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In 1906, Maurice Fréchet submitted his outstanding thesis Sur Quelques Points du
Calcul Fonctionnel introducing (within a systematic study of functional operations)
the notion of metric space (E-espace, E from écart, i.e., gap).

Also, in 1914, Felix Hausdorff published his famous Grundzüge der Mengen-
lehre where the theory of topological and metric spaces (metrische Räume) was
created.

Let this encyclopedia be our homage to the memory of these great mathemati-
cians and their lives of dignity through the hard times of the first half of the twentieth
century.

Maurice Fréchet (1878–1973) Felix Hausdorff (1868–1942)
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Preface

In 2016, one decade after the publication of our Dictionary of Distances, the number
of WWW entries offered by Google on the topics “distance” and “distance metric”
has grown from 300 million (about 4% of all entries) and 12 million to 1:35 billion
(about 5:4% of all entries) and 114 million.

This fourth edition is characterized by updated and rewritten sections on some
items suggested by experts and readers, as well as a general streamlining of content
and the addition of essential new topics.

Though the structure remains unchanged, the new edition also explores recent
advances in the use of distances and metrics for, e.g., generalized distances,
probability theory, graph theory, coding theory, data analysis.

New topics in the purely mathematical sections include, e.g., the Vitanyi
multiset-metric, algebraic point-conic distance, triangular ratio metric, Rossi–
Hamming metric, Taneja distance, spectral semimetric between graphs,
channel metrization, and Maryland bridge distance, which are addressed in
Chaps. 3, 4, 6, 10, 14, 15, 16, and 17, respectively.

The multidisciplinary sections have also been supplemented with new
topics, including dynamic time wrapping distance, memory distances, allometry,
atmospheric depth, elliptic orbit distance, VLBI distance measurements, the
astronomical system of units, and walkability distances, which can be found in
Chaps. 21, 22, 23, 24, 25, 26, 27, and 28, respectively.

We‘d like to take this opportunity to once again thank the team at Springer for
their very efficient and friendly assistance.

Paris, France Michel Marie Deza
Moscow, Russia Elena Deza
May 2016
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Preface to the Third Edition

Since the publication of the second edition in 2012, several people have again given
us their valued feedback and have thus contributed to the publication of this third
edition. We are thankful to them for their input.

In the latest edition, new items from very active research areas in the use
of distances and metrics such as geometry, graph theory, probability theory, and
analysis have been added. We have kept the structure but have revised many topics,
simplifying, shortening, and updating them, especially in Chaps. 23–25 and 27–29.

Among the new topics included are, for example, polyhedral metric spaces,
nearness matrix problems, distances between belief assignments, distance-related
animal settings, diamond-cutting distances, natural units of length, Heidegger’s de-
severance distance, and brain distances in Chaps. 9, 12, 14, 23, 24, 27, 28, and 29,
respectively.

We would also like to thank the team at Springer for their very efficient and
friendly assistance.
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Preface to the Second Edition

The preparation of the second edition of Encyclopedia of Distances has pre-
sented a welcome opportunity to improve the first edition published in 2009 by
updating and streamlining many sections and by adding new items (especially in
Chaps. 1, 15, 18, 23, 25, 27–29), increasing the book’s size by about 70 pages. This
new edition preserves, except for Chaps. 18, 23, 25, and 28, the structure of the first
edition.

The first large conference with a scope matching that of this encyclopedia is
MDA 2012, the International Conference “Mathematics of Distances and Applica-
tions,” held in July 2012 in Varna, Bulgaria (cf. [DPM12]).
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Preface to the First Edition

Encyclopedia of Distances is the result of rewriting and extending our Dictionary
of Distances, published in 2006 (and put online at http://www.sciencedirect.com/
science/book/9780444520876) by Elsevier. About a third of the definitions are new,
and majority of the remaining ones are upgraded.

We were motivated by the growing intensity of research on metric spaces and,
especially, in distance design for applications. Even if we do not address the
practical questions arising during the selection of a “good” distance function, just a
sheer listing of the main available distances should be useful for the distance design
community.

This encyclopedia is the first one treating fully the general notion of distance.
This broad scope is useful per se, but it also limited our options for referencing. We
give an original reference for many definitions but only when it was not too difficult
to do so. On the other hand, citing somebody who well developed the notion but
was not the original author may induce problems. However, with our data (usually,
author name(s) and year), a reader can easily search sources using the Internet.

We found many cases when authors developed very similar distances in different
contexts and, clearly, were unaware of it. Such connections are indicated by a simple
“cf.” in both definitions, without going into priority issues explicitly.

Concerning the style, we tried to make it a mixture of resource and coffee-table
book, with maximal independence of its parts and many cross-references.

xiii
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Preface to Dictionary of Distances, 2006

The concept of distance is a basic one in the whole human experience. In everyday
life, it usually means some degree of closeness of two physical objects or ideas, i.e.,
length, time interval, gap, rank difference, coolness, or remoteness, while the term
metric is often used as a standard for a measurement.

But here we consider, except for the last two chapters, the mathematical meaning
of those terms which is an abstraction of measurement. The mathematical notions
of distance metric (i.e., a function d.x; y/ from X � X to the set of real numbers
satisfying to d.x; y/ � 0 with equality only for x D y, d.x; y/ D d.y; x/, and
d.x; y/ � d.x; z/ C d.z; y/) and of metric space .X; d/ were originated a century
ago by M. Fréchet (1906) and F. Hausdorff (1914) as a special case of an infinite
topological space. The triangle inequality above appears already in Euclid. The
infinite metric spaces are usually seen as a generalization of the metric jx � yj on
the real numbers. Their main classes are the measurable spaces (add measure) and
Banach spaces (add norm and completeness).

However, starting from K. Menger (who, in 1928, introduced metric spaces in
geometry) and L.M. Blumenthal (1953), an explosion of interest in both finite and
infinite metric spaces occurred. Another trend is that many mathematical theories,
in the process of their generalization, settled on the level of metric space. It is
an ongoing process, for example, for Riemannian geometry, real analysis, and
approximation theory.

Distance metrics and distances have become now an essential tool in many
areas of mathematics and its applications including geometry, probability, statis-
tics, coding/graph theory, clustering, data analysis, pattern recognition, networks,
engineering, computer graphics/vision, astronomy, cosmology, molecular biology,
and many other areas of science. Devising the most suitable distance metrics and
similarities, in order to quantify the proximity between objects, has become a
standard task for many researchers. Especially intense ongoing search for such
distances occurs, for example, in computational biology, image analysis, speech
recognition, and information retrieval.

Often the same distance metric appears independently in several different areas,
for example, the edit distance between words, the evolutionary distance in biology,

xv



xvi Preface to Dictionary of Distances, 2006

the Levenshtein metric in coding theory, and the HammingCGap or shuffle-
Hamming distance.

This body of knowledge has become too big and disparate to operate within.
The number of worldwide web entries offered by Google on the topics “distance,”
“metric space,” and “distance metric” is about 216, 3, and 9million, respectively, not
to mention all the printed information outside the web, or the vast “invisible web”
of searchable databases. About 15;000 books on Amazon.com contain “distance” in
their titles. However, this huge information on distances is too scattered: the works
evaluating distance from some list usually treat very specific areas and are hardly
accessible for nonexperts.

Therefore many researchers, including us, keep and cherish a collection of
distances for use in their areas of science. In view of the growing general need
for an accessible interdisciplinary source for a vast multitude of researchers, we
have expanded our private collection into this dictionary. Some additional material
was reworked from various encyclopedias, especially Encyclopedia of Mathematics
([EM98]), MathWorld ([Weis99]), PlanetMath ([PM]), and Wikipedia ([WFE]).
However, the majority of distances are extracted directly from specialist literature.

Besides distances themselves, we collected here many distance-related notions
(especially in Chap. 1) and paradigms, enabling people from applications to get
those (arcane for nonspecialists) research tools, in ready-to-use fashion. This and the
appearance of some distances in different contexts can be a source of new research.

In the time when overspecialization and terminology fences isolate researchers,
this dictionary tries to be “centripetal” and “ecumenical,” providing some access
and altitude of vision but without taking the route of scientific vulgarization. This
attempted balance defined the structure and style of the dictionary.

This reference book is a specialized encyclopedic dictionary organized by subject
area. It is divided into 29 chapters grouped into 7 parts of about the same length.
The titles of the parts are purposely approximative: they just allow a reader to figure
out her/his area of interest and competence. For example, Parts II, III, IV, and V
require some culture in, respectively, pure and applied mathematics. Part VII can be
read by a layman.

The chapters are thematic lists, by areas of mathematics or applications, which
can be read independently. When necessary, a chapter or a section starts with a short
introduction: a field trip with the main concepts. Besides these introductions, the
main properties and uses of distances are given, within items, only exceptionally. We
also tried, when it was easy, to trace distances to their originator(s), but the proposed
extensive bibliography has a less general ambition: just to provide convenient
sources for a quick search.

Each chapter consists of items ordered in a way that hints of connections between
them. All item titles and (with majuscules only for proper nouns) selected key terms
can be traced in the large subject index; they are boldfaced unless the meaning is
clear from the context. So, the definitions are easy to locate, by subject, in chapters
and/or, by alphabetic order, in the subject index.
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The introductions and definitions are reader-friendly and maximally independent
each from another; still they are interconnected, in the 3D HTML manner, by
hyperlink-like boldfaced references to similar definitions.

Many nice curiosities appear in this “Who Is Who” of distances. Examples of
such sundry terms are ubiquitous Euclidean distance (“as-the-crow-flies”), flower-
shop metric (shortest way between two points, visiting a “flower-shop” point first),
knight-move metric on a chessboard, Gordian distance of knots, Earth mover’s
distance, biotope distance, Procrustes distance, lift metric, post office metric,
Internet hop metric, WWW hyperlink quasi-metric, Moscow metric, and dogkeeper
distance.

Besides abstract distances, the distances having physical meaning appear also
(especially in Part VI); they range from 1:6�10�35 m (Planck length) to 8:8�1026 m
(the estimated size of the observable Universe, about 5:4 � 1061 Planck lengths).

The number of distance metrics is infinite, and therefore our dictionary cannot
enumerate all of them. But we were inspired by several successful thematic
dictionaries on other infinite lists, for example, on numbers, integer sequences,
inequalities, and random processes, and by atlases of functions, groups, fullerenes,
etc. On the other hand, the large scope often forced us to switch to the mode of
laconic tutorial.

The target audience consists of all researchers working on some measuring
schemes and, to a certain degree, students and a part of the general public interested
in science.

We tried to address all scientific uses of the notion of distance. But some
distances did not made it to this dictionary due to space limitations (being too
specific and/or complex) or our oversight. In general, the size/interdisciplinarity cut-
off, i.e., decision where to stop, was our main headache. We would be grateful to
the readers who will send us their favorite distances missed here.
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Part I
Mathematics of Distances



Chapter 1
General Definitions

1.1 Basic Definitions

• Distance
A distance space .X; d/ is a set X (carrier) equipped with a distance d.
A function d W X � X ! R is called a distance (or dissimilarity) on X if, for

all x; y 2 X, it holds:

1. d.x; y/ � 0 (nonnegativity);
2. d.x; y/ D d.y; x/ (symmetry);
3. d.x; x/ D 0 (reflexivity).

In Topology, a distance with d.x; y/ D 0 implying x D y is called a
symmetric.

For any distance d, the function D1 defined for x ¤ y by D1.x; y/ D d.x; y/Cc,
where c D maxx;y;z2X.d.x; y/ � d.x; z/ � d.y; z//, and D.x; x/ D 0, is a metric.
Also, D2.x; y/ D d.x; y/c is a metric for sufficiently small c � 0.

The function D3.x; y/ D inf
P

i d.zi; ziC1/, where the infimum is taken over
all sequences x D z0; : : : ; znC1 D y, is the path semimetric of the complete
weighted graph on X, where, for any x; y 2 X, the weight of edge xy is d.x; y/.

• Similarity
Let X be a set. A function s W X � X ! R is called a similarity on X if s is

nonnegative, symmetric and the inequality

s.x; y/ � s.x; x/

holds for all x; y 2 X, with equality if and only if x D y.
The main transforms used to obtain a distance (dissimilarity) d from a

similarity s bounded by 1 from above are: d D 1 � s, d D 1�s
s , d D p

1 � s,

d D p
2.1� s2/, d D arccos s, d D � ln s (cf. Chap. 4).
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• Semimetric
Let X be a set. A function d W X � X ! R is called a semimetric on X if d is

nonnegative, symmetric, reflexive (d.x; x/ D 0 for x 2 X) and it holds

d.x; y/ � d.x; z/C d.z; y/

for all x; y; z 2 X (triangle inequality or, sometimes, triangular inequality).
In Topology, it is called a pseudo-metric (or, rarely, semidistance, gauge),

while the term semimetric is sometimes used for a symmetric (a distance d.x; y/
with d.x; y/ D 0 only if x D y); cf. symmetrizable space in Chap. 2.

For a semimetric d, the triangle inequality is equivalent, for each fixed n � 4

and all x; y; z1; : : : ; zn�2 2 X, to the following n-gon inequality

d.x; y/ � d.x; z1/C d.z1; z2/C � � � C d.zn�2; y/:

Equivalent rectangle inequality is jd.x; y/� d.z1; z2/j � d.x; z1/C Cd.y; z2/.
For a semimetric d on X, define an equivalence relation, called metric

identification, by x � y if d.x; y/ D 0; equivalent points are equidistant
from all other points. Let Œx� denote the equivalence class containing x; then
D.Œx�; Œy�/ D d.x; y/ is a metric on the set fŒx� W x 2 Xg of equivalence classes.

• Metric
Let X be a set. A function d W X � X ! R is called a metric on X if, for all

x; y; z 2 X, it holds:

1. d.x; y/ � 0 (nonnegativity);
2. d.x; y/ D 0 if and only if x D y (identity of indiscernibles);
3. d.x; y/ D d.y; x/ (symmetry);
4. d.x; y/ � d.x; z/C d.z; y/ (triangle inequality).

In fact, the above condition 1. follows from above 2., 3. and 4.
If 2. is dropped, then d is called (Bukatin, 2002) relaxed semimetric. If 2. is

weakened to “d.x; x/ D d.x; y/ D d.y; y/ implies x D y”, then d is called relaxed
metric. A partial metric is a partial semimetric, which is a relaxed metric.

If above 2. is weakened to “d.x; y/ D 0 implies x D y”, then d is called
(Amini-Harandi, 2012) metric-like function. Any partial metric is metric-like.

• Metric space
A metric space .X; d/ is a set X equipped with a metric d.
It is called a metric frame (or metric scheme, integral) if d is integer-valued.
A pointed metric space (or rooted metric space) .X; d; x0/ is a metric space

.X; d/ with a selected base point x0 2 X.
• Extended metric

An extended metric is a generalization of the notion of metric: the value 1
is allowed for a metric d.

• Quasi-distance
Let X be a set. A function d W X � X ! R is called a quasi-distance on X if d

is nonnegative, and d.x; x/ D 0 holds for all x 2 X. It is also called a premetric
or prametric in Topology and a divergence in Probability.
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If a quasi-distance d satisfies the strong triangle inequality d.x; y/ �
d.x; z/C d.y; z/, then (Lindenbaum, 1926) it is symmetric and so, a semimetric.
A quasi-semimetric d is a semimetric if and only if (Weiss, 2012) it satisfies the
full triangle inequality jd.x; z/� d.z; y/j � d.x; z/ � d.x; z/C d.z; y/.

The distance/metric notions are usually named as weakenings or modifica-
tions of the fundamental notion of metric, using various prefixes and modifiers.
But, perhaps, extended (i.e., the value 1 is allowed) semimetric and quasi-
semimetric should be (as suggested in Lawvere, 2002) used as the basic terms,
since, together with their short mappings, they are best behaved of the metric
space categories.

• Quasi-semimetric
A function d W X � X ! R is called a quasi-semimetric (or hemimetric,

ostensible metric) on X if d.x; x/ D 0, d.x; y/ � 0 and the oriented triangle
inequality

d.x; y/ � d.x; z/C d.z; y/

holds for all x; y; z 2 X. The set X can be partially ordered by the specialization
order: x � y if and only if d.x; y/ D 0.

A weak quasi-metric is a quasi-semimetric d on X with weak symmetry, i.e.,
for all x; y 2 X the equality d.x; y/ D 0 implies d.y; x/ D 0.

An Albert quasi-metric is a quasi-semimetric d on X with weak definiteness,
i.e., for all x; y 2 X the equality d.x; y/ D d.y; x/ D 0 implies x D y.

Both, weak and Albert, quasi-metric, is a usual quasi-metric.
Any pre-order .X;	/ (satisfying for all x; y; z 2 X, x 	 x and if x 	 y and

y 	 z then x 	 z) can be viewed as a pre-order extended quasi-semimetric
.X; d/ by defining d.x; y/ D 0 if x 	 y and d.x; y/ D 1, otherwise.

A weightable quasi-semimetric is a quasi-semimetric d on X with relaxed
symmetry, i.e., for all x; y; z 2 X

d.x; y/C d.y; z/C d.z; x/ D d.x; z/C d.z; y/C d.y; x/;

holds or, equivalently, there exists a weight function w.x/ 2 R on X with
d.x; y/ � d.y; x/ D w.y/ � w.x/ for all x; y 2 X (i.e., d.x; y/ C 1

2
.w.x/ � w.y//

is a semimetric). If d is a weightable quasi-semimetric, then d.x; y/ C w.x/ is a
partial semimetric (moreover, a partial metric if d is an Albert quasi-metric).

• Partial metric
Let X be a set. A nonnegative symmetric function p W X � X ! R is called a

partial metric ([Matt92]) if, for all x; y; z 2 X, it holds:

1. p.x; x/ � p.x; y/, i.e., every self-distance (or extent) p.x; x/ is small;
2. x D y if p.x; x/ D p.x; y/ D p.y; y/ D 0 (T0 separation axiom);
3. p.x; y/ � p.x; z/C p.z; y/ � p.z; z/ (sharp triangle inequality).

The 1-st above condition means that p is a forward resemblance, cf. Chap. 3.
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If the 2-nd above condition is dropped, the function p is called a partial
semimetric. The nonnegative function p is a partial semimetric if and only if
p.x; y/� p.x; x/ is a weightable quasi-semimetric with w.x/ D p.x; x/.

If the 1-st above condition is also dropped, the function p is called (Heckmann,
1999) a weak partial semimetric. The nonnegative function p is a weak partial
semimetric if and only if 2p.x; y/� p.x; x/� p.y; y/ is a semimetric.

Sometimes, the term partial metric is used when a metric d.x; y/ is defined
only on a subset of the set of all pairs x; y of points.

• Protometric
A function p W X � X ! R is called a protometric if, for all (equivalently, for

all different) x; y; z 2 X, the sharp triangle inequality holds:

p.x; y/ � p.x; z/C p.z; y/� p.z; z/:

For finite X, the matrix .. p.x; y/// is (Burkard et al., 1996) weak Monge array.
A strong protometric is a protometric p with p.x; x/ D 0 for all x 2 X. Such

a protometric is exactly a quasi-semimetric, but with the condition p.x; y/ � 0

(for any x; y 2 X) being relaxed to p.x; y/C p.y; x/ � 0.
A partial semimetric is a symmetric protometric (i.e., p.x; y/ D p.y; x/

with p.x; y/ � p.x; x/ � 0 for all x; y 2 X.) An example of a nonpositive
symmetric protometric is given by p.x; y/ D �.x:y/x0 D 1

2
.d.x; y/ � d.x; x0/ �

d.y; y0//, where .X; d/ is a metric space with a fixed base point x0 2 X; see
Gromov product similarity .x:y/x0 and, in Chap. 4, Farris transform metric
C � .x:y/x0 .

A 0-protometric is a protometric p for which all sharp triangle inequalities
(equivalently, all inequalities p.x; y/ C p.y; x/ � p.x; x/ C p.y; y/ implied by
them) hold as equalities. For any u 2 X, denote by A0

u;A
00
u the 0-protometrics p

with p.x; y/ D 1xDu; 1yDu, respectively. The protometrics on X form a flat convex
cone in which the 0-protometrics form the largest linear space. For finite X, a
basis of this space is given by all but one A0

u;A
00
u (since

P
u A0

u D P
u A00

u ) and, for
the flat subcone of all symmetric 0-protometrics on X, by all A0

u C A00
u .

A weighted protometric on X is a protometric with a point-weight function
w W X ! R. The mappings p.x; y/ D 1

2
.d.x; y/ C w.x/ C w.y// and

d.x; y/ D 2p.x; y/ � p.x; x/ � p.y; y/, w.x/ D p.x; x/ establish a bijection
between the weighted strong protometrics .d;w/ and the protometrics p on X,
as well as between the weighted semimetrics and the symmetric protometrics.
For example, a weighted semimetric .d;w/ with w.x/ D �d.x; x0/ corresponds
to a protometric �.x:y/x0 . For finite jXj, the above mappings amount to the
representation

2p D d C
X

u2X

p.u; u/.A0
u C A00

u /:

• Quasi-metric
A function d W X � X ! R is called a quasi-metric (or asymmetric metric,

directed metric) on X if d.x; y/ � 0 holds for all x; y 2 X with equality if and
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only if x D y, and for all x; y; z 2 X the oriented triangle inequality

d.x; y/ � d.x; z/C d.z; y/

holds. A quasi-metric space .X; d/ is a set X equipped with a quasi-metric d.
For any quasi-metric d, the functions maxfd.x; y/; d.y; x/g (called sometimes

bi-distance), minfd.x; y/; d.y; x/g, 1
2
.dp.x; y/ C dp.y; x//

1
p with given p � 1 are

metric generating; cf. Chap. 4.
A non-Archimedean quasi-metric d is a quasi-distance on X which, for all

x; y; z 2 X, satisfies the following strengthened oriented triangle inequality:

d.x; y/ � maxfd.x; z/; d.z; y/g:

• Directed-metric
Let X be a set. A function d W X � X ! R is called (Jegede, 2005) a directed-

metric on X if, for all x; y; z 2 X, it holds d.x; y/ D �d.y; x/ and

jd.x; y/j � jd.x; z/j C jd.z; y/j:

Cf. displacement in Chap. 24 and rigid motion of metric space.
• Coarse-path metric

Let X be a set. A metric d on X is called a coarse-path metric if, for a
fixed C � 0 and for every pair of points x; y 2 X, there exists a sequence
x D x0; x1; : : : ; xt D y for which d.xi�1; xi/ � C for i D 1; : : : ; t, and it holds

d.x; y/ � d.x0; x1/C d.x1; x2/C � � � C d.xt�1; xt/� C:

• Near-metric
Let X be a set. A distance d on X is called a near-metric (or C-near-metric)

if d.x; y/ > 0 for x ¤ y and the C-relaxed triangle inequality

d.x; y/ � C.d.x; z/C d.z; y//

holds for all x; y; z 2 X and some constant C � 1.
If d.x; y/ > 0 for x ¤ y and the C-asymmetric triangle inequality d.x; y/ �

d.x; z/C Cd.z; y/ holds, d is a CC1
2

-near-metric.
A C-inframetric is a C-near-metric, while a C-near-metric is a 2C-

inframetric.
Some recent papers use the term quasi-triangle inequality for the above

inequality and so, quasi-metric for the notion of near-metric.
The power transform (Chap. 4) .d.x; y//˛ of any near-metric is a near-metric

for any ˛ > 0. Also, any near-metric d admits a bi-Lipschitz mapping on
.D.x; y//˛ for some semimetric D on the same set and a positive number ˛.
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A near-metric d on X is called a Hölder near-metric if the inequality

jd.x; y/� d.x; z/j � ˇd˛.y; z/.d.x; y/C d.x; z//1�˛

holds for some ˇ > 0, 0 < ˛ � 1 and all x; y; z 2 X. Cf. Hölder mapping.
A distance d on set X is said (Greenhoe, 2015) to satisfy .C; p/ power triangle

inequality if, for given positive C; p and any x; y; z 2 X, it holds

d.x; y/ � 2Cj1
2

dp.x; z/C 1

2
dp.z; y/j 1p :

• f -quasi-metric
Let f .t; t0/ W R�0 � R�0 ! R�0 be a function with lim.t;t0/!0; f .t; t0/ D

f .0; 0/ D 0.
Let X be a set. A function d W X � X ! R is called (Arutyunov et al., 2016)

a f -quasi-metric on X if d.x; y/ � 0 holds for all x; y 2 X with equality if and
only if x D y, and for all x; y; z 2 X holds the f -triangle inequality

d.x; y/ � f .d.x; z/; d.z; y//:

The f -quasi-metric space .X; d/ with symmetric d and f .t; t0/ D max.t; t0/
is exactly the Fréchet V-space (1906); cf. the partially ordered distance in
Sect. 3.4.

The case f .t; t0/ D t C t0 of a f -quasi-metric corresponds to a quasi-metric.
Given q; q0 � 1, the f -quasi-metric with f .t; t0/ D qt Cq0t0 is called .q; q0/-quasi-
metric.

The inequality d.x; y/ � F.d.x; z/; d.y; z// implies d.x; y/ � f .d.x; z/; d.z; y//
for the function f .t; t0/ D F.t;F.0; t0//.

• Weak ultrametric
A weak ultrametric (or C-inframetric, C-pseudo-distance) d is a distance

on X such that d.x; y/ > 0 for x ¤ y and the C-inframetric inequality

d.x; y/ � C maxfd.x; z/; d.z; y/g

holds for all x; y; z 2 X and some constant C � 1.
The term pseudo-distance is also used, in some applications, for any of

a pseudo-metric, a quasi-distance, a near-metric, a distance which can be
infinite, a distance with an error, etc. Another unsettled term is weak metric:
it is used for both a near-metric and a quasi-semimetric.

• Ultrametric
An ultrametric (or non-Archimedean metric) is (Krasner, 1944) a metric d

on X which satisfies, for all x; y; z 2 X, the following strengthened version of the
triangle inequality (Hausdorff, 1934), called the ultrametric inequality:

d.x; y/ � maxfd.x; z/; d.z; y/g
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An ultrametric space is also called an isosceles space since at least two of d.x; y/,
d.z; y/, d.x; z/ are equal. An ultrametric on a set V has at most jVj values.

A metric d is an ultrametric if and only if its power transform (see Chap. 4)
d˛ is a metric for any real positive number ˛. Any ultrametric satisfies the
four-point inequality. A metric d is an ultrametric if and only if it is a Farris
transform metric (Chap. 4) of a four-point inequality metric.

• Robinsonian distance
A distance d on X is called a Robinsonian distance (or monotone distance)

if there exists a total order � on X compatible with it, i.e., for x; y;w; z 2 X,

x � y � w � z implies d.y;w/ � d.x; z/;

or, equivalently, for x; y; z 2 X, it holds

x � y � z implies d.x; y/ � maxfd.x; z/; d.z; y/g:

Any ultrametric is a Robinsonian distance.
• Four-point inequality metric

A metric d on X is a four-point inequality metric (or additive metric) if it
satisfies the following strengthened version of the triangle inequality called the
four-point inequality (Buneman, 1974): for all x; y; z; u 2 X

d.x; y/C d.z; u/ � maxfd.x; z/C d.y; u/; d.x; u/C d.y; z/g

holds. Equivalently, among the three sums d.x; y/ C d.z; u/, d.x; z/ C d.y; u/,
d.x; u/C d.y; z/ the two largest sums are equal.

A metric satisfies the four-point inequality if and only if it is a tree-like
metric.

Any metric, satisfying the four-point inequality, is a Ptolemaic metric and an
L1-metric. Cf. Lp-metric in Chap. 5.

A bush metric is a metric for which all four-point inequalities are equalities,
i.e., d.x; y/C d.u; z/ D d.x; u/C d.y; z/ holds for any u; x; y; z 2 X.

• Relaxed four-point inequality metric
A metric d on X satisfies the relaxed four-point inequality if, for all

x; y; z; u 2 X, among the three sums

d.x; y/C d.z; u/; d.x; z/C d.y; u/; d.x; u/C d.y; z/

at least two (not necessarily the two largest) are equal. A metric satisfies this
inequality if and only if it is a relaxed tree-like metric.

• Ptolemaic metric
A Ptolemaic metric d is a metric on X which satisfies the Ptolemaic

inequality

d.x; y/d.u; z/ � d.x; u/d.y; z/C d.x; z/d.y; u/
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for all x; y; u; z 2 X. A classical result, attributed to Ptolemy, says that this
inequality holds in the Euclidean plane, with equality if and only if the points
x; y; u; z lie on a circle in that order.

A Ptolemaic space is a normed vector space .V; jj:jj/ such that its norm metric
jjx � yjj is a Ptolemaic metric. A normed vector space is a Ptolemaic space if
and only if it is an inner product space (Chap. 5); so, a Minkowskian metric
(Chap. 6) is Euclidean if and only if it is Ptolemaic.

For any metric d, the metric
p

d is Ptolemaic ([FoSc06]).
• ı-hyperbolic metric

Given a number ı � 0, a metric d on a set X is called ı-hyperbolic if it
satisfies the following Gromov ı-hyperbolic inequality (another weakening of
the four-point inequality): for all x; y; z; u 2 X, it holds that

d.x; y/C d.z; u/ � 2ı C maxfd.x; z/C d.y; u/; d.x; u/C d.y; z/g:

A metric space .X; d/ is ı-hyperbolic if and only if for all x0; x; y; z 2 X it holds

.x:y/x0 � minf.x:z/x0 ; .y:z/x0g � ı;

where .x:y/x0 D 1
2
.d.x0; x/ C d.x0; y/ � d.x; y// is the Gromov product of the

points x and y of X with respect to the base point x0 2 X.
A metric space .X; d/ is 0-hyperbolic exactly when d satisfies the four-point

inequality. Every bounded metric space of diameter D is D-hyperbolic. The n-
dimensional hyperbolic space is ln 3-hyperbolic.

Every ı-hyperbolic metric space is isometrically embeddable into a geodesic
metric space (Bonk and Schramm, 2000).

• Gromov product similarity
Given a metric space .X; d/ with a fixed point x0 2 X, the Gromov product

similarity (or Gromov product, covariance, overlap function) .:/x0 is a similarity
on X defined by

.x:y/x0 D 1

2
.d.x; x0/C d.y; x0/� d.x; y//:

The triangle inequality for d implies .x:y/x0 � .x:z/x0 C .y:z/x0 � .z:z/x0
(covariance triangle inequality), i.e., sharp triangle inequality for protomet-
ric �.x:y/x0 .

If .X; d/ is a tree, then .x:y/x0 D d.x0; Œx; y�/. If .X; d/ is a measure
semimetric space, i.e., d.x; y/ D �.x4y/ for a Borel measure � on X, then
.x:y/; D �.x \ y/. If d is a distance of negative type, i.e., d.x; y/ D d2E.x; y/ for
a subset X of a Euclidean space En, then .x:y/0 is the usual inner product on E

n.
Cf. Farris transform metric dx0 .x; y/ D C � .x:y/x0 in Chap. 4.

• Cross-difference
Given a metric space .X; d/ and quadruple .x; y; z;w/ of its points, the cross-

difference is the real number cd defined by

cd.x; y; z;w/ D d.x; y/C d.z;w/ � d.x; z/� d.y;w/:
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In terms of the Gromov product similarity, for all x; y; z;w; p 2 X, it holds

1

2
cd.x; y; z;w/ D �.x:y/p � .z:w/p C .x:z/p C .y:w/pI

in particular, it becomes .x:y/p if y D w D p.
If x ¤ z and y ¤ w, the cross-ratio is the positive number defined by

cr..x; y; z;w/; d/ D d.x; y/d.z;w/

d.x; z/d.y;w/
:

• 2k-gonal distance
A 2k-gonal distance d is a distance on X which satisfies, for all distinct

elements x1; : : : ; xn 2 X, the 2k-gonal inequality
X

1�i<j�n

bibjd.xi; xj/ � 0

for all b 2 Z
n with

Pn
iD1 bi D 0 and

Pn
iD1 jbij D 2k.

• Distance of negative type
A distance of negative type d is a distance on X which is 2k-gonal for any

k � 1, i.e., satisfies the negative type inequality
X

1�i<j�n

bibjd.xi; xj/ � 0

for all b 2 Z
n with

Pn
iD1 bi D 0, and for all distinct elements x1; : : : ; xn 2 X.

A distance can be of negative type without being a semimetric. Cayley proved
that a metric d is an L2-metric if and only if d2 is a distance of negative type.

• .2k C 1/-gonal distance
A .2k C1/-gonal distance d is a distance on X which satisfies, for all distinct

elements x1; : : : ; xn 2 X, the .2k C 1/-gonal inequality
X

1�i<j�n

bibjd.xi; xj/ � 0

for all b 2 Z
n with

Pn
iD1 bi D 1 and

Pn
iD1 jbij D 2k C 1.

The .2k C 1/-gonal inequality with k D 1 is the usual triangle inequality. The
.2k C 1/-gonal inequality implies the 2k-gonal inequality.

• Hypermetric
A hypermetric d is a distance on X which is .2k C 1/-gonal for any k � 1,

i.e., satisfies the hypermetric inequality (Deza, 1960)
X

1�i<j�n

bibjd.xi; xj/ � 0

for all b 2 Z
n with

Pn
iD1 bi D 1, and for all distinct elements x1; : : : ; xn 2 X.
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Any hypermetric is a semimetric, a distance of negative type and, moreover,
it can be isometrically embedded into some n-sphere Sn with squared Euclidean
distance. Any L1-metric (cf. Lp-metric in Chap. 5) is a hypermetric.

• P-metric
A P-metric d is a metric on X with values in Œ0; 1� which satisfies the

correlation triangle inequality

d.x; y/ � d.x; z/C d.z; y/� d.x; z/d.z; y/:

The equivalent inequality 1�d.x; y/ � .1�d.x; z//.1�d.z; y// expresses that the
probability, say, to reach x from y via z is either equal to .1� d.x; z//.1� d.z; y//
(independence of reaching z from x and y from z), or greater than it (positive
correlation). A metric is a P-metric if and only if it is a Schoenberg transform
metric (Chap. 4).

1.2 Main Distance-Related Notions

• Metric ball
Given a metric space .X; d/, the metric ball (or closed metric ball) with center

x0 2 X and radius r > 0 is defined by B.x0; r/ D fx 2 X W d.x0; x/ � rg,
and the open metric ball with center x0 2 X and radius r > 0 is defined by
B.x0; r/ D fx 2 X W d.x0; x/ < rg. The closed ball is a subset of the closure of the
open ball; it is a proper subset for, say, the discrete metric on X.

The metric sphere with center x0 2 X and radius r > 0 is defined by
S.x0; r/ D fx 2 X W d.x0; x/ D rg.

For the norm metric on an n-dimensional normed vector space .V; jj:jj/, the
metric ball B

n D fx 2 V W jjxjj � 1g is called the unit ball, and the set Sn�1 D
fx 2 V W jjxjj D 1g is called the unit sphere. In a two-dimensional vector space, a
metric ball (closed or open) is called a metric disk (closed or open, respectively).

• Metric hull
Given a metric space .X; d/, let M be a bounded subset of X.
The metric hull H.M/ of M is the intersection of all metric balls containing

M.
The set of surface points S.M/ of M is the set of all x 2 H.M/ such that x lies

on the sphere of one of the metric balls containing M.
• Distance-invariant metric space

A metric space .X; d/ is distance-invariant if all metric balls B.x0; r/ D fx 2
X W d.x0; x/ � rg of the same radius have the same number of elements.

Then the growth rate of a metric space .X; d/ is the function f .n/ D
jB.x; n/j.
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.X; d/ is a metric space of polynomial growth if there are some positive
constants k;C such that f .n/ � Cnk for all n � 0. Cf. graph of polynomial
growth, including the group case, in Chap. 15.

For a metrically discrete metric space .X; d/ (i.e., with a D
infx;y2X;x¤y d.x; y/ > 0), its growth rate was defined also (Gordon–Linial–
Rabinovich, 1998) by

max
x2X;r�2

log jB.x; ar/j
log r

:

• Ahlfors q-regular metric space
A metric space .X; d/ endowed with a Borel measure � is called Ahlfors q-

regular if there exists a constant C � 1 such that for every ball in .X; d/ with
radius r < diam.X; d/ it holds

C�1rq � �.B.x0; r// � Crq:

If such an .X; d/ is locally compact, then the Hausdorff q-measure can
be taken as � and q is the Hausdorff dimension. For two disjoint continua
(nonempty connected compact metric subspaces) C1;C2 of such space .X; d/,
let � be the set of rectifiable curves connecting C1 to C2. The q-modulus between
C1 and C2 is Mq.C1;C2/ D inffRX �

q W inf�2�
R
�
� � 1g, where � W X ! R>0 is

any density function on X; cf. the modulus metric in Chap. 6.
The relative distance between C1 and C2 is ı.C1;C2/ D inffd. p1;p2/Wp12C1;p22C2g

minfdiam.C1/;diam.C2/g .
.X; d/ is a q-Loewner space if there are increasing functions f ; g W Œ0;1/ !
Œ0;1/ such that for all C1;C2 it holds f .ı.C1;C2// � Mq.C1;C2/ �
g.ı.C1;C2//.

• Connected metric space
A metric space .X; d/ is called connected if it cannot be partitioned into two

nonempty open sets. Cf. connected space in Chap. 2.
The maximal connected subspaces of a metric space are called its connected

components. A totally disconnected metric space is a space in which all
connected subsets are ; and one-point sets.

A path-connected metric space is a connected metric space such that any
two its points can be joined by an arc (cf. metric curve).

• Cantor connected metric space
A metric space .X; d/ is called Cantor (or pre-) connected if, for any two its

points x, y and any � > 0, there exists an �-chain joining them, i.e., a sequence of
points x D z0; z1; : : : ; zn�1; zn D y such that d.zk; zkC1/ � � for every 0 � k � n.
A metric space .X; d/ is Cantor connected if and only if it cannot be partitioned
into two remote parts A and B, i.e., such that inffd.x; y/ W x 2 A; y 2 Bg > 0.

The maximal Cantor connected subspaces of a metric space are called its
Cantor connected components. A totally Cantor disconnected metric is the
metric of a metric space in which all Cantor connected components are one-point
sets.
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• Indivisible metric space
A metric space .X; d/ is called indivisible if it cannot be partitioned into

two parts, neither of which contains an isometric copy of .X; d/. Any indivisible
metric space with jXj � 2 is infinite, bounded and totally Cantor disconnected
(Delhomme–Laflamme–Pouzet–Sauer, 2007).

A metric space .X; d/ is called an oscillation stable metric space (Nguyen
Van Thé, 2006) if, given any � > 0 and any partition of X into finitely many
pieces, the �-neighborhood of one of the pieces includes an isometric copy of
.X; d/.

• Closed subset of metric space
Given a subset M of a metric space .X; d/, a point x 2 X is called a limit (or

accumulation) point of M if any open metric ball B.x; r/ D fy 2 X W d.x; y/ < rg
contains a point x0 2 M with x0 ¤ x. The boundary #.M/ of M is the set of all its
limit points. The closure of M, denoted by cl.M/, is M [ #.M/, and M is called
closed subset, if M D cl.M/, and dense subset, if X D cl.M/.

Every point of M which is not its limit point, is called an isolated point. The
interior int.M/ of M is the set of all its isolated points, and the exterior ext.M/
of M is int.XnM/. A subset M is called nowhere dense if int.cl.M// D ;.

A subset M is called topologically discrete (cf. metrically discrete metric
space) if int.M/ D M and dense-in-itself if int.M/ D ;. A dense-in-itself
subset is called perfect (cf. perfect metric space) if it is closed. The subsets
Irr (irrational numbers) and Q (rational numbers) of R are dense, dense-in-itself
but not perfect. The set Q \ Œ0; 1� is dense-in-itself but not dense in R.

• Open subset of metric space
A subset M of a metric space .X; d/ is called open if, given any point x 2 M,

the open metric ball B.x; r/ D fy 2 X W d.x; y/ < rg is contained in M for some
number r > 0. The family of open subsets of a metric space forms a natural
topology on it. A closed subset is the complement of an open subset.

An open subset is called clopen, if it is closed, and a domain if it is connected.
A door space is a metric (in general, topological) space in which every subset

is either open or closed.
• Metric topology

A metric topology is a topology induced by a metric; cf. equivalent metrics.
More exactly, the metric topology on a metric space .X; d/ is the set of all open
sets of X, i.e., arbitrary unions of (finitely or infinitely many) open metric balls
B.x; r/ D fy 2 X W d.x; y/ < rg, x 2 X, r 2 R, r > 0.

A topological space which can arise in this way from a metric space is called
a metrizable space (Chap. 2). Metrization theorems are theorems which give
sufficient conditions for a topological space to be metrizable.

On the other hand, the adjective metric in several important mathematical
terms indicates connection to a measure, rather than distance, for example, metric
Number Theory, metric Theory of Functions, metric transitivity.

• Equivalent metrics
Two metrics d1 and d2 on a set X are called equivalent if they define the same

topology on X, i.e., if, for every point x0 2 X, every open metric ball with center
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at x0 defined with respect to d1, contains an open metric ball with the same center
but defined with respect to d2, and conversely.

Two metrics d1 and d2 are equivalent if and only if, for every � > 0 and
every x 2 X, there exists ı > 0 such that d1.x; y/ � ı implies d2.x; y/ � � and,
conversely, d2.x; y/ � ı implies d1.x; y/ � �.

All metrics on a finite set are equivalent; they generate the discrete topology.
• Metric betweenness

The metric betweenness of a metric space .X; d/ is (Menger, 1928) the set of
all ordered triples .x; y; z/ such that x; y; z are (not necessarily distinct) points of
X for which the triangle equality d.x; y/C d.y; z/ D d.x; z/ holds.

• Monometric
A ternary relation R on a set X is called a betweenness relation if .x; y; z/ 2 R

if and only if .z; y; x/ 2 R and .x; y; z/; .x; z; y/ 2 R if and only if y D z.
Given a such relation R, a monometric is (Perez-Fernández et al., 2016) a

function d W X � X ! R�0 with d.x; y/ D 0 if and only if x D y and .x; y; z/
implying d.x; y/ � d.x; z/. Clearly, any metric is a monometric.

Cf. a distance-rationalizable voting rule in Sect. 11.2.
• Closed metric interval

Given two different points x; y 2 X of a metric space .X; d/, the closed metric
interval between them (or line induced by) them is the set of the points z, for
which the triangle equality (or metric betweenness .x; z; y/) holds:

I.x; y/ D fz 2 X W d.x; y/ D d.x; z/C d.z; y/g:

Cf. inner product space (Chap. 5) and cutpoint additive metric (Chap. 15).
Let Ext.x; y/ D fz W y 2 I.x; z/ n fx; zgg. A CC-line CC.x; y/ is I.x; y/ [

Ext.x; y/ [ Ext.y; x/. Chen–Chvátal, 2008, conjectured that every metric space
on n; n � 2; points, either has at least n distinct CC-lines or consists of a unique
CC-line.

• Underlying graph of a metric space
The underlying graph (or neighborhood graph) of a metric space .X; d/ is a

graph with the vertex-set X and xy being an edge if I.x; y/ D fx; yg, i.e., there is
no third point z 2 X, for which d.x; y/ D d.x; z/C d.z; y/.

• Distance monotone metric space
A metric space .X; d/ is called distance monotone if for any its closed metric

interval I.x; y/ and u 2 X n I.x; y/, there exists z 2 I.x; xy/ with d.u; z/ > d.x; y/.
• Metric triangle

Three distinct points x; y; z 2 X of a metric space .X; d/ form a metric
triangle if the closed metric intervals I.x; y/; I.y; z/ and I.z; x/ intersect only
in the common endpoints.

• Metric space having collinearity
A metric space .X; d/ has collinearity if for any � > 0 each of its infinite

subsets contains distinct �-collinear (i.e., with d.x; y/ C d.y; z/ � d.x; z/ � �)
points x; y; z.
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• Modular metric space
A metric space .X; d/ is called modular if, for any three different points

x; y; z 2 X, there exists a point u 2 I.x; y/ \ I.y; z/ \ I.z; x/. This should not be
confused with modular distance in Chap. 10 and modulus metric in Chap. 6.

• Median metric space
A metric space .X; d/ is called a median metric space if, for any three points

x; y; z 2 X, there exists a unique point u 2 I.x; y/\I.y; z/\I.z; x/, or, equivalently,

d.x; u/C d.y; u/C d.z; u/ D 1

2
..x; y/C d.y; z/C d.z; x//:

The point u is called median for fx; y; zg, since it minimises the sum of distances
to them. Any median metric space is an L1-metric; cf. Lp-metric in Chap. 5 and
median graph in Chap. 15.

A metric space .X; d/ is called an antimedian metric space if, for any three
points x; y; z 2 X, there exists a unique point u 2 X maximizing d.x; u/Cd.y; u/C
d.z; u/.

• Metric quadrangle
Four different points x; y; z; u 2 X of a metric space .X; d/ form a metric

quadrangle if x; z 2 I.y; u/ and y; u 2 I.x; z/; then d.x; y/ D d.z; u/ and
d.x; u/ D d.y; z/.

A metric space .X; d/ is called weakly spherical if any three different points
x; y; z 2 X with y 2 I.x; z/, form a metric quadrangle with some point u 2 X.

• Metric curve
A metric curve (or, simply, curve) � in a metric space .X; d/ is a continuous

mapping � W I ! X from an interval I of R into X. A curve is called an arc (or
path, simple curve) if it is injective. A curve � W Œa; b� ! X is called a Jordan
curve (or simple closed curve) if it does not cross itself, and �.a/ D �.b/.

The length of a curve � W Œa; b� ! X is the number l.�/ defined by

l.�/ D supf
X

1�i�n

d.�.ti/; �.ti�1// W n 2 N; a D t0 < t1 < � � � < tn D bg:

A rectifiable curve is a curve with a finite length. A metric space .X; d/, where
every two points can be joined by a rectifiable curve, is called a quasi-convex
metric space (or, specifically, C-quasi-convex metric space) if there exists a
constant C � 1 such that every pair x; y 2 X can be joined by a rectifiable curve
of length at most Cd.x; y/. If C D 1, then this length is equal to d.x; y/, i.e., .X; d/
is a geodesic metric space (Chap. 6).

In a quasi-convex metric space .X; d/, the infimum of the lengths of all
rectifiable curves, connecting x; y 2 X is called the internal metric.

The metric d on X is called the intrinsic metric (and then .X; d/ is called a
length space) if it coincides with the internal metric of .X; d/.

If, moreover, any pair x; y of points can be joined by a curve of length d.x; y/,
the metric d is called strictly intrinsic, and the length space .X; d/ is a geodesic



1.2 Main Distance-Related Notions 17

metric space. Hopf–Rinow, 1931, showed that any complete locally compact
length space is geodesic and proper. The punctured plane .R2 n f0g; jjx � yjj2/
is locally compact and path-connected but not geodesic: the distance between
.�1; 0/ and .1; 0/ is 2 but there is no geodesic realizing this distance.

The metric derivative of a metric curve � W Œa; b� ! X at a limit point t is

lim
s!0

d.�.t C s/; �.t//

jsj ;

if it exists. It is the rate of change, with respect to t, of the length of the curve at
almost every point, i.e., a generalization of the notion of speed to metric spaces.

• Geodesic
Given a metric space .X; d/, a geodesic is a locally shortest metric curve, i.e.,

it is a locally isometric embedding of R into X; cf. Chap. 6.
A subset S of X is called a geodesic segment (or metric segment, shortest

path, minimizing geodesic) between two distinct points x and y in X, if there exists
a segment (closed interval) [a,b] on the real line R and an isometric embedding
� W Œa; b� ! X, such that �Œa; b� D S, �.a/ D x and �.b/ D y.

A metric straight line is a geodesic which is minimal between any two of its
points; it is an isometric embedding of the whole of R into X. A metric ray and
metric great circle are isometric embeddings of, respectively, the half-line R�0
and a circle S1.0; r/ into X.

A geodesic metric space (Chap. 6) is a metric space in which any two points
are joined by a geodesic segment. If, moreover, the geodesic is unique, the space
is called totally geodesic (or uniquely geodesic).

A geodesic metric space .X; d/ is called geodesically complete if every
geodesic is a subarc of a metric straight line. If .X; d/ is complete, then it
is geodesically complete. The punctured plane .R2 n f0g; jjx � yjj2/ is not
geodesically complete: any geodesic going to 0 is not a subarc of a metric straight
line.

• Length spectrum
Given a metric space .X; d/, a closed geodesic is a map � W S1 ! X which is

locally minimizing around every point of S1.
If .X; d/ is a compact length space, its length spectrum is the collection of

lengths of closed geodesics. Each length is counted with multiplicity equal to the
number of distinct free homotopy classes that contain a closed geodesic of such
length. The minimal length spectrum is the set of lengths of closed geodesics
which are the shortest in their free homotopy class. Cf. the distance list.

• Systole of metric space
Given a compact metric space .X; d/, its systole sys.X; d/ is the length of

the shortest noncontractible loop in X; such a loop is a closed geodesic. So,
sys.X; d/ D 0 exactly if .X; d/ is simply connected. Cf. connected space in
Chap. 2.

If .X; d/ is a graph with path metric, then its systole is referred to as the girth.

If .X; d/ is a closed surface, then its systolic ratio is the ratio SR D sys2.X;d/
area.X;d/ .
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Some tight upper bounds of SR for every metric on a surface are: 2p
3

D �2

(Hermite constant in 2D) for 2-torus (Loewner, 1949), �
2

for the real projective
plane (Pu, 1952) and �p

8
for the Klein bottle (Bavard, 1986). Tight asymptotic

bounds for a surface S of large genus g are 4
9

� log2 g
�g � SR.S/ � log2 g

�g (Katz et al.,
2007).

• Shankar–Sormani radii
Given a geodesic metric space .X; d/, Shankar and Sormani, 2009, defined

its unique injectivity radius Uirad.X/ as the supremum over all r � 0 such
that any two points at distance at most r are joined by a unique geodesic, and its
minimal radius Mrad.X/ as infp2X d. p;MinCut. p//.

Here the minimal cut locus of p MinCut. p/ is the set of points q 2 X for which
there is a geodesic � running from p to q such that � extends past q but is not
minimizing from p to any point past q. If .X; d/ is a Riemannian space, then the
distance function from p is a smooth function except at p itself and the cut locus.
Cf. medial axis and skeleton in Chap. 21.

It holds Uirad.X/ � Mrad.X/ with equality if .X; d/ is a Riemannian space
in which case it is the injectivity radius. It holds Uirad.X/ D 1 for a flat disk
but Mrad.X/ < 1 if .X; d/ is compact and at least one geodesic is extendible.

• Geodesic convexity
Given a geodesic metric space .X; d/ and a subset M 
 X, the set M is

called geodesically convex (or convex) if, for any two points of M, there exists a
geodesic segment connecting them which lies entirely in M; the space is strongly
convex if such a segment is unique and no other geodesic connecting those points
lies entirely in M. The space is called locally convex if such a segment exists for
any two sufficiently close points in M.

For a given point x 2 M, the radius of convexity is rx D supfr � 0 W B.x; r/ 

Mg, where the metric ball B.x; r/ is convex. The point x is called the center
of mass of points y1; : : : ; yk 2 M if it minimizes the function

P
i d.x; yi/

2 (cf.
Fréchet mean); such point is unique if d.yi; yj/ < rx for all 1 � i < j � k.

The injectivity radius of the set M is the supremum over all r � 0 such that
any two points in M at distance � r are joined by unique geodesic segment which
lies in M. The Hawaiian Earring is a compact complete metric space consisting
of a set of circles of radius 1

i for each i 2 N all joined at a common point; its
injectivity radius is 0. It is path-connected but not simply connected.

The set M 
 X is called a totally convex metric subspace of .X; d/ if, for
any two points of M, any geodesic segment connecting them lies entirely in M.

• Busemann convexity
A geodesic metric space .X; d/ is called Busemann convex (or Busemann

space, nonpositively curved in the sense of Busemann) if, for any three points
x; y; z 2 X and midpoints m.x; z/ and m.y; z/ (i.e., d.x;m.x; z// D d.m.x; z/; z/ D
1
2
d.x; z/ and d.y;m.y; z// D d.m.y; z/; z/ D 1

2
d.y; z/), there holds

d.m.x; z/;m.y; z// � 1

2
d.x; y/:
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The flat Euclidean strip f.x; y/ 2 R
2 W 0 < x < 1g is Gromov hyperbolic

metric space (Chap. 6) but not Busemann convex one. In a complete Busemann
convex metric space any two points are joined by a unique geodesic segment.

A locally geodesic metric space .X; d/ is called Busemann locally convex if
the above inequality holds locally. Any locally CAT(0) metric space is Busemann
locally convex.

• Menger convexity
A metric space .X; d/ is called Menger convex if, for any different points

x; y 2 X, there exists a third point z 2 X for which d.x; y/ D d.x; z/ C d.z; y/,
i.e., jI.x; y/j > 2 holds for the closed metric interval I.x; y/ D fz 2 X W .x; y/ D
d.x; z/C d.z; y/g. It is called strictly Menger convex if such a z is unique for all
x; y 2 X.

Geodesic convexity implies Menger convexity. The converse holds for com-
plete metric spaces.

A subset M 
 X is called (Menger, 1928) a d-convex set (or interval-convex
set) if I.x; y/ 
 M for any different points x; y 2 M. A function f W M !
R defined on a d-convex set M 
 X is a d-convex function if for any z 2
I.x; y/ 
 M

f .z/ � d.y; z/

d.x; y/
f .x/C d.x; z/

d.x; y/
f .y/:

A subset M 
 X is a gated set if for every x 2 X there exists a unique x0 2 M,
the gate, such that d.x; y/ D d.x; x0/ C d.x0; y/ for y 2 M. Any such set is d-
convex.

• Midpoint convexity
A metric space .X; d/ is called midpoint convex (or having midpoints,

admitting a midpoint map) if, for any different points x; y 2 X, there exists a
third point m.x; y/ 2 X for which d.x;m.x; y// D d.m.x; y/; y/ D 1

2
d.x; y/. Such

a point m.x; y/ is called a midpoint and the map m W X � X ! X is called a
midpoint map (cf. midset); this map is unique if m.x; y/ is unique for all x; y 2 X.

For example, the geometric mean
p

xy is the midpoint map for the metric
space .R>0; d.x; y/ D j log x � log yj/.

A complete metric space is geodesic if and only if it is midpoint convex.
A metric space .X; d/ is said to have approximate midpoints if, for any points

x; y 2 X and any � > 0, there exists an �-midpoint, i.e., a point z 2 X such that
d.x; z/ � 1

2
d.x; y/C � � d.z; y/.

• Ball convexity
A midpoint convex metric space .X; d/ is called ball convex if

d.m.x; y/; z/ � maxfd.x; z/; d.y; z/g

for all x; y; z 2 X and any midpoint map m.x; y/.
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Ball convexity implies that all metric balls are totally convex and, in the case
of a geodesic metric space, vice versa. Ball convexity implies also the uniqueness
of a midpoint map (geodesics in the case of complete metric space).

The metric space .R2; d.x; y/ D P2
iD1

pjxi � yij/ is not ball convex.
• Distance convexity

A midpoint convex metric space .X; d/ is called distance convex if

d.m.x; y/; z/ � 1

2
.d.x; z/C d.y; z//:

A geodesic metric space is distance convex if and only if the restriction of the
distance function d.x; �/, x 2 X, to every geodesic segment is a convex function.

Distance convexity implies ball convexity and, in the case of Busemann
convex metric space, vice versa.

• Metric convexity
A metric space .X; d/ is called metrically convex if, for any different points

x; y 2 X and any 	 2 .0; 1/, there exists a third point z D z.x; y; 	/ 2 X for which
d.x; y/ D d.x; z/C d.z; y/ and d.x; z/ D 	d.x; y/.

The space is called strictly metrically convex if such a point z.x; y; 	/ is
unique for all x; y 2 X and any 	 2 .0; 1/.

A metric space .X; d/ is called strongly metrically convex if, for any different
points x; y 2 X and any 	1; 	2 2 .0; 1/, there exists a third point z D z.x; y; 	/ 2
X for which d.z.x; y; 	1/; z.x; y; 	2// D j	1 � 	2jd.x; y/.

Metric convexity implies Menger convexity, and every Menger convex
complete metric space is strongly metrically convex.

A metric space .X; d/ is called nearly convex (Mandelkern, 1983) if, for any
different points x; y 2 X and any 	;� > 0 such that d.x; y/ < 	C�, there exists a
third point z 2 X for which d.x; z/ < 	 and d.z; y/ < �, i.e., z 2 B.x; 	/\B.y; �/.
Metric convexity implies near convexity.

• Takahashi convexity
A metric space .X; d/ is called Takahashi convex if, for any different points

x; y 2 X and any 	 2 .0; 1/, there exists a third point z D z.x; y; 	/ 2 X such that
d.z.x; y; 	/; u/ � 	d.x; u/C .1� 	/d.y; u/ for all u 2 X. Any convex subset of a
normed space is a Takahashi convex metric space with z.x; y; 	/ D 	xC.1�	/y.

A set M 
 X is Takahashi convex if z.x; y; 	/ 2 M for all x; y 2 X and any
	 2 Œ0; 1�. In a Takahashi convex metric space, all metric balls, open metric balls,
and arbitrary intersections of Takahashi convex subsets are all Takahashi convex.

• Hyperconvexity
A metric space .X; d/ is called hyperconvex (Aronszajn–Panitchpakdi, 1956)

if it is metrically convex and its metric balls have the infinite Helly property, i.e.,
any family of mutually intersecting closed balls in X has nonempty intersection.
A metric space .X; d/ is hyperconvex if and only if it is an injective metric space.

The spaces ln1, l11 and l21 are hyperconvex but l12 is not.
• Distance matrix

Given a finite metric space .X D fx1; � � � ; xng; d/, its distance matrix is the
symmetric n � n matrix ..dij//, where dij D d.xi; xj/ for any 1 � i; j � n.
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The probability that a symmetric n � n matrix, whose diagonal elements are
zeros and all other elements are uniformly random real numbers, is a distance
matrix is (Mascioni, 2005) 1

2
, 17
120

for n D 3; 4, respectively.
• Magnitude of a finite metric space

Let .X D fx1; : : : ; xng; d/ be a finite metric space, such that there exists a
vector w D fw1; : : : ;wng with ..e�d.xi;xj///w D .1; : : : ; 1/T .

Then the magnitude of .X; d/ is (Leinster–Meckes, 2016) the sum
Pn

iD1 wi.
In fact, the definition of Euler characteristic of a category was generalized to
enriched categories, renamed magnitude, then re-specialized to metric spaces.

• Distance product of matrices
Given n � n matrices A D ..aij// and B D ..bij//, their distance (or min-plus)

product is the n � n matrix C D ..cij// with cij D minn
kD1.aik C bkj/.

It is the usual matrix multiplication in the tropical semiring .R[f1g;min;C/
(Chap. 18). If A is the matrix of weights of an edge-weighted complete graph Kn,
then its direct power An is the (shortest path) distance matrix of this graph.

• Distance list
Given a metric space .X; d/, its distance set and distance list are the set and

the multiset (i.e., multiplicities are counted) and of all pairwise distances.
Two subsets A;B 
 X are said to be homometric sets if they have the same

distance list. Cf. homometric structures in Chap. 24.
A finite metric space is called tie-breaking if all pairwise distances are distinct.

• Degree of distance near-equality
Given a finite metric space .X; d/ with jXj D n � 3, let f D min j d.x;y/

d.a;b/ � 1j
(degree of distance near-equality) and f 0 D min j d.x;y/

d.x;b/�1j, where the minimum
is over different 2-subsets fx; yg; fa; bg of X and, respectively, over different
x; y; b 2 X. [OpPi14] proved f � 9 log n

n2
and f 0 � 3

n , while f � log n
20n2

and f 0 � 1
2n

for some .X; d/.
• Semimetric cone

The semimetric cone METn is the polyhedral cone in R.
n
2/ of all distance

matrices of semimetrics on the set Vn D f1; : : : ; ng. Vershik, 2004, considers
MET1, i.e., the weakly closed convex cone of infinite distance matrices of
semimetrics on N.

The cone of n-point weightable quasi-semimetrics is a projection along an
extreme ray of the semimetric cone MetnC1 (Grishukhin–Deza–Deza, 2011).

The metric fan is a canonical decomposition MFn of METn into subcones
whose faces belong to the fan, and the intersection of any two of them is their
common boundary. Two semimetrics d; d0 2 METn lie in the same cone of the
metric fan if the subdivisions ıd; ıd0 of the polyhedron ı.n; 2/ D convfei C ej W
1 � i < j � ng 
 R

n are equal. Here a subpolytope P of ı.n; 2/ is a cell of the
subdivision ıd if there exists y 2 R

n satisfying yi Cyj D dij if ei Cej is a vertex of
P, and yi C yj > dij, otherwise. The complex of bounded faces of the polyhedron
dual to ıd is the tight span of the semimetric d.
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• Cayley–Menger matrix
Given a finite metric space .X D fx1; � � � ; xng; d/, its Cayley–Menger matrix

is the symmetric .n C 1/ � .n C 1/ matrix

CM.X; d/ D
�
0 e
eT D

�

;

where D D ..d2.xi; xj/// and e is the n-vector all components of which are 1.
The determinant of CM.X; d/ is called the Cayley–Menger determinant. If

.X; d/ is a metric subspace of the Euclidean space E
n�1, then CM.X; d/ is

.�1/n2n�1..n�1/Š/2 times the squared .n�1/-dimensional volume of the convex
hull of X in R

n�1.
• Gram matrix

Given elements v1; : : : ; vk of a Euclidean space, their Gram matrix is the
symmetric k � k matrix VVT , where V D ..vij//, of pairwise inner products of
v1; : : : ; vk:

G.v1; : : : ; vk/ D ..hvi; vji//:

It holds G.v1; : : : ; vk/ D 1
2
..d2E.v0; vi/ C d2E.v0; vj/ � d2E.vi; vj///, i.e., the

inner product h�; �i is the Gromov product similarity of the squared Euclidean
distance d2E. A k � k matrix ..d2E.vi; vj/// is called Euclidean distance matrix (or
EDM). It defines a distance of negative type on f1; : : : ; kg; all such matrices
form the (nonpolyhedral) closed convex cone of all such distances.

The determinant of a Gram matrix is called the Gram determinant; it is equal
to the square of the k-dimensional volume of the parallelotope constructed on
v1; : : : vk.

A symmetric k � k real matrix M is said to be positive-semidefinite (PSD) if
xMxT � 0 for any nonzero x 2 R

k and positive-definite (PD) if xMxT > 0. A
matrix is PSD if and only if it is a Gram matrix; it is PD if and only the vectors
v1; : : : ; vk are linearly independent. In Statistics, the covariance matrices and
correlation matrices are exactly PSD and PD ones, respectively.

• Midset
Given a metric space .X; d/ and distinct y; z 2 X, the midset (or bisector) of

points y and z is the set M D fx 2 X W d.x; y/ D d.x; z/g of midpoints x.
A metric space is said to have the n-point midset property if, for every pair of

its points, the midset has exactly n points. The one-point midset property means
uniqueness of the midpoint map. Cf. midpoint convexity.

• Distance k-sector
Given a metric space .X; d/ and disjoint subsets Y;Z 
 X, the bisector of Y

and Z is the set M D fx 2 X W infy2Y d.x; y/ D infz2Z d.x; z/g.
The distance k-sector of Y and Z is the sequence M1; : : : ;Mk�1 of subsets of

X such that Mi, for any 1 � i � k � 1, is the bisector of sets Mi�1 and MiC1,
where Y D M0 and Z D Mk. Asano–Matousek–Tokuyama, 2006, considered the
distance k-sector on the Euclidean plane .R2; l2/; for compact sets Y and Z, the
sets M1; : : : ;Mk�1 are curves partitioning the plane into k parts.
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• Metric basis
Given a metric space .X; d/ and a subset M 
 X, for any point x 2 X, its

metric M-representation is the set f.m; d.x;m// W m 2 Mg of its metric M-
coordinates .m; d.x;m//. The set M is called (Blumenthal, 1953) a metric basis
(or resolving set, locating set, set of uniqueness, set of landmarks) if distinct
points x 2 X have distinct M-representations. A vertex-subset M of a connected
graph is (Okamoto et al., 2009) a local metric basis if adjacent vertices have
distinct M-representations.

The resolving number of a finite .X; d/ is (Chartrand–Poisson–Zhang, 2000)
minimum k such that any k-subset of X is a metric basis.

The vertices of a non degenerate simplex form a metric basis of En, but l1-
and l1-metrics on R

n, n > 1, have no finite metric basis.
The distance similarity is (Saenpholphat–Zhang, 2003) an equivalence

relation on X defined by x � y if d.z; x/ D d.z; y/ for any z 2 X n fx; yg. Any
metric basis contains all or all but one elements from each equivalence class.

1.3 Metric Numerical Invariants

• Resolving dimension
Given a metric space .X; d/, its resolving dimension (or location number

(Slater, 1975), metric dimension (Harary–Melter, 1976)) is the minimum car-
dinality of its metric basis. The upper resolving dimension of .X; d/ is the
maximum cardinality of its metric basis not containing another metric basis
as a proper subset. Adjacency dimension of .X; d/ is the metric dimension of
.X;min.2; d//.

A metric independence number of .X; d/ is (Currie–Oellermann, 2001) the
maximum cardinality I of a collection of pairs of points of X, such that for any
two, (say, .x; y/ and .x0; y0/) of them there is no point z 2 X with d.z; x/ ¤ d.z; y/
and d.z; x0/ ¤ d.z; y0/. A function f W X ! Œ0; 1� is a resolving function of .X; d/
if
P

z2XWd.x;z/¤d.y;z/ f .z/ � 1 for any distinct x; y 2 X. The fractional resolving
dimension of .X; d/ is F D min

P
x2X g.x/, where the minimum is taken over

resolving functions f such that any function f 0 with f 0; f is not resolving.
The partition dimension of .X; d/ is (Chartrand–Salevi–Zhang, 1998) the

minimum cardinality P of its resolving partition, i.e., a partition X D [1�i�kSi

such that no two points have, for 1 � i � k, the same minimal distances to the
set Si.

Related locating a robber game on a graph G D .V;E/ was considered
in 2012 by Seager and by Carraher et al.: cop win on G if every sequence
r D r1; : : : ; rn of robber’s steps (ri 2 V and dpath.ri; riC1/ � 1) is uniquely
identified by a sequence d.r1; c1/; : : : ; d.rn; cn/ of cop’s distance queries for some
c1; : : : ; cn 2 V .
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• Metric dimension
For a metric space .X; d/ and a number � > 0, let C� be the minimal size of

an �-net of .X; d/, i.e., a subset M 
 X with [x2MB.x; �/ D X. The number

dim.X; d/ D lim
�!0

ln C�
� ln �

(if it exists) is called the metric dimension (or Minkowski–Bouligand dimen-
sion, box-counting dimension) of X. If the limit above does not exist, then the
following notions of dimension are considered:

1. dim.X; d/ D lim�!0
ln C�� ln � called the lower Minkowski dimension (or lower

dimension, lower box dimension, Pontryagin–Snirelman dimension);
2. dim.X; d/ D lim�!0

ln C�� ln � called the Kolmogorov–Tikhomirov dimension
(or upper dimension, entropy dimension, upper box dimension).

See below examples of other, less prominent, notions of metric dimension.

1. The (equilateral) metric dimension of a metric space is the maximum cardi-
nality of its equidistant subset, i.e., such that any two of its distinct points
are at the same distance. For a normed space, this dimension is equal to the
maximum number of translates of its unit ball that touch pairwise.

2. For any c > 1, the (normed space) metric dimension dimc.X/ of a finite metric
space .X; d/ is the least dimension of a real normed space .V; jj:jj/ such that
there is an embedding f W X ! V with 1

c d.x; y/ � jj f .x/� f .y/jj � d.x; y/.
3. The (Euclidean) metric dimension of a finite metric space .X; d/ is the least

dimension n of a Euclidean space E
n such that .X; f .d// is its metric sub-

space, where the minimum is taken over all continuous monotone increasing
functions f .t/ of t � 0.

4. The dimensionality of a metric space is �2

2
2
, where � and 
2 are the mean and

variance of its histogram of distance values; this notion is used in Information
Retrieval for proximity searching.

The term dimensionality is also used for the minimal dimension, if it is
finite, of Euclidean space in which a given metric space embeds isometrically.

• Hausdorff dimension
Given a metric space .X; d/ and p; q > 0, let Hq

p D inf
P1

iD1.diam.Ai//
p,

where the infimum is taken over all countable coverings fAig with diameter of Ai

less than q. The Hausdorff q-measure of X is the metric outer measure defined
by

Hp D lim
q!0

Hq
p :

The Hausdorff dimension (or fractal dimension) of .X; d/ is defined by

dimHaus.X; d/ D inffp � 0 W Hp.X/ D 0g:
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Any countable metric space has dimHaus D 0, dimHaus.E
n/ D n, and any

X 
 E
n with Int X ¤ ; has dimHaus D dim. For any totally bounded .X; d/, it

holds

dimtop � dimHaus � dim � dim � dim:

• Rough dimension
Given a metric space .X; d/, its rough n-volume VolnX is lim�!0�

nˇX.�/,
where � > 0 and ˇX.�/ D max jYj for Y � X with d.a; b/ � � if a 2 Y; b 2
Y n fag; ˇX.�/ D 1 is permitted. The rough dimension is defined ([BBI01]) by

dimrough.X; d/ D supfn W VolnX D 1g or, equivalently, D inffn W VolnX D 0g:

The space .X; d/ can be not locally compact. It holds dimHaus � dimrough.
• Packing dimension

Given a metric space .X; d/ and p; q > 0, let Pq
p D sup

P1
iD1.diam.Bi//

p,
where the supremum is taken over all countable packings (by disjoint balls) fBig
with the diameter of Bi less than q.

