c. The
EEPROM transistor has the same general appearance as the NMOS transistor (see Figure
B.43) with one major difference. The EEPROM transistor has two gates: the normal gate
that an NMOS transistor has and a second floating gate. The floating gate is so named be-
cause it is surrounded by insulating glass and is not connected to any part of the transistor.
When the transistor is in the original unprogrammed state, the floating gate has no effect
on the transistor’s operation and it works as a normal NMOS transistor. During normal use
of the PLA, the voltage on the floating gate Ve is set to VDD by circuitry not shown in the
figure, and the EEPROM transistor is turned on.

Programming of the EEPROM transistor is accomplished by turning on the transistor
with a higher-than-normal voltage level (typically, Ve = 12 V), which causes a large amount
of current to flow through the transistor’s channel. Figure B.68c shows that a part of the
floating gate extends downward so that it is very close to the top surface of the channel.
A high current flowing through the channel causes an effect, known as Fowler-Nordheim
tunneling, in which some of the electrons in the channel “tunnel” through the insulating
glass at its thinnest point and become trapped under the floating gate. After the programming
process is completed, the trapped electrons repel other electrons from entering the channel.
When the voltage Ve = VDD is applied to the EEPROM transistor, which would normally
cause it to turn on, the trapped electrons keep the transistor turned off. Hence in the NOR
plane in Figure B.68a, programming is used to “disconnect” inputs from the NOR gates.
For the inputs that should be connected to each NOR gate, the corresponding EEPROM
transistors are left in the unprogrammed state.

Once an EEPROM transistor is programmed, it retains the programmed state perma-
nently. However, the programming process can be reversed. This step is called erasing, and
it is done by using voltages that are of the opposite polarity to those used for programming.
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Figure B.68 Using EEPROM transistors to create a programmable NOR plane.
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In this case, the applied voltage causes the electrons that are trapped under the floating gate
to tunnel back to the channel. The EEPROM transistor returns to its original state and again
acts like a normal NMOS transistor.

For completeness, we should also mention another technology that is similar to EEP-
ROM, called erasable PROM (EPROM). This type of transistor, which was actually created
as the predecessor of EEPROM, is programmed in a similar fashion to EEPROM. However,
erasing is done differently: to erase an EPROM transistor, it must be exposed to light energy
of specific wavelengths. To facilitate this process, chips based on EPROM technology are
housed in packages with a clear glass window through which the chip is visible. To erase
a chip, it is placed under an ultraviolet light source for several minutes. Because erasure
of EPROM transistors is more awkward than the electrical process used to erase EEPROM
transistors, EPROM technology has essentially been replaced by EEPROM technology in
practice.

A complete NOR-NOR PLA using EEPROM technology, with four inputs, six sum
terms in the first NOR plane, and two outputs, is depicted in Figure B.69. Each pro-
grammable switch that is programmed to the off state is shown as X in black, and each

f1

S1

S2

f2

x1 x2 x3 NOR plane

NOR plane

S3

S4

x4

S5

S6

VDD

VDD

Figure B.69 Programmable version of the NOR-NOR PLA.
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switch that is left unprogrammed is shown in blue. With the programming states shown in
the figure, the PLA realizes the logic functions f1 = (x1 + x3)(x1 + x2)(x1 + x2 + x3) and
f2 = (x1 + x3)(x1 + x2)(x1 + x2).

Rather than implementing logic functions in product-of-sums form, a PLA can also
be used to realize the sum-of-products form. For sum-of-products we need to implement
AND gates in the first NOR plane of the PLA. If we first complement the inputs to the
NOR plane, then according to DeMorgan’s theorem, this is equivalent to creating an AND
plane. We can generate the complements at no cost in the PLA because each input is already
provided in both true and complemented forms. An example that illustrates implementation
of the sum-of-products form is given in Figure B.70. The outputs from the first NOR
plane are labeled P1, . . . , P6 to reflect our interpretation of them as product terms. The
signal P1 is programmed to realize x1 + x2 = x1x2. Similarly, P2 = x1x3, P3 = x1x2x3, and
P4 = x1x2x3. Having generated the desired product terms, we now need to OR them. This
operation can be accomplished by complementing the outputs of the second NOR plane.

f1

P1

P2

f2

x1 x2 x3 NOR plane

NOR plane

P3

P4

x4

P5

P6

VDD

VDD

Figure B.70 A NOR-NOR PLA used for sum-of-products.
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Figure B.70 includes NOT gates for this purpose. The states indicated for the programmable
switches in the OR plane (the second NOR plane) in the figure yield the following outputs:
f1 = P1 + P2 + P3 = x1x2 + x1x3 + x1x2x3, and f2 = P1 + P4 = x1x2 + x1x2x3.

The concepts described above for PLAs can also be used in PALs. Figure B.71 shows a
PALwith four inputs and two outputs. Let us assume that the first NOR plane is programmed
to realize product terms in the manner described above. Notice in the figure that the product
terms are hardwired in groups of three to OR gates that produce the outputs of the PAL.
As we illustrated in Figure B.29, the PAL may also contain extra circuitry between the OR
gates and the output pins, which is not shown in Figure B.71. The PAL is programmed
to realize the same logic functions, f1 and f2, that were generated in the PLA in Figure
B.70. Observe that the product term x1x2 is implemented twice in the PAL, on both P1 and
P4. Duplication is necessary because in a PAL product terms cannot be shared by multiple
outputs, as they can be in a PLA. Another detail to observe in Figure B.71 is that although
the function f2 requires only two product terms, each OR gate is hardwired to three product
terms. The extra product term P6 must be set to logic value 0, so that it has no effect. This
is accomplished by programming P6 so that it produces the product of an input and that
input’s complement, which always results in 0. In the figure, P6 = x1x1 = 0, but any other
input could also be used for this purpose.

The PAL-like blocks contained in CPLDs are usually implemented using the techniques
discussed in this section. In a typical CPLD, the AND plane is built using NMOS NOR

f2
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P2

x1 x2 x3

NOR plane

P3

P4

x4

P5

P6

VDD

f1

Figure B.71 PAL programmed to implement the functions in Figure B.70.
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gates, with appropriate complementing of the inputs. The OR plane is hardwired as it is in
a PAL, rather than being fully programmable as in a PLA. However, some flexibility exists
in the number of product terms that feed each OR gate. This flexibility is accomplished by
using a programmable circuit that can allocate the product terms to whichever OR gates the
user desires.

Example B.12 In Section B.9 we described static random access memory. This type of memory is useful
when it is necessary to support both reading and writing of data. In many situations it is
also useful to be able to write data into a memory and then use this stored data permanently
without further modification. A read-only memory (ROM) is suitable for such applications.
In a ROM the storage cells are built using EEPROM (or EPROM) transistors, arranged in a
structure similar to that shown in Figure B.68. Each data bit in the ROM normally provides
a 1 if its corresponding EEPROM cell is programmed to be “off”, but this data bit is pulled
down to 0 if the EEPROM cell is programmed to be “ON”.

Figure B.72 shows an example of a ROM block. The storage cells are arranged in 2m

rows with n cells per row. Thus each row stores n bits of information. The location of each
row in the ROM is identified by its address. In the figure the row at the top has address 0,
and the row at the bottom has address 2m − 1. The information stored in the rows can be
accessed by asserting the select lines, Sel0 to Sel2m−1. As shown in the figure, a decoder
with m inputs and 2m outputs is used to generate the signals on the select lines. Figure B.72
shows that each data line has an associated tri-state driver that is enabled by the ROM input
named Read. To access, or read, data from the ROM, the address of the desired row is
placed on the address lines and Read is set to 1.

B.10.1 Implementation in FPGAs

FPGAs do not use EEPROM technology to implement the programmable switches. Instead,
the programming information is stored in SRAM cells. An SRAM cell is used for each
truth-table value stored in a LUT. SRAM cells are also used to configure the interconnection
wires in an FPGA.

Figure B.73 depicts a small section of the FPGA from Figure B.39. The logic element
shown produces the output f1, which is driven onto the horizontal wire drawn in blue. This
wire can be connected to some of the vertical wires that it crosses, using programmable
switches. Each switch is implemented using an NMOS transistor, with its gate terminal
controlled by an SRAM cell. Such a switch is known as a pass-transistor switch. If a 0 is
stored in an SRAM cell, then the associated NMOS transistor is turned off. But if a 1 is
stored in the SRAM cell, as shown for the switch drawn in blue, then the NMOS transistor
is turned on. This switch forms a connection between the two wires attached to its source
and drain terminals. The number of switches that are provided in the FPGA depends on the
specific chip architecture.