The packing q-pre-measure is Pp
0 D limq!0 Pq

p. The packing q-measure is
the metric outer measure which is the infimum of packing q-pre-measures of
countable coverings of X. The packing dimension of .X; d/ is defined by

dimpack.X; d/ D inffp � 0 W Pp.X/ D 0g:

• Topological dimension
For any compact metric space .X; d/ its topological dimension (or Lebesgue

covering dimension) is defined by

dimtop.X; d/ D inf
d0

fdimHaus.X; d
0/g;

where d0 is any metric on X equivalent to d. So, it holds dimtop � dimHaus. A
fractal (Chap. 18) is a metric space for which this inequality is strict.

This dimension does not exceed also the Assouad–Nagata dimension of
.X; d/.

In general, the topological dimension of a topological space X is the smallest
integer n such that, for any finite open covering of X, there exists a finite open
refinement of it with no point of X belonging to more than n C 1 elements.

The geometric dimension is (Kleiner, 1999; [BBI01]) sup dimtop.Y; d/ over
compact Y 
 X.

• Doubling dimension
The doubling dimension (dimdoubl.X; d/) of a metric space .X; d/ is the

smallest integer n (or 1 if such an n does not exist) such that every metric ball
(or, say, a set of finite diameter) can be covered by a family of at most 2n metric
balls (respectively, sets) of half the diameter.
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If .X; d/ has finite doubling dimension, then d is called a doubling metric and
the smallest integer m such that every metric ball can be covered by a family of
at most m metric balls of half the diameter is called doubling constant.

• Assouad–Nagata dimension
The Assouad–Nagata dimension dimAN.X; d/ of a metric space .X; d/ is the

smallest integer n (or 1 if such an n does not exist) for which there exists a
constant C > 0 such that, for all s > 0, there exists a covering of X by its subsets
of diameter � Cs with every subset of X of diameter � s meeting � n C 1

elements of covering. It holds (LeDonne–Rajala, 2014) dimAN � dimdoubl; but
dimAN D 1, while dimdoubl D 1, holds (Lang–Schlichenmaier, 2014) for some
real trees .X; d/.

Replacing “for all s > 0” in the above definition by “for s > 0 sufficiently
large” or by “for s > 0 sufficiently small”, gives the microscopic mi-dimAN.X; d/
and macroscopic ma-dimAN.X; d/ Assouad–Nagata dimensions, respectively.
Then (Brodskiy et al., 2006) mi-dimAN.X; d/ D dimAN.X;minfd; 1g/ and

ma-dimAN.X; d/ D dimAN.X;maxfd; 1g/ (here maxfd.x; y/; 1g means 0 for
x D y).

The Assouad–Nagata dimension is preserved (Lang–Schlichenmaier, 2004)
under quasi-symmetric mapping but, in general, not under quasi-isometry.

• Vol’berg–Konyagin dimension
The Vol’berg–Konyagin dimension of a metric space .X; d/ is the smallest

constant C > 1 (or 1 if such a C does not exist) for which X carries a doubling
measure, i.e., a Borel measure � such that, for all x 2 X and r > 0, it holds that

�.B.x; 2r// � C�.B.x; r//:

A metric space .X; d/ carries a doubling measure if and only if d is a doubling
metric, and any complete doubling metric carries a doubling measure.

The Karger–Ruhl constant of a metric space .X; d/ is the smallest c > 1 (or
1 if such a c does not exist) such that for all x 2 X and r > 0 it holds

jB.x; 2r/j � cjB.x; r/j:

If c is finite, then the doubling dimension of .X; d/ is at most 4c.
• Hyperbolic dimension

A metric space .X; d/ is called an .R;N/-large-scale doubling if there exists a
number R > 0 and integer N > 0 such that every ball of radius r � R in .X; d/
can be covered by N balls of radius r

2
.

The hyperbolic dimension hypdim.X; d/ of a metric space .X; d/ (Buyalo–
Schroeder, 2004) is the smallest integer n such that for every r > 0 there are
R > 0, an integer N > 0 and a covering of X with the following properties:

1. Every ball of radius r meets at most n C 1 elements of the covering;
2. The covering is an .R;N/-large-scale doubling, and any finite union of its

elements is an .R0;N/-large-scale doubling for some R0 > 0.
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The hyperbolic dimension is 0 if .X; d/ is a large-scale doubling, and it is n if
.X; d/ is n-dimensional hyperbolic space.

Also, hypdim.X; d/ � asdim.X; d/ since the asymptotic dimension
asdim.X; d/ corresponds to the case N D 1 in the definition of hypdim.X; d/.

The hyperbolic dimension is preserved under a quasi-isometry.
• Asymptotic dimension

The asymptotic dimension asdim.X; d/ of a metric space .X; d/ (Gromov,
1993) is the smallest integer n such that, for every r > 0, there exists a constant
D D D.r/ and a covering of X by its subsets of diameter at most D such that
every ball of radius r meets at most n C 1 elements of the covering.

The asymptotic dimension is preserved under a quasi-isometry.
• Width dimension

Let .X; d/ be a compact metric space. For a given number � > 0, the width
dimension Widim�.X; d/ of .X; d/ is (Gromov, 1999) the minimum integer n such
that there exists an n-dimensional polyhedron P and a continuous map f W X ! P
(called an �-embedding) with diam. f �1.y// � � for all y 2 P.

The width dimension is a macroscopic dimension at the scale � � of .X; d/,
because its limit for � ! 0 is the topological dimension of .X; d/.

• Godsil–McKay dimension
We say that a metric space .X; d/ has Godsil–McKay dimension n � 0 if

there exists an element x0 2 X and two positive constants c and C such that the
inequality ckn � jfx 2 X W d.x; x0/ � kgj � Ckn holds for every integer k � 0.

This notion was introduced in [GoMc80] for the path metric of a countable
locally finite graph. They proved that, if the group Z

n acts faithfully and with a
finite number of orbits on the vertices of the graph, then this dimension is n.

• Metric outer measure
A 
-algebra over X is any nonempty collection† of subsets of X, including X

itself, that is closed under complementation and countable unions of its members.
Given a 
-algebra † over X, a measure on .X; †/ is a function � W † !

Œ0;1� with the following properties:

1. �.;/ D 0;
2. For any sequence fAig of pairwise disjoint subsets of X,�.

P
i Ai/ D P

i �.Ai/

(countable 
-additivity).

The triple .X; †; �) is called a measure space. If M 
 A 2 † and �.A/ D 0

implies M 2 †, then .X; †; �) is called a complete measure space. A measure
� with �.X/ D 1 is called a probability measure.

If X is a topological space (see Chap. 2), then the 
-algebra over X, consisting
of all open and closed sets of X, is called the Borel 
-algebra of X, .X; †/ is
called a Borel space, and a measure on † is called a Borel measure. So, any
metric space .X; d/ admits a Borel measure coming from its metric topology,
where the open set is an arbitrary union of open metric d-balls.

An outer measure on X is a function � W P.X/ ! Œ0;1� (where P.X/ is the
set of all subsets of X) with the following properties:

1. �.;/ D 0;
2. For any subsets A;B 
 X, A 
 B implies �.A/ � �.B/ (monotonicity);
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3. For any sequence fAig of subsets of X, �.
P

i Ai/ � P
i �.Ai/ (countable

subadditivity).

A subset M 
 X is called �-measurable if �.A/ D �.A [ M/C �.A n M/ for
any A 
 X. The set †0 of all �-measurable sets forms a 
-algebra over X, and
.X; †0; �) is a complete measure space.

A metric outer measure is an outer measure � defined on the subsets of a
given metric space .X; d/ such that �.A [ B/ D �.A/ C �.B/ for every pair of
nonempty subsets A;B 
 X with positive set-set distance infa2A;b2B d.a; b/. An
example is Hausdorff q-measure; cf. Hausdorff dimension.

• Length of metric space
The Fremlin length of a metric space .X; d/ is its Hausdorff 1-measure

H1.X/.
The Hejcman length lng.M/ of a subset M 
 X of a metric space .X; d/ is

supflng.M0/ W M0 
 M; jM0j < 1g. Here lng.;/ D 0 and, for a finite subset
M0 
 X, lng.M0/ D min

Pn
iD1 d.xi�1; xi/ over all sequences x0; : : : ; xn such that

fxi W i D 0; 1; : : : ; ng D M0.
The Schechtman length of a finite metric space .X; d/ is inf

qPn
iD1 a2i over

all sequences a1; : : : ; an of positive numbers such that there exists a sequence
X0; : : : ;Xn of partitions of X with following properties:

1. X0 D fXg and Xn D ffxg W x 2 Xg;
2. Xi refines Xi�1 for i D 1; : : : ; n;
3. For i D 1; : : : ; n and B;C 
 A 2 Xi�1 with B;C 2 Xi, there exists a one-to-

one map f from B onto C such that d.x; f .x// � ai for all x 2 B.

• Volume of finite metric space
Given a metric space .X; d/with jXj D k < 1, its volume (Feige, 2000) is the

maximal .k � 1/-dimensional volume of the simplex with vertices f f .x/ W x 2 Xg
over all metric mappings f W .X; d/ ! .Rk�1; l2/. The volume coincides with the
metric for k D 2. It is monotonically increasing and continuous in the metric d.

• Rank of metric space
The Minkowski rank of a metric space .X; d/ is the maximal dimension of

a normed vector space .V; jj:jj/ such that there is an isometry .V; jj:jj/ ! .X; d/.
The Euclidean rank of a metric space .X; d/ is the maximal dimension of a

flat in it, that is of a Euclidean space En such that there is an isometric embedding
E

n ! .X; d/.
The quasi-Euclidean rank of a metric space .X; d/ is the maximal dimen-

sion of a quasi-flat in it, i.e., of an Euclidean space E
n admitting a quasi-

isometry E
n ! .X; d/. Every Gromov hyperbolic metric space has this rank 1.

• Roundness of metric space
The roundness of a metric space .X; d/ is the supremum of all q such that

d.x1; x2/
q C d.y1; y2/

q � d.x1; y1/
q C d.x1; y2/

q C d.x2; y1/
q C d.x2; y2/

q

for any four points x1; x2; y1; y2 2 X.
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Every metric space has roundness � 1; it is � 2 if the space has approximate
midpoints. The roundness of Lp-space is p if 1 � p � 2.

The generalized roundness of a metric space .X; d/ is (Enflo, 1969) the
supremum of all q such that, for any 2k � 4 points xi; yi 2 X with 1 � i � k,

X

1�i<j�k

dq.xi; xj/C dq.yi; yj/ �
X

1�i;j�k

dq.xi; yj/:

Lennard–Tonge–Weston, 1997, have shown that the generalized roundness is the
supremum of q such that d is of q-negative type, i.e., dq is of negative type.

Every CAT(0) space (Chap. 6) has roundness 2, but some of them have
generalized roundness 0 (Lafont–Prassidis, 2006).

• Type of metric space
The Enflo type of a metric space .X; d/ is p if there exists a constant 1 �

C < 1 such that, for every n 2 N and every function f W f�1; 1gn ! X,P
�2f�1;1gn dp. f .�/; f .��// is at most
Cp
Pn

jD1
P

�2f�1;1gn dp. f .�1; : : : ; �j � 1; �j; �j C 1; : : : ; �n/; f .�1; : : : ; �j�1; ��j;

�jC1; : : : ; �n//.
A Banach space .V; jj:jj/ of Enflo type p has Rademacher type p, i.e., for every

x1; : : : ; xn 2 V , it holds

X

�2f�1;1gn

jj
nX

jD1
�jxjjjp � Cp

nX

jD1
jjxjjjp:

Given a metric space .X; d/, a symmetric Markov chain on X is a Markov
chain fZlg1

lD0 on a state space fx1; : : : ; xmg 
 X with a symmetrical transition
m � m matrix ..aij//, such that P.ZlC1 D xj W Zl D xi/ D aij and P.Z0 D xi/ D 1

m
for all integers 1 � i; j � m and l � 0. A metric space .X; d/ has Markov type
p (Ball, 1992) if supT Mp.X;T/ < 1 where Mp.X;T/ is the smallest constant
C > 0 such that the inequality

Edp.ZT ;Z0/ � TCp
Edp.Z1;Z0/

holds for every symmetric Markov chain fZlg1
lD0 on X holds, in terms of expected

value (mean) EŒX� D P
x xp.x/ of the discrete random variable X.

A metric space of Markov type p has Enflo type p.
• Strength of metric space

Given a finite metric space .X; d/ with s different nonzero values of dij D
d.i; j/, its strength is the largest number t such that, for any integers p; q � 0

with p C q � t, there is a polynomial fpq.s/ of degree at most minfp; qg such that
..d2p

ij //..d
2q
ij // D .. fpq.d2ij///.

• Rendez-vous number
Given a metric space .X; d/, its rendez-vous number (or Gross number,

magic number) is a positive real number r.X; d/ (if it exists) defined by the
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property that for each integer n and all (not necessarily distinct) x1; : : : ; xn 2 X
there exists a point x 2 X such that

r.X; d/ D 1

n

nX

iD1
d.xi; x/:

If the number r.X; d/ exists, then it is said that .X; d/ has the average distance
property. Every compact connected metric space has this property. The unit ball
fx 2 V W jjxjj � 1g of a Banach space .V; jj:jj/ has the rendez-vous number 1.

• Wiener-like distance indices
Given a finite subset M of a metric space .X; d/ and a parameter q, the Wiener

polynomial of M (as defined by Hosoya, 1988, for the graphic metric dpath) is

W.MI q/ D 1

2

X

x;y2MW x¤y

qd.x;y/:

It is a generating function for the distance distribution (Chap. 16) of M, i.e., the
coefficient of qi in W.MI q/ is the number jffx; yg 2 M � M W d.x; y/ D igj.

In the main case when M is the vertex-set V of a connected graph G D .V;E/
and d is the path metric of G, the number W.MI 1/ D 1

2

P
x;y2M d.x; y/ is called

the Wiener index of G. This notion is originated (Wiener, 1947) and applied,
together with its many analogs, in Chemistry; cf. chemical distance in Chap. 24.

The hyper-Wiener index is
P

x;y2M.d.x; y/ C d.x; y/2/. The reverse-Wiener

index is 1
2

P
x;y2M.D�d.x; y//, where D is the diameter of M. The complementary

reciprocal Wiener index is 1
2

P
x;y2M.1 C D � d.x; y//�1. The Harary index is

P
x;y2M.d.x; y//

�1. The Szeged index and the vertex PI index are
P

e2E nx.e/ny.e/
and

P
e2E.nx.e/Cny.e//, where e D .xy/ and nx.e/=jfz 2 V W d.x; z/ < d.y; z/gj.

Two studied edge-Wiener indices of G are the Wiener index of its line graph
and

P
.xy/;.x0y0/2E maxfd.x; x0/; d.x; y0/; d.y; x0/; d.y; y0/g.

The Gutman–Schultz index, degree distance (Dobrynin–Kochetova, 1994),
reciprocal degree distance and terminal Wiener index are:

X

x;y2M

rxryd.x; y/;
X

x;y2M

d.x; y/.rx C ry/;
X

x;y2M

1

d.x; y/
.rx C ry/;

X

x;y2fz2MWrzD1g
d.x; y/;

where rz is the degree of the vertex z 2 M. The eccentric distance sum (Gupta
et al., 2002) is

P
y2M.maxfd.x; y/ W x 2 Mgdy), where dy is

P
x2M d.x; y/.

The Balaban index is jEj
cC1

P
.yz/2E.

p
dydz/

�1, where c is the number of
primitive cycles. The multiplicative Wiener index is (Das–Gutman, 2016)Q

x;y2M;x¤y d.x; y/.
Given a partition P D fV1; : : : ;Vkg of the vertex-set V , set fP.x/ D i for

x 2 Vi. The colored distance (Dankelman et al., 2001) and the partition distance
(Klavžar, 2016) of G are

P
fP.x/¤fP.y/

d.x; y/ and
P

fP.x/DfP.y/
d.x; y/, respectively.
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Above indices are called (corresponding) Kirchhoff indices if d the resistance
metric (Chap. 15) of G.

The average distance of M is the number 1
jMj.jMj�1/

P
x;y2M d.x; y/. In

general, for a quasi-metric space .X; d/, the numbers
P

x;y2M d.x; y/ and
1

jMj.jMj�1/
P

x;y2M;x¤y
1

d.x;y/ are called, respectively, the transmission and global
efficiency of M.

• Distance polynomial
Given an ordered finite subset M of a metric space .X; d/, let D be the distance

matrix of M. The distance polynomial of M is the characteristic polynomial of
D, i.e., the determinant det.D � 	I/.

Usually, D is the distance matrix of the path metric of a graph. Sometimes,
the distance polynomial is defined as det.	I � D/ or .�1/ndet.D � 	I/.

The roots of the distance polynomial constitute the distance spectrum (or
D-spectrum of D-eigenvalues) of M. Let �max and �min be the largest and the
smallest roots; then �max and �max � �min are called (distance spectral) radius
and spread of M. The distance degree of x 2 M is

P
y2M d.x; y/. The distance

energy of M is the sum of the absolute values of its D-eigenvalues. It is 2�max

if (as, for example, for the path metric of a tree) exactly one D-eigenvalue is
positive.

• s-energy
Given a finite subset M of a metric space .X; d/ and a number s > 0, the

s-energy and 0-energy of M are, respectively, the numbers

X

x;y2M;x¤y

1

ds.x; y/
and

X

x;y2M;x¤y

log
1

d.x; y/
D � log

Y

x;y2M;x¤y

d.x; y/:

The (unnormalized) s-moment of M is the number
P

x;y2M ds.x; y/.
The discrete Riesz s-energy is the s-energy for Euclidean distance d. In

general, let � be a finite Borel probability measure on .X; d/. Then U�
s .x/ DR �.dy/

d.x;y/s is the (abstract) s-potential at a point x 2 X. The Newton gravitational

potential is the case .X; d/ D .R3; jx � yj/, s D 1, for the mass distribution �.
The s-energy of � is E�s D R

U�
s .x/�.dx/ D R R

�.dx/�.dy/
d.x;y/s , and the s-capacity

of .X; d/ is .inf� E�s /�1. Cf. the metric capacity.
• Fréchet mean

Given a metric space .X; d/ and a number s > 0, the Fréchet function is
Fs.x/ D EŒds.x; y/�. For a finite subset M of X, this expected value is the mean
Fs.x/ D P

y2M w.y/ds.x; y/, where w.y/ is a weight function on M.
The points, minimizing F1.x/ and F2.x/, are called the Fréchet median (or

weighted geometric median) and Fréchet mean (or Karcher mean), respectively.
If .X; d/ D .Rn; jjx � yjj2/ and the weights are equal, these points are called

the geometric median (or Fermat–Weber point, 1-median) and the centroid (or
geometric center, barycenter), respectively.

The k-median and k-mean of M are the k-sets C minimizing, respectively, the
sums

P
y2M minc2C d.y; c/ D P

y2M d.y;C/ and
P

y2M d2.y;C/.
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Let .X; d/ be the metric space .R>0; j f .x/ � f .y/j/, where f W R>0 ! R is a
given injective and continuous function. Then the Fréchet mean of M 
 R>0 is
the f -mean (or Kolmogorov mean, quasi-arithmetic mean) f �1.

P
x2M f .x/
jMj /. It is the

arithmetic, geometric, harmonic, and power mean if f D x; log.x/; 1x , and f D xp

(for a given p ¤ 0), respectively. The cases p ! C1; p ! �1 correspond
to maximum and minimum, while p D 2;D 1;! 0;! �1 correspond to the
quadratic, arithmetic, geometric and harmonic mean.

Given a completely monotonic (i.e., .�1/kf .k/ � 0 for any k) function f 2 C
1,

the f -potential energy of a finite subset M of .X; d/ is
P

x;y2M;x¤y f .d2.x; y//. The
set M is called (Cohn–Kumar, 2007) universally optimal if it minimizes, among
sets M0 
 X with jM0j D jMj, the f -potential energy for any such f . Among
universally optimal subsets of .Sn�1; jjx � yjj2/, there are the vertex-sets of a
polygon, simplex, cross-polytope, icosahedron, 600-cell, E8 root system.

• Distance-weighted mean
In Statistics, the distance-weighted mean between given data points

x1; : : : ; xn is defined (Dodonov–Dodonova, 2011) by

P
1�i�n wixi

P
1�i�n wi

with wi D n � 1
P

1�j�n jxi � xjj :

The case wi D 1 for all i corresponds to the arithmetic mean.
• Inverse distance weighting

In Numerical Analysis, multivariate (or spatial) interpolation is interpolation
on functions of more than one variable. Inverse distance weighting is a method
(Shepard, 1968) for multivariate interpolation. Let x1; : : : ; xn be interpolating
points (i.e., samples ui D u.xi/ are known), x be an interpolated (unknown) point
and d.x; xi/ be a given distance. A general form of interpolated value u.x/ is

u.x/ D
P

1�i�n wi.x/ui
P

1�i�n wi.x/
; with wi.x/ D 1

.d.x; xi//p
;

where p > 0 (usually p D 2) is a fixed power parameter.
• Transfinite diameter

The n-th diameter Dn.M/ and the n-th Chebyshev constant Cn.M/ of a set
M � X in a metric space .X; d/ are defined (Fekete, 1923, for the complex plane
C) as

Dn.M/ D sup
x1;:::;xn2M

Y

i¤j

d.xi; xj/
1

n.n�1/ and Cn.M/ D inf
x2X

sup
x1;:::;xn2M

nY

jD1
d.x; xj/

1
n :

The number log Dn.M/ (the supremum of the average distance) is called the
n-extent of M. The numbers Dn.M/;Cn.M/ come from the geometric mean
averaging; they also come as the limit case s ! 0 of the s-moment

P
i¤j d.xi; xj/

s

averaging.
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The transfinite diameter (or 1-th diameter) and the 1-th Chebyshev
constant C1.M/ of M are defined as

D1.M/ D lim
n!1 Dn.M/ and C1.M/ D lim

n!1 Cn.M/I

these limits existing since fDn.M/g and fCn.M/g are nonincreasing sequences of
nonnegative real numbers. Define D1.;/ D 0.

The transfinite diameter of a compact subset of C is its conformal radius at
infinity (cf. Chap. 6); for a segment in C, it is 1

4
of its length.

• Metric diameter
The metric diameter (or diameter, width) diam.M/ of a set M � X in a

metric space .X; d/ is defined by

sup
x;y2M

d.x; y/:

The diameter graph of M has, as vertices, all points x 2 M with d.x; y/ D
diam.M/ for some y 2 M; it has, as edges, all pairs of its vertices at distance
diam.M/ in .X; d/. .X; d/ is called a diametrical metric space if any x 2 X has
the antipode, i.e., a unique x0 2 X such that the closed metric interval I.x; x0/ is
X.

The furthest neighbor digraph of M is a directed graph on M, where xy is an
arc (called a furthest neighbor pair) whenever y is at maximal distance from x.

In a metric space endowed with a measure, one says that the isodiametric
inequality holds if the metric balls maximize the measure among all sets with
given diameter. It holds for the volume in Euclidean space but not, for example,
for the Heisenberg metric on the Heisenberg group (Chap. 10).

The k-ameter (Grove–Markvorsen, 1992) is supK�XW jKjDk
1
2

P
x;y2K d.x; y/,

and the k-diameter (Chung–Delorme–Sole, 1999) is supK�XW jKjDk infx;y2KW x¤y

d.x; y/.
Given a property P � X � X of a pair .K;K0/ of subsets of a finite metric

space .X; d/, the conditional diameter (called P-diameter in Balbuena et al.,
1996) is max.K;K0/2P min.x;y/2K�K0 d.x; y/. It is diam.X; d/ if P D f.K;K0/ 2
X � X W jKj D jK0j D 1g. When .X; d/ models an interconnection network,
the P-diameter corresponds to the maximum delay of the messages interchanged
between any pair of clusters of nodes, K and K0, satisfying a given property P of
interest.

• Metric spread
A subset M of a metric space .X; d/ is called Delone set (or separated �-net,

.A; a/-Delone set) if it is bounded (with a finite diameter A D supx;y2M d.x; y/)
and metrically discrete (with a separation a D infx;y2M;x¤y d.x; y/ > 0).

The metric spread (or distance ratio, normalized diameter) of M is the
ratio A

a .
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The aspect ratio (or axial ratio) of a shape is the ratio of its longer and shorter
dimensions, say, the length and diameter of a rod, major and minor axes of a torus
or width and height of a rectangle (image, display, pixel, etc.).

For a mesh M with separation a and covering radius (or mesh norm) c D
supy2X infx2M d.x; y/, the mesh ratio is c

a .
In Physics, the aspect ratio is the ratio of height-to-length scale characteristics.

Cf. the wing’s aspect ratio among aircraft distances in Chap. 29.
Dynamic range DNR is the ratio between the largest and smallest possible

values of a quantity, such as in sound or light signals; cf. SNR distance in
Chap. 21.

• Eccentricity
Given a bounded metric space .X; d/, the eccentricity (or Koenig number) of

a point x 2 X is the number e.x/ D maxy2X d.x; y/.
The numbers D D maxx2X e.x/ and r D minx2X e.x/ are called the diameter

and the radius of .X; d/, respectively. The point z 2 X is called central if
e.z/ D r, peripheral if e.z/ D D, and pseudo-peripheral if for each point x with
d.z; x/ D e.z/ it holds that e.z/ D e.x/. For finite jXj, the average eccentricity is
1

jXj
P

x2X e.x/, and the contour of .X; d/ is the set of points x 2 X such that no
neighbor (closest point) of x has an eccentricity greater than x.

The eccentric digraph (Buckley, 2001) of .X; d/ has, as vertices, all points
x 2 X and, as arcs, all ordered pairs .x; y/ of points with d.x; y/ D e.y/.
The eccentric graph (Akyiama–Ando–Avis, 1976) of .X; d/ has, as vertices, all
points x 2 X and, as edges, all pairs .x; y/ of points at distance minfe.x/; e.y/g.

The super-eccentric graph (Iqbalunnisa–Janairaman–Srinivasan, 1989) of
.X; d/ has, as vertices, all points x 2 X and, as edges, all pairs .x; y/ of points
at distance no less than the radius of .X; d/. The radial graph (Kathiresan–
Marimuthu, 2009) of .X; d/ has, as vertices, all points x 2 X and, as edges,
all pairs .x; y/ of points at distance equal to the radius of .X; d/.

The sets fx 2 X W e.x/ � e.z/ for any z 2 Xg, fx 2 X W e.x/ �
e.z/ for any z 2 Xg and fx 2 X W Py2X d.x; y/ � P

y2X d.z; y/ for any z 2 Xg
are called, respectively, the metric center (or eccentricity center, center), metric
antimedian (or periphery) and the metric median (or distance center) of .X; d/.

• Radii of metric space
Given a bounded metric space .X; d/ and a set M � X of diameter D,

its metric radius (or radius) Mr, covering radius (or directed Hausdorff
distance from X to M) Cr and remoteness (or Chebyshev radius) Re are the
numbers infx2M supy2M d.x; y/, supx2X infy2M d.x; y/ and infx2X supy2M d.x; y/,
respectively. It holds that D

2
� Re � Mr � D with Mr D D

2
in any injective

metric space. Somemimes, D
2

is called the radius.
For m > 0, a minimax distance design of size m is an m-subset of X having

smallest covering radius. This radius is called the m-point mesh norm of .X; d/.
The packing radius Pr of M is the number supfr W infx;y2M;x¤y d.x; y/ > 2rg.

For m > 0, a maximum distance design of size m is an m-subset of X having
largest packing radius. This radius is the m-point best packing distance on .X; d/.
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• �-net
Given a metric space .X; d/, a subset M 
 X, and a number � > 0, the �-

neighborhood of M is the set M� D [x2MB.x; �/.
The set M is called an �-net (or �-covering, �-approximation) of .X; d/ if

M� D X, i.e., the covering radius of M is at most �.
Let C� denote the �-covering number, i.e., the smallest size of an �-net in

.X; d/. The number lg2 C� is called (Kolmogorov–Tikhomirov, 1959) the metric
entropy (or �-entropy) of .X; d/. It holds P� � C� � P �

2
, where P� denote

the �-packing number of .X; d/, i.e., supfjMj W M 
 X;B.x; �/ \ B.y; �/ D
; for any x; y 2 M; x ¤ yg. The number lg2 P� is called the metric capacity (or
�-capacity) of .X; d/.

• Steiner ratio
Given a metric space .X; d/ and a finite subset V 
 X, let G D .V;E/ be the

complete weighted graph on V with edge-weights d.x; y/ for all x; y 2 V .
Given a tree T, its weight is the sum d.T/ of its edge-weights. A spanning tree

of V is a subset of jVj � 1 edges forming a tree on V . Let MSpTV be a minimum
spanning tree of V , i.e., a spanning tree with the minimal weight d.MSpTV/.

A Steiner tree of V is a tree on Y, V 
 Y 
 X, connecting vertices
from V; elements of Y n V are called Steiner points. Let StMTV be a minimum
Steiner tree of V , i.e., a Steiner tree with the minimal weight d.StMTV/ D
infY�X W V�Y d.MSpTY/. This weight is called the Steiner diversity of V; cf.
diversity in Chap. 3. It is the Steiner distance of set V (Chap. 15) if .X; d/ is
graphic metric space.

The Steiner ratio St.X; d/ of the metric space .X; d/ is defined by

inf
V�X

d.StMTV/

d.MSpTV/
:

Cf. arc routing problems in Chap. 15.
• Chromatic numbers of metric space

Given a metric space .X; d/ and a set D of positive real numbers, the D-
chromatic number of .X; d/ is the standard chromatic number of its D-distance
graph, i.e., the graph .X;E/ with the vertex-set X and the edge-set E D fxy W
d.x; y/ 2 Dg (Chap. 15). Usually, .X; d/ is an lp-space and D D f1g (Benda–
Perles chromatic number) or D D Œ1 � �; 1C ��.

For a metric space .X; d/, the polychromatic number is the minimum number
of colors needed to color all the points x 2 X so that, for each color class Ci, there
is a distance di such that no two points of Ci are at distance di.

For a metric space .X; d/, the packing chromatic number is the minimum
number of colors needed to color all the points x 2 X so that, for each color class
Ci, no two distinct points of Ci are at distance at most i.

For any integer t > 0, the t-distance chromatic number of a metric space
.X; d/ is the minimum number of colors needed to color all the points x 2 X so
that any two points whose distance is � t have distinct colors. Cf. k-distance
chromatic number in Chap. 15.
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For any integer t > 0, the t-th Babai number of a metric space .X; d/ is the
minimum number of colors needed to color all the points in X so that, for any set
D of positive distances with jDj � t, any two points x; y 2 X with d.x; y/ 2 D
have distinct colors.

• Congruence order of metric space
A metric space .X; d/ has congruence order n if every finite metric space

which is not isometrically embeddable in .X; d/ has a subspace with at most
n points which is not isometrically embeddable in .X; d/. For example, the
congruence order of ln2 is n C 3 (Menger, 1928); it is 4 for the path metric of
a tree.

1.4 Main Mappings of Metric Spaces

• Distance function
In Topology, the term distance function is often used for distance. But, in

general, a distance function (or ray function) is a continuous function on a
metric space .X; d/ (usually, on a Euclidean space E

n) f W X ! R�0 which is
homogeneous, i.e., f .tx/ D tf .x/ for all t � 0 and all x 2 X.

Such function f is called positive if f .x/ > 0 for all x ¤ 0, symmetric if
f .x/ D f .�x/, convex if f .tx C .1 � t/y/ � tf .x/C .1 � t/f .y/ for any 0 < t < 1
and x ¤ y, and strictly convex if this inequality is strict.

If X D E
n, the set Sf D fx 2 R

n W f .x/ < 1g is star body, i.e., x 2 Sf implies
Œ0; x� 
 Sf . Any star body S corresponds to a unique distance function g.x/ D
inftx2S;t>0

1
t , and S D Sg. The star body is bounded if f is positive, symmetric

about the origin if f is symmetric, convex if f is convex, and strictly convex (i.e.,
the boundary @B does not contain a segment) if f is strictly convex.

For a quadratic distance function of the form fA D xAxT , where A is a real
matrix and x 2 R

n, the matrix A is positive-definite (i.e., the Gram matrix
VVT D ..hvi; vji// of n linearly independent vectors vi D .vi1; : : : ; vin/) if and
only if fA is symmetric and strictly convex function. The homogeneous minimum
of fA is

min. fA/ D inf
x2Znnf0g

fA.x/ D inf
x2Lnf0g

X

1�i�n

x2i ;

where L D fP xivi W xi 2 Zg is a lattice, i.e., a discrete subgroup of Rn spanning
it. The Hermite constant �n, a central notion in Geometry of Numbers, is the
supremum, over all positive-definite .n � n/-matrices, of min. fA/ det.A/

1
n . It is

known only for 2 � n � 8 and n D 24; cf. systole of metric space.
• Convex distance function

Given a compact convex region B 
 R
n containing the origin O in its interior,

the convex distance function (or Minkowski distance function, Minkowski
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seminorm, gauge) is the function jjPjjB whose value at a point P 2 R
n is the

distance ratio OP
OQ , where Q 2 B is the furthest from O point on the ray OP.

Then dB.x; y/ D jjx � yjjB is the quasi-metric on R
n defined, for x ¤ y, by

inff˛ > 0 W y � x 2 ˛Bg;

and B D fx 2 R
n W dB.0; x/ � 1g with equality only for x 2 @B.

The function jjPjjB is called a polyhedral distance function if B is a n-
polytope, simplicial distance function if it is a n-simplex, and so on.

If B is centrally-symmetric with respect to the origin, then dB is a
Minkowskian metric (Chap. 6) whose unit ball is B. This is the l1-metric if
B is the n-cross-polytope and the l1-metric if B is the n-cube.

• Funk distance
Let B be an nonempty open convex subset of Rn. For any x; y 2 B, denote by

R.x; y/ the ray from x through y. The Funk distance (Funk, 1929) on B is the
quasi-semimetric defined, for any x; y 2 B, as 0 if the boundary @.B/ and R.x; y/
are disjoint, and, otherwise, i.e., if R.x; y/\ @B D fzg, by

ln
jjx � zjj2
jjy � zjj2 :

The Hilbert projective metric in Chap. 6 is a symmetrization of this distance.
• Metric projection

Given a metric space .X; d/ and a subset M 
 X, an element u0 2 M is called
an element of best approximation (or nearest point) to a given element x 2 X
if d.x; u0/ D infu2M d.x; u/, i.e., if d.x; u0/ is the point-set distance d.x;M/.

A metric projection (or operator of best approximation, nearest point map)
is a multivalued mapping associating to each element x 2 X the set of elements
of best approximation from the set M (cf. distance map).

A Chebyshev set in a metric space .X; d/ is a subset M 
 X containing a
unique element of best approximation for every x 2 X.

A subset M 
 X is called a semi-Chebyshev set if the number of such
elements is at most one, and a proximinal set if this number is at least one.

While the Chebyshev radius (or remoteness; cf. radii of metric space)
of the set M is infx2X supy2M d.x; y/, a Chebyshev center of M is an element
x0 2 X realizing this infimum. Sometimes (say, for a finite graphic metric
space), 1

jMj infx2X
P

y2M d.x; y/ and 1
jMj supx2X

P
y2M d.x; y/ are called proximity

and remoteness of M.
• Distance map

Given a metric space .X; d/ and a subset M 
 X, the distance map is a
function fM W X ! R�0, where fM.x/ D infu2M d.x; u/ is the point-set distance
d.x;M/ (cf. metric projection).
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If the boundary B.M/ of the set M is defined, then the signed distance
function gM is defined by gM.x/ D � infu2B.M/ d.x; u/ for x 2 M, and gM.x/ D
infu2B.M/ d.x; u/, otherwise. If M is a (closed orientable) n-manifold (Chap. 2),
then gM is the solution of the eikonal equation jrgj D 1 for its gradient r.

If X D R
n and, for every x 2 X, there is unique element u.x/ with d.x;M/ D

d.x; u.x// (i.e., M is a Chebyshev set), then jjx�u.x/jj is called a vector distance
function.

Distance maps are used in Robot Motion (M being the set of obstacle points)
and, especially, in Image Processing (M being the set of all or only boundary
pixels of the image). For X D R

2, the graph f.x; fM.x// W x 2 Xg of d.x;M/ is
called the Voronoi surface of M.

• Isometry
Given metric spaces .X; dX/ and .Y; dY/, a function f W X ! Y is

called an isometric embedding of X into Y if it is injective and the equality
dY. f .x/; f .y// D dX.x; y/ holds for all x; y 2 X.

An isometry (or congruence mapping) is a bijective isometric embedding.
Two metric spaces are called isometric (or isometrically isomorphic) if there
exists an isometry between them.

A property of metric spaces which is invariant with respect to isometries (com-
pleteness, boundedness, etc.) is called a metric property (or metric invariant).

A path isometry (or arcwise isometry) is a mapping from X into Y (not
necessarily bijective) preserving lengths of curves.

• Rigid motion of metric space
A rigid motion (or, simply, motion) of a metric space .X; d/ is an isometry

of .X; d/ onto itself.
For a motion f , the displacement function df .x/ is d.x; f .x//. The motion

f is called semisimple if infx2X df .x/ D d.x0; f .x0// for some x0 2 X, and
parabolic, otherwise. A semisimple motion is called elliptic if infx2X df .x/ D 0,
and axial (or hyperbolic), otherwise. A motion is called a Clifford translation if
the displacement function df .x/ is a constant for all x 2 X.

• Symmetric metric space
A metric space .X; d/ is called symmetric if, for any point p 2 X, there exists

a symmetry relative to that point, i.e., a motion fp of this metric space such that
fp. fp.x// D x for all x 2 X, and p is an isolated fixed point of fp.

• Homogeneous metric space
A metric space is called homogeneous (or point-homogeneous) if, for any two

points of it, there exists a motion mapping one of the points to the other.
In general, a homogeneous space is a set together with a given transitive group

of symmetries. Moss, 1992, defined similar distance-homogeneous distanced
graph.

A metric space is called ultrahomogeneous space (or highly transitive) if any
isometry between two of its finite subspaces extends to the whole space.

A metric space .X; d/ is called (Grünbaum–Kelly) a metrically homogeneous
metric space if fd.x; z/ W z 2 Xg D fd.y; z/ W z 2 Xg for any x; y 2 X.
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• Flat space
A flat space is any metric space with local isometry to some E

n, i.e., each
point has a neighborhood isometric to an open set in E

n. A space is locally
Euclidean if every point has a neighborhood homeomorphic to an open subset
in E

n.
• Dilation of metric space

Given a metric space .X; d/, its dilation (or r-dilation) is a mapping f W X !
X with d. f .x/; f .y// D rd.x; y/ for some r > 0 and any x 2 X.

• Wobbling of metric space
Given a metric space .X; d/, its wobbling (or r-wobbling) is a mapping f W

X ! X with d.x; f .x// < r for some r > 0 and any x 2 X.
• Paradoxical metric space

Given a metric space .X; d/ and an equivalence relation on the subsets of X,
the space .X; d/ is called paradoxical if X can be decomposed into two disjoint
sets M1, M2 so that M1, M2 and X are pairwise equivalent.

Deuber, Simonovitz and Sós, 1995, introduced this idea for wobbling equiva-
lent subsets M1;M2 
 X, i.e., there is a bijective r-wobbling f W M1 ! M2. For
example, .R2; l2/ is paradoxical for wobbling but not for isometry equivalence.

• Metric cone
A pointed metric space .X; d; x0/ is called a metric cone, if it is isometric to

.	X; d; x0/ for all 	 > 0. A metric cone structure on .X; d; x0/ is a (pointwise)
continuous family ft (t 2 R>0) of dilations of X, leaving the point x0 invariant,
such that d. ft.x/; ft.y// D td.x; y/ for all x; y and ft ı fs D fts. A Banach space has
such a structure for the dilations ft.x/ D tx (t 2 R>0). The Euclidean cone over a
metric space (cf. cone over metric space in Chap. 9) is another example.

The tangent metric cone over a metric space .X; d/ at a point x0 is (for all
dilations tX D .X; td/) the closure of [t>0tX, i.e., of limt!1 tX taken in the
pointed Gromov–Hausdorff topology (cf. Gromov–Hausdorff metric).

The asymptotic metric cone over .X; d/ is its tangent metric cone “at
infinity”, i.e., \t>0tX D limt!0 tX. Cf. boundary of metric space in Chap. 6.

The term metric cone was also used by Bronshtein, 1998, for a convex cone
C equipped with a complete metric compatible with its operations of addition
(continuous on C � C) and multiplication (continuous on C �R�0). by all 	 � 0.

• Metric fibration
Given a complete metric space .X; d/, two subsets M1 and M2 of X are called

equidistant if for each x 2 M1 there exists y 2 M2 with d.x; y/ being equal to the
Hausdorff metric between the sets M1 and M2. A metric fibration of .X; d/ is
a partition F of X into isometric mutually equidistant closed sets.

The quotient metric space X=F inherits a natural metric for which the
distance map is a submetry.

• Homeomorphic metric spaces
Two metric spaces .X; dX/ and .Y; dY/ are called homeomorphic (or topolog-

ically isomorphic) if there exists a homeomorphism from X to Y, i.e., a bijective
function f W X ! Y such that f and f �1 are continuous (the preimage of every
open set in Y is open in X).
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Two metric spaces .X; dX/ and .Y; dY/ are called uniformly isomorphic if
there exists a bijective function f W X ! Y such that f and f �1 are uniformly
continuous. A function g is uniformly continuous if, for any � > 0, there
exists ı > 0 such that, for any x; y 2 X, the inequality dX.x; y/ < ı implies
that dY.g.x/; f .y// < �; a continuous function is uniformly continuous if X is
compact.

• Möbius mapping
Given distinct points x; y; z;w of a metric space .X; d/, their cross-ratio is

cr..x; y; z;w/; d/ D d.x; y/d.z;w/

d.x; z/d.y;w/
> 0:

Given metric spaces .X; dX/ and .Y; dY/, a homeomorphism f W X ! Y is
called a Möbius mapping if, for every distinct points x; y; z;w 2 X, it holds

cr..x; y; z;w/; dX/ D cr.. f .x/; f .y/; f .z/; f .w//; dY /:

A homeomorphism f W X ! Y is called a quasi-Möbius mapping (Väisälä,
1984) if there exists a homeomorphism � W Œ0;1/ ! Œ0;1/ such that, for every
quadruple x; y; z;w of distinct points of X, it holds

cr.. f .x/; f .y/; f .z/; f .w//; dY/ � �.cr..x; y; z;w/; dX//:

A metric space .X; d/ is called metrically dense (or �-dense for given � > 1,
Aseev–Trotsenko, 1987) if for any x; y 2 X, there exists a sequence fzi; i 2 Zg
with zi ! x as i ! �1, zi ! y as i ! 1, and log cr..x; zi; ziC1; y/; d/ � log�
for all i 2 Z. The space .X; d/ is �-dense if and only if (Tukia-Väisälä, 1980), for
any x; y 2 X, there exists z 2 X with d.x;y/

6�
� d.x; z/ � d.x;y/

4
.

• Quasi-symmetric mapping
Given metric spaces .X; dX/ and .Y; dY/, a homeomorphism f W X ! Y

is called a quasi-symmetric mapping (Tukia–Väisälä, 1980) if there is a
homeomorphism � W Œ0;1/ ! Œ0;1/ such that, for every triple .x; y; z/ of
distinct points of X,

dY. f .x/; f .y//

dY. f .x/; f .z//
� �

dX.x; y/

dX.x; z/
:

Quasi-symmetric mappings are quasi-Möbius, and quasi-Möbius mappings
between bounded metric spaces are quasi-symmetric. In the case f W Rn ! R

n,
quasi-symmetric mappings are exactly the same as quasi-conformal mappings.

• Conformal metric mapping
Given metric spaces .X; dX/ and .Y; dY/ which are domains in R

n, a home-
omorphism f W X ! Y is called a conformal metric mapping if, for any
nonisolated point x 2 X, the limit limy!x

dY . f .x/;f .y//
d.x;y/ exists, is finite and positive.
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A homeomorphism f W X ! Y is called a quasi-conformal mapping (or,
specifically, C-quasi-conformal mapping) if there exists a constant C such that

lim
r!0

sup
maxfdY. f .x/; f .y// W dX.x; y/ � rg
minfdY. f .x/; f .y// W dX.x; y/ � rg � C

for each x 2 X. The smallest such constant C is called the conformal dilation.
The conformal dimension of a metric space .X; d/ (Pansu, 1989) is the

infimum of the Hausdorff dimension over all quasi-conformal mappings of
.X; d/ into some metric space. For the middle-third Cantor set on Œ0; 1�, it is 0
but, for any of its quasi-conformal images, it is positive.

• Hölder mapping
Let c; ˛ � 0 be constants. Given metric spaces .X; dX/ and .Y; dY/, a function

f W X ! Y is called the Hölder mapping (or ˛-Hölder mapping if the constant
˛ should be mentioned) if for all x; y 2 X

dY. f .x/; f .y// � c.dX.x; y//
˛:

A 1-Hölder mapping is a Lipschitz mapping; 0-Hölder mapping means that
the metric dY is bounded.

• Lipschitz mapping
Let c be a positive constant. Given metric spaces .X; dX/ and .Y; dY/, a

function f W X ! Y is called a Lipschitz (or Lipschitz continuous, c-Lipschitz
if the constant c should be mentioned) mapping if for all x; y 2 X it holds

dY. f .x/; f .y// � cdX.x; y/:

A c-Lipschitz mapping is called a metric mapping if c D 1, and is called a
contraction if c < 1.

• Bi-Lipschitz mapping
Given metric spaces .X; dX/; .Y; dY/ and a constant c > 1, a function f W X !

Y is called a bi-Lipschitz mapping (or c-bi-Lipschitz mapping, c-embedding) if
there exists a number r > 0 such that for any x; y 2 X it holds

rdX.x; y/ � dY. f .x/; f .y// � crdX.x; y/:

Every bi-Lipschitz mapping is a quasi-symmetric mapping.
The smallest c for which f is a c-bi-Lipschitz mapping is called the distortion

of f . Bourgain, 1985, proved that every k-point metric space c-embeds into a
Euclidean space with distortion O.ln k/. Gromov’s distortion for curves is the
maximum ratio of arc length to chord length.

Two metrics d1 and d2 on X are called bi-Lipschitz equivalent metrics if
there are positive constants c and C such that cd1.x; y/ � d2.x; y/ � Cd1.x; y/ for
all x; y 2 X, i.e., the identity mapping is a bi-Lipschitz mapping from .X; d1/ into
.X; d2/. Bi-Lipschitz equivalent metrics are equivalent, i.e., generate the same
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topology but, for example, equivalent L1-metric and L2-metric (cf. Lp-metric in
Chap. 5) on R are not bi-Lipschitz equivalent.

A bi-Lipschitz mapping f W X ! Y is a c-isomorphism f W X ! f .X/.
• c-isomorphism of metric spaces

Given two metric spaces .X; dX/ and .Y; dY/, the Lipschitz norm jj:jjLip on the
set of all injective mappings f W X ! Y is defined by

jj f jjLip D sup
x;y2X;x¤y

dY. f .x/; f .y//

dX.x; y/
:

Two metric spaces X and Y are called c-isomorphic if there exists an injective
mapping f W X ! Y such that jj f jjLipjj f �1jjLip � c.

• Metric Ramsey number
For a given class M of metric spaces (usually, lp-spaces), an integer n � 1,

and a real number c � 1, the metric Ramsey number (or c-metric Ramsey
number) RM.c; n/ is the largest integer m such that every n-point metric space
has a subspace of cardinality m that c-embeds into a member of M (see
[BLMN05]).

The Ramsey number Rn is the minimal number of vertices of a complete graph
such that any edge-coloring with n colors produces a monochromatic triangle.
The following metric analog of Rn was considered in [Masc04]: the least number
of points a finite metric space must contain in order to contain an equilateral
triangle, i.e., to have equilateral metric dimension greater than two.

• Uniform metric mapping
Given metric spaces .X; dX/ and .Y; dY/, a function f W X ! Y is called a

uniform metric mapping if there are two nondecreasing functions g1 and g2
from R�0 to itself with limr!1 gi.r/ D 1 for i D 1; 2, such that the inequality

g1.dX.x; y// � dY. f .x/; f .y// � g2.dX.x; y//

holds for all x; y 2 X. A bi-Lipschitz mapping is a uniform metric mapping with
linear functions g1; g2.

• Metric compression
Given metric spaces .X; dX/ (unbounded) and .Y; dY/, a function f W X ! Y

is a large scale Lipschitz mapping if, for some c > 0;D � 0 and all x; y 2 X,

dY. f .x/; f .y// � cdX.x; y/C D:

The compression of such a mapping f is �f .r/ D infdX .x;y/�r dY. f .x/; f .y//.
The metric compression of .X; dX/ in .Y; dY/ is defined by

R.X;Y/ D sup
f

flimr!1
log maxf�f .r/; 1g

log r
g;

where the supremum is over all large scale Lipschitz mappings f .
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In the main interesting case—when .Y; dY/ is a Hilbert space and .X; dX/ is a
(finitely generated discrete) group with word metric—R.X;Y/ D 0 if there is no
(Guentner–Kaminker, 2004) uniform metric mapping .X; dX/ ! .Y; dY /, and
R.X;Y/ D 1 for free groups, even if there is no quasi-isometry. Arzhantzeva–
Guba–Sapir, 2006, found groups with 1

2
� R.X;Y/ � 3

4
.

• Quasi-isometry
Given metric spaces .X; dX/ and .Y; dY/, a function f W X ! Y is called a

quasi-isometry (or .C; c/-quasi-isometry) if it holds

C�1dX.x; y/� c � dY. f .x/; f .y// � CdX.x; y/C c;

for some C � 1; c � 0, and Y D [x2XBdY . f .x/; c/, i.e., for every point y 2 Y,
there exists x 2 X such that dY.y; f .x// <

c
2
. Quasi-isometry is an equivalence

relation on metric spaces; it is a bi-Lipschitz equivalence up to small distances.
Quasi-isometry means that metric spaces contain bi-Lipschitz equivalent Delone
sets.

A quasi-isometry with C D 1 is called a coarse isometry (or rough isometry,
almost isometry). Cf. quasi-Euclidean rank of a metric space.

• Coarse embedding
Given metric spaces .X; dX/ and .Y; dY/, a function f W X ! Y is called

a coarse embedding if there exist nondecreasing functions �1; �2 W Œ0;1/ !
Œ0;1/ with �1.dX.x; x0// � dY. f .x/; f .x0// � �2.dX.x; x0// if x; x0 2 X and
limt!1 �1.t/ D C1.

Metrics d1; d2 on X are called coarsely equivalent metrics if there exist
nondecreasing functions f ; g W Œ0;1/ ! Œ0;1/ such that d1 � f .d2/; d2 �
g.d1/.

• Metrically regular mapping
Let .X; dX/ and .Y; dY/ be metric spaces, and let F be a set-valued mapping

from X to Y, having inverse F�1, i.e., with x 2 F�1.y/ if and only if y 2 F.x/.
The mapping F is said to be metrically regular at x for y (Dontchev–Lewis–

Rockafeller, 2002) if there exists c > 0 such that it holds

dX.x;F
�1.y// � cdY.y;F.x//

for all .x; y/ close to .x; y/. Here d.z;A/ D infa2A d.z; a/ and d.z;;/ D C1.
• Contraction

Given metric spaces .X; dX/ and .Y; dY/, a function f W X ! Y is called a
contraction if the inequality

dY. f .x/; f .y// � cdX.x; y/

holds for all x; y 2 X and some real number c, 0 � c < 1.
Every contraction is a contractive mapping, and it is uniformly continuous.

Banach fixed point theorem (or contraction principle): every contraction from a
complete metric space into itself has a unique fixed point.



44 1 General Definitions

• Contractive mapping
Given metric spaces .X; dX/ and .Y; dY/, a function f W X ! Y is called a

contractive (or strictly short, distance-decreasing) mapping if

dY. f .x/; f .y// < dX.x; y/

holds for all different x; y 2 X. A function f W X ! Y is called a noncontractive
mapping (or dominating mapping) if for all x; y 2 X it holds

dY. f .x/; f .y// � dX.x; y/:

Every noncontractive bijection from a totally bounded metric space onto
itself is an isometry.

• Short mapping
Given metric spaces .X; dX/ and .Y; dY/, a function f W X ! Y is called

a short (or 1-Lipschitz, nonexpansive, distance-noninreasing, metric) mapping
(or semicontraction) if for all x; y 2 X it holds

dY. f .x/; f .y// � dX.x; y/:

A submetry is a short mapping such that the image of any metric ball is a
metric ball of the same radius.

The set of short mappings f W X ! Y for bounded metric spaces .X; dX/ and
.Y; dY/ is a metric space under the uniform metric supfdY. f .x/; g.x// W x 2 Xg.

Two subsets A and B of a metric space .X; d/ are called (Gowers, 2000)
similar if there exist short mappings f W A ! X, g W B ! X and a small
� > 0 such that every point of A is within � of some point of B, every point of
B is within � of some point of A, and jd.x; g. f .x/// � d.y; f .g.y///j � � for any
x 2 A; y 2 B.

• Category of metric spaces
A category ‰ consists of a class Ob.‰/ of objects and a class Mor.‰/ of

morphisms (or arrows) satisfying the following conditions:

1. To each ordered pair of objects A, B is associated a set‰.A;B/ of morphisms,
and each morphism belongs to only one set ‰.A;B/;

2. The composition f � g of two morphisms f W A ! B, g W C ! D is defined if
B D C in which case it belongs to ‰.A;D/, and it is associative;

3. Each set ‰.A;A/ contains, as an identity, a morphism idA such that f � idA D f
and idA � g D g for any morphisms f W X ! A and g W A ! Y.

The category of metric spaces, denoted by Met (see [Isbe64]), is a category
which has metric spaces as objects and short mappings as morphisms. A unique
injective envelope exists in this category for every one of its objects; it can be
identified with its tight span. In Met, the monomorphisms are injective short
mappings, and isomorphisms are isometries. Met is a subcategory of the category
which has metric spaces as objects and Lipschitz mappings as morphisms.
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Cf. metric 1-space on the objects of a category in Chap. 3.
• Injective metric space

A metric space .X; d/ is called injective if, for every isometric embedding
f W X ! X0 of .X; d/ into another metric space .X0; d0/, there exists a short
mapping f 0 from X0 into X with f 0 � f D idX , i.e., X is a retract of X0.

Equivalently, X is an absolute retract, i.e., a retract of every metric space into
which it embeds isometrically. A metric space .X; d/ is injective if and only if
it is hyperconvex. Examples of such metric spaces are l21-space, ln1-space, any
real tree and the tight span of a metric space.

• Injective envelope
The injective envelope (introduced first in [Isbe64] as injective hull) is a

generalization of Cauchy completion. Given a metric space .X; d/, it can be
embedded isometrically into an injective metric space . OX; Od/; given any such
isometric embedding f W X ! OX, there exists a unique smallest injective subspace
.X; d/ of . OX; Od/ containing f .X/ which is called the injective envelope of X. It is
isometrically identified with the tight span of .X; d/.

A metric space coincides with its injective envelope if and only if it is
injective.

• Tight extension
An extension .X0; d0/ of a metric space .X; d/ is called a tight extension if, for

every semimetric d00 on X0 satisfying the conditions d00.x1; x2/ D d.x1; x2/ for all
x1; x2 2 X, and d00.y1; y2/ � d0.y1; y2/ for any y1; y2 2 X0, one has d00.y1; y2/ D
d0.y1; y2/ for all y1; y2 2 X0.

The tight span is the universal tight extension of X, i.e., it contains, up to
isometries, every tight extension of X, and it has no proper tight extension itself.

• Tight span
Given a metric space .X; d/ of finite diameter, consider the set RX D f f W X !

Rg. The tight span T.X; d/ of .X; d/ is defined as the set T.X; d/ D f f 2 R
X W

f .x/ D supy2X.d.x; y/ � f .y// for all x 2 Xg, endowed with the metric induced
on T.X; d/ by the sup norm jj f jj D supx2X j f .x/j.

The set X can be identified with the set fhx 2 T.X; d/ W hx.y/ D d.y; x/g or,
equivalently, with the set T0.X; d/ D f f 2 T.X; d/ W 0 2 f .X/g. The injective
envelope .X; d/ of X is isometrically identified with the tight span T.X; d/ by

X ! T.X; d/; x ! hx 2 T.X; d/ W hx.y/ D d. f .y/; x/:

The tight span T.X; d/ of a finite metric space is the metric space
.T.X/;D. f ; g/ D max j f .x/ � g.x/j/, where T.X/ is the set of functions
f W X ! R such that for any x; y 2 X, f .x/ C f .y/ � d.x; y/ and, for each
x 2 X, there exists y 2 X with f .x/C f .y/ D d.x; y/. The mapping of any x into
the function fx.y/ D d.x; y/ gives an isometric embedding of .X; d/ into T.X; d/.
For example, if X D fx1; x2g, then T.X; d/ is the interval of length d.x1; x2/.
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The tight span of a metric space .X; d/ of finite diameter can be considered as
a polytopal complex of bounded faces of the polyhedron

fy 2 R
n�0 W yi C yj � d.xi; xj/ for 1 � i < j � ng

if, for example, X D fx1; : : : ; xng. The dimension of this complex is called (Dress,
1984) the combinatorial dimension of .X; d/.

• Real tree
A metric space .X; d/ is called (Tits, 1977) a real tree (or R-tree) if, for all

x; y 2 X, there exists a unique arc from x to y, and this arc is a geodesic segment.
So, an R-tree is a (uniquely) arcwise connected metric space in which each arc
is isometric to a subarc of R. R-tree is not related to a metric tree in Chap. 17.

A metric space .X; d/ is a real tree if and only if it is path-connected and
Gromov 0-hyperbolic (i.e., satisfies the four-point inequality). The plane R

2

with the Paris metric or lift metric (Chap. 19) are examples of an R-tree.
Real trees are exactly tree-like metric spaces which are geodesic; they are

injective metric spaces among tree-like spaces. Tree-like metric spaces are by
definition metric subspaces of real trees.

If .X; d/ is a finite metric space, then the tight span T.X; d/ is a real tree and
can be viewed as an edge-weighted graph-theoretical tree.

A metric space is a complete real tree if and only if it is hyperconvex and any
two points are joined by a metric segment.

A geodesic metric space .X; d/ is called (Druţu–Sapir, 2005) tree-graded with
respect to a collection P of connected proper subsets with jP \ P0j � 1 for
any distinct P;P0 2 P , if every its simple loop composed of three geodesics is
contained in one P 2 P . R-trees are tree-graded with respect to the empty set.

1.5 General Distances

• Discrete metric
Given a set X, the discrete metric (or trivial metric, sorting distance,

drastic distance, Dirac distance, overlap) is a metric on X, defined by d.x; y/ D
1 for all distinct x; y 2 X and d.x; x/ D 0. Cf. the much more general notion of a
(metrically or topologically) discrete metric space.

• Indiscrete semimetric
Given a set X, the indiscrete semimetric d is a semimetric on X defined by

d.x; y/ D 0 for all x; y 2 X.
• Equidistant metric

Given a set X and a positive real number t, the equidistant metric d is a metric
on X defined by d.x; y/ D t for all distinct x; y 2 X (and d.x; x/ D 0).

• .1; 2/ � B-metric
Given a set X, the .1; 2/ � B-metric d is a metric on X such that, for any

x 2 X, the number of points y 2 X with d.x; y/ D 1 is at most B, and all other
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distances are equal to 2. The .1; 2/�B-metric is the truncated metric of a graph
with maximal vertex degree B.

• Permutation metric
Given a finite set X, a metric d on it is called a permutation metric (or linear

arrangement metric) if there exists a bijection ! W X ! f1; : : : ; jXjg such that

d.x; y/ D j!.x/ � !.y/j

holds for all x; y 2 X. Even–Naor–Rao–Schieber, 2000, defined a more general
spreading metric, i.e., any metric d on f1; : : : ; ng such that

P
y2M d.x; y/ �

jMj.jMjC2/
4

for any 1 � x � n and M � f1; : : : ; ng n fxg with jMj � 2.
• Induced metric

Given a metric space .X; d/ and a subset X0 
 X, an induced metric (or
submetric) is the restriction d0 of d to X0. A metric space .X0; d0/ is called a
metric subspace of .X; d/, and .X; d/ is called a metric extension of .X0; d0/.

• Katĕtov mapping
Given a metric space .X; d/, the mapping f W X ! R is a Katĕtov mapping if

j f .x/� f .y/j � d.x; y/ � f .x/C f .y/

for any x; y 2 X, i.e., setting d.x; z/ D f .x/ defines a one-point metric extension
.X [ fzg; d/ of .X; d/.

The set E.X/ of Katĕtov mappings on X is a complete metric space with
metric D. f ; g/ D supx2X j f .x/ � g.x/j; .X; d/ embeds isometrically in it via the
Kuratowski mapping x ! d.x; :/, with unique extension of each isometry of X to
one of E.X/.

• Dominating metric
Given metrics d and d1 on a set X, d1 dominates d if d1.x; y/ � d.x; y/ for all

x; y 2 X. Cf. noncontractive mapping (or dominating mapping).
• Barbilian semimetric

Given sets X and P, the function f W P � X ! R>0 is called an influence (of P
over X) if for any x; y 2 X the ratio gxy. p/ D f . p;x/

f . p;y/ has a maximum when p 2 P.
The Barbilian semimetric is defined on the set X by

ln
maxp2P gxy. p/

minp2P gxy. p/

for any x; y 2 X. Barbilian, 1959, proved that the above function is well defined
(moreover, minp2P gxy. p/ D 1

maxp2P gyx. p/ ) and is a semimetric. Also, it is a metric

if the influence f is effective, i.e., there is no pair x; y 2 X such that gxy. p/ is
constant for all p 2 P. Cf. a special case Barbilian metric in Chap. 6.

• Metric transform
A metric transform is a distance obtained as a function of a given metric (cf.

Chap. 4).
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• Complete metric
Given a metric space .X; d/, a sequence fxng, xn 2 X, is said to have

convergence to x� 2 X if limn!1 d.xn; x�/ D 0, i.e., for any � > 0, there exists
n0 2 N such that d.xn; x�/ < � for any n > n0. Any sequence converges to at
most one limit in X; it is not so, in general, if d is a semimetric.

A sequence fxngn, xn 2 X, is called a Cauchy sequence if, for any � > 0, there
exists n0 2 N such that d.xn; xm/ < � for any m; n > n0.

A metric space .X; d/ is called a complete metric space if every Cauchy
sequence in it converges. In this case the metric d is called a complete metric.
An example of an incomplete metric space is .N; d.m; n/ D jm�nj

mn /.
• Cauchy completion

Given a metric space .X; d/, its Cauchy completion is a metric space .X�; d�/
on the set X� of all equivalence classes of Cauchy sequences, where the sequence
fxngn is called equivalent to fyngn if limn!1 d.xn; yn/ D 0. The metric d� is
defined by

d�.x�; y�/ D lim
n!1 d.xn; yn/;

for any x�; y� 2 X�, where fzngn is any element in the equivalence class z�.
The Cauchy completion .X�; d�/ is a unique, up to isometry, complete metric

space, into which the metric space .X; d/ embeds as a dense metric subspace.
The Cauchy completion of the metric space .Q; jx � yj/ of rational numbers

is the real line .R; jx � yj/. A Banach space is the Cauchy completion of a
normed vector space .V; jj:jj/ with the norm metric jjx � yjj. A Hilbert space
corresponds to the case an inner product norm jjxjj D phx; xi.

• Perfect metric space
A complete metric space .X; d/ is called perfect if every point x 2 X is a limit

point, i.e., jB.x; r/ D fy 2 X W d.x; y/ < rgj > 1 holds for any r > 0.
A topological space is a Cantor space (i.e., homeomorphic to the Cantor set

with the natural metric jx � yj) if and only if it is nonempty, perfect, totally
disconnected, compact and metrizable. The totally disconnected countable
metric space .Q; jx�yj/ of rational numbers also consists only of limit points but
it is not complete and not locally compact.

Every proper metric ball of radius r in a metric space has diameter at most
2r. Given a number 0 < c � 1, a metric space is called a c-uniformly perfect
metric space if this diameter is at least 2cr. Cf. the radii of metric space.

• Metrically discrete metric space
A metric space .X; d/ is called metrically (or uniformly) discrete if there

exists a number r > 0 such that B.x; r/ D fy 2 X W d.x; y/ < rg D fxg for every
x 2 X.
.X; d/ is a topologically discrete metric space (or a discrete metric space) if

the underlying topological space is discrete, i.e., each point x 2 X is an isolated
point: there exists a number r.x/ > 0 such that B.x; r.x// D fxg. For X D f 1n W
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n D 1; 2; 3; : : : g, the metric space .X; jx � yj/ is topologically but not metrically
discrete. Cf. translation discrete metric in Chap. 10.

Alternatively, a metric space .X; d/ is called discrete if any of the following
holds:

1. (Burdyuk–Burdyuk 1991) it has a proper isolated subset, i.e., M 
 X with
inffd.x; y/ W x 2 M; y … Mg > 0 (any such space admits a unique
decomposition into continuous, i.e., nondiscrete, components);

2. (Lebedeva–Sergienko–Soltan, 1984) for any distinct points x; y 2 X, there
exists a point z of the closed metric interval I.x; y/ with I.x; z/ D fx; zg;

3. a stronger property holds: for any two distinct points x; y 2 X, every sequence
of points z1; z2; : : : with zk 2 I.x; y/ but zkC1 2 I.x; zk/ n fzkg for k D 1; 2; : : :

is a finite sequence.

• Locally finite metric space
Let .X; d/ be a metrically discrete metric space. Then it is called locally

finite if for every x 2 X and every r � 0, the ball jB.x; r/j is finite.
If, moreover, jB.x; r/j � C.r/ for some number C.r/ depending only on r,

then .X; d/ is said to have bounded geometry.
• Bounded metric space

A metric (moreover, a distance) d on a set X is called bounded if there exists
a constant C > 0 such that d.x; y/ � C for any x; y 2 X.

For example, given a metric d on X, the metric D on X, defined by D.x; y/ D
d.x;y/

1Cd.x;y/ , is bounded with C D 1.
A metric space .X; d/ with a bounded metric d is called a bounded metric

space.
• Totally bounded metric space

A metric space .X; d/ is called totally bounded if, for every � > 0, there exists
a finite �-net, i.e., a finite subset M 
 X with the point-set distance d.x;M/ < �
for any x 2 X (cf. totally bounded space in Chap. 2).

Every totally bounded metric space is bounded and separable. A metric
space is totally bounded if and only if its Cauchy completion is compact.

• Separable metric space
A metric space .X; d/ is called separable if it contains a countable dense

subset M, i.e., a subset with which all its elements can be approached: X is the
closure cl.M/ (M together with all its limit points).

A metric space is separable if and only if it is second-countable (cf. Chap. 2).
• Compact metric space

A compact metric space (or metric compactum) is a metric space in
which every sequence has a Cauchy subsequence, and those subsequences are
convergent. A metric space is compact if and only if it is totally bounded and
complete.

Every bounded and closed subset of a Euclidean space is compact. Every finite
metric space is compact. Every compact metric space is second-countable.

A continuum is a nonempty connected metric compactum.
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• Proper metric space
A metric space is called proper (or finitely compact, having the Heine–Borel

property) if every its closed metric ball is compact. Any such space is complete.
• UC metric space

A metric space is called a UC metric space (or Atsuji space) if any continuous
function from it into an arbitrary metric space is uniformly continuous.

Every such space is complete. Every metric compactum is a UC metric
space.

• Metric measure space
A metric measure space (or mm-space, metric triple) is a triple .X; d; �/,

where .X; d/ is a Polish (i.e., complete separable; cf. Chap. 2) metric space and
.X; †; �/ is a probability measure space (�.X/ D 1) with † being a Borel 
-
algebra of all open and closed sets of the metric topology (Chap. 2) induced by
the metric d on X. Cf. metric outer measure.

• Norm metric
Given a normed vector space .V; jj:jj/, the norm metric on V is defined by

jjx � yjj:

The metric space .V; jjx � yjj/ is called a Banach space if it is complete.
Examples of norm metrics are lp- and Lp-metrics, in particular, the Euclidean
metric.

Any metric space .X; d/ admits an isometric embedding into a Banach space
B such that its convex hull is dense in B (cf. Monge–Kantorovich metric in
Chap. 14); .X; d/ is a linearly rigid metric space if such an embedding is unique
up to isometry. A metric space isometrically embeds into the unit sphere of a
Banach space if and only if its diameter is at most 2.

• Path metric
Given a connected graph G D .V;E/, its path metric (or graphic metric) dpath

is a metric on V defined as the length (i.e., the number of edges) of a shortest path
connecting two given vertices x and y from V (cf. Chap. 15).

• Editing metric
Given a finite set X and a finite set O of (unary) editing operations on X, the

editing metric on X is the path metric of the graph with the vertex-set X and xy
being an edge if y can be obtained from x by one of the operations from O.

• Gallery metric
A chamber system is a set X (its elements are called chambers) equipped with

n equivalence relations �i, 1 � i � n. A gallery is a sequence of chambers
x1; : : : ; xm such that xi �j xiC1 for every i and some j depending on i.

The gallery metric is an extended metric on X which is the length of the
shortest gallery connecting x and y 2 X (and is equal to 1 if there is no
connecting gallery). The gallery metric is the (extended) path metric of the graph
with the vertex-set X and xy being an edge if x �i y for some 1 � i � n.
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• Metric on incidence structure
An incidence structure .P;L; I/ consists of 3 sets: points P, lines L and flags

I 
 P�L, where a point p 2 P is said to be incident with a line l 2 L if . p; l/ 2 I.
If, moreover, for any pair of distinct points, there is at most one line incident

with both of them, then the collinearity graph is a graph whose vertices are the
points with two vertices being adjacent if they determine a line.

The metric on incidence structure is the path metric of this graph.
• Riemannian metric

Given a connected n-dimensional smooth manifold Mn (cf. Chaps. 2 and 7), its
Riemannian metric is a collection of positive-definite symmetric bilinear forms
..gij// on the tangent spaces of Mn which varies smoothly from point to point.

The length of a curve � on Mn is expressed as
R
�

qP
i;j gijdxidxj, and the

intrinsic metric on Mn, also called the Riemannian distance, is the infimum of
lengths of curves connecting any two given points x; y 2 Mn. Cf. Chap. 7.

• Linearly additive metric
A linearly additive (or additive on lines) metric is a continuous metric d on

R
n which, for any points x; y; z lying in that order on a common line, satisfies

d.x; z/ D d.x; y/C d.y; z/:

Hilbert’s 4-th problem asked in 1900 to classify such metrics; it is solved only
for dimension n D 2 ([Amba76]). Cf. projective metric in Chap. 6.

Every norm metric on R
n is linearly additive. Every linearly additive metric

on R
2 is a hypermetric.

• Hamming metric
The Hamming metric dH (called sometimes Dalal distance in Semantics) is

a metric on R
n defined (Hamming, 1950) by

jfi W 1 � i � n; xi ¤ yigj:

On binary vectors x; y 2 f0; 1gn the Hamming metric and the l1-metric (cf. Lp-
metric in Chap. 5) coincide; they are equal to jI.x/
I.y/j D jI.x/n I.y/jCjI.y/n
I.x/j, where I.z/ D f1 � t � n W zi D 1g.

In fact, maxfjI.x/ n I.y/j; jI.y/ n I.x/jg is also a metric.
• Lee metric

Given m; n 2 N, m � 2, the Lee metric dLee is a metric on Z
n
m D

f0; 1; : : : ;m � 1gn defined (Lee, 1958) by

X

1�i�n

minfjxi � yij;m � jxi � yijg:

The metric space .Zn
m; dLee/ is a discrete analog of the elliptic space.
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The Lee metric coincides with the Hamming metric dH if m D 2 or m D
3. The metric spaces .Zn

4 ; dLee/ and Z2n
2 ; dH/ are isometric. Lee and Hamming

metrics are applied for phase and orthogonal modulation, respectively.
Cf. absolute summation distance and generalized Lee metric in Chap. 16.

• Enomoto–Katona metric
Given a finite set X and an integer k, 2k � jXj, the Enomoto–Katona metric

(2001) is the distance between unordered pairs .X1;X2/ and .Y1;Y2/ of disjoint
k-subsets of X defined by

minfjX1 n Y1j C jX2 n Y2j; jX1 n Y2j C jX2 n Y1jg:

Cf. Earth Mover’s distance, transportation distance in Chaps. 21 and 14.
• Symmetric difference metric

Given a measure space .�;A; �/, the symmetric difference (or measure)
semimetric on the set A� D fA 2 A W �.A/ < 1g is defined by

od4.A;B/ D �.A4B/;

where A4B D .A [ B/n.A \ B/ is the symmetric difference of A and B 2 A�.
The value d4.A;B/ D 0 if and only if �.A4B/ D 0, i.e., A and B are equal

almost everywhere. Identifying two sets A;B 2 A� if �.A4B/ D 0, we obtain
the symmetric difference metric (or Fréchet–Nikodym–Aronszyan distance,
measure metric).

If � is the cardinality measure, i.e., �.A/ D jAj, then d4.A;B/ D jA4Bj D
jA n Bj C jB n Aj. In this case jA4Bj D 0 if and only if A D B.

The metrics dmax.A;B/ D max.jA n Bj; jB n Aj/ and 1 � jA\Bj
max.jAj;jBj/ (its

normalised version) are special cases of Zelinka distance and Bunke–Shearer
metric in Chap. 15. For each p � 1, the p-difference metric (Noradam–Nyblom,

2014) is dp.A;B/ D .jA n Bjp C jB n Ajp/
1
p ; so, d1 D d4 and limp!1 dp D dmax.

The Johnson distance between k-sets A and B is jA4Bj
2

D k � jA \ Bj.
The symmetric difference metric between ordered q-partitions A D

.A1; : : : ;Aq/ and B D .B1; : : : ;Bq/ is
Pq

iD1 jAi
Bij. Cf. metrics between
partitions in Chap. 10.

• Steinhaus distance
Given a measure space .�;A; �/, the Steinhaus distance dSt is a semimetric

on the set A� D fA 2 A W �.A/ < 1g defined as 0 if �.A/ D �.B/ D 0, and by

�.A4B/

�.A [ B/
D 1 � �.A \ B/

�.A [ B/

if �.A[B/ > 0. It becomes a metric on the set of equivalence classes of elements
from A�; here A;B 2 A� are called equivalent if �.A4B/ D 0.



1.5 General Distances 53

The biotope (or Tanimoto) distance jA4Bj
jA[Bj is the special case of Steinhaus

distance obtained for the cardinality measure �.A/ D jAj for finite sets.
Cf. also the generalized biotope transform metric in Chap. 4.

• Fréchet metric
Let .X; d/ be a metric space. Consider a set F of all continuous mappings

f W A ! X, g W B ! X, : : : , where A;B; : : : are subsets of Rn, homeomorphic to
Œ0; 1�n for a fixed dimension n 2 N.

The Fréchet semimetric dF is a semimetric on F defined by

inf



sup
x2A

d. f .x/; g.
.x///;

where the infimum is taken over all orientation preserving homeomorphisms 
 W
A ! B. It becomes the Fréchet metric on the set of equivalence classes f � D
fg W dF.g; f / D 0g. Cf. the Fréchet surface metric in Chap. 8.

• Hausdorff metric
Given a metric space .X; d/, the Hausdorff metric (or two-sided Hausdorff

distance) is a metric on the family F of nonempty compact subsets of X defined
by

dHaus D maxfddHaus.A;B/; ddHaus.B;A/g;

where ddHaus.A;B/ D maxx2A miny2B d.x; y/ is the directed Hausdorff distance
(or one-sided Hausdorff distance) from A to B. The metric space .F ; dHaus/ is
called hyperspace of metric space .X; d/; cf. hyperspace in Chap. 2.

In other words, dHaus.A;B/ is the minimal number � (called also the Blaschke
distance) such that a closed �-neighborhood of A contains B and a closed �-
neighborhood of B contains A. Then dHaus.A;B/ is equal to

sup
x2X

jd.x;A/� d.x;B/j;

where d.x;A/ D miny2A d.x; y/ is the point-set distance.
If the above definition is extended for noncompact closed subsets A and B of

X, then dHaus.A;B/ can be infinite, i.e., it becomes an extended metric.
For not necessarily closed subsets A and B of X, the Hausdorff semimetric

between them is defined as the Hausdorff metric between their closures. If X is
finite, dHaus is a metric on the class of all subsets of X.

• Lp-Hausdorff distance
Given a finite metric space .X; d/, the Lp-Hausdorff distance ([Badd92])

between two subsets A and B of X is defined by

.
X

x2X

jd.x;A/� d.x;B/jp/
1
p ;
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where d.x;A/ is the point-set distance. The usual Hausdorff metric corre-
sponds to the case p D 1.

• Generalized G-Hausdorff metric
Given a group .G; �; e/ acting on a metric space .X; d/, the generalized G-

Hausdorff metric between two closed bounded subsets A and B of X is

min
g1;g22G

dHaus.g1.A/; g2.B//;

where dHaus is the Hausdorff metric. If d.g.x/; g.y// D d.x; y/ for any g 2 G
(i.e., if the metric d is left-invariant with respect of G), then above metric is equal
to ming2G dHaus.A; g.B//.

• Gromov–Hausdorff metric
The Gromov–Hausdorff metric is a metric on the set of all isometry classes

of compact metric spaces defined by

inf dHaus. f .X/; g.Y//

for any two classes X� and Y� with the representatives X and Y, respectively,
where dHaus is the Hausdorff metric, and the minimum is taken over all metric
spaces M and all isometric embeddings f W X ! M, g W Y ! M. The
corresponding metric space is called the Gromov–Hausdorff space.

The Hausdorff–Lipschitz distance between isometry classes of compact
metric spaces X and Y is defined by

inffdGH.X;X1/C dL.X1;Y1/C dGH.Y;Y1/g;

where dGH is the Gromov–Hausdorff metric, dL is the Lipschitz metric, and the
minimum is taken over all (isometry classes of compact) metric spaces X1;Y1.

• Kadets distance
The gap (or opening) between two closed subspaces X and Y of a Banach

space .V; jj:jj/ is defined by

gap.X;Y/ D maxfı.X;Y/; ı.Y;X/g;

where ı.X;Y/ D supfinfy2Y jjx � yjj W x 2 X; jjxjj D 1g (cf. gap distance in
Chap. 12 and gap metric in Chap. 18).

The Kadets distance between two Banach spaces V and W is a semimetric
defined (Kadets, 1975) by

inf
Z;f ;g

gap.Bf .V/;Bg.W//;

where the infimum is taken over all Banach spaces Z and all linear isometric
embeddings f W V ! Z and g W W ! Z; here Bf .V/ and Bg.W/ are the closed unit
balls of Banach spaces f .V/ and g.W/, respectively.
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The nonlinear analog of the Kadets distance is the following Gromov–
Hausdorff distance between Banach spaces U and W:

inf
Z;f ;g

dHaus. f .BV /; g.BW//;

where the infimum is taken over all metric spaces Z and all isometric embeddings
f W V ! Z and g W W ! Z; here dHaus is the Hausdorff metric.

The Kadets path distance between Banach spaces V and W is defined
(Ostrovskii, 2000) as the infimum of the lengths (with respect to the Kadets
distance) of all curves joining V and W (and is equal to 1 if there is no such
curve).

• Banach–Mazur distance
The Banach–Mazur distance dBM between two Banach spaces V and W is

ln inf
T

jjTjj � jjT�1jj;

where the infimum is taken over all isomorphisms T W V ! W.
It can also be written as ln d.V;W/, where the number d.V;W/ is the smallest

positive d � 1 such that B
n
W 
 T.B

n
V/ 
 d B

n
W for some linear invertible

transformation T W V ! W. Here B
n
V D fx 2 V W jjxjjV � 1g and

B
n
W D fx 2 WI jjxjjW � 1g are the unit balls of the normed spaces .V; jj:jjV/

and .W; jj:jjW/, respectively.
One has dBM.V;W/ D 0 if and only if V and W are isometric, and dBM

becomes a metric on the set Xn of all equivalence classes of n-dimensional
normed spaces, where V � W if they are isometric. The pair .Xn; dBM/ is a
compact metric space which is called the Banach–Mazur compactum.

The modified Banach–Mazur distance (Glushkin, 1963, and Khrabrov,
2001) is

inffjjTjjX!Y W jdetTj D 1g � inffjjTjjY!X W jdetTj D 1g:
The weak Banach–Mazur distance (Tomczak–Jaegermann, 1984) is

maxf�Y.idX/; �X.idY/g;
where id is the identity map and, for an operator U W X ! Y, �Z.U/ denotes
inf
P jjWkjj � jjVkjj. Here the infimum is taken over all representations U DP
WkVk for Wk W X ! Z and Vk W Z ! Y. This distance never exceeds the

corresponding Banach–Mazur distance.
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• Lipschitz distance
Given ˛ � 0 and two metric spaces .X; dX/, .Y; dY/, the ˛-Hölder norm jj:jjHol

on the set of all injective functions f W X ! Y is defined by

jj f jjHol D sup
x;y2X;x¤y

dY. f .x/; f .y//

dX.x; y/˛
:

The Lipschitz norm jj:jjLip is the case ˛ D 1 of jj:jjHol.
The Lipschitz distance between metric spaces .X; dX/ and .Y; dY/ is defined

by

ln inf
f

jj f jjLip � jj f �1jjLip;

where the infimum is taken over all bijective functions f W X ! Y. Equivalently,
it is the infimum of numbers ln a such that there exists a bijective bi-Lipschitz
mapping between .X; dX/ and .Y; dY/ with constants exp.�a/, exp.a/.

It becomes a metric (Lipschitz metric) on the set of all isometry classes of
compact metric spaces. Cf. Hausdorff–Lipschitz distance.

This distance is an analog to the Banach–Mazur distance and, in the case of
finite-dimensional real Banach spaces, coincides with it.

It also coincides with the Hilbert projective metric on nonnegative projective
spaces, obtained by starting with R

n
>0 and identifying any point x with cx, c > 0.

• Lipschitz distance between measures
Given a compact metric space .X; d/, the Lipschitz seminorm jj:jjLip on the set

of all functions f W X ! R is defined by jj f jjLip D supx;y2X;x¤y
j f .x/�f .y/j

d.x;y/ .
The Lipschitz distance between measures � and � on X is defined by

sup
jj f jjLip�1

Z

fd.�� �/:

It is the transportation distance (Chap. 14) if �; � are probability measures.
Let a such measure mx.:/ be attached to any x 2 X; for distinct x; y the coarse
Ricci curvature along .xy/ is defined (Ollivier, 2009) as �.x; y/ D 1 � W1.mx;my/

d.x;y/ .
Ollivier’s curvature generalizes the Ricci curvature in Riemannian space (cf.
Chap. 7).

• Barycentric metric space
Given a metric space .X; d/, let .B.X/; jj���jjTV/ be the metric space, where

B.X/ is the set of all regular Borel probability measures on X with bounded
support, and jj� � �jjTV is the variational distance

R
X jp.�/ � p.�/jd	 (cf.

Chap. 14). Here p.�/ and p.�/ are the density functions of measures � and �,
respectively, with respect to the 
-finite measure �C�

2
.
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A metric space .X; d/ is barycentric if there exists a constant ˇ > 0 and a
surjection f W B.X/ ! X such that for any measures �; � 2 B.X/ it holds the
inequality

d. f .�/; f .�// � ˇdiam.supp.�C �//jj�� �jjTV :

Any Banach space .X; d D jjx � yjj/ is a barycentric metric space with the
smallest ˇ being 1 and the map f .�/ being the usual center of mass

R
X xd�.x/.

Any Hadamard (i.e., a complete CAT(0) space, cf. Chap. 6, is barycentric
with the smallest ˇ being 1 and the map f .�/ being the unique minimizer of the
function g.y/ D R

X d2.x; y/d�.x/ on X.
• Point-set distance

Given a metric space .X; d/, the point-set distance d.x;A/ between a point
x 2 X and a subset A of X is defined as

inf
y2A

d.x; y/:

For any x; y 2 X and for any nonempty subset A of X, we have the following
version of the triangle inequality: d.x;A/ � d.x; y/C d.y;A/ (cf. distance map).

For a given point-measure �.x/ on X and a penalty function p, an optimal
quantizer is a set B 
 X such that

R
p.d.x;B//d�.x/ is as small as possible.

• Set-set distance
Given a metric space .X; d/, the set-set distance between two subsets A and

B of X is defined by

dss.A;B/ D inf
x2A;y2B

d.x; y/:

This distance can be 0 even for disjoint sets, for example, for the intervals
.1; 2/, .2; 3/ on R. The sets A and B are positively separated if dss.A;B/ > 0. A
constructive appartness space is a generalization of this relation on subsets of
X.

The spanning distance between A and B is supx2A;y2B d.x; y/.
In Data Analysis, (cf. Chap. 17) the set-set and spanning distances between

clusters are called the single and complete linkage, respectively.
• Matching distance

Given a metric space .X; d/, the matching distance (or multiset-multiset
distance) between two multisets A and B in X is defined by

inf
�

max
x2A

d.x; �.x//;

where � runs over all bijections between A and B, as multisets.
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The matching distance is not related to the perfect matching distance in
Chap. 15 and to the nonlinear elastic matching distance in Chap. 21. But the
bottleneck distance in Chap. 21 is a special case of it.

• Metrics between multisets
A multiset (or bag) drawn from a set S is a mapping m W S ! Z�0, where

m.x/ represents the “multiplicity” of x 2 S. The dimensionality, cardinality and
height of multiset m is jSj, jmj D P

x2S m.x/ and maxx2S m.x/, respectively.
Multisets are good models for multi-attribute objects such as, say, all symbols

in a string, all words in a document, etc.
A multiset m is finite if S and all m.x/ are finite; the complement of a finite

multiset m is the multiset m W S ! Z�0, where m.x/ D maxy2S m.y/ � m.x/.
Given two multisets m1 and m2, denote by m1[ m2, m1\ m2, m1nm2 and m1
m2

the multisets on S defined , for any x 2 S, by m1 [ m2.x/ D maxfm1.x/;m2.x/g,
m1 \ m2.x/ D minfm1.x/;m2.x/g, m1nm2.x/ D maxf0;m1.x/ � m2.x/g and
m1
m2.x/ D jm1.x/ � m2.x/j, respectively. Also, m1 � m2 denotes that
m1.x/ � m2.x/ for all x 2 S.

The measure �.m/ of a multiset m is a linear combination �.m/ DP
x2S 	.x/m.x/ with 	.x/ � 0. In particular, jmj is the counting measure.
For any measure �.m/ 2 R�0, Miyamoto, 1990, and Petrovsky, 2003,

proposed several semimetrics between multisets m1 and m2 including
d1.m1;m2/ D �.m1
m2/ and d2.m1;m2/ D �.m1
m2/

�.m1[m2/
(with d2.;;;/ D 0

by definition). Cf. symmetric difference metric and Steinhaus distance.
Among examples of other metrics between multisets are matching distance,

metric space of roots in Chap. 12, �-metric in Chap. 15 and, in Chap. 11, bag
distance maxfjm1nm2j; jm2nm1jg and q-gram similarity.

See also Vitanyi multiset metric in Chap. 3.
• Metrics between fuzzy sets

A fuzzy subset of a set S is a mapping � W S ! Œ0; 1�, where �.x/ represents
the “degree of membership” of x 2 S. It is an ordinary (crisp) if all �.x/ are 0
or 1. Fuzzy sets are good models for gray scale images (cf. gray scale images
distances in Chap. 21), random objects and objects with nonsharp boundaries.

Bhutani–Rosenfeld, 2003, introduced the following two metrics between two
fuzzy subsets � and � of a finite set S. The diff-dissimilarity is a metric (a fuzzy
generalization of Hamming metric), defined by

d.�; �/ D
X

x2S

j�.x/� �.x/j:

The perm-dissimilarity is a semimetric defined by

minfd.�; p.�//g;

where the minimum is taken over all permutations p of S.
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The Chaudhuri–Rosenfeld metric (1996) between two fuzzy sets � and �
with crisp points (i.e., the sets fx 2 S W �.x/ D 1g and fx 2 S W �.x/ D 1g are
nonempty) is an extended metric, defined the Hausdorff metric dHaus by

Z 1

0

2tdHaus.fx 2 S W �.x/ � tg; fx 2 S W �.x/ � tg/dt:

A fuzzy number is a fuzzy subset � of the real line R, such that the level set (or
t-cut) A�.t/ D fx 2 R W �.x/ � tg is convex for every t 2 Œ0; 1�. The sendograph
of a fuzzy set � is the set send.�/ D f.x; t/ 2 S � Œ0; 1� W �.x/ > 0; �.x/ � tg.
The sendograph metric (Kloeden, 1980) between two fuzzy numbers �, � with
crisp points and compact sendographs is the Hausdorff metric

maxf sup
aD.x;t/2send.�/

d.a; send.�//; sup
bD.x0;t0/2send.�/

d.b; send.�//g;

where d.a; b/ D d..x; t/; .x0; t0// is a box metric (Chap. 4) maxfjx � x0j; jt � t0jg.
The Klement–Puri–Ralesku metric (1988) between fuzzy numbers �, � is

Z 1

0

dHaus.A�.t/;A�.t//dt;

where dHaus.A�.t/;A�.t// is the Hausdorff metric

maxf sup
x2A�.t/

inf
y2A�.t/

jx � yj; sup
x2A�.t/

inf
x2A�.t/

jx � yjg:

Several other Hausdorff-like metrics on some families of fuzzy sets were
proposed by Boxer in 1997, Fan in 1998 and Brass in 2002; Brass also argued
the nonexistence of a “good” such metric.

If q is a quasi-metric on Œ0; 1� and S is a finite set, then Q.�; �/ D
supx2S q.�.x/; �.x// is a quasi-metric on fuzzy subsets of S.

Cf. fuzzy Hamming distance in Chap. 11 and, in Chap. 23, fuzzy set distance
and fuzzy polynucleotide metric. Cf. fuzzy metric spaces in Chap. 3 for fuzzy-
valued generalizations of metrics and, for example, [Bloc99] for a survey.

• Metrics between intuitionistic fuzzy sets
An intuitionistic fuzzy subset of a set S is (Atanassov, 1999) an ordered pair

of mappings �; � W! Œ0; 1� with 0 � �.x/C �.x/ � 1 for all x 2 S, representing
the “degree of membership” and the “degree of nonmembership” of x 2 S,
respectively. It is an ordinary fuzzy subset if �.x/C �.x/ D 1 for all x 2 S.

Given two intuitionistic fuzzy subsets .�.x/; �.x// and .�0.x/; �0.x// of a finite
set S D fx1; : : : ; xng, their Atanassov distances (1999) are:

1

2

nX

iD1
.j�.xi/� �0.xi/j C j�.xi/ � �0.xi/j/ (Hamming distance)
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and, in general, for any given numbers p � 1 and 0 � q � 1, the distance

.

nX

iD1
.1 � q/.�.xi/ � �0.xi//

p C q.�.xi/� �0.xi/
p/

1
p :

Their Grzegorzewski distances (2004) are:

nX

iD1
maxfj�.xi/� �0.xi/j; j�.xi/� �0.xi/jg (Hamming distance);

v
u
u
t

nX

iD1
maxf.�.xi/� �0.xi//2; .�.xi/ � �0.xi//2g (Euclidean distance):

The normalized versions (dividing the above sums by n) were also proposed.
Szmidt–Kacprzyk, 1997, proposed a modification of the above, adding �.x/�

� 0.x/, where �.x/ is the third mapping 1 � �.x/ � �.x/.
An interval-valued fuzzy subset of a set S is a mapping � W! ŒI�, where ŒI� is

the set of closed intervals Œa�; aC� � Œ0; 1�. Let �.x/ D Œ��.x/; �C.x/�, where
0 � ��.x/ � �C.x/ � 1 and an interval-valued fuzzy subset is an ordered pair
of mappings �� and �C. This notion is close to the above intuitionistic one;
so, above distance can easily be adapted. For example,

Pn
iD1 maxfj��.xi/ �

�0�.xi/j; j�C.xi/ � �0C.xi/jg is a Hamming distance between interval-valued
fuzzy subsets .��; �C/ and .�0�; �0C/.

• Polynomial metric space
Let .X; d/ be a metric space with a finite diameter D and a finite normalized

measure �X . Let the Hilbert space L2.X; d/ of complex-valued functions decom-
pose into a countable (when X is infinite) or a finite (with DC1members when X
is finite) direct sum of mutually orthogonal subspaces L2.X; d/ D V0˚ V1˚ : : : .

Then .X; d/ is a polynomial metric space if there exists an ordering of
the spaces V0;V1; : : : such that, for i D 0; 1; : : : , there exist zonal spherical
functions, i.e., real polynomials Qi.t/ of degree i such that

Qi.t.d.x; y/// D 1

ri

riX

jD1
vij.x/vij.y/

for all x; y 2 X, where ri is the dimension of Vi, fvii.x/ W 1 � j � rig is
an orthonormal basis of Vi, and t.d/ is a continuous decreasing real function
such that t.0/ D 1 and t.D/ D �1. The zonal spherical functions constitute an
orthogonal system of polynomials with respect to some weight w.t/.

The finite polynomial metric spaces are also called (P and Q)-polynomial
association schemes; cf. distance-regular graph in Chap. 15. The infinite
polynomial metric spaces are the compact connected two-point homogeneous
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spaces. Wang, 1952, classified them as the Euclidean unit spheres, the real,
complex, quaternionic projective spaces or the Cayley projective line and plane.

• Universal metric space
A metric space .U; d/ is called universal for a collection M of metric spaces

if any metric space .M; dM/ from M is isometrically embeddable in .U; d/, i.e.,
there exists a mapping f W M ! U which satisfies dM.x; y/ D d. f .x/; f .y// for
any x; y 2 M. Some examples follow.

Every separable metric space .X; d/ isometrically embeds (Fréchet, 1909) in
(a nonseparable) Banach space l11. In fact, d.x; y/ D supi jd.x; ai/ � d.y; ai/j,
where .a1; : : : ; ai; : : : / is a dense countable subset of X.

Every metric space isometrically embeds (Kuratowski, 1935) in the Banach
space L1.X/ of bounded functions f W X ! R with the norm supx2X j f .x/j.

The Urysohn space is a homogeneous complete separable space which is
the universal metric space for all separable metric spaces. The Hilbert cube
(Chap. 4) is the universal space for the class of metric spaces with a countable
base.

The graphic metric space of the random graph (Rado, 1964; the vertex-
set consists of all prime numbers p � 1 . mod 4/ with pq being an edge if p
is a quadratic residue modulo q) is the universal metric space for any finite or
countable metric space with distances 0, 1 and 2 only. It is a discrete analog of
the Urysohn space.

There exists a metric d on R, inducing the usual (interval) topology, such that
.R; d/ is a universal metric space for all finite metric spaces (Holsztynski, 1978).
The Banach space ln1 is a universal metric space for all metric spaces .X; d/ with
jXj � n C 2 (Wolfe, 1967). The Euclidean space E

n is a universal metric space
for all ultrametric spaces .X; d/ with jXj � n C 1; the space of all finite functions
f .t/ W R�0 ! R equipped with the metric d. f ; g/ D supft W f .t/ ¤ g.t/g is a
universal metric space for all ultrametric spaces (Lemin–Lemin, 1996).

The universality can be defined also for mappings, other than isometric
embeddings, of metric spaces, say, a bi-Lipschitz embedding, etc. For example,
any compact metric space is a continuous image of the Cantor set with the
natural metric jx � yj inherited from R, and any complete separable metric space
is a continuous image of the space of irrational numbers.

• Constructive metric space
A constructive metric space is a pair .X; d/, where X is a set of constructive

objects (say, words over an alphabet), and d is an algorithm converting any pair
of elements of X into a constructive real number d.x; y/ such that d is a metric on
X.

• Computable metric space
Let fxngn2N be a sequence of elements from a given Polish (i.e., complete

separable) metric space .X; d/ such that the set fxn W n 2 Ng is dense in .X; d/.
Let N .m; n; k/ be the Cantor tuple function of a triple .n;m; k/ 2 N

3, and let
fqkgk2N be a fixed total standard numbering of the set Q of rational numbers.
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The triple .X; d; fxngn2N/ is called an effective (or semicomputable) metric
space ([Hemm02]) if the set fN .n;m; k/ W d.xm; xn/ < qkg is recursively
enumerable, i.e., there is an algorithm that enumerates the members of this set. If,
moreover, the set fN .n;m; k/ W d.sm; sm/ > qkg is recursively enumerable, then
this triple is called (Lacombe, 1951) computable metric space, (or recursive
metric space). In other words, the map d ı .q � q/ W N2 ! R is a computable
(double) sequence of real numbers, i.e., is recursive over R.



Chapter 2
Topological Spaces

A topological space .X; �/ is a set X with a topology � , i.e., a collection of subsets
of X with the following properties:

1. X 2 � , ; 2 � ;
2. If A;B 2 � , then A \ B 2 � ;
3. For any collection fA˛g˛, if all A˛ 2 � , then [˛A˛ 2 � .

The sets in � are called open sets, and their complements are called closed sets.
A base of the topology � is a collection of open sets such that every open set is a
union of sets in the base. The coarsest topology has two open sets, the empty set
and X, and is called the trivial topology (or indiscrete topology). The finest topology
contains all subsets as open sets, and is called the discrete topology.

In a metric space .X; d/ define the open ball as the set B.x; r/ D fy 2 X W
d.x; y/ < rg, where x 2 X (the center of the ball), and r 2 R; r > 0 (the radius
of the ball). A subset of X which is the union of (finitely or infinitely many) open
balls, is called an open set. Equivalently, a subset U of X is called open if, given any
point x 2 U, there exists a real number � > 0 such that, for any point y 2 X with
d.x; y/ < �, y 2 U.

Any metric space is a topological space, the topology (metric topology, topology
induced by the metric d) being the set of all open sets. The metric topology is always
T4 (see below a list of topological spaces). A topological space which can arise in
this way from a metric space, is called a metrizable space.

A quasi-pseudo-metric topology is a topology on X induced similarly by a quasi-
semimetric d on X, using the set of open d-balls B.x; r/ as the base. In particular,
quasi-metric topology and pseudo-metric topology are the terms used for the case of,
respectively, quasi-metric and semimetric d. In general, those topologies are not T0.

Given a topological space .X; �/, a neighborhood of a point x 2 X is a set
containing an open set which in turn contains x. The closure of a subset of a
topological space is the smallest closed set which contains it. An open cover of
X is a collection L of open sets, the union of which is X; its subcover is a cover K
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such that every member of K is a member of L; its refinement is a cover K, where
every member of K is a subset of some member of L. A collection of subsets of X is
called locally finite if every point of X has a neighborhood which meets only finitely
many of these subsets.

A subset A 
 X is called dense if X D cl.A/, i.e., it consists of A and its limit
points; cf. closed subset of metric space in Chap. 1. The density of a topological
space is the least cardinality of its dense subset. A local base of a point x 2 X is a
collection U of neighborhoods of x such that every neighborhood of x contains some
member of U .

A function from one topological space to another is called continuous if the
preimage of every open set is open. Roughly, given x 2 X, all points close to x
map to points close to f .x/. A function f from one metric space .X; dX/ to another
metric space .Y; dY/ is continuous at the point c 2 X if, for any positive real number
�, there exists a positive real number ı such that all x 2 X satisfying dX.x; c/ < ı

will also satisfy dY. f .x/; f .c// < �; the function is continuous on an interval I if it
is continuous at any point of I.

The following classes of topological spaces (up to T4) include any metric space.

• T0-space
A T0-space (or Kolmogorov space) is a topological space in which every

two distinct points are topologically distinguishable, i.e., have different neigh-
borhoods.

• T1-space
A T1-space (or accessible space) is a topological space in which every two

distinct points are separated, i.e., each does not belong to other’s closure. T1-
spaces are always T0.

• T2-space
A T2-space (or Hausdorff space) is a topological space in which every two

distinct points are separated by neighborhoods, i.e., have disjoint neighborhoods.
T2-spaces are always T1.

A space is T2 if and only if it is both T0 and pre-regular, i.e., any two
topologically distinguishable points are separated by neighborhoods.

• Regular space
A regular space is a topological space in which every neighborhood of a

point contains a closed neighborhood of the same point. A T3-space (or Vietoris
space, regular Hausdorff space) is a topological space which is T1 and regular.

Bing, Nagata, Smirnov showed in 1950–1951 that a topological space is
metrizable if and only if it is regular, T0 and has a countably locally finite base.

A completely regular space (or Tychonoff space) is a Hausdorff space
.X; �/ in which any closed set A and any x 62 A are functionally separated, i.e.,
there is a continuous function f W X ! Œ0; 1� such that f .A/ D 0 and f .B/ D 1.

• Normal space
A normal space is a topological space in which, for any two disjoint closed

sets A and B, there exist two disjoint open sets U and V such that A 
 U, and
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B 
 V . A T4-space (or Tietze space, normal Hausdorff space) is a topological
space which is T1 and normal. Any metric space is a perfectly normal T4-space.

A completely (or hereditarily) normal space is a topological space in
which any two separated (i.e., disjoint from the other’s closure) sets have
disjoint neighborhoods. A T5-space (or completely normal Hausdorff space) is a
topological space which is completely normal and T1. T5-spaces are always T4.

A monotonically normal space is a completely normal space in which any
two separated subsets A and B are strongly separated, i.e., there exist open sets
U and V with A 
 U, B 
 V and Cl.U/ \ Cl.V/ D ;.

A perfectly normal space is a topological space .X; �/ in which any two
disjoint closed subsets of X are functionally separated. A T6-space (or perfectly
normal Hausdorff space) is a topological space which is T1 and perfectly normal.
T6-spaces are always T5.

• Moore space
A Moore space is a regular space with a development.
A development is a sequence fUngn of open covers such that, for every x 2 X

and every open set A containing x, there exists n such that St.x;Un/ D [fU 2
Un W x 2 Ug 
 A, i.e., fSt.x;Un/gn is a neighborhood base at x.

• Polish space
A separable space is a topological space which has a countable dense subset.
A Polish space is a separable space which can be equipped with a complete

metric. A Lusin space is a topological space such that some weaker topology
makes it into a Polish space; every Polish space is Lusin. A Souslin space is a
continuous image of a Polish space; every Lusin space is Suslin.

• Lindelöf space
A Lindelöf space is a topological space in which every open cover has a

countable subcover.
• First-countable space

A topological space is called first-countable if every point has a countable
local base. Every metric space is first-countable.

• Second-countable space
A topological space is called second-countable if its topology has a countable

base. Such space is quasi-metrizable and, if and only if it is a T3-space,
metrizable.

Second-countable spaces are first-countable, separable and Lindelöf. The
properties second-countable, separable and Lindelöf are equivalent for metric
spaces.

The Euclidean space E
n with its usual topology is second-countable.

• Baire space
A Baire space is a topological space in which every intersection of countably

many dense open sets is dense. Every complete metric space is a Baire space.
Every locally compact T2-space (hence, every n-manifold) is a Baire space.

• Alexandrov space
An Alexandrov space is a topological space in which every intersection of

arbitrarily many open sets is open.
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A topological space is called a P-space if every Gı-set (i.e., the intersection
of countably many open sets) is open.

A topological space .X; �/ is called a Q-space if every subset A 
 X is a
Gı-set.

• Connected space
A topological space .X; �/ is called connected if it is not the union of a pair

of disjoint nonempty open sets. In this case the set X is called a connected set.
A connected topological space .X; �/ is called unicoherent if the intersection

A \ B is connected for any closed connected sets A;B with A [ B D X.
A topological space .X; �/ is called locally connected if every point x 2 X

has a local base consisting of connected sets.
A topological space .X; �/ is called path-connected (or 0-connected) if for

every points x; y 2 X there is a path � from x to y, i.e., a continuous function
� W Œ0; 1� ! X with �.x/ D 0; �.y/ D 1.

A topological space .X; �/ is called simply connected (or 1-connected) if
it consists of one piece, and has no circle-shaped “holes” or “handles” or,
equivalently, if every continuous curve of X is contractible, i.e., can be reduced
to one of its points by a continuous deformation.

A topological space .X; �/ is called hyperconnected (or irreducible) if X
cannot be written as the union of two proper closed sets.

• Sober space
A topological space .X; �/ is called sober if every hyperconnected closed

subset of X is the closure of exactly one point of X. Any sober space is a T0-
space.

Any T2-space is a sober T1-space but some sober T1-spaces are not T2.
• Paracompact space

A topological space is called paracompact if every open cover of it has an
open locally finite refinement. Every metrizable space is paracompact.

• Totally bounded space
A topological space .X; �/ is called totally bounded (or pre-compact) if it can

be covered by finitely many subsets of any fixed cardinality.
A metric space .X; d/ is a totally bounded metric space if, for every real

number r > 0, there exist finitely many open balls of radius r, whose union is
equal to X.

• Compact space
A topological space .X; �/ is called compact if every open cover of X has a

finite subcover.
Compact spaces are always Lindelöf, totally bounded, and paracompact. A

metric space is compact if and only if it is complete and totally bounded. A
subset of a Euclidean space En is compact if and only if it is closed and bounded.

There exist a number of topological properties which are equivalent to
compactness in metric spaces, but are nonequivalent in general topological
spaces. Thus, a metric space is compact if and only if it is a sequentially compact
space (every sequence has a convergent subsequence), or a countably compact
space (every countable open cover has a finite subcover), or a pseudo-compact
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space (every real-valued continuous function on the space is bounded), or a
weakly countably compact space (i.e., every infinite subset has an accumulation
point).

Sometimes, a compact connected T2-space is called continuum; cf. contin-
uum in Chap. 1.

• Locally compact space
A topological space is called locally compact if every point has a local base

consisting of compact neighborhoods. The Euclidean spaces E
n and the spaces

Qp of p-adic numbers are locally compact.
A topological space .X; �/ is called a k-space if, for any compact set Y 
 X

and A 
 X, the set A is closed whenever A \ Y is closed. The k-spaces are
precisely quotient images of locally compact spaces.

• Locally convex space
A topological vector space is a real (complex) vector space V which is a T2-

space with continuous vector addition and scalar multiplication. It is a uniform
space (cf. Chap. 3).

A locally convex space is a topological vector space whose topology has a
base, where each member is a convex balanced absorbent set. A subset A of V is
called convex if, for all x; y 2 A and all t 2 Œ0; 1�, the point tx C .1� t/y 2 A, i.e.,
every point on the line segment connecting x and y belongs to A. A subset A is
balanced if it contains the line segment between x and �x for every x 2 A; A is
absorbent if, for every x 2 V , there exist t > 0 such that tx 2 A.

The locally convex spaces are precisely vector spaces with topology induced
by a family fjj:jj˛g of seminorms such that x D 0 if jjxjj˛ D 0 for every ˛.

Any metric space .V; jjx � yjj/ on a real (complex) vector space V with a
norm metric jjx � yjj is a locally convex space; each point of V has a local base
consisting of convex sets. Every Lp with 0 < p < 1 is an example of a vector
space which is not locally convex.

• n-manifold
Broadly, a manifold is a topological space locally homeomorphic to a

topological vector space over the reals.
But usually, a topological manifold is a second-countable T2-space that

is locally homeomorphic to Euclidean space. An n-manifold is a topological
manifold such that every point has a neighborhood homeomorphic to E

n.
• Fréchet space

A Fréchet space is a locally convex space .V; �/ which is complete as a
uniform space and whose topology is defined using a countable set of seminorms
jj:jj1; : : : ; jj:jjn; : : : , i.e., a subset U 
 V is open in .V; �/ if, for every u 2 U,
there exist � > 0 and N � 1 with fv 2 V W jju � vjji < � if i � Ng 
 U.

A Fréchet space is precisely a locally convex F-space (cf. Chap. 5). Its
topology can be induced by a translation invariant metric (Chap. 5) and it is
a complete and metrizable space with respect to this topology. But this topology
may be induced by many such metrics. Every Banach space is a Fréchet space.
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• Countably-normed space
A countably-normed space is a locally convex space .V; �/ whose topology

is defined using a countable set of compatible norms jj:jj1; : : : ; jj:jjn; : : : . It means
that, if a sequence fxngn of elements of V that is fundamental in the norms jj:jji

and jj:jjj converges to zero in one of these norms, then it also converges in the
other. A countably-normed space is a metrizable space, and its metric can be
defined by

1X

nD1

1

2n
� jjx � yjjn

1C jjx � yjjn
:

• Metrizable space
A topological space .T; �/ is called metrizable if it is homeomorphic to a

metric space, i.e., X admits a metric d such that the set of open d-balls fB.x; r/ W
r > 0g forms a neighborhood base at each point x 2 X. If, moreover, .X; d/ is
a complete metric space for one of such metrics d, then .X; d/ is a completely
metrizable (or topologically complete) space.

Metrizable spaces are always paracompact T2-spaces (hence, normal and
completely regular), and first-countable.

A topological space is called locally metrizable if every point in it has a
metrizable neighborhood.

A topological space .X; �/ is called submetrizable if there exists a metrizable
topology � 0 on X which is coarser than � .

A topological space .X; �/ is called proto-metrizable if it is paracompact and
has an orthobase, i.e., a base B such that, for B0 
 B, either \B0 is open, or B0
is a local base at the unique point in \B0. It is not related to the protometric in
Chap. 1.

Some examples of other direct generalizations of metrizable spaces follow.
A sequential space is a quotient image of a metrizable space.
Morita’s M-space is a topological space .X; �/ from which there exists a

continuous map f onto a metrizable topological space .Y; � 0/ such that f is closed
and f �1.y/ is countably compact for each y 2 Y.

Ceder’s M1-space is a topological space .X; �/ having a 
-closure-preserving
base (metrizable spaces have 
-locally finite bases).

Okuyama’s 
-space is a topological space .X; �/ having a 
-locally finite net,
i.e., a collection U of subsets of X such that, given of a point x 2 U with U open,
there exists U0 2 U with x 2 U0 
 U (a base is a net consisting of open sets).
Every compact subset of a 
-space is metrizable.

Michael’s cosmic space is a topological space .X; �/ having a countable net
(equivalently, a Lindelöf 
-space). It is exactly a continuous image of a separable
metric space. A T2-space is called analytic if it is a continuous image of a
complete separable metric space; it is called a Lusin space if, moreover, the
image is one-to-one.
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• Quasi-metrizable space
A topological space .X; �/ is called a quasi-metrizable space if X admits

a quasi-metric d such that the set of open d-balls fB.x; r/ W r > 0g forms a
neighborhood base at each point x 2 X.

A more general � -space is a topological space admitting a � -metric d (i.e.,
a function d W X � X ! R�0 with d.x; zn/ ! 0 whenever d.x; yn/ ! 0 and
d.yn; zn/ ! 0) such that the set of open forward d-balls fB.x; r/ W r > 0g forms a
neighborhood base at each point x 2 X.

The Sorgenfrey line is the topological space .R; �/ defined by the base
fŒa; b/ W a; b 2 R; a < bg. It is not metrizable but it is a first-countable
separable and paracompact T5-space; neither it is second-countable, nor locally
compact or locally connected. However, the Sorgenfrey line is quasi-metrizable
by the Sorgenfrey quasi-metric (cf. Chap. 12) defined as y � x if y � x, and 1,
otherwise.

• Symmetrizable space
A topological space .X; �/ is called symmetrizable (and � is called the

distance topology) if there is a symmetric d on X (i.e., a distance d W X � X !
R�0 with d.x; y/ D 0 implying x D y) such that a subset U 
 X is open if and
only if, for each x 2 U, there exists � > 0 with B.x; �/D fy 2 X W d.x; y/ <
�g 
 U.

In other words, a subset H 
 X is closed if and only if d.x;H/ D infyfd.x; y/ W
y 2 Hg > 0 for each x 2 XnU. A symmetrizable space is metrizable if and only
if it is a Morita’s M-space.

In Topology, the term semimetrizable space refers to a topological space
.X; �/ admitting a symmetric d such that, for each x 2 X, the family fB.x; �/ W
� > 0g of balls forms a (not necessarily open) neighborhood base at x. In other
words, a point x is in the closure of a set H if and only if d.x;H/ D 0.

A topological space is semimetrizable if and only if it is symmetrizable and
first-countable. Also, a symmetrizable space is semimetrizable if and only if it
is a Fréchet–Urysohn space (or E-space), i.e., for any subset A and for any point
x of its closure, there is a sequence in A converging to x.

• Hyperspace
A hyperspace of a topological space .X; �/ is a topological space on the

set CL.X/ of all nonempty closed (or, moreover, compact) subsets of X. The
topology of a hyperspace of X is called a hypertopology. Examples of such a
hit-and-miss topology are the Vietoris topology, and the Fell topology. Examples
of such a weak hyperspace topology are the Hausdorff metric topology, and the
Wijsman topology.

• Discrete topological space
A topological space .X; �/ is discrete if � is the discrete topology (the finest

topology on X), i.e., containing all subsets of X as open sets. Equivalently, it does
not contain any limit point, i.e., it consists only of isolated points.

• Indiscrete topological space
A topological space .X; �/ is indiscrete if � is the indiscrete topology (the

coarsest topology on X), i.e., having only two open sets, ; and X.
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It can be considered as the semimetric space .X; d/ with the indiscrete
semimetric: d.x; y/ D 0 for any x; y 2 X.

• Extended topology
Consider a set X and a map cl W P.X/ ! P.X/, where P.X/ is the set of all

subsets of X. The set cl.A/ (for A 
 X), its dual set int.A/ D Xncl.XnA/ and the
map N W X ! P.X/ with N.x/ D fA 
 X W x 2 int.A/g are called the closure,
interior and neighborhood map, respectively.

So, x 2 cl.A/ is equivalent to XnA 2 P.X/nN.x/. A subset A 
 X is closed if
A D cl.A/ and open if A D int.A/. Consider the following possible properties of
cl; they are meant to hold for all A;B 2 P.X/.

1. cl.;/ D ;;
2. A � B implies cl.A/ � cl.B/ (isotony);
3. A � cl.A/(enlarging);
4. cl.A [ B/ D cl.A/[ cl.B/ (linearity, and, in fact, 4 implies 2);
5. cl.cl.A// D cl.A/ (idempotency).

The pair .X; cl/ satisfying 1 is called an extended topology if 2 holds, a Brissaud
space (Brissaud, 1974) if 3 holds, a neighborhood space (Hammer, 1964) if 2
and 3 hold, a Smyth space (Smyth, 1995) if 4 holds, a pre-topology (Čech,
1966) if 3 and 4 hold, and a closure space (Soltan, 1984) if 2, 3 and 5 hold.
.X; cl/ is the usual topology, in closure terms, if 1, 3, 4 and 5 hold.



Chapter 3
Generalizations of Metric Spaces

Some immediate generalizations of the notion of metric, for example, quasi-
metric, near-metric, extended metric, were defined in Chap. 1. Here we give some
generalizations in the direction of Topology, Probability, Algebra, etc.

3.1 m-Tuple Generalizations of Metrics

In the definition of a metric, for every two points there is a unique associated
number. Here we group some generalizations of metrics in which several points
or several numbers are considered instead.

• m-hemimetric
Let X be a nonempty set. A function d W XmC1 ! R�0 is called a

m-hemimetric (Deza–Rosenberg, 2000) if it have the following properties:

1. d is totally symmetric, i.e., satisfies d.x1; : : : ; xmC1/ D d.x�.1/; : : : ; x�.mC1//
for all x1; : : : ; xmC1 2 X and for any permutation � of f1; : : : ;m C 1g;

2. d.x1; : : : ; xmC1/ D 0 if x1; : : : ; xmC1 are not pairwise distinct;
3. for all x1; : : : ; xmC2 2 X, d satisfies the m-simplex inequality

d.x1; : : : ; xmC1/ �
mC1X

iD1
d.x1; : : : ; xi�1; xiC1; : : : ; xmC2/:

Cf. unrelated hemimetric (i.e., a quasi-semimetric) in Chap. 1.
If in above 3. d.x1; : : : ; xmC1/ is replaced by sd.x1; : : : ; xmC1/ for some

s; 0 < s � 1, then d is called .m; s/-super-metric ([DeDu03]). .m; 1/- and .1; s/-
super-metrics are exactly m-hemimetric and 1

s -near-semimetric; cf. near-metric
in Chap. 1.
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If above 3. is dropped, d is called m-dissimilarity. 1-dissimilarity and 1-
hemimetric are exactly a distance and a semimetric.

• 2-metric
An m-hemimetric with m D 2 satisfies 2-simplex (or tetrahedron) inequality

d.x1; x2; x3/ � d.x4; x2; x3/C d.x1; x4; x3/C d.x1; x2; x4/:

A 2-metric (Gähler, 1963 and 1966) is a 2-hemimetric d in which, for any
distinct points x1; x2, there is a point x3 with d.x1; x2; x3/ > 0. The area of the
triangle spanned by x1; x2; x3 on R

2 or S2 is a 2-metric.
A D-space (Dhage, 1992) is an 2-hemimetric space .X; d/ in which the

condition “d.x1; x2; x3/ D 0 if two of x1; x2; x3 are equal” is replaced by
“d.x1; x2; x3/ D 0 if and only if x1 D x2 D x3.” Mustafa and Sims, 2003, showed
that D-spaces are not suitable for topological constructions. In 2006, they defined
instead a function, let us call it MS � 2-metric, D W X3 ! R�0 which satisfies

1. D.x1; x2; x3/ D 0 if x1 D x2 D x3;
2. D.x1; x1; x2/ > 0 whenever x1 ¤ x2;
3. D.x1; x2; x3/ � D.x1; x1; x2/ whenever x3 ¤ x2;
4. D is a totally symmetric function of its three variables, and
5. D.x1; x2; x3/ � D.x1; x4; x4/C D.x4; x2; x3/ for all x1; x2; x3; x4 2 X.

The perimeter of the triangle spanned by x1; x2; x3 on R
2 is a MS � 2-

metric. If d is a metric, then 1
2
.d.x1; x2/ C d.x2; x3/ C d.x1; x3// and

max.d.x1; x2/; d.x2; x3/; d.x1; x3// are MS � 2-metrics. If D is a MS � 2-metric,
then D.x1; x2; x2/ C D.x1; x1; x2/ is a metric. If .X;D/ is a MS � 2-metric
space, the open D-ball with center x0 and radius r is BD.x0; r/ D fx1 2 X W
D.x0; x1; x1/ < rg.

• Multidistance
Given a set X, a function D W [m>1Xm ! R�0 is called a multidistance

(Martin–Major, 2009) if, for all m and all x1; : : : ; xm; y 2 X, it satisfies:

1. D.x1; : : : ; xm/ D 0 if x1 D � � � D xm;
2. D.x1; : : : ; xm/ D D.x�.1/; : : : ; x�.m// for any permutation � of f1; : : : ;mg;
3. D.x1; : : : ; xm/ � Pm

iD1 D.xi; y/.

Clearly, the restriction of a multidistance on X2 is a semimetric.
A multidistance D is called regular, if all D.x1; : : : ; xm/ � D.x1; : : : ; xm; y/

hold, and stable, if all D.x1; : : : ; xm/ D D.x1; : : : ; xm; xi/ hold. Given a metric
space .X; d/, the Fermat multidistance is minx2X

Pm
iD1 d.xi; x/; it is regular, but

not stable.
The regular multidistances on X form a convex cone.

• Multimetric
In Mao, 2006, a multimetric space is the union of some metric spaces

.Xi; di/; i 2 J. In the case Xi D X; i 2 J, the multimetric is defined as the
sequence-valued map d.x; y/ D .di/; i 2 J, from X � X to RjJj

�0.
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Cf. bimetric theory of gravity in Chap. 24 and (in the item meter-related
terms) multimetric crystallography in Chap. 27.

Also, Jörnsten, 2007, consider clustering (Chap. 17) under several distance
metrics simultaneously. In Rintanen, 2004, a linear multimetric is defined as d D
w1d1 C � � � C wmdm, where di are metrics and wi 2 Œ0; 1� are weights.

• Diversity
Given a set X, a function f from its finite subsets to R�0 is called (Bryant–

Tupper, 2012) diversity on X if f .A/ D 0 for all A 
 X with jAj � 1 and

f .A [ B/C f .B [ C/ � f .A [ C/ for all A;B;C 
 X with B ¤ ;:

The induced diversity metric d.x; y/ is f .fx; yg/.
For any diversity f .A/ with induced metric space .X; d/, it holds fdiam.A/ �

f .A/ � fS.A/ � .jAj � 1/fdiam.A/, where the diameter diversity fdiam.A/ is
maxx;y2A d.x; y/ D diam.A/ and the Steiner diversity fS.A/ is the minimum
weight of a Steiner tree connecting elements of A.

l1-diversity is defined by fm1.A/D max jai � bij W a; b 2 A for all finite
A 
R

m.
Any diversity is a Vitanyi multiset metric, restricted to subsets. But much of

Bryant–Tupper’s theory of diversities does not extend on multisets.
• Vitanyi multiset metric

Given two multisets m and m0, define n D mm0 if n is the multiset consisting of
the elements of the multisets m and m0, that is, if x occurs once in m and once in
m0, then it occurs twice in n. A function d on the set of nonempty finite multisets
is (Vitanyi, 2011) a multiset metric if

1. d.m/ D 0 if all elements of m are equal and d.m/ > 0 otherwise.
2. d.X/ is invariant under all permutations of m.
3. d.mm0/ � d.mm00/C d.m00m0/ (multiset triangle inequality).

The usual metric between two elements results if the multiset m has two elements
in 1. and 2. and the multisets m;m0;m00 have one element each in 3.

An example is the set of all nonempty finite multisets m of integers with
d.m/ D maxfx W x 2 mg � minfx W x 2 mg. Cohen–Vitanyi, 2012, defined
another multiset metric, generalising normalised web distance (Chap. 22).

3.2 Indefinite Metrics

• Indefinite metric
An indefinite metric (or G-metric) on a real (complex) vector space V is

a bilinear (in the complex case, sesquilinear) form G on V , i.e., a function G W
V�V ! R (C), such that, for any x; y; z 2 V and for any scalars ˛; ˇ, we have the
following properties: G.˛xCˇy; z/ D ˛G.x; z/CˇG.y; z/, and G.x; ˛yCˇz/ D
˛G.x; y/CˇG.x; z/, where ˛ D a C bi D a�bi denotes the complex conjugation.
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If a positive-definite form G is symmetric, then it is an inner product on V ,
and one can use it to canonically introduce a norm and the corresponding norm
metric on V . In the case of a general form G, there is neither a norm, nor a
metric canonically related to G, and the term indefinite metric only recalls the
close relation of such forms with certain metrics in vector spaces (cf. Chaps. 7
and 26).

The pair .V;G/ is called a space with an indefinite metric. A finite-
dimensional space with an indefinite metric is called a bilinear metric space.
A Hilbert space H, endowed with a continuous G-metric, is called a Hilbert
space with an indefinite metric. The most important example of such space is a
J-space; cf. J-metric.

A subspace L in a space .V;G/ with an indefinite metric is called a
positive subspace, negative subspace, or neutral subspace, depending on whether
G.x; x/ > 0, G.x; x/ < 0, or G.x; x/ D 0 for all x 2 L.

• Hermitian G-metric
A Hermitian G-metric is an indefinite metric GH on a complex vector space

V such that, for all x; y 2 V , we have the equality

GH.x; y/ D GH.y; x/;

where ˛ D a C bi D a � bi denotes the complex conjugation.
• Regular G-metric

A regular G-metric is a continuous indefinite metric G on a Hilbert space
H over C, generated by an invertible Hermitian operator T by the formula

G.x; y/ D hT.x/; yi;

where h; i is the inner product on H.
A Hermitian operator on a Hilbert space H is a linear operator T on H defined

on a domain D.T/ of H such that hT.x/; yi D hx;T.y/i for any x; y 2 D.T/.
A bounded Hermitian operator is either defined on the whole of H, or can be
so extended by continuity, and then T D T�. On a finite-dimensional space a
Hermitian operator can be described by a Hermitian matrix ..aij// D ..aji//.

• J-metric
A J-metric is a continuous indefinite metric G on a Hilbert space H over C

defined by a certain Hermitian involution J on H by the formula

G.x; y/ D hJ.x/; yi;

where h�; �i is the inner product on H.
An involution is a mapping H onto H whose square is the identity mapping.

The involution J may be represented as J D PC � P�, where PC and P� are
orthogonal projections in H, and PC CP� D H. The rank of indefiniteness of the
J-metric is defined as minfdim PC; dim P�g.
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The space .H;G/ is called a J-space. A J-space with finite rank of indefinite-
ness is called a Pontryagin space.

3.3 Topological Generalizations

• Metametric space
A metametric space (Väisälä, 2003) is a pair .X; d/, where X is a set, and d is

a nonnegative symmetric function d W X � X ! R such that d.x; y/ D 0 implies
x D y and triangle inequality d.x; y/ � d.x; z/C d.z; y/ holds for all x; y; z 2 X.

A metametric space is metrizable: the metametric d defines the same topology
as the metric d0 defined by d0.x; x/ D 0 and d0.x; y/ D d.x; y/ if x ¤ y. A
metametric d induces a Hausdorff topology with the usual definition of a ball
B.x0; r/ D fx 2 X W d.x0; x/ < rg. Any partial metric (Chap. 1) is a metametric.

• Resemblance
Let X be a set. A function d W X � X ! R is called (Batagelj-Bren, 1993) a

resemblance on X if d is symmetric and if, for all x; y 2 X, either d.x; x/ � d.x; y/
(in which case d is called a forward resemblance), or d.x; x/ � d.x; y/ (in which
case d is called a backward resemblance).

Every resemblance d induces a strict partial order 	 on the set of all
unordered pairs of elements of X by defining fx; yg 	 fu; vg if and only if
d.x; y/ < d.u; v/.

• w-distance
Given a metric space .X; d/, a w-distance on X (Kada–Suzuki–Takahashi,

1996) is a nonnegative function p W X � X ! R which satisfies the following
conditions:

1. p.x; z/ � p.x; y/C p.y; z/ for all x; y; z 2 X;
2. for any x 2 X, the function p.x; :/ W X ! R is lower semicontinuous, i.e., if a

sequence fyngn in X converges to y 2 X, then p.x; y/ � limn!1p.x; yn/;
3. for any � > 0, there exists ı > 0 such that p.z; x/ � ı and p.z; y/ � ı imply

d.x; y/ � �, for each x; y; z 2 X.

• �-distance space
A �-distance space is a pair .X; f /, where X is a topological space and f is an

Aamri-Moutawakil’s �-distance on X, i.e., a nonnegative function f W X �X ! R

such that, for any x 2 X and any neighborhood U of x, there exists � > 0 with
fy 2 X W f .x; y/ < �g 
 U.

Any distance space .X; d/ is a �-distance space for the topology �f defined as
follows: A 2 �f if, for any x 2 X, there exists � > 0 with fy 2 X W f .x; y/ < �g 

A. However, there exist nonmetrizable �-distance spaces. A �-distance f .x; y/
need be neither symmetric, nor vanishing for x D y; for example, ejx�yj is a
�-distance on X D R with usual topology.



76 3 Generalizations of Metric Spaces

• Proximity space
A proximity space (Efremovich, 1936) is a set X with a binary relation ı on

the power set P.X/ of all of its subsets which satisfies the following conditions:

1. AıB if and only if BıA (symmetry);
2. Aı.B [ C/ if and only if AıB or AıC (additivity);
3. AıA if and only if A ¤ ; (reflexivity).

The relation ı defines a proximity (or proximity structure) on X. If AıB fails, the
sets A and B are called remote sets.

Every metric space .X; d/ is a proximity space: define AıB if and only if
d.A;B/ D infx2A;y2B d.x; y/ D 0.

Every proximity on X induces a (completely regular) topology on X by
defining the closure operator cl W P.X/ ! P.X/ on the set of all subsets of X
as cl.A/ D fx 2 X W fxgıAg.

• Uniform space
A uniform space is a topological space (with additional structure) providing

a generalization of metric space, based on set-set distance.
A uniform space (Weil, 1937) is a set X with an uniformity (or uniform

structure) U , i.e., a nonempty collection of subsets of X � X, called entourages,
with the following properties:

1. Every subset of X � X which contains a set of U belongs to U ;
2. Every finite intersection of sets of U belongs to U ;
3. Every set V 2 U contains the diagonal, i.e., the set f.x; x/ W x 2 Xg 
 X � X;
4. If V belongs to U , then the set f.y; x/ W .x; y/ 2 Vg belongs to U ;
5. If V belongs to U , then there exists V 0 2 U such that .x; z/ 2 V whenever
.x; y/; .y; z/ 2 V 0.

Every metric space .X; d/ is a uniform space. An entourage in .X; d/ is a
subset of X � X which contains the set V� D f.x; y/ 2 X � X W d.x; y/ < �g
for some positive real number �. Other basic example of uniform space are
topological groups.

Every uniform space .X;U/ generates a topology consisting of all sets A 
 X
such that, for any x 2 A, there is a set V 2 U with fy W .x; y/ 2 Vg 
 A.

Every uniformity induces a proximity 
 where A
B if and only if A � B has
nonempty intersection with any entourage.

A topological space admits a uniform structure inducing its topology if only
if the topology is completely regular (Chap. 2) and, also, if only if it is a gauge
space, i.e., the topology is defined by a �-filter of semimetrics.

• Nearness space
A nearness space (Herrich, 1974) is a set X with a nearness structure, i.e., a

nonempty collection U of families of subsets of X, called near families, with the
following properties:

1. Each family refining a near family is near;
2. Every family with nonempty intersection is near;



3.3 Topological Generalizations 77

3. V is near if fcl.A/ W A 2 Vg is near, where cl.A/ is fx 2 X W ffxg;Ag 2 Ug;
4. ; is near, while the set of all subsets of X is not;
5. If fA [ B W A 2 F1;B 2 F2g is near family, then so is F1 or F2.

The uniform spaces are precisely paracompact nearness spaces.
• Approach space

An approach space is a topological space providing a generalization of metric
space, based on point-set distance.

An approach space (Lowen, 1989) is a pair .X;D/, where X is a set and D is
a point-set distance, i.e., a function X � P.X/ ! Œ0;1� (where P.X/ is the set
of all subsets of X) satisfying, for all x 2 X and all A;B 2 P.X/, the following
conditions:

1. D.x; fxg/ D 0;
2. D.x; f;g/ D 1;
3. D.x;A [ B/ D minfD.x;A/;D.x;B/g;
4. D.x;A/ � D.x;A�/C � for any � 2 Œ0;1�, where A� D fx W D.x;A/ � �g is

the “�-ball” with center x.

Every metric space .X; d/ (moreover, any extended quasi-semimetric space) is an
approach space with D.x;A/ being the usual point-set distance miny2A d.x; y/.

Given a locally compact separable metric space .X; d/ and the family F of
its nonempty closed subsets, the Baddeley–Molchanov distance function gives
a tool for another generalization. It is a function D W X � F ! R which is lower
semicontinuous with respect to its first argument, measurable with respect to the
second, and satisfies the following two conditions: F D fx 2 X W D.x;F/ � 0g
for F 2 F , and D.x;F1/ � D.x;F2/ for x 2 X, whenever F1;F2 2 F and
F1 
 F2.

The additional conditions D.x; fyg/ D D.y; fxg/, and D.x;F/ � D.x; fyg/C
D.y;F/ for all x; y 2 X and every F 2 F , provide analogs of symmetry and the
triangle inequality. The case D.x;F/ D d.x;F/ corresponds to the usual point-set
distance for the metric space .X; d/; the case D.x;F/ D d.x;F/ for x 2 XnF and
D.x;F/ D �d.x;XnF/ for x 2 X corresponds to the signed distance function in
Chap. 1.

• Metric bornology
Given a topological space X, a bornology of X is any family A of proper

subsets A of X such that the following conditions hold:

1. [A2AA D X;
2. A is an ideal, i.e., contains all subsets and finite unions of its members.

The family A is a metric bornology ([Beer99]) if, moreover
3. A contains a countable base;
4. For any A 2 A there exists A0 2 A such that the closure of A coincides with

the interior of A0.

The metric bornology is called trivial if A is the set P.X/ of all subsets of X; such
a metric bornology corresponds to the family of bounded sets of some bounded
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metric. For any noncompact metrizable topological space X, there exists an
unbounded metric compatible with this topology. A nontrivial metric bornology
on such a space X corresponds to the family of bounded subsets with respect
to some such unbounded metric. A noncompact metrizable topological space X
admits uncountably many nontrivial metric bornologies.

3.4 Beyond Numbers

• Metric 1-space
A category ‰ consists (Eilenberg and MacLane, 1945) of a set Ob.‰/

of objects, a set Mor.‰/ of morphisms (or arrows)) and a set-valued map
associating a set ‰.x; y/ of arrows to each ordered pair of objects x, y, so that
each arrow belongs to only one set‰.x; y/. An element of‰.x; y/ is also denoted
by f W x ! y.

Moreover, the composition f �g 2 ‰.x; z/ of two arrows f W x ! y, g W y ! z is
defined, and it is associative. Finally, each set ‰.x; x/ contains an identity arrow
idx such that f � idx D f and idx � g D g for any arrows f W y ! x and g W x ! z.
Cf. category of metric spaces in Chap. 1.

Weiss defined in [Weis12] a metric 1-space as a category ‰ together with a
weight-function w W ‰.x; y/ ! R�0 [ f1g on arrows, which satisfies

1. w.idx/ D 0 holds for each object x 2 Ob.‰/ (reflexivity).
2. jw.g/ � w. f /j � w.g � f / � w.g/ C w. f / holds for any objects x; y; z and

arrows f W x ! y; g W y ! z (full triangle inequality).

Any set X produces an indiscrete category IX, in which Ob.IX/ D X and
jIX.x; y/j D 1 for all x; y 2 X. Any metric space .X; d/ produces a metric 1-space
on IX by defining w. f / D d.x; y/, and it is unique metric 1-space on IX . But,
in general, the function w on arrows can be seen as a multivalued function on
Ob � Ob.

[Weis12] also outlined a metric m-space as a kind of an m-hemimetric on an
m-category consisting of i-dimensional cells, 0 � i � m (objects, arrows, . . . )
and a associative-like composition rule for the cells with matching boundaries.

• V-continuity space
Let .V;^;_/ be a complete (having ^S WD ^x2Sx and _S WD _x2S for all

S � V) lattice with bottom element 0. For a; b 2 V , a is said to be well above b,
denoted by b 	 a, if given any S � V such that ^S 	 b, there exists s 2 S with
s 	 a.

A value quantale is a pair .V;C/, where V is a complete lattice and C is an
associative and commutative operation o such that for all a; b 2 V and S � V ,

1. a C ^S D ^.a C S/,
2. a C 0 D a,
3. a D ^fb 2 Va 	 bg,
4. 0 	 a ^ b if 0 	 a; b.
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A V-continuity space is (Flagg–Koperman, 1997) a triple .X; d;V/, where V
is a value quantale, X is a set, and d W X � X ! V is a function satisfying

d.x; x/ D 0 and d.x; z/ � d.x; y/C d.y; z/:

Any extended quasi-semimetric space is a V-continuity space, where V is the
value quantale Œ0;1�, seen as a complete lattice, with ordinary addition.

Weiss, 2013, showed that taken with continuous functions, the categories of
all V-continuity spaces and of all topological spaces are equivalent. In particular,
every topological space .X; �/ is “metrizable” in the sense that there exists a V-
continuity space .X; d;V/ such that � is the topology generated by open balls
fy 2 X W	 �g.

• Probabilistic metric space
A notion of probabilistic metric space is a generalization of the notion

of metric space (see, for example, [ScSk83]) in two ways: distances become
probability distributions, and the sum in the triangle inequality becomes a
triangle operation.

Formally, let A be the set of all probability distribution functions, whose
support lies in Œ0;1�. For any a 2 Œ0;1� define step functions �a 2 A by
�a.x/ D 1 if x > a or x D 1, and �a.x/ D 0, otherwise. The functions in A
are ordered by defining F � G to mean F.x/ � G.x/ for all x � 0; the minimal
element is �0.

A commutative and associative operation � on A is called a triangle function
if �.F; �0/ D F for any F 2 A and �.E;F/ � �.G;H/ whenever E � G, F � H.
The semigroup .A; �/ generalizes the group .R;C/.

A probabilistic metric space is a triple .X;D; �/, where X is a set, D is a
function X � X ! A, and � is a triangle function, such that for any p; q; r 2 X

1. D.p; q/ D �0 if and only if p D q;
2. D.p; q/ D D.q; p/;
3. D.p; r/ � �.D.p; q/;D.q; r//.

For any metric space .X; d/ and any triangle function � , such that �.�a; �b/ �
�aCb for all a; b � 0, the triple .X;D D �d.x;y/; �/ is a probabilistic metric space.

For any x � 0, the value D.p; q/ at x can be interpreted as “the probability that
the distance between p and q is less than x”; this was approach of Menger, who
proposed in 1942 the original version, statistical metric space, of this notion.

A probabilistic metric space is called a Wald space if the triangle function is
a convolution, i.e., of the form �x.E;F/ D R

R
E.x � t/dF.t/.

A probabilistic metric space is called a generalized Menger space if the
triangle function has form �x.E;F/ D supuCvDx T.E.u/;F.v// for a t-norm T,
i.e., such a commutative and associative operation on Œ0; 1� that T.a; 1/ D a,
T.0; 0/ D 0 and T.c; d/ � T.a; b/ whenever c � a; d � b.

• Fuzzy metric spaces
A fuzzy subset of a set S is a mapping � W S ! Œ0; 1�, where �.x/ represents

the “degree of membership” of x 2 S.
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A continuous t-norm is a binary commutative and associative continuous
operation T on Œ0; 1�, such that T.a; 1/ D a and T.c; d/ � T.a; b/ whenever
c � a; d � b.

A KM fuzzy metric space (Kramosil–Michalek, 1975) is a pair .X; .�;T//,
where X is a nonempty set and a fuzzy metric .�;T/ is a pair comprising a
continuous t-norm T and a fuzzy set � W X2 � R�0 ! Œ0; 1�, such that, for
x; y; z 2 X and s; t � 0, the following conditions hold:

1. �.x; y; 0/ D 0;
2. �.x; y; t/ D 1 if and only if x D y; t > 0;
3. �.x; y; t/ D �.y; x; t/;
4. T.�.x; y; t/; �.y; z; s// � �.x; z; t C s/;
5. the function �.x; y; �/ W R�0 ! Œ0; 1� is left continuous.

A KM fuzzy metric space is called also a fuzzy Menger space since by defining
Dt.p; q/ D �.p; q; t/ one gets a generalized Menger space. The following
modification of the above notion, using a stronger form of metric fuzziness, it
a generalized Menger space with Dt.p; q/ positive and continuous on R>0 for all
p; q.

A GV fuzzy metric space (George–Veeramani, 1994) is a pair .X; .�;T//,
where X is a nonempty set, and a fuzzy metric .�;T/ is a pair comprising a
continuous t-norm T and a fuzzy set � W X2�R>0 ! Œ0; 1�, such that for x; y; z 2
X and s; t > 0

1. �.x; y; t/ > 0;
2. �.x; y; t/ D 1 if and only if x D y;
3. �.x; y; t/ D �.y; x; t/;
4. T.�.x; y; t/; �.y; z; s// � �.x; z; t C s/;
5. the function �.x; y; �/ W R>0 ! Œ0; 1� is continuous.

An example of a GV fuzzy metric space comes from any metric space .X; d/
by defining T.a; b/ D b � ab and �.x; y; t/ D t

tCd.x;y/ . Conversely, any GV
fuzzy metric space (and also any KM fuzzy metric space) generates a metrizable
topology. Most GV fuzzy metrics are strong, i.e., T.�.x; y; t/; �.y; z; t// �
�.x; z; t/ holds.

A fuzzy number is a fuzzy set � W R ! Œ0; 1� which is normal (fx 2 R W
�.x/ D 1g ¤ ;), convex (�.tx C .1 � t/y/ � minf�.x/; �.y/g for every x; y 2
R and t 2 Œ0; 1�) and upper semicontinuous (at each point x0, the values �.x/
for x near x0 are either close to �.x0/ or less than �.x0/). Denote the set of all
fuzzy numbers which are nonnegative, i.e., �.x/ D 0 for all x < 0, by G. The
additive and multiplicative identities of fuzzy numbers are denoted by Q0 and Q1,
respectively. The level set Œ��t D fx W �.x/ � tg of a fuzzy number � is a closed
interval.