In Section B.8.7 we showed that an NMOS transistor can only partially pass a high
logic value. Hence in Figure B.73 if Vf1 is a high voltage level, then VA is only partially
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VDD

To logic block

1

SRAM

VA

VB

Figure B.74 Restoring a high voltage level.

high. Using the values from Section B.8.7, if Vf1 = 5 V, then VA = 3.5 V. As we explained
in Section B.8.7, this degraded voltage level has the result of causing static power to be
consumed (see Example B.19). One solution to this problem [1] is illustrated in Figure B.74.
We assume that the signal VA passes through another pass-transistor switch before reaching
its destination at another logic element. The signal VB has the same value as VA because the
threshold voltage drop occurs only when passing through the first pass-transistor switch.
To restore the level of VB, it is driven with an inverter. A PMOS transistor is connected
between the input of this inverter and VDD, and that transistor is controlled by the inverter’s
output. The PMOS transistor has no effect on the inverter’s output voltage level when
VB = 0 V. But when VB = 3.5 V, then the inverter output is low, which turns on the PMOS
transistor. This transistor quickly restores VB to the proper level of VDD, thus preventing
current from flowing in the steady state. Instead of using this pull-up transistor solution,
another possible approach is to alter the threshold voltage of the PMOS transistor (during
the integrated circuit manufacturing process) in the inverter in Figure B.74, such that the
magnitude of its threshold voltage is large enough to keep the transistor turned off when
VB = 3.5 V. In commercial FPGAs both of these solutions are used in different chips.

An alternative to using a single NMOS transistor as a switch is to use a transmission gate,
described in Section B.8.8. While this approach solves the voltage-level problem, it has
two drawbacks. First, having both an NMOS and PMOS transistor in the switch increases
the capacitive loading on the interconnection wires, which increases the propagation delays
and power consumption. Second, the transmission gate takes more chip area than does a
single NMOS transistor. For these reasons, commercial FPGA chips do not currently use
transmission-gate switches.

B.11 Concluding Remarks

We have described the most important concepts that are needed to understand how logic
gates are built using transistors. Our discussions of transistor fabrication, voltage levels,
propagation delays, power dissipation, and the like are meant to give the reader an appre-
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ciation of the practical issues that have to be considered when designing and using logic
circuits.

We have introduced several types of integrated circuit chips. Each type of chip is
appropriate for different applications. The standard chips, such as the 7400 series, contain
only a few simple gates and are rarely used today. Exceptions to this are the driver chips,
which are employed when large amounts of current are needed. The various types of PLDs
are widely used in many types of applications. Simple PLDs, like PLAs and PALs, are
appropriate for implementation of small logic circuits. The SPLDs offer low cost and high
speed. CPLDs can be used for the same applications as SPLDs, but CPLDs are also well
suited for implementation of larger circuits, up to about 10,000 to 20,000 gates. Many of
the applications that can be targeted to CPLDs can alternatively be realized with FPGAs.
Which of these two types of chips are used in a specific design situation depends on many
factors. Following the trend of putting as much circuitry as possible into a single chip,
FPGAs are more widely used than other PLDs. Most digital designs created in the industry
today contain some type of FPGA.

The gate-array, standard-cell, and custom-chip technologies are used in cases where
PLDs are not appropriate. Typical applications are those that entail very large circuits,
require extremely high speed-of-operation, need low power consumption, and where the
designed product is expected to sell in large volume.

B.12 Examples of Solved Problems

This section presents some typical problems that the reader may encounter, and shows how
such problems can be solved.

Example B.13Problem: We introduced standard cell technology in Section B.7. In this technology,
circuits are built by interconnecting building-block cells that implement simple functions,
like basic logic gates. A commonly used type of standard cell are the and-or-invert (AOI)
cells, which can be efficiently built as CMOS complex gates. Consider the AOI cell shown
in Figure B.75. This cell implements the function f = x1x2 + x3x4 + x5. Derive the CMOS
complex gate that implements this cell.

x1

fx2

x3

x4

x5

Figure B.75 The AOI cell for Example B.13.
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Solution: Applying Demorgan’s theorem in two steps gives

f = x1x2 · x3x4 · x5

= (x1 + x2) · (x3 + x4) · x5

Since all input variables are complemented in this expression, we can directly derive
the pull-up network as having parallel-connected PMOS transistors controlled by x1 and
x2, in series with parallel-connected transistors controlled by x3 and x4, in series with a
transistor controlled by x5. This circuit, along with the corresponding pull-down network,
is shown in Figure B.76.

Example B.14 Problem: For the CMOS complex gate in Figure B.76, determine the sizes of transistors
that should be used such that the speed performance of this gate is similar to that of an
inverter.

Solution: Recall from Section B.8.5 that a transistor with length L and width W has a drive
strength proportional to the ratio W/L. Also recall that when transistors are connected in

VDD

Vx5

Vx3

Vx2

Vf

Vx1

Vx4

Figure B.76 Circuit for Examples B.13 and B.14.
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parallel their widths are effectively added, leading to an increase in drive strength. Similarly,
when transistors are connected in series, their lengths are added, leading to a decrease in
drive strength. Let us assume that all NMOS and PMOS transistors have the same length,
Ln = Lp = L. In Figure B.76 the NMOS transistor connected to input Vx5 can have the
same width as in an inverter, Wn. But the worst-case path through the pull-down network
in this circuit involves two NMOS transistors in series. For these NMOS transistors, which
are connected to inputs Vx1 , . . . , Vx4 , we should make the widths equal to 2 × Wn. For the
pull-up network, the worst-case path involves three transistors in series. Since, as we said
in Section B.8.1, PMOS transistors have about half the drive strength of NMOS transistors,
we should make the effective width of the PMOS transistors

Wp = 3 × Wn × 2 = 6Wn

Example B.15Problem: In Section B.8.5, we said that the time needed to charge a capacitor is given by

tp = C�V

I

Derive this expression.

Solution: As we stated in Section B.8.5, the voltage across a capacitor cannot change
instantaneously. In Figure B.50b, as Vf is charged from 0 volts toward VDD, the voltage
changes according to the equation

Vf = 1

C

∞∫

0

i(t)dt

In this expression, the independent variable t is time, and i(t) represents the instantaneous
current flow through the capacitor at time t. Differentiating both sides of this expression
with respect to time, and rearranging gives

i(t) = C
dVf

dt

For the case where I is constant, we have

I

C
= �V

�t

Therefore,

�t = tp = C�V

I

Example B.16Problem: In our discussion of Figure B.50a, in Section B.8.6, we said that a capacitor,
C, that has been charged to the voltage Vf = VDD, stores an amount of energy equal to
CV 2

DD/2. Derive this expression.
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Solution: As shown in Example B.15, the current flow through a charging capacitor, C, is
related to the rate of change of voltage across the capacitor, according to

i(t) = C
dVf

dt

The instantaneous power dissipated in the capacitor is

P = i(t) × Vf

Since energy is defined as the power used over a time period, we can calculate the energy,
EC , stored in the capacitor as Vf changes from 0 to VDD by integrating the instantaneous
power over time, as follows

EC =
∞∫

0

i(t)Vf dt

Substituting the above expression for i(t) gives

EC =
∞∫

0

C
dVf

dt
Vf dt

= C

VDD∫

0

Vf dVf

= 1

2
CV 2

DD

Example B.17 Problem: In the original NMOS technology, the pull-up device was an n-channel MOSFET.
But most integrated circuits fabricated today use CMOS technology. Hence it is convenient
to implement the pull-up resistor using a PMOS transistor, as shown in Figure B.77. Such
a circuit is referred to as a pseudo-NMOS circuit. The pull-up device is called a “weak”
PMOS transistor because it has a small W/L ratio.

When Vx = VDD, Vf has a low value. The NMOS transistor is operating in the triode
region, while the PMOS transistor limits the current flow because it is operating in the
saturation region. The current through the NMOS and PMOS transistors has to be equal
and is given by Equations B.1 and B.2. Show that the low-output voltage, Vf = VOL is
given by

Vf = (VDD − VT )

⎡

⎣1 −
√

1 − kp

kn

⎤

⎦

where kp and kn, called the gain factors, depend on the sizes of the PMOS and NMOS
transistors, respectively. They are defined by kp = k ′

pWp/Lp and kn = k ′
nWn/Ln.
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Vf

VDD

Vx

Figure B.77 The pseudo-NMOS inverter.

Solution: For simplicity we will assume that the magnitude of the threshold voltages for
both the NMOS and PMOS transistors are equal, so that

VT = VT N = −VT P

The PMOS transistor is operating in the saturation region, so the current flowing through it
is given by

ID = 1

2
k ′

p

Wp

Lp
(−VDD − VT P)2

= 1

2
kp(−VDD − VT P)2

= 1

2
kp(VDD − VT )2

Similarly, the NMOS transistor is operating in the triode region, and its current flow is
defined by

ID = k ′
n

Wn

Ln

[
(Vx − VT N )Vf − 1

2
V 2

f

]

= kn

[
(Vx − VT N )Vf − 1

2
V 2

f

]

= kn

[
(VDD − VT )Vf − 1

2
V 2

f

]

Since there is only one path for current to flow, we can equate the currents flowing through
the NMOS and PMOS transistors and solve for the voltage Vf .

kp(VDD − VT )2 = 2kn

[
(VDD − VT )Vf − 1

2
V 2

f

]

kp(VDD − VT )2 − 2kn(VDD − VT )Vf + knV 2
f = 0
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This quadratic equation can be solved using the standard formula, with the parameters

a = kn, b = −2kn(VDD − VT ), c = kp(VDD − VT )2

which gives

Vf = −b

2a
±

√
b2

4a2
− c

a

= (VDD − VT ) ±
√

(VDD − VT )2 − kp

kn
(VDD − VT )2

= (VDD − VT )

⎡

⎣1 ±
√

1 − kp

kn

⎤

⎦

Only one of these two solutions is valid, because we started with the assumption that the
NMOS transistor is in the triode region while the PMOS is in the saturation region. Thus

Vf = (VDD − VT )

⎡

⎣1 −
√

1 − kp

kn

⎤

⎦

Example B.18 Problem: For the circuit in Figure B.77, assume the values k ′
n = 60 μA/V2, k ′

p = 0.4 k ′
n,

Wn/Ln = 2.0 μm/0.5 μm, Wp/Lp = 0.5 μm/0.5 μm, VDD = 5 V, and VT = 1 V. When
Vx = VDD, calculate the following:
(a) The static current, Istat .
(b) The on-resistance of the NMOS transistor.
(c) VOL.
(d) The static power dissipated in the inverter.
(e) The on-resistance of the PMOS transistor.
(f) Assume that the inverter is used to drive a capacitive load of 70 fF. Using Equation B.4,
calculate the low-to-high and high-to-low propagation delays.