Given a nonempty set X and a mapping d W X2 ! G, let the mappings
L;R W Œ0; 1�2 ! Œ0; 1� be symmetric and nondecreasing in both arguments
and satisfy L.0; 0/ D 0, R.1; 1/ D 1. For all x; y 2 X and t 2 .0; 1�, let
Œd.x; y/�t D Œ	t.x; y/; �t.x; y/�.
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A KS fuzzy metric space (Kaleva–Seikkala, 1984) is a quadruple .X; d;L;R/
with fuzzy metric d, if for all x; y; z 2 X

1. d.x; y/ D Q0 if and only if x D y;
2. d.x; y/ D d.y; x/;
3. d.x; y/.s C t/ � L.d.x; z/.s/; d.z; y/.t// whenever s � 	1.x; z/, t � 	1.z; y/,

and s C t � 	1.x; y/;
4. d.x; y/.s C t/ � R.d.x; z/.s/; d.z; y/.t// whenever s � 	1.x; z/, t � 	1.z; y/,

and s C t � 	1.x; y/.

The following functions are some frequently used choices for L and R:

maxfa C b � 1; 0g; ab;minfa; bg;maxfa; bg; a C b � ab;minfa C b; 1g:

Several other notions of fuzzy metric space were proposed, including
those by Erceg, 1979, Deng, 1982, and Voxman, 1998, Xu–Li, 2001, Tran–
Duckstein, 2002, Chakraborty–Chakraborty, 2006. Cf. also metrics between
fuzzy sets, fuzzy Hamming distance, gray-scale image distances and fuzzy
polynucleotide metric in Chaps. 1, 11, 21 and 23, respectively.

• Interval-valued metric space
Let I.R�0/ denote the set of closed intervals of R�0.
An interval-valued metric space (Coppola–Pacelli, 2006) is a pair

..X;�/;
/, where .X;�/ is a partially ordered set and 
 is an interval-valued
mapping
 W X � X ! I.R�0/, such that for every x; y; z 2 X

1. 
.x; x/ ? Œ0; 1� D 
.x; x/;
2. 
.x; y/ D 
.y; x/;
3. 
.x; y/ �
.z; z/ � 
.x; z/C
.z; y/;
4. 
.x; y/ �
.x; y/ � 
.x; x/C
.y; y/;
5. x � x0 and y � y0 imply 
.x; y/ � 
.x0; y0/;
6. 
.x; y/ D 0 if and only if x D y and x; y are atoms (minimal elements of
.X;�/).

Here the following interval arithmetic rules hold: Œu; v� � Œu0; v0� if and only if
u � u0,
Œu; v�C Œu0; v0� D Œu C u0; v C v0�, Œu; v� � Œu0; v0� D Œu � u0; v � v0�,
Œu; v� ? Œu0; v0� D Œminfuu0; uv0; vu0; vv0g;maxfuu0; uv0; vu0; vv0g� and
Œu;v�
Œu0 ;v0 �

D Œminf u
u0
; u
v0
; vu0
; v
v0

g;maxf u
u0
; u
v0
; vu0
; v
v0

g� when 0 … Œu0; v0�.
The addition and multiplication operations are commutative, associative and

subdistributive: it holds X ? .Y C Z/ 
 .X ? Y C X ? Z/.
Cf. metric between intervals in Chap. 10.
The usual metric spaces coincide with above spaces in which all x 2 X are

atoms.
• Direction distance

Given a normed real vector space .V; jj:jj/, for any x 2 V n f0g, denote by Œx�
the direction (ray) f	x W 	 > 0g and by x0 the point x

jjxjj . An oriented angle is an
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ordered pair .Œx�; Œy�/ of directions. The direction distance from x to y is defined
(Busch–Ruch, 1992) as the family of distances jj˛x0 � ˇy0jj with ˛; ˇ 2 R>0.

The mixing distance is defined as the restriction of the direction distance to
pairs of directions in the cone f	v W v 2 V; 	 > 0g. In fact, authors introduced
these distances on some special normed spaces used in Quantum Mechanics.

• Generalized metric
Let X be a set. Let .V;C;�/ be an ordered semigroup (not necessarily

commutative) with a least element � and with x � y; x1 � y1 implying
x C x1 � y C y1. Let .V;C/ be also endowed with an order-preserving involution
x� (i.e., .x�/� D x), which is operation-reversing, i.e., .x C y/� D y� C x�.

A function d W X � X ! G is called (Li–Wang–Pouzet, 1987) a generalized
metric over .V;C;�/ if the following conditions hold:

1. d.x; y/ D � if and only if x D y;
2. d.x; y/ � d.x; z/C d.z; y/ for all x; y 2 X;
3. d�.x; y/ D d.y; x/.

• Cone metric
Let C be a proper cone in a real Banach space W, i.e., C is closed, C ¤ ;, the

interior of C is not equal to f�g (where � is the zero vector in W) and

1. if x; y 2 C and a; b 2 R�0, then ax C by 2 C;
2. if x 2 C and �x 2 C, then x D 0.

Define a partial ordering .W;�/ on W by letting x � y if y � x 2 C. The
following variation of generalized metric and partially ordered distance was
defined in Huang–Zhang, 2007, and, partially, in Rzepecki, 1980. Given a set X,
a cone metric is a mapping d W X � X ! .W;�/ such that

1. � � d.x; y/ with equality if and only if x D y;
2. d.x; y/ D d.y; x/ for all x; y 2 X;
3. d.x; y/ � d.x; z/C d.z; y/ for all x; y 2 X;

The pair .X; d/ is called a cone metric space.
• W-distance on building

Let X be a set, and let .W; �; 1/ be a group. A W-distance on X is a W-valued
map 
 W X � X ! W having the following properties:

1. 
.x; y/ D 1 if and only if x D y;
2. 
.y; x/ D .
.x; y//�1.

A natural W-distance on W is 
.x; y/ D x�1y.
A Coxeter group is a group .W; �; 1/ generated by the elements

fw1; : : : ;wn W .wiwj/
mij D 1; 1 � i; j � ng:

Here M D ..mij// is a Coxeter matrix, i.e., an arbitrary symmetric n � n matrix
with mii D 1, and the other values are positive integers or 1. The length l.x/ of
x 2 W is the smallest number of generators w1; : : : ;wn needed to represent x.
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Let X be a set, let .W; �; 1/ be a Coxeter group and let 
.x; y/ be a W-distance
on X. The pair .X; 
/ is called (Tits, 1981) a building over .W; �; 1/ if it holds

1. the relation �i defined by x �i y if 
.x; y/ D 1 or wi, is an equivalence
relation;

2. given x 2 X and an equivalence class C of �i, there exists a unique y 2 C
such that 
.x; y/ is shortest (i.e., of smallest length), and 
.x; y0/ D 
.x; y/wi

for any y0 2 C; y0 ¤ y.

The gallery distance on building d is a usual metric on X defined by
l.d.x; y//. The distance d is the path metric in the graph with the vertex-set
X and xy being an edge if 
.x; y/ D wi for some 1 � i � n. The gallery distance
on building is a special case of a gallery metric (of chamber system X).

• Boolean metric space
A Boolean algebra (or Boolean lattice) is a distributive lattice .B;_;^/

admitting a least element 0 and greatest element 1 such that every x 2 B has
a complement x with x _ x D 1 and x ^ x D 0.

Let X be a set, and let .B;_;^/ be a Boolean algebra. The pair .X; d/ is called
(Blumenthal, 1953) a Boolean metric space over B if the function d W X�X ! B
has the following properties:

1. d.x; y/ D 0 if and only if x D y;
2. d.x; y/ � d.x; z/ _ d.z; y/ for all x; y; z 2 X.

• Space over algebra
A space over algebra is a metric space with a differential-geometric structure,

whose points can be provided with coordinates from some algebra (usually, an
associative algebra with identity).

A module over an algebra is a generalization of a vector space over a field,
and its definition can be obtained from the definition of a vector space by
replacing the field by an associative algebra with identity. An affine space over
an algebra is a similar generalization of an affine space over a field. In affine
spaces over algebras one can specify a Hermitian metric, while in the case of
commutative algebras even a quadratic metric can be given. To do this one defines
in a unital module a scalar product hx; yi, in the first case with the property
hx; yi D J.hy; xi/, where J is an involution of the algebra, and in the second case
with the property hy; xi D hx; yi.

The n-dimensional projective space over an algebra is defined as the variety
of one-dimensional submodules of an .n C 1/-dimensional unital module over
this algebra. The introduction of a scalar product hx; yi in a unital module makes
it possible to define a Hermitian metric in a projective space constructed by
means of this module or, in the case of a commutative algebra, quadratic elliptic
and hyperbolic metrics. The metric invariant of the points of these spaces is
the cross-ratio W D hx; xi�1hx; yihy; yi�1hy; xi. If W is a real number, then
w D arccos

p
W is called the distance between x and y in the space over

algebra.
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• Partially ordered distance
Let X be a set. Let .G;�/ be a partially ordered set with a least element g0.

A partially ordered distance is a function d W X � X ! G such that, for any
x; y 2 X, d.x; y/ D g0 if and only if x D y.

A generalized ultrametric (Priess-Crampe and Ribenboim, 1993) is a sym-
metric (i.e., d.x; y/ D d.y; x/) partially ordered distance, such that d.z; x/ � g
and d.z; y/ � g imply d.x; y/ � g for any x; y; z 2 X and g 2 G.

Suppose that G0 D Gnfg0g ¤ ; and, for any g1; g2 2 G0, there exists g3 2 G0
such that g3 � g1 and g3 � g2. Consider the following possible properties:

1. For any g1 2 G0, there exists g2 2 G0 such that, for any x; y 2 X, from
d.x; y/ � g2 it follows that d.y; x/ � g1;

2. For any g1 2 G0, there exist g2; g3 2 G0 such that, for any x; y; z 2 X, from
d.x; y/ � g2 and d.y; z/ � g3 it follows that d.x; z/ � g1;

3. For any g1 2 G0, there exists g2 2 G0 such that, for any x; y; z 2 X, from
d.x; y/ � g2 and d.y; z/ � g2 it follows that d.y; x/ � g1;

4. G0 has no first element;
5. d.x; y/ D d.y; x/ for any x; y 2 X;
6. For any g1 2 G0, there exists g2 2 G0 such that, for any x; y; z 2 X, from

d.x; y/ <� g2 and d.y; z/ <� g2 it follows that d.x; z/ <� g1; here p <� q
means that either p < q, or p is not comparable to q;

7. The order relation < is a total ordering of G.

In terms of above properties, d is called: the Appert partially ordered
distance if 1 and 2 hold; the Golmez partially ordered distance of first type if
4, 5, and 6 hold; the Golmez partially ordered distance of second type if 3, 4,
and 5 hold; the Kurepa–Fréchet distance if 3, 4, 5, and 7 hold.

The case G D R�0 of the Kurepa–Fréchet distance corresponds to the Fréchet
V-space; cf. the f -quasi-metric in Sect. 1.1. The general case was considered in
Kurepa, 1934, and rediscovered in Fréchet, 1946.

• Distance from measurement
Distance from measurement is an analog of distance on domains in Com-

puter Science; it was developed in [Mart00].
A po (partially ordered set) .D;�/ is called dcpo (directed-complete po) if

every directed subset S 
 D (i.e., S ¤ ; and any pair x; y 2 S is bounded: there
is z 2 S with x; y � z) has a supremum tS, i.e., the least of such upper bounds z.

For x; y 2 D, y is an approximation of x if, for all directed subsets S 
 D,
x � tS implies y � s for some s 2 S. A dcpo .D;�/ is continuous if for all
x 2 D the set of all approximations of x is directed and x is its supremum. A
domain is a continuous dcpo .D;�/ such that for all x; y 2 D there is z 2 D with
z � x; y. A Scott domain is a domain with least element, in which any bounded
pair has a supremum.

A subset U of a dcpo .D;�/ is Alexandrov open if, for any x 2 U and y 2 D,
x � y implies y 2 U; it is Scott open if also, for any directed subset S 
 D,
tS 2 U implies S\U ¤ ;. The set of Scott open sets form the Scott topology; it is
a T0-space (Chap. 2) with generalized metrization by a partial metric (Chap. 1).
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A measurement is a mapping � W D ! R�0 between dcpo .D;�/ and dcpo
.R�0;�/, where R�0 is ordered as x � y if y � x, such that

1. x � y implies �.x/ � �.y/;
2. �.tS/ D t.f�.s/ W s 2 Sg/ for every directed subset S 
 D;
3. For all x 2 D with �.x/ D 0 and all sequences .xn/; n ! 1, of

approximations of x with limn!1 �.xn/ D �.x/, one has t.[1
nD1fxng/ D x.

Given a measurement �, the distance from measurement is a mapping d W
D � D ! R�0 given by

d.x; y/ D inff�.z/ W z approximates x; yg D inff�.z/ W z � x; yg:

One has d.x; x/ � �.x/. The function d.x; y/ is a metric on the set fx 2 D W
�.x/ D 0g if � satisfies the following measurement triangle inequality: for all
bounded pairs x; y 2 D, there is an element z � x; y such that�.z/ � �.x/C�.y/.

Waszkiewicz, 2001, found topological connections between topologies com-
ing from a distance from measurement and from a partial metric defined in
Chap. 1.



Chapter 4
Metric Transforms

There are many ways to obtain new distances (metrics) from given distances
(metrics). Metric transforms give new distances as a functions of given metrics (or
given distances) on the same set X. A metric so obtained is called a transform
metric. We give some important examples of transform metrics in Sect. 4.1.

Given a metric space .X; d/, one can construct a new metric on an extension
of X; similarly, given a collection of metrics on sets X1; : : : ;Xn, one can obtain a
new metric on an extension of X1; : : : ;Xn. Examples of such operations are given in
Sect. 4.2. There are many distances on other structures connected with X, say, on the
set of all subsets of X. The main distances of this kind are considered in Sect. 4.3.

4.1 Metrics on the Same Set

• Metric transform
A metric transform is a distance on a set X, obtained as a function of given

metrics (or given distances) on X.
In particular, given a continuous monotone increasing function f .x/ of x � 0

with f .0/ D 0, called the scale, and a distance space .X; d/, one obtains another
distance space .X; df /, called a scale metric transform of X, defining df .x; y/ D
f .d.x; y//. For every finite distance space .X; d/, there exists a scale f , such that
.X; df / is a metric subspace of a Euclidean space Rn.

If .X; d/ is a metric space and f is a continuous differentiable strictly
increasing scale with f .0/ D 0 and nonincreasing f 0, then .X; df / is a metric
space (cf. functional transform metric).

The metric d is an ultrametric if and only if f .d/ is a metric for every
nondecreasing function f W R�0 ! R�0.

• Transform metric
A transform metric is a metric on a set X which is a metric transform, i.e.,

is obtained as a function of a given metric (or given metrics) on X. In particular,
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transform metrics can be obtained from a given metric d (or given metrics d1 and
d2) on X by any of the following operations (here t > 0):

1. td.x; y/ (t-scaled metric, or dilated metric, similar metric);
2. minft; d.x; y/g (t-truncated metric);
3. maxft; d.x; y/g for x ¤ y (t-uniformly discrete metric);
4. d.x; y/C t for x ¤ y (t-translated metric);
5. kd.x;y/

1Cd.x;y/ (this metric has diameter less than k);

6. dp.x; y/ D 2d.x;y/
d.x;p/Cd.y;p/Cd.x;y/ , where p is an fixed element of X (biotope

transform metric, or p-smoothing distance on X n fpg);
7. maxfd1.x; y/; d2.x; y/g;
8. ˛d1.x; y/C ˇd2.x; y/, where ˛; ˇ > 0 (cf. semimetric cone in Chap. 1).

• Generalized biotope transform metric
For a given metric d on a set X and a closed set M 
 X, the generalized

biotope transform metric dM on X is defined by

dM.x; y/ D 2d.x; y/

d.x; y/C infz2M.d.x; z/C d.y; z//
:

In fact, dM.x; y/ and its 1-truncation minf1; dM.x; y/g are both metrics.
The biotope transform metric is dM.x; y/ with jMj D 1. The Steinhaus

distance from Chap. 1 is the case d.x; y/ D �.x4y/ with p ¤ ; and the biotope
distance from Chap. 23 is its subcase d.x; y/ D �.x4y/ D jx4yj.

• Metric-preserving function
A function f W R�0 ! R�0 with f �1.0/ D f0g is a metric-preserving

function if, for each metric space .X; d/, the metric transform

df .x; y/ D f .d.x; y//

is a metric on X; cf. [Cora99]. In this case df is called a functional transform
metric. For example, ˛d (˛ > 0), d˛.0 < ˛ � 1/, ln.1 C d/, arcsinh d,
arccosh .1C d/, and d

1Cd are functional transform metrics.
The superposition, sum and maximum of two metric-preserving functions are

metric-preserving. If f is subadditive, i.e. f .x C y/ � f .x/C f .y/ for all x; y � 0,
and nondecreasing, then it is metric-preserving. But, for example, the function
f .x/ D xC2

xC1 , for x > 0, and f .0/ D 0, is decreasing and metric-preserving. If f is
metric-preserving, then it is subadditive.

If f is concave, i.e., f . xCy
2
/ � f .x/Cf .y/

2
for all x; y � 0, then it is metric-

preserving. In particular, a twice differentiable function f W R�0 ! R�0 such
that f .0/ D 0, f 0.x/ > 0 for all x � 0, and f 00.x/ � 0 for all x � 0, is metric-
preserving.

The function f is strongly metric-preserving function if d and f .d.x; y//
are equivalent metrics on X, for each metric space .X; d/. A metric-preserving
function is strongly metric-preserving if and only if it is continuous at 0.
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• Metric aggregating function
A function f W R2�0 ! R�0 with f .a; b/ D 0 if and only if a D b D 0, is said

to be metric (respectively, quasi-metric) aggregating function if the function
df W X � X ! R�0 is a metric for every pair of metric spaces (respectively, a
quasi-metric for every pair of quasi-metric spaces) .X1; d1/ and .X2; d2/, where
X D X1 � X2 and, for all .x; z/; .y;w/ 2 X, it holds

df ..x; z/; .y;w// D f .d1.x; z/; d2.y;w//:

Borsiḱ–Doboš, 1981, proved that a function f is metric aggregating if and only
if, for all a; b; c; a0; b0; c0 � 0 with ja�bj � c � aCb and ja0 �b0j � c0 � a0 Cb0,
it holds

j f .a; a0/ � f .b; b0/j � f .c; c0/ � f .a; a0/C f .b; b0/:

Cf. spin triangle inequality in Chap. 15.
Major–Valero, 2008, proved that a function f is quasi-metric agregating if and

only if it holds f .a; a0/ � f .b; c0/C f .c; b0/ for all a; b; c; a0; b0; c0 � 0 such that
a � b C c and a0 � b0 C c0; so, any quasi-metric agregating function is metric
agregating.

• Metric generating function
A symmetric function f W R2�0 ! R�0 with f .a; b/ D 0 if and only if a D

b D 0, is said to be metric generating if the function defined by

df .x; y/ D f .d.x; y/; d.y; x//

for all x; y 2 X is a metric on X for every quasi-metric space .X; d/.
Martin–Major–Valero, 2013, proved that a function f is metric generating if

and only if it holds f .a; a0/ � f .b; c0/C f .c; b0/ for all a; b; c; a0; b0; c0 such that
a � b C c; b � a C b0; c � c0 C a and a0 � b0 C c0; b0 � a0 C b; c0 � c C a0.

• Power transform metric
Let 0 < ˛ � 1. Given a metric space .X; d/, the power (or ˛-snowflake)

transform metric is a functional transform metric on X defined by

.d.x; y//˛:

The distance d.x; y/ D .
Pn

1 jxi � yijp/
1
p with 0 < p D ˛ < 1 is not a metric

on R
n, but its power transform .d.x; y/˛/ is a metric.

For a given metric d on X and any ˛ > 1, the function d˛ is, in general, only a
distance on X. It is a metric, for any positive ˛, if and only if d is an ultrametric.

A metric d is a doubling metric if and only if (Assouad, 1983) the power
transform metric d˛ admits a bi-Lipschitz embedding in some Euclidean space
for every 0 < ˛ < 1 (cf. Chap. 1 for definitions).
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• Quadrance
A distance which is a squared distance d2 is called a quadrance.
Rational trigonometry is the proposal (Wildberger, 2007) to use as its

fundamental units, quadrance and spread (square of sine of angle), instead of
distance and angle.

It makes some problems easier to computers: solvable with only addition,
subtraction, multiplication, and division, while avoiding square roots, sine, and
cosine functions. Also, such trigonometry can be done over any field.

• Schoenberg transform metric
Let 	 > 0. Given a metric space .X; d/, the Schoenberg transform metric is

a functional transform metric on X defined by

1 � e�	d.x;y/:

The Schoenberg transform metrics are exactly P-metrics (cf. Chap. 1).
• Pullback metric

Given two metric spaces .X; dX/, .Y; dY/ and an injective mapping g W X ! Y,
the pullback metric (of .Y; dY/ by g) on X is defined by

dY.g.x/; g.y//:

If .X; dX/ D .Y; dY/, then the pullback metric is called a g-transform metric.
• Internal metric

Given a metric space .X; d/ in which every pair of points x; y is joined by a
rectifiable curve, the internal metric (or inner metric, induced intrinsic metric,
interior metric) D is a transform metric on X, obtained from d as the infimum
of the lengths of all rectifiable curves connecting two given points x and y 2 X.

The metric d is called an intrinsic metric (or length metric if it coincides
with its internal metric. Cf. Chap. 6 and metric curve in Chap. 1.

• Farris transform metric
Given a metric space .X; d/ and a point z 2 X, the Farris transform is a

metric transform Dz on Xnfzg defined by Dz.x; x/ D 0 and, for different x; y 2
Xnfzg, by

Dz.x; y/ D C � .x:y/z;

where C is a positive constant, and .x:y/z D 1
2
.d.x; z/ C d.y; z/ � d.x; y// is the

Gromov product (cf. Chap. 1). It is a metric if C � maxx2Xnfzg d.x; z/; in fact,
there exists a number C0 2 .maxx;y2Xnfzg;x¤y.x:y/z;maxx2Xnfzg d.x; z/� such that
it is a metric if and only if C � C0. The Farris transform is an ultrametric if
and only if d satisfies the four-point inequality. In Phylogenetics, where it was
applied first, the term Farris transform is used for the function d.x; y/� d.x; z/�
d.y; z/.
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• Involution transform metric
Given a metric space .X; d/ and a point z 2 X, the involution transform

metric is a metric transform dz on Xnfzg defined by

dz.x; y/ D d.x; y/

d.x; z/d.y; z/
:

It is a metric for any z 2 X, if and only if d is a Ptolemaic metric ([FoSc06]).

4.2 Metrics on Set Extensions

• Extension distances
If d is a metric on Vn D f1; : : : ; ng, and ˛ 2 R; ˛ > 0, then the following

extension distances (see, for example, [DeLa97]) are used.
The gate extension distance gat D gatd

˛ is a metric on VnC1 D f1; : : : ; nC1g
defined by the following conditions:

1. gat.1; n C 1/ D ˛;
2. gat.i; n C 1/ D ˛ C d.1; i/ if 2 � i � n;
3. gat.i; j/ D d.i; j/ if 1 � i < j � n.

The distance gatd
0 is called the gate 0-extension or, simply, 0-extension of d.

If ˛ � max2�i�n d.1; i/, then the antipodal extension distance ant D antd
˛ is

a distance on VnC1 defined by the following conditions:

1. ant.1; n C 1/ D ˛;
2. ant.i; n C 1/ D ˛ � d.1; i/ if 2 � i � n;
3. ant.i; j/ D d.i; j/ if 1 � i < j � n.

If ˛ � max1�i;j�n d.i; j/, then the full antipodal extension distance Ant D
Antd

˛ is a distance on V2n D f1; : : : ; 2ng defined by the following conditions:

1. Ant.i; n C i/ D ˛ if 1 � i � n;
2. Ant.i; n C j/ D ˛ � d.i; j/ if 1 � i ¤ j � n;
3. Ant.i; j/ D d.i; j/ if 1 � i ¤ j � n;
4. Ant.n C i; n C j/ D d.i; j/ if 1 � i ¤ j � n.

It is obtained by applying the antipodal extension operation iteratively n times,
starting from d.

The spherical extension distance sph D sphd
˛ is a metric on VnC1 defined by

the following conditions:

1. sph.i; n C 1/ D ˛ if 1 � i � n;
2. sph.i; j/ D d.i; j/ if 1 � i < j � n.
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• 1-sum distance
Let d1 be a distance on a set X1, let d2 be a distance on a set X2, and suppose

that X1\X2 D fx0g. The 1-sum distance of d1 and d2 is the distance d on X1[X2
defined by the following conditions:

d.x; y/ D
8
<

:

d1.x; y/; if x; y 2 X1;
d2.x; y/; if x; y 2 X2;

d.x; x0/C d.x0; y/; if x 2 X1; y 2 X2:

In Graph Theory, the 1-sum distance is a path metric, corresponding to the
clique 1-sum operation for graphs.

• Disjoint union metric
Given a family .Xt; dt/, t 2 T, of metric spaces, the disjoint union metric is

an extended metric on the set
S

t Xt � ftg defined by

d..x; t1/; .y; t2// D dt.x; y/

for t1 D t2, and d..x; t1/; .y; t2// D 1, otherwise.
• Metric bouquet

Given a family .Xt; dt/, t 2 T, of metric spaces with marked points xt, the
metric bouquet is obtained from their disjoint union by gluing all points xt

together.
• Product metric

Given finite or countable number n of metric spaces .X1; d1/, .X2; d2/, : : : ,
.Xn; dn/, the product metric is a metric on the Cartesian product X1 � X2 � � � ��
Xn D fx D .x1; x2; : : : ; xn/ W x1 2 X1; : : : ; xn 2 Xng defined as a function of
d1; : : : ; dn. The simplest finite product metrics are defined by

1. .
Pn

iD1 dp
i .xi; yi//

1
p , 1 � p < 1;

2. max1�i�n di.xi; yi/;
3.
Pn

iD1 1
2i

di.xi;yi/

1Cdi.xi;yi/
.

The last metric is bounded and can be extended to the product of countably many
metric spaces.

If X1 D � � � D Xn D R, and d1 D � � � D dn D d, where d.x; y/ D jx � yj is the
natural metric on R, all product metrics above induce the Euclidean topology
on the n-dimensional space R

n. They do not coincide with the Euclidean metric
on R

n, but they are equivalent to it. In particular, the set Rn with the Euclidean
metric can be considered as the Cartesian product R � � � � � R of n copies of the
real line .R; d/ with the product metric defined by

pPn
iD1 d2.xi; yi/.

• Box metric
Let .X; d/ be a metric space and I the unit interval of R. The box metric is the

product metric d0 on the Cartesian product X � I defined by

d0..x1; t1/; .x2; t2// D max.d.x1; x2/; jt1 � t2j/:
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Cf. unrelated bounded box metric in Chap. 18.
• Fréchet product metric

Let .X; d/ be a metric space with a bounded metric d. Let X1 D X � � � � �
X � � � D fx D .x1; : : : ; xn; : : : / W x1 2 X1; : : : ; xn 2 Xn; : : : g be the countable
Cartesian product space of X.

The Fréchet product metric is a product metric on X1 defined by

1X

nD1
And.xn; yn/;

where
P1

nD1 An is any convergent series of positive terms. Usually, An D 1
2n is

used.
A metric (sometimes called the Fréchet metric) on the set of all sequences

fxngn of real (complex) numbers, defined by

1X

nD1
An

jxn � ynj
1C jxn � ynj ;

where
P1

nD1 An is any convergent series of positive terms, is a Fréchet product
metric of countably many copies of R (C). Usually, An D 1

nŠ or An D 1
2n are used.

• Hilbert cube metric
The Hilbert cube I@0 is the Cartesian product of countable many copies of the

interval Œ0; 1�, equipped with the metric

1X

iD1
2�ijxi � yij

(cf. Fréchet infinite metric product). It also can be identified up to homeo-
morphisms with the compact metric space formed by all sequences fxngn of real

numbers such that 0 � xn � 1
n , where the metric is defined as

qP1
nD1.xn � yn/2.

The Cartesian products Œ0; 1�� and f0; 1g� , where � is an arbitrary cardinal
number, are called a Tikhonov cube and Cantor cube, respectively.

• Hamming cube
Given integers n � 1 and q � 2, the Hamming space H.n; q/ is the set of

all n-tuples over an alphabet of size q (say, the Cartesian product of n copies of
the set f0; 1; : : : ; q � 1g), equipped with the Hamming metric (cf. Chap. 1), i.e.,
the distance between two n-tuples is the number of coordinates where they differ.
The Hamming cube is the Hamming space H.n; 2/.

The infinite Hamming cube H.1/ is the set of all infinite strings over the
alphabet f0; 1g containing only finitely many 1’s, equipped with the Hamming
metric.

The half-cube 1
2
H.n/ is the set of all n-tuples over f0; 1g, containing even

number of 1’s, with two of them being adjacent if they differ exactly in two
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coordinates. For an integer k; 1 � k < n, the Johnson graph J.n; k/ is the set of
all n-tuples over f0; 1g, containing k 1’s, with the same notion of adjacence.

The Fibonacci cube F.n/ is the set of all n-tuples over f0; 1g that contain
no two consecutive 1’s, equipped with the Hamming metric; it is a partial
cube (Chap. 15), i.e., an isometric subgraph of H.n; 2/. The Lucas cube L.n/
is obtained from F.n/ by removing n-tuples that start and end with 1.

• Cameron–Tarzi cube
Given integers n � 1 and q � 2, the normalized Hamming space Hn.q/ is the

set of all n-tuples over an alphabet of size q, equipped with the Hamming metric
divided by n. Clearly, there are isometric embeddings

H1.q/ ! H2.q/ ! H4.q/ ! H8.q/ ! : : :

Let H.q/ denote the Cauchy completion (Chap. 1) of the union (denote it by
H!.q/) of all metric spaces Hn.q/ with n � 1. This metric space was introduced
in [CaTa08]. Call H.2/ the Cameron–Tarzi cube.

It is shown in [CaTa08] that H!.2/ is the word metric space (Chap. 20) of
the countable Nim group, i.e., the elementary Abelian 2-group of all natural
numbers under bitwise addition modulo 2 of the number expressions in base 2.
The Cameron-Tarzi cube is also the word metric space of an Abelian group.

• Rubik cube
There is a bijection between legal positions of the Rubik 3 � 3 � 3 cube and

elements of the subgroup G of the group Sym48 (of all permutations of 6.9 �
1/ movable facets) generated by the 6 face rotations. The number of possible
positions attainable by the cube is jGj 
 43 � 1018.

The maximum number of face turns needed to solve any instance of the Rubik
cube is the diameter (maximal word metric), 20, of the Cayley graph of G.

• Warped product metric
Let .X; dX/ and .Y; dY/ be two complete length spaces (cf. Chap. 6), and let

f W X ! R be a positive continuous function. Given a curve � W Œa; b� ! X � Y,
consider its projections �1 W Œa; b� ! X and �2 W Œa; b� ! Y to X and Y, and

define the length of � by the formula
R b

a

q
j� 0

1j2.t/C f 2.�1.t//j� 0

2j2.t/dt.
The warped product metric is a metric on X � Y, defined as the infimum

of lengths of all rectifiable curves connecting two given points in X � Y (see
[BBI01]).

4.3 Metrics on Other Sets

Given a metric space .X; d/, one can construct several distances between some
subsets of X. The main such distances are: the point-set distance d.x;A/ D
infy2A d.x; y/ between a point x 2 X and a subset A 
 X, the set-set distance
infx2A;y2B d.x; y/ between two subsets A and B of X, and the Hausdorff metric
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between compact subsets of X which are considered in Chap. 1. In this section we
list some other distances of this kind.

• Line-line distance
The line-line distance (or vertical distance between lines) is the set-set

distance in R
3 between two skew lines, i.e., two straight lines that do not lie

in a plane.
It is the length of the segment of their common perpendicular whose endpoints

lie on the lines. For l1 and l2 with equations l1: x D pCqt, t 2 R, and l2: x D rCst,
t 2 R, the distance is given by

jhr � p; q � sij
jjq � sjj2 ;

where � is the cross product on R
3, h; i is the inner product on R

3, and jj:jj2
is the Euclidean norm. For x D .q1; q2; q3/, s D .s1; s2; s3/, one has q � s D
.q2s3 � q3s2; q3s1 � q1s3; q1s2 � q2s1/.

• Point-line distance
The point-line distance is the point-set distance between a point and a line.
In R

2, the distance between a point P D .x1; y1/ and a line l: ax C by C c D 0

(in Cartesian coordinates) is the perpendicular distance given by

jax1 C by1 C cjp
a2 C b2

:

In R
2, the directed distance between a point P and a line l is given by

ax1 C by1 C c

˙p
a2 C b2

;

where the denominator is given the sign of b. It is negative if P is below the line.
In R

3, the distance between a point P and a line l: x D p C qt, t 2 R (in vector
formulation) is given by

jjq � .p � P/jj2
jjqjj2 ;

where � is the cross product on R
3, and jj:jj2 is the Euclidean norm.

• Point-plane distance
The point-plane distance is the point-set distance in R

3 between a point
P D .x1; y1; z1/ and a plane ˛: ax C by C cz C d D 0 given by

jax1 C by1 C cz1 C djp
a2 C b2 C c2

:
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• Algebraic point-conic distance
The algebraic distance of a point y to the curve given by the quadratic

equation xTAx (such as a conic in homogeneous coordinates) is defined as yTAy.
• Prime number distance

The prime number distance is the point-set distance in .N; jn�mj/ between
a number n 2 N and the set of prime numbers P 
 N. It is the absolute difference
between n and the nearest prime number.

• Distance up to nearest integer
The distance up to nearest integer is the point-set distance in .R; jx � yj/

between a number x 2 R and the set of integers Z 
 R, i.e., minn2Z jx � nj.
• Busemann metric of sets

Given a metric space .X; d/, the Busemann metric of sets (see [Buse55]) is a
metric on the set of all nonempty closed subsets of X defined by

sup
x2X

jd.x;A/� d.x;B/je�d.p;x/;

where p 2 X is fixed, and d.x;A/ D miny2A d.x; y/ is the point-set distance.
Instead of the weighting factor e�d.p;x/, one can take any distance transform

function which decreases fast enough (cf. Lp-Hausdorff distance in Chap. 1, and
the list of variations of the Hausdorff metric in Chap. 21).

• Quotient semimetric
Given an extended metric space .X; d/ (i.e., a possibly infinite metric) and

an equivalence relation � on X, the quotient semimetric is a semimetric on the
set X D X= � of equivalence classes defined, for any x; y 2 X, by

d.x; y/ D inf
m2N

mX

iD1
d.xi; yi/;

where the infimum is taken over all sequences x1; y1; x2; y2; : : : ; xm; ym with x1 2
x, ym 2 y, and yi � xiC1 for i D 1; 2; : : : ;m � 1. One has d.x; y/ � d.x; y/ for all
x; y 2 X, and d is the biggest semimetric on X with this property.



Chapter 5
Metrics on Normed Structures

In this chapter we consider a special class of metrics defined on some normed
structures, as the norm of the difference between two given elements. This structure
can be a group (with a group norm), a vector space (with a vector norm or, simply,
a norm), a vector lattice (with a Riesz norm), a field (with a valuation), etc.

Any norm is subadditive, i.e., triangle inequality jjx C yjj � jjxjj C jjyjj holds.
A norm is submultiplicative if multiplicative triangle inequality jjxyjj � jjxjjjjyjj
holds.

• Group norm metric
A group norm metric is a metric on a group .G;C; 0/ defined by

jjx C .�y/jj D jjx � yjj;

where jj:jj is a group norm on G, i.e., a function jj:jj W G ! R such that, for all
x; y 2 G, we have the following properties:

1. jjxjj � 0, with jjxjj D 0 if and only if x D 0;
2. jjxjj D jj � xjj;
3. jjx C yjj � jjxjj C jjyjj (triangle inequality).

Any group norm metric d is right-invariant, i.e., d.x; y/ D d.x C z; y C z/
for any x; y; z 2 G. Conversely, any right-invariant (as well as any left-invariant,
and, in particular, any bi-invariant) metric d on G is a group norm metric, since
one can define a group norm on G by jjxjj D d.x; 0/.

• F-norm metric
A vector space (or linear space) over a field F is a set V equipped with

operations of vector addition C W V � V ! V and scalar multiplication � W
F � V ! V such that .V;C; 0/ forms an Abelian group (where 0 2 V is the
zero vector), and, for all vectors x; y 2 V and any scalars a; b 2 F, we have
the following properties: 1 � x D x (where 1 is the multiplicative unit of F),
.ab/ � x D a � .b � x/, .a C b/ � x D a � x C b � x, and a � .x C y/ D a � x C a � y.
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A vector space over the field R of real numbers is called a real vector space. A
vector space over the field C of complex numbers is called complex vector space.

A F-norm metric is a metric on a real (complex) vector space V defined by

jjx � yjjF;

where jj:jjF is an F-norm on V , i.e., a function jj:jjF W V ! R such that, for all
x; y 2 V and for any scalar a with jaj D 1, we have the following properties:

1. jjxjjF � 0, with jjxjjF D 0 if and only if x D 0;
2. jjaxjjF � jjxjjF if jaj � 1;
3. lima!0 jjaxjjF D 0;
4. jjx C yjjF � jjxjjF C jjyjjF (triangle inequality).

An F-norm is called p-homogeneous if jjaxjjF D jajpjjxjjF for any scalar a.
Any F-norm metric d is a translation invariant metric, i.e., d.x; y/ D d.x C

z; y C z/ for all x; y; z 2 V . Conversely, if d is a translation invariant metric on V ,
then jjxjjF D d.x; 0/ is an F-norm on V .

• F�-metric
An F�-metric is an F-norm metric jjx � yjjF on a real (complex) vector

space V such that the operations of scalar multiplication and vector addition are
continuous with respect to jj:jjF. Thus jj:jjF is a function jj:jjF W V ! R such that,
for all x; y; xn 2 V and for all scalars a; an, we have the following properties:

1. jjxjjF � 0, with jjxjjF D 0 if and only if x D 0;
2. jjaxjjF D jjxjjF for all a with jaj D 1;
3. jjx C yjjF � jjxjjF C jjyjjF;
4. jjanxjjF ! 0 if an ! 0;
5. jjaxnjjF ! 0 if xn ! 0;
6. jjanxnjjF ! 0 if an ! 0, xn ! 0.

The metric space .V; jjx � yjjF/ with an F�-metric is called a nF�-space.
Equivalently, an F�-space is a metric space .V; d/ with a translation invariant
metric d such that the operation of scalar multiplication and vector addition are
continuous with respect to this metric.

A complete F�-space is called an F-space. A locally convex F-space is
known as a Fréchet space (Chap. 2) in Functional Analysis.

A modular space is an F�-space .V; jj:jjF/ in which the F-norm jj:jjF is
defined by

jjxjjF D inff	 > 0 W �
� x

	

�
< 	g;

and � is a metrizing modular on V , i.e., a function � W V ! Œ0;1� such that, for
all x; y; xn 2 V and for all scalars a; an, we have the following properties:

1. �.x/ D 0 if and only if x D 0;
2. �.ax/ D �.x/ implies jaj D 1;
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3. �.ax C by/ � �.x/C �.y/ implies a; b � 0; a C b D 1;
4. �.anx/ ! 0 if an ! 0 and �.x/ < 1;
5. �.axn/ ! 0 if �.xn/ ! 0 (metrizing property);
6. For any x 2 V , there exists k > 0 such that �.kx/ < 1.

• Norm metric
A norm metric is a metric on a real (complex) vector space V defined by

jjx � yjj;

where jj:jj is a norm on V , i.e., a function jj:jj W V ! R such that, for all x; y 2 V
and for any scalar a, we have the following properties:

1. jjxjj � 0, with jjxjj D 0 if and only if x D 0;
2. jjaxjj D jajjjxjj;
3. jjx C yjj � jjxjj C jjyjj (triangle inequality).

Therefore, a norm jj:jj is a 1-homogeneous F-norm. The vector space .V; jj:jj/ is
called a normed vector space or, simply, normed space.

Any metric space can be embedded isometrically in some normed vector space
as a closed linearly independent subset. Every finite-dimensional normed space
is complete, and all norms on it are equivalent.

In general, the norm jj:jj is equivalent (Maligranda, 2008) to the norm

jjxjju;p D .jjx C jjxjj � ujjp C jjx � jjxjj � ujjp/
1
p ;

introduced, for any u 2 V and p � 1, by Odell and Schlumprecht, 1998.
The norm-angular distance between x and y is defined (Clarkson, 1936) by

d.x; y/ D jj x

jjxjj � y

jjyjj jj:

The following sharpening of the triangle inequality (Maligranda, 2003) holds:

jjx � yjj � jjjxjj � jjyjjj
minfjjxjj; jjyjjg � d.x; y/ � jjx � yjj C jjjxjj � jjyjjj

maxfjjxjj; jjyjjg ; i.e.,

.2 � d.x;�y//minfjjxjj; jjyjjg � jjxjj C jjyjj � jjx C yjj
� .2 � d.x;�y//maxfjjxjj; jjyjjg:

Dragomir, 2004, call j R b
a f .x/dxj � R b

a j f .x/jdx continuous triangle
inequality.
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• Reverse triangle inequality
The triangle inequality jjx C yjj � jjxjj C jjyjj in a normed space .V; jj:jj/ is

equivalent to the following inequality, for any x1; : : : ; xn 2 V with n � 2:

jj
nX

iD1
xijj �

nX

iD1
jjxijj:

If in the normed space .V; jj:jj/, for some C � 1 one has

Cjj
nX

iD1
xijj �

nX

iD1
jjxijj;

then this inequality is called the reverse triangle inequality.
This term is used, sometimes, also for the inverse triangle inequality (cf.

kinematic metric in Chap. 26) and for the eventual inequality Cd.x; z/ �
d.x; y/C d.y; z/ with C � 1 in a metric space .X; d/.

The triangle inequality jjx C yjj � jjxjj C jjyjj, for any x; y 2 V , in a normed
space .V; jj:jj/ is, for any number q > 1, equivalent (Belbachir, Mirzavaziri and
Moslenian, 2005) to the following inequality:

jjx C yjjq � 2q�1.jjxjjq C jjyjjq/:

The parallelogram inequality jjx C yjj2 � 2.jjxjj2 C jjyjj2/ is the case q D 2 of
above.

Given a number q, 0 < q � 1, the norm is called q-subadditive if jjx C yjjq �
jjxjjq C jjyjjq holds for x; y 2 V .

• Seminorm semimetric
A seminorm semimetric on a real (complex) vector space V is defined by

jjx � yjj;

where jj:jj is a seminorm (or pseudo-norm) on V , i.e., a function jj:jj W V ! R

such that, for all x; y 2 V and for any scalar a, we have the following properties:

1. jjxjj � 0, with jj0jj D 0;
2. jjaxjj D jajjjxjj;
3. jjx C yjj � jjxjj C jjyjj (triangle inequality).

The vector space .V; jj:jj/ is called a seminormed vector space. Many normed
vector spaces, in particular, Banach spaces, are defined as the quotient space by
the subspace of elements of seminorm zero.

A quasi-normed space is a vector space V , on which a quasi-norm is given.
A quasi-norm on V is a nonnegative function jj:jj W V ! R which satisfies the
same axioms as a norm, except for the triangle inequality which is replaced by
the weaker requirement: there exists a constant C > 0 such that, for all x; y 2 V ,



5 Metrics on Normed Structures 101

the following C-triangle inequality (cf. near-metric in Chap. 1) holds:

jjx C yjj � C.jjxjj C jjyjj/

An example of a quasi-normed space, that is not normed, is the Lebesgue space
Lp.�/ with 0 < p < 1 in which a quasi-norm is defined by

jj f jj D .

Z

�

j f .x/jpdx/1=p; f 2 Lp.�/:

• Banach space
A Banach space (or B-space) is a complete metric space .V; jjx � yjj/ on

a vector space V with a norm metric jjx � yjj. Equivalently, it is the complete
normed space .V; jj:jj/. In this case, the norm jj:jj on V is called the Banach
norm. Some examples of Banach spaces are:

1. lnp-spaces, l1p -spaces, 1 � p � 1, n 2 N;
2. The space C of convergent numerical sequences with the norm jjxjj D

supn jxnj;
3. The space C0 of numerical sequences which converge to zero with the norm

jjxjj D maxn jxnj;
4. The space Cp

Œa;b�, 1 � p � 1, of continuous functions on Œa; b� with the

Lp-norm jj f jjp D .
R b

a j f .t/jpdt/
1
p ;

5. The space CK of continuous functions on a compactum K with the norm
jj f jj D maxt2K j f .t/j;

6. The space .CŒa;b�/n of functions on Œa; b� with continuous derivatives up to
and including the order n with the norm jj f jjn D Pn

kD0 maxa�t�b j f .k/.t/j;
7. The space CnŒIm� of all functions defined in an m-dimensional cube that are

continuously differentiable up to and including the order n with the norm of
uniform boundedness in all derivatives of order at most n;

8. The space MŒa;b� of bounded measurable functions on Œa; b� with the norm

jj f jj D ess sup
a�t�b

j f .t/j D inf
e;�.e/D0 sup

t2Œa;b�ne
j f .t/jI

9. The space A.
/ of functions analytic in the open unit disk 
 D fz 2
C W jzj < 1g and continuous in the closed disk 
 with the norm jj f jj D
maxz2
 j f .z/j;

10. The Lebesgue spaces Lp.�/, 1 � p � 1;
11. The Sobolev spaces Wk;p.�/, � 
 R

n, 1 � p � 1, of functions f on �
such that f and its derivatives, up to some order k, have a finite Lp-norm,
with the norm jj f jjk;p D Pk

iD0 jj f .i/jjp;
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12. The Bohr space AP of almost periodic functions with the norm

jj f jj D sup
�1<t<C1

j f .t/j:

A finite-dimensional real Banach space is called a Minkowskian space. A
norm metric of a Minkowskian space is called a Minkowskian metric (Chap. 6).
In particular, any lp-metric is a Minkowskian metric.

All n-dimensional Banach spaces are pairwise isomorphic; the set of such
spaces becomes compact if one introduces the Banach–Mazur distance by
dBM.V;W/ D ln infT jjTjj � jjT�1jj, where the infimum is taken over all operators
which realize an isomorphism T W V ! W.

• lp-metric
The lp-metric dlp , 1 � p � 1, is a norm metric on R

n (or on C
n), defined by

jjx � yjjp;

where the lp-norm jj:jjp is defined by

jjxjjp D .

nX

iD1
jxijp/

1
p :

For p D 1, we obtain jjxjj1 D limp!1 p
pPn

iD1 jxijp D max1�i�n jxij. The
metric space .Rn; dlp/ is abbreviated as lnp and is called lnp-space.

The lp-metric, 1 � p � 1, on the set of all sequences x D fxng1
nD1 of real

(complex) numbers, for which the sum
P1

iD1 jxijp (for p D 1, the sum
P1

iD1 jxij)
is finite, is

.

1X

iD1
jxi � yijp/

1
p :

For p D 1, we obtain maxi�1 jxi � yij. This metric space is abbreviated as l1p
and is called l1p -space.

Most important are l1-, l2- and l1-metrics. Among lp-metrics, only l1- and
l1-metrics are crystalline metrics, i.e., metrics having polygonal unit balls. On
R all lp-metrics coincide with the natural metric (Chap. 12) jx � yj.

The l2-norm jj.x1; x2/jj2 D
q

x21 C x22 on R
2 is also called Pythagorean

addition of the numbers x1 and x2. Under this commutative operation, R form
a semigroup, and R�0 form a monoid (semigroup with identity, 0).
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• Euclidean metric
The Euclidean metric (or Pythagorean distance, as-the-crow-flies dis-

tance, beeline distance) dE is the metric on R
n defined by

jjx � yjj2 D
p
.x1 � y1/2 C � � � C .xn � yn/2:

It is the ordinary l2-metric on R
n. The metric space .Rn; dE/ is abbreviated as En

and is called Euclidean space “Euclidean space” stands for the case n D 3, as
opposed, for n D 2, to Euclidean plane and, for n D 1, Euclidean (or real) line.

In fact, E
n is an inner product space (and even a Hilbert space), i.e.,

dE.x; y/ D jjx � yjj2 D phx � y; x � yi, where hx; yi is the inner product on
R

n which is given in the Cartesian coordinate system by hx; yi D Pn
iD1 xiyi. In

a standard coordinate system one has hx; yi D P
i;j gijxiyj, where gij D hei; eji,

and the metric tensor ..gij// (cf. Chap. 7) is a positive-definite symmetric n � n
matrix.

In general, a Euclidean space is defined as a space, the properties of which are
described by the axioms of Euclidean Geometry.

• Norm transform metric
A norm transform metric is a metric d.x; y/ on a vector space .V; jj:jj/,

which is a function of jjxjj and jjyj. Usually, V D R
n and, moreover, En D

.Rn; jj:jj2/.
Some examples are . p; q/-relative metric, M-relative metric and, from

Chap. 19, the British Rail metric jjxjj C jjyjj for x ¤ y, (and equal to 0,
otherwise), the radar screen metric minf1; jjx � yjjg and maxf1; jjx � yjjg for
x ¤ y. Cf. t-truncated and t-uniformly discrete metrics in Chap. 4.

• .p; q/-relative distance
Let .V; jj:jj/ ¤ ;; f0g be a Ptolemaic space, i.e., the norm metric jjx � yjj is a

Ptolemaic metric (Chap. 1). Let p; q > 0.
The . p; q/-relative distance on .V; jj:jj/ is defined, for x or y ¤ 0, by

�p;q.x; y/C jjx � yjj
. 1
2
.jjxjjp C jjyjjp//

q
p

(and equal to 0, otherwise). In the case of p D 1, it has the form

jjx � yjj
.maxfjjxjj; jjyjjg/q :

This distance is a metric (Hästö, 2002) if and only if 0 < q � 1, p � maxf1�
q; 2�q

3
g.

. p; 1/-, .1; 1/- and the original .1; 1/-relative metric on E
n are called p-

relative (or Klamkin–Meir metric), relative metric and Schattschneider
metric.



104 5 Metrics on Normed Structures

• M-relative distance
Let .V; jj:jj/ ¤ ;; f0g be a Ptolemaic space, i.e., jjx � yjj is a Ptolemaic

metric. Let M W Œ0;1/ ! .0;1/ be a symmetric function.
The M-relative distance on .V; jj:jj/ is defined by

�M.x; y/ D jjx � yjj
M.jjxjj; jjyjj/ :

So, it is the . p; q/-relative distance if M.x; y/ D .xp C yp/
q
p for p; q > 0.

Call a function f W Œ0;1/ ! .0;1/ moderately increasing (MI) if f .x/ is
increasing but f .x/

x is decreasing for x > 0. Hästö, 2002, showed that

(i) If M D f .x/f .y/, then �M.x; y/ is a metric if and only if f is MI and convex;
(ii) If both, M.x; �/ and M.�; x/, are MI for each fixed x > 0, then �M.x; y/ is a

metric if and only if it is a metric on R; it holds for any Ptolemeaic metric.

• Unitary metric
The unitary (or complex Euclidean) metric is the l2-metric on C

n defined by

jjx � yjj2 D
p

jx1 � y1j2 C � � � C jxn � ynj2:

For n D 1, it is the complex modulus metric jx � yj D
q

.x � y/.x � y/ on the
Wessel–Argand plane (Chap. 12).

• Lp-metric
An Lp-metric dLp , 1 � p � 1, is a norm metric on Lp.�;A; �/ defined by

jj f � gjjp

for any f ; g 2 Lp.�;A; �/ . The metric space .Lp.�;A; �/; dLp/ is called the
Lp-space (or Lebesgue space).

Here � is a set, and A is n 
-algebra of subsets of �, i.e., a collection of
subsets of � satisfying the following properties:

1. � 2 A;
2. If A 2 A, then �nA 2 A;
3. If A D [1

iD1Ai with Ai 2 A, then A 2 A.

A function � W A ! R�0 is called a measure on A if it is additive, i.e.,
�.[i�1Ai/ D P

i�1 �.Ai/ for all pairwise disjoint sets Ai 2 A, and satisfies
�.;/ D 0. A measure space is a triple .�;A; �/.

Given a function f W � ! R.C/, its Lp-norm is defined by

jj f jjp D
�Z

�

j f .!/jp�.d!/

� 1
p

:
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Let Lp.�;A; �/ D Lp.�/ denote the set of all functions f W � ! R (C)
such that jj f jjp < 1. Strictly speaking, Lp.�;A; �/ consists of equivalence
classes of functions, where two functions are equivalent if they are equal
almost everywhere, i.e., the set on which they differ has measure zero. The set
L1.�;A; �/ is the set of equivalence classes of measurable functions f W � !
R (C) whose absolute values are bounded almost everywhere.

The most classical example of an Lp-metric is dLp on the set Lp.�;A; �/,
where � is the open interval .0; 1/, A is the Borel 
-algebra on .0; 1/, and � is
the Lebesgue measure. This metric space is abbreviated by Lp.0; 1/ and is called
Lp.0; 1/-space.

In the same way, one can define the Lp-metric on the set CŒa;b� of all real

(complex) continuous functions on Œa; b�: dLp.f ; g/ D .
R b

a j f .x/�g.x/jpdx/
1
p . For

p D 1, dL1
.f ; g/ D maxa�x�b j f .x/ � g.x/j. This metric space is abbreviated

by Cp
Œa;b� and is called Cp

Œa;b�-space.

If� D N, A D 2� is the collection of all subsets of�, and� is the cardinality
measure ( i.e.,�.A/ D jAj if A is a finite subset of�, and �.A/ D 1, otherwise),
then the metric space .Lp.�; 2

�; j:j/; dLp/ coincides with the space l1p .
If� D Vn is a set of cardinality n, A D 2Vn , and � is the cardinality measure,

then the metric space .Lp.Vn; 2
Vn ; j:j/; dLp/ coincides with the space lnp.

• Dual metrics
The lp-metric and the lq-metric, 1 < p; q < 1, are called dual if

1=p C 1=q D 1.
In general, when dealing with a normed vector space .V; jj:jjV/, one is

interested in the continuous linear functionals from V into the base field (R or
C). These functionals form a Banach space .V 0; jj:jjV0/, called the continuous
dual of V . The norm jj:jjV0 on V 0 is defined by jjTjjV0 D supjjxjjV �1 jT.x/j.

The continuous dual for the metric space lnp (l1p ) is lnq (l1q , respectively). The
continuous dual of ln1 (l11 ) is ln1 (l11, respectively). The continuous duals of the
Banach spaces C (consisting of all convergent sequences, with l1-metric) and
C0 (consisting of the sequences converging to zero, with l1-metric) are both
naturally identified with l11 .

• Inner product space
An inner product space (or pre-Hilbert space) is a metric space .V; jjx � yjj/

on a real (complex) vector space V with an inner product hx; yi such that the
norm metric jjx�yjj is constructed using the inner product norm jjxjj D phx; xi.

An inner product h; i on a real (complex) vector space V is a symmetric
bilinear (in the complex case, sesquilinear) form on V , i.e., a function h; i W
V � V �! R (C) such that, for all x; y; z 2 V and for all scalars ˛; ˇ, we have
the following properties:

1. hx; xi � 0, with hx; xi D 0 if and only if x D 0;
2. hx; yi D hy; xi, where the bar denotes complex conjugation;
3. h˛x C ˇy; zi D ˛hx; zi C ˇhy; zi.
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For a complex vector space, an inner product is called also a Hermitian inner
product, and the corresponding metric space is called a Hermitian inner product
space.

A norm jj:jj in a normed space .V; jj:jj/ is generated by an inner product if
and only if, for all x; y 2 V , we have: jjx C yjj2 C jjx � yjj2 D 2.jjxjj2 C jjyjj2/.

In an inner product space, the triangle equality (Chap. 1) jjx � yjj D jjxjj C
jjyjj, for x; y ¤ 0, holds if and only if x

jjxjj D y
jjyjj , i.e., x � y 2 Œx; y�.

• Hilbert space
A Hilbert space is an inner product space which, as a metric space, is

complete. More precisely, a Hilbert space is a complete metric space .H; jjx�yjj/
on a real (complex) vector space H with an inner product h; i such that the norm
metric jjx � yjj is constructed using the inner product norm jjxjj D phx; xi. Any
Hilbert space is a Banach space.

An example of a Hilbert space is the set of all sequences x D fxngn of
real (complex) numbers such that

P1
iD1 jxij2 converges, with the Hilbert metric

defined by

.

1X

iD1
.xi � yi/

2/
1
2 :

Other examples of Hilbert spaces are any L2-space, and any finite-dimensional
inner product space. In particular, any Euclidean space is a Hilbert space.

A direct product of two Hilbert spaces is called a Liouville space (or line
space, extended Hilbert space).

Given an infinite cardinal number � and a set A of the cardinality � , let Ra,
a 2 A, be the copies of R. Let H.A/ D ffxag 2 Q

a2A Ra W Pa x2a < 1g; then
H.A/ with the metric defined for fxag; fyag 2 H.A/ as

.
X

a2A

.xa � ya/
2/

1
2 ;

is called the generalized Hilbert space of weight � .
• Erdös space

The Erdös space (or rational Hilbert space) is the metric subspace of l2
consisting of all vectors in l2 with only rational coordinates. It has topological
dimension 1 and is not complete. Erdös space is homeomorphic to its countable
infinite power, and every nonempty open subset of it is homeomorphic to whole
space.

The complete Erdös space (or irrational Hilbert space) is the complete
metric subspace of l2 consisting of all vectors in l2 the coordinates of which
are all irrational.
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• Riesz norm metric
A Riesz space (or vector lattice) is a partially ordered vector space .VRi;�/ in

which the following conditions hold:

1. The vector space structure and the partial order structure are compatible, i.e.,
from x � y it follows that x C z � y C z, and from x � 0, a 2 R, a > 0 it
follows that ax � 0;

2. For any two elements x; y 2 VRi, there exist the join x _ y 2 VRi and meet
x ^ y 2 VRi (cf. Chap. 10).

The Riesz norm metric is a norm metric on VRi defined by

jjx � yjjRi;

where jj:jjRi is a Riesz norm on VRi, i.e., a norm such that, for any x; y 2 VRi, the
inequality jxj � jyj, where jxj D .�x/ _ .x/, implies jjxjjRi � jjyjjRi.

The space .VRi; jj:jjRi/ is called a normed Riesz space. In the case of
completeness, it is called a Banach lattice.

• Banach–Mazur compactum
The Banach–Mazur distance dBM between two n-dimensional normed

spaces .V; jj:jjV/ and .W; jj:jjW/ is defined by

ln inf
T

jjTjj � jjT�1jj;

where the infimum is taken over all isomorphisms T W V ! W. It is a metric
on the set Xn of all equivalence classes of n-dimensional normed spaces, where
V � W if and only if they are isometric. Then the pair .Xn; dBM/ is a compact
metric space which is called the Banach–Mazur compactum.

• Quotient metric
Given a normed space .V; jj:jjV/ with a norm jj:jjV and a closed subspace W

of V , let .V=W; jj:jjV=W/ be the normed space of cosets xCW D fxCw W w 2 Wg,
x 2 V , with the quotient norm jjx C WjjV=W D infw2W jjx C wjjV .

The quotient metric is a norm metric on V=W defined by

jj.x C W/� .y C W/jjV=W :

• Tensor norm metric
Given normed spaces .V; jj:jjV/ and .W; jj:jjW/, a norm jj:jj˝ on the tensor

product V ˝ W is called tensor norm (or cross norm) if jjx ˝ yjj˝ D jjxjjV jjyjjW

for all decomposable tensors x ˝ y.
The tensor product metric is a norm metric on V ˝ W defined by

jjz � tjj˝:
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For any z 2 V ˝ W, z D P
j xj ˝ yj, xj 2 V , yj 2 W, the projective norm (or

�-norm) of z is defined by jjzjjpr D inf
P

j jjxjjjV jjyjjjW , where the infimum is
taken over all representations of z as a sum of decomposable vectors. It is the
largest tensor norm on V ˝ W.

• Valuation metric
A valuation metric is a metric on a field F defined by

jjx � yjj;

where jj:jj is a valuation on F, i.e., a function jj:jj W F ! R such that, for all
x; y 2 F, we have the following properties:

1. jjxjj � 0, with jjxjj D 0 if and only if x D 0;
2. jjxyjj D jjxjj jjyjj,
3. jjx C yjj � jjxjj C jjyjj (triangle inequality).

If jjxCyjj � maxfjjxjj; jjyjjg, the valuation jj:jj is called non-Archimedean. In this
case, the valuation metric is an ultrametric. The simplest valuation is the trivial
valuation jj:jjtr: jj0jjtr D 0, and jjxjjtr D 1 for x 2 Fnf0g. It is non-Archimedean.

There are different definitions of valuation in Mathematics. Thus, the function
� W F ! R [ f1g is called a valuation if �.x/ � 0, �.0/ D 1, �.xy/ D
�.x/C �.y/, and �.x C y/ � minf�.x/; �.y/g for all x; y 2 F. The valuation jj:jj
can be obtained from the function � by the formula jjxjj D ˛�.x/ for some fixed
0 < ˛ < 1 (cf. p-adic metric in Chap. 12).

The Kürschäk valuation j:jKrs is a function j:jKrs W F ! R such that jxjKrs � 0,
jxjKrs D 0 if and only if x D 0, jxyjKrs D jxjKrsjyjKrs, and jx C yjKrs �
C maxfjxjKrs; jyjKrsg for all x; y 2 F and for some positive constant C, called
the constant of valuation. If C � 2, one obtains the ordinary valuation jj:jj which
is non-Archimedean if C � 1. In general, any j:jKrs is equivalent to some jj:jj,
i.e., j:jp

Krs D jj:jj for some p > 0.
Finally, given an ordered group .G; �; e;�/ equipped with zero, the Krull

valuation is a function j:j W F ! G such that jxj D 0 if and only if x D 0,
jxyj D jxjjyj, and jx C yj � maxfjxj; jyjg for any x; y 2 F. It is a generalization
of the definition of non-Archimedean valuation jj:jj (cf. generalized metric in
Chap. 3).

• Power series metric
Let F be an arbitrary algebraic field, and let Fhx�1i be the field of power series

of the form w D ˛�mxm C � � � C ˛0 C ˛1x�1 C : : : , ˛i 2 F. Given l > 1, a non-
Archimedean valuation jj:jj on Fhx�1i is defined by

jjwjj D
�

lm; if w ¤ 0;

0; if w D 0:

The power series metric is the valuation metric jjw � vjj on Fhx�1i.
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Geometry and Distances



Chapter 6
Distances in Geometry

Geometry arose as the field of knowledge dealing with spatial relationships. It was
one of the two fields of pre-modern Mathematics, the other being the study of
numbers.

Earliest known evidence of abstract representation—ochre rocks marked with
cross hatches and lines to create a consistent complex geometric motif, dated
about 75;000 BC—were found in Blombos Cave, South Africa. In modern times,
geometric concepts have been generalized to a high level of abstraction and
complexity.

6.1 Geodesic Geometry

In Mathematics, the notion of “geodesic” is a generalization of the notion of
“straight line” to curved spaces. This term is taken from Geodesy, the science of
measuring the size and shape of the Earth.

Given a metric space .X; d/, a metric curve � is a continuous function � W I !
X, where I is an interval (i.e., nonempty connected subset) of R. If � is r times
continuously differentiable, it is called a regular curve of class Cr; if r D 1, � is
called a smooth curve.

In general, a curve may cross itself. A curve is called a simple curve (or arc, path)
if it does not cross itself, i.e., if it is injective. A curve � W Œa; b� ! X is called a
Jordan curve (or simple closed curve) if it does not cross itself, and �.a/ D �.b/.

The length (which may be equal to 1) l.�/ of a curve � W Œa; b� ! X is
defined by sup

Pn
iD1 d.�.ti�1/; �.ti//, where the supremum is taken over all finite

decompositions a D t0 < t1 < : : : < tn D b, n 2 N, of Œa; b�.
A curve with finite length is called rectifiable. For each regular curve � W Œa; b� !

X define the natural parameter s of � by s D s.t/ D l.� jŒa;t�/, where l.� jŒa;t�/ is the
length of the part of � corresponding to the interval Œa; t�. A curve with this natural
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parametrization � D �.s/ is called of unit speed, (or parametrized by arc length,
normalized); in this parametrization, for any t1; t2 2 I, one has l.� jŒt1;t2�/ D jt2 � t1j,
and l.�/ D jb � aj.

The length of any curve � W Œa; b� ! X is at least the distance between its
endpoints: l.�/ � d.�.a/; �.b//. The curve � , for which l.�/ D d.�.a/; �.b//, is
called the geodesic segment (or shortest path) from x D �.a/ to y D �.b/, and
denoted by Œx; y�.

Thus, a geodesic segment is a shortest join of its endpoints; it is an isometric
embedding of Œa; b� in X. In general, geodesic segments need not exist, unless the
segment consists of one point only. A geodesic segment joining two points need not
be unique.

A geodesic (Chap. 1) is a curve which extends indefinitely in both directions and
behaves locally like a segment, i.e., is everywhere locally a distance minimizer.

More exactly, a curve � W R ! X, given in the natural parametrization, is called
a geodesic if, for any t 2 R, there exists a neighborhood U of t such that, for any
t1; t2 2 U, we have d.�.t1/; �.t2// D jt1 � t2j. Thus, any geodesic is a locally
isometric embedding of the whole of R in X.

A geodesic is called a metric straight line if the equality d.�.t1/; �.t2// D jt1 �
t2j holds for all t1; t2 2 R. Such a geodesic is an isometric embedding of the whole
real line R in X. A geodesic is called a metric great circle if it is an isometric
embedding of a circle S1.0; r/ in X. In general, geodesics need not exist.

• Geodesic metric space
A metric space .X; d/ is called geodesic if any two points in X can be joined

by a geodesic segment, i.e., for any two points x; y 2 X, there is an isometry
from the segment Œ0; d.x; y/� into X. Examples of geodesic spaces are complete
Riemannian spaces, Banach spaces, metric graphs from Chap. 15 and (Ivanov–
Nikolaeva–Tuzhilin, 2015) Gromov–Hausdorff space.

A metric space .X; d/ is called a locally geodesic metric space if any two
sufficiently close points in X can be joined by a geodesic segment; it is called D-
geodesic if any two points at distance < D can be joined by a geodesic segment.

• Geodesic distance
The geodesic distance (or shortest path distance) is the length of a geodesic

segment (i.e., a shortest path) between two points.
• Intrinsic metric

Given a metric space .X; d/ in which every two points are joined by a
rectifiable curve, the internal metric (Chap. 4) D on X is defined as the infimum
of the lengths of all rectifiable curves, connecting two given points x; y 2 X.

The metric d on X is called the intrinsic metric (or length metric) if it
coincides with its internal metric D. A metric space with the intrinsic metric
is called a length space (or path metric space, inner metric space, intrinsic
space).

If, moreover, any pair x; y of points can be joined by a curve of length d.x; y/,
the intrinsic metric d is called strictly intrinsic, and the length space .X; d/ is a
geodesic metric space (or shortest path metric space).
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A complete metric space .X; d/ is a length space if and only if it is having
approximate midpoints, i.e., for any points x; y 2 X and for any � > 0, there
exists a third point z 2 X with d.x; z/; d.y; z/ � 1

2
d.x; y/C �. A complete metric

space .X; d/ is a geodesic metric space if and only if it is having midpoints.
Any complete locally compact length space is a proper geodesic metric space.

• G-space
A G-space (or space of geodesics) is a metric space .X; d/ with the geometry

characterized by the fact that extensions of geodesics, defined as locally shortest
lines, are unique. Such geometry is a generalization of Hilbert Geometry (see
[Buse55]).

More exactly, a G-space .X; d/ is defined by the following conditions:

1. It is proper (or finitely compact), i.e., all metric balls are compact;
2. It is Menger-convex, i.e., for any different x; y 2 X, there exists a third point

z 2 X, z ¤ x; y, such that d.x; z/C d.z; y/ D d.x; y/;
3. It is locally extendable, i.e., for any a 2 X, there exists r > 0 such that, for

any distinct points x; y in the ball B.a; r/, there exists z distinct from x and y
such that d.x; y/C d.y; z/ D d.x; z/;

4. It is uniquely extendable, i.e., if in 3 above two points z1 and z2 were found,
so that d.y; z1/ D d.y; z2/, then z1 D z2.

The existence of geodesic segments is ensured by finite compactness and
Menger-convexity: any two points of a finitely compact Menger-convex set X
can be joined by a geodesic segment in X. The existence of geodesics is ensured
by the axiom of local prolongation: if a finitely compact Menger-convex set X
is locally extendable, then there exists a geodesic containing a given segment.
Finally, the uniqueness of prolongation ensures the assumption of Differential
Geometry that a line element determines a geodesic uniquely.

All Riemannian and Finsler spaces are G-spaces. A 1D G-space is a metric
straight line or metric great circle. Any 2D G-space is a topological manifold
(Chap. 2).

Every G-space is a chord metric space, i.e., a metric space with a set
distinguished geodesic segments such that any two points are joined by a unique
such segment (see [BuPh87]).

• Desarguesian space
A Desarguesian space is a G-space .X; d/ in which the role of geodesics is

played by ordinary straight lines. Thus, X may be topologically mapped into a
projective space RPn so that each geodesic of X is mapped into a straight line of
RPn.

Any X mapped into RPn must either cover all of RPn and, in such a case,
the geodesics of X are all metric great circles of the same length, or X may be
considered as an open convex subset of an affine space An.

A space .X; d/ of geodesics is a Desarguesian space if and only if the
following conditions hold:
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1. The geodesic passing through two different points is unique;
2. For dimension n D 2, both the direct and the converse Desargues theorems

are valid and, for dimension n > 2, any three points in X lie in one plane.

Among Riemannian spaces, the only Desarguesian spaces are Euclidean, hyper-
bolic, and elliptic spaces. An example of the non-Riemannian Desarguesian
space is the Minkowskian space which can be regarded as the prototype of all
non-Riemannian spaces, including Finsler spaces.

• G-space of elliptic type
A G-space of elliptic type is a G-space in which the geodesic through two

points is unique, and all geodesics are the metric great circles of the same length.
Every G-space such that there is unique geodesic through each given pair of

points is either a G-space of elliptic type, or a straight G-space.
• Straight G-space

A straight G-space is a G-space in which extension of a geodesic is possible
globally, so that any segment of the geodesic remains a shortest path. In other
words, for any two points x; y 2 X, there is a unique geodesic segment joining x
to y, and a unique metric straight line containing x and y.

Any geodesic in a straight G-space is a metric straight line, and is uniquely
determined by any two of its points. Any such 2D space is homeomorphic to the
plane.

All simply connected Riemannian spaces of nonpositive curvature (including
Euclidean and hyperbolic spaces), Hilbert geometries, and Teichmüller spaces of
compact Riemann surfaces of genus g > 1 (when metrized by the Teichmüller
metric) are straight G-spaces.

• Gromov hyperbolic metric space
A metric space .X; d/ is called Gromov hyperbolic if it is geodesic and ı-

hyperbolic for some ı � 0.
An important class of such spaces are the hyperbolic groups, i.e., finitely

generated groups whose word metric is Gromov hyperbolic. A metric space is a
real tree exactly when it is 0-hyperbolic.

Every bounded metric space X is (diam(X,d))-hyperbolic. A normed vector
space is Gromov hyperbolic if and only it has dimension 1. Any complete simply
connected Riemannian space of sectional curvature k � �a2 < 0 is ln 3

a -
hyperbolic. Every CAT(�) space with � < 0 is Gromov hyperbolic.

• CAT(�) space
Let .X; d/ be a metric space. Let M2 be a simply connected 2D Riemannian

manifold (Chap. 7) of constant curvature �, i.e., the 2-sphere S2� with � > 0, the
Euclidean plane E

2 with � D 0, or the hyperbolic plane H2
� with � < 0. Let D�

denote the diameter of M2, i.e., D� D �p
�

if � > 0, and D� D 1 if � � 0.
A triangle T in X consists of three points in X together with three geodesic

segments joining them pairwise; the segments are called the sides of the triangle.
For a triangle T 
 X, a comparison triangle for T in M2 is a triangle T 0 
 M2

together with a map fT which sends each side of T isometrically onto a side of
T 0. A triangle T is said (Gromov, 1987) to satisfy the CAT(�) inequality (for
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Cartan, Alexandrov and Toponogov) if, for every x; y 2 T, we have

d.x; y/ � dM2 .fT.x/; fT.y//;

where fT is the map associated to a comparison triangle for T in M2. So, the
geodesic triangle T is at least as “thin” as its comparison triangle in M2.

The metric space .X; d/ is a CAT(�/ space if it is D�-geodesic (i.e., any two
points at distance < D� can be joined by a geodesic segment), and all triangles T
with perimeter < 2D� satisfy the CAT(�) inequality.

Every CAT(�1) space is a CAT(�2) space if �1 < �2. Every real tree is a
CAT(�1) space, i.e., is a CAT(�1) space for all � 2 R.

A locally CAT(�) space (called metric space with curvature � � in
Alexandrov, 1951) is a metric space .X; d/ in which every point p 2 X has a
neighborhood U such that any two points x; y 2 U are connected by a geodesic
segment, and the CAT(�) inequality holds for any x; y; z 2 U. A Riemannian
manifold is locally CAT(�) if and only if its sectional curvature is at most �.

A metric space with curvature � � is (Alexandrov, 1951) a metric space
.X; d/ in which every p 2 X has a neighborhood U such that any x; y 2 U are
connected by a geodesic segment, and the reverse CAT(�) inequality

d.x; y/ � dM2 .fT.x/; fT .y//

holds for any x; y; z 2 U, where fT is the map associated to a comparison triangle
for T in M2. It is a generalized Riemannian space (Chap. 7).

Above two definitions differ only by the sign of d.x; y/ � dM2 .fT.x/; fT.y//.
In the case � D 0, the above spaces are called nonpositively curved and
nonnegatively curved metric spaces, respectively. For complete metric spaces,
they differ also (Bruhat–Tits, 1972) by the sign (� 0 or � 0, respectively) of

F.x; y; z/ D 4d2.z;m.x; y// � .d2.z; x/C d2.z; y/ � d2.x; y//;

where x; y; z are any three points and m.x; y/ is the midpoint of the metric
interval I.x; y/. A complete CAT(0) space is called Hadamard space.

The inequality F.x; y; z/ � 0 for all x; y; z 2 X, characterizing Hadamard
spaces, is called semiparallelogram inequality, because the usual vector paral-
lelogram law jju � vjj2 C jju C vjj2 D 2jjujj2 C 2jjvjj2, characterizing norms
induced by inner products, is equivalent to the equality F.x; y; z/ D 0. A normed
space is an Hadamard space if and only if it is a Hilbert space.

Every two points in an Hadamard space are connected by a unique geodesic
(and hence unique shortest path), while in a general CAT(0) space, they are
connected by a unique geodesic segment, and the distance is a convex function.

Foertsch–Lytchack–Schroeder, 2007, proved that a metric space is CAT(0) if
and only if it is Busemann convex and Ptolemaic; cf. Chap. 1. Euclidean spaces,
hyperbolic spaces, and trees are CAT(0) spaces.
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• ı-bolic metric space
Given a number ı > 0, a metric space .X; d/ is called ı-bolic (Kasparov–

Skandalis, 1994, simplified by Bucher–Karlsson, 2002) if for any x; y; z 2 X and
some function m W X � X ! X, it holds

2d.z;m.x; y// �
p
2d2.z; x/C 2d2.z; y/� d2.x; y/C 4

3
ı:

A ı-hyperbolic space with approximate ı-midpoints (Chap. 1) is 3ı
2

-bolic.
Every CAT(0)-space is ı-bolic for any ı > 0; for complete spaces the converse

holds as well. An lp-metric space of dimension> 1 is ı-bolic for any ı > 0 only
if p D 2.

• Boundary of metric space
There are many notions of the boundary @X of a metric space .X; d/. We

give below some of the most general among them. Usually, if .X; d/ is locally
compact, X [ @X is its compactification.

1. Ideal boundary (or boundary at 1). Given a geodesic metric space .X; d/,
let �1 and �2 be two metric rays, i.e., geodesics with isometry of R�0 into
X. These rays are called equivalent if the Hausdorff distance between them
(associated with the metric d) is finite, i.e., if supt�0 d.�1.t/; �2.t// < 1.

The ideal boundary of .X; d/ is the set @1X of equivalence classes �1 of
all metric rays. Cf. asymptotic metric cone (Chap. 1).

If .X; d/ is a complete CAT(0) space, then the Tits metric (or asymptotic
angle of divergence) on @1X is defined by 2 arcsin

� �
2

�
for all �11; �21 2 @1X,

where � D limt!1 1
t d.�1.t/; �2.t//. The set @1X equipped with the Tits

metric is called the Tits boundary of X.
If .X; d; x0/ is a pointed complete CAT(�1) space, then the Bourdon

metric (or visual distance) on @1X is defined, for any distinct x; y 2 @1X,
by e�.x:y/, where .x:y/ denotes the Gromov product .x:y/x0 .

The visual sphere of .X; d/ at a point x0 2 X is the set of equivalence
classes of all metric rays emanating from x0.

2. Gromov boundary. Given a pointed metric space .X; d; x0/ (i.e., one with
a selected base point x0 2 X), the Gromov boundary of it (as generalized
by Buckley and Kokkendorff, 2005, from the case of the Gromov hyperbolic
space) is the set @GX of equivalence classes of Gromov sequences.

A sequence x D fxngn in X is a Gromov sequence if the Gromov product
.xi:xj/x0 ! 1 as i; j ! 1. Two Gromov sequences x and y are equivalent
if there is a finite chain of Gromov sequences xk, 0 � k � k0, such that
x D x0; y D xk0

, and limi;j!1 inf.xk�1
i :xk

j / D 1 for 0 � k � k0.
In a proper geodesic Gromov hyperbolic space .X; d/, the visual sphere

does not depends on the base point x0 and is naturally isomorphic to its
Gromov boundary @GX which can be identified with @1X.

3. g-boundary. Denote by Xd the metric completion of .X; d/ and, viewing X as
a subset of Xd, denote by @Xd the difference XdnX. Let .X; l; x0/ be a pointed
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unbounded length space, i.e., its metric coincides with the internal metric l
of .X; d/. Given a measurable function g W R�0 ! R�0, the g-boundary of
.X; d; x0/ (as generalized by Buckley–Kokkendorff, 2005, from spherical and
Floyd boundaries) is @gX D @X
n@Xl, where 
.x; y/ D inf

R
�

g.z/dl.z/ for all
x; y 2 X (here the infimum is taken over all metric segments � D Œx; y�).

4. Hotchkiss boundary. Given a pointed proper Busemann convex metric
space .X; d; x0/, the Hotchkiss boundary of it is the set @H.X; x0/ of
isometries f W R�0 ! X with f .0/ D x0. The boundaries @x0

H X and @x1
H X are

homeomorphic for distinct x0; x1 2 X. In a Gromov hyperbolic space, @x0
H X is

homeomorphic to the Gromov boundary @GX.
5. Metric boundary. Given a pointed metric space .X; d; x0/ and an unbounded

subset S of R�0, a ray � W S ! X is called a weakly geodesic ray if, for every
x 2 X and every � > 0, there is an integer N such that jd.�.t/; �.0//� tj < �,
and jd.�.t/; x/� d.�.s/; x/� .t � s/j < � for all s; t 2 T with s; t � N.

Let G.X; d/ be the commutative unital C�-algebra with the norm jj:jj1,
generated by the (bounded, continuous) functions which vanish at infinity, the
constant functions, and the functions of the form gy.x/ D d.x; x0/ � d.x; y/;
cf. Rieffel metric space in Chap. 7 for definitions.

The Rieffel’s metric boundary @RX of .X; d/ is the difference X
dnX, where

X
d

is the metric compactification of .X; d/, i.e., the maximum ideal space (the
set of pure states) of this C�-algebra.

For a proper metric space .X; d/ (Chap. 1) with a countable base, the
boundary @RX consists of the limits limt!1 f .�.t// for every weakly geodesic
ray � and every function f from the above C�-algebra (Rieffel, 2002).

• Projectively flat metric space
A metric space, in which geodesics are defined, is called projectively flat if

it locally admits a geodesic mapping (or projective mapping), i.e., a mapping
preserving geodesics into an Euclidean space. Cf. Euclidean rank of metric
space in Chap. 1; similar terms are: affinely flat, conformally flat, etc.

A Riemannian space is projectively flat if and only if it has constant (sectional)
curvature. Cf. flat metric in Chap. 8.

6.2 Projective Geometry

Projective Geometry is a branch of Geometry dealing with the properties and
invariants of geometric figures under projection. Affine Geometry, Metric Geometry
and Euclidean Geometry are subsets of Projective Geometry of increasing com-
plexity. The main invariants of Projective, Affine, Metric, Euclidean Geometry are,
respectively, cross-ratio, parallelism (and relative distances), angles (and relative
distances), absolute distances.
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An n-dimensional projective space FPn is the space of one-dimensional vector
subspaces of a given .n C 1/-dimensional vector space V over a field F. The basic
construction is to form the set of equivalence classes of nonzero vectors in V
under the relation of scalar proportionality. This idea goes back to mathematical
descriptions of perspective.

The use of a basis of V allows the introduction of homogeneous coordinates of
a point in FPn which are usually written as .x1 W x2 W : : : W xn W xnC1/—a vector
of length n C 1, other than .0 W 0 W 0 W : : : W 0/. Two sets of coordinates that are
proportional denote the same point of the projective space. Any point of projective
space which can be represented as .x1 W x2 W : : : W xn W 0/ is called a point at
infinity. The part of a projective space FPn not “at infinity” , i.e., the set of points
of the projective space which can be represented as .x1 W x2 W : : : W xn W 1/, is an
n-dimensional affine space An.

The notation RPn denotes the real projective space of dimension n, i.e., the space
of 1D vector subspaces of RnC1. The notation CPn denotes the complex projective
space of dimension n. The projective space RPn carries a natural structure of a
compact smooth n-manifold. It can be viewed as the space of lines through the
zero element 0 of RnC1 (i.e., as a ray space). It can be viewed also as the set Rn,
considered as an affine space, together with its points at infinity. Also it can be seen
as the set of points of an n-sphere in R

nC1 with identified diametrically-opposite
points.

The projective points, projective straight lines, projective planes, . . . , projective
hyperplanes of FPn are one-, two-, three-, . . . , n-dimensional subspaces of V ,
respectively. Any two projective straight lines in a projective plane have one and
only one common point. A projective transformation (or collineation, projectivity)
is a bijection of a projective space onto itself, preserving collinearity (the property
of points to be on one line) in both directions. Any projective transformation is a
composition of a pair of perspective projections. Projective transformations do not
preserve sizes or angles but do preserve type (that is, points remain points, and lines
remain lines), incidence (that is, whether a point lies on a line), and cross-ratio
(Chap. 1).

Here, given four collinear points x; y; z; t 2 FPn, their cross-ratio .x; y; z; t/ is
.x�z/.y�t/
.y�z/.x�t/ , where x�z

x�t denotes the ratio f .x/�f .z/
f .x/�f .t/ for some affine bijection f from the

straight line lx;y through the points x and y onto F.
Given four projective straight lines lx; ly; lz; lt, containing points x; y; z; t,

respectively, and passing through a given point, their cross-ratio .lx; ly; lz; lt/ is
sin.lx;lz/ sin.ly;lt/
sin.ly;lz/ sin.lx;lt/

, coincides with .x; y; z; t/. The cross-ratio .x; y; z; t/ of four complex

numbers x; y; z; t is .x�z/.y�t/
.y�z/.x�t/ . It is real if and only if the four numbers are either

collinear or concyclic.

• Projective metric
Given a convex subset D of a projective space RPn, the projective metric

d is a metric on D such that shortest paths with respect to this metric are parts
of or entire projective straight lines. It is assumed that the following conditions
hold:
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1. D does not belong to a hyperplane;
2. For any three noncollinear points x; y; z 2 D, the triangle inequality holds in

the strict sense: d.x; y/ < d.x; z/C d.z; y/;
3. If x; y are different points in D, then the intersection of the straight line lx;y

through x and y with D is either all of lx;y, and forms a metric great circle, or
is obtained from lx;y by discarding some segment (which can be reduced to a
point), and forms a metric straight line.

The metric space .D; d/ is called a projective metric space. The problem
of determining all projective metrics on R

n (called linearly additive metrics in
Chap. 1) is the 4-th problem of Hilbert; it has been solved only for n D 2. In fact,
given a smooth measure on the space of hyperplanes in RPn, define the distance
between any two points x; y 2 RPn as one-half the measure of all hyperplanes
intersecting the line segment joining x and y. The obtained metric is projective; it
is the Busemann’s construction of projective metrics. [Amba76] proved that all
projective metrics on R

2 can be obtained by this construction.
In a projective metric space there cannot simultaneously be both types of

straight lines: they are either all metric straight lines, or they are all metric great
circles of the same length (Hamel’s theorem). Spaces of the first kind are called
open. They coincide with subspaces of an affine space; the geometry of open
projective metric spaces is a Hilbert Geometry. Hyperbolic Geometry is a Hilbert
Geometry in which there exist reflections at all straight lines.

Thus, the set D has Hyperbolic Geometry if and only if it is the interior
of an ellipsoid. The geometry of open projective metric spaces whose subsets
coincide with all of affine space, is a Minkowski Geometry. Euclidean Geometry
is a Hilbert Geometry and a Minkowski Geometry, simultaneously. Spaces of
the second kind are called closed; they coincide with the whole of RPn. Elliptic
Geometry is the geometry of a projective metric space of the second kind.

• Strip projective metric
The strip projective metric ([BuKe53]) is a projective metric on the strip

St D fx 2 R
2 W ��=2 < x2 < �=2g defined by

p
.x1 � y1/2 C .x2 � y2/2 C j tan x2 � tan y2j:

The Euclidean metric
p
.x1 � y1/2 C .x2 � y2/2 is not a projective metric on St.

• Half-plane projective metric
The half-plane projective metric ([BuKe53]) is a projective metric on

R
2C D fx 2 R

2 W x2 > 0g defined by

p
.x1 � y1/2 C .x2 � y2/2 C

ˇ
ˇ
ˇ
ˇ
1

x2
� 1

y2

ˇ
ˇ
ˇ
ˇ :

• Hilbert projective metric
Given a set H, the Hilbert projective metric h is a complete projective

metric on H. It means that H contains, together with two arbitrary distinct
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points x and y, also the points z and t for which h.x; z/ C h.z; y/ D h.x; y/,
h.x; y/ C h.y; t/ D h.x; t/, and that H is homeomorphic to a convex set in an
n-dimensional affine space An, the geodesics in H being mapped to straight lines
of An.

The metric space .H; h/ is called the Hilbert projective space, and the
geometry of a Hilbert projective space is called Hilbert Geometry.

Formally, let D be a nonempty convex open set in An with the boundary @D
not containing two proper coplanar but noncollinear segments (ordinarily the
boundary of D is a strictly convex closed curve, and D is its interior). Let x; y 2 D
be located on a straight line which intersects @D at z and t, z is on the side of
y, and t is on the side of x. Then the Hilbert projective metric h on D is the
symmetrization of the Funk distance (Chap. 1):

h.x; y/ D 1

2

�

ln
x � z

y � z
C ln

x � t

y � t

�

D 1

2
ln.x; y; z; t/;

where .x; y; z; t/ is the cross-ratio of x; y; z; t.
The metric space .D; h/ is a straight G-space. If D is an ellipsoid, then h is

the hyperbolic metric, and defines Hyperbolic Geometry on D. On the unit disk

 D fz 2 C W jzj < 1g the metric h coincides with the Cayley–Klein–Hilbert
metric. If n D 1, the metric h makes D isometric to the Euclidean line.

If @D contains coplanar but noncollinear segments, a projective metric on D
can be given by h.x; y/C d.x; y/, where d is any Minkowskian metric.

• Minkowskian metric
The Minkowskian metric (or Minkowski–Hölder distance) is the norm

metric of a finite-dimensional real Banach space.
Formally, let Rn be an n-dimensional real vector space, let K be a symmetric

convex body in R
n, i.e., an open neighborhood of the origin which is bounded,

convex, and symmetric (x 2 K if and only if �x 2 K). Then the Minkowski
distance function jjxjjK W Rn ! Œ0;1/, defined as inff˛ > 0 W x

˛
2 @Kg (cf.

Chap. 1), is a norm on R
n, and the Minkowskian metric mK on R

n is defined by

mK.x; y/ D jjx � yjjK :

The metric space .Rn;m/ is called Minkowskian space; its geometry is Minkowski
Geometry. It can be seen as an affine space An with a metric m in which the
unit ball is the body K. For a strictly convex symmetric body the Minkowskian
metric is a projective metric, and .Rn;m/ is a G-straight space. A Minkowski
Geometry is Euclidean if and only if its unit sphere is an ellipsoid.

The Minkowskian metric m is proportional to the Euclidean metric dE on
every given line l, i.e., m.x; y/ D �.l/dE.x; y/. Thus, the Minkowskian metric
can be considered as a metric which is defined in the whole affine space An and
has the property that the affine ratio ac

ab of any three collinear points a; b; c (cf.

Sect. 6.3) is equal to their distance ratio m.a;c/
m.a;b/ .
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Given a convex body C in a Minkowskian space with unit ball K, the
Minkowskian thickness and Minkowskian diameter of C are (Averkov, 2003):

supf˛ > 0 W ˛K 
 C � Cg and inff˛ > 0 W C � C 
 ˛Kg:

• C-distance
Given a convex body C 
 E

n, the C-distance (or relative distance; Lassak,
1991) is a distance on E

n defined, for any x; y 2 E
n, by

dC.x; y/ D 2
dE.x; y/

dE.x0; y0/
;

where x0y0 is the longest chord of C parallel to the segment xy. C-distance is not
related to C-metric in Chap. 10 and to rotating C-metric in Chap. 26.

The unit ball of the normed space with the norm jjxjj D dC.x; 0/ is 1
2
.C � C/.

For every r 2 Œ�1; 1�, it holds dC.x; y/ D drCC.1�r/.�C/.x; y/.
• Busemann metric

The Busemann metric ([Buse55]) is a metric on the real n-dimensional
projective space RPn defined by

min

(
nC1X

iD1

ˇ
ˇ
ˇ
ˇ

xi

jjxjj � yi

jjyjj
ˇ
ˇ
ˇ
ˇ ;

nC1X

iD1

ˇ
ˇ
ˇ
ˇ

xi

jjxjj C yi

jjyjj
ˇ
ˇ
ˇ
ˇ

)

for any x D .x1 W : : : W xnC1/; y D .y1 W : : : W ynC1/ 2 RPn, where jjxjj DqPnC1
iD1 x21 .

• Flag metric
Given an n-dimensional projective space FPn, the flag metric d is a metric on

FPn defined by a flag, i.e., an absolute consisting of a collection of m-planes ˛m,
m D 0; : : : ; n � 1, with ˛i�1 belonging to ˛i for all i 2 f1; : : : ; n � 1g. The metric
space .FPn; d/ is abbreviated by Fn and is called a flag space.

If one chooses an affine coordinate system .xi/i in a space Fn, so that the
vectors of the lines passing through the .n � m � 1/-plane ˛n�m�1 are defined by
the condition x1 D : : : xm D 0, then the flag metric d.x; y/ between the points
x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/ is defined by

d.x; y/ D jx1 � y1j; if x1 ¤ y1; d.x; y/ D jx2 � y2j; if x1 D y1; x2 ¤ y2; : : :

: : : ; d.x; y/ D jxk � ykj; if x1 D y1; : : : ; xk�1 D yk�1; xk ¤ yk; : : : :

• Projective determination of a metric
The projective determination of a metric is an introduction, in subsets of

a projective space, of a metric such that these subsets become isomorphic to a
Euclidean, hyperbolic, or elliptic space.
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To obtain a Euclidean determination of a metric in RPn, one should distin-
guish in this space an .n�1/-dimensional hyperplane� , called the hyperplane at
infinity, and define En as the subset of the projective space obtained by removing
from it this hyperplane � . In terms of homogeneous coordinates, � consists of
all points .x1 W : : : W xn W 0/, and E

n consists of all points .x1 W : : : W xn W xnC1/ with
xnC1 ¤ 0. Hence, it can be written as En D fx 2 RPn W x D .x1 W : : : W xn W 1/g.
The Euclidean metric dE on E

n is defined by

p
hx � y; x � yi;

where, for any x D .x1 W : : : W xn W 1/; y D .y1 W : : : W yn W 1/ 2 E
n, one has

hx; yi D Pn
iD1 xiyi.

To obtain a hyperbolic determination of a metric in RPn, a set D of interior
points of a real oval hypersurface � of order two in RPn is considered. The
hyperbolic metric dhyp on D is defined by

r

2
j ln.x; y; z; t/j;

where z and t are the points of intersection of the straight line lx;y through the
points x and y with�, .x; y; z; t/ is the cross-ratio of the points x; y; z; t, and r > 0
is a fixed constant. If, for any x D .x1 W : : : W xnC1/; y D .y1 W : : : W ynC1/ 2 RPn,
the scalar product hx; yi D �x1y1 CPnC1

iD2 xiyi is defined, the hyperbolic metric
on the set D D fx 2 RPn W hx; xi < 0g can be written, for a fixed constant r > 0,
as

r arccosh
jhx; yij

phx; xihy; yi ;

where arccosh denotes the nonnegative values of the inverse hyperbolic cosine.
To obtain an elliptic determination of a metric in RPn, one should consider,

for any x D .x1 W : : : W xnC1/; y D .y1 W : : : W ynC1/ 2 RPn, the inner product
hx; yi D PnC1

iD1 xiyi. The elliptic metric dell on RPn is defined now by

r arccos
jhx; yij

phx; xihy; yi ;

where r > 0 is a fixed constant, and arccos is the inverse cosine in Œ0; ��.
In all the considered cases, some hypersurfaces of the second-order remain

invariant under given motions, i.e., projective transformations preserving a given
metric. These hypersurfaces are called absolutes. In the case of a Euclidean
determination of a metric, the absolute is an imaginary .n � 2/-dimensional oval
surface of order two, in fact, the degenerate absolute x21C� � �Cx2n D 0, xnC1 D 0.
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In the case of a hyperbolic determination of a metric, the absolute is a real
.n � 1/-dimensional oval hypersurface of order two, in the simplest case, the
absolute �x21 C x22 C � � � C x2nC1 D 0. In the case of an elliptic determination of
a metric, the absolute is an imaginary .n � 1/-dimensional oval hypersurface of
order two, in fact, the absolute x21 C � � � C x2nC1 D 0.

6.3 Affine Geometry

An n-dimensional affine space over a field F is a set An (the elements of which
are called points of the affine space) to which corresponds an n-dimensional vector
space V over F (called the space associated to An) such that, for any a 2 An, A D
a C V D fa C v W v 2 Vg. In the other words, if a D .a1; : : : ; an/ and b D
.b1; : : : ; bn/ 2 An, then the vector

�!
ab D .b1 � a1; : : : ; bn � an/ belongs to V .

In an affine space, one can add a vector to a point to get another point, and
subtract points to get vectors, but one cannot add points, since there is no origin.

Given points a; b; c; d 2 An such that c ¤ d, and the vectors
�!
ab and

�!
cd are collinear,

the scalar 	, defined by
�!
ab D 	

�!
cd, is called the affine ratio of ab and cd, and is

denoted by ab
cd .

An affine transformation (or affinity) is a bijection of An onto itself which
preserves collinearity and ratios of distances In this sense, affine indicates a
special class of projective transformations that do not move any objects from the
affine space to the plane at infinity or conversely. Any affine transformation is a
composition of rotations, translations, dilations, and shears. The set of all affine
transformations of An forms a group Aff .An/, called the general affine group of An.
Each element f 2 Aff .A/ can be given by a formula f .a/ D b, bi D Pn

jD1 pijaj C cj,
where ..pij// is an invertible matrix.

The subgroup of Aff .An/, consisting of affine transformations with det..pij// D
1, is called the equi-affine group of An. An equi-affine space is an affine space with
the equi-affine group of transformations. The fundamental invariants of an equi-
affine space are volumes of parallelepipeds. In an equi-affine plane A2, any two
vectors v1; v2 have an invariant jv1 � v2j (the modulus of their cross product)—the
surface area of the parallelogram constructed on v1 and v2.

Given a nonrectilinear curve � D �.t/, its affine parameter (or equi-affine arc

length) is an invariant s D R t
t0

j� 0 � �
00 j1=3dt. The invariant k D d2�

ds2
� d3�

ds3
is

called the equi-affine curvature of � . Passing to the general affine group, two more
invariants of the curve are considered: the affine arc length 
 D R

k1=2ds, and the
affine curvature k D 1

k3=2
dk
ds .

For An, n > 2, the affine parameter (or equi-affine arc length) of a curve � D �.t/

is defined by s D R t
t0

j.� 0

; �
00

; : : : ; � .n//j 2
n.nC1/ dt, where the invariant .v1; : : : ; vn/

is the (oriented) volume spanned by the vectors v1; : : : ; vn which is equal to the
determinant of the n � n matrix whose i-th column is the vector vi.
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• Affine distance
Given an affine plane A2, a line element .a; la/ of A2 consists of a point a 2 A2

together with a straight line la 
 A2 passing through a.
The affine distance is a distance on the set of all line elements of A2 defined

by

2f 1=3;

where, for a given line elements .a; la/ and .b; lb/, f is the surface area of the
triangle abc if c is the point of intersection of the straight lines la and lb. The
affine distance between .a; la/ and .b; lb/ can be interpreted as the affine length
of the arc ab of a parabola such that la and lb are tangent to the parabola at a and
b, respectively.

• Affine pseudo-distance
Let A2 be an equi-affine plane, and let � D �.s/ be a curve in A2 defined as a

function of the affine parameter s. The affine pseudo-distance dpaff for A2 is

dpaff .a; b/ D
ˇ
ˇ
ˇ
ˇ
�!
ab � d�

ds

ˇ
ˇ
ˇ
ˇ ;

i.e., it is equal to the surface area of the parallelogram constructed on the vectors�!
ab and d�

ds , where b is an arbitrary point in A2, a is a point on � , and d�
ds is the

tangent vector to the curve � at the point a.
Similarly, the affine pseudo-distance for an equi-affine space A3 is defined as

ˇ
ˇ
ˇ
ˇ.

�!
ab;

d�

ds
;

d2�

ds2
/

ˇ
ˇ
ˇ
ˇ ;

where � D �.s/ is a curve in A3, defined as a function of the affine parameter s,

b 2 A3, a is a point of � , and the vectors d�
ds ;

d2�
ds2

are obtained at the point a.

For An, n > 3, we have dpaff .a; b/ D j.�!ab; d�
ds ; : : : ;

dn�1�

dsn�1 /j. For an arbitrary

parametrization � D �.t/, one obtains dpaff .a; b/ D j.�!ab; �
0

; : : : ; � .n�1//jj.� 0

;

: : : ; � .n�1//j 1�n
1Cn .

• Affine metric
The affine metric is a metric on a nondevelopable surface r D r.u1; u2/ in an

equi-affine space A3, given by its metric tensor ..gij//:

gij D aij

jdet..aij//j1=4 ;

where aij D .@1r; @2r; @ijr/, i; j 2 f1; 2g.
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6.4 Non-Euclidean Geometry

The term non-Euclidean Geometry describes both Hyperbolic Geometry (or
Lobachevsky-Bolyai-Gauss Geometry) and Elliptic Geometry which are contrasted
with Euclidean Geometry (or Parabolic Geometry). The essential difference
between Euclidean and non-Euclidean Geometry is the nature of parallel lines.
In Euclidean Geometry, if we start with a line l and a point a, which is not on l, then
there is only one line through a that is parallel to l. In Hyperbolic Geometry there
are infinitely many lines through a parallel to l. In Elliptic Geometry, parallel lines
do not exist. The Spherical Geometry is also “non-Euclidean”, but it fails the axiom
that any two points determine exactly one line.

• Spherical metric
Let Sn.0; r/ D fx 2 R

nC1 W PnC1
iD1 x2i D r2g be the sphere in R

nC1 with the
center 0 and the radius r > 0.

The spherical metric (or great circle metric) is a metric on Sn.0; r/ defined
by

dsph D r arccos

 
jPnC1

iD1 xiyij
r2

!

;

where arccos is the inverse cosine in Œ0; ��. It is the length of the great circle
arc, passing through x and y. In terms of the standard inner product hx; yi D
PnC1

iD1 xiyi on R
nC1, the spherical metric can be written as r arccos jhx;yijphx;xihy;yi .

The metric space .Sn.0; r/; dsph/ is called n-dimensional spherical space. It
is a space of curvature 1=r2, and r is the radius of curvature. It is a model of n-
dimensional Spherical Geometry. The great circles of the sphere are its geodesics
and all geodesics are closed and of the same length. See, for example, [Blum70].

• Elliptic metric
Let RPn be the real n-dimensional projective space. The elliptic metric dell is

a metric on RPn defined by

r arccos
jhx; yij

phx; xihy; yi ;

where, for any x D .x1 W : : : W xnC1/ and y D .y1 W : : : W ynC1/ 2 RPn, one has
hx; yi D PnC1

iD1 xiyi, r > 0 is a constant and arccos is the inverse cosine in Œ0; ��.
The metric space .RPn; dell/ is called n-dimensional elliptic space. It is a

model of n-dimensional Elliptic Geometry. It is the space of curvature 1=r2, and
r is the radius of curvature. As r ! 1, the metric formulas of Elliptic Geometry
yield formulas of Euclidean Geometry (or become meaningless).

If RPn is viewed as the set En.0; r/, obtained from the sphere Sn.0; r/ D
fx 2 R

nC1 W PnC1
iD1 x2i D r2g in R

nC1 with center 0 and radius r by identifying
diametrically-opposite points, then the elliptic metric on En.0; r/ can be written
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as dsph.x; y/ if dsph.x; y/ � �
2

r, and as �r�dsph.x; y/ if dsph.x; y/ >
�
2

r, where dsph

is the spherical metric on Sn.0; r/. Thus, no two points of En.0; r/ have distance
exceeding �

2
r. The elliptic space .E2.0; r/; dell/ is called the Poincaré sphere.

If RPn is viewed as the set En of lines through the zero element 0 in R
nC1,

then the elliptic metric on En is defined as the angle between the corresponding
subspaces.

An n-dimensional elliptic space is a Riemannian space of constant positive
curvature. It is the only such space which is topologically equivalent to a
projective space. See, for example, [Blum70] and [Buse55].

• Hermitian elliptic metric
Let CPn be the n-dimensional complex projective space. The Hermitian

elliptic metric dH
ell (see, for example, [Buse55]) is a metric on CPn defined by

r arccos
jhx; yij

phx; xihy; yi ;

where, for any x D .x1 W : : : W xnC1/ and y D .y1 W : : : W ynC1/ 2 CPn, one has
hx; yi D PnC1

iD1 xiyi, r > 0 is a constant and arccos is the inverse cosine in Œ0; ��.
The metric space .CPn; dH

ell/ is called n-dimensional Hermitian elliptic space
(cf. Fubini–Study metric in Chap. 7).

• Elliptic plane metric
The elliptic plane metric is the elliptic metric on the elliptic plane RP2.
If RP2 is viewed as the Poincaré sphere (i.e., a sphere in R

3 with identified
diametrically-opposite points) of diameter 1 tangent to the extended complex
plane C D C [ f1g at the point z D 0, then, under the stereographic projection
from the “north pole” .0; 0; 1/, C with identified points z and � 1

z is a model of
the elliptic plane.

The elliptic plane metric dell on it is defined by its line element ds2 D jdzj2
.1Cjzj2/2 .

• Pseudo-elliptic distance
The pseudo-elliptic distance (or elliptic pseudo-distance) dpell is defined, on

the extended complex plane C D C [ f1g with identified points z and � 1
z , by

ˇ
ˇ
ˇ
ˇ

z � u

1C zu

ˇ
ˇ
ˇ
ˇ :

In fact, dpell.z; u/ D tan dell.z; u/, where dell is the elliptic plane metric.
• Hyperbolic metric

Let RPn be the n-dimensional real projective space. Let, for any x D .x1 W
: : : W xnC1/, y D .y1 W : : : W ynC1/ 2 RPn, their scalar product hx; yi be �x1y1 CPnC1

iD2 xiyi.
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The hyperbolic metric dhyp is a metric on the set Hn D fx 2 RPn W hx; xi < 0g
defined, for a fixed constant r > 0, by

rarccosh
jhx; yij

phx; xihy; yi ;

where arccosh denotes the nonnegative values of the inverse hyperbolic cosine.
In this construction, the points of Hn can be viewed as the one-spaces of the

pseudo-Euclidean space Rn;1 inside the cone C D fx 2 R
n;1 W hx; xi D 0g.

The metric space .Hn; dhyp/ is called n-dimensional hyperbolic space. It is a
model of n-dimensional Hyperbolic Geometry. It is the space of curvature �1=r2,
and r is the radius of curvature. Replacement of r by ir transforms all metric
formulas of Hyperbolic Geometry into the corresponding formulas of Elliptic
Geometry. As r ! 1, both systems yield formulas of Euclidean Geometry (or
become meaningless).

If Hn is viewed as the set fx 2 R
n W Pn

iD1 x2i < Kg, where K > 1 is any fixed
constant, the hyperbolic metric can be written as

r

2
ln
1Cp

1 � �.x; y/

1 �p
1 � �.x; y/ ;

where �.x; y/ D .K�Pn
iD1 x2i /.K�Pn

iD1 y2i /
.K�Pn

iD1 xiyi/2
, and r > 0 is a number with tanh 1

r D 1p
K

.

If Hn is viewed as a submanifold of the .nC1/-dimensional pseudo-Euclidean
space R

n;1 with the scalar product hx; yi D �x1y1 C PnC1
iD2 xiyi (in fact, as the

top sheet fx 2 R
n;1 W hx; xi D �1; x1 > 0g of the two-sheeted hyperboloid

of revolution), then the hyperbolic metric on Hn is induced from the pseudo-
Riemannian metric on Rn;1 (cf. Lorentz metric in Chap. 26).

An n-dimensional hyperbolic space is a Riemannian space of constant
negative curvature. It is the only such space which is complete and topologically
equivalent to an Euclidean space. (See, for example, [Blum70, Buse55].)

• Hermitian hyperbolic metric
Let CPn be the n-dimensional complex projective space. Let, for any x D

.x1 W : : : W xnC1/, y D .y1 W : : : W ynC1/ 2 CPn, their scalar product hx; yi be
�x1y1 CPnC1

iD2 xiyi.
The Hermitian hyperbolic metric dH

hyp (see, for example, [Buse55]) is a
metric on the set CHn D fx 2 CPn W hx; xi < 0} defined, for a fixed constant
r > 0, by

arccosh
jhx; yij

phx; xihy; yi ;

where arccosh denotes the nonnegative values of the inverse hyperbolic cosine.
The metric space .CHn; dH

hyp/ is called n-dimensional Hermitian hyperbolic
space.
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• Poincaré metric
The Poincaré metric dP is the hyperbolic metric for the Poincaré disk model

of Hyperbolic Geometry. In this model the unit disk 
 D fz 2 C W jzj < 1g is
called the hyperbolic plane, every point of
 is called a hyperbolic point, circular
arcs (and diameters) in 
 which are orthogonal to the absolute � D fz 2 C W
jzj D 1g are called hyperbolic straight lines. Every point of � is called an ideal
point.

The angular measurements in this model are the same as in Hyperbolic
Geometry, i.e., it is a conformal model. There is a one-to-one correspondence
between segments and acute angles. The Poincaré metric on 
 is defined by its
line element

ds2 D jdzj2
.1 � jzj2/2 D dz21 C dz22

.1 � z21 � z22/
2
:

The distance dP between two points z and u of
 can be written as

1

2
ln

j1 � zuj C jz � uj
j1� zuj � jz � uj D arctanh

jz � uj
j1 � zuj :

In terms of cross-ratio, it is equal to

1

2
ln.z; u; z�; u�/ D 1

2
ln
.z� � z/.u� � u/

.z� � u/.u� � z/
;

where z� and u� are the points of intersection of the hyperbolic straight line
passing through z and u with �, z� on the side of u, and u� on the side of z.

The multiplicative distance function on the segments zu of 
 is defined
(Hartshorne, 2003) by �.zu/ D .z; u; z�; u�/�1; it allows the definition of
trigonometric functions in the absence of continuity.

In the conformal Poincaré half-plane model of Hyperbolic Geometry the
hyperbolic plane is the upper half-plane H2 D fz 2 C W z2 > 0g, and the
hyperbolic lines are semicircles and half-lines which are orthogonal to the real
axis. The absolute (i.e., the set of ideal points) is the real axis together with the
point at infinity.

The line element of the Poincaré metric on H2 is given by

ds2 D jdzj2
.=z/2

D dz21 C dz22
z22

:

The distance between two points z; u can be written as

1

2
ln

jz � uj C jz � uj
jz � uj � jz � uj D arctanh

jz � uj
jz � uj D 1

2
ln.z; u; z�; u�/ D 1

2
ln
.z� � z/.u� � u/

.z� � u/.u� � z/
;



6.4 Non-Euclidean Geometry 129

where z� is the ideal point of the half-line emanating from z and passing through
u, and u� is the ideal point of the half-line emanating from u and passing through
z.

In general, the hyperbolic metric in any domain D 
 C with at least three
boundary points is defined as the preimage of the Poincaré metric in 
 under a
conformal mapping f W D ! 
. Its line element has the form

ds2 D jf 0.z/j2jdzj2
.1 � jf .z/j2/2 :

The distance between two points z and u in D can be written as

1

2
ln

j1� f .z/f .u/j C jf .z/ � f .u/j
j1� f .z/f .u/j � jf .z/ � f .u/j :

• Pseudo-hyperbolic distance
The pseudo-hyperbolic distance (or Gleason distance, hyperbolic pseudo-

distance) dphyp is a metric on the unit disk 
 D fz 2 C W jzj < 1g, defined
by

ˇ
ˇ
ˇ
ˇ

z � u

1 � zu

ˇ
ˇ
ˇ
ˇ :

In fact, dphyp.z; u/ D tanh dP.z; u/, where dP is the Poincaré metric on 
.
• Cayley–Klein–Hilbert metric

The Cayley–Klein–Hilbert metric dCKH is the hyperbolic metric for the
Klein model (or projective disk model, for Hyperbolic Geometry. In this model
the hyperbolic plane is realized as the unit disk 
 D fz 2 C W jzj < 1g, and
the hyperbolic straight lines are realized as the chords of 
. Every point of the
absolute � D fz 2 C W jzj D 1g is called an ideal point. This model is not
conformal: the angular measurements are distorted. The Cayley–Klein–Hilbert
metric on
 is given by its metric tensor ..gij//, i; j D 1; 2:

g11 D r2.1 � z22/

.1 � z21 � z22/
2
; g12 D r2z1z2

.1 � z21 � z22/
2
; g22 D r2.1 � z21/

.1 � z21 � z22/
2
;

where r is any positive constant. The distance between points z and u in 
 is

r arccosh

0

B
@

1 � z1u1 � z2u2
q
1 � z21 � z22

q
1 � u21 � u22

1

C
A ;

where arccosh denotes the nonnegative values of the inverse hyperbolic cosine.
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• Weierstrass metric
Given a real n-dimensional inner product space .Rn; h; i/, n � 2, the

Weierstrass metric dW is a metric on R
n defined by

arccosh.
p
1C hx; xi

p
1C hy; yi � hx; yi/;

where arccosh denotes the nonnegative values of the inverse hyperbolic cosine.
Here, .x;

p
1C hx; xi/ 2 R

n ˚ R are the Weierstrass coordinates of x 2 R
n,

and the metric space .Rn; dW/ can be seen as the Weierstrass model of Hyperbolic
Geometry.

The Cayley–Klein–Hilbert metric dCKH.x; y/ D arccosh 1�hx;yip
1�hx;xi

p
1�hy;yi on

the open ball Bn D fx 2 R
n W hx; xi < 1g can be obtained from dW by

dGKH.x; y/ D dW.�.x/; �.y//, where � W Rn ! Bn is the Weierstrass mapping:
�.x/ D xp

1�hx;xi .

• Harnack metric
Given a domain D 
 R

n, n � 2, the Harnack metric is a metric on D defined
by

sup
f

j log
f .x/

f .y/
j;

where the supremum is taken over all positive functions which are harmonic on
D.

• Quasi-hyperbolic metric
Given a domain D 
 R

n, n � 2, the quasi-hyperbolic metric on D is defined
by

inf
�2�

Z

�

jdzj
�.z/

;

where the infimum is taken over the set � of all rectifiable curves connecting x
and y in D, �.z/ D infu2@D jjz � ujj2 is the distance between z and the boundary
@D of D, and jj:jj2 is the Euclidean norm on R

n.
This metric is Gromov hyperbolic if the domain D is uniform, i.e., there

exist constants C;C0 such that each pair of points x; y 2 D can be joined by
a rectifiable curve � D �.x; y/ 2 D of length l.�/ at most Cjx � yj, and
minfl.�.x; z//; l.�.z; y//g � C0d.z; @D/ holds for all z 2 � . Also, the quasi-
hyperbolic metric is the inner metric (Chap. 4) of the distance ratio metric.

For n D 2, one can define the hyperbolic metric on D by

inf
�2�

Z

�

2jf 0.z/j
1 � jf .z/j2 jdzj;
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where f W D ! 
 is any conformal mapping of D onto the unit disk 
 D fz 2
C W jzj < 1g. For n � 3, it is defined only for the half-hyperplane Hn and for
the open unit ball Bn as the infimum over all � 2 � of the integrals

R
�

jdzj
zn

and
R
�

2jdzj
1�jjzjj22 .

• Apollonian metric
Let D 
 R

n, be a domain such that its complement is not contained in a
hyperplane or a sphere. The Apollonian metric (or Barbilian metric, [Barb35])
on D is defined (denoting the boundary of D by @D) by the cross-ratio as

sup
a;b2@D

ln
jja � xjj2jjb � yjj2
jja � yjj2jjb � xjj2 :

This metric is Gromov hyperbolic.
• Half-Apollonian metric

Given a domain D 
 R
n, the half-Apollonian metric �D (Ha̋sto and Lindén,

2004) on D is defined (denoting the boundary of D by @D) by

sup
a2@D

ˇ
ˇ
ˇ
ˇln

jja � yjj2
jja � xjj2

ˇ
ˇ
ˇ
ˇ :

This metric is Gromov hyperbolic only if the domain is Rnnfxg.
• Gehring metric

Given a domain D 
 R
n, the Gehring metric QjD (Gehring, 1982) is a metric

on D, defined by

1

2
ln

��

1C jjx � yjj2
�.x/

��

1C jjx � yjj2
�.y/

��

;

where �.x/ D infu2@D jjx � ujj2 is the distance between x and the boundary of D.
This metric is Gromov hyperbolic.

• Distance ratio metric
Given a domain D 
 R

n, the distance ratio metric (or jD-metric) is
(Gehring–Palka, 1976, and Vuorinen, 1985) a metric on D defined by

ln

�

1C jjx � yjj2
minf�.x/; �.y/g

�

;

where �.x/ D infu2@D jjx � ujj2 is the distance between x and the boundary of D.
This metric is Gromov hyperbolic only if the domain is Rnnfxg.

• Triangular ratio metric
Given a domain D 
 R

n, the triangular ratio metric on D is defined
(denoting the boundary of D by @D) by

sup
z2@D

jjx � yjj2
.jjx � zjj2 C jjy � zjj2j :



132 6 Distances in Geometry

• Visual angle metric
Given a domain D 
 R

n, the visual angle metric on D is defined (denoting
the boundary of D by @D) by Klein et al., 2014, as

sup
z2@D

†.x; z; y/:

• Dovgoshev–Hariri–Vuorinen metric
Given a metric space .X; d/ and an open set D in it with nonempty boundary

@D, Dovgoshev–Hariri–Vuorinen, 2015, showed that

ln

 

1C cd.x; y/
p

d.x; @D/d.y; @D/

!

is a metric for every c � 2 with 2 being the best possible constant.
• Ferrand metric

Given a domain D 
 R
n, the Ferrand metric 
D (Ferrand, 1987) is a metric

on D defined by

inf
�2�

Z

�

sup
a;b2@D

jja � bjj2
jjz � ajj2jjz � bjj2 jdzj;

where the infimum is taken over the set � of all rectifiable curves connecting x
and y in D, @D is the boundary of D, and jj:jj2 is the Euclidean norm on R

n.
This metric is the inner metric (Chap. 4) of the Möbius metric.

• Möbius metric
Given a domain D 
 R

n, the Möbius (or absolute ratio, ıD-) metric;
Siettenranta, 1999) is a metric on D defined by

sup
a;b2@D

ln

�

1C jja � xjj2jjb � yjj2
jja � bjj2jjx � yjj2

�

:

This metric is Gromov hyperbolic.
• Modulus metric

Let D 
 R
n, be a domain. The conformal modulus of a family � of locally

rectifiable curves in D is M.�/ D inf�
R
Rn �

ndm, where m is the n-dimensional
Lebesgue measure, and � is any Borel-measurable function with

R
�
�ds � 1 and

� � 0 for each � 2 � . Cf. general modulus in extremal metric, Chap. 8.
Let
.E;FI D/ denote the family of all closed nonconstant curves in D joining

E and F. The modulus metric �D (Gál, 1960) is a metric on D, defined by

inf
Cxy

M.
.Cxy; @DI D//;
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where Cxy is a compact connected set such that for some � W Œ0; 1� ! D, it holds
Cxy D �.Œ0; 1�/ and �.0/ D x, �.1/ D y.

The Ferrand second metric 	�
D (Ferrand, 1997) is a metric on D, defined by

�

inf
Cx;Cy

M.
.Cx;CyI D//

� 1
1�n

;

where Cz (z D x; y) is a compact connected set such that, for some �z W Œ0; 1� !
D, it holds Cz D �.Œ0; 1//, z 2 j�zj and �z.t/ ! @D as t ! 1.

Above two metrics are Gromov hyperbolic if D is the open ball Bn D fx 2
R

n W hx; xi < 1g or a simply connected domain in R
2.

• Conformal radius
Let D 
 C, be a simply connected domain and let z 2 D, z ¤ 1.
The conformal (or harmonic) radius is defined by

rad.z;D/ D .f 0.z//�1;

where f W D ! 
 is the uniformizing map, i.e., the unique conformal mapping
onto the unit disk with f .z/ D 0 2 
 and f 0.z/ > 0.

The Euclidean distance between z and the boundary @D of D (i.e., the radius
of the largest disk inscribed in D) lies in the segment Œ rad.z;D/

4
; rad.z;D/�.

If D is compact, define rad.1;D/ as limz!1 f .z/
z , where f W .Cn
/ ! .CnD/

is the unique conformal mapping with f .1/ D 1 and positive above limit. This
radius is the transfinite diameter from Chap. 1.

• Parabolic distance
The parabolic distance is a metric on R

nC1, considered as Rn �R defined by

p
.x1 � y1/2 C � � � C .xn � yn/2 C jtx � tyj1=m;m 2 N;

for any x D .x1; : : : ; xn; tx/; y D .y1; : : : ; yn; ty/ 2 R
n � R.

The space R
n � R can be interpreted as multidimensional space-time.

Usually, the value m D 2 is applied. There exist some variants of the parabolic
distance, for example, the parabolic distance

supfjx1 � y1j; jx2 � y2j1=2g

on R
2 (cf. also Rickman’s rug metric in Chap. 19), or the half-space parabolic

distance on R
3C D fx 2 R

3 W x1 � 0g defined by

jx1 � y1j C jx2 � y2jp
x1 C p

x2 Cpjx2 � y2j
C
p

jx3 � y3j:



Chapter 7
Riemannian and Hermitian Metrics

Riemannian Geometry is a multidimensional generalization of the intrinsic geom-
etry of 2D surfaces in the Euclidean space E

3. It studies real smooth manifolds
equipped with Riemannian metrics, i.e., collections of positive-definite symmetric
bilinear forms ..gij// on their tangent spaces which vary smoothly from point to
point. The geometry of such (Riemannian) manifolds is based on the line element
ds2 D P

i;j gijdxidxj. This gives, in particular, local notions of angle, length of curve,
and volume.

From these notions some other global quantities can be derived, by integrating
local contributions. Thus, the value ds is interpreted as the length of the vector
.dx1; : : : ; dxn/, and it is called the infinitesimal distance. The arc length of a curve

� is expressed by
R
�

qP
i;j gijdxidxj, and then the intrinsic metric on a Riemannian

manifold is defined as the infimum of lengths of curves joining two given points of
the manifold.

Therefore, a Riemannian metric is not an ordinary metric, but it induces an
ordinary metric, in fact, the intrinsic metric, called Riemannian distance, on any
connected Riemannian manifold. A Riemannian metric is an infinitesimal form of
the corresponding Riemannian distance.

As particular special cases of Riemannian Geometry, there occur Euclidean
Geometry as well as the two standard types, Elliptic Geometry and Hyperbolic
Geometry, of non-Euclidean Geometry. If the bilinear forms ..gij// are nonde-
generate but indefinite, one obtains pseudo-Riemannian Geometry. In the case of
dimension four (and signature .1; 3/) it is the main object of the General Theory of
Relativity.

If ds D F.x1; : : : ; xn; dx1; : : : ; dxn/, where F is a real positive-definite convex
function which cannot be given as the square root of a symmetric bilinear form (as
in the Riemannian case), one obtains the Finsler Geometry generalizing Riemannian
Geometry.

Hermitian Geometry studies complex manifolds equipped with Hermitian met-
rics, i.e., collections of positive-definite symmetric sesquilinear forms (or 3

2
-linear
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136 7 Riemannian and Hermitian Metrics

forms) since they are linear in one argument and antilinear in the other) on their
tangent spaces, which vary smoothly from point to point. It is a complex analog of
Riemannian Geometry.

A special class of Hermitian metrics form Kähler metrics which have a
closed fundamental form w. A generalization of Hermitian metrics give complex
Finsler metrics which cannot be written as a bilinear symmetric positive-definite
sesqulinear form.

7.1 Riemannian Metrics and Generalizations

A real n-manifold Mn with boundary is (cf. Chap. 2) a Hausdorff space in which
every point has an open neighborhood homeomorphic to either an open subset of
E

n, or an open subset of the closed half of E
n. The set of points which have an

open neighborhood homeomorphic to E
n is called the interior (of the manifold); it

is always nonempty.
The complement of the interior is called the boundary (of the manifold); it is an

(n � 1)-dimensional manifold. If it is empty, one obtains a real n-manifold without
boundary. Such manifold is called closed if it is compact, and open, otherwise.

An open set of Mn together with a homeomorphism between the open set and
an open set of En is called a coordinate chart. A collection of charts which cover
Mn is an atlas on Mn. The homeomorphisms of two overlapping charts provide a
transition mapping from a subset of En to some other subset of En.

If all these mappings are continuously differentiable, then Mn is a differentiable
manifold. If they are k times (infinitely often) continuously differentiable, then the
manifold is a Ck manifold (respectively, a smooth manifold, or C1 manifold).

An atlas of a manifold is called oriented if the Jacobians of the coordinate
transformations between any two charts are positive at every point. An orientable
manifold is a manifold admitting an oriented atlas.

Manifolds inherit many local properties of the Euclidean space: they are locally
path-connected, locally compact, and locally metrizable. Every smooth Riemannian
manifold embeds isometrically (Nash, 1956) in some finite-dimensional Euclidean
space.

Associated with every point on a differentiable manifold is a tangent space and
its dual, a cotangent space. Formally, let Mn be a Ck manifold, k � 1, and p a
point of Mn. Fix a chart ' W U ! E

n, where U is an open subset of Mn containing
p. Suppose that two curves �1 W .�1; 1/ ! Mn and �2 W .�1; 1/ ! Mn with
�1.0/ D �2.0/ D p are given such that ' � �1 and ' � �2 are both differentiable at 0.

Then �1 and �2 are called tangent at 0 if .' � �1/0

.0/= .' � �2/0

.0/. If the
functions ' � � i W .�1; 1/ ! E

n, i D 1; 2, are given by n real-valued component
functions .' �� i/1.t/; : : : ; .' �� i/n.t/, the condition above means that their Jacobians�

d.'	� i/1.t/
dt ; : : : ;

d.'	� i/n.t/
dt

�
coincide at 0. This is an equivalence relation, and the

equivalence class �
0

.0/ of the curve � is called a tangent vector of Mn at p.
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The tangent space Tp.Mn/ of Mn at p is defined as the set of all tangent vectors
at p. The function .d'/p W Tp.Mn/ ! E

n defined by .d'/p.�
0

.0// D .' � �/0

.0/,
is bijective and can be used to transfer the vector space operations from E

n over to
Tp.Mn/.

All the tangent spaces Tp.Mn/, p 2 Mn, when “glued together”, form the tangent
bundle T.Mn/ of Mn. Any element of T.Mn/ is a pair . p; v/, where v 2 Tp.Mn/.

If for an open neighborhood U of p the function ' W U ! R
n is a coordinate

chart, then the preimage V of U in T.Mn/ admits a mapping  W V ! R
n � R

n

defined by  . p; v/ D .'. p/; d'. p//. It defines the structure of a smooth 2n-
dimensional manifold on T.Mn/. The cotangent bundle T�.Mn/ of Mn is obtained
in similar manner using cotangent spaces T�

p .M
n/, p 2 Mn.

A vector field on a manifold Mn is a section of its tangent bundle T.Mn/, i.e., a
smooth function f W Mn ! T.Mn/ which assigns to every point p 2 Mn a vector
v 2 Tp.Mn/.

A connection (or covariant derivative) is a way of specifying a derivative of a
vector field along another vector field on a manifold.

Formally, the covariant derivative r of a vector u (defined at a point p 2 Mn) in
the direction of the vector v (defined at the same point p) is a rule that defines a third
vector at p, called rvu which has the properties of a derivative. A Riemannian metric
uniquely defines a special covariant derivative called the Levi-Civita connection.
It is the torsion-free connection r of the tangent bundle, preserving the given
Riemannian metric.

The Riemann curvature tensor R is the standard way to express the curvature of
Riemannian manifolds. The Riemann curvature tensor can be given in terms of the
Levi-Civita connection r by the following formula:

R.u; v/w D rurvw � rvruw � rŒu;v�w;

where R.u; v/ is a linear transformation of the tangent space of the manifold Mn;
it is linear in each argument. If u D @

@xi
and v D @

@xj
are coordinate vector fields,

then Œu; v� D 0, and the formula simplifies to R.u; v/w D rurvw � rvruw, i.e., the
curvature tensor measures anti-commutativity of the covariant derivative. The linear
transformation w ! R.u; v/w is also called the curvature transformation.

The Ricci curvature tensor (or Ricci curvature) Ric is obtained as the trace of the
full curvature tensor R. It can be thought of as a Laplacian of the Riemannian metric
tensor in the case of Riemannian manifolds. Ricci curvature is a linear operator on
the tangent space at a point. Given an orthonormal basis .ei/i in the tangent space
Tp.Mn/, we have

Ric.u/ D
X

i

R.u; ei/ei:

The value of Ric.u/ does not depend on the choice of an orthonormal basis. Starting
with dimension four, the Ricci curvature does not describe the curvature tensor
completely.
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The Ricci scalar (or scalar curvature) Sc of a Riemannian manifold Mn is the
full trace of the curvature tensor; given an orthonormal basis .ei/i at p 2 Mn, we
have

Sc D
X

i;j

hR.ei; ej/ej; eii D
X

i

hRic.ei/; eii:

The sectional curvature K.
/ of a Riemannian manifold Mn is defined as the
Gauss curvature of an 
-section at a point p 2 Mn, where a 
-section is a locally-
defined piece of surface which has the 2-plane 
 as a tangent plane at p, obtained
from geodesics which start at p in the directions of the image of 
 under the
exponential mapping.

• Metric tensor
The metric (or basic, fundamental) tensor is a symmetric tensor of rank 2,

that is used to measure distances and angles in a real n-dimensional differentiable
manifold Mn. Once a local coordinate system .xi/i is chosen, the metric tensor
appears as a real symmetric n � n matrix ..gij//.

The assignment of a metric tensor on Mn introduces a scalar product (i.e.,
symmetric bilinear, but in general not positive-definite, form) h; ip on the tangent
space Tp.Mn/ at any p 2 Mn defined by

hx; yip D gp.x; y/ D
X

i;j

gij. p/xiyj;

where x D .x1; : : : ; xn/, y D .y1; : : : ; yn/ 2 Tp.Mn/. The collection of all these
scalar products is called the metric g with the metric tensor ..gij//. The length ds
of the vector .dx1; : : : ; dxn/ is expressed by the quadratic differential form

ds2 D
X

i;j

gijdxidxj;

which is called the line element (or first fundamental form) of the metric g.

The length of a curve � is expressed by the formula
R
�

qP
i;j gijdxidxj. In

general it may be real, purely imaginary, or zero (an isotropic curve).
Let p; q and r be the numbers of positive, negative and zero eigenvalues of the

matrix ..gij// of the metric g; so, pCqCr D n. The metric signature (or, simply,
signature) of g is the pair . p; q/. A nondegenerated metric (i.e., one with r D 0)
is Riemannian or pseudo-Riemannian if its signature is positive-definite (q D 0)
or indefinite (pq > 0), respectively.

The nonmetricity tensor is the covariant derivative of a metric tensor. It is 0
for Riemannian metrics but can be ¤ 0 for pseudo-Riemannian ones.
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• Nondegenerate metric
A nondegenerate metric is a metric g with the metric tensor ..gij//, for which

the metric discriminant det..gij// ¤ 0. All Riemannian and pseudo-Riemannian
metrics are nondegenerate.

A degenerate metric is a metric g with det..gij// D 0 (cf. semi-Riemannian
metric and semi-pseudo-Riemannian metric). A manifold with a degenerate
metric is called an isotropic manifold.

• Diagonal metric
A diagonal metric is a metric g with a metric tensor ..gij// which is zero for

i ¤ j. The Euclidean metric is a diagonal metric, as its metric tensor has the form
gii D 1; gij D 0 for i ¤ j.

• Riemannian metric
Consider a real n-dimensional differentiable manifold Mn in which each

tangent space is equipped with an inner product (i.e., a symmetric positive-
definite bilinear form) which varies smoothly from point to point.

A Riemannian metric on Mn is a collection of inner products h; ip on the
tangent spaces Tp.Mn/, one for each p 2 Mn.

Every inner product h; ip is completely defined by inner products hei; ejip D
gij. p/ of elements e1; : : : ; en of a standard basis in E

n, i.e., by the real symmetric
and positive-definite n � n matrix ..gij// D ..gij. p///, called a metric tensor.
In fact, hx; yip D P

i;j gij. p/xiyj, where x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/ 2
Tp.Mn/. The smooth function g completely determines the Riemannian metric.

A Riemannian metric on Mn is not an ordinary metric on Mn. However, for
a connected manifold Mn, every Riemannian metric on Mn induces an ordinary
metric on Mn, in fact, the intrinsic metric of Mn,

For any points p; q 2 Mn the Riemannian distance between them is defined
as

inf
�

Z 1

0

hd�

dt
;

d�

dt
i 12 dt D inf

�

Z 1

0

v
u
u
t
X

i;j

gij
dxi

dt

dxj

dt
dt;

where the infimum is over all rectifiable curves � W Œ0; 1� ! Mn, connecting p
and q.

A Riemannian manifold (or Riemannian space) is a real n-dimensional
differentiable manifold Mn equipped with a Riemannian metric. The theory of
Riemannian spaces is called Riemannian Geometry. The simplest examples of
Riemannian spaces are Euclidean spaces, hyperbolic spaces, and elliptic spaces.

• Conformal metric
A conformal structure on a vector space V is a class of pairwise-homothetic

Euclidean metrics on V . Any Euclidean metric dE on V defines a conformal
structure f	dE W 	 > 0g.

A conformal structure on a manifold is a field of conformal structures on the
tangent spaces or, equivalently, a class of conformally equivalent Riemannian
metrics. Two Riemannian metrics g and h on a smooth manifold Mn are called
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conformally equivalent if g D f � h for some positive function f on Mn, called a
conformal factor.

A conformal metric is a Riemannian metric that represents the conformal
structure. Cf. conformally invariant metric in Chap. 8.

• Conformal space
The conformal space (or inversive space) is the Euclidean space En extended

by an ideal point (at infinity). Under conformal transformations, i.e., continuous
transformations preserving local angles, the ideal point can be taken to be an
ordinary point. Therefore, in a conformal space a sphere is indistinguishable from
a plane: a plane is a sphere passing through the ideal point.

Conformal spaces are considered in Conformal (or angle-preserving, Möbius)
Geometry in which properties of figures are studied that are invariant under
conformal transformations. It is the set of transformations that map spheres into
spheres, i.e., generated by the Euclidean transformations together with inversions
which in coordinate form are conjugate to xi ! r2xiP

j x2j
, where r is the radius

of the inversion. An inversion in a sphere becomes an everywhere well defined
automorphism of period two. Any angle inverts into an equal angle.

The 2D conformal space is the Riemann sphere, on which the conformal
transformations are given by the Möbius transformations z ! azCb

czCd , ad�bc ¤ 0.
In general, a conformal mapping between two Riemannian manifolds is a

diffeomorphism between them such that the pulled back metric is conformally
equivalent to the original one. A conformal Euclidean space is a Riemannian
space admitting a conformal mapping onto an Euclidean space.

In the General Theory of Relativity, conformal transformations are considered
on the Minkowski space R1;3 extended by two ideal points.

• Space of constant curvature
A space of constant curvature is a Riemannian space Mn for which the

sectional curvature K.
/ is constant in all 2D directions 
 .
A space form is a connected complete space of constant curvature k. Examples

of a flat space form, i.e., with k D 0, are the Euclidean space and flat torus. The
sphere and hyperbolic space are space forms with k > 0 and k < 0, respectively.

• Generalized Riemannian space
A generalized Riemannian space is a metric space with the intrinsic metric,

subject to certain restrictions on the curvature. Such spaces include spaces of
bounded curvature, Riemannian spaces, etc. They are defined and investigated
on the basis of their metric alone, without coordinates.

A space of bounded curvature (� k and � k
0

) is defined by the condition: for
any sequence of geodesic triangles Tn contracting to a point, we have

k � lim
ı.Tn/


.T0n /
� lim

ı.Tn/


.T0n /
� k

0

;

where a geodesic triangle T D xyz is the triplet of geodesic segments Œx; y�, Œy; z�,
Œz; x� (the sides of T) connecting in pairs three different points x; y; z, ı.T/ D
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˛ C ˇ C � � � is the excess of the geodesic triangle T, and 
.T0/ is the area of
a Euclidean triangle T0 with the sides of the same lengths. The intrinsic metric
on the space of bounded curvature is called a metric of bounded curvature.

Such a space turns out to be Riemannian under two additional conditions:
local compactness of the space (this ensures the condition of local existence of
geodesics), and local extendability of geodesics. If in this case k D k

0

, it is a
Riemannian space of constant curvature k (cf. space of geodesics in Chap. 6).

A space of curvature � k is defined by the condition lim ı.Tn/


.T0n /
� k. In such a

space any point has a neighborhood in which the sum ˛ C ˇ C � of the angles
of a geodesic triangle T does not exceed the sum ˛k C ˇk C �k of the angles of a
triangle Tk with sides of the same lengths in a space of constant curvature k. The
intrinsic metric of such space is called a k-concave metric.

A space of curvature � k is defined by the condition lim ı.Tn/


.T0n /
� k. In such

a space any point has a neighborhood in which ˛ C ˇ C � � ˛k C ˇk C �k

for triangles T and Tk. The intrinsic metric of such space is called a K-concave
metric.

An Alexandrov metric space is a generalized Riemannian space with upper,
lower or integral curvature bounds. Cf. a CAT(�1) space in Chap. 6.

• Complete Riemannian metric
A Riemannian metric g on a manifold Mn is called complete if Mn forms a

complete metric space with respect to g.
Any Riemannian metric on a compact manifold is complete.

• Ricci-flat metric
A Ricci-flat metric is a Riemannian metric with vanished Ricci curvature

tensor.
A Ricci-flat manifold is a Riemannian manifold equipped with a Ricci-flat

metric. Ricci-flat manifolds represent vacuum solutions to the Einstein field
equation, and are special cases of Kähler–Einstein manifolds. Important Ricci-
flat manifolds are Calabi–Yau manifolds, and hyper-Kähler manifolds.

• Osserman metric
An Osserman metric is a Riemannian metric for which the Riemannian

curvature tensor R is Osserman, i.e., the eigenvalues of the Jacobi operator
J .x/ W y ! R.y; x/x are constant on the unit sphere Sn�1 in E

n (they are
independent of the unit vectors x).

• G-invariant Riemannian metric
Given a Lie group .G; �; id/ of transformations, a Riemannian metric g on a

differentiable manifold Mn is called G-invariant, if it does not change under any
x 2 G. The group .G; �; id/ is called the group of motions (or group of isometries)
of the Riemannian space .Mn; g/. Cf. G-invariant metric in Chap. 10.

• Ivanov–Petrova metric
Let R be the Riemannian curvature tensor of a Riemannian manifold Mn, and

let fx; yg be an orthogonal basis for an oriented 2-plane � in the tangent space
Tp.Mn/ at a point p of Mn.
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The Ivanov–Petrova metric is a Riemannian metric on Mn for which the
eigenvalues of the antisymmetric curvature operator R.�/ D R.x; y/ ([IvSt95])
depend only on the point p of a Riemannian manifold Mn, but not upon the plane
� .

• Zoll metric
A Zoll metric is a Riemannian metric on a smooth manifold Mn whose

geodesics are all simple closed curves of an equal length. A 2D sphere S2 admits
many such metrics, besides the obvious metrics of constant curvature. In terms
of cylindrical coordinates .z; �/ (z 2 Œ�1; 1�, � 2 Œ0; 2��), the line element

ds2 D .1C f .z//2

1 � z2
dz2 C .1 � z2/d�2

defines a Zoll metric on S2 for any smooth odd function f W Œ�1; 1� ! .�1; 1/
which vanishes at the endpoints of the interval.

• Berger metric
The Berger metric is a Riemannian metric on the Berger sphere (i.e., the

three-sphere S3 squashed in one direction) defined by the line element

ds2 D d�2 C sin2 �d�2 C cos2 ˛.d C cos �d�/2;

where ˛ is a constant, and � , �,  are Euler angles.
• Cycloidal metric

The cycloidal metric is a Riemannian metric on the half-plane R
2C D fx 2

R
2 W x2 > 0g defined by the line element

ds2 D dx21 C dx22
2x2

:

It is called cycloidal because its geodesics are cycloid curves. The correspond-
ing distance d.x; y/ between two points x; y 2 R

2C is equivalent to the distance

�.x; y/ D jx1 � y1j C jx2 � y2jp
x1 C p

x2 Cpjx2 � y2j

in the sense that d � C�, and � � Cd for some positive constant C.
• Klein metric

The Klein metric is a Riemannian metric on the open unit ball Bn D fx 2
R

n W jjxjj2 < 1g in R
n defined by

q
jjyjj22 � .jjxjj22jjyjj22 � hx; yi2/

1 � jjxjj22
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for any x 2 Bn and y 2 Tx.Bn/, where jj:jj2 is the Euclidean norm on R
n, and h; i

is the ordinary inner product on R
n.