Solution: (a) The PMOS transistor is saturated, therefore

Istat = 1

2
k ′

p

Wp

Lp
(VDD − VT )2

= 12
μA

V2 × 1 × (5 V − 1 V)2 = 192 μA

(b) Using Equation B.3,

RDS = 1/

[
k ′

n

Wn

Ln
(VGS − VT )

]

= 1/

[
0.060

mA

V2 × 4 × (5 V − 1 V)

]
= 1.04 k�
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(c) Using the expression derived in Example B.17 we have

kp = k ′
p

Wp

Lp
= 24

μA

V2

kn = k ′
n

Wn

Ln
= 240

μA

V2

VOL = Vf = (5 V − 1 V)

[
1 −

√
1 − 24

240

]

= 0.21 V

(d )

PD = Istat × VDD

= 192 μA × 5 V = 960 μW ≈ 1 mW

(e)

RSDP = VSD/ISD

= (VDD − Vf )/Istat

= (5 V − 0.21 V)/0.192 mA = 24.9 k�

( f ) The low-to-high propagation delay is

tpLH = 1.7C

k ′
p

Wp

Lp
VDD

= 1.7 × 70 fF

24 μA
V2 × 1 × 5 V

= 0.99 ns

The high-to-low propagation delay is

tpHL = 1.7C

k ′
n

Wn
Ln

VDD

= 1.7 × 70 fF

60 μA
V2 × 4 × 5 V

= 0.1 ns

Example B.19Problem: In Figure B.74 we showed a solution to the static power dissipation problem
when NMOS pass transistors are used. Assume that the PMOS pull-up transistor is re-
moved from this circuit. Assume the parameters k ′

n = 60 μA/V2, k ′
p = 0.5 × k ′

n, Wn/Ln =
2.0 μm/0.5 μm, Wp/Lp = 4.0 μm/0.5 μm, VDD = 5 V, and VT = 1 V. For VB = 3.5 V,
calculate the following:
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(a) The static current Istat .
(b) The voltage Vf at the output of the inverter.
(c) The static power dissipation in the inverter.
(d) If a chip contains 250,000 inverters used in this manner, find the total static power
dissipation.

Solution: (a) If we assume that the PMOS transistor is operating in the saturation region,
then the current flow through the inverter is defined by

Istat = 1

2
k ′

p

Wp

Lp
(VGS − VTp)

2

= 120
μA

V2 × ((3.5 V − 5 V) + 1 V)2 = 30 μA

(b) Since the static current, Istat , flowing through the PMOS transistor also flows through
the NMOS transistor, then assuming that the NMOS transistor is operating in the triode
region, we have

Istat = k ′
n

Wn

Ln

[
(VGS − VTn)VDS − 1

2
V 2

DS

]

30 μA = 240
μA

V2 ×
[

2.5 V × Vf − 1

2
V 2

f

]

1 = 20Vf − 4V 2
f

Solving this quadratic equation yields Vf = 0.05 V. Note that the output voltage Vf satisfies
the assumption that the PMOS transistor is operating in the saturation region while the
NMOS transistor is operating in the triode region.
(c) The static power dissipated in the inverter is

PS = Istat × VDD = 30 μA × 5 V = 150 μW

(d ) The static power dissipated by 250,000 inverters is

250,000 × PS = 37.5 W

Problems

Answers to problems marked by an asterisk are given at the back of the book.

B.1 Consider the circuit shown in Figure PB.1.
(a) Show the truth table for the logic function f.
(b) If each gate in the circuit is implemented as a CMOS gate, how many transistors are
needed?
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x1

x2

f

x3

Figure PB.1 A sum-of-products CMOS circuit.

B.2 (a) Show that the circuit in Figure PB.2 is functionally equivalent to the circuit in Fig-
ure PB.1.
(b) How many transistors are needed to build this CMOS circuit?

x1
x2

x3 g

Figure PB.2 A CMOS circuit built with multiplexers.

B.3 (a) Show that the circuit in Figure PB.3 is functionally equivalent to the circuit in Fig-
ure PB.2.
(b) How many transistors are needed to build this CMOS circuit if each XOR gate is
implemented using the circuit in Figure B.55?

x3

h

x1
x2

A

Figure PB.3 Circuit for Problem B.3.
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*B.4 In Section B.8.9 we said that a six-input CMOS AND gate can be constructed using two
three-input AND gates and a two-input AND gate. This approach requires 22 transistors.
Show how you can use only CMOS NAND and NOR gates to build the six-input AND
gate, and calculate the number of transistors needed. (Hint: Use DeMorgan’s theorem.)

B.5 Repeat Problem B.4 for an eight-input CMOS OR gate.

B.6 (a) Give the truth table for the CMOS circuit in Figure PB.4.
(b) Derive a canonical sum-of-products expression for the truth table from part (a). How
many transistors are needed to build a circuit representing the canonical form if only AND,
OR, and NOT gates are used?

Vf

VDD

Vx1

Vx2

Vx3

Figure PB.4 A three-input CMOS circuit.

B.7 (a) Give the truth table for the CMOS circuit in Figure PB.5.
(b) Derive the simplest sum-of-products expression for the truth table in part (a). How
many transistors are needed to build the sum-of-products circuit using CMOS AND, OR,
and NOT gates?

*B.8 Figure PB.6 shows half of a CMOS circuit. Derive the other half that contains the PMOS
transistors.

B.9 Figure PB.7 shows half of a CMOS circuit. Derive the other half that contains the NMOS
transistors.
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Vf

Vx4

Vx2

Vx3

VDD

Vx1

Figure PB.5 A four-input CMOS circuit.

Vx1

Vx2

Vx3

Vf

Figure PB.6 The PDN in a CMOS circuit.
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Vf

VDD

Vx1

Vx2

Vx3

Vx4

Figure PB.7 The PUN in a CMOS circuit.

B.10 Derive a CMOS complex gate for the logic function f (x1, x2, x3, x4) = ∑
m(0, 1, 2, 4, 5,

6, 8, 9, 10).

B.11 Derive a CMOS complex gate for the logic function f (x1, x2, x3, x4) = ∑
m(0, 1, 2, 4, 6,

8, 10, 12, 14).

*B.12 Derive a CMOS complex gate for the logic function f = xy + xz. Use as few transistors as
possible (Hint: Consider f ).

B.13 Derive a CMOS complex gate for the logic function f = xy + xz + yz. Use as few transis-
tors as possible (Hint: Consider f ).

*B.14 For an NMOS transistor, assume that k ′
n = 20 μA/V2, W/L = 2.5 μm/0.5 μm, VGS =

5 V, and VT = 1 V. Calculate
(a) ID when VDS = 5 V
(b) ID when VDS = 0.2 V

B.15 For a PMOS transistor, assume that k ′
p = 10 μA/V2, W/L = 2.5 μm/0.5 μm, VGS =

−5 V, and VT = −1 V. Calculate
(a) ID when VDS = −5 V
(b) ID when VDS = −0.2 V

B.16 For an NMOS transistor, assume that k ′
n = 20 μA/V2, W/L = 5.0 μm/0.5 μm, VGS =

5 V, and VT = 1 V. For small VDS , calculate RDS .

*B.17 For an NMOS transistor, assume that k ′
n = 40 μA/V2, W/L = 3.5 μm/0.35 μm, VGS =

3.3 V, and VT = 0.66 V. For small VDS , calculate RDS .

B.18 For a PMOS transistor, assume that k ′
p = 10 μA/V2, W/L = 5.0 μm/0.5 μm, VGS =

−5 V, and VT = −1 V. For VDS = −4.8 V, calculate RDS .

B.19 For a PMOS transistor, assume that k ′
p = 16 μA/V2, W/L = 3.5 μm/0.35 μm, VGS =

−3.3 V, and VT = −0.66 V. For VDS = −3.2 V, calculate RDS .
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B.20 In Example B.17 we showed how to calculate voltage levels in a pseudo-NMOS inverter.
Figure PB.8 depicts a pseudo-PMOS inverter. In this technology, a weak NMOS transistor
is used to implement a pull-down resistor.