The Klein metric is the hyperbolic case a D �1 of the general form

p
.1C ajjxjj2/jjyjj2 � ahx; yi2

1C ajjxjj2 ;

while a D 0; 1 correspond to the Euclidean and spherical cases.
• Carnot–Carathéodory metric

A distribution (or polarization) on a manifold Mn is a subbundle of the
tangent bundle T.Mn/ of Mn. Given a distribution H.Mn/, a vector field in H.Mn/

is called horizontal. A curve � on Mn is called horizontal (or distinguished,
admissible) with respect to H.Mn/ if �

0

.t/ 2 H�.t/.Mn/ for any t.
A distribution H.Mn/ is called completely nonintegrable if the Lie brackets

of H.Mn/, i.e., Œ� � � ; ŒH.Mn/;H.Mn/��, span the tangent bundle T.Mn/, i.e.,
for all p 2 Mn any tangent vector v from Tp.Mn/ can be presented as
a linear combination of vectors of the following types: u, Œu;w�, Œu; Œw; t��,
Œu; Œw; Œt; s���; � � � 2 Tp.Mn/, where all vector fields u;w; t; s; : : : are horizontal.

The Carnot–Carathéodory metric (or CC metric, sub-Riemannian met-
ric, control metric) is a metric on a manifold Mn with a completely nonintegrable
horizontal distribution H.Mn/ defined as the section gC of positive-definite scalar
products on H.Mn/. The distance dC. p; q/ between any points p; q 2 Mn is
defined as the infimum of the gC-lengths of the horizontal curves joining p and q.

A sub-Riemannian manifold (or polarized manifold) is a manifold Mn

equipped with a Carnot–Carathéodory metric. It is a generalization of a
Riemannian manifold. Roughly, in order to measure distances in a sub-
Riemannian manifold, one is allowed to go only along curves tangent to
horizontal spaces.

• Pseudo-Riemannian metric
Consider a real n-dimensional differentiable manifold Mn in which every

tangent space Tp.Mn/, p 2 Mn, is equipped with a scalar product which varies
smoothly from point to point and is nondegenerate, but indefinite.

A pseudo-Riemannian metric on Mn is a collection of scalar products h; ip

on the tangent spaces Tp.Mn/, p 2 Mn, one for each p 2 Mn.
Every scalar product h; ip is completely defined by scalar products hei; ejip D

gij. p/ of elements e1; : : : ; en of a standard basis in E
n, i.e., by the real symmetric

indefinite n � n matrix ..gij// D ..gij. p///, called a metric tensor (cf.
Riemannian metric in which case this tensor is not only nondegenerate but,
moreover, positive-definite).

In fact, hx; yip D P
i;j gij. p/xiyj, where x D .x1; : : : ; xn/ and y D

.y1; : : : ; yn/ 2 Tp.Mn/. The smooth function g determines the pseudo-
Riemannian metric.
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The length ds of the vector .dx1; : : : ; dxn/ is given by the quadratic differential
form

ds2 D
X

i;j

gijdxidxj:

The length of a curve � W Œ0; 1� ! Mn is expressed by the formula

Z

�

sX

i;j

gijdxidxj D
Z 1

0

v
u
u
t
X

i;j

gij
dxi

dt

dxj

dt
dt:

In general it may be real, purely imaginary or zero (an isotropic curve).
A pseudo-Riemannian metric on Mn is a metric with a fixed, but indefinite

signature . p; q/, p C q D n. A pseudo-Riemannian metric is nondegenerate,
i.e., its metric discriminant det..gij// ¤ 0. Therefore, it is a nondegenerate
indefinite metric.

A pseudo-Riemannian manifold (or pseudo-Riemannian space) is a real n-
dimensional differentiable manifold Mn equipped with a pseudo-Riemannian
metric. The theory of pseudo-Riemannian spaces is called Pseudo-Riemannian
Geometry.

• Pseudo-Euclidean distance
The model space of a pseudo-Riemannian space of signature . p; q/ is the

pseudo-Euclidean space R
p;q, p C q D n which is a real n-dimensional vector

space R
n equipped with the metric tensor ..gij// of signature . p; q/ defined, for

i ¤ j, by g11 D � � � D gpp D 1, gpC1;pC1 D � � � D gnn D �1, gij D 0.
The line element of the corresponding metric is given by

ds2 D dx21 C � � � C dx2p � dx2pC1 � � � � � dx2n:

The pseudo-Euclidean distance of signature . p; q D n � p/ on R
n is defined

by

d2pE.x; y/ D D.x; y/ D
pX

iD1
.xi � yi/

2 �
nX

iDpC1
.xi � yi/

2:

Such a pseudo-Euclidean space can be seen as Rp � iRq, where i D p�1.
The pseudo-Euclidean space with . p; q/ D .1; 3/ is used as flat space-time

model of Special Relativity; cf. Minkowski metric in Chap. 26.
The points correspond to events; the line spanned by x and y is space-like

if D.x; y/ > 0 and time-like if D.x; y/ < 0. If D.x; y/ > 0, then
p

D.x; y/ is
Euclidean distance and if D.x; y/ < 0, then

pjD.x; y/j is the lifetime of a particle
(from x to y).
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The pseudo-Euclidean distance of signature . p; q D n � p/ is the case A D
diag.ai/ with ai D 1 for 1 � i � p and ai D �1 for p C 1 � i � n, of the

weighted Euclidean distance
qP

1�i�n ai.xi � yi/2 in Chap. 17.

• Blaschke metric
The Blaschke metric on a nondegenerate hypersurface is a pseudo-

Riemannian metric, associated to the affine normal of the immersion � W Mn !
R

nC1, where Mn is an n-dimensional manifold, and R
nC1 is considered as an

affine space.
• Semi-Riemannian metric

A semi-Riemannian metric on a real n-dimensional differentiable manifold
Mn is a degenerate Riemannian metric, i.e., a collection of positive-semidefinite
scalar products hx; yip D P

i;j gij. p/xiyj on the tangent spaces Tp.Mn/, p 2 Mn;
the metric discriminant det..gij// D 0.

A semi-Riemannian manifold (or semi-Riemannian space) is a real n-
dimensional differentiable manifold Mn equipped with a semi-Riemannian
metric.

The model space of a semi-Riemannian manifold is the semi-Euclidean space
Rn

d, d � 1 (sometimes denoted also by R
n
n�d), i.e., a real n-dimensional vector

space R
n equipped with a semi-Riemannian metric.

It means that there exists a scalar product of vectors such that, relative to a
suitably chosen basis, the scalar product hx; xi has the form hx; xi D Pn�d

iD1 x2i .
The number d � 1 is called the defect (or deficiency) of the space.

• Grushin metric
The Grushin metric is a semi-Riemannian metric on R

2 defined by the line
element

ds2 D dx21 C dx22
x21
:

• Agmon distance
The Agmon metric attached to an energy E and a potential V is defined as

ds2 D maxf0;V.x/� E0.h/gdx2;

where dx2 is the standard metric on R
d. Then the Agmon distance on R

d is the
corresponding Riemannian distance defined, for any x; y 2 R

d, by

inf
�

f
Z 1

0

p
maxfV.�.s//� E0.h/; 0g � j� 0

.s/jds W �.0/ D x; �.1/ D y; � 2 C1g:

• Semi-pseudo-Riemannian metric
A semi-pseudo-Riemannian metric on a real n-dimensional differentiable

manifold Mn is a degenerate pseudo-Riemannian metric, i.e., a collection of
degenerate indefinite scalar products hx; yip D P

i;j gij. p/xiyj on the tangent
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spaces Tp.Mn/, p 2 Mn; the metric discriminant det..gij// D 0. In fact, a semi-
pseudo-Riemannian metric is a degenerate indefinite metric.

A semi-pseudo-Riemannian manifold (or semi-pseudo-Riemannian space)
is a real n-dimensional differentiable manifold Mn equipped with a semi-
pseudo-Riemannian metric. The model space of such manifold is the semi-
pseudo-Euclidean space R

n
l1;:::;lr
m1;:::;mr�1

, i.e., a vector space R
n equipped with a

semi-pseudo-Riemannian metric.
It means that there exist r scalar products hx; yia D P

�ia xia yia , where a D
1; : : : r, 0 D m0 < m1 < � � � < mr D n, ia D ma�1 C 1; : : :ma, �ia D ˙1, and �1
occurs la times among the numbers �ia . The product hx; yia is defined for those
vectors for which all coordinates xi; i � ma�1 or i > ma C 1 are zero.

The first scalar square of an arbitrary vector x is a degenerate quadratic form
hx; xi1 D �Pl1

iD1 x2i C Pn�d
jDl1C1 x2j . The number l1 � 0 is called the index, and

the number d D n � m1 is called the defect of the space. If l1 D � � � D lr D
0, we obtain a semi-Euclidean space. The spaces R

n
m

and R
n
k;l
m

are called quasi-

Euclidean spaces.
The semi-pseudo-non-Euclidean space Sn

l1;:::;lr
m1;:::;mr�1

is a hypersphere in R
nC1
l1;:::;lr
m1;:::;mr�1

with identified antipodal points. It is called semielliptic (or semi-non-Euclidean)
space if l1 D � � � D lr D 0 and a semihyperbolic space if there exist li ¤ 0.

• Finsler metric
Consider a real n-dimensional differentiable manifold Mn in which every

tangent space Tp.Mn/, p 2 Mn, is equipped with a Banach norm jj:jj such that
the Banach norm as a function of position is smooth, and the matrix ..gij//,

gij D gij. p; x/ D 1

2

@2jjxjj2
@xi@xj

;

is positive-definite for any p 2 Mn and any x 2 Tp.Mn/.
A Finsler metric on Mn is a collection of Banach norms jj:jj on the tangent

spaces Tp.Mn/, one for each p 2 Mn. Its line element has the form

ds2 D
X

i;j

gijdxidxj:

The Finsler metric can be given by fundamental function, i.e., a real positive-
definite convex function F. p; x/ of p 2 Mn and x 2 Tp.Mn/ acting at the point p.
F. p; x/ is positively homogeneous of degree one in x: F. p; 	x/ D 	F. p; x/ for
every 	 > 0. Then F. p; x/ is the length of the vector x.

The Finsler metric tensor has the form ..gij// D .. 1
2

@2F2. p;x/
@xi@xj

//. The length of

a curve � W Œ0; 1� ! Mn is given by
R 1
0

F. p; dp
dt /dt. For each fixed p the Finsler

metric tensor is Riemannian in the variables x.
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The Finsler metric is a generalization of the Riemannian metric, where the
general definition of the length jjxjj of a vector x 2 Tp.Mn/ is not necessarily
given in the form of the square root of a symmetric bilinear form as in the
Riemannian case.

A Finsler manifold (or Finsler space) is a real differentiable n-manifold Mn

equipped with a Finsler metric. The theory of such spaces is Finsler Geometry.
The difference between a Riemannian space and a Finsler space is that the

former behaves locally like a Euclidean space, and the latter locally like a
Minkowskian space or, analytically, the difference is that to an ellipsoid in the
Riemannian case there corresponds an arbitrary convex surface which has the
origin as the center.

A pseudo-Finsler metric F is defined by weakening the definition of a
Finsler metric): ..gij// should be nondegenerate and of constant signature (not
necessarily positive-definite) and hence F could be negative. The pseudo-Finsler
metric is a generalization of the pseudo-Riemannian metric.

• .˛; ˇ/-metric
Let ˛.x; y/ D p

˛ij.x/yiyj be a Riemannian metric and ˇ.x; y/ D bi.x/yi be a
1-form on a n-dimensional manifold Mn. Let s D ˇ

˛
and �.s/ is an C1-positive

function on some symmetric interval .�r; r/ with r >
ˇ

˛
for all .x; y/ in the

tangent bundle TM D [x2MTx.Mn/ of the tangent spaces Tx.Mn/. Then F D
˛�.s/ is a Finsler metric (Matsumoto, 1972) called an .˛; ˇ/-metric. The main
examples of .˛; ˇ/-metrics follow.

The Kropina metric is the case �.s/ D 1
s , i.e., F D ˛2

ˇ
.

The generalized Kropina metric is the case �.s/ D sm, i.e., F D ˇm˛1�m.
The Randers metric (1941) is the case �.s/ D 1C s, i.e., F D ˛ C ˇ.
The Matsumoto slope metric is the case �.s/ D 1

1�s , i.e., F D ˛2

˛�ˇ .

The Riemann-type .˛; ˇ/-metric is the case �.s/ D p
1C s2, i.e., F D

˛2 C ˇ2.

Park and Lee, 1998, considered the case �.s/ D 1C s2, i.e., F D ˛ C ˇ2

˛
.

• Shen metric
Given a vector a 2 R

n, jjajj2 < 1, the Shen metric (2003) is a Finsler metric
on the open unit ball Bn D fx 2 R

n W jjxjj2 < 1g in R
n defined by

q
jjyjj22 � .jjxjj22jjyjj22 � hx; yi2/C hx; yi

1 � jjxjj22
C ha; yi
1C ha; xi

for any x 2 Bn and y 2 Tx.Bn/, where jj:jj2 is the Euclidean norm on R
n, and

h; i is the ordinary inner product on R
n. It is a Randers metric and a projective

metric. Cf. Klein metric and Berwald metric.
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• Berwald metric
The Berwald metric (1929) is a Finsler metric FBe on the open unit ball

Bn D fx 2 R
n W jjxjj2 < 1g in R

n defined, for any x 2 Bn and y 2 Tx.Bn/, by

�q
jjyjj22 � .jjxjj22jjyjj22 � hx; yi2/C hx; yi

�2

.1 � jjxjj22/2
q

jjyjj22 � .jjxjj22jjyjj22 � hx; yi2/
;

where jj:jj2 is the Euclidean norm on R
n, and h; i is the inner product on R

n. It is

a projective metric and an .˛; ˇ/-metric with �.s/ D .1Cs/2, i.e., F D .˛Cˇ/2
˛

.
The Riemannian metrics are special Berwald metrics. Every Berwald metric

is affinely equivalent to a Riemannian metric.
In general, every Finsler metric on a manifold Mn induces a spray (second-

order homogeneous ordinary differential equation) yi
@
@xi

� 2Gi @
@yi

which deter-
mines the geodesics. A Finsler metric is a Berwald metric if the spray coefficients
Gi D Gi.x; y/ are quadratic in y 2 Tx.Mn/ at any point x 2 Mn, i.e., Gi D
1
2
� i

jk.x/y
jyk.

A Finsler metric is a more general Landsberg metric� i
jkD 1

2
@yj@yk .� i

jk.x/y
jyk/.

The Landsberg metric is the one for which the Landsberg curvature (the covariant
derivative of the Cartan torsion along a geodesic) is zero.

• Douglas metric
A Douglas metric a Finsler metric for which the spray coefficients Gi D

Gi.x; y/ have the following form:

Gi D 1

2
� i

jk.x/yiyk C P.x; y/yi:

Every Finsler metric which is projectively equivalent to a Berwald metric
is a Douglas metric. Every Berwald metric is a Douglas metric. Every known
Douglas metric is (locally) projectively equivalent to a Berwald metric.

• Bryant metric
Let ˛ be an angle with j˛j < �

2
. Let, for any x; y 2 R

n, A D jjyjj42 sin2 2˛ C
�jjyjj22 cos 2˛ C jjxjj22jjyjj22 � hx; yi2�2, B D jjyjj22 cos 2˛ C jjxjj22jjyjj22 � hx; yi2,
C D hx; yi sin 2˛, D D jjxjj42 C 2jjxjj22 cos 2˛ C 1. Then we get a Finsler metric

sp
A C B

2D
C
�

C

D

�2
C C

D
:

On the 2D unit sphere S2, it is the Bryant metric (1996).
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• m-th root pseudo-Finsler metric
An m-th root pseudo-Finsler metric is (Shimada, 1979) a pseudo-Finsler

metric defined (with ai1:::im symmetric in all its indices) by

F.x; y/ D .ai1:::im.x/y
i1:::im/

1
m :

For m D 2, it is a pseudo-Riemannian metric. The 3-rd and 4-th root pseudo-
Finsler metrics are called cubic metric and quartic metric, respectively.

• Antonelli–Shimada metric
The Antonelli–Shimada metric (or ecological Finsler metric) is an m-th

root pseudo-Finsler metric defined, via linearly independent 1-forms ai, by

F.x; y/ D .

nX

iD1
.ai/m/

1
m :

The Uchijo metric is defined, for a constant k, by

F.x; y/ D .

nX

iD1
.ai/2/

1
2 C ka1:

• Berwald–Moör metric
The Berwald–Moör metric is an m-th root pseudo-Finsler metric, defined

by

F.x; y/ D .y1 : : : yn/
1
n :

More general Asanov metric is defined, via linearly independent 1-forms ai,
by

F.x; y/ D .a1 : : : an/
1
n :

The Berwald–Moör metrics with n D 4 and n D 6 are applied in Relativity
Theory and Diffusion Imaging, respectively. The pseudo-Finsler spaces which
are locally isomorphic to the 4-th root Berwald–Moör metric, are expected to be
more general and productive space-time models than usual pseudo-Riemannian
spaces, which are locally isomorphic to the Minkowski metric.

• Kawaguchi metric
The Kawaguchi metric is a metric on a smooth n-dimensional manifold Mn,

given by the arc element ds of a regular curve x D x.t/, t 2 Œt0; t1� via the formula

ds D F.x;
dx

dt
; : : : ;

dkx

dtk
/dt;
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where the metric function F satisfies Zermelo’s conditions:
Pk

sD1 sx.s/F.s/i D F,
Pk

sDr.
s
k/x

.s�rC1/iF.s/i D 0, x.s/i D dsxi

dts , F.s/i D @F
@x.s/i

, and r D 2; : : : ; k.
These conditions ensure that the arc element ds is independent of the

parametrization of the curve x D x.t/.
A Kawaguchi manifold (or Kawaguchi space) is a smooth manifold equipped

with a Kawaguchi metric. It is a generalization of a Finsler manifold.
• Lagrange metric

Consider a real n-dimensional manifold Mn. A set of symmetric nonde-
generated matrices ..gij. p; x/// define a generalized Lagrange metric on Mn

if a change of coordinates . p; x/ ! .q; y/, such that qi D qi. p1; : : : ; pn/,
yi D .@jqi/xj and rank .@jqi/ D n, implies gij. p; x/ D .@iqi/.@jqj/gij.q; y/.

A generalized Lagrange metric is called a Lagrange metric if there exists a
Lagrangian, i.e., a smooth function L. p; x/ such that it holds

gij. p; x/ D 1

2
� @

2L. p; x/

@xi@xj
:

Every Finsler metric is a Lagrange metric with L D F2.
• DeWitt supermetric

The DeWitt supermetric (or Wheeler–DeWitt supermetric) G D ..Gijkl//

calculates distances between metrics on a given manifold, and it is a generaliza-
tion of a Riemannian (or pseudo-Riemannian) metric g D ..gij//.

For example, for a given connected smooth 3-dimensional manifold M3,
consider the spaceM.M3/ of all Riemannian (or pseudo-Riemannian) metrics on
M3. Identifying points ofM.M3/ that are related by a diffeomorphism of M3, one
obtains the space Geom.M3/ of 3-geometries (of fixed topology), points of which
are the classes of diffeomorphically equivalent metrics. The space Geom.M3/

is called a superspace. It plays an important role in several formulations of
Quantum Gravity.

A supermetric, i.e., a “metric on metrics”, is a metric on M.M3/ (or on
Geom.M3/) which is used for measuring distances between metrics on M3 (or
between their equivalence classes). Given g D ..gij// 2 M.M3/, we obtain

jjıgjj2 D
Z

M3

d3xGijkl.x/ıgij.x/ıgkl.x/;

where Gijkl is the inverse of the DeWitt supermetric

Gijkl D 1

2
p

det..gij//
.gikgjl C gilgjk � 	gijgkl/:

The value 	 parametrizes the distance between metrics in M.M3/, and may take
any real value except 	 D 2

3
, for which the supermetric is singular.
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• Lund–Regge supermetric
The Lund–Regge supermetric (or simplicial supermetric) is an analog of

the DeWitt supermetric, used to measure the distances between simplicial 3-
geometries in a simplicial configuration space.

More exactly, given a closed simplicial 3D manifold M3 consisting of several
tetrahedra (i.e., 3-simplices), a simplicial geometry on M3 is fixed by an
assignment of values to the squared edge lengths of M3, and a flat Riemannian
Geometry to the interior of each tetrahedron consistent with those values.

The squared edge lengths should be positive and constrained by the triangle
inequalities and their analogs for the tetrahedra, i.e., all squared measures
(lengths, areas, volumes) must be nonnegative (cf. tetrahedron inequality in
Chap. 3).

The set T .M3/ of all simplicial geometries on M3 is called a simplicial
configuration space. The Lund–Regge supermetric ..Gmn// on T .M3/ is induced
from the DeWitt supermetric on M.M3/, using for representations of points in
T .M3/ such metrics in M.M3/ which are piecewise flat in the tetrahedra.

• Space of Lorentz metrics
Let Mn be an n-dimensional compact manifold, and L.Mn/ the set of all

Lorentz metrics (i.e., the pseudo-Riemannian metrics of signature .n � 1; 1/)
on Mn.

Given a Riemannian metric g on Mn, one can identify the vector space S2.Mn/

of all symmetric 2-tensors with the vector space of endomorphisms of the tangent
to Mn which are symmetric with respect to g. In fact, if Qh is the endomorphism
associated to a tensor h, then the distance on S2.Mn/ is given by

dg.h; t/ D sup
x2Mn

q

tr.Qhx � Qtx/2:

The set L.Mn/ taken with the distance dg is an open subset of S2.Mn/ called
the space of Lorentz metrics. Cf. manifold triangulation metric in Chap. 9.

• Perelman supermetric proof
The Thurston’s Geometrization Conjecture is that, after two well-known

splittings, any 3D manifold admits, as remaining components, only one of eight
Thurston model geometries. If true, this conjecture implies the validity of the
famous Poincaré Conjecture of 1904, that any 3-manifold, in which every simple
closed curve can be deformed continuously to a point, is homeomorphic to the
3-sphere.

In 2002, Perelman gave a gapless “sketch of an eclectic proof” of Thurston’s
conjecture using a kind of supermetric approach to the space of all Riemannian
metrics on a given smooth 3-manifold. In a Ricci flow the distances decrease in
directions of positive curvature since the metric is time-dependent. Perelman’s
modification of the standard Ricci flow permitted systematic elimination of
arising singularities.
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7.2 Riemannian Metrics in Information Theory

Some special Riemannian metrics are commonly used in Information Theory. A list
of such metrics is given below.

• Thermodynamic metrics
Given the space of all extensive (additive in magnitude, mechanically con-

served) thermodynamic variables of a system (energy, entropy, amounts of
materials), a thermodynamic metric is a Riemannian metric on the manifold of
equilibrium states defined as the 2-nd derivative of one extensive quantity, usually
entropy or energy, with respect to the other extensive quantities. This information
geometric approach provides a geometric description of thermodynamic systems
in equilibrium.

The Ruppeiner metric (Ruppeiner, 1979) is defined by the line element
ds2R D gR

ijdxidxj; where the matrix ..gR
ij// of the symmetric metric tensor is a

negative Hessian (the matrix of 2-nd order partial derivatives) of the entropy
function S:

gR
ij D �@i@jS.M;N

a/:

Here M is the internal energy (which is the mass in black hole applications)
of the system and Na refer to other extensive parameters such as charge,
angular momentum, volume, etc. This metric is flat if and only if the statistical
mechanical system is noninteracting, while curvature singularities are a signal of
critical behavior, or, more precisely, of divergent correlation lengths (Chap. 24).

The Weinhold metric (Weinhold, 1975) is defined by gW
ij D @i@jM.S;Na/.

The Ruppeiner and Weinhold metrics are conformally equivalent (cf. confor-
mal metric) via ds2 D gR

ijdMidMj D 1
T gW

ij dSidSj, where T is the temperature.
The thermodynamic length in Chap. 24 is a path function that measures the

distance along a path in the state space.
• Fisher information metric

In Statistics, Probability, and Information Geometry, the Fisher information
metric is a Riemannian metric for a statistical differential manifold (see, for
example, [Amar85, Frie98]). Formally, let p� D p.x; �/ be a family of densities,
indexed by n parameters � D .�1; : : : ; �n/ which form the parameter manifold
P.

The Fisher information metric g D g� on P is a Riemannian metric, defined
by the Fisher information matrix ..I.�/ij//, where

I.�/ij D E�

	
@ ln p�
@�i

� @ ln p�
@�j




D
Z
@ ln p.x; �/

@�i

@ ln p.x; �/

@�j
p.x; �/dx:

It is a symmetric bilinear form which gives a classical measure (Rao measure)
for the statistical distinguishability of distribution parameters.
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Putting i.x; �/ D � ln p.x; �/, one obtains an equivalent formula

I.�/ij D E�

	
@2i.x; �/

@�i@�j




D
Z
@2i.x; �/

@�i@�j
p.x; �/dx:

In a coordinate-free language, we get

I.�/.u; v/ D E� Œu.ln p� / � v.ln p� /� ;

where u and v are vectors tangent to the parameter manifold P, and u.ln p� / D
d
dt ln p�CtujtD0 is the derivative of ln p� along the direction u.

A manifold of densities M is the image of the parameter manifold P under
the mapping � ! p� with certain regularity conditions. A vector u tangent to
this manifold is of the form u D d

dt p�CtujtD0, and the Fisher information metric
g D gp on M, obtained from the metric g� on P, can be written as

gp.u; v/ D Ep

	
u

p
� v

p




:

• Fisher–Rao metric
Let Pn D fp 2 R

n W Pn
iD1 pi D 1; pi > 0g be the simplex of strictly positive

probability vectors. An element p 2 Pn is a density of the n-point set f1; : : : ; ng
with p.i/ D pi. An element u of the tangent space Tp.Pn/ D fu 2 R

n W Pn
iD1 ui D

0g at a point p 2 Pn is a function on f1; : : : ; ng with u.i/ D ui.
The Fisher–Rao metric gp on Pn is a Riemannian metric defined by

gp.u; v/ D
nX

iD1

uivi

pi

for any u; v 2 Tp.Pn/, i.e., it is the Fisher information metric on Pn.
The Fisher–Rao metric is the unique (up to a constant factor) Riemannian

metric on Pn, contracting under stochastic maps ([Chen72]).
This metric is isometric, by p ! 2.

p
p1; : : : ;

p
pn/, with the standard metric

on an open subset of the sphere of radius two in R
n. This identification allows

one to obtain on Pn the geodesic distance, called the Rao distance, by

2 arccos.
X

i

p1=2i q1=2i /:

The Fisher–Rao metric can be extended to the set Mn D fp 2 R
n; pi > 0g of all

finite strictly positive measures on the set f1; : : : ; ng. In this case, the geodesic
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distance on Mn can be written as

2.
X

i

.
p

pi � p
qi/

2/1=2

for any p; q 2 Mn (cf. Hellinger metric in Chap. 14).
• Monotone metrics

Let Mn be the set of all complex n � n matrices. Let M 
 Mn be the manifold
of all such positive-definite matrices. Let D 
 M, D D f� 2 M W Tr� D 1g,
be the submanifold of all density matrices. It is the space of faithful states of an
n-level quantum system; cf. distances between quantum states in Chap. 24.

The tangent space of M at � 2 M is T�.M/ D fx 2 Mn W x D x�g, i.e.,
the set of all n � n Hermitian matrices. The tangent space T�.D/ at � 2 D is the
subspace of traceless (i.e., with trace 0) matrices in T�.M/.

A Riemannian metric 	 on M is called monotone metric if the inequality

	h.�/.h.u/; h.u// � 	�.u; u/

holds for any � 2 M, any u 2 T�.M/, and any stochastic, i.e., completely
positive trace preserving mapping h.

It was proved in [Petz96] that 	 is monotone if and only if it can be written as

	�.u; v/ D Tr uJ�.v/;

where J� is an operator of the form J� D 1
f .L�=R�/R�

. Here L� and R� are the

left and the right multiplication operators, and f W .0;1/ ! R is an operator
monotone function which is symmetric, i.e., f .t/ D tf .t�1/, and normalized, i.e.,
f .1/ D 1. Then J�.v/ D ��1v if v and � are commute, i.e., any monotone metric
is equal to the Fisher information metric on commutative submanifolds.

The Bures metric (or Helstrom metric) is the smallest monotone metric,
1
2
Tr.d�g/, obtained for f .t/ D 1Ct

2
. In this case J�.v/ D g, �g C g� D 2v.

For any �1; �2 2 M the geodesic distance defined by the Bures metric, (cf.
Bures distance in Chap. 24) can be written as

r

Tr.�1/C Tr.�2/� 2Tr.
qp

�1�2
p
�1/:

On the submanifold D D f� 2 M W Tr� D 1g of density matrices it has the form

arccos Tr.
qp

�1�2
p
�1/:

The right logarithmic derivative metric (or RLD-metric) is the greatest
monotone metric, corresponding to f .t/ D 2t

1Ct , i.e., J�.v/ D 1
2
.��1v C v��1/.
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The Bogolubov–Kubo–Mori metric (or BKM-metric) is obtained for f .x/ D
x�1
ln x . It can be written as 	�.u; v/ D @2

@s@t Tr.�C su/ ln.�C tv/js;tD0.
• Wigner–Yanase–Dyson metrics

The Wigner–Yanase–Dyson metrics (or WYD-metrics) form a family of
metrics on the manifold M of all complex positive-definite n�n matrices defined
by

	˛�.u; v/ D @2

@t@s
Trf˛.�C tu/f�˛.�C sv/js;tD0;

where f˛.x/ D 2
1�˛ x

1�˛
2 , if ˛ ¤ 1, and is ln x, if ˛ D 1. These metrics are

monotone for ˛ 2 Œ�3; 3�. For ˛ D ˙1 one obtains the Bogolubov–Kubo–Mori
metric; for ˛ D ˙3 one obtains the right logarithmic derivative metric.

The Wigner–Yanase metric (or WY-metric) is 	0�, the smallest metric in the

family. It can be written as 	�.u; v/ D 4Tr u.
p

L� Cp
R�/2.v/:

• Connes metric
Roughly, the Connes metric is a generalization (from the space of all

probability measures of a set X, to the state space of any unital C�-algebra)
of the transportation distance (Chap. 14) defined via Lipschitz seminorm.

Let Mn be a smooth n-dimensional manifold. Let A D C1.Mn/ be the
(commutative) algebra of smooth complex-valued functions on Mn, represented
as multiplication operators on the Hilbert space H D L2.Mn; S/ of square
integrable sections of the spinor bundle on Mn by . f �/. p/ D f . p/�. p/ for all
f 2 A and for all � 2 H.

Let D be the Dirac operator. Let the commutator ŒD; f � for f 2 A be the
Clifford multiplication by the gradient rf , so that its operator norm jj:jj in H is
given by jjŒD; f �jj D supp2Mn jjrf jj.

The Connes metric is the intrinsic metric on Mn, defined by

sup
f 2A;jj ŒD; f � jj�1

j f . p/� f .q/j:

This definition can also be applied to discrete spaces, and even generalized to C�-
algebras; cf. Rieffel metric space. In particular, for a labeled connected locally
finite graph G D .V;E/ with the vertex-set V D fv1; : : : ; vn; : : : g, the Connes
metric on V is defined, for any vi; vj 2 V , by supjj ŒD; f � jjDjjdf jj�1 j fvi � fvj j, where
f f D P

fvivi W P j fvi j2 < 1g is the set of formal sums f , forming a Hilbert
space, and jj ŒD; f � jj is supi.

Pdeg.vi/
kD1 . fvk � fvi /

2/
1
2 .

• Rieffel metric space
Let V be a normed space (or, more generally, a locally convex topological

vector space, cf. Chap. 2), and let V 0 be its continuous dual space, i.e., the set
of all continuous linear functionals f on V . The weak-� topology on V 0 is defined
as the weakest (i.e., with the fewest open sets) topology on V 0 such that, for every
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x 2 V , the map Fx W V 0 ! R defined by Fx. f / D f .x/ for all f 2 V 0, remains
continuous.

An order-unit space is a partially ordered real (complex) vector space
.A;�/with a special distinguished element e (order unit) satisfying the following
properties:

1. For any a 2 A, there exists r 2 R with a � re;
2. If a 2 A and a � re for all positive r 2 R, then a � 0 (Archimedean property).

The main example of an order-unit space is the vector space of all self-adjoint
elements in a unital C�-algebra with the identity element being the order unit.
Here a C�-algebra is a Banach algebra overC equipped with a special involution.
It is called unital if it has a unit (multiplicative identity element); such C�-
algebras are also called, roughly, compact noncommutative topological spaces.

Main example of a unital C�-algebra is the complex algebra of linear operators
on a complex Hilbert space which is topologically closed in the norm topology
of operators, and is closed under the operation of taking adjoints of operators.

The state space of an order-unit space .A;�; e/ is the set S.A/ D f f 2 A0C W
jj f jj D 1g of states, i.e., continuous linear functionals f with jj f jj D f .e/ D 1.

A Rieffel (or compact quantum as in Rieffel, 1999) metric space is a pair
.A; jj:jjLip/, where .A;�; e/ is an order-unit space, and jj:jjLip is a Œ0;C1�-valued
seminorm on A (generalizing the Lipschitz seminorm) for which it holds:

1. For a 2 A, jjajjLip D 0 holds if and only if a 2 Re;
2. the metric dLip. f ; g/ D supa2AWjjajjLip�1 j f .a/ � g.a/j generates on the state

space S.A/ its weak-� topology.

So, .S.A/; dLip/ is a usual metric space. If the order-unit space .A;�; e/ is a
C�-algebra, then dLip is the Connes metric, and if, moreover, the C�-algebra
is noncommutative, .S.A/; dLip/ is called a noncommutative metric space.

The term quantum is due to the belief that the Planck-scale geometry of space-
time comes from such C�-algebras; cf. quantum space-time in Chap. 24.

Kuperberg and Weaver, 2010, proposed a new definition of quantum metric
space, in the setting of von Neumann algebras.

7.3 Hermitian Metrics and Generalizations

A vector bundle is a geometrical construct where to every point of a topological
space M we attach a vector space so that all those vector spaces “glued together”
form another topological space E. A continuous mapping � W E ! M is called a
projection E on M. For every p 2 M, the vector space ��1. p/ is called a fiber of the
vector bundle.

A real (complex) vector bundle is a vector bundle � W E ! M whose fibers
��1. p/, p 2 M, are real (complex) vector spaces.
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In a real vector bundle, for every p 2 M, the fiber ��1. p/ locally looks like the
vector space Rn, i.e., there is an open neighborhood U of p, a natural number n, and
a homeomorphism ' W U � R

n ! ��1.U/ such that, for all x 2 U and v 2 R
n, one

has �.'.x; v// D v, and the mapping v ! '.x; v/ yields an isomorphism between
R

n and ��1.x/. The set U, together with ', is called a local trivialization of the
bundle.

If there exists a “global trivialization”, then a real vector bundle � W M�R
n ! M

is called trivial. Similarly, in a complex vector bundle, for every p 2 M, the fiber
��1. p/ locally looks like the vector space Cn. The basic example of such bundle is
the trivial bundle � W U � C

n ! U, where U is an open subset of Rk.
Important special cases of a real vector bundle are the tangent bundle T.Mn/

and the cotangent bundle T�.Mn/ of a real n-dimensional manifold Mn
R

D Mn.
Important special cases of a complex vector bundle are the tangent bundle and the
cotangent bundle of a complex n-dimensional manifold.

Namely, a complex n-dimensional manifold Mn
C

is a topological space in which
every point has an open neighborhood homeomorphic to an open set of the n-
dimensional complex vector space C

n, and there is an atlas of charts such that the
change of coordinates between charts is analytic. The (complex) tangent bundle
TC.Mn

C
/ of a complex manifold Mn

C
is a vector bundle of all (complex) tangent

spaces of Mn
C

at every point p 2 Mn
C

. It can be obtained as a complexification
TR.Mn

R
/˝ C D T.Mn/˝ C of the corresponding real tangent bundle, and is called

the complexified tangent bundle of Mn
C

.
The complexified cotangent bundle of Mn

C
is obtained similarly as T�.Mn/˝ C.

Any complex n-dimensional manifold Mn
C

D Mn can be regarded as a real 2n-
dimensional manifold equipped with a complex structure on each tangent space.

A complex structure on a real vector space V is the structure of a complex
vector space on V that is compatible with the original real structure. It is completely
determined by the operator of multiplication by the number i, the role of which can
be taken by an arbitrary linear transformation J W V ! V , J2 D �id, where id is the
identity mapping.

A connection (or covariant derivative) is a way of specifying a derivative of a
vector field along another vector field in a vector bundle. A metric connection is
a linear connection in a vector bundle � W E ! M, equipped with a bilinear form
in the fibers, for which parallel displacement along an arbitrary piecewise-smooth
curve in M preserves the form, that is, the scalar product of two vectors remains
constant under parallel displacement.

In the case of a nondegenerate symmetric bilinear form, the metric connection
is called the Euclidean connection. In the case of nondegenerate antisymmetric
bilinear form, the metric connection is called the symplectic connection.

• Bundle metric
A bundle metric is a metric on a vector bundle.

• Hermitian metric
A Hermitian metric on a complex vector bundle � W E ! M is a collection

of Hermitian inner products (i.e., positive-definite symmetric sesquilinear forms)
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on every fiber Ep D ��1. p/, p 2 M, that varies smoothly with the point p in M.
Any complex vector bundle has a Hermitian metric.

The basic example of a vector bundle is the trivial bundle � W U � C
n ! U,

where U is an open set in R
k. In this case a Hermitian inner product on C

n, and
hence, a Hermitian metric on the bundle � W U � C

n ! U, is defined by

hu; vi D uTHv;

where H is a positive-definite Hermitian matrix, i.e., a complex n �n matrix such

that H� D H
T D H, and vTHv > 0 for all v 2 C

nnf0g. In the simplest case, one
has hu; vi D Pn

iD1 uivi.
An important special case is a Hermitian metric h on a complex manifold

Mn, i.e., on the complexified tangent bundle T.Mn/ ˝ C of Mn. This is the
Hermitian analog of a Riemannian metric. In this case h D g C iw, and its real
part g is a Riemannian metric, while its imaginary part w is a nondegenerate
antisymmetric bilinear form, called a fundamental form. Here g.J.x/; J.y// D
g.x; y/, w.J.x/; J.y// D w.x; y/, and w.x; y/ D g.x; J.y//, where the operator J
is an operator of complex structure on Mn; as a rule, J.x/ D ix. Any of the forms
g;w determines h uniquely.

The term Hermitian metric can also refer to the corresponding Riemannian
metric g, which gives Mn a Hermitian structure.

On a complex manifold, a Hermitian metric h can be expressed in local
coordinates by a Hermitian symmetric tensor ..hij//:

h D
X

i;j

hijdzi ˝ dzj;

where ..hij// is a positive-definite Hermitian matrix. The associated fundamental
form w is then written as w D i

2

P
i;j hijdzi ^ dzj. A Hermitian manifold (or

Hermitian space) is a complex manifold equipped with a Hermitian metric.
• Kähler metric

A Kähler metric (or Kählerian metric) is a Hermitian metric h D g C iw on
a complex manifold Mn whose fundamental form w is closed, i.e., dw D 0 holds.
A Kähler manifold is a complex manifold equipped with a Kähler metric.

If h is expressed in local coordinates, i.e., h D P
i;j hijdzi ˝ dzj, then the

associated fundamental form w can be written as w D i
2

P
i;j hijdzi ^ dzj, where

^ is the wedge product which is antisymmetric, i.e., dx ^ dy D �dy ^ dx (hence,
dx ^ dx D 0).

In fact, w is a differential 2-form on Mn, i.e., a tensor of rank 2 that is
antisymmetric under exchange of any pair of indices: w D P

i;j fijdxi ^ dxj,
where fij is a function on Mn. The exterior derivative dw of w is defined by

dw D P
i;j

P
k
@fij
@xk

dxk ^ dxi ^ dxk. If dw D 0, then w is a symplectic (i.e., closed
nondegenerate) differential 2-form. Such differential 2-forms are called Kähler
forms.
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The metric on a Kähler manifold locally satisfies hij D @2K
@zi@zj

: for some
function K, called the Kähler potential. The term Kähler metric can also refer to
the corresponding Riemannian metric g, which gives Mn a Kähler structure. Then
a Kähler manifold is defined as a complex manifold which carries a Riemannian
metric and a Kähler form on the underlying real manifold.

• Hessian metric
Given a smooth f on an open subset of a real vector space, the associated

Hessian metric is defined by

gij D @2f

@xi@xj
:

A Hessian metric is also called an affine Kähler metric since a Kähler metric on
a complex manifold has an analogous description as @2f

@zi@zj
.

• Calabi–Yau metric
The Calabi–Yau metric is a Kähler metric which is Ricci-flat.
A Calabi–Yau manifold (or Calabi–Yau space) is a simply connected complex

manifold equipped with a Calabi–Yau metric. It can be considered as a 2n-
dimensional (6D being particularly interesting) smooth manifold with holonomy
group (i.e., the set of linear transformations of tangent vectors arising from
parallel transport along closed loops) in the special unitary group.

• Kähler–Einstein metric
A Kähler–Einstein metric is a Kähler metric on a complex manifold

Mn whose Ricci curvature tensor is proportional to the metric tensor. This
proportionality is an analog of the Einstein field equation in the General Theory
of Relativity.

A Kähler–Einstein manifold (or Einstein manifold) is a complex manifold
equipped with a Kähler–Einstein metric. In this case the Ricci curvature tensor,
seen as an operator on the tangent space, is just multiplication by a constant.

Such a metric exists on any domain D 
 C
n that is bounded and pseudo-

convex. It can be given by the line element

ds2 D
X

i;j

@2u.z/

@zi@zj
dzidzj;

where u is a solution to the boundary value problem: det. @2u
@zi@zj

/ D e2u on D, and
u D 1 on @D. The Kähler–Einstein metric is a complete metric. On the unit disk

 D fz 2 C W jzj < 1g it is coincides with the Poincaré metric.

Let h be the Einstein metric on a smooth compact manifold Mn�1 without
boundary, having scalar curvature .n�1/.n�2/. A generalized Delaunay metric
on R�Mn�1 is (Delay, 2010) of the form g D u

4
n�2 .dy2Ch/, where u D u.y/ > 0

is a periodic solution of u00 � .n�2/2
4

u C n.n�2/
4

u
nC2
n�2 D 0.
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There is one parameter family of constant positive curvature conformal
metrics on R � S

n�1, referred to as Delaunay metric; cf. Kottler metric in
Chap. 26.

• Hodge metric
The Hodge metric is a Kähler metric whose fundamental form w defines an

integral cohomology class or, equivalently, has integral periods.
A Hodge manifold (or Hodge variety) is a complex manifold equipped with

a Hodge metric. A compact complex manifold is a Hodge manifold if and only
if it is isomorphic to a smooth algebraic subvariety of some complex projective
space.

• Fubini–Study metric
The Fubini–Study metric (or Cayley–Fubini–Study metric) is a Kähler

metric on a complex projective space CPn defined by a Hermitian inner product
h; i in C

nC1. It is given by the line element

ds2 D hx; xihdx; dxi � hx; dxihx; dxi
hx; xi2 :

The Fubini–Study distance between points .x1 W : : : W xnC1/ and .y1 W : : : W
ynC1/ 2 CPn, where x D .x1; : : : ; xnC1/ and y D .y1; : : : ; ynC1/ 2 C

nC1nf0g, is
equal to

arccos
jhx; yij

phx; xihy; yi :

The Fubini–Study metric is a Hodge metric. The space CPn endowed with
this metric is called a Hermitian elliptic space (cf. Hermitian elliptic metric).

• Bergman metric
The Bergman metric is a Kähler metric on a bounded domain D 
 C

n

defined, for the Bergman kernel K.z; u/, by the line element

ds2 D
X

i;j

@2 ln K.z; z/

@zi@zj
dzidzj:

It is a biholomorhically invariant metric on D, and it is complete if D is
homogeneous. For the unit disk 
 D fz 2 C W jzj < 1g the Bergman metric
coincides with the Poincaré metric; cf. also Bergman p-metric in Chap. 13.

The set of all analytic functions f ¤ 0 of class L2.D/ with respect to
the Lebesgue measure, forms the Hilbert space L2;a.D/ 
 L2.D/ with an
orthonormal basis .�i/i. The Bergman kernel is a function in the domain D�D 

C
2n, defined by KD.z; u/ D K.z; u/ D P1

iD1 �i.z/�i.u/.
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The Skwarczynski distance is defined by

.1
jK.z; u/j

p
K.z; z/

p
K.u; u/

/
1
2

.
• Hyper-Kähler metric

A hyper-Kähler metric is a Riemannian metric g on a 4n-dimensional
Riemannian manifold which is compatible with a quaternionic structure on the
tangent bundle of the manifold.

Thus, the metric g is Kählerian with respect to 3 Kähler structures .I;wI; g/,
.J;wJ ; g/, and .K;wK ; g/, corresponding to the complex structures, as endomor-
phisms of the tangent bundle, which satisfy the quaternionic relationship

I2 D J2 D K2 D IJK D �JIK D �1:

A hyper-Kähler manifold is a Riemannian manifold equipped with a hyper-
Kähler metric. manifolds are Ricci-flat. Compact 4D hyper-Kähler manifolds are
called K3-surfaces; they are studied in Algebraic Geometry.

• Calabi metric
The Calabi metric is a hyper-Kähler metric on the cotangent bundle

T�.CPnC1/ of a complex projective space CPnC1.
For n D 4k C 4, this metric can be given by the line element

ds2 D dr2

1� r�4
C1

4
r2.1�r�4/	2Cr2.�21C�22/C1

2
.r2�1/.
21˛C
22˛/C1

2
.r2C1/.†21˛C†22˛/;

where .	; �1; �2; 
1˛; 
2˛;†1˛;†2˛/, with ˛ running over k values, are left-
invariant one-forms (i.e., linear real-valued functions) on the coset SU.k C
2/=U.k/. Here U.k/ is the unitary group consisting of complex k � k unitary
matrices, and SU.k/ is the special unitary group of complex k�k unitary matrices
with determinant 1.

For k D 0, the Calabi metric coincides with the Eguchi–Hanson metric.
• Stenzel metric

The Stenzel metric is a hyper-Kähler metric on the cotangent bundle
T�.SnC1/ of a sphere SnC1.

• SO.3/-invariant metric
An SO.3/-invariant metric is a 4D 4-dimensional hyper-Kähler metric with

the line element given, in the Bianchi type IX formalism (cf. Bianchi metrics in
Chap. 26) by

ds2 D f 2.t/dt2 C a2.t/
21 C b2.t/
22 C c2.t/
23 ;

where the invariant one-forms 
1, 
2, 
3 of SO.3/ are expressed in terms of Euler
angles � ,  , � as 
1 D 1

2
.sin d� � sin � cos d�/, 
2 D � 1

2
.cos d� C
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sin � sin d�/, 
3 D 1
2
.d C cos �d�/, and the normalization has been chosen

so that 
i ^ 
j D 1
2
�ijkd
k. The coordinate t of the metric can always be chosen

so that f .t/ D 1
2
abc, using a suitable reparametrization.

• Atiyah–Hitchin metric
The Atiyah–Hitchin metric is a complete regular SO.3/-invariant metric

with the line element

ds2 D 1

4
a2b2c2

�
dk

k.1 � k2/K2

�2
C a2.k/
21 C b2.k/
22 C c2.k/
23 ;

where a; b; c are functions of k, ab D �K.k/.E.k/� K.k//, bc D �K.k/.E.k/�
.1 � k2/K.k//, ac D �K.k/E.k/, and K.k/, E.k/ are the complete elliptic
integrals, respectively, of the first and second kind, with 0 < k < 1. The

coordinate t is given by the change of variables t D � 2K.1�k2/
�K.k/ up to an additive

constant.
• Taub–NUT metric

The Taub–NUT metric (cf. also Chap. 26) is a complete regular SO.3/-
invariant metric with the line element

ds2 D 1

4

r C m

r � m
dr2 C .r2 � m2/.
21 C 
22 /C 4m2 r � m

r C m

23 ;

where m is the relevant moduli parameter, and the coordinate r is related to t by
r D m C 1

2mt . NUT manifold was discovered in Ehlers, 1957, and rediscovered
in Newman–Tamburino–Unti, 1963; it is closely related to the metric in Taub,
1951.

• Eguchi–Hanson metric
The Eguchi–Hanson metric is a complete regular SO.3/-invariant metric

with the line element

ds2 D dr2

1 � �
a
r

�4 C r2
�


21 C 
22 C
�

1 �
�a

r

�4
�


23

�

;

where a is the moduli parameter, and the coordinate r is a
p

coth.a2t/.
The Eguchi–Hanson metric coincides with the 4D Calabi metric.

• Complex Finsler metric
A complex Finsler metric is an upper semicontinuous function F W T.Mn/ !

RC on a complex manifold Mn with the analytic tangent bundle T.Mn/ satisfying
the following conditions:

1. F2 is smooth on LMn, where LMn is the complement in T.Mn/ of the zero section;
2. F. p; x/ > 0 for all p 2 Mn and x 2 LMn

p ;
3. F. p; 	x/ D j	jF. p; x/ for all p 2 Mn, x 2 Tp.Mn/, and 	 2 C.
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The function G D F2 can be locally expressed in terms of the coordinates
. p1; : : : ; pn; x1; : : : ; xn/; the Finsler metric tensor of the complex Finsler metric
is given by the matrix..Gij// D .. 1

2
@2F2

@xi@xj
)), called the Levi matrix. If the

matrix ..Gij// is positive-definite, the complex Finsler metric F is called strongly
pseudo-convex.

• Distance-decreasing semimetric
Let d be a semimetric which can be defined on some class M of complex

manifolds containing the unit disk 
 D fz 2 C W jzj < 1g. It is called distance-
decreasing if, for any analytic mapping f W M1 ! M2 with M1;M2 2 M, the
inequality d. f . p/; f .q// � d. p; q/ holds for all p; q 2 M

1
.

The Carathéodory semimetric FC, Sibony semimetric FS, Azukawa semi-
metric FA and Kobayashi semimetric FK are distance-decreasing with FC and
FK being the smallest and the greatest distance-decreasing semimetrics. They
are generalizations of the Poincaré metric to higher-dimensional domains, since
FC D FK is the Poincaré metric on the unit disk 
, and FC D FK � 0 on C

n.
It holds FC.z; u/ � FS.z; u/ � FA.z; u/ � FK.z; u/ for all z 2 D and u 2 C

n.
If D is convex, then all these metrics coincide.

• Biholomorphically invariant semimetric
A biholomorphism is a bijective holomorphic (complex differentiable in a

neighborhood of every point in its domain) function whose inverse is also
holomorphic.

A semimetric F.z; u/ W D � C
n ! Œ0;1� on a domain D in C

n is called
biholomorphically invariant if F.z; u/ D j	jF.z; u/ for all 	 2 C, and F.z; u/ D
F. f .z/; f 0.z/u/ for any biholomorphism f W D ! D0.

Invariant metrics, including the Carathéodory, Kobayashi, Sibony,
Azukawa, Bergman, and Kähler–Einstein metrics, play an important role
in Complex Function Theory, Complex Dynamics and Convex Geometry. The
first four metrics are used mostly because they are distance-decreasing. But
they are almost never Hermitian. On the other hand, the Bergman metric and the
Kähler–Einstein metric are Hermitian (in fact, Kählerian), but, in general, not
distance-decreasing.

The Wu metric (Cheung and Kim, 1996) is an invariant non-Kähler Hermitian
metric on a complex manifold Mn which factor, for any holomorphic mapping
between two complex manifolds.

• Kobayashi metric
Let D be a domain in C

n. Let O.
;D/ be the set of all analytic mappings
f W 
 ! D, where 
 D fz 2 C W jzj < 1g is the unit disk.

The Kobayashi metric (or Kobayashi–Royden metric) FK is a complex
Finsler metric defined, for all z 2 D and u 2 C

n, by

FK.z; u/ D inff˛ > 0 W 9f 2 O.
;D/; f .0/ D z; ˛f
0

.0/ D ug:
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Given a complex manifold Mn, the Kobayashi semimetric FK is defined by

FK. p; u/ D inff˛ > 0 W 9f 2 O.
;Mn/; f .0/ D p; ˛f
0

.0/ D ug

for all p 2 Mn and u 2 Tp.Mn/.
FK. p; u/ is a seminorm of the tangent vector u, called the Kobayashi

seminorm. FK is a metric if Mn is taut, i.e., O.
;Mn/ is a normal family (every
sequence has a subsequence which either converge or diverge compactly).

The Kobayashi semimetric is an infinitesimal form of the Kobayashi semidis-
tance (or Kobayashi pseudo-distance, 1967) KMn on Mn, defined as follows.
Given p; q 2 Mn, a chain of disks ˛ from p to q is a collection of points
p D p0; p1; : : : ; pk D q of Mn, pairs of points a1; b1I : : : I ak; bk of the unit disk

, and analytic mappings f1; : : : fk from 
 into Mn, such that fj.aj/ D p j�1 and
fj.b j/ D p j for all j.

The length l.˛/ of a chain ˛ is the sum dP.a1; b1/ C � � � C dP.ak; bk/, where
dP is the Poincaré metric. The Kobayashi semimetric KMn on Mn is defined by

KMn. p; q/ D inf
˛

l.˛/;

where the infimum is taken over all lengths l.˛/ of chains of disks ˛ from p to q.
Given a complex manifold Mn, the Kobayashi–Busemann semimetric on

Mn is the double dual of the Kobayashi semimetric. It is a metric if Mn is taut.
• Carathéodory metric

Let D be a domain in C
n. Let O.D; 
/ be the set of all analytic mappings

f W D ! 
, where 
 D fz 2 C W jzj < 1g is the unit disk.
The Carathéodory metric FC is a complex Finsler metric defined by

FC.z; u/ D supfj f
0

.z/uj W f 2 O.D; 
/g

for any z 2 D and u 2 C
n.

Given a complex manifold Mn, the Carathéodory semimetric FC is defined
by

FC. p; u/ D supfj f
0

. p/uj W f 2 O.Mn; 
/g

for all p 2 Mn and u 2 Tp.Mn/. FC is a metric if Mn is taut, i.e., every sequence
in O.
;Mn/ has a subsequence which either converge or diverge compactly.

The Carathéodory semidistance (or Carathéodory pseudo-distance, 1926)
CMn is a semimetric on a complex manifold Mn, defined by

CMn. p; q/ D supfdP. f . p/; f .q// W f 2 O.Mn; 
/g;

where dP is the Poincaré metric.
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In general, the integrated semimetric of the infinitesimal Carathéodory semi-
metric is internal for the Carathéodory semidistance, but does not equal to it.

• Azukawa semimetric
Let D be a domain in C

n. Let KD.z/ be the set of all logarithmically
plurisubharmonic functions f W D ! Œ0; 1/ such that there exist M; r > 0 with
f .u/ � Mjju � zjj2 for all u 2 B.z; r/ 
 D; here jj:jj2 is the l2-norm on C

n, and
B.z; r/ D fx 2 C

n W jjz � xjj2 < rg. Let gD.z; u/ be supf f .u/ W f 2 KD.z/g.
The Azukawa semimetric FA is a complex Finsler metric defined by

FA.z; u/ D lim	!0

1

j	jgD.z; z C 	u/

for all z 2 D and u 2 C
n.

The Azukawa metric is an infinitesimal form of the Azukawa semidistance.
• Sibony semimetric

Let D be a domain in C
n. Let KD.z/ be the set of all logarithmically

plurisubharmonic functions f W D ! Œ0; 1/ such that there exist M; r > 0 with
f .u/ � Mjju � zjj2 for all u 2 B.z; r/ D fx 2 C

n W jjz � xjj2 < rg 
 D. Let C2
loc.z/

be the set of all functions of class C2 on some open neighborhood of z.
The Sibony semimetric FS is a complex Finsler semimetric defined by

FS.z; u/ D sup
f 2KD.z/\C2loc.z/

v
u
u
t
X

i;j

@2f

@zi@zj
.z/uiuj

for all z 2 D and u 2 C
n.

The Sibony semimetric is an infinitesimal form of the Sibony semidistance.
• Teichmüller metric

A Riemann surface R is a one-dimensional complex manifold. Two Riemann
surfaces R1 and R2 are called conformally equivalent if there exists a bijective
analytic function (i.e., a conformal homeomorphism) from R1 into R2. More
precisely, consider a fixed closed Riemann surface R0 of a given genus g � 2.

For a closed Riemann surface R of genus g, one can construct a pair .R; f /,
where f W R0 ! R is a homeomorphism. Two pairs .R; f / and .R1; f1/ are called
conformally equivalent if there exists a conformal homeomorphism h W R ! R1
such that the mapping . f1/�1 � h � f W R0 ! R0 is homotopic to the identity.

An abstract Riemann surface R� D .R; f /� is the equivalence class of all
Riemann surfaces, conformally equivalent to R. The set of all equivalence classes
is called the Teichmüller space T.R0/ of the surface R0.

For closed surfaces R0 of given genus g, the spaces T.R0/ are isometrically
isomorphic, and one can speak of the Teichmüller space Tg of surfaces of genus
g. Tg is a complex manifold. If R0 is obtained from a compact surface of genus
g � 2 by removing n points, then the complex dimension of Tg is 3g � 3C n.
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The Teichmüller metric is a metric on Tg defined by

1

2
inf

h
ln K.h/

for any R�
1 ;R

�
2 2 Tg, where h W R1 ! R2 is a quasi-conformal homeomorphism,

homotopic to the identity, and K.h/ is the maximal dilation of h. In fact,
there exists a unique extremal mapping, called the Teichmüller mapping which
minimizes the maximal dilation of all such h, and the distance between R�

1 and
R�
2 is equal to 1

2
ln K, where the constant K is the dilation of the Teichmüller

mapping.
In terms of the extremal length extR�.�/, the distance between R�

1 and R�
2 is

1

2
ln sup

�

extR�

1
.�/

extR�

2
.�/

;

where the supremum is taken over all simple closed curves on R0.
The Teichmüller space Tg, with the Teichmüller metric on it, is a geodesic

metric space (moreover, a straight G-space) but it is neither Gromov hyper-
bolic, nor a Busemann convex metric space.

The Thurston quasi-metric on the Teichmüller space Tg is defined by

1

2
inf

h
ln jjhjjLip

for any R�
1 ;R

�
2 2 Tg, where h W R1 ! R2 is a quasi-conformal homeomorphism,

homotopic to the identity, and jj:jjLip is the Lipschitz norm on the set of all
injective functions f W X ! Y defined by jj f jjLip D supx;y2X;x¤y

dY . f .x/;f .y//
dX.x;y/

.
The moduli space Rg of conformal classes of Riemann surfaces of genus g

is obtained by factorization of Tg by some countable group of automorphisms
of it, called the modular group. The Zamolodchikov metric, defined (1986) in
terms of exactly marginal operators, is a natural metric on the conformal moduli
spaces.

Liu, Sun and Yau, 2005, showed that all known complete metrics on the
Teichmüller space and moduli space (including Teichmüller metric, Bergman
metric, Cheng–Yau–Mok Kähler–Einstein metric, Carathéodory metric,
McMullen metric) are equivalent since they are quasi-isometric (Chap. 1) to the
Ricci metric and the perturbed Ricci metric introduced by them.

• Weil–Petersson metric
The Weil–Petersson metric is a Kähler metric on the Teichmüller space

Tg;n of abstract Riemann surfaces of genus g with n punctures and negative Euler
characteristic. This metric has negative Ricci curvature; it is geodesically convex
(Chap. 1) and not complete.

The Weil–Peterson metric is Gromov hyperbolic if and only if (Brock and
Farb, 2006) the complex dimension 3g � 3C n of Tg;n is at most two.
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• Gibbons–Manton metric
The Gibbons–Manton metric is a 4n-dimensional hyper-Kähler metric on

the moduli space of n-monopoles which admits an isometric action of the n-
dimensional torus Tn. It is a hyper-Kähler quotient of a flat quaternionic vector
space.

• Metrics on determinant lines
Let Mn be an n-dimensional compact smooth manifold, and let F be a flat

vector bundle over Mn. Let H
.Mn;F/ D ˚n
iD0Hi.Mn;F/ be the de Rham

cohomology of Mn with coefficients in F. Given an n-dimensional vector space
V , the determinant line det V of V is defined as the top exterior power of V , i.e.,
det V D ^nV . Given a finite-dimensional graded vector space V D ˚n

iD0Vi, the
determinant line of V is defined as the tensor product det V D ˝n

iD0.detVi/
.�1/i .

Thus, the determinant line detH
.Mn;F/ of the cogomology H
.Mn;F/ can
be written as detH
.Mn;F/ D ˝n

iD0.detHi.Mn;F//.�1/i .
The Reidemeister metric is a metric on detH
.Mn;F/, defined by a given

smooth triangulation of Mn, and the classical Reidemeister–Franz torsion.
Let gF and gT.Mn/ be smooth metrics on the vector bundle F and tangent bundle

T.Mn/, respectively. These metrics induce a canonical L2-metric hH�.Mn ;F/ on
H
.Mn;F/. The Ray–Singler metric on detH
.Mn;F/ is defined as the product
of the metric induced on detH
.Mn;F/ by hH�.Mn;F/ with the Ray–Singler
analytic torsion. The Milnor metric on detH
.Mn;F/ can be defined in a similar
manner using the Milnor analytic torsion. If gF is flat, the above two metrics
coincide with the Reidemeister metric. Using a co-Euler structure, one can define
a modified Ray–Singler metric on detH
.Mn;F/.

The Poincaré–Reidemeister metric is a metric on the cohomological deter-
minant line detH
.Mn;F/ of a closed connected oriented odd-dimensional
manifold Mn. It can be constructed using a combination of the Reidemeister
torsion with the Poincaré duality. Equivalently, one can define the Poincaré–
Reidemeister scalar product on detH
.Mn;F/ which completely determines
the Poincaré–Reidemeister metric but contains an additional sign or phase
information.

The Quillen metric is a metric on the inverse of the cohomological determi-
nant line of a compact Hermitian one-dimensional complex manifold. It can be
defined as the product of the L2-metric with the Ray-Singler analytic torsion.

• Kähler supermetric
The Kähler supermetric is a generalization of the Kähler metric for the case

of a supermanifold. A supermanifold is a generalization of the usual manifold
with fermonic as well as bosonic coordinates. The bosonic coordinates are
ordinary numbers, whereas the fermonic coordinates are Grassmann numbers.

Here the term supermetric differs from the one used in this chapter.
• Hofer metric

A symplectic manifold .Mn;w/, n D 2k, is a smooth even-dimensional
manifold Mn equipped with a symplectic form, i.e, a closed nondegenerate 2-
form, w.
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A Lagrangian manifold is a k-dimensional smooth submanifold Lk of a
symplectic manifold .Mn;w/, n D 2k, such that the form w vanishes identically
on Lk, i.e., for any p 2 Lk and any x; y 2 Tp.Lk/, one has w.x; y/ D 0.

Let L.Mn; 
/ be the set of all Lagrangian submanifolds of a closed symplectic
manifold .Mn;w/, diffeomorphic to a given Lagrangian submanifold 
. A
smooth family ˛ D fLtgt, t 2 Œ0; 1�, of Lagrangian submanifolds Lt 2 L.Mn; 
/

is called an exact path connecting L0 and L1, if there exists a smooth mapping
‰ W 
 � Œ0; 1� ! Mn such that, for every t 2 Œ0; 1�, one has ‰.
 � ftg/ D Lt,
and ‰ � w D dHt ^ dt for some smooth function H W 
 � Œ0; 1� ! R. The
Hofer length l.˛/ of an exact path ˛ is defined by l.˛/ D R 1

0
fmaxp2
 H. p; t/ �

minp2
 H. p; t/gdt.
The Hofer metric on the set L.Mn; 
/ is defined by

inf
˛

l.˛/

for any L0;L1 2 L.Mn; 
/, where the infimum is taken over all exact paths on
L.Mn; 
/, that connect L0 and L1.

The Hofer metric can be defined similarly on the group Ham.Mn;w/ of
Hamiltonian diffeomorphisms of a closed symplectic manifold .Mn;w/, whose
elements are time-one mappings of Hamiltonian flows �H

t : it is inf˛ l.˛/, where
the infimum is taken over all smooth paths ˛ D f�H

t g, t 2 Œ0; 1�, connecting �
and  .

• Sasakian metric
A Sasakian metric is a metric on a contact manifold, naturally adapted to the

contact structure.
A contact manifold equipped with a Sasakian metric is called a Sasakian

space, and it is an odd-dimensional analog of a Kähler manifold. The scalar
curvature of a Sasakian metric which is also Einstein metric, is positive.

• Cartan metric
A Killing form (or Cartan–Killing form) on a finite-dimensional Lie algebra

� over a field F is a symmetric bilinear form

B.x; y/ D Tr.adx � ady/;

where Tr denotes the trace of a linear operator, and adx is the image of x under
the adjoint representation of �, i.e., the linear operator on the vector space �
defined by the rule z ! Œx; z�, where Œ; � is the Lie bracket.

Let e1; : : : en be a basis for the Lie algebra�, and Œei; ej� D Pn
kD1 � k

ijek, where
� k

ij are corresponding structure constants. Then the Killing form is given by

B.xi; xj/ D gij D
nX

k;lD1
� k

il�
l
ik:

In Theoretical Physics, the metric tensor ..gij// is called a Cartan metric.



Chapter 8
Distances on Surfaces and Knots

8.1 General Surface Metrics

A surface is a real 2D (two-dimensional) manifold M2, i.e., a Hausdorff space,
each point of which has a neighborhood which is homeomorphic to a plane E2, or a
closed half-plane (cf. Chap. 7).

A compact orientable surface is called closed if it has no boundary, and it
is called a surface with boundary, otherwise. There are compact nonorientable
surfaces (closed or with boundary); the simplest such surface is the Möbius strip.
Noncompact surfaces without boundary are called open.

Any closed connected surface is homeomorphic to either a sphere with, say, g
(cylindric) handles, or a sphere with, say, g cross-caps (i.e., caps with a twist like
Möbius strip in them). In both cases the number g is called the genus of the surface.
In the case of handles, the surface is orientable; it is called a torus (doughnut),
double torus, and triple torus for g D 1; 2 and 3, respectively. In the case of cross-
caps, the surface is nonorientable; it is called the real projective plane, Klein bottle,
and Dyck’s surface for g D 1; 2 and 3, respectively. The genus is the maximal
number of disjoint simple closed curves which can be cut from a surface without
disconnecting it (the Jordan curve theorem for surfaces).

The Euler–Poincaré characteristic of a surface is (the same for all polyhedral
decompositions of a given surface) the number � D v � e C f , where v; e and f are,
respectively, the number of vertices, edges and faces of the decomposition. Then
� D 2 � 2g if the surface is orientable, and � D 2 � g if not. Every surface with
boundary is homeomorphic to a sphere with an appropriate number of (disjoint)
holes (i.e., what remains if an open disk is removed) and handles or cross-caps. If h
is the number of holes, then � D 2 � 2g � h holds if the surface is orientable, and
� D 2 � g � h if not.

The connectivity number of a surface is the largest number of closed cuts that can
be made on the surface without separating it into two or more parts. This number is
equal to 3�� for closed surfaces, and 2�� for surfaces with boundaries. A surface
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with connectivity number 1; 2 and 3 is called, respectively, simply, doubly and triply
connected. A sphere is simply connected, while a torus is triply connected.

A surface can be considered as a metric space with its own intrinsic metric, or
as a figure in space. A surface in E

3 is called complete if it is a complete metric
space with respect to its intrinsic metric.

Useful shape-aware (preserved by isomorphic deformations of the surface)
distances on the interior of a surface mesh can be defined by isometric embedding
of the surface into a suitable high-dimensional Euclidean space; for example,
diffusion metric (cf. Chap. 15 and histogram diffusion distance from Chap. 21)
and Rustamov et al., 2009.

A surface is called differentiable, regular, or analytic, respectively, if in a
neighborhood of each of its points it can be given by an expression

r D r.u; v/ D r.x1.u; v/; x2.u; v/; x3.u; v//;

where the position vector r D r.u; v/ is a differentiable, regular (i.e., a sufficient
number of times differentiable), or real analytic, respectively, vector function
satisfying the condition ru � rv ¤ 0.

Any regular surface has the intrinsic metric with the line element (or first
fundamental form)

ds2 D dr2 D E.u; v/du2 C 2F.u; v/dudvC G.u; v/dv2;

where E.u; v/ D hru; rui, F.u; v/ D hru; rvi, G.u; v/ D hrv; rvi. The length of a
curve defined on the surface by the equations u D u.t/, v D v.t/, t 2 Œ0; 1�, is
computed by

Z 1

0

p
Eu02 C 2Fu0

v
0 C Gv02dt;

and the distance between any points p; q 2 M2 is defined as the infimum of
the lengths of all curves on M2, connecting p and q. A Riemannian metric is a
generalization of the first fundamental form of a surface.

For surfaces, two kinds of curvature are considered: Gaussian curvature, and
mean curvature. To compute these curvatures at a given point of the surface,
consider the intersection of the surface with a plane, containing a fixed normal
vector, i.e., a vector which is perpendicular to the surface at this point. This
intersection is a plane curve. The curvature k of this plane curve is called the normal
curvature of the surface at the given point. If we vary the plane, the normal curvature
k will change, and there are two extremal values, the maximal curvature k1, and the
minimal curvature k2, called the principal curvatures of the surface. A curvature is
taken to be positive if the curve turns in the same direction as the surface’s chosen
normal, otherwise it is taken to be negative.
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The Gaussian curvature is K D k1k2 (it can be given entirely in terms of the first
fundamental form). The mean curvature is H D 1

2
.k1 C k2/.

A minimal surface is a surface with mean curvature zero or, equivalently, a
surface of minimum area subject to constraints on the location of its boundary.

A Riemann surface is a one-dimensional complex manifold, or a 2D real manifold
with a complex structure, i.e., in which the local coordinates in neighborhoods of
points are related by complex analytic functions. It can be thought of as a deformed
version of the complex plane. All Riemann surfaces are orientable. Closed Riemann
surfaces are geometrical models of complex algebraic curves. Every connected
Riemann surface can be turned into a complete 2D Riemannian manifold with
constant curvature �1; 0, or 1. The Riemann surfaces with curvature �1 are called
hyperbolic, and the unit disk 
 D fz 2 C W jzj < 1g is the canonical example. The
Riemann surfaces with curvature 0 are called parabolic, and C is a typical example.
The Riemann surfaces with curvature 1 are called elliptic, and the Riemann sphere
C [ f1g is a typical example.

• Regular metric
The intrinsic metric of a surface is regular if it can be specified by the line

element

ds2 D Edu2 C 2FdudvC Gdv2;

where the coefficients of the form ds2 are regular functions.
Any regular surface, given by an expression r D r.u; v/, has a regular metric

with the line element ds2, where E.u; v/ D hru; rui, F.u; v/ D hru; rvi, G.u; v/ D
hrv; rvi.

• Analytic metric
The intrinsic metric on a surface is analytic if it can be specified by the line

element

ds2 D Edu2 C 2FdudvC Gdv2;

where the coefficients of the form ds2 are real analytic functions.
Any analytic surface, given by an expression r D r.u; v/, has an analytic

metric with the line element ds2, where E.u; v/ D hru; rui, F.u; v/ D hru; rvi,
G.u; v/ D hrv; rvi.

• Metric of nonpositive curvature
A metric of nonpositive curvature is the intrinsic metric on a saddle-

like surface. A saddle-like surface is a generalization of a surface of negative
curvature: a twice continuously-differentiable surface is a saddle-like surface if
and only if at each point of the surface its Gaussian curvature is nonpositive.

These surfaces can be seen as antipodes of convex surfaces, but they do not
form such a natural class of surfaces as do convex surfaces.

A metric of negative curvature is the intrinsic metric on a surface of negative
curvature, i.e., a surface in E

3 that has negative Gaussian curvature at every point.
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A surface of negative curvature locally has a saddle-like structure. The
intrinsic geometry of a surface of constant negative curvature (in particular, of
a pseudo-sphere) locally coincides with the geometry of the Lobachevsky plane.
There exists no surface in E

3 whose intrinsic geometry coincides completely
with the geometry of the Lobachevsky plane (i.e., a complete regular surface of
constant negative curvature).

• Metric of nonnegative curvature
A metric of nonnegative curvature is the intrinsic metric on a convex

surface.
A convex surface is a domain (i.e., a connected open set) on the boundary of

a convex body in E
3 (in some sense, it is an antipode of a saddle-like surface).

The entire boundary of a convex body is called a complete convex surface.
If the body is finite (bounded), the complete convex surface is called closed.
Otherwise, it is called infinite (an infinite convex surface is homeomorphic to a
plane or to a circular cylinder).

Any convex surface M2 in E
3 is a surface of bounded curvature. The total

Gaussian curvature w.A/ D R R
A K.x/d
.x/ of a set A 
 M2 is always

nonnegative (here 
.:/ is the area, and K.x/ is the Gaussian curvature of M2 at a
point x), i.e., a convex surface can be seen as a surface of nonnegative curvature.

The intrinsic metric of a convex surface is a convex metric (not to be confused
with metric convexity from Chap. 1) in the sense of Surface Theory, i.e., it
displays the convexity condition: the sum of the angles of any triangle whose
sides are shortest curves is not less that � .

A metric of positive curvature is the intrinsic metric on a surface of positive
curvature, i.e., a surface in E

3 that has positive Gaussian curvature at every point.
• Metric with alternating curvature

A metric with alternating curvature is the intrinsic metric on a surface with
alternating (positive or negative) Gaussian curvature.

• Flat metric
A flat metric is the intrinsic metric on a developable surface, i.e., a surface,

on which the Gaussian curvature is everywhere zero. Cf. flat space in Chap. 1.
In general, a Riemannian metric on a surface is locally Euclidean up to a third

order error (distortion of metric) measured by the Gaussian curvature.
• Metric of bounded curvature

A metric of bounded curvature is the intrinsic metric � on a surface of
bounded curvature.

A surface M2 with an intrinsic metric � is called a surface of bounded
curvature if there exists a sequence of Riemannian metrics �n defined on M2,
such that �n ! � uniformly for any compact set A 
 M2, and the sequence
jwnj.A/ is bounded, where jwjn.A/ D R R

A jK.x/jd
.x/ is the total absolute
curvature of the metric �n (here K.x/ is the Gaussian curvature of M2 at a point
x, and 
.:/ is the area).

• ƒ-metric
A ƒ-metric (or metric of type ƒ) is a complete metric on a surface with

curvature bounded from above by a negative constant.
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A ƒ-metric does not have embeddings into E
3. It is a generalization of the

result in Hilbert, 1901: no complete regular surface of constant negative curvature
(i.e., a surface whose intrinsic geometry is the geometry of the Lobachevsky
plane) exists in E

3.
• .h; 
/-metric

A .h; 
/-metric is a metric on a surface with a slowly-changing negative
curvature.

A complete .h; 
/-metric does not permit a regular isometric embedding in
three-dimensional Euclidean space (cf.ƒ-metric).

• G-distance
A connected set G of points on a surface M2 is called a geodesic region if,

for each point x 2 G, there exists a disk B.x; r/ with center at x, such that BG D
G \ B.x; r/ has one of the following forms: BG D B.x; r/ (x is a regular interior
point of G); BG is a semidisk of B.x; r/ (x is a regular boundary point of G); BG is
a sector of B.x; r/ other than a semidisk (x is an angular point of G); BG consists
of a finite number of sectors of B.x; r/ with no common points except x (a nodal
point of G).

The G-distance between any x and y 2 G is the greatest lower bound of the
lengths of all rectifiable curves connecting x and y 2 G and completely contained
in G.

• Conformally invariant metric
Let R be a Riemann surface. A local parameter (or local uniformizing

parameter, local uniformizer) is a complex variable z considered as a continuous
function zp0 D �p0 . p/ of a point p 2 R which is defined everywhere in some
neighborhood (parametric neighborhood) V. p0/ of a point p0 2 R and which
realizes a homeomorphic mapping (parametric mapping) of V. p0/ onto the disk
(parametric disk) 
. p0/ D fz 2 C W jzj < r. p0/g, where �p0 . p0/ D 0.
Under a parametric mapping, any point function g. p/ defined in the parametric
neighborhood V. p0/, goes into a function of the local parameter z: g. p/ D
g.��1

p0
.z// D G.z/.

A conformally invariant metric is a differential �.z/jdzj on the Riemann
surface R which is invariant with respect to the choice of the local parameter z.
Thus, to each local parameter z (z W U ! C) a function �z W z.U/ ! Œ0;1� is
associated such that, for any local parameters z1 and z2, we have

�z2 .z2. p//

�z1 .z1. p//
D
ˇ
ˇ
ˇ
ˇ
dz1. p/

dz2. p/

ˇ
ˇ
ˇ
ˇ for any p 2 U1 \ U2:

Every linear differential 	.z/dz and every quadratic differential Q.z/dz2 induce
conformally invariant metrics j	.z/jjdzj and jQ.z/j1=2jdzj, respectively (cf. Q-
metric).

• Q-metric
An Q-metric is a conformally invariant metric �.z/jdzj D jQ.z/j1=2jdzj on

a Riemann surface R defined by a quadratic differential Q.z/dz2.
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A quadratic differential Q.z/dz2 is a nonlinear differential on a Riemann
surface R which is invariant with respect to the choice of the local parameter
z. Thus, to each local parameter z (z W U ! C) a function Qz W z.U/ ! C is
associated such that, for any local parameters z1 and z2, we have

Qz2 .z2. p//

Qz1 .z1. p//
D
�

dz1. p/

dz2. p/

�2
for any p 2 U1 \ U2:

• Extremal metric
Let � be a family of locally rectifiable curves on a Riemann surface R and

let P be a class of conformally invariant metrics �.z/jdzj on R such that �.z/
is square-integrable in the z-plane for every local parameter z, and the following
Lebesgue integrals are not simultaneously equal to 0 or 1:

A�.R/ D
Z Z

R
�2.z/dxdy and L�.�/ D inf

�2�

Z

y
�.z/jdzj:

The modulus of the family of curves � is defined by

M.�/ D inf
�2P

A�.R/

.L�.�//2
:

The extremal length of the family of curves � is the reciprocal of M.�/.
Let PL be the subclass of P such that, for any �.z/jdzj 2 PL and any � 2 � ,

one has
R
�
�.z/jdzj � 1. If PL ¤ ;, then M.�/ D inf�2PL A�.R/. Every metric

from PL is called an admissible metric for the modulus on � . If there exists ��
for which

M.�/ D inf
�2PL

A�.R/ D A��.R/;

the metric ��jdzj is called an extremal metric for the modulus on � . It is a
conformally invariant metric.

• Fréchet surface metric
Let .X; d/ be a metric space, M2 a compact 2D manifold, f a continuous

mapping f W M2 ! X, called a parametrized surface, and 
 W M2 ! M2

a homeomorphism of M2 onto itself. Two parametrized surfaces f1 and f2 are
called equivalent if inf
 maxp2M2 d. f1. p/; f2.
. p/// D 0, where the infimum is
taken over all possible homeomorphisms 
 . A class f � of parametrized surfaces,
equivalent to f , is called a Fréchet surface. It is a generalization of the notion of
a surface in Euclidean space to the case of an arbitrary metric space .X; d/.

The Fréchet surface metric on the set of all Fréchet surfaces is defined by

inf



max
p2M2

d. f1. p/; f2.
. p///
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for any Fréchet surfaces f �
1 and f �

2 , where the infimum is taken over all possible
homeomorphisms 
 . Cf. the Fréchet metric in Chap. 1.

• Hempel metric
A handlebody of genus g is the boundary sum of g copies of a solid torus; it is

homeomorphic to the closure of a regular neighborhood of some finite graph in
R
3. Given a closed orientable 3-manifold M, its Heegaard splitting (of genus g)

is M D A [P B where A;B are genus g handlebodies in M such that M D A [ B
and A \ B D @A D @B D P. Then P is called a (genus g) Heegaard surface
of M. In knot applications, Heegaard splitting of the exterior of a knot K (the
complement of an open solid torus knotted like K) are considered.

Two embedded curves are isotopic if there exists a continuous deformation
of one embedding to another through a path of embeddings. Given a closed
connected orientable surface S of genus at least two, let C.S/ D .V;E/ denotes
the graph whose vertices are isotopy classes of essential (not bounding disk
on the surface) simple closed curves and whose edges are drawn between
vertices with disjoint representative curves. This graph is connected. For any
subsets of vertices X;Y 
 V , denote by dS.X;Y/ their set-to-set distance
min dS.x; y/ W x 2 X; y 2 Y , where dS.x; y/ is the path metric of C.S/.

If S is the boundary of a handlebody H, let M.H/ denotes the set of vertices
with representatives bounding meridian disks D of H, i.e., such that @D are
essential simple closed curves in @H. The Hempel distance of a (genus g � 2)
Heegaard splitting M D A[P B is defined (Hempel, 2001) to be dP.M.A/;M.B//.

A Heegaard splitting M D A [P B is stabilized, if there are meridian
disks DA;DB of A;B respectively such that @DA and @DB intersects transversely
in a single point. The Reidemeister–Singer distance between two Heegaard
surfaces/splittings is the minimal number of stabilizations (roughly, additions
of a “trivial” handle) and destabilizations (inverse operation) relating them.

8.2 Intrinsic Metrics on Surfaces

In this section we list intrinsic metrics, given by their line elements (which, in fact,
are 2D Riemannian metrics), for some selected surfaces.

• Quadric metric
A quadric (or quadratic surface, surface of second-order) is a set of points

in E
3, whose coordinates in a Cartesian coordinate system satisfy an alge-

braic equation of degree two. There are 17 classes of such surfaces. Among
them are: ellipsoids, one-sheet and two-sheet hyperboloids, elliptic paraboloids,
hyperbolic paraboloids, elliptic, hyperbolic and parabolic cylinders, and conical
surfaces.

For example, a cylinder can be given by the following parametric equations:

x1.u; v/ D a cosv; x2.u; v/ D a sin v; x3.u; v/ D u:



176 8 Distances on Surfaces and Knots

The intrinsic metric on it is given by the line element

ds2 D du2 C a2dv2:

An elliptic cone (i.e., a cone with elliptical cross-section) has the following
equations:

x1.u; v/ D a
h � u

h
cos v; x2.u; v/ D b

h � u

h
sin v; x3.u; v/ D u;

where h is the height, a is the semimajor axis, and b is the semiminor axis of the
cone. The intrinsic metric on it is given by the line element

ds2 D h2 C a2 cos2 v C b2 sin2 v

h2
du2 C 2

.a2 � b2/.h � u/ cos v sin v

h2
dudvC

C .h � u/2.a2 sin2 v C b2 cos2 v/

h2
dv2:

• Sphere metric
A sphere is a quadric, given by the Cartesian equation .x1 � a/2C .x2� b/2C

.x3 � c/2 D r2, where the point .a; b; c/ is the center of the sphere, and r > 0

is the radius of the sphere. The sphere of radius r, centered at the origin, can be
given by the following parametric equations:

x1.�; �/ D r sin � cos�; x2.�; �/ D r sin � sin �; x3.�; �/ D r cos �;

where the azimuthal angle � 2 Œ0; 2�/, and the polar angle � 2 Œ0; ��.
The intrinsic metric on it (in fact, the 2D spherical metric) is given by the

line element

ds2 D r2d�2 C r2 sin2 �d�2:

A sphere of radius r has constant positive Gaussian curvature equal to r.
• Ellipsoid metric

An ellipsoid is a quadric given by the Cartesian equation x21
a2

C x22
b2

C x23
c2

D 1,
or by the following parametric equations:

x1.�; �/ D a cos� sin �; x2.�; �/ D b sin� sin �; x3.�; �/ D c cos �;

where the azimuthal angle � 2 Œ0; 2�/, and the polar angle � 2 Œ0; ��.
The intrinsic metric on it is given by the line element

ds2 D .b2 cos2 �C a2 sin2 �/ sin2 �d�2 C .b2 � a2/ cos� sin � cos � sin �d�d�C
C..a2 cos2 � C b2 sin2 �/ cos2 � C c2 sin2 �/d�2:
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• Spheroid metric
A spheroid is an ellipsoid having two axes of equal length. It is also a rotation

surface, given by the following parametric equations:

x1.u; v/ D a sin v cos u; x2.u; v/ D a sin v sin u; x3.u; v/ D c cos v;

where 0 � u < 2� , and 0 � v � � .
The intrinsic metric on it is given by the line element

ds2 D a2 sin2 vdu2 C 1

2
.a2 C c2 C .a2 � c2/ cos.2v//dv2:

• Hyperboloid metric
A hyperboloid is a quadric which may be one- or two-sheeted.
The one-sheeted hyperboloid is a surface of revolution obtained by rotating

a hyperbola about the perpendicular bisector to the line between the foci, while
the two-sheeted hyperboloid is a surface of revolution obtained by rotating a
hyperbola about the line joining the foci.

The one-sheeted circular hyperboloid, oriented along the x3 axis, is given by

the Cartesian equation x21
a2

C x22
a2

� x23
c2

D 1, or by the following parametric equations:

x1.u; v/ D a
p
1C u2 cos v; x2.u; v/ D a

p
1C u2 sin v; x3.u; v/ D cu;

where v 2 Œ0; 2�/. The intrinsic metric on it is given by the line element

ds2 D
�

c2 C a2u2

u2 C 1

�

du2 C a2.u2 C 1/dv2:

• Rotation surface metric
A rotation surface (or surface of revolution) is a surface generated by rotating

a 2D curve about an axis. It is given by the following parametric equations:

x1.u; v/ D �.v/ cos u; x2.u; v/ D �.v/ sin u; x3.u; v/ D  .v/:

The intrinsic metric on it is given by the line element

ds2 D �2du2 C .�
02 C  

02/dv2:

• Pseudo-sphere metric
A pseudo-sphere is a half of the rotation surface generated by rotating a

tractrix about its asymptote. It is given by the following parametric equations:

x1.u; v/ D sechu cosv; x2.u; v/ D sechu sin v; x3.u; v/ D u � tanh u;
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where u � 0, and 0 � v < 2� . The intrinsic metric on it is given by the line
element

ds2 D tanh2 udu2 C sech2udv2:

The pseudo-sphere has constant negative Gaussian curvature equal to �1, and
in this sense is an analog of the sphere which has constant positive Gaussian
curvature.

• Torus metric
A torus is a surface having genus one. A torus azimuthally symmetric about

the x3 axis is given by the Cartesian equation .c �
q

x21 C x22/
2 C x23 D a2, or by

the following parametric equations:

x1.u; v/ D .c C a cosv/ cos u; x2.u; v/ D .c C a cosv/ sin u; x3.u; v/ D a sin v;

where c > a, and u; v 2 Œ0; 2�/.
The intrinsic metric on it is given by the line element

ds2 D .c C a cos v/2du2 C a2dv2:

For toroidally confined plasma, such as in magnetic confinement fusion, the
coordinates u, v and a correspond to the directions called , respectively, toroidal
(long, as lines of latitude, way around the torus), poloidal (short way around the
torus) and radial. The poloidal distance, used in plasma context, is the distance
in the poloidal direction.

• Helical surface metric
A helical surface (or surface of screw motion) is a surface described by a plane

curve � which, while rotating around an axis at a uniform rate, also advances
along that axis at a uniform rate. If � is located in the plane of the axis of rotation
x3 and is defined by the equation x3 D f .u/, the position vector of the helical
surface is

r D .u cosv; u sin v; f .u/ D hv/; h D const;

and the intrinsic metric on it is given by the line element

ds2 D .1C f
02/du2 C 2hf

0

dudv C .u2 C h2/dv2:

If f D const, one has a helicoid; if h D 0, one has a rotation surface.
• Catalan surface metric

The Catalan surface is a minimal surface, given by the following equations:

x1.u; v/ D u � sin u cosh v; x2.u; v/ D 1� cos u cosh v; x3.u; v/ D 4 sin
�u

2

�
sinh

�v

2

�
:
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The intrinsic metric on it is given by the line element

ds2 D 2 cosh2
�v

2

�
.cosh v � cos u/du2 C 2 cosh2.

v

2
/ .cosh v � cos u/ dv2:

• Monkey saddle metric
The monkey saddle is a surface, given by the Cartesian equation x3 D x1.x21 �

3x22/, or by the following parametric equations:

x1.u; v/ D u; x2.u; v/ D v; x3.u; v/ D u3 � 3uv2:

This is a surface which a monkey can straddle with both legs and his tail. The
intrinsic metric on it is given by the line element

ds2 D .1C .su2 � 3v2/2/du2 � 2.18uv.u2 � v2//dudv C .1C 36u2v2/dv2/:

• Distance-defined surfaces and curves
We give below examples of plane curves and surfaces which are the loci of

points with given value of some function of their Euclidean distances to the given
objects.

A parabola is the locus of all points in R
2 that are equidistant from the given

point (focus) and given line (directrix) on the plane.
A hyperbola is the locus of all points in R

2 such that the ratio of their distances
to the given point and line is a constant (eccentricity) greater than 1. It is also the
locus of all points in R

2 such that the absolute value of the difference of their
distances to the two given foci is constant.

An ellipse is the locus of all points in R
2 such that the sum of their distances

to the two given points (foci) is constant; cf. elliptic orbit distance in Chap. 25.
A circle is an ellipse in which the two foci are coincident.

A Cassini oval is the locus of all points in R
2 such that the product of their

distances to two given points is a constant k. If the distance between two points
is 2

p
k, then such oval is called a lemniscate of Bernoulli.

A circle of Appolonius is the locus of points in R
2 such that the ratio of their

distances to the first and second given points is constant.
A Cartesian oval is the locus of points in R

2 such that their distances r1; r2 to
the foci .�1; 0/; .1; 0/ are related linearly by ar1Cbr2 D 1. The cases a D b; a D
�b and a D 1

2
(or b D 1

2
) correspond to the ellipse, hyperbola and limaçon of

Pascal, respectively.
A Cassinian curve is the locus of all points in R

2 such that the product of their
distances to n given points (poles) is constant. If the poles form a regular n-gon,
then this (algebraic of degree 2n) curve is a sinusoidal spiral given also by polar
equation rn D 2 cos.n�/, and the case n D 3 corresponds to the Kiepert curve.

Farouki and Moon, 2000, considered many other multipolar generalizations
of above curves. For example, their trifocal ellipse is the locus of all points in
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R
2 (seen as the complex plane) such that the sum of their distances to the 3 cube

roots of unity is a constant k. If k D 2
p
3, the curve pass through (and is singular

at) the 3 poles.
In R

3, a surface, rotationally symmetric about an axis, is a locus defined via
Euclidean distances of its points to the two given poles belonging to this axis. For
example, a spheroid (or ellipsoid of revolution) is a quadric obtained by rotating
an ellipse about one of its principal axes.

It is a sphere, if this ellipse is a circle. If the ellipse is rotated about its major
axis, the result is an elongated (as the rugby ball) spheroid which is the locus of
all points in R

3 such that the sum of their distances to the two given points is
constant. The rotation about its minor axis results in a flattened spheroid (as the
Earth) which is the locus of all points in R

3 such that the sum of the distances to
the closest and the farthest points of given circle is constant.

A hyperboloid of revolution of two sheets is a quadric obtained by revolving a
hyperbola about its semimajor (real) axis. Such hyperboloid with axis AB is the
locus of all points in R

3 such that the absolute value of the difference of their
distances to the points A and B is constant.

Any point in R
n is uniquely defined by its Euclidean distances to the vertices

of a nondegenerated n-simplex. If a surface which is not rotationally symmetric
about an axis, is a locus in R

3 defined via distances of its points to the given
poles, then three noncollinear poles is needed, and the surface is symmetric with
respect to reflection in the plane defined by the three poles.

8.3 Distances on Knots

A knot is a closed, self-nonintersecting curve that is embedded in S3. The trivial
knot (or unknot) O is a closed loop that is not knotted. A knot can be generalized
to a link which is a set of disjoint knots. Every link has its Seifert surface, i.e., a
compact oriented surface with the given link as boundary.

Two knots (links) are called equivalent if one can be smoothly deformed into
another. Formally, a link is defined as a smooth one-dimensional submanifold of
the 3-sphere S3; a knot is a link consisting of one component; two links L1 and
L2 are called equivalent if there exists an orientation-preserving homeomorphism
f W S3 ! S3 such that f .L1/ D L2.

All the information about a knot can be described using a knot diagram. It is
a projection of a knot onto a plane such that no more than two points of the knot
are projected to the same point on the plane, and at each such point it is indicated
which strand is closest to the plane, usually by erasing part of the lower strand. Two
different knot diagrams may both represent the same knot. Much of Knot Theory is
devoted to telling when two knot diagrams represent the same knot.
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An unknotting operation is an operation which changes the overcrossing and the
undercrossing at a double point of a given knot diagram. The unknotting number
of a knot K is the minimum number of unknotting operations needed to deform
a diagram of K into that of the trivial knot, where the minimum is taken over all
diagrams of K. Roughly, the unknotting number is the smallest number of times a
knot K must be passed through itself to untie it.

An ]-unknotting operation in a diagram of a knot K is an analog of the unknotting
operation for a ]-part of the diagram consisting of two pairs of parallel strands with
one of the pair overcrossing another. Thus, an ]-unknotting operation changes the
overcrossing and the undercrossing at each vertex of obtained quadrangle.

• Gordian distance
The Gordian distance is a metric on the set of all knots defined, for given

knots K and K
0

, as the minimum number of unknotting operations needed to
deform a diagram of K into that of K

0

, where the minimum is taken over all
diagrams of K from which one can obtain diagrams of K

0

. The unknotting
number of K is equal to the Gordian distance between K and the trivial knot
O.

Let rK be the knot obtained from K by taking its mirror image, and let �K be
the knot with the reversed orientation. The positive reflection distance RefC.K/
is the Gordian distance between K and rK. The negative reflection distance
Ref�.K/ is the Gordian distance between K and �rK. The inversion distance
Inv.K/ is the Gordian distance between K and �K.

The Gordian distance is the case k D 1 of the Ck-distance which is the
minimum number of Ck-moves needed to transform K into K

0

; Habiro, 1994
and Goussarov, 1995, independently proved that, for k > 1, it is finite if and
only if both knots have the same Vassiliev invariants of order less than k. A C1-
move is a single crossing change, a C2-move (or delta-move) is a simultaneous
crossing change for 3 arcs forming a triangle. C2- and C3-distances are called
delta distance and clasp-pass distance, respectively.

• ]-Gordian distance
The ]-Gordian distance (see, for example, [Mura85]) is a metric on the set

of all knots defined, for given knots K and K
0

, as the minimum number of ]-
unknotting operations needed to deform a diagram of K into that of K

0

, where the
minimum is taken over all diagrams of K from which one can obtain diagrams
of K

0

.
Let rK be the knot obtained from K by taking its mirror image, and let �K

be the knot with the reversed orientation. The positive ]-reflection distance
Ref ]C.K/ is the ]-Gordian distance between K and rK. The negative ]-reflection
distance Ref ]�.K/ is the ]-Gordian distance between K and �rK. The ]-inversion
distance Inv].K/ is the ]-Gordian distance between K and �K.

• Knot complement hyperbolic metric
The complement of a knot K (or a link L) is S3nK (or S3nL, respectively).
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A knot (or, in general, a link) is called hyperbolic if its complement supports
a complete Riemannian metric of constant curvature �1. In this case, the metric
is called a knot (or link) complement hyperbolic metric, and it is unique.

A knot is hyperbolic if and only if (Thurston, 1978) it is not a satellite knot
(then it supports a complete locally homogeneous Riemannian metric) and not a
torus knot (does not lie on a trivially embedded torus in S3). The complement of
any nontrivial knot supports a complete nonpositively curved Riemannian metric.



Chapter 9
Distances on Convex Bodies, Cones,
and Simplicial Complexes

9.1 Distances on Convex Bodies

A convex body in the n-dimensional Euclidean space E
n is a convex compact

connected subset of E
n. It is called solid (or proper) if it has nonempty interior.

Let K denote the space of all convex bodies in E
n, and let Kp be the subspace of all

proper convex bodies. Given a set X 
 E
n, its convex hull conv.X/ is the minimal

convex set containing X.
Any metric space .K; d/ on K is called a metric space of convex bodies. Such

spaces, in particular the metrization by the Hausdorff metric, or by the symmetric
difference metric, play a basic role in Convex Geometry (see, for example,
[Grub93]).

For C;D 2 Knf;g, the Minkowski addition and the Minkowski nonnegative
scalar multiplication are defined by C C D D fx C y W x 2 C; y 2 Dg, and
˛C D f˛x W x 2 Cg, ˛ � 0, respectively. The Abelian semigroup .K;C/ equipped
with nonnegative scalar multiplication operators can be considered as a convex cone.

The support function hC W Sn�1 ! R of C 2 K is defined by hC.u/ D
supfhu; xi W x 2 Cg for any u 2 Sn�1, where Sn�1 is the (n � 1)-dimensional
unit sphere in E

n, and h; i is the inner product in E
n. The width wC.u/ is hC.u/ C

hC.�u/ D hC�C.u/. It is the perpendicular distance between the parallel supporting
hyperplanes perpendicular to given direction. The mean width is the average of
width over all directions in Sn�1.

• Area deviation
The area deviation (or template metric) is a metric on the set Kp in E

2 (i.e.,
on the set of plane convex disks) defined by

A.C4D/;
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where A.:/ is the area, and 4 is the symmetric difference. If C 
 D, then it is
equal to A.D/� A.C/.

• Perimeter deviation
The perimeter deviation is a metric on Kp in E

2 defined by

2p.conv.C [ D//� p.C/� p.D/;

where p.:/ is the perimeter. In the case C 
 D, it is equal to p.D/� p.C/.
• Mean width metric

The mean width metric is a metric on Kp in E
2 defined by

v2W.conv.C [ D//� W.C/ � W.D/;

where W.:/ is the mean width: W.C/ D p.C/=� , and p.:/ is the perimeter.
• Florian metric

The Florian metric is a metric on K defined by

Z

Sn�1

jhC.u/� hD.u/jd
.u/ D jjhC � hDjj1:

It can be expressed in the form 2S.conv.C [ D//� S.C/� S.D/ for n D 2 (cf.
perimeter deviation); it can be expressed also in the form nkn.2W.conv.C [
D// � W.C/ � W.D// for n � 2 (cf. mean width metric).

Here S.:/ is the surface area, kn is the volume of the unit ball B
n

of En, and
W.:/ is the mean width: W.C/ D 1

nkn

R
Sn�1 .hC.u/C hC.�u//d
.u/.

• McClure–Vitale metric
Given 1 � p � 1, the McClure–Vitale metric is a metric on K, defined by

�Z

Sn�1

jhC.u/� hD.u/jpd
.u/

� 1
p

D jjhC � hDjjp:

• Pompeiu–Hausdorff–Blaschke metric
The Pompeiu–Hausdorff–Blaschke metric is a metric on K defined by

maxfsup
x2C

inf
y2D

jjx � yjj2; sup
y2D

inf
x2C

jjx � yjj2g;

where jj:jj2 is the Euclidean norm on E
n.

In terms of support functions and using Minkowski addition, this metric is

sup
u2Sn�1

jhC.u/�hD.u/j D jjhC�hDjj1 D inff	 � 0 W C 
 DC	B
n
;D 
 CC	B

ng;

where B
n

is the unit ball of En. This metric can be defined using any norm on R
n

and for the space of bounded closed subsets of any metric space.
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• Pompeiu–Eggleston metric
The Pompeiu–Eggleston metric is a metric on K defined by

sup
x2C

inf
y2D

jjx � yjj2 C sup
y2D

inf
x2C

jjx � yjj2;

where jj:jj2 is the Euclidean norm on E
n.

In terms of support functions and using Minkowski addition, this metric is

maxf0; sup
u2Sn�1

.hC.u/� hD.u//g C maxf0; sup
u2Sn�1

.hD.u/� hC.u//g D

D inff	 � 0 W C 
 D C 	B
ng C inff	 � 0 W D 
 C C 	B

ng;

where B
n

is the unit ball of En. This metric can be defined using any norm on R
n

and for the space of bounded closed subsets of any metric space.
• Sobolev distance

The Sobolev distance is a metric on K defined by

jjhC � hDjjw;

where jj:jjw is the Sobolev 1-norm on the set GSn�1 of all real continuous functions
on the unit sphere Sn�1 of En.

The Sobolev 1-norm is defined by jj f jjw D h f ; f i1=2w , where h; iw is an inner
product on GSn�1 , given by

h f ; giw D
Z

Sn�1

. fg C rs. f ; g//dw0; w0 D 1

n � kn
w;

where rs. f ; g/ D hgradsf ; gradsgi, h; i is the inner product in E
n, and grads is

the gradient on Sn�1 (see [ArWe92]).
• Shephard metric

The Shephard metric is a metric on Kp defined by

ln.1C 2 inff	 � 0 W C 
 D C 	.D � D/;D 
 C C 	.C � C/g/:

• Nikodym metric
The Nikodym metric (or volume of symmetric difference, Dinghas

distance) is a metric on Kp defined by

V.C4D/ D
Z

.1x2C � 1x2D/
2dx;

where V.:/ is the volume (i.e., the Lebesgue n-dimensional measure), and 4 is
the symmetric difference. For n D 2, one obtains the area deviation.
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Normalized volume of symmetric difference is a variant of Steinhaus
distance defined by

V.C4D/

V.C [ D/
:

• Eggleston distance
The Eggleston distance (or symmetric surface area deviation) is a distance

on Kp defined by

S.C [ D/ � S.C \ D/;

where S.:/ is the surface area. It is not a metric.
• Asplund metric

The Asplund metric is a metric on the space Kp= 
 of affine-equivalence
classes in Kp defined by

ln inff	 � 1 W 9T W En ! E
n affine; x 2 E

n;C 
 T.D/ 
 	C C xg

for any equivalence classes C� and D� with the representatives C and D,
respectively.

• Macbeath metric
The Macbeath metric is a metric on the space Kp= 
 of affine-equivalence

classes in Kp defined by

ln inffj det T � Pj W 9T;P W En ! E
n regular affine;C 
 T.D/;D 
 P.C/g

for any equivalence classes C� and D� with the representatives C and D,
respectively.

Equivalently, it can be written as ln ı.C;D/ C lnı.D;C/, where ı.C;D/ D
infTf V.T.D//

V.C/ I C 
 T.D/g, and T is a regular affine mapping of En onto itself.
• Banach–Mazur metric

The Banach–Mazur metric is a metric on the space Kpo= � of the
equivalence classes of proper 0-symmetric convex bodies with respect to linear
transformations defined by

ln inff	 � 1 W 9T W En ! E
n linear, C 
 T.D/ 
 	Cg

for any equivalence classes C� and D� with the representatives C and D,
respectively.

It is a special case of the Banach–Mazur distance (Chap. 1).
• Separation distance

The separation distance between two disjoint convex bodies C and D in
E

n (in general, between any two disjoint subsets) En) is (Buckley, 1985) their
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Euclidean set-set distance inffjjx � yjj2 W x 2 C; y 2 Dg, while supfjjx � yjj2 W
x 2 C; y 2 Dg is their spanning distance.

• Penetration depth distance
The penetration depth distance between two interpenetrating convex bodies

C and D in E
n (in general, between any two interpenetrating subsets of En) is

(Cameron–Culley, 1986) defined as the minimum translation distance that one
body undergoes to make the interiors of C and D disjoint:

minfjjtjj2 W interior.C C t/ \ D D ;g:

Keerthi–Sridharan, 1991, considered jjtjj1- and jjtjj1-analogs of this distance.
Cf. penetration distance in Chap. 23 and penetration depth in Chap. 24.

• Growth distances
Let C;D 2 Kp be two compact convex proper bodies. Fix their seed points

pC 2 int C and pD 2 int D; usually, they are the centroids of C and D. The growth
function g.C;D/ is the minimal number 	 > 0, such that

.fpCg C 	.CnfpCg//\ .fpDg C 	.DnfpDg// ¤ ;:

It is the amount objects must be grown if g.C;D/ > 1 (i.e., C \ D D ;), or
contracted if g.C;D/ > 1 (i.e., int C \ int D ¤ ;) from their internal seed points
until their surfaces just touch. The growth separation distance dS.C;D/ and the
growth penetration distance dP.C;D/ ([OnGi96]) are defined as

dS.C;D/ D maxf0; rCD.g.C;D/�1/g and dP.C;D/ D maxf0; rCD.1�g.C;D//g;

where rCD is the scaling coefficient (usually, the sum of radii of circumscribing
spheres for the sets CnfpCg and DnfpDg).

The one-sided growth distance between disjoint C and D (Leven–Sharir,
1987) is

�1C min	 > 0 W .fpCg C 	f.CnfpCg//\ D ¤ ;g:

• Minkowski difference
The Minkowski difference on the set of all compact subsets, in particular, on

the set of all sculptured objects (or free form objects), of R3 is defined by

A � B D fx � y W x 2 A; y 2 Bg:

If we consider object B to be free to move with fixed orientation, the Minkowski
difference is a set containing all the translations that bring B to intersect with
A. The closest point from the Minkowski difference boundary, @.A � B/, to the
origin gives the separation distance between A and B.
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If both objects intersect, the origin is inside of their Minkowski difference,
and the obtained distance can be interpreted as a penetration depth distance.

• Demyanov distance
Given C 2 Kp and u 2 Sn�1, denote, if jfc 2 C W hu; ci D hC.u/gj D 1, this

unique point by y.u;C/ (exposed point of C in direction u).
The Demyanov difference A � B of two subsets A;B 2 Kp is the closure of

conv.[T.A/\T.B/fy.u;A/� y.u;B/g/;

where T.C/ D fu 2 Sn�1 W jfc 2 C W hu; ci D hC.u/gj D 1g.
The Demyanov distance between two subsets A;B 2 Kp is defined by

jjA � Bjj D max
c2A�B

jjcjj2:

It is shown in [BaFa07] that jjA � Bjj D sup˛ jjSt˛.A/� St˛.M/jj2, where St˛.C/
is a generalized Steiner point and the supremum is over all “sufficiently smooth”
probabilistic measures ˛.

• Maximum polygon distance
The maximum polygon distance is a distance between two convex polygons

P D .p1; : : : ; pn/ and Q D .q1; : : : ; qm/ defined by

max
i;j

jjpi � qjjj2; i 2 f1; : : : ; ng; j 2 f1; : : : ;mg:

• Grenander distance
Let P D .p1; : : : ; pn/ and Q D .q1; : : : ; qm/ be two disjoint convex polygons,

and let L.pi; qj/;L.pl; qm/ be two intersecting critical support lines for P and Q.
Then the Grenander distance between P and Q is defined by

jjpi � qjjj2 C jjpl � qmjj2 �†.pi; pl/�†.gj; qm/;

where jj:jj2 is the Euclidean norm, and †.pi; pl/ is the sum of the edges lengths
of the polynomial chain pi; : : : ; pl.

Here P D .p1; : : : ; pn/ is a convex polygon with the vertices in standard form,
i.e., the vertices are specified according to Cartesian coordinates in a clockwise
order, and no three consecutive vertices are collinear. A line L is a line of support
of P if the interior of P lies completely to one side of L.

Given two disjoint polygons P and Q, the line L.pi; qj/ is a critical support
line if it is a line of support for P at pi, a line of support for Q at qj, and P and
Q lie on opposite sides of L.pi; qj/. In general, a chord Œa; b� of a convex body
C is called its affine diameter if there is a pair of different hyperplanes each
containing one of the endpoints a; b and supporting C.
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9.2 Distances on Cones

A convex cone C in a real vector space V is a subset C of V such that C C C 
 C,
	C 
 C for any 	 � 0. A cone C induces a partial order on V by

x � y if and only if y � x 2 C:

The order � respects the vector structure of V , i.e., if x � y and z � u, then x C z �
y C u, and if x � y, then 	x � 	y, 	 2 R, 	 � 0. Elements x; y 2 V are called
comparable and denoted by x � y if there exist positive real numbers ˛ and ˇ such
that ˛y � x � ˇy. Comparability is an equivalence relation; its equivalence classes
(which belong to C or to �C) are called parts (or components, constituents).

Given a convex cone C, a subset S D fx 2 C W T.x/ D 1g, where T W V ! R

is a positive linear functional, is called a cross-section of C. A convex cone C is
called almost Archimedean if the closure of its restriction to any 2D subspace is also
a cone.

A convex cone C is called pointed if C [ .�C/ D f0g and solid if int C ¤ ;.

• Koszul–Vinberg metric
Given an open pointed convex cone C, let C� be its dual cone.
The Koszul–Vinberg metric on C (Vinberg, 1963, and Koszul, 1965) is an

affine invariant Riemannian metric defined as the Hessian g D d2 C, where
 C.x/ D � log

R
C� e�.�;x/d� for any x 2 C.

The Hessian of the entropy (Legendre transform of  C.x/) defines a metric
on C�, which ([Barb14]) is equivalent to the Fisher–Rao metric (Sect. 7.2).
[Barb14] also observed that Fisher–Souriau metric ([Sour70]) generalises
Fisher–Rao metric for Lie group thermodynamics and interpreted it as a
geometric heat capacity.

• Invariant distances on symmetric cones
An open convex cone C in an Euclidean space V is said to be homogeneous if

its group of linear automorphisms G D fg 2 GL.V/ W g.C/ D Cg act transitively
on C. If, moreover, C is pointed and C is self-dual with respect to the given inner
product h; i, then it is called a symmetric cone. Any symmetric cone is a Cartesian
product of such cones of only 5 types: the cones Sym.n;R/C, Her.n;C/C (cf.
Chap. 12), Her.n;H/C of positive-definite Hermitian matrices with real, complex
or quaternion entries, the Lorentz cone (or forward light cone) f.t; x1; : : : ; xn/ 2
R

nC1 W t2 > x21C� � �Cx2ng and 27-dimensional exceptional cone of 3�3 positive-
definite matrices over the octonions O. An n � n quaternion matrix A can be seen
as a 2n � 2n complex matrix A0; so, A 2 Her.n;H/C means A0 2 Her.2n;C/C.

Let V be an Euclidean Jordan algebra, i.e., a finite-dimensional Jordan alge-
bra (commutative algebra satisfying x2.xy/ D x.x2y/ and having a multiplicative
identity e) equipped with an associative (hxy; zi D hy; xzi) inner product h; i.
Then the set of square elements of V is a symmetric cone, and every symmetric
cone arises in this way. Denote P.x/y D 2x.xy/� x2y for any x; y 2 C.
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For example, for C D PDn.R/, the group G is GL.n;R/, the inner product is
hX;Yi D Tr.XY/, the Jordan product is 1

2
.XY C YX/, and P.X/Y D XYX, where

the multiplication on the right-hand side is the usual matrix multiplication.
If r is the rank of V , then for any x 2 V there is a complete set of orthogonal

primitive idempotents c1; : : : ; cr ¤ 0 (i.e., c2i D ci, ci indecomposable, cicj D 0

if i ¤ j,
Pr

iD1 ci D e) and real numbers 	1; : : : ; 	r, called eigenvalues of x, such

that x D Pr
iD1 	ici. Let x; y 2 C and 	1; : : : ; 	r be the eigenvalues of P.x� 1

2 /y.
Lim, 2001, defined following three G-invariant distances on any symmetric cone
C:

dR D .
X

1�i�r

ln2 	i/
1
2 ; dF D max

1�i�r
ln j	ij; dH D ln.max

1�i�r
	i.min

1�i�r
	i/

�1/:

For above distances, the geometric mean P.x
1
2 /.P.x� 1

2 y//
1
2 is the midpoint

of x and y. The distances dR.x; y/, dF.x; y/ are the intrinsic metrics of G-
invariant Riemannian and Finsler metrics on C. The Riemannian geodesic curve
˛.t/ D P.x

1
2 /.P.x� 1

2 y//t is one of infinitely many shortest Finsler curves passing
through x and y. The space .C; dR.x; y// is an Hadamard space (Chap. 6), while
.C; dF.x; y// is not. The distance dF.x; y/ is the Thompson’s part metric on C,
and the distance dH.x; y/ is the Hilbert projective semimetric on C which is a
complete metric on the unit sphere on C.

• Thompson’s part metric
Given a convex cone C in a real Banach space V , the Thompson’s part metric

on a part K 
 Cnf0g is defined (Thompson, 1963) by

log maxfm.x; y/;m.y; x/g

for any x; y 2 K, where m.x; y/ D inff	 2 R W y � 	xg.
If C is almost Archimedean, then K equipped with this metric is a complete

metric space. If C is finite-dimensional, then one obtains a chord space
(Chap. 6). The positive cone R

nC D f.x1; : : : ; xn/ W xi � 0 for 1 � i � ng
equipped with this metric is isometric to a normed space which can be seen as
being flat. The same holds for the Hilbert projective semimetric on R

nC.
If C is a closed solid cone in R

n, then int C can be seen as an n-dimensional
manifold Mn. If for any tangent vector v 2 Tp.Mn/, p 2 Mn, we define a norm
jjvjjT

p D inff˛ > 0 W �˛p � v � ˛pg, then the length of any piecewise

differentiable curve � W Œ0; 1� ! Mn is l.�/ D R 1
0

jj� 0

.t/jjT
�.t/dt, and the distance

between x and y is inf� l.�/, where the infimum is taken over all such curves �
with �.0/ D x, �.1/ D y.

• Hilbert projective semimetric
Given a pointed closed convex cone C in a real Banach space V , the Hilbert

projective semimetric on Cnf0g is defined (Bushell, 1973), for x; y 2 Cnf0g, by

h.x; y/ D log.m.x; y/m.y; x//;
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where m.x; y/ D inff	 2 R W y � 	xg; it holds 1
m.y;x/ D supf	 2 R W 	y � xg.

This semimetric is finite on the interior of C and h.	x; 	0y/ D h.x; y/ for 	; 	0 >
0. So, h.x; y/ is a metric on the projectivization of C, i.e., the space of rays of this
cone.

If C is finite-dimensional, and S is a cross-section of C (in particular, S D fx 2
C W jjxjj D 1g, where jj:jj is a norm on V), then, for any distinct points x; y 2 S, it
holds h.x; y/ D j ln.x; y; z; t/j, where z; t are the points of the intersection of the
line lx;y with the boundary of S, and .x; y; z; t/ is the cross-ratio of x; y; z; t. Cf.
the Hilbert projective metric in Chap. 6.

If C is finite-dimensional and almost Archimedean, then each part of C is a
chord space (Chap. 6) under the Hilbert projective semimetric. On the Lorentz
cone L D fx D .t; x1; : : : ; xn/ 2 R

nC1 W t2 > x21 C � � � C x2ng, this semimetric is
isometric to the n-dimensional hyperbolic space. On the hyperbolic subspace
H D fx 2 L W det.x/ D 1g, it holds h.x; y/ D 2d.x; y/, where d.x; y/ is
the Thompson’s part metric which is (on H) the usual hyperbolic distance
arccoshhx; yi.

If C is a closed solid cone in R
n, then int C can be seen as an n-manifold Mn

(Chap. 2). If for any tangent vector v 2 Tp.Mn/, p 2 Mn, we define a seminorm
jjvjjH

p D m.p; v/� m.v; p/, then the length of any piecewise differentiable curve

� W Œ0; 1� ! Mn is l.�/ D R 1
0

jj� 0

.t/jjH
�.t/dt, and h.x; y/ D inf� l.�/, where the

infimum is taken over all such curves � with �.0/ D x and �.1/ D y.
• Bushell metric

Given a convex cone C in a real Banach space V , the Bushell metric on the
set S D fx 2 C W Pn

iD1 jxij D 1g (in general, on any cross-section of C) is defined
by

1 � m.x; y/ � m.y; x/

1C m.x; y/ � m.y; x/

for any x; y 2 S, where m.x; y/ D inff	 2 R W y � 	xg. In fact, it is equal to
tanh. 1

2
h.x; y//, where h is the Hilbert projective semimetric.

• k-oriented distance
A simplicial cone C in R

n is defined as the intersection of n (open or closed)
half-spaces, each of whose supporting planes contain the origin 0. For any set M
of n points on the unit sphere, there is a unique simplicial cone C that contains
these points. The axes of the cone C can be constructed as the set of the n rays,
where each ray originates at the origin, and contains one of the points from M.

Given a partition fC1; : : : ;Ckg of Rn into a set of simplicial cones C1, : : : , Ck,
the k-oriented distance is a metric on R

n defined by

dk.x � y/

for all x; y 2 R
n, where, for any x 2 Ci, the value dk.x/ is the length of the shortest

path from the origin 0 to x traveling only in directions parallel to the axes of Ci.
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• Cones over metric space
A cone over a metric space .X; d/ is the quotient space Con.X; d/=.X �

Œ0; 1�/=.X � f0g/ obtained from the product X � R�0 by collapsing the fiber
(subspace X � f0g) to a point (the apex of the cone). Cf. metric cone in Chap. 1.

The Euclidean cone over the metric space .X; d/ is the cone Con.X; d/ with a
metric d defined, for any .x; t/; .y; s/ 2 Con.X; d/, by

p
t2 C s2 � 2ts cos.minfd.x; y/; �g/:

If .X; d/ is a compact metric space with diameter < 2, the Krakus metric is
a metric on Con.X; d/ defined, for any .x; t/; .y; s/ 2 Con.X; d/, by

minfs; tgd.x; y/C jt � sj:

The cone Con.X; d/ with the Krakus metric admits a unique midpoint for each
pair of its points if .X; d/ has this property.

If Mn is a manifold with a pseudo-Riemannian metric g, one can consider a
metric dr2Cr2g (in general, a metric 1

k dr2Cr2g, k ¤ 0) on Con.Mn/ D Mn�R>0.
For example, Con.Mn/ D R

n n f0g if .Mn; g/ is the unit sphere in R
n.

A spherical cone (or suspension) †.X/ over a metric space .X; d/ is the
quotient of the product X � Œ0; a� obtained by identifying all points in the fibers
X � f0g and X � fag. If .X; d/ is a length space (Chap. 6) with diam.X/ � � , and
a D � , the suspension metric on †.X/ is defined, for any .x; t/; .y; s/ 2 †.X/,
by

arccos.cos t cos s C sin t sin s cos d.x; y//:

9.3 Distances on Simplicial Complexes

An r-dimensional simplex (or geometrical simplex, hypertetrahedron) is the convex
hull of r C 1 points of En which do not lie in any .r � 1/-plane. The boundary
of an r-simplex has r C 1 0-faces (polytope vertices), r.rC1/

2
1-faces (polytope

edges), and .rC1
iC1 / i-faces, where .ri / is the binomial coefficient. The content (i.e., the

hypervolume) of a simplex can be computed using the Cayley–Menger determinant.
The regular simplex of dimension r is denoted by ˛r. Simplicial depth of a point
p 2 E

n relative to a set P 
 E
n is the number of simplices S, generated by .n C 1/-

subsets of P and containing p.
Roughly, a geometrical simplicial complex is a space with a triangulation, i.e., a

decomposition of it into closed simplices such that any two simplices either do not
intersect or intersect only along a common face.

An abstract simplicial complex S is a set, whose elements are called vertices, in
which a family of finite nonempty subsets, called simplices, is distinguished, such
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that every nonempty subset of a simplex s is a simplex, called a face of s, and every
one-element subset is a simplex. A simplex is called i-dimensional if it consists
of i C 1 vertices. The dimension of S is the maximal dimension of its simplices.
For every simplicial complex S there exists a triangulation of a polyhedron whose
simplicial complex is S. This geometric simplicial complex, denoted by GS, is called
the geometric realization of S.

• Vietoris–Rips complex
Given a metric space .X; d/ and distance ı, their Vietoris–Rips complex is

an abstract simplicial complex, the simplexes of which are the finite subsets M
of .X; d/ having diameter at most ı; the dimension of a simplex defined by M is
jMj � 1.

• Simplicial metric
Given an abstract simplicial complex S, the points of geometric simplicial

complex GS, realizing S, can be identified with the functions ˛ W S ! Œ0; 1� for
which the set fx 2 S W ˛.x/ ¤ 0g is a simplex in S, and

P
x2S ˛.x/ D 1. The

number ˛.x/ is called the x-th barycentric coordinate of ˛.
The simplicial metric on GS (Lefschetz, 1939) is the Euclidean metric on it:

sX

x2S

.˛.x/ � ˇ.x//2:

Tukey, 1939, found another metric on GS, topologically equivalent to a
simplicial one. His polyhedral metric is the intrinsic metric, defined as the
infimum of the lengths of the polygonal lines joining the points ˛ and ˇ such that
each link is within one of the simplices. An example of a polyhedral metric is the
intrinsic metric on the surface of a convex polyhedron in E

3.
• Polyhedral space

A Euclidean polyhedral space is a simplicial complex with a polyhedral
metric. Every simplex is a flat space (a metric space locally isometric to
some E

n; cf. Chap. 1), and the metrics of any two simplices coincide on their
intersection. The metric is the maximal metric not exceeding the metrics of
simplices.

If such a space is an n-manifold (Chap. 2), a point in it is a metric singularity
if it has no neighborhood isometric to an open subset of En.

A polyhedral metric on a simplicial complex in a space of constant (positive
or negative) curvature results in spherical and hyperbolic polyhedral spaces.

The dimension of a polyhedral space is the maximal dimension of simplices
used to glue it. Metric graphs (Chap. 15) are just one-dimensional polyhedral
spaces.

The surface of a convex polyhedron is a 2D polyhedral space. A polyhedral
metric d on a triangulated surface is a circle-packing metric (Thurston, 1985)
if there exists a vertex-weighting w.x/ > 0 with d.x; y/ D w.x/ C w.y/ for any
edge xy.
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• Manifold edge-distance
A (boundaryless) combinatorial n-manifold is an abstract n-dimensional

simplicial complex Mn in which the link of each r-simplex is an .n�r�1/-sphere.
The category of such spaces is equivalent to the category of piecewise-linear (PL)
manifolds.

The link of a simplex S is Cl.StarS/ � StarS, where StarS is the set of
all simplices in Mn having a face S, and Cl.StarS/ is the smallest simplicial
subcomplex of Mn containing StarS.

The edge-distance between vertices u; v 2 Mn is the minimum number of
edges needed to connect them.

• Manifold triangulation metric
Let Mn be a compact PL (piecewise-linear) n-dimensional manifold. A trian-

gulation of Mn is a simplicial complex such that its corresponding polyhedron
is PL-homeomorphic to Mn. Let TMn be the set of all combinatorial types of
triangulations, where two triangulations are equivalent if they are simplicially
isomorphic.

Every such triangulation can be seen as a metric on the smooth manifold M
if one assigns the unit length for any of its 1-dimensional simplices; so, TMn can
be seen as a discrete analog of the space of Riemannian structures, i.e., isometry
classes of Riemannian metrics on Mn.

A manifold triangulation metric between two triangulations x and y is
(Nabutovsky and Ben-Av, 1993) an editing metric on TMn , i.e., the minimal
number of elementary moves, from a given finite list of operations, needed to
obtain y from x.

For example, the bistellar move consists of replacing a subcomplex of a
given triangulation, which is simplicially isomorphic to a subcomplex of the
boundary of the standard .n C 1/-simplex, by the complementary subcomplex
of the boundary of an .n C 1/-simplex, containing all remaining n-simplices and
their faces. Every triangulation can be obtained from any other one by a finite
sequence of bistellar moves.

• Polyhedral chain metric
An r-dimensional polyhedral chain A in E

n is a linear expression
Pm

iD1 ditr
i ,

where, for any i, the value tr
i is an r-dimensional simplex of En. The boundary

@A of a chain AD is the linear combination of boundaries of the simplices in the
chain. The boundary of an r-dimensional chain is an .r � 1/-dimensional chain.

A polyhedral chain metric is a norm metric jjA � Bjj on the set Cr.E
n/ of

all r-dimensional polyhedral chains. As a norm jj:jj on Cr.E
n/ one can take:

1. The mass of a polyhedral chain, i.e., jAj D Pm
iD1 jdijjtr

i j, where jtrj is the
volume of the cell tr

i ;
2. The flat norm of a polyhedral chain, i.e., jAj[ D infDfjA � @Dj C jDjg, where

the infimum is taken over all .r C 1/-dimensional polyhedral chains;
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3. The sharp norm of a polyhedral chain, i.e.,

jAj] D inf

 Pm
iD1 jdijjtr

i jjvij
r C 1

C j
mX

iD1
diTvi t

r
i j[
!

;

where the infimum is taken over all shifts v (here Tvtr is the cell obtained by
shifting tr by a vector v of length jvj). A flat chain of finite mass is a sharp
chain. If r D 0, than jAj[ D jAj].

The metric space of polyhedral co-chains (i.e., linear functions of polyhedral
chains) can be defined similarly. As a norm of a polyhedral co-chain X one can
take:

1. The co-mass of a polyhedral co-chain, i.e., jXj D supjAjD1 jX.A/j, where X.A/
is the value of the co-chain X on a chain A;

2. The flat co-norm of a polyhedral co-chain, i.e., jXj[ D supjAj[D1 jX.A/j;
3. The sharp co-norm of a polyhedral co-chain, i.e., jXj] D supjAj]D1 jX.A/j.
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Chapter 10
Distances in Algebra

10.1 Group Metrics

A group .G; �; e/ is a set G of elements with a binary operation �, called the group
operation, that together satisfy the four fundamental properties of closure (x � y 2 G
for any x; y 2 G), associativity (x � .y � z/ D .x � y/ � z for any x; y; z 2 G), the identity
property (x � e D e � x D x for any x 2 G), and the inverse property (for any x 2 G,
there exists an element x�1 2 G such that x � x�1 D x�1 � x D e).

In additive notation, a group .G;C; 0/ is a set G with a binary operation C such
that the following properties hold: xCy 2 G for any x; y 2 G, xC.yCz/ D .xCy/Cz
for any x; y; z 2 G, x C 0 D 0 C x D x for any x 2 G, and, for any x 2 G, there
exists an element �x 2 G such that x C .�x/ D .�x/C x D 0.

A group .G; �; e/ is called finite if the set G is finite. A group .G; �; e/ is called
Abelian if it is commutative, i.e., x � y D y � x for any x; y 2 G.

Most metrics considered in this section are group norm metrics on a group
.G; �; e/, defined by

jjx � y�1jj

(or, sometimes, by jjy�1 � xjj), where jj:jj is a group norm, i.e., a function jj:jj W G !
R such that, for any x; y 2 G, we have the following properties:

1. jjxjj � 0, with jjxjj D 0 if and only if x D e;
2. jjxjj D jjx�1jj;
3. jjx � yjj � jjxjj C jjyjj (triangle inequality).

In additive notation, a group norm metric on a group .G;C; 0/ is defined by
jjx C .�y/jj D jjx � yjj, or, sometimes, by jj.�y/C xjj.

The simplest example of a group norm metric is the bi-invariant ultrametric
(sometimes called the Hamming metric) jjx � y�1jjH , where jjxjjH D 1 for x ¤ e, and
jjejjH D 0.
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• Bi-invariant metric
A metric (in general, a semimetric) d on a group .G; �; e/ is called bi-invariant

if

d.x; y/ D d.x � z; y � z/ D d.z � x; z � y/

for any x; y; z 2 G (cf. translation invariant metric in Chap. 5). Any group
norm metric on an Abelian group is bi-invariant.

A metric (in general, a semimetric) d on a group .G; �; e/ is called a right-
invariant metric if d.x; y/ D d.x � z; y � z/ for any x; y; z 2 G, i.e., the operation of
right multiplication by an element z is a motion of the metric space .G; d/. Any
group norm metric defined by jjx � y�1jj, is right-invariant.

A metric (in general, a semimetric) d on a group .G; �; e/ is called a left-
invariant metric if d.x; y/ D d.z � x; z � y/ holds for any x; y; z 2 G, i.e., the
operation of left multiplication by an element z is a motion of the metric space
.G; d/. Any group norm metric defined by jjy�1 � xjj, is left-invariant.

Any right-invariant or left-invariant (in particular, bi-invariant) metric d on G
is a group norm metric, since one can define a group norm on G by jjxjj D d.x; 0/.

• G-invariant metric
Given a metric space .X; d/ and an action g.x/ of a group G on it, the metric

d is called G-invariant (under this action) if for all x; y 2 X; g 2 G it holds

d.g.x/; g.y// D d.x; y/:

For every G-invariant metric dX on X and every point x 2 X, the function

dG.g1; g2/ D dX.g1.x/; g2.x//

is a left-invariant metric on G. This metric is called orbit metric in [BBI01],
since it is the restriction of d on the orbit Gx, which can be identified with G.

• Positively homogeneous distance
A distance d on an Abelian group .G;C; 0/ is called positively homogeneous

if

d.mx;my/ D md.x; y/

for all x; y 2 G and all m 2 N, where mx is the sum of m terms all equal to x.
• Translation discrete metric

A group norm metric (in general, a group norm semimetric) on a group
.G; �; e/ is called translation discrete if the translation distances (or translation
numbers)

�G.x/ D lim
n!1

jjxnjj
n
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of the nontorsion elements x (i.e., such that xn ¤ e for any n 2 N) of the group
with respect to that metric are bounded away from zero.

If the numbers �G.x/ are just nonzero, such a group norm metric is called a
translation proper metric.

• Word metric
Let .G; �; e/ be a finitely-generated group with a set A of generators (i.e., A

is finite, and every element of G can be expressed as a product of finitely many
elements A and their inverses). The word length w A

W.x/ of an element x 2 Gnfeg
is defined by

w A
W.x/ D inffr W x D a�11 : : : a

�r
r ; ai 2 A; �i 2 f˙1gg and w A

W.e/ D 0:

The word metric dA
W associated with A is a group norm metric on G defined

by

w A
W.x � y�1/:

As the word length w A
W is a group norm on G, dA

W is right-invariant. Sometimes
it is defined as w A

W.y
�1 �x/, and then it is left-invariant. In fact, dA

W is the maximal
metric on G that is right-invariant, and such that the distance from any element
of A or A�1 to the identity element e is equal to one.

If A and B are two finite sets of generators of the group .G; �; e/, then the
identity mapping between the metric spaces .G; dA

W/ and .G; dB
W/ is a quasi-

isometry, i.e., the word metric is unique up to quasi-isometry.
The word metric is the path metric of the Cayley graph � of .G; �; e/,

constructed with respect to A. Namely, � is a graph with the vertex-set G in
which two vertices x and y 2 G are connected by an edge if and only if y D a�x,
� D ˙1, a 2 A.

• Weighted word metric
Let .G; �; e/ be a finitely-generated group with a set A of generators. Given a

bounded weight function w W A ! .0;1/, the weighted word length w A
WW.x/ of

an element x 2 Gnfeg is defined by w A
WW.e/ D 0 and

w A
WW.x/ D inf

(
tX

iD1
w.ai/; t 2 N W x D a�11 : : : a

�t
t ; ai 2 A; �i 2 f˙1g

)

:

The weighted word metric dA
WW associated with A is a group norm metric

on G defined by

w A
WW .x � y�1/:

As the weighted word length w A
WW is a group norm on G, dA

WW is right-invariant.
Sometimes it is defined as w A

WW.y
�1 � x/, and then it is left-invariant.
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The metric dA
WW is the supremum of semimetrics d on G with the property that

d.e; a/ � w.a/ for any a 2 A.
The metric dA

WW is a coarse-path metric, and every right-invariant coarse path
metric is a weighted word metric up to coarse isometry.

The metric dA
WW is the path metric of the weighted Cayley graph �W of

.G; �; e/ constructed with respect to A. Namely, �W is a weighted graph with
the vertex-set G in which two vertices x and y 2 G are connected by an edge with
the weight w.a/ if and only if y D a�x, � D ˙1, a 2 A.

• Interval norm metric
An interval norm metric is a group norm metric on a finite group .G; �; e/

defined by

jjx � y�1jjint;

where jj:jjint is an interval norm on G, i.e., a group norm such that the values of
jj:jjint form a set of consecutive integers starting with 0.

To each interval norm jj:jjint corresponds an ordered partition fB0; : : : ;Bmg of
G with Bi D fx 2 G W jjxjjint D ig; cf. Sharma–Kaushik distance in Chap. 16.
The Hamming and Lee norms are special cases of interval norm. A generalized
Lee norm is an interval norm for which each class has a form Bi D fa; a�1g.

• C-metric
A C-metric d is a metric on a group .G; �; e/ satisfying the following

conditions:

1. The values of d form a set of consecutive integers starting with 0;
2. The cardinality of the sphere B.x; r/ D fy 2 G W d.x; y/ D rg is independent

of the particular choice of x 2 G.

The word metric, the Hamming metric, and the Lee metric are C-metrics. Any
interval norm metric is a C-metric.

• Order norm metric
Let .G; �; e/ be a finite Abelian group. Let ord.x/ be the order of an element

x 2 G, i.e., the smallest positive integer n such that xn D e. Then the function
jj:jjord W G ! R defined by jjxjjord D ln ord.x/, is a group norm on G, called the
order norm.

The order norm metric is a group norm metric on G, defined by

jjx � y�1jjord:

• Tărnăuceanu metric
Let o.a/ denote the order of the element a of a group. Let C be the class of

finite groups G in which o.ab/ < o.a/C o.b/ for every a; b 2 G. Tărnăuceanu,
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2015, noted that the function d W G � G ! N defined by

d.x; y/ D o.xy�1/� 1

for all x; y 2 G is a metric on G if and only if G 2 C.
He found that C contains all Abelian p-groups, Q8, and A4, but not nonabelian

finite simple groups, alternating groups A.n/ with n � 5, and, for n � 4, Sym.n/,
quaternion groups Q2n , dihedral groups D2n. C is closed under subgroups, but
not under direct products or extensions. The centralizers of nontrivial elements
of such groups contain only elements of prime power order.

• Monomorphism norm metric
Let .G;C; 0/ be a group. Let .H; �; e/ be a group with a group norm jj:jjH. Let

f W G ! H be a monomorphism of groups G and H, i.e., an injective function
such that f .xCy/ D f .x/ � f .y/ for any x; y 2 G. Then the function jj:jjfG W G ! R

defined by jjxjjfG D jj f .x/jjH, is a group norm on G, called the monomorphism
norm.

The monomorphism norm metric is a group norm metric on G defined by

jjx � yjjf
G:

• Product norm metric
Let .G;C; 0/ be a group with a group norm jj:jjG. Let .H; �; e/ be a group with

a group norm jj:jjH. Let G � H D f˛ D .x; y/ W x 2 G; y 2 Hg be the Cartesian
product of G and H, and .x; y/ � .z; t/ D .x C z; y � t/.

Then the function jj:jjG�H W G�H ! R defined by jj˛jjG�H D jj.x; y/jjG�H D
jjxjjG C jjyjjH, is a group norm on G � H, called the product norm.

The product norm metric is a group norm metric on G � H defined by

jj˛ � ˇ�1jjG�F:

On the Cartesian product G � H of two finite groups with the interval norms
jj:jjint

G and jj:jjint
H , an interval norm jj:jjint

G�H can be defined. In fact, jj˛jjint
G�H D

jj.x; y/jjint
G�H D jjxjjG C .m C 1/jjyjjH, where m D maxa2G jjajjint

G .
• Quotient norm metric

Let .G; �; e/ be a group with a group norm jj:jjG. Let .N; �; e/ be a normal
subgroup of .G; �; e/, i.e., xN D Nx for any x 2 G. Let .G=N; �; eN/ be the
quotient group of G, i.e., G=N D fxN W x 2 Gg with xN D fx � a W a 2 Ng, and
xN � yN D xyN. Then the function jj:jjG=N W G=N ! R defined by jjxNjjG=N D
mina2N jjxajjX, is a group norm on G=N, called the quotient norm.

A quotient norm metric is a group norm metric on G=N defined by

jjxN � .yN/�1jjG=N D jjxy�1NjjG=N :
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If G D Z with the norm being the absolute value, and N D mZ, m 2 N, then
the quotient norm on Z=mZ D Zm coincides with the Lee norm.

If a metric d on a group .G; �; e/ is right-invariant, then for any normal
subgroup .N; �; e/ of .G; �; e/ the metric d induces a right-invariant metric (in
fact, the Hausdorff metric) d� on G=N by

d�.xN; yN/ D maxfmax
b2yN

min
a2xN

d.a; b/;max
a2xN

min
b2yN

d.a; b/g:

• Commutation distance
Let .G; �; e/ be a finite nonabelian group. Let Z.G/ D fc 2 G W x � c D

c � x for any x 2 Gg be the center of G.
The commutation graph of G is defined as a graph with the vertex-set G

in which distinct elements x; y 2 G are connected by an edge whenever they
commute, i.e., x � y D y � x. (Darafsheh, 2009, consider noncommuting graph on
G n Z.G/.)

Any two noncommuting elements x; y 2 G are connected in this graph by
the path x; c; y, where c is any element of Z.G/ (for example, e). A path x D
x1; x2; : : : ; xk D y in the commutation graph is called an .x � y/ N-path if xi …
Z.G/ for any i 2 f1; : : : ; kg. In this case the elements x; y 2 GnZ.G/ are called
N-connected.

The commutation distance (see [DeHu98]) d is an extended distance on G
defined by the following conditions:

1. d.x; x/ D 0;
2. d.x; y/ D 1 if x ¤ y, and x � y D y � x;
3. d.x; y/ is the minimum length of an .x � y/ N-path for any N-connected

elements x and y 2 GnZ.G/;
4. d.x; y/ D 1 if x; y 2 GnZ.G/ are not connected by any N-path.

Given a group G and a G-conjugacy class X in it, Bates–Bundy–Perkins–
Rowley in 2003, 2004, 2007, 2008 considered commuting graph .X;E/ whose
vertex set is X and distinct vertices x; y 2 X are joined by an edge e 2 E whenever
they commute.

• Modular distance
Let .Zm;C; 0/, m � 2, be a finite cyclic group. Let r 2 N, r � 2. The

modular r-weight wr.x/ of an element x 2 Zm D f0; 1; : : : ;mg is defined as
wr.x/ D minfwr.x/;wr.m � x/g, where wr.x/ is the arithmetic r-weight of the
integer x.

The value wr.x/ can be obtained as the number of nonzero coefficients in the
generalized nonadjacent form x D enrn C : : : e1r C e0 with ei 2 Z, jeij < r,
jei C eiC1j < r, and jeij < jeiC1j if eieiC1 < 0. Cf. arithmetic r-norm metric in
Chap. 12.

The modular distance is a distance on Zm, defined by

wr.x � y/:
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The modular distance is a metric for wr.m/ D 1, wr.m/ D 2, and for several
special cases with wr.m/ D 3 or 4. In particular, it is a metric for m D rn or
m D rn � 1; if r D 2, it is a metric also for m D 2n C 1 (see, for example,
[Ernv85]).

The most popular metric on Zm is the Lee metric defined by jjx�yjjLee, where
jjxjjLee D minfx;m � xg is the Lee norm of an element x 2 Zm.