When Vx = 0, Vf has a high value. The PMOS transistor is operating in the triode
region, while the NMOS transistor limits the current flow, because it is operating in the
saturation region. The current through the PMOS and NMOS transistors has to be the same
and is given by Equations B.1 and B.2. Find an expression for the high-output voltage,
Vf = VOH , in terms of VDD, VT , kp, and kn, where kp and kn are gain factors as defined in
Example B.17.

Vf

VDD

Vx

VDD

Figure PB.8 The pseudo-PMOS inverter.

*B.21 For the circuit in Figure PB.8, assume the values k ′
n = 60 μA/V2, k ′

p = 0.4 k ′
n, Wn/Ln =

0.5 μm/0.5 μm, Wp/Lp = 4.0 μm/0.5 μm, VDD = 5 V and VT = 1 V. When Vx = 0, cal-
culate the following:
(a) The static current, Istat

(b) The on-resistance of the PMOS transistor
(c) VOH

(d) The static power dissipated in the inverter
(e) The on-resistance of the NMOS transistor
(f) Assume that the inverter is used to drive a capacitive load of 70 fF. Using Equation B.4,
calculate the low-to-high and high-to-low propagation delays.

B.22 Repeat Problem B.21 assuming that the size of the NMOS transistor is changed to Wn/Ln =
4.0 μm/0.5 μm.

B.23 Example B.17 (see Figure B.77) shows that in the pseudo-NMOS technology the pull-up
device is implemented using a PMOS transistor. Repeat this problem for a NAND gate
built with pseudo-NMOS technology. Assume that both of the NMOS transistors in the
gate have the same parameters, as given in Example B.18.

B.24 Repeat Problem B.23 for a pseudo-NMOS NOR gate.
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*B.25 (a) For VIH = 4 V, VOH = 4.5 V, VIL = 1 V, VOL = 0.3 V, and VDD = 5 V, calculate the
noise margins NMH and NML.
(b) Consider an eight-input NAND gate built using NMOS technology. If the voltage drop
across each transistor is 0.1 V, what is VOL? What is the corresponding NML using the other
parameters from part (a).

B.26 Under steady-state conditions, for an n-input CMOS NAND gate, what are the voltage
levels of VOL and VOH ? Explain.

B.27 For a CMOS inverter, assume that the load capacitance is C = 150 fF and VDD = 5 V.
The inverter is cycled through the low and high voltage levels at an average rate of f =
75 MHz.
(a) Calculate the dynamic power dissipated in the inverter.
(b) For a chip that contains the equivalent of 250,000 inverters, calculate the total dynamic
power dissipated if 20 percent of the gates change values at any given time.

*B.28 Repeat Problem B.27 for C = 120 fF, VDD = 3.3 V, and f = 125 MHz.

B.29 In a CMOS inverter, assume that k ′
n = 20μA/V2, k ′

p = 0.4 × k ′
n, Wn/Ln = 5.0 μm/0.5 μm,

Wp/Lp = 5.0 μm/0.5 μm, and VDD = 5 V. The inverter drives a load capacitance of
150 fF.
(a) Find the high-to-low propagation delay.
(b) Find the low-to-high low propagation delay.
(c) What should be the dimensions of the PMOS transistor such that the low-to-high and
high-to-low propagation delays are equal? Ignore the effect of the PMOS transistor’s size
on the load capacitance of the inverter.

B.30 Repeat Problem B.29 for the parameters k ′
n = 40 μA/V2, k ′

p = 0.4 × k ′
n, Wn/Ln = Wp/Lp =

3.5 μm/0.35 μm, and VDD = 3.3 V.

B.31 In a CMOS inverter, assume that Wn/Ln = 2 and Wp/Lp = 4. For a CMOS NAND gate,
calculate the required W/L ratios of the NMOS and PMOS transistors such that the available
current in the gate to drive the output both low and high is equal to that in the inverter.

*B.32 Repeat Problem B.31 for a CMOS NOR gate.

B.33 Repeat Problem B.31 for the CMOS complex gate in Figure B.16. The transistor sizes
should be chosen such that in the worst case the available current is at least as large as in
the inverter.

B.34 Repeat Problem B.31 for the CMOS complex gate in Figure B.17.

B.35 In Figure B.74 we showed a solution to the static power dissipation problem when NMOS
pass transistors are used. Assume that the PMOS pull-up transistor is removed from this cir-
cuit. Assume the parameters k ′

n = 60 μA/V2, k ′
p = 0.4 × k ′

n, Wn/Ln = 1.0 μm/0.25 μm,
Wp/Lp = 2.0 μm/0.25 μm, VDD = 2.5 V, and VT = 0.6 V. For VB = 1.6 V, calculate the
following:
(a) the static current, Istat

(b) the voltage, Vf , at the output of the inverter
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(c) the static power dissipation in the inverter
(d) If a chip contains 500,000 inverters used in this manner, find the total static power
dissipation.

B.36 Using the style of drawing in Figure B.70, draw a picture of a PLAprogrammed to implement
f1(x1, x2, x3) = ∑

m(1, 2, 4, 7). The PLA should have the inputs x1, . . . , x3; the product
terms P1, . . . , P4; and the outputs f1 and f2.

B.37 Using the style of drawing in Figure B.70, draw a picture of a PLAprogrammed to implement
f1(x1, x2, x3) = ∑

m(0, 3, 5, 6). The PLA should have the inputs x1, . . . , x3; the product
terms P1, . . . , P4; and the outputs f1 and f2.

B.38 Show how the function f1 from Problem B.36 can be realized in a PLA of the type shown in
Figure B.71. Draw a picture of such a PLA programmed to implement f1. The PLA should
have the inputs x1, . . . , x3; the sum terms S1, . . . , S4; and the outputs f1 and f2.

B.39 Show how the function f1 from Problem B.37 can be realized in a PLA of the type shown in
Figure B.71. Draw a picture of such a PLA programmed to implement f1. The PLA should
have the inputs x1, . . . , x3; the sum terms S1, . . . , S4; and the outputs f1 and f2.

B.40 Repeat Problem B.38 using the style of PLA drawing shown in Figure B.67.

B.41 Repeat Problem B.39 using the style of PLA drawing shown in Figure B.67.

B.42 Given that f1 is implemented as described in Problem B.36, list all of the other possible
logic functions that can be realized using output f2 in the PLA.

B.43 Given that f1 is implemented as described in Problem B.37, list all of the other possible
logic functions that can be realized using output f2 in the PLA.

B.44 Consider the function f (x1, x2, x3) = x1x2 + x1x3 + x2x3. Show a circuit using 5 two-input
lookup-tables (LUTs) to implement this expression. As shown in Figure B.39, give the
truth table implemented in each LUT. You do not need to show the wires in the FPGA.

*B.45 Consider the function f (x1, x2, x3) = ∑
m(2, 3, 4, 6, 7). Show how it can be realized using

two two-input LUTs. As shown in Figure B.39, give the truth table implemented in each
LUT. You do not need to show the wires in the FPGA.

B.46 Given the function f = x1x2x4 + x2x3x4 + x1x2x3, a straightforward implementation in an
FPGA with three-input LUTs requires four LUTs. Show how it can be done using only 3
three-input LUTs. Label the output of each LUT with an expression representing the logic
function that it implements.

B.47 For f in Problem B.46, show a circuit of two-input LUTs that realizes the function. You
are to use exactly seven two-input LUTs. Label the output of each LUT with an expression
representing the logic function that it implements.

B.48 Figure B.39 shows an FPGA programmed to implement a function. The figure shows one
pin used for function f, and several pins that are unused. Without changing the programming
of any switch that is turned on in the FPGA in the figure, list 10 other logic functions, in
addition to f, that can be implemented on the unused pins.
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B.49 Assume that a gate array contains the type of logic cell depicted in Figure PB.9. The inputs
in1, . . . , in7 can be connected to either 1 or 0, or to any logic signal.
(a) Show how the logic cell can be used to realize f = x1x2 + x3.
(b) Show how the logic cell can be used to realize f = x1x3 + x2x3.

out

in1 in2 in3

in4 in5 in6 in7

Figure PB.9 A gate-array logic cell.

B.50 Assume that a gate array exists in which the logic cell used is a three-input NAND gate. The
inputs to each NAND gate can be connected to either 1 or 0, or to any logic signal. Show
how the following logic functions can be realized in the gate array. (Hint: Use DeMorgan’s
theorem.)
(a) f = x1x2 + x3

(b) f = x1x2x4 + x2x3x4 + x1

B.51 What logic gate is realized by the circuit in Figure PB.10? Does this circuit suffer from any
major drawbacks?

Vf

Vx1

Vx2

Figure PB.10 Circuit for Problem B.51.
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*B.52 What logic gate is realized by the circuit in Figure PB.11? Does this circuit suffer from any
major drawbacks?

Vf

Vx1

Vx2

Figure PB.11 Circuit for Problem B.52.
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Chapter 1

1.1. (a) 10100 (b) 1100100 (c) 10000001 (d) 100000100 (e) 10100000000000

1.4. (a) 10001 (b) 100001 (c) 1000011 (d) 10000010 (e) 101000000000
(f) 1100100000000000

1.6. (a) 9 (b) 28 (c) 63 (d) 2730

1.8. (a) 9 (b) 10 (c) 10 (d) 11

Chapter 2

2.7. (a) Yes (b) Yes (c) No

2.12. f = x1x3 + x2x3 + x2x3

2.15. f = (x1 + x2)(x2 + x3)

2.20. f = x2x3 + x1x3

2.23. f = (x1 + x2)(x1 + x3)

2.28. f = x1x2 + x1x3 + x2x3

2.32. f = (x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)(x1 + x2 + x3)

2.33. f = x1x3 + x1x2 + x2x3 + x1x2x3

2.37. SOP form: f = x1x2 + x2x3

POS form: f = (x1 + x2)(x2 + x3)

2.38. SOP form: f = x1x2 + x1x3 + x2x3

POS form: f = (x1 + x3)(x1 + x2)(x2 + x3)

2.41. SOP form: f = x3x5 + x3x4 + x2x4x5 + x1x3x4x5 + x1x2x4x5

POS form: f = (x3 +x4 +x5)(x3 +x4 +x5)(x2 +x3 +x4)(x1 +x3 +x4 +x5)(x1 +x2 +x4 +x5)

2.45. f = x1x2x3 + x1x2x4 + x1x3x4 + x2x3x4
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2.47. The statement is false. As a counter example consider f (x1, x2, x3) = ∑
m(0, 5, 7). Then,

the minimum-cost SOP form f = x1x3 +x1x2x3 is unique. But, there are two minimum-cost
POS forms:

f = (x1 + x3)(x1 + x3)(x1 + x2) and

f = (x1 + x3)(x1 + x3)(x2 + x3)

2.48. In a combined circuit:

f = x2x3x4 + x1x3x4 + x1x2x3x4 + x1x2x3

g = x2x3x4 + x1x3x4 + x1x2x3x4 + x1x2x4

The first 3 product terms are shared, hence the total cost is 31.

2.50. f = (x1 + x4 + x5) · (x1 + x2 + x3) · (x1 + x2 + x3) · (x1 + x4 + x5)

2.54. The circuit is

f

x1

x2

x3

2.56. The circuit is

f

x1

x2

x3

2.66. Representing both functions in the form of Karnaugh map, it is easy to show that f = g.

Chapter 3

3.1. (a) 478 (b) 743 (c) 2025 (d) 41567 (e) 61680

3.2. (a) 478 (b) −280 (c) −1

3.3. (a) 478 (b) −281 (c) −2
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3.4. The numbers are represented as follows:

Decimal Sign and Magnitude 1’s Complement 2’s Complement

73 000001001001 000001001001 000001001001
1906 011101110010 011101110010 011101110010
−95 100001011111 111110100000 111110100001

−1630 111001011110 100110100001 100110100010

3.11. Yes, it works. The NOT gate that produces ci is not needed in stages where i > 0. The
drawback is “poor” propagation of ci = 1 through the topmost NMOS transistor. The
positive aspect is fewer transistors needed to produce ci+1.

3.12. From Equation 3.4, each ci requires i AND gates and one OR gate. Therefore, to determine
all ci signals we need

∑n
i=1(i + 1) = (n2 + 3n)/2 gates. In addition to this, we need 3n

gates to generate all g, p, and s functions. Therefore, a total of (n2 +9n)/2 gates are needed.

3.13. 84 gates

3.17. The code in Figure P3.2 represents a multiplier. It multiplies the lower two bits of Input by
the upper two bits of Input, producing the four-bit Output.

3.21. A full-adder circuit can be used, such that two of the bits of the number are connected as
inputs x and y, while the third bit is connected as the carry-in. Then, the carry-out and sum
bits will indicate how many input bits are equal to 1. The circuit is

z0

z1z2

cout
cin

yx

s

Result
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Chapter 4

4.3.

0 0

0 1

1 0

1 1

1

0

1

1

0 0

0 1

1 0

1 1

0

0

1

0

w1 w2 w3 f

0

0

0

0

1

1

1

1

0
1

fw1

w2 w3+

w2w3

f

w3

w1w2

4.5. The derived circuit is

f

w2

w1

w3

4.10. f (w1, w2, . . . , wn) = [w1 + f (0, w2, . . . , wn)] · [w1 + f (1, w2, . . . , wn)]
4.11. Expansion of f in terms of w2 gives

f = w2(w1 + w3) + w2(w1w3)

= w2 ⊕ (w1 + w3)

= w2 ⊕ w1w3

The cost of this circuit is 2 gates + 4 inputs = 6.

4.13. a = w3 + w2w0 + w1 + w2w0

b = w1w0 + w1w0 + w2

c = w2 + w1 + w0
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4.18. The code in Figure P4.2 is a 2-to-4 decoder with an enable input. It is not a good style
for defining this decoder. The code is not easy to read. Moreover, the Verilog compiler
often turns if statements into multiplexers, in which case the resulting decoder may have
multiplexers controlled by the En signal on the output side.

Chapter 5

5.3. The circuit is

S

R

Clk

Q

Q

5.5. A possible circuit is

D Q

Q

Q

Q

S

Clock

S Q

Q

R

0

1

Q t 1+( )

Q t( )

0

S

0

0

0 11

1 01
R

R
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5.8. The circuit acts as a negative-edge-triggered JK flip-flop, in which J = A, K = B,
Clock = C, Q = D, and Q = E.

5.15. The following circuit implements the desired counter

T Q

QClock

T Q

Q

T Q

Q

1
Q0

Q1 Q2
0

1

0

1

Up/down

5.17. The counting sequence is 000, 001, 010, 111.

5.21. The longest delay in the circuit is the from the output of FF0 to the input of FF3. This delay
totals 5 ns. Thus the minimum period for which the circuit will operate reliably is

Tmin = 5 + 3 + 1 = 9 ns

The maximum frequency is

Fmax = 1/Tmin = 111 MHz

5.26. A suitable circuit is

ResetStart

3-bit counter

gf

Clock
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Chapter 6

6.1. The expressions for the inputs of the flip-flops are

D2 = Y2 = wy2 + y1y2

D1 = Y1 = w ⊕ y1 ⊕ y2

The output equation is z = y1y2.

6.2. The expressions for the inputs of the flip-flops are

J2 = y1

K2 = w

J1 = wy2 + wy2

K1 = J1

The output equation is z = y1y2.

6.5. Minimal state table is

Present Next state Output
state

w = 0 w = 1
z

A A B 0
B E C 0
C D C 0
D A F 1
E A F 0
F E C 1

6.6. Minimal state table is

Present Next state Output z

state w = 0 w = 1 w = 0 w = 1

A A B 0 0
B D C 0 0
C D C 1 0
D A B 0 1
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6.12. Minimal state table is

Present Next state Output
state w = 0 w = 1 p

A B C 0
B D E 0
C E D 0
D A F 0
E F A 0
F B C 1

6.15. The next-state expressions are

D4 = Y4 = wy3 + wy1

D3 = Y3 = w(y1 + y4)

D2 = Y2 = wy2 + wy4

D1 = Y1 = w(y2 + y1)

The output is given by z = y4.

6.17. Minimal state table is

Present Next state Output z

state w = 0 w = 1 w = 0 w = 1

A A C 0 0
C F C 0 1
F C A 0 1

6.21. The desired circuit is

J Q

QK

J Q

QK

z1 z0

1

w
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6.22. The desired circuit is

T Q

Q

T Q

Q

z1 z0

1

w

6.29. The state table is

Present Next state Output
state w = 0 w = 1 z

A A C 0
B A D 1
C A D 0
D A B 0

The circuit produces z = 1 whenever the input sequence on w comprises a 0 followed by
an even number of 1s.

Chapter 8

8.1. f = (x3 ↑ g) ↑ ((g ↑ g) ↑ x4) where g = (x1 ↑ (x2 ↑ x2)) ↑ ((x1 ↑ x1) ↑ x2)

8.2. f = (((x3 ↓ x3) ↓ g) ↓ ((g ↓ g) ↓ (x4 ↓ x4)), where
g = ((x1 ↓ x1) ↓ x2) ↓ (x1 ↓ (x2 ↓ x2)). Then, f = f ↓ f .

8.5. f = x1(x2 + x3)(x4 + x5) + x1(x2 + x3)(x4 + x5)

8.8. f = g · h + g · h, where g = x1x2 and h = x3 + x4
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8.12. The BDD is

0 1

x3

1
0

x3
0

1

0

x4

0
1

x4
1

0

1

x2

1

x1

x2

0

0 1

8.18. f = x1x2x4 + x1x2x3 + x1x2x3 + x2x3x4

Chapter 9

9.1. The flow table is

Present Next state

state w2w1 = 00 01 10 11 z2z1

A D C D C 11

B D D B� B� 10

C D C� D C� 01

D D� C B C 00

The behavior is the same as described in the flow table in Figure 9.21a, if the state inter-
changes A ↔ D and B ↔ C are made.
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9.8. Using the merger diagram in Figure 9.40a, the FSM in Figure 9.39 becomes

Present Next state Output
state

w2w1 = 00 01 10 11
z

A A� G E − 0

B B� C B� D 0

C B C� E C� 1

D − C E D� 0

E A − E� D 1

G B G� − D 1

9.10. The minimum-cost hazard-free implementation is

f = x1x3x4 + x1x2x4 + x1x3x4

9.12. The minimum-cost hazard-free POS implementation is

f = (x1+x2+x4)(x1+x2+x3)(x1+x3+x4)(x2+x3+x4)

9.14. If A = B = D = E = 1 and C changes from 0 to 1, then f changes 0 → 1 → 0 and g
changes 0 → 1 → 0 → 1. Therefore, there is a static hazard on f and a dynamic hazard
on g.

9.17. The excitation table is

Present
Next state Output

state wc = 00 01 10 11 00 01 10 11
y

Y z

0 0� 0� 1 0� 0 0 0 0

1 0 1� 1� 1� 0 1 0 1

The next-state expression is Y = wc+cy+wy. Note that the term wy is included to prevent
a static hazard. The output expression is z = cy.
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Chapter 11

11.1. A minimal test set must include the tests w1w2w3 = 011, 101, and 111, as well as one of
000, 010, or 100.

11.3. The two functions differ only in the vertex x1x2x3x4 = 0111. Therefore, the circuits can be
distinguished by applying this input valuation.

11.5. The tests are w1w2w3w4 = 1111, 1110, 0111, and 1111.

11.9. Cannot detect if the input wire w1 is stuck-at-1. The reason is that this circuit is highly
redundant. It realizes the function f = w3(w1 + w2), which can be implemented with a
simpler circuit.

11.11. Test set = {0000, 0111, 1111, 1000}. It would work with XORs implemented as shown in
Figure 4.26c. For n bits, the same patterns can be used; thus

Test set = {00 . . . 00, 011 . . . 1, 11 . . . 1, 100 . . . 0}.
11.12. In the decoder circuit in Figure 6.16c the four AND gates are enabled only if the En signal is

active. The required test set has to include all four valuations of w1 and w2 when En = 1. It
is also necessary to test if the En wire is stuck at 1, which can be accomplished with the test
w1w2En = 000. Therefore, a complete test set comprises w1w2En = 000, 001, 011, 101,
and 111.

Appendix B

B.4. Using the circuit

The number of transistors needed is 16.
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B.8. The complete circuit is

VDD

Vx1

Vx2

Vx3

Vf

Vx1

Vx2

Vx3

B.12. The required circuit is

VDD

Vy

Vz

Vf

Vx

VDD



December 31, 2012 09:06 vra80547_answers Sheet number 14 Page number 838 magenta black

838 Answers

B.14. (a) ID = 800 μA (b) ID = 78 μA

B.17. RDS = 947 �

B.25. (a) NM H = 0.5 V NM L = 0.7 V (b) VOL = 0.8 V NM L = 0.2 V

B.28. (a) PNOT_gate = 163 μW (b) Ptotal = 8.2 W

B.32. The two NMOS transistors in a CMOS NOR gate are connected in parallel. The worst
case current to drive the output low happens when only one of these transistors is turned
“ON”. Thus each transistor has to have the same dimensions as the NMOS transistor in the
inverter, namely Wn/Ln = 2.

The two PMOS transistors are connected in series. If each of these transistors had the
ratio Wp/Lp, then the two transistors could be thought of as one transistor with a Wp/2Lp

ratio. Thus each PMOS transistor must be made twice as wide as that in the inverter, namely
Wn/Ln = 8.

B.45. f = x2 + x1x3. The corresponding circuit is

0
0
1
0

x3

x1

0
1
1
1

x2

x1x3

x2 x1x3+

B.55. The circuit in Figure PB.11 is a two-input XOR gate. This circuit has two drawbacks: when
both inputs are 0 the PMOS transistor must drive f to 0, resulting in f = VT volts. Also,
when x1 = 1 and x2 = 0, the NMOS transistor must drive the output high, resulting in
f = VDD − VT .
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A
ABC system, 536
Absorption property, 35
Accumulator, 272
Active clock edge, 332
Active-low signal, 201
Adder:

BCD, 176
carry lookahead, 146
carry-save array, 183
full-adder, 127
half-adder, 32, 125
in Verilog code, 152–163, 641
propagation delay, 129, 151
ripple-carry, 129
serial, 363

Adder/subtractor, 139
Addition, 32, 125

BCD, 174
carry, 125
generate function, 146
overflow, 143, 648
propagate function, 146
sum, 125
Verilog, 159–163

Address, 796
Aliasing problem in testing, 673
Algorithm, 441
Algorithmic state machine (ASM):

ASM charts, 401
ASM block, 404
conditional output box, 402
decision box, 402
implied timing, 404
state box, 401

Alphanumeric characters, 14
Altera Corporation, 8
always block (Verilog), 74, 698
Analog information, 16
Analysis, 29, 504
AND function, 23
AND gate (see Gates)
And-or-invert cells, 807
AND plane (also AND array), 754
Anode terminal, 304
Arbiter circuit, 393, 571
Arithmetic:

floating-point (see Floating point)
operators (Verilog), 226

overflow, 143
(See also Addition; Division; Multiplication; Subtraction)

Arithmetic and logic unit (ALU), 218
Arithmetic assignment (Verilog), 159
Array multiplier (see Multiplication)
ASCII code, 14
ASIC, 5, 769
ASM chart (see Algorithmic state machine)
Aspect ratio, 794
assign (Verilog), 70
Associative property, 35
Asynchronous clear (reset), 263
Asynchronous clear (in Verilog), 294, 718
Asynchronous counter, 269
Asynchronous inputs, 482
Asynchronous sequential circuit (see Sequential circuits)
Axioms of Boolean algebra, 33

B
Barrel shifter, 238, 687
BCD (see Binary-coded decimal), 96, 176
BCD-to-7-segment converter, 96
BDD (see binary decision diagram)
BDD packages, 520
begin (Verilog), 156, 699
begin-end block (Verilog), 156, 699
Behavioral Verilog code, 70, 699
BGA package, 766
BILBO (Built-in Logic Block Observer), 673
Binary-coded decimal (BCD), 174

addition, 174
counter, 280
digits, 174

Binary decision diagram (BDD), 514
Binary numbers, 12

in Verilog code, 166, 687
Binary variable, 23
BIST (Built-in Self Test), 669
Bit, 12
Bit-counting circuit, 441
Bit-select (Verilog), 689
Bitwise operators (Verilog), 223
Blocking assignment (Verilog), 288, 700
Body effect, 785
Boolean algebra, 33
Boundary scan, 676
Branching heuristic, 91, 527
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Buffer (see Driver)
Bus, 422
Bypass capacitor, 677
Byte, 13

C
CAD (see Computer aided design)
Canonical expressions:

canonical product-of-sums, 52
canonical sum-of-products, 49

Capacitance, 779
Carry:

carry-in, 125
carry-out, 126

Carry chain, 645
Carry lookahead adder, 146
Carry-save adder, 183
case statement, 215, 702
casex statement, 220, 703
casez statement, 220, 703
Cathode terminal, 304
Channel (in MOSFET), 774
Character codes, 14
Characteristic impedance, 678
Characteristic table, 249
Chip configuration, 68
Circuit size, 764
Clear input, 260
Clock, 251
Clock divider, 304
Clock enable, 301
Clock network, 480
Clock skew, 312
Clock synchronization, 478
Clock-to-Q delay (tcQ), 263
Clock-to-output time (tco), 285
CMOS technology, 655
Code:

BCD, 96
converter, 208
error-detecting, 241
Gray, 82, 235
One-hot, 201, 281

Cofactor, 198, 516
Coincidence operation, 128
Column dominance, 524
Combinational circuits, 190–242
Combining property, 35, 79
Comment (Verilog), 72
Commutative property, 35
Comparator, 208, 227
Compatible states, 581
Complement:

diminished radix, 142
of a logic variable, 26

1’s, 133
radix, 139
2’s, 133

Complementary metal-oxide semiconductor (see CMOS
technology)

Complex gate (CMOS), 715
Complex programmable logic device (CPLD), 761
Compressor circuit, 671
Computer-aided design (CAD), 65

chip configuration, 68
design entry, 65
functional simulation, 67
layout synthesis (physical design), 67
logic synthesis (optimization), 67
technology mapping, 537, 640
timing simulation, 67

Concatenation (Verilog), 161, 227
Conditional operator (Verilog), 210
Consensus property, 40
Consistency check, 659
Constant (in Verilog), 166
Continuous assignment (Verilog), 70, 696
Control circuit, 422
Cost, 50, 89
Counter:

asynchronous, 269
BCD, 280
down, 271
enable and clear capability, 274
Johnson, 283
modulo-n, 278
parallel load of, 276
reset of, 278
ring, 281
ripple, 271
synchronous, 272
up, 270
up/down, 272
Verilog code, 298–300, 721

Cover, 88
minimal, 88
table, 522

Critical path, 145, 310
Crossbar, 193
Cross-coupled gates, 249
Crosstalk, 677
Cubical representation, 510
Current flow:

dynamic, 731
gate, 726
leakage, 777
short circuit, 784
static, 731

Custom chips, 5, 769
Cut-off region, 726
Cut set, 564
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D
D flip-flop (see Flip-flop)
D-algorithm, 661
Datapath, 422
DC-set, 94
Debouncing, 483
Decimal numbers, 12
Decision tree, 514
Decoder, 201, 433

tree, 203
Decomposition (see Functional decomposition)
default case alternative (Verilog), 215
defparam (Verilog), 163
Delay (see Propagation delay)
Delay (in Verilog), 694, 698
DeMorgan’s theorem, 35, 42
Demultiplexer, 203
Design, 6
Design entry, 65
Design for testability, 665
Design process, 6
Digital hardware, 2
Digital information, 16
Digital system, 422
Diminished radix complement, 142
Disjoint decomposition, 500
Distributive property, 35
Division, 455
Don’t-care condition, 94

in Verilog code, 704
Double precision (see Floating point)
Down-counter, (see Counter)
Drain (in MOSFET transistor), 735
Driver, 751, 791

inverting, 793
tri-state, 792

Duality, 34
Duty cycle, 489
Dynamic hazard, 609, 613

E
Edge (in signals), 257
Edge-triggered, 256, 267
Electrically-erasable programmable read-only memory (EEPROM),

799
Enable input, 201, 274, 301
Encoder, 205

binary, 205
priority, 205

end (Verilog), 699
Energy (capacitor), 732
Equality operators (Verilog), 226
Equivalence:

of logic expressions, 31
of states, 374

Equivalent-gates metric, 764
Erasable programmable read-only memory (EPROM), 801
Errors in Verilog code, 706
Escaped identifier, 687
Espresso, 536
Essential prime implicant, 89
Event expression (Verilog), 24, 703
Excess-127 format, 173
Excess-1023 format, 173
Excitation table, 388, 556
Exclusive-NOR (XNOR) gate (see Gates)
Exclusive-OR (XOR) gate (see Gates)
Expansion theorem (Shannon’s), 198, 515

F
Factoring, 493
Fall time, 781
Fan-in, 151, 493, 788
Fan-out, 790
Fault:

detection, 659
model, 654
propagation, 659
stuck-at, 654

Feedback, 248
Field-programmable gate array (FPGA), 5, 764, 804
Finite state machine (FSM), 333

incompletely specified, 381
summary of design procedure, 340

Fixed-point numbers, 170
Flip-flop, 258
Flip-flops:

clear and preset inputs, 260
clock-to-Q delay (tcQ), 263
configurable (in PLDs), 285
D, 256–262
edge-triggered, 256, 258, 267
JK, 264
hold time, 263
master-slave, 256, 558
setup time, 263
SR, 322
T, 263
Timing parameters, 263
Verilog code for, 288, 717

Floating gate, 799
Floating point, 172

double precision, 173
exponent, 172
format, 172
IEEE standard, 172
mantissa, 172
normalized, 172
representation, 172
single precision, 172
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Flow table, 556
primitive, 578
state reduction, 577

Fmax , 310
for loop statement, 156, 221, 704
Fowler-Nordheim tunneling, 799
FPLA (see PLA)
FSM (see Finite state machine)
Full-adder, 127
function (Verilog), 231, 713
Functional behavior, 29
Functional decomposition, 493
Functional equivalence, 31
Functional simulation, 67
Fundamental mode, 552, 608
Fuse map, 720

G
Gate (in MOSFET transistor), 735
Gate array, 770
Gate delay (see Propagation delay)
Gate optimization, 638
Gated D latch, 253, 285, 717, 788
Gated SR latch, 251
Gates:

AND, 27, 738
NAND, 54, 738, 741
NOR, 54, 738, 743
NOT, 27
OR, 27, 738
XNOR, 128
XOR, 32, 128

generate (Verilog), 157, 228, 712
genvar (Verilog), 157, 228, 712
Glitch, 561
Global signals, 480
Gray code, 82, 235

H
H tree, 480
Half-adder, 32, 125
Hamming distance, 592
Handshake signaling, 571
Hardware description language (HDL), 65
Hazard, 556, 608

dynamic, 609, 613
static, 609

Heuristic approach, 90
Hexadecimal numbers, 123
Hierarchical design, 65
Hierarchical Verilog code, 163
High-level behavioral Verilog code, 309
High-impedance output, 220, 422
Hold time, 256, 263

Huntington’s postulates, 35
Hypercube, 513

I
Identifier (Verilog), 687
IEEE, 65
IEEE standards (see Standards)
if-else statement, 212, 700
Implicant, 87
Implied memory (Verilog), 286, 702
Incompletely specified FSM, 381
Incompletely specified functions, 94
initial block (Verilog), 699
Input variable, 23
Instantiation (of Verilog gates), 71, 110, 694
Instantiation (of Verilog modules), 76, 78, 164, 165, 709
Instrumentation, 679
In-system programming (ISP), 760
Integer:

in Verilog, 159, 689
signed, 132
unsigned, 132

Integrated circuit (IC), 2
International Technology Roadmap for Semiconductors (ITRS), 3
Intersection, 38
Inversion, 26
Inverter (NOT gate), 27, 738

J
JK flip-flop, 264
Johnson counter, 283
JTAG port, 764

K
Karnaugh map, 79
k-cube, 513
k-successor, 374

L
Large scale integration (LSI), 753
Latch:

basic SR, 249
gated D, 253, 285
gated SR, 251
set-dominant SR, 322
Verilog code, 287, 717

Leakage current, 777
Least-significant bit, 13
LED (Light emitting diode), 304
Level-sensitive element, 254, 258
Level-sensitive scan design, 669
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Libraries, 65
Linear feedback shift register (LFSR), 326, 670
Linear region (see Triode region)
Literal, 87
Logic analyzer, 679
Logic block, 545
Logic circuit, 22, 29
Logic expression, 23
Logic functions, 23

AND, 27
NAND, 54
NOR, 54
NOT, 27
OR, 27
synthesis, 29
XNOR, 128
XOR, 128

Logic gates, 27
drive capability, 791
dynamic operation, 729
fall time, 781
fan-in, 493, 788
fan-out, 790
noise margin, 778
power dissipation, 731
propagation delay, 780
rise time, 781
transfer characteristic, 777
Verilog gates, 695

Logic network, 28
Logic values, 22
Logical operators (Verilog), 225
Logical product (AND), 43
Logical sum (OR), 43
Lookup table (LUT), 766
Loop statement (see for loop)

M
Macrocell, 758
Magnitude, 132
Majority function, 115
Master (see Flip-flop, master-slave)
Master-slave (see Flip-flop)
Maxterm, 52
Mealy FSM, 332, 349

Verilog code, 363, 724
Mealy output, 402
Mean operation, 466
Medium-scale integration (MSI), 753
Memory, 795

implied memory (Verilog), 286, 436, 702, 690
Merger diagram, 581
Merging, 578

procedure, 581
Metal-oxide semiconductor, 734

Metastability, 263, 483
Minimization:

of logic functions, 89
of states, 372, 577

Minterm, 48
Mixed logic, 748
module (Verilog), 70, 692
Moore FSM, 332

Verilog code, 355, 723
Moore output, 401
Moore’s law, 3
MOSFET transistor, 734

on-resistance, 776
Most-significant bit, 13
Motherboard, 8
Multibit assignment (in Verilog), 160
Multilevel circuits, 492, 502
Multiple-output circuits, 96
Multiplexer, 62, 190
Multiplexer (Verilog code), 211
Multiplication, 167

array implementation, 167
carry-save array, 183
partial product, 167
sequential implementation, 446
signed-operand, 169

Mutual exclusion element (ME), 577

N
Named port connection, 165, 709
Names (Verilog), 687
NAND circuits, 502, 738, 741
NAND gate (see Gates)
n-cube, 513
Negative edge, 257
Negative logic, 733, 747
Negative numbers, 133
negedge (Verilog), 287, 717
Net (in Verilog), 158, 686, 688
Network, 27
Next state, 336, 552
Nibble, 13
9’s complement, 140
NMOS technology, 736
NMOS transistor, 734
Noise, 778

margin, 778
power supply, 677

Non-blocking assignment (Verilog), 289, 700
Non-disjoint decomposition, 500
Nonvolatile programming, 764
NOR gate (see Gates)
NOR circuits, 502, 738, 741
NOR plane, 798
NOT function, 27
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NOT gate (see Gates)
Number conversion, 13
Number representation:

binary coded decimal, 174
fixed-point, 170
floating-point, 172
hexadecimal, 123
octal, 123
1’s-complement, 133
positional notation, 122
sign and magnitude, 133
signed integer, 132
10’s-complement, 140
2’s-complement, 133
unsigned integer, 122
in Verilog, 166, 687

O
Octal numbers, 123
Odd function, 128
One-hot encoding, 203, 281, 347, 607
1’s-complement representation, 133
1149.1 Standard, 676
On-resistance, 776
ON-set, 534
Operations (see Logic functions)
Operators (Verilog), 223, 690
Optimization (see Minimization)
OR function, 23
OR gate (see Gates)
OR plane, 754
Ordered port connection, 165, 709
Ordering of statements, 292
Oscilloscope, 679
Output delay time (tod ), 481
Overflow (see Arithmetic overflow)

P
Packages (physical):

ball grid array (BGA), 766
dual inline (DIP), 749
pin grid array (PGA), 765
plastic-leaded chip carrier (PLCC), 763
quad flat pack (QFP), 762
small-outline integrated circuit (SOIC), 751

PAL, 757
Parallel-to-serial converter, 268, 415
Parallel transfer, 267
parameter (Verilog), 156, 688
Parasitic capacitance, 780
Parity, 240, 413, 565
Partial product, 167
Part-select (Verilog), 689
Pass transistor, 804

Path sensitizing, 657
Physical design, 644
Pins, 646
PLA, 754, 799
Placement, 646, 676
PLD, 5, 753
PMOS transistor, 734
Polysilicon, 772
Port (Verilog), 70, 692
Portability, 66
posedge (Verilog), 287, 717
Positional number representation, 12, 122
Positive logic, 733
Power dissipation, 782
Precedence of operations, 43
Present state, 336, 552
Preset input, 260
Price/performance ratio, 145
Prime implicant, 88
Primitive flow table, 578
Printed circuit board (PCB), 3, 676
Priority:

encoder, 205
in Verilog code, 221, 223

Procedural statements (Verilog), 74, 698
Process transconductance parameter, 774
Processor, 432
Product-of-sums form (POS), 52
Programmable array logic (see PAL)
Programmable logic array (see PLA)
Programmable logic device (see PLD)
Programmable ROM (PROM), 768
Propagation delay, 67, 129, 151
Properties of Boolean algebra, 34
Pseudo-NMOS technology, 777
Pseudorandom tests, 670
Pseudorandom binary sequence generator (PRBSG), 670
Pull-down network, 473
Pull-up network, 473
Pull-up resistor, 738
Pulse mode, 552

Q
Quine-McCluskey method, 521

R
Race condition, 567
Radix complement, 139
RAM (see Static random access memory)
Random testing, 662
Read-only memory (ROM), 804
Reaction timer, 302
Reduction operators (Verilog), 225
Reflections, 677
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reg (Verilog), 156, 689
Register, 267

Verilog code, 295, 718
Register-Transfer Level (RTL) code, 309, 726
Relational operators (Verilog), 226
Reliability, 679
Replication operator (Verilog), 167, 227
Reset input, 335
Reset state, 335
Resistance (transistor channel), 776
Ring counter, 281
Ring Oscillator, 324
Ripple-carry adder, 129
Ripple counter, (see Counter)
Rise time, 781
ROM (see Read only memory)
Routing, 647, 677

channel, 769
Row dominance, 523

S
Saturation region, 774
Scalar (Verilog), 159, 688
Scan path, 666
Schematic, 27
Schematic capture, 65, 151
Sea-of-gates technology, 771
Semiconductor, 772
Semi-custom chips, 5
Sensitivity list (Verilog), 74, 699
Sequence detector, 341
Sequential circuits, 248, 332

analysis, 397, 556
asynchronous, 551–630
definition of, 332
excitation table, 388
finite state machine, 333
flow table, 556
formal model, 405
merger diagram, 581
reset, 335
state, 332
state assignment, 336, 344, 592
state assignment in Verilog, 361
state diagram, 334
state reduction, 372, 577
state table, 335
synchronous, 332–415
testing, 665
transition diagram, 595

Sequential statement (Verilog), 698
Serial adder, 363
Serial parity generator, 565
Serial transfer, 267
Series-to-parallel converter, 268

Set input, 260
Setup time, 256, 263
7400-series chips, 749
7-segment display, 63

BCD-to-7-segment converter, 96
hex-to-7-segment converter, 208

Shannon’s expansion, 198, 515
Sharp-operation (#-operation), 529
Shift operators (Verilog), 226
Shift register, 267

Verilog code, 295, 720
Sign bit, 132
Signal value (Verilog), 687
Sign-and-magnitude representation, 133
Signature, 671
Signature analysis, 675
Sign extension, 167, 697
Signed numbers, 132
Silicon wafer, 2
Simplification (see Minimization)
Simulation, 67
Single-precision (see Floating point)
Skew (see Clock skew)
Slack (timing), 649
Slave (see Flip-flop, master-slave)
Small-scale integration (SSI), 753
Socket, 760
Sort operation, 470
Source (in MOSFET transistor), 735
SR latch (see Latch)
Stable state, 552
Standard cells, 769
Standard chips, 4
Standards:

IEEE floating-point, 172
1149.1 (Testing), 676
Verilog 1364-1995, 68
Verilog 1364-2001, 68
VHDL, 65

Star-operation (∗-operation), 529
Starting state, 334
State, 248, 332

assignment, 336, 344, 592, 607
assignment in Verilog, 361
compatibility, 581
diagram, 334
equivalence, 374
reduction, 372, 577
definition of, 332
table, 335
variables, 336

State-adjacency diagram, 595
State-assigned table, 337
State machine (see Finite state machine)
Static hazard, 609
Static random access memory (SRAM), 794
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Structural Verilog code, 70
Stuck-at fault, 654
Substrate, 734
Subtraction, 137
Sum, 125
Sum-of-products form (SOP), 49
Synchronize (to clock), 482
Synchronous clear, 263
Synchronous clear (Verilog), 294, 718
Synchronous counter, 272
Synchronous sequential circuits (see Sequential circuits)
Synthesis, 29, 45

multilevel, 492

T
T flip-flop, 263
tcQ, 263, 310
tco, 285
th, 256, 263
tsu , 256, 263
task (Verilog), 229, 715
Technology mapping, 537
10’s complement, 140
Terminal node (in BDD), 514
Terminations, 678
Test, 654
Test generation, 656–665
Test set, 655
Test vectors (see Test generation)
Testing, 653–680
Theorems of Boolean algebra, 34
Three-state output (see Tri-state)
Threshold voltage, 733, 774
Timer, 488
Timing analysis, 310, 320, 648
Timing Analyzer, 648
Timing constraints, 649
Timing diagram, 29, 339
Timing simulation, 67
Transfer characteristic, 777
Transistor:

EEPROM, 799
EPROM, 801
MOSFET, 734
size, 773

Transition diagram, 595
Transition table (see Excitation table)
Transmission gate, 786
Transmission line effects, 678
Triode region, 774
tri (Verilog), 427
Tri-state:

driver, 792
Verilog code, 427

Truth table, 26
2’s-complement representation, 133

U
Union, 39
Unsigned numbers, 122
Unstable state, 561
Up-counter (see Counter)
Up/down-counter (see Counter)
User-programmable device (see PLD)
Universal shift register, 323
Valuation, 26
Variable, 23

in Verilog, 75, 159, 689
Vector (Verilog), 155, 688
Venn diagram, 37
Verilog HDL, 685–729

assign keyword, 70
asynchronous clear, 294, 718
always block, 74, 698
arithmetic assignment, 159
arithmetic operators, 226
blocking assignment, 288, 700
begin-end block, 156, 699
bit-select, 689
bitwise operators, 223
case statement, 215, 702
casex statement, 220, 703
casez statement, 220, 703
comment, 72, 686
concatenation, 167, 227
concurrent statement, 696
conditional operator, 210
constant, 166
continuous assignment, 70, 696
default case alternative, 215
defparam, 163
delay, 694, 698
don’t care, 220
end, 699
equality operators, 226
escaped identifier, 687
for loop, 156, 221, 704
function, 231, 713
gate level primitives, 694
generate, 157, 228, 712
genvar, 157, 228, 712
hierarchical code, 163
identifier, 687
if-else statement, 212, 700
implied memory, 286, 702
initial block, 699
integer type, 159, 689
instantiation of gates, 71, 110, 694
instantiation of modules, 76, 78, 164, 165, 709
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logic gates, 695
logical operators, 225
memories, 690
module, 70, 692
multibit assignment, 160
named port connection, 165, 709
names, 687
negedge, 287, 717
net, 158, 686, 688
non-blocking assignment, 289, 700
number representation, 166, 687
operators, 223, 690
ordered port connection, 165, 709
parameter, 156, 688
parameter override, 163, 710
part-select, 689
posedge, 287, 717
precedence, 228
procedural statements, 74, 698
port, 70, 692
radix, 687
range, 686, 689
reduction operators, 225
reg, 156, 689
relational operators, 226
repeat loop, 706
replication, 167, 227
scalar, 159
sensitivity list, 74, 699
# operator, 163
shift operators, 226

sign extension, 167, 697
signal, 686
signal value, 687
synchronous clear, 294, 718
task, 229, 715
tri type, 689
truth tables, 704
variable, 75, 159, 689
vector, 155, 689
while loop, 706
white space, 686
wire type, 78, 158, 688

Vertex, 510
Very large-scale integration (VLSI), 753
VHDL, 65
Via, 769
Volatile programming, 768
Voltage levels

substrate bias, 785
high, low, 734, 776

Voltage transfer characteristic, 777

W
while loop (Verilog), 706
wire (Verilog), 78, 158, 688

X
XNOR (Exclusive-NOR) gate (see Gates)
XOR (Exclusive-OR) gate (see Gates)
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