• G-norm metric
Consider a finite field Fpn for a prime p and a natural number n. Given a

compact convex centrally-symmetric body G in R
n, define the G-norm of an

element x 2 Fpn by jjxjjG D inff� � 0 W x 2 pZn C �Gg.
The G-norm metric is a group norm metric on Fpn defined by

jjx � y�1jjG:

• Permutation norm metric
Given a finite metric space .X; d/, the permutation norm metric is a group

norm metric on the group .SymX; �; id/ of all permutations of X (id is the identity
mapping) defined by

jj f � g�1jjSym;

where the group norm jj:jjSym on SymX is given by jj f jjSym D maxx2X d.x; f .x//.
• Metric of motions

Let .X; d/ be a metric space, and let p 2 X be a fixed element of X.
The metric of motions (see [Buse55]) is a metric on the group .�; �; id/ of all

motions of .X; d/ (id is the identity mapping) defined by

sup
x2X

d. f .x/; g.x// � e�d. p;x/

for any f ; g 2 � (cf. Busemann metric of sets in Chap. 3). If the space .X; d/ is
bounded, a similar metric on� can be defined as

sup
x2X

d. f .x/; g.x//:

Given a semimetric space .X; d/, the semimetric of motions on .�; �; id/ is

d. f . p/; g. p//:

• General linear group semimetric
Let F be a locally compact nondiscrete topological field. Let .Fn; jj:jjFn/,

n � 2, be a normed vector space over F. Let jj:jj be the operator norm associated
with the normed vector space .Fn; jj:jjFn/. Let GL.n;F/ be the general linear
group over F. Then the function j:jop W GL.n;F/ ! R defined by jgjop D
supfj ln jjgjj j; j ln jjg�1jj jg, is a seminorm on GL.n;F/.
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The general linear group semimetric on the group GL.n;F/ is defined by

jg � h�1jop:

It is a right-invariant semimetric which is unique, up to coarse isometry,
since any two norms on F

n are bi-Lipschitz equivalent.
• Generalized torus semimetric

Let .T; �; e/ be a generalized torus, i.e., a topological group which is iso-
morphic to a direct product of n multiplicative groups F

�
i of locally compact

nondiscrete topological fields Fi. Then there is a proper continuous homomor-
phism v W T ! R

n, namely, v.x1; : : : ; xn/ D .v1.x1/; : : : ; vn.xn//, where
vi W F�

i ! R are proper continuous homomorphisms from the F
�
i to the additive

group R, given by the logarithm of the valuation. Every other proper continuous
homomorphism v

0 W T ! R
n is of the form v

0 D ˛ � v with ˛ 2 GL.n;R/. If jj:jj
is a norm on R

n, one obtains the corresponding seminorm jjxjjT D jjv.x/jj on T.
The generalized torus semimetric is defined on the group .T; �; e/ by

jjxy�1jjT D jjv.xy�1/jj D jjv.x/� v.y/jj:

• Stable norm metric
Given a Riemannian manifold .M; g/, the stable norm metric is a group

norm metric on its real homology group Hk.M;R/ defined by the following
stable norm jjhjjs: the infimum of the Riemannian k-volumes of real cycles
representing h.

The Riemannian manifold .Rn; g/ is within finite Gromov–Hausdorff dis-
tance (cf. Chap. 1) from an n-dimensional normed vector space .Rn; jj:jjs/.

If .M; g/ is a compact connected oriented Riemannian manifold, then the
manifold H1.M;R/=H1.M;R/with metric induced by jj:jjs is called the Albanese
torus (or Jacobi torus) of .M; g/. This Albanese metric is a flat metric (Chap. 8).

• Heisenberg metric
Let .H; �; e/ be the (real) Heisenberg group Hn, i.e., a group on the set H D

R
n � R

n � R with the group law h � h0 D .x; y; t/ � .x0; y0; t0/ D .x C x0; y C
y0; t C t0 C 2

Pn
iD1.x0

iyi � xiy0
i/, and the identity e D .0; 0; 0/. Let j:jHeis be the

Heisenberg gauge (Cygan, 1978) on Hn defined by jhjHeis D j.x; y; t/jHeis D
..
Pn

iD1.x2i C y2i //
2 C t2/1=4.

The Heisenberg metric (or Korányi metric, Cygan metric, gauge metric)
dHeis is a group norm metric on Hn defined by

jx�1 � yjHeis:

One can identify the Heisenberg group Hn�1 D C
n�1 � R with @Hn

C
n f1g,

where Hn
C

is the Hermitian (i.e., complex) hyperbolic n-space, and 1 is any point
of its boundary @Hn

C
. So, the usual hyperbolic metric of HnC1

C
induces a metric
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on Hn. The Hamenstädt distance on @Hn
C

n f1g (Hersonsky–Paulin, 2004) is
1p
2
dHeis.
Sometimes, the term Cygan metric is reserved for the extension of the

metric dHeis on whole H
n
C

and (Apanasov, 2004) for its generalization (via the
Carnot group F

n�1 � ImF) on F-hyperbolic spaces H
n
F

over numbers F that
can be complex numbers, or quaternions or, for n D 2, octonions. Also, the
generalization of dHeis on Carnot groups of Heisenberg type is called the Cygan
metric.

The second natural metric on Hn is the Carnot–Carathéodory metric (or CC
metric, sub-Riemannian metric; cf. Chap. 7) dC defined as the length metric
(Chap. 6) using horizontal vector fields on Hn. This metric is the internal metric
(Chap. 4) corresponding to dHeis.

The metric dHeis is bi-Lipschitz equivalent with dC but not with any
Riemannian distance and, in particular, not with any Euclidean metric. For both
metrics, the Heisenberg group Hn is a fractal since its Hausdorff dimension,
2n C 2, is strictly greater than its topological dimension, 2n C 1.

• Metric between intervals
Let G be the set of all intervals Œa; b� of R. The set G forms semigroups .G;C/

and .G; �/ under addition I C J D fx C y W x 2 I; y 2 Jg and under multiplication
I � J D fx � y W x 2 I; y 2 Jg, respectively.

The metric between intervals is a metric on G, defined by

maxfjIj; jJjg

for all I; J 2 G, where, for K D Œa; b�, one has jKj D ja � bj.
• Metric between games

Consider positional games, i.e., two-player nonrandom games of perfect
information with real-valued outcomes. Play is alternating with a nonterminated
game having move options for both players. Real-world examples include
Chess, Go and Tic-Tac-Toe. Formally, let FR be the universe of games defined
inductively as follows:

1. Every real number r 2 R belongs to FR and is called an atomic game.
2. If A;B 
 FR with 1 � jAj; jBj < 1, then fAjBg 2 FR (nonatomic game).

Write any game G D fAjBg as fGLjGRg, where GL D A and GR D B are the set
of left and right moves of G, respectively.

FR becomes a commutative semigroup under the following addition opera-
tion:

1. If p and q are atomic games, then p C q is the usual addition in R.
2. p C fgl1 ; : : : jgr1 ; : : : g D fgl1 C p; : : : jgr1 C p; : : : g.
3. If G and H are both nonatomic, then fGLjGRg C fHLjHRg D fILjIRg, where

IL D fgl C H;G C hl W gl 2 GL; hl 2 HLg and IR D fgr C H;G C hr W gr 2
GR; hr 2 HRg.
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For any game G 2 FR, define the optimal outcomes L.G/ and R.G/ (if both
players play optimally with Left and Right starting, respectively) as follows:

L. p/ D R. p/ D p and L.G/ D maxfR.gl/ W gl 2 GLg, R.G/ D maxfL.gr/ W
gr 2 GRg.

The metric between games G and H defined by Ettinger, 2000, is the
following extended metric on FR:

sup
X

jL.G C X/� L.H C X/j D sup
X

jR.G C X/� R.H C X/j:

• Helly semimetric
Consider a game .A;B;H/ between players A and B with strategy sets A and

B, respectively. Here H D H.�; �/ is the payoff function, i.e., if player A plays
a 2 A and player B plays b 2 B, then A pays H(a,b) to B. A player’s strategy set
is the set of available to him pure strategies, i.e., complete algorithms for playing
the game, indicating the move for every possible situation throughout it.

The Helly semimetric between strategies a1 2 A and a2 2 A of A is defined
by

sup
b2B

jH.a1; b/� H.a2; b/j:

• Factorial ring semimetric
Let .A;C; �/ be a factorial ring, i.e., an integral domain (nonzero commutative

ring with no nonzero zero divisors), in which every nonzero nonunit element can
be written as a product of (nonunit) irreducible elements, and such factorization
is unique up to permutation.

The factorial ring semimetric is a semimetric on the set Anf0g, defined by

ln
lcm.x; y/

gcd.x; y/
;

where lcm.x; y/ is the least common multiple, and gcd.x; y/ is the greatest
common divisor of elements x; y 2 Anf0g.

• Frankild–Sather–Wagstaff metric
Let G.R/ be the set of isomorphism classes, up to a shift, of semidualizing

complexes over a local Noetherian commutative ring R. An R-complex is
a particular sequence of R-module homomorphisms; see [FrSa07]) for exact
definitions.

The Frankild–Sather–Wagstaff metric ([FrSa07]) is a metric on G.R/
defined, for any classes ŒK�; ŒL� 2 G.R/, as the infimum of the lengths of chains
of pairwise comparable elements starting with ŒK� and ending with ŒL�.



10.2 Metrics on Binary Relations 209

10.2 Metrics on Binary Relations

A binary relation R on a set X is a subset of X � X; it is the arc-set of the directed
graph .X;R/ with the vertex-set X.

A binary relation R which is symmetric (.x; y/ 2 R implies .y; x/ 2 R), reflexive
(all .x; x/ 2 R), and transitive (.x; y/; .y; z/ 2 R imply .x; z/ 2 R) is called
an equivalence relation or a partition (of X into equivalence classes). Any q-ary
sequence x D .x1; : : : ; xn/, q � 2 (i.e., with 0 � xi � q � 1 for 1 � i � n),
corresponds to the partition fB0; : : : ;Bq�1g of Vn D f1; : : : ; ng, where Bj D f1 �
i � n W xi D jg are the equivalence classes.

A binary relation R which is antisymmetric (.x; y/; .y; x/ 2 R imply x D y),
reflexive, and transitive is called a partial order, and the pair .X;R/ is called a poset
(partially ordered set). A partial order R on X is denoted also by � with x � y if
and only if .x; y/ 2 R. The order � is called linear if any elements x; y 2 X are
compatible, i.e., x � y or y � x.

A poset .L;�/ is called a lattice if every two elements x; y 2 L have the join
x _ y and the meet x ^ y. All partitions of X form a lattice PX by refinement; it is a
sublattice of the lattice (by set-inclusion) of all binary relations.

• Kemeny distance
The Kemeny distance between binary relations R1 and R2 on a set X is the

Hamming metric jR14R2j. It is twice the minimal number of inversions of pairs
of adjacent elements of X which is necessary to obtain R2 from R1.

If R1;R2 are partitions, then the Kemeny distance coincides with the Mirkin–
Tcherny distance, and 1 � jR14R2j

n.n�1/ is the Rand index.
If binary relations R1;R2 are linear orders (or permutations) on the set X, then

the Kemeny distance coincides with the Kendall � distance (Chap. 11).
• Drápal–Kepka distance

The Drápal–Kepka distance between distinct quasigroups (differing from
groups in that they need not be associative) .X;C/ and .X; �/ is the Hamming
metric jf.x; y/ W x C y ¤ x � ygj between their Cayley tables.

For finite nonisomorphic groups, this distance is (Ivanyos, Le Gall and
Yoshida, 2012) at least 2. jXj

3
/2 with equality (Drápal, 2003) for some 3-groups.

• Editing metrics between partitions
Let X be a finite set, jXj D n, and let A, B be nonempty subsets of X. Let

PX be the set of partitions of X, and P;Q 2 PX . Let P1; : : : ;Pq be blocks in the
partition P, i.e., the pairwise disjoint sets such that X D P1 [ � � � [ Pq, q � 1. Let
P _ Q and P ^ Q be the join and meet of P and Q in the lattice PX of partitions
of X.

Consider the following editing operations on partitions (clusterings):

– An augmentation transforms a partition P of AnfBg into a partition of A by
either including the objects of B in a block, or including B as a new block;

– An removal transforms a partition P of A into a partition of AnfBg by deleting
the objects in B from each block that contains them;
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– A division transforms one partition P into another by the simultaneous
removal of B from Pi (where B 
 Pi, B ¤ Pi), and augmentation of B as
a new block;

– A merging transforms one partition P into another by the simultaneous
removal of B from Pi (where B D Pi), and augmentation of B to Pj (where
j ¤ i);

– A transfer transforms one partition P into another by the simultaneous
removal of B from Pi (where B 
 Pi), and augmentation of B to Pj (where
j ¤ i).

Define (see, say, [Day81]), using above operations, the following metrics on
PX:

1. The minimum number of augmentations and removals of single objects
needed to transform P into Q;

2. The minimum number of divisions, mergings, and transfers of single objects
needed to transform P into Q;

3. The minimum number of divisions, mergings, and transfers needed to trans-
form P into Q;

4. The minimum number of divisions and mergings needed to transform P into
Q; in fact, it is equal to jPj C jQj � 2jP _ Qj;

5. 
.P/C 
.Q/ � 2
.P ^ Q/, where 
.P/ D P
Pi2P jPij.jPij � 1/;

6. e.P/C e.Q/� 2e.P ^ Q/, where e.P/ D log2 n CP
Pi2P

jPij
n log2

jPij
n ;

7. 2n�PPi2P maxQj2Q jPi \Qjj�PQj2Q maxPi2P jPi \Qjj (van Dongen, 2000).

The maximum matching distance (or partition-distance as defined in Gus-
field, 2002) is (Réignier, 1965) the minimum number of elements that must be
moved between the blocks of partition P in order to transform it into Q.

• Rossi–Hamming metric
Given a partition P D .P1; : : : ;Pq/ of a finite set X, its size is defined as

s.P/ D 1
2

P
1�i�q jPij.jPij � 1/. We call the Rossi–Hamming metric the metric

between partitions P and Q, defined in Rossi, 2014, as

dRH.P;Q/ D s.P/C s.Q/ � 2s.P ^ Q/:

One has dRH.P;Q/ � s.P _ Q/ � s.P ^ Q/, where the right-hand side is
the size-based distance (Rossi, 2011). The inequality is strict only for some
noncomparable P;Q.

10.3 Metrics on Semilattices

Consider a poset .L;�/. The meet (or infimum) x ^ y (if it exists) of two elements
x and y is the unique element satisfying x ^ y � x; y, and z � x ^ y if z � x; y. The
join (or supremum) x _ y (if it exists) is the unique element such that x; y � x _ y,
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and x _ y � z if x; y � z. A poset .L;�/ is called a lattice if every its elements x; y
have the join x _ y and the meet x ^ y. A poset is a meet (or lower) semilattice if
only the meet-operation is defined. A poset is a join (or upper) semilattice if only
the join-operation is defined.

A lattice L D .L;�;_;^/ is called a semimodular lattice if the modularity
relation xMy is symmetric: xMy implies yMx for any x; y 2 L. Here two elements x
and y are said to constitute a modular pair, in symbols xMy, if x^.y_z/ D .x^y/_z
for any z � x. A lattice L in which every pair of elements is modular, is called a
modular lattice.

Given a lattice L, a function v W L ! R�0, satisfying v.x _ y/ C v.x ^ y/ �
v.x/Cv.y/ for all x; y 2 L, is called a subvaluation on L. A subvaluation v is isotone
if v.x/ � v.y/ whenever x � y, and it is positive if v.x/ < v.y/ whenever x � y,
x ¤ y. A subvaluation v is called a valuation if it is isotone and v.x_y/Cv.x^y/ D
v.x/C v.y/ for all x; y 2 L.

• Lattice valuation metric
Let L D .L;�;_;^/ be a lattice, and let v be an isotone subvaluation on L.

The lattice subvaluation semimetric dv on L is defined by

2v.x _ y/� v.x/ � v.y/:

(It can be defined also on some semilattices.) If v is a positive subvaluation on L,
one obtains a metric, called the lattice subvaluation metric. If v is a valuation,
dv is called the valuation semimetric and can be written as

v.x _ y/ � v.x ^ y/ D v.x/C v.y/� 2v.x ^ y/:

If v is a positive valuation on L, one obtains a metric, called the lattice valuation
metric, and the lattice is called a metric lattice.

An example is the Hamming distance dH.A;B/ D jA [ Bj � jA \ Bj on the
lattice .P.X/;[;\/ of all subsets of the set X. Cf. also the Shannon distance
(Chap. 14), which can be seen as a distance on partitions.

If L D N (the set of positive integers), x _ y D lcm.x; y/ (least common
multiple), x^y D gcd.x; y/ (greatest common divisor), and the positive valuation
v.x/ D ln x, then dv.x; y/ D ln lcm.x;y/

gcd.x;y/ .
This metric can be generalized on any factorial ring equipped with a positive

valuation v such that v.x/ � 0 with equality only for the multiplicative unit of
the ring, and v.xy/ D v.x/C v.y/. Cf. factorial ring semimetric.

• Finite subgroup metric
Let .G; �; e/ be a group. Let L D .L;
;\/ be the meet semilattice of all

finite subgroups of the group .G; �; e/ with the meet X \ Y and the valuation
v.X/ D ln jXj.

The finite subgroup metric is a valuation metric on L defined by

v.X/C v.Y/ � 2v.X ^ Y/ D ln
jXjjYj

.jX \ Yj/2 :
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• Join semilattice distances
Let L D .L;�;_/ be a join semilattice, finite or infinite, such that every

maximal chain in every interval Œx; y� is finite. For x � y, the height h.x; y/ of y
above x is the least cardinality of a finite maximal (by inclusion) chain of Œx; y�
minus 1. Call the join semilattice L semimodular if for all x; y 2 L, whenever
there exists an element z covered by both x and y, the join x _ y covers both x
and y, or, in other words, whenever elements x; y have a common lower bound
z, it holds h.x; x _ y/ � h.z; y/. Any tree (i.e., all intervals Œx; z� are finite, each
pair x; y of uncomparable elements have a least common upper bound x _ y but
they never have a common lower bound) is semimodular. Consider the following
distances on L:

dpath.x; y/ is the path metric of the Hasse diagram of .L;�/, i.e., a graph with
vertex-set L and an edge between two elements if they are comparable.

da:path.x; y/ is the smallest number of the form h.x; z/ C h.y; z/, where z is
a common upper bound of x and y, i.e., it is the ancestral path distance; cf.
pedigree-based distances in Chap. 23. This and next distance reflect the way
how Roman civil law and medieval canon law, respectively, measured degree of
kinship.

dmax.x; y/ is defined by max.h.x; x _ y/; h.y; x _ y//.
It holds da:path.x; y/ � dpath.x; y/ � dmax.x; y/. Foldes, 2013, proved that

dmax.x; y/ is a metric if L is semimodular and that da:path.x; y/ is a metric if and
only if L is semimodular, in which case da:path.x; y/ D dpath.x; y/.

• Gallery distance of flags
Let L be a lattice. A chain C in L is a subset of L which is linearly ordered, i.e.,

any two elements of C are compatible. A flag is a chain in L which is maximal
with respect to inclusion. If L is a semimodular lattice, containing a finite flag,
then L has a unique minimal and a unique maximal element, and any two flags
C, D in L have the same cardinality, n C 1. Then n is the height of the lattice L.

Two flags C, D are called adjacent if either they are equal or D contains
exactly one element not in C. A gallery from C to D of length m is a sequence
of flags C D C0;C1; : : : ;Cm D D such that Ci�1 and Ci are adjacent for
i D 1; : : : ;m.

A gallery distance of flags (see [Abel91]) is a distance on the set of all flags
of a semimodular lattice L with finite height defined as the minimum of lengths
of galleries from C to D. It can be written as

jC _ Dj � jCj D jC _ Dj � jDj;

where C _ D D fc _ d W c 2 C; d 2 Dg is the subsemilattice generated by C and
D. This distance is the gallery metric of the chamber system consisting of flags.

• Scalar and vectorial metrics
Let L D .L;�;max;min/ be a lattice with the join maxfx; yg, and the meet

minfx; yg on a set L 
 Œ0;1/ which has a fixed number a as the greatest element
and is closed under negation, i.e., for any x 2 L, one has x D a � x 2 L.
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The scalar metric d on L is defined, for x ¤ y, by

d.x; y/ D maxfminfx; yg;minfx; ygg:

The scalar metric d� on L� D L [ f�g, � 62 L, is defined, for x ¤ y, by

d�.x; y/ D
8
<

:

d.x; y/; if x; y 2 L;
maxfx; xg; if y D �; x ¤ �;
maxfy; yg; if x D �; y ¤ �:

Given a norm jj:jj on R
n, n � 2, the vectorial metric on Ln is defined by

jj.d.x1; y1/; : : : ; d.xn; yn//jj;

and the vectorial metric on .L�/n is defined by

jj.d�.x1; y1/; : : : ; d�.xn; yn//jj:

The vectorial metric on Ln
2 D f0; 1gn with l1-norm on R

n is the
Fréchet–Nikodym–Aronszyan distance. The vectorial metric on Ln

m D
f0; 1

m�1 ; : : : ;
m�2
m�1 ; 1gn with l1-norm on R

n is the Sgarro m-valued metric. The
vectorial metric on Œ0; 1�n with l1-norm on R

n is the Sgarro fuzzy metric.
If L is Lm or Œ0; 1�, and x D .x1; : : : ; xn; xnC1; : : : ; xnCr/, y D

.y1; : : : ; yn;�; : : : ;�/, where � stands in r places, then the vectorial metric
between x and y is the Sgarro metric (see, for example, [CSY01]).

• Metrics on Riesz space
A Riesz space (or vector lattice) is a partially ordered vector space .VRi;�/ in

which the following conditions hold:

1. The vector space structure and the partial order structure are compatible: x � y
implies x C z � y C z, and x � 0, 	 2 R; 	 > 0 implies 	x � 0;

2. For any two elements x; y 2 VRi there exists the join x _ y 2 VRi (in particular,
the join and the meet of any finite set of elements from VRi exist).

The Riesz norm metric is a norm metric on VRi defined by

jjx � yjjRi;

where jj:jjRi is a Riesz norm, i.e., a norm on VRi such that, for any x; y 2 VRi, the
inequality jxj � jyj, where jxj D .�x/ _ .x/, implies jjxjjRi � jjyjjRi.

The space .VRi; jj:jjRi/ is called a normed Riesz space. In the case of
completeness it is called a Banach lattice. All Riesz norms on a Banach lattice
are equivalent.

An element e 2 VC
Ri D fx 2 VRi W x � 0g is called a strong unit of VRi if for

each x 2 VRi there exists 	 2 R such that jxj � 	e. If a Riesz space VRi has a
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strong unit e, then jjxjj D inff	 2 R W jxj � 	eg is a Riesz norm, and one obtains
on VRi a Riesz norm metric

inff	 2 R W jx � yj � 	eg:

A weak unit of VRi is an element e of VC
Ri such that e ^ jxj D 0 implies x D 0.

A Riesz space VRi is called Archimedean if, for any two x; y 2 VC
Ri , there exists

a natural number n, such that nx � y. The uniform metric on an Archimedean
Riesz space with a weak unit e is defined by

inff	 2 R W jx � yj ^ e � 	eg:

• Machida metric
For a fixed integer k � 2 and the set Vk D f0; 1; : : : ; k � 1g, let O.n/

k be the

set of all n-ary functions from .Vk/
n into Vk and Ok D [1

nD1O
.n/
k . Let Prk be

the set of all projections prn
i over Vk, where prn

i .x1; : : : ; xi; : : : ; xn/ D xi for any
x1; : : : ; xn 2 Vk.

A clone over Vk is a subset C of Ok containing Prk and closed under
(functional) composition. The set Lk of all clones over Vk is a lattice. The Post
lattice L2 defined over Boolean functions, is countable but any Lk with k � 3 is
not. For n � 1 and a clone C 2 Lk, let C.n/ denote n-slice C \ O.n/

k .
For any two clones C1;C2 2 Lk, Machida, 1998, defined the distance to be 0 if

C1 D C2 and .minfn W C.n/
1 ¤ C.n/

2 g/�1, otherwise. The lattice Lk of clones with
this distance is a compact ultrametric space. Cf. Baire metric in Chap. 11.



Chapter 11
Distances on Strings and Permutations

An alphabet is a finite set A, jAj � 2, elements of which are called characters (or
symbols). A string (or word) is a sequence of characters over a given finite alphabet
A. The set of all finite strings over the alphabet A is denoted by W.A/. Examples
of real world applications, using distances and similarities of string pairs, are
Speech Recognition, Bioinformatics, Information Retrieval, Machine Translation,
Lexicography, Dialectology.

A substring (or factor, chain, block) of the string x D x1 : : : xn is any contiguous
subsequence xixiC1 : : : xk with 1 � i � k � n. A prefix of a string x is any its
substring starting with x1; a suffix is any its substring finishing with xn. If a string is
a part of a text, then the delimiters (a space, a dot, a comma, etc.) are added to A.

A vector is any finite sequence consisting of real numbers, i.e., a finite string over
the infinite alphabet R. A frequency vector (or discrete probability distribution) is
any string x1 : : : xn with all xi � 0 and

Pn
iD1 xi D 1. A permutation (or ranking) is

any string x1 : : : xn with all xi being different numbers from f1; : : : ; ng.
An editing operation is an operation on strings, i.e., a symmetric binary relation

on the set of all considered strings. Given a set of editing operations O D
fO1; : : : ;Omg, the corresponding editing metric (or unit cost edit distance) between
strings x and y is the minimum number of editing operations from O needed to
obtain y from x. It is the path metric of a graph with the vertex-set W.A/ and xy
being an edge if y can be obtained from x by one of the operations from O.

In some applications, a cost function is assigned to each type of editing operation;
then the editing distance is the minimal total cost of transforming x into y. Given a
set of editing operations O on strings, the corresponding necklace editing metric
between cyclic strings x and y is the minimum number of editing operations from O
needed to obtain y from x, minimized over all rotations of x.

The main editing operations on strings are:

• Character indel, i.e., insertion or deletion of a character;
• Character replacement;
• Character swap, i.e., an interchange of adjacent characters;
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• Substring move, i.e., transforming, say, the string x D x1 : : : xn into the string
x1 : : : xi�1xj : : : xk�1xi : : : xj�1xk : : : xn;

• Substring copy, i.e., transforming, say, x D x1 : : : xn into x1 : : : xi�1xj : : : xk�1

xi : : : xn;
• Substring uncopy, i.e., the removal of a substring provided that a copy of it

remains in the string.

We list below the main distances on strings. However, some string distances will
appear in Chaps. 15, 21 and 23, where they fit better, with respect to the needed level
of generalization or specification.

11.1 Distances on General Strings

• Levenstein metric
The Levenstein metric (or edit distance, HammingCGap metric, shuffle-

Hamming distance) is (Levenstein, 1965) an editing metric on W.A/, obtained
for O consisting of only character replacements and indels.

The Levenstein metric between strings x D x1 : : : xm and y D y1 : : : yn is

dL.x; y/ D minfdH.x
�; y�/g;

where x�, y� are strings of length k, k � maxfm; ng, over the alphabet A� D
A [ f�g so that, after deleting all new characters �, strings x� and y� shrink to x
and y, respectively. Here, the gap is the new symbol �, and x�, y� are shuffles of
strings x and y with strings consisting of only �.

The Levenstein similarity is 1 � dL.x;y/
maxfm;ng .

The Damerau–Levenstein metric (Damerau, 1964) is an editing metric on
W.A/, obtained for O consisting only of character replacements, indels and
transpositions. In the Levenstein metric, a transposition corresponds to two
editing operations: one insertion and one deletion.

The constrained edit distance (Oomen, 1986) is the Levenstein metric, but
the ranges for the number of replacements, insertions and deletions are specified.

• Editing metric with moves
The editing metric with moves is an editing metric on W.A/ ([Corm03]),

obtained for O consisting of only substring moves and indels.
• Editing compression metric

The editing compression metric is an editing metric on W.A/ ([Corm03]),
obtained for O consisting of only indels, copy and uncopy operations.

• Swap metric
The swap metric (or interchange distance, Dodson distance) is an editing

metric on W.A/, obtained for O consisting only of character swaps, i.e., it is
the minimum number of interchanges of adjacent pairs of symbols, converting x
into y.
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• Indel metric
The indel metric is an editing metric on W.A/, obtained for O consisting of

only indels. It is an analog of the Hamming metric jX
Yj between sets X and
Y. For strings x D x1 : : : xm and y D y1 : : : yn it is m C n � 2LCS.x; y/, where the
similarity LCS.x; y/ is the length of the longest common subsequence of x and y.

The factor distance is m C n � 2LCF.x; y/, where LCF.x; y/ is the length of
the longest common substring (factor) of x and y.

The LCS ratio and the LCF ratio are the similarities LCS.x;y/
minfm;ng and LCF.x;y/

minfm;ng ,

respectively; sometimes, the denominator is maxfm; ng or mCn
2

.
• Prefix, suffix, and substring distances

Given strings x and y, their prefix distance, suffix distance, and substring
distance are the numbers of symbol occurrences in the strings that do not
belong to their longest common prefix, suffix or substring, respectively. Cf. Jaro–
Winkler similarity, factor distance.

• Antidistance
There are .n � 1/Š circular permutations, i.e., cyclic orders, of a set X of size

n. The antidistance between circular permutations x and y is the swap metric
between x and the reversal of y.

Also, given complex n � n matrices A and B, the unitary similarity orbit
through B is supU2Un

jjU�BUjj1, where U 2 Un is the group of unitary matrices.
Ando, 1996, define anti-distance between A and this orbit as supU2Un

jjA �
U�BUjj1.

Also, given a simple connected graph .V;E/, we assign directions to edges
and the weight of each edge (either 1 or �1) depending on the direction of
the traverse. Iravanian, 2012, define anti-distance d.u; v/ D �d.v; u/ between
vertices as the weighted average length of all simple paths from u to v.

• Edit distance with costs
Given a set of editing operations O D fO1; : : : ;Omg and a weight (or cost

function) wi � 0, assigned to each type Oi of operation, the edit distance with
costs between strings x and y is the minimal total cost of an editing path between
them, i.e., the minimal sum of weights for a sequence of operations transforming
x into y.

The normalized edit distance between strings x and y (Marzal–Vidal, 1993)
is the minimum, over all editing paths P between them, of W.P/

L.P/ , where W.P/ and
L.P/ are the total cost and the length of the editing path P.

• Transduction edit distances
The Levenstein metric with costs between strings x and y is modeled in

[RiYi98] as a memoryless stochastic transduction between x and y.
Each step of transduction generates either a character replacement pair .a; b/,

a deletion pair .a;;/, an insertion pair .;; b/, or the specific termination symbol
t according to a probability function ı W E [ ftg ! Œ0; 1�, where E is the set of all
possible above pairs. Such a transducer induces a probability function on the set
of all sequences of operations.
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The transduction edit distances between strings x and y are ([RiYi98]) ln p
of the following probabilities p:

– for the Viterbi edit distance, the probability of the most likely sequence of
editing operations transforming x into y;

– for the stochastic edit distance, the probability of the string pair .x; y/.

This model allows one to learn, in order to reduce error rate, the edit costs for
the Levenstein metric from a corpus of examples (training set of string pairs).
This learning is automatic; it reduces to estimating the parameters of above
transducer.

• Bag distance
The bag distance (or multiset metric, counting filter) is a metric on W.A/

defined (Navarro, 1997) by

maxfjXnYj; jYnXjg

for any strings x and y, where X and Y are the bags of symbols (multisets of
characters) in strings x and y, respectively, and, say, jXnYj counts the number of
elements in the multiset XnY. It is a (computationally) cheap approximation of
the Levenstein metric. Cf. metrics between multisets in Chap. 1.

• Marking metric
The marking metric is a metric on W.A/ ([EhHa88]) defined by

ln2 ..diff .x; y/C 1/.diff .y; x/C 1//

for any strings x D x1 : : : xm and y D y1 : : : yn, where diff .x; y/ is the minimal
cardinality jMj of a subset M 
 f1; : : : ;mg such that any substring of x, not
containing any xi with i 2 M, is a substring of y.

Another metric defined in [EhHa88], is ln2.diff .x; y/C diff .y; x/C 1/.
• Transformation distance

The transformation distance is an editing distance with costs on W.A/
(Varre–Delahaye–Rivals, 1999) obtained for O consisting only of substring copy,
uncopy and substring indels. The distance between strings x and y is the minimal
cost of transformation x into y using these operations, where the cost of each
operation is the length of its description.

For example, the description of the copy requires a binary code specifying the
type of operation, an offset between the substring locations in x and in y, and the
length of the substring. A code for insertion specifies the type of operation, the
length of the substring and the sequence of the substring.

• L1-rearrangement distance
The L1-rearrangement distance (Amir et al., 2007) between strings x D

x1 : : : xm and y D y1 : : : ym is defined by

min
�

mX

iD1
ji � �.i/j;
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where � W f1; : : : ;mg ! f1; : : : ;mg is a permutation transforming x into y; if
there are no such permutations, the distance is equal to 1.

The L1-rearrangement distance (Amir et al., 2007) between x and y is
min� max1�i�m ji � �.i/j and it is 1 if such a permutation does not exist.

Cf. genome rearrangement distances in Chap. 23.
• Normalized information distance

The normalized information distance d between two binary strings x and y
is a symmetric function on W.f0; 1g/ ([LCLMV04]) defined by

maxfK.xjy�/;K.yjx�/g
maxfK.x/;K.y/g

Here, for binary strings u and v, u� is a shortest binary program to compute u
on an appropriate (i.e., using a Turing-complete language) universal computer,
the Kolmogorov complexity (or algorithmic entropy) K.u/ is the length of u�
(the ultimate compressed version of u), and K.ujv/ is the length of the shortest
program to compute u if v is provided as an auxiliary input.

The function d.x; y/ is a metric up to small error term: d.x; x/ D O..K.x//�1/,
and d.x; z/ � d.x; y/ � d.y; z/ D O..maxfK.x/;K.y/;K.z/g/�1/. Cf. in Chap. 15
the shared information distance H.XjY/C H.YjX/ between sources X and Y.

The Kolmogorov complexity is uncomputable and depends on the chosen
computer language; so, instead of K.u/, were proposed the minimum message
length (shortest overall message) by Wallace, 1968, and the minimum description
length (largest compression of data) by Rissanen, 1978.

The normalized compression distance is a metric on W.f0; 1g/ (derived by
Cilibrasi and Vitányi, 2005, from [LCLMV04, BGLVZ98]) defined by

C.xy/� minfC.x/;C.y/g
maxfC.x/;C.y/g

for any binary strings x and y, where C.x/;C.y/, and C.xy/ denote the size
of the compression (by fixed compressor C, such as gzip, bzip2, or PPMZ) of
strings x, y, and their concatenation xy. It is an approximation of the normalized
information distance. A similar distance is defined by C.xy/

C.x/CC.y/ � 1
2
.

• Lempel–Ziv distance
The Lempel–Ziv distance between two binary strings x and y of length n is

maxfLZ.xjy/
LZ.x/

;
LZ.yjx/
LZ.y/

g;

where LZ.x/ D jP.x/j log jP.x/j
n is the Lempel–Ziv complexity of x, approximating its

Kolmogorov complexity K.x/. Here P.x/ is the set of nonoverlapping substrings
into which x is parsed sequentially, so that the new substring is not yet contained
in the set of substrings generated so far. For example, such a Lempel–Ziv
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parsing for x D 001100101010011 is 0j01j1j00j10j101j001j11. Now, LZ.xjy/ D
jP.x/nP.y/j log jP.x/nP.y/j

n .
• Anthony–Hammer similarity

The Anthony–Hammer similarity between a binary string x D x1 : : : xn and
the set Y of binary strings y D y1 : : : yn is the maximal number m such that, for
every m-subset M 
 f1; : : : ; ng, the substring of x, containing only xi with i 2 M,
is a substring of some y 2 Y containing only yi with i 2 M.

• Jaro similarity
Given strings x D x1 : : : xm and y D y1 : : : yn, call a character xi common with

y if xi D yj, where ji � jj � minfm;ng
2

. Let x
0 D x

0

1 : : : x
0

m0 be all the characters
of x which are common with y (in the same order as they appear in x), and let
y

0 D y
0

1 : : : y
0

n0 be the analogic string for y.
The Jaro similarity Jaro.x; y/ between strings x and y is defined by

1

3

 
m

0

m
C n

0

n
C jf1 � i � minfm

0

; n
0g W x

0

i D y
0

igj
minfm0

; n0g

!

:

This and following two similarities are used in Record Linkage.
• Jaro–Winkler similarity

The Jaro–Winkler similarity between strings x and y is defined by

Jaro.x; y/C maxf4;LCP.x; y/g
10

.1 � Jaro.x; y//;

where Jaro.x; y/ is the Jaro similarity, and LCP.x; y/ is the length of the longest
common prefix of x and y.

• q-gram similarity
Given an integer q � 1 (usually, q is 2 or 3), the q-gram similarity between

strings x and y is defined by

2q.x; y/

q.x/C q.y/
;

where q.x/, q.y/ and q.x; y/ are the sizes of multisets of all q-grams (substrings
of length q) occurring in x, y and both of them, respectively.

Sometimes, q.x; y/ is divided not by the average of q.x/ and q.y/, as above, but
by their minimum, maximum or harmonic mean 2q.x/q.y/

q.x/Cq.y/ . Cf. metrics between
multisets in Chap. 1 and, in Chap. 17, Dice similarity, Simpson similarity,
Braun–Blanquet similarity and Anderberg similarity.

The q-gram similarity is an example of token-based similarities, i.e.,
ones defined in terms of tokens (selected substrings or words). Here tokens
are q-grams. A generic dictionary-based metric between strings x and y is
jD.x/
D.y/j, where D.z/ denotes the full dictionary of z, i.e., the set of all of its
substrings.
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• Prefix-Hamming metric
The prefix-Hamming metric between strings x D x1 : : : xm and y D y1 : : : yn

is

.maxfm; ng � minfm; ng/C jf1 � i � minfm; ng W xi ¤ yigj:

• Weighted Hamming metric
If .A; d/ is a metric space, then the weighted Hamming metric between

strings x D x1 : : : xm and y D y1 : : : ym is defined by

mX

iD1
d.xi; yi/:

The term weighted Hamming metric (or weighted Hamming distance) is also used
for

P
1�i�m;xi¤yi

wi, where, for any 1 � i � m, w.i/ > 0 is its weight.
• Fuzzy Hamming distance

If .A; d/ is a metric space, the fuzzy Hamming distance between strings
x D x1 : : : xm and y D y1 : : : ym is an editing distance with costs on W.A/
obtained for O consisting of only indels, each of fixed cost q > 0, and character
shifts (i.e., moves of 1-character substrings), where the cost of replacement of i
by j is a function f .ji�jj/. This distance is the minimal total cost of transforming x
into y by these operations. Bookstein–Klein–Raita, 2001, introduced this distance
for Information Retrieval and proved that it is a metric if f is a monotonically
increasing concave function on integers vanishing only at 0.

The case f .ji � jj/ D Cji � jj, where C > 0 is a constant and ji � jj is a time
shift, corresponds to the Victor–Purpura spike train distance in Chap. 23.

Ralescu, 2003, introduced, for Image Retrieval, another fuzzy Hamming
distance on Rm. The Ralescu distance between two strings x D x1 : : : xm and
y D y1 : : : ym is the fuzzy cardinality of the difference fuzzy set D˛.x; y/ (where
˛ is a parameter) with membership function

�i D 1 � e�˛.xi�yi/
2

; 1 � i � m:

The nonfuzzy cardinality of the fuzzy set D˛.x; y/ approximating its fuzzy
cardinality is jf1 � i � m W �i >

1
2
gj.

• Needleman–Wunsch–Sellers metric
If .A; d/ is a metric space, the Needleman–Wunsch–Sellers metric

(or global alignment metric) is an editing distance with costs on W.A/
([NeWu70]), obtained for O consisting of only indels, each of fixed cost q > 0,
and character replacements, where the cost of replacement of i by j is d.i; j/. This
metric is the minimal total cost of transforming x into y by these operations. It is

minfdwH.x
�; y�/g;
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where x�, y� are strings of length k, k � maxfm; ng, over the alphabet A� D
A [ f�g, so that, after deleting all new characters �, strings x� and y� shrink to x
and y, respectively. Here dwH.x�; y�/ is the weighted Hamming metric between
x� and y� with weight d.x�

i ; y
�
i / D q (i.e., the editing operation is an indel) if one

of x�
i , y�

i is �, and d.x�
i ; y

�
i / D d.i; j/, otherwise.

The Gotoh–Smith–Waterman distance (or string distance with affine gaps)
is a more specialized editing metric with costs (see [Goto82]). It discounts
mismatching parts at the beginning and end of the strings x, y, and introduces
two indel costs: one for starting an affine gap (contiguous block of indels), and
another one (lower) for extending a gap.

• Duncan metric
Consider the set X of all strictly increasing infinite sequences x D fxngn of

positive integers. Define N.n; x/ as the number of elements in x D fxngn which
are less than n, and ı.x/ as the density of x, i.e., ı.x/ D limn!1 N.n;x/

n . Let Y be
the subset of X consisting of all sequences x D fxngn for which ı.x/ < 1.

The Duncan metric is a metric on Y defined, for x ¤ y, by

1

1C LCP.x; y/
C jı.x/� ı.y/j;

where LCP.x; y/ is the length of the longest common prefix of x and y.
• Martin metric

The Martin metric da between strings x D x1 : : : xm and y D y1 : : : yn is

j2�m � 2�nj C
maxfm;ngX

tD1

at

jAjt
sup

z
jk.z; x/ � k.z; y/j;

where z is any string of length t, k.z; x/ is the Martin kernel of a Markov chain
M D fMtg1

tD0, and the sequence a 2 fa D fatg1
tD0 W at > 0;

P1
tD1 at < 1g is a

parameter.
• Baire metric

The Baire metric is an ultrametric between strings x and y defined, for x ¤ y,
by

1

1C LCP.x; y/
;

where LCP.x; y/ is the length of the longest common prefix of strings (finite or
infinite) x and y. Cf. Baire space in Chap. 2.

Given an infinite cardinal number � and a set A of cardinality �, the Cartesian
product of countably many copies of A endowed with above ultrametric 1

1CLCP.x;y/

is called the Baire space of weight � and denoted by B.�/. In particular, B.@0/
(called the Baire 0-dimensional space) is homeomorphic to the space Irr of
irrationals with continued fraction metric (Chap. 12).



11.1 Distances on General Strings 223

• Generalized Cantor metric
The generalized Cantor metric (or, sometimes, Baire distance) is an ultra-

metric between infinite strings x and y defined, for x ¤ y, by

a1CLCP.x;y/;

where a is a fixed number from the interval .0; 1/, and LCP.x; y/ is the length of
the longest common prefix of x and y.

This ultrametric space is compact. In the case a D 1
2
, this metric was

considered on a remarkable fractal, the Cantor set; cf. Cantor metric in
Chap. 18. Another important case is a D 1

e 
 0:367879441.
Comyn–Dauchet, 1985, and Kwiatkowska, 1990, introduced some analogs

of generalized Cantor metric for traces, i.e., equivalence classes of strings with
respect to a congruence relation identifying strings x; y that are identical up to
permutation of concurrent actions (xy D yx).

• Parikh distance
Given an ordered alphabet A D fa1; : : : ; akg, the Parikh distance between

words x and y over it is the Manhattan metric
Pk

iD1 jxi � yij between their
Parikh maps (or commutative images) P.x/ and P.y/, where, for a word w, wi

denotes the number of occurrences of ai in w and P.w/ is .w1; : : : ;wk/.
• Parentheses string metrics

Let Pn be the set of all strings on the alphabet f.; /g generated by a grammar
and having n open and n closed parentheses. A parentheses string metric is an
editing metric on Pn corresponding to a given set of editing operations.

For example, the Monjardet metric (Monjardet, 1981) between two strings
x; y 2 Pn is the minimum number of adjacent parentheses interchanges (“()”
to “)(” or “)(” to “()”) needed to obtain y from x. It is the Manhattan metric
between their representations px and px, where pz D .pz.1/; : : : ; pz.n// and pz.i/
is the number of open parentheses written before the i-th closed parentheses of
z 2 Pn.

There is a bijection between parentheses strings and binary trees; cf. the tree
rotation distance in Chap. 15.

• Dehornoy–Autord distance
The Dehornoy–Autord distance (2010) between two shortest expressions x

and y of a permutation as a product of transpositions ti, is the minimal, needed to
get x from y, number of braid relations: titjti D tjtitj with ji� jj D 1 and titj D tjti
with ji � jj � 2.

This distance can be extended to the decompositions of any given positive
braid in terms of Artin’s generators. The permutations corresponds to the simple
braids which are the divisors of Garside’s fundamental braid in the braid
monoid.

• Schellenkens complexity quasi-metric
The Schellenkens complexity quasi-metric between infinite strings x D .xi/

and y D .yi/ (i D 0; 1; : : : ) over R�0 with
P1

iD0 2�i 1
xi
< 1 (seen as complexity



224 11 Distances on Strings and Permutations

functions) is defined (Schellenkens, 1995) by

1X

iD0
2�i maxf0; 1

xi
� 1

yi
g:

• Graev metrics
Let .X; d/ be a metric space. Let X D X [ X0 [ feg, where X0 D fx0 W x 2 Xg is

a disjoint copy of X, and e … X [ X0. We use the notation .e0/0 D e and .x0/0 D x
for any x 2 X; also, the letters x; y; xi; yi will denote elements of X. Let .X;D/
be a metric space such that D.x; y/ D D.x0; y0/ D d.x; y/, D.x; e/ D D.x0; e/ and
D.x; y0/ D D.x0; y/ for all x; y 2 X.

Denote by W.X/ the set of all words over X and, for each word w 2 W.X/,
denote by l.w/ its length. A word w 2 W.X/ is called irreducible if w D e or
w D x0 : : : xn, where xi ¤ e and xiC1 ¤ x0

i for 0 � i < n.
For each word w over X, denote by Ow the unique irreducible word obtained

from w by successively replacing any occurrence of xx0 in w by e and eliminating
e from any occurrence of the form w1ew2, where w1 D w2 � ; is excluded.

Denote by F.X/ the set of all irreducible words over X and, for u; v 2 F.X/,
define u � v D w0, where w is the concatenation of words u and v. Then F.X/
becomes a group; its identity element is the (nonempty) word e.

For any two words v D x0 : : : xn and u D y0 : : : yn over X of the same length,
let �.v; u/ D Pn

iD0 D.xi; yi/. The Graev metric between two irreducible words
u D u; v 2 F.X/ is defined ([DiGa07]) by

inff�.u�; v�/ W u�; v� 2 W.X/; l.u�/ D l.v�/; bu� D u; bv� D vg:

Graev proved that this metric is bi-invariant metric on F.X/ and that F.X/ is a
topological group in the topology induced by it.

• String-induced alphabet distance
Let a D .a1; : : : ; am/ be a finite string over alphabet X, jXj D n � 2. Let

A.x/ D f1 � i � m W ai D xg ¤ ; for any x 2 X.
The string-induced distance between symbols x; y 2 X is the set-set distance

(Chap. 1) defined by

da.x; y/ D minfji � jj W i 2 A.x/; j 2 A.y/g:

A k-radius sequence (Jaromczyk and Lonc, 2004) is a string a over X with
maxx;y2X da.x; y/ � k, i.e., any two symbols (say, large digital images) occur in
some window (say, memory cache) of length kC1. Minimal length m corresponds
to most efficient pipelining of images when no more than k C 1 of them can be
placed in main memory in any given time.
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11.2 Distances on Permutations

A permutation (or ranking) is any string x1 : : : xn with all xi being different
numbers from f1; : : : ; ng; a signed permutation is any string x1 : : : xn with all jxij
being different numbers from f1; : : : ; ng. Denote by .Symn; �; id/ the group of all
permutations of the set f1; : : : ; ng, where id is the identity mapping.

The restriction, on the set Symn of all n-permutation vectors, of any metric on R
n

is a metric on Symn; the main example is the lp-metric .
Pn

iD1 jxi � yijp/
1
p , p � 1.

The main editing operations on permutations are:

• Block transposition, i.e., a substring move;
• Character move, i.e., a transposition of a block consisting of only one character;
• Character swap, i.e., interchanging of any two adjacent characters;
• Character exchange, i.e., interchanging of any two characters (in Group Theory,

it is called transposition);
• One-level character exchange, i.e., exchange of characters xi and xj, i < j, such

that, for any k with i < k < j, either minfxi; xjg > xk, or xk > maxfxi; xjg;
• Block reversal, i.e., transforming, say, the permutation x D x1 : : : xn into the

permutation x1 : : : xi�1xjxj�1 : : : xiC1xixjC1 : : : xn (so, a swap is a reversal of a
block consisting only of two characters);

• Signed reversal, i.e., a reversal in signed permutation, followed by multiplication
on �1 of all characters of the reversed block.

Below we list the most used editing and other metrics on Symn.

• Hamming metric on permutations
The Hamming metric on permutations dH is an editing metric on Symn,

obtained for O consisting of only character replacements. It is a bi-invariant
metric. Also, n � dH.x; y/ is the number of fixed points of xy�1.

• Spearman � distance
The Spearman � distance is the Euclidean metric on Symn:

v
u
u
t

nX

iD1
.xi � yi/2:

Its square is a 2-near-metric. Cf. Spearman � rank correlation in Chap. 17.
• Spearman footrule distance

The Spearman footrule distance is the l1-metric on Symn:

nX

iD1
jxi � yij:

Cf. Spearman footrule similarity in Chap. 17.
Both above Spearman distances are bi-invariant.
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• Kendall � distance
The Kendall � distance (or inversion metric, permutation swap metric,

bubble-sort distance) I is an editing metric on Symn, obtained for O consisting
only of character swaps.

In terms of Group Theory, I.x; y/ is the number of adjacent transpositions
needed to obtain x from y. Also, I.x; y/ is the number of relative inversions of x
and y, i.e., pairs .i; j/, 1 � i < j � n, with .xi � xj/.yi � yj/ < 0. Cf. Kendall �
rank correlation in Chap. 17.

In [BCFS97] the following metrics, associated with I.x; y/, were given:

1. minz2Symn.I.x; z/C I.z�1; y�1//;
2. maxz2Symn I.zx; zy/;
3. minz2Symn I.zx; zy/ D T.x; y/, where T is the Cayley metric;
4. editing metric with O consisting only of one-level character exchanges.

• Daniels–Guilbaud semimetric
The Daniels–Guilbaud semimetric (see [Monj98]) is defined, for any x; y 2

Symn, as the number of triples .i; j; k/, 1 � i < j < k � n, such that .xi; xj; xk/ is
not a cyclic shift of .yi; yj; yk/. So, it is 0 if and only if x is a cyclic shift of y.

• Cayley metric
The Cayley metric (or transposition distance) T is an editing metric on

Symn, obtained for O consisting only of character exchanges. In terms of Group
Theory, T.x; y/ is the minimum number of transpositions needed to obtain x
from y.

The metric T is bi-invariant. Also, n�T.x; y/ is the number of cycles in xy�1,
and, for the Hamming metric on permutations, dH.x; y/�T.x; y/ is the number
of cycles with length at least 2 in xy�1.

• Ulam metric
The Ulam metric (or permutation editing metric) U is an editing metric

on Symn, obtained for O consisting only of character moves. It is the half of the
indel metric on Symn.

Also, n � U.x; y/ D LCS.x; y/ D LIS.xy�1/, where LCS.x; y/ is the length of
the longest common subsequence (not necessarily a substring) of x and y, while
LIS.z/ is the length of the longest increasing subsequence of z 2 Symn.

This and the preceding six metrics are right-invariant.
• Reversal metric

The reversal metric is an editing metric on Symn, obtained for O consisting
only of block reversals.

• Signed reversal metric
The signed reversal metric (Sankoff, 1989) is an editing metric on the set of

all 2nnŠ signed permutations of the set f1; : : : ; ng, obtained for O consisting only
of signed reversals.

This metric is used in Biology, where a signed permutation represents a single-
chromosome genome, seen as a permutation of genes (along the chromosome)
each having a direction (so, a sign C or �).
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• Chain metric
The chain metric (or rearrangement metric) is a metric on Symn ([Page65])

defined, for any x; y 2 Symn, as the minimum number, minus 1, of chains
(substrings) y

0

1; : : : ; y
0

t of y, such that x can be parsed (concatenated) into, i.e.,
x D y

0

1 : : : y
0

t .
• Lexicographic metric

The lexicographic metric (Golenko–Ginzburg, 1973) is a metric on Symn:

jN.x/ � N.y/j;

where N.x/ is the ordinal number of the position (among 1; : : : ; nŠ) occupied by
the permutation x in the lexicographic ordering of the set Symn.

In the lexicographic ordering of Symn, x D x1 : : : xn 	 y D y1 : : : yn if there
exists 1 � i � n such that x1 D x1, : : : , xi�1 D yi�1, but xi < yi.

• Fréchet permutation metric
The Fréchet permutation metric is the Fréchet product metric (Chap. 4)

on the set Sym1 of permutations of positive integers defined by

1X

iD1

1

2i

jxi � yij
1C jxi � yij :

• Distance-rationalizable voting rule
Let e D .�1; : : : ; �m/ be a finite string over alphabet Symn; it can be seen as

an election in which, for each i; 1 � i � m, the voter vi give the ranking �i D
.�i.c1/; : : : ; �i.cn// on the set C D fc1; : : : ; cn/ of candidates. Let X D Symm

n be
the set of all possible elections with m voters in each.

A voting rule is any map R W X ! P.C/ assigning to each election e a
set R.e/ 
 C of its R-winners. For example, the winners of plurality rule are
candidates with the largest number of first-place votes. A candidate is a unanimity
winner if all voters rank him first. A candidate ci is a Condorcet winner if for
each cj 2 C n fcig, a strict majority of voters prefer ci to cj. A candidate is a
Dodson winner if the number of swaps of adjacent candidates in the rankings by
voters after which he became a Condorcet winner, is minimal. So, jR.e/j � 1

for elections with unanimity or Condorcet rule, and jR.e/j � 1 for plurality or
Dodson rule.

A consensus class is a pair .Y;W/, where Y 
 X is a set of elections and W is
a voting rule with unique .Y;W/-winner (i.e., jW.e/j D 1) for all e 2 Y. Let U
and C denote the consensus classes of all elections having the Condorcet winner
and the unanimity winner, respectively.

Given a distance d on X and consensus class .Y;W/, the voting rule R is called
(Meskanen–Nurmi, 2008, and Elkind–Faliszewski–Slinko, 2009) .dI .Y;W//-
distance-rationalizable if, for each election e, a candidate ci is its R-winner if
and only if he is the .Y;W/-winner in a d-closest election in Y.
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The plurality rule is .dHIU/-rationalizable, where dH.e; e0/ is the Hamming
distance jfi � i � m W �i ¤ � 0

i gj. The Dodson rule is .dswI C/-rationalizable,
where dsw.e; e0/ D P

1�i�m dsw.�i; �
0
i / and dsw on rankings is the swap metric.

Similar framework (minimization of an aggregation function of distances
between a collective opinion and the individual judgements) is used in distance-
based jugement aggregation and in general distance-based semantics for decision
or choice.



Chapter 12
Distances on Numbers, Polynomials,
and Matrices

12.1 Metrics on Numbers

Here we consider the most important metrics on the classical number systems: the
semiring N of natural numbers, the ring Z of integers, and the fields Q, R, C of
rational, real, complex numbers, respectively. We consider also the algebra Q of
quaternions.

• Metrics on natural numbers
There are several well-known metrics on the set N of natural numbers:

1. jn � mj; the restriction of the natural metric (from R) on N;
2. p�˛, where ˛ is the highest power of a given prime number p dividing m � n,

for m ¤ n (and equal to 0 for m D n); the restriction of the p-adic metric
(from Q) on N;

3. ln lcm.m;n/
gcd.m;n/ ; an example of the lattice valuation metric;

4. wr.n � m/, where wr.n/ is the arithmetic r-weight of n; the restriction of the
arithmetic r-norm metric (from Z) on N;

5. jn�mj
mn (cf. M-relative metric in Chap. 5);

6. 1C 1
mCn for m ¤ n (and equal to 0 for m D n); the Sierpinski metric.

Most of these metrics on N can be extended on Z. Moreover, any one of the above
metrics can be used in the case of an arbitrary countable set X. For example, the
Sierpinski metric is defined, in general, on a countable set X D fxn W n 2 Ng by
1C 1

mCn for all xm; xn 2 X with m ¤ n (and is equal to 0, otherwise).
• Arithmetic r-norm metric

Let r 2 N; r � 2. The modified r-ary form of an integer x is a representation

x D enrn C � � � C e1r C e0;

where ei 2 Z, and jeij < r for all i D 0; : : : ; n.
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An r-ary form is called minimal if the number of nonzero coefficients is
minimal. The minimal form is not unique, in general. But if the coefficients ei,
0 � i � n � 1, satisfy the conditions jei C eiC1j < r, and jeij < jeiC1j if
eieiC1 < 0, then the above form is unique and minimal; it is called the generalized
nonadjacent form.

The arithmetic r-weight wr.x/ of an integer x is the number of nonzero
coefficients in a minimal r-ary form of x, in particular, in the generalized
nonadjacent form. The arithmetic r-norm metric on Z (see, for example,
[Ernv85]) is defined by

wr.x � y/:

• Distance between consecutive primes
The distance between consecutive primes (or prime gap, prime difference

function) is the difference gn D pnC1�pn between two successive prime numbers.
It holds gn � pn, limn!1gn D 1 and (Zhang, 2013) limn!1gn < 7 � 107,

improved to � 246 (conjecturally, to � 6) by Polymath8, 2014. There is no
limn!1 gn but gn 
 ln pn for the average gn.

Open Polignac’s conjecture: for any k � 1, there are infinitely many n with
gn D 2k; the case k D 1 (i.e., that limn!1gn D 2 holds) is the twin prime
conjecture.

• Distance Fibonacci numbers
Fibonacci numbers are defined by the recurrence Fn D Fn�1CFn�2 for n � 2

with initial terms F0 D 0 and F1 D 1. Distance Fibonacci numbers are three
following generalizations of them in the distance sense, considered by Wloch
et al..

Kwaśnik–Wloch, 2000: F.k; n/ D F.k; n � 1/ C F.k; n � k/ for n > k and
F.k; n/ D n C 1 for n � k.

Bednarz et al., 2012: Fd.k; n/ D Fd.k; n�k C1/CFd.k; n�k/ for n � k > 1
and Fd.k; n/ D 1 for 0 � n < k.

Wloch et al., 2013: F2.k; n/ D F2.k; n � 2/C F2.k; n � k/ for n � k � 1 and
F2.k; n/ D 1 for 0 � n < k.

• p-adic metric
Let p be a prime number. Any nonzero rational number x can be represented as

x D p˛ c
d , where c and d are integers not divisible by p, and ˛ is a unique integer.

The p-adic norm of x is defined by jxjp D p�˛ . Moreover, j0jp D 0 is defined.
The p-adic metric is a norm metric on the set Q of rational numbers

defined by

jx � yjp:

This metric forms the basis for the algebra of p-adic numbers. The Cauchy com-
pletions of the metric spaces .Q; jx�yjp/ and .Q; jx�yj/with the natural metric
jx � yj give the fields Qp of p-adic numbers and R of real numbers, respectively.
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The Gajić metric is an ultrametric on the set Q of rational numbers defined,
for x ¤ y (via the integer part bzc of a real number z), by

inff2�n W n 2 Z; b2n.x � e/c D b2n.y � e/cg;

where e is any fixed irrational number. This metric is equivalent to the natural
metric jx � yj on Q.

• Continued fraction metric on irrationals
The continued fraction metric on irrationals is a complete metric on the set

Irr of irrational numbers defined, for x ¤ y, by

1

n
;

where n is the first index for which the continued fraction expansions of x and
y differ. This metric is equivalent to the natural metric jx � yj on Irr which is
noncomplete and disconnected. Also, the Baire 0-dimensional space B.@0/ (cf.
Baire metric in Chap. 11) is homeomorphic to Irr endowed with this metric.

• Natural metric
The natural metric (or absolute value metric, line metric, the distance

between numbers) is a metric on R defined by

jx � yj D
�

y � x; if x � y < 0;
x � y; if x � y � 0:

On R all lp-metrics coincide with the natural metric. The metric space .R; jx�yj/
is called the real line (or Euclidean line).

There exist many other metrics on R coming from jx � yj by some metric
transform (Chap. 4). For example: minf1; jx � yjg, jx�yj

1Cjx�yj , jxj C jx � yj C jyj
(for x ¤ y) and, for a given 0 < ˛ < 1, the generalized absolute value metric
jx � yj˛.

Some authors use jx � yj as the Polish notation (parentheses-free and
computer-friendly) of the distance function in any metric space.

• Zero bias metric
The zero bias metric is a metric on R defined by

1C jx � yj

if one and only one of x and y is strictly positive, and by

jx � yj;

otherwise, where jx � yj is the natural metric (see, for example, [Gile87]).
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• Sorgenfrey quasi-metric
The Sorgenfrey quasi-metric is a quasi-metric d on R defined by

y � x

if y � x, and equal to 1, otherwise. Some similar quasi-metrics on R are:

1. d1.x; y/ D maxfy � x; 0g (in general, maxf f .y/� f .x/; 0g is a quasi-metric on
a set X if f W X ! R�0 is an injective function);

2. d2.x; y/ D minfy � x; 1g if y � x, and equal to 1, otherwise;
3. d3.x; y/ D y � x if y � x, and equal to a.x � y/ (for fixed a > 0), otherwise;
4. d4.x; y/ D ey � ex if y � x, and equal to e�y � e�x otherwise.

• Real half-line quasi-semimetric
The real half-line quasi-semimetric is defined on the half-line R>0 by

maxf0; ln y

x
g:

• Janous–Hametner metric
The Janous–Hametner metric is defined on the half-line R>0 by

jx � yj
.x C y/t

;

where t D �1 or 0 � t � 1, and jx � yj is the natural metric.
• Extended real line metric

An extended real line metric is a metric on R [ fC1g [ f�1g. The main
example (see, for example, [Cops68]) of such metric is given by

j f .x/� f .y/j;

where f .x/ D x
1Cjxj for x 2 R , f .C1/ D 1, and f .�1/ D �1.

Another metric, commonly used on R [ fC1g [ f�1g, is defined by

j arctan x � arctan yj;

where � 1
2
� < arctan x < 1

2
� for �1 < x < 1, and arctan.˙1/ D ˙ 1

2
� .

• Complex modulus metric
The complex modulus metric on the set C of complex numbers is defined by

jz � uj;

where, for any z D z1 C z2i 2 C, the number jzj D p
zz D

q
z21 C z22 is the com-

plex modulus. The complex argument � is defined by z D jzj.cos.�/C i sin.�//.
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The metric space .C; jz�uj/ is called the complex (or Wessel–Argand) plane.
It is isometric to the Euclidean plane .R2; jjx �yjj2/. So, the metrics on R

2, given
in Chaps. 19 and 5, can be seen as metrics on C. For example, the British Rail
metric on C is jzj C juj for z ¤ u. The p-relative (if 1 � p < 1) and relative
metric (if p D 1) on C are defined for jzj C juj ¤ 0 respectively, by

jz � uj
p
pjzjp C jujp

and
jz � uj

maxfjzj; jujg :

• Z.�m/-related norm metrics
A Kummer (or cyclotomic) ring Z.�m/ is a subring of the ring C (and an

extension of the ring Z), such that each of its elements has the form
Pm�1

jD0 aj�
j
m,

where �m is a primitive m-th root exp. 2� i
m / of unity, and all aj are integers.

The complex modulus jzj of z D a C b�m 2 C is defined by

jzj2 D zz D a2 C .�m C �m/ab C b2 D a2 C 2ab cos.
2�i

m
/C b2:

Then .a C b/2 D q2 for m D 2 (or 1), a2 C b2 for m D 4, and a2 C ab C b2 for
m D 6 (or 3), i.e., for the ring Z of usual integers, Z.i/ of Gaussian integers and
Z.�/ of Eisenstein–Jacobi (or EJ) integers.

The set of units of Z.�m/ contain �j
m; 0 � j � m � 1; for m D 5 and

m � 6, units of infinite order appear also, since cos. 2� i
m / is irrational. For

m D 2; 4; 6, the set of units is f˙1g, f˙1;˙ig, f˙1;˙�;˙�2g, where i D �4

and � D �6 D 1Ci
p
3

2
.

The norms jzj D p
a2 C b2 and jjzjji D jaj C jbj for z D a C bi 2 C give

rise to the complex modulus and i-Manhattan metrics on C. They coincide
with the Euclidean (l2-) and Manhattan (l1-) metrics, respectively, on R

2 seen as
the complex plane. The restriction of the i-Manhattan metric on Z.i/ is the path
metric of the square grid Z

2 of R2; cf. grid metric in Chap. 19.
The �-Manhattan metric on C is defined by the norm jjzjj�, i.e.,

minfjajCjbjCjcj W z D aCb�Cc�2g D minfjajCjbj; jaCbjCjbj; jaCbjCjaj W z D aCb�g:

The restriction of the �-Manhattan metric on Z.�/ is the path metric of the
triangular grid of R

2 (seen as the hexagonal lattice A2 D f.a; b; c/ 2 Z
3 W

a C b C c D 0g), i.e., the hexagonal metric (Chap. 19).

Let f denote either i or � D 1Ci
p
3

2
. Given a � 2 Z. f / n f0g and z; z0 2 Z. f /,

we write z � z0 .mod�/ if z � z0 D ı� for some ı 2 Z. f /. For the quotient ring
Z�. f / D fz .mod�/ W z 2 Z. f /g, it holds jZ�. f /j D jj�jj2f .

Call two congruence classes z .mod�/ and z0 .mod�/ adjacent if z � z0 �
f j .mod�/ for some j. The resulting graph on Z�. f / called a Gaussian network
or EJ network if, respectively, f D i or f D �. The path metrics of these networks
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coincide with their norm metrics, defined (Fan–Gao, 2004) for z .mod�/ and
z0 .mod�/, by

min jjujjf W u 2 z � z0 .mod�/:

These metrics are different from the previously defined ([Hube94a, Hube94b])
distance on Z�. f /: jjvjjf , where v 2 z � z0 .mod�/ is selected by minimizing
the complex modulus. For f D i, this is the Mannheim distance (Chap. 16),
which is not a metric.

• Chordal metric
The chordal metric d� is a metric on the set C=C [ f1g defined by

d�.z; u/ D 2jz � uj
p
1C jzj2p1C juj2 and d�.z;1/ D 2

p
1C jzj2

for all u; z 2 C (cf. M-relative metric in Chap. 5).
The metric space .C; d�/ is called the extended complex plane. It is homeo-

morphic and conformally equivalent to the Riemann sphere, i.e., the unit sphere
S2 D f.x1; x2; x3/ 2 E

3 W x21 C x22 C x23 D 1g (considered as a metric subspace of
E
3), onto which .C; d�/ is one-to-one mapped under stereographic projection.

The plane C can be identified with the plane x3 D 0 such that the and
imaginary axes coincide with the x1 and x2 axes. Under stereographic projection,
each point z 2 C corresponds to the point .x1; x2; x3/ 2 S2, where the ray drawn
from the “north pole” .0; 0; 1/ to the point z meets the sphere S2; the “north pole”
corresponds to the point at 1. The chordal (spherical) metric between two points
p; q 2 S2 is taken to be the distance between their preimages z; u 2 C.

The chordal metric is defined equivalently on R
n D R

n [ f1g:

d�.x; y/ D 2jjx � yjj2
q
1C jjxjj22

q
1C jjyjj22

and d�.x;1/ D 2
q
1C jjxjj22

:

The restriction of the metric d� on R
n is a Ptolemaic metric; cf. Chap. 1.

Given ˛ > 0, ˇ � 0, p � 1, the generalized chordal metric is a metric on C

(in general, on .Rn; jj:jj2/ and even on any Ptolemaic space .V; jj:jj/), defined by

jz � uj
p
p
˛ C ˇjzjp � p

p
˛ C ˇjujp

:

• Metrics on quaternions
Quaternions are members of a noncommutative division algebra Q over the

field R, geometrically realizable in R
4 ([Hami66]). Formally,

Q D fq D q1 C q2i C q3j C q4k W qi 2 Rg;

where the basic units 1; i; j; k 2 Q satisfy i2 D j2 D k2 D �1 and ij D �ji D k.
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The quaternion norm is defined by jjqjj D p
qq D

q
q21 C q22 C q23 C q24,

where q D q1 � q2i � q3j � q4k. The quaternion metric is the norm metric
jjq � q0jj on Q.

The set of all Lipschitz integers and Hurwitz integers are defined, respectively,
by

L D fq1 C q2i C q3j C q4k W qi 2 Zg and

H D fq1 C q2i C q3j C q4k W all qi 2 Z or all qi C 1

2
2 Zg:

A quaternion q 2 L is irreducible (i.e., q D q0q00 implies fq0; q00g \
f˙1;˙i;˙j;˙kg ¤ ;) if and only if jjqjj is a prime. Given an irreducible
� 2 L and q; q0 2 H, we write q � q0 .mod�/ if q � q0 D ı� for some ı 2 L.

For the rings L� D fq .mod�/ W q 2 Lg and H� D fq .mod�/ W q 2 Hg it
holds jL� j D jj�jj2 and jH� j D 2jj�jj2 � 1.

The quaternion Lipschitz metric on L� is defined (Martinez et al., 2009) by

dL.˛; ˇ/ D min
X

1�s�4
jqsj W ˛ � ˇ � q1 C q2i C q3j C q4k .mod�/:

The ring H is additively generated by its subring L and w D 1
2
.1 C i C j C k/.

The Hurwitz metric on the ring H� is defined (Guzëltepe, 2013) by

dH.˛; ˇ/ D min
X

1�s�5
jqsj W ˛ � ˇ � q1 C q2i C q3j C q4k C q5w .mod�/:

Cf. the hyper-Kähler and Gibbons–Manton metrics in Sect. 7.3 and the unit
quaternions and joint angle metrics in Sect. 18.3.

12.2 Metrics on Polynomials

A polynomial is a sum of powers in one or more variables multiplied by coefficients.
A polynomial in one variable (or monic polynomial) with constant real (complex)
coefficients is given by P D P.z/ D Pn

kD0 akzk, ak 2 R (ak 2 C). The set P of all
real (complex) polynomials forms a ring .P ;C; �; 0/. It is also a vector space over
R (over C).

• Polynomial norm metric
A polynomial norm metric is a norm metric on the vector space P of all

real (complex) polynomials defined by

jjP � Qjj;
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where jj:jj is a polynomial norm, i.e., a function jj:jj W P ! R such that, for all
P;Q 2 P and for any scalar k, we have the following properties:

1. jjPjj � 0, with jjPjj D 0 if and only if P � 0;
2. jjkPjj D jkjjjPjj;
3. jjP C Qjj � jjPjj C jjQjj (triangle inequality).

The lp-norm and Lp-norm of a polynomial P.z/ D Pn
kD0 akzk are defined by

jjPjjp D .

nX

kD0
jakjp/1=p and jjPjjLp D .

Z 2�

0

jP.ei� /jp d�

2�
/
1
p for 1 � p < 1;

jjPjj1 D max
0�k�n

jakj and jjPjjL1
D sup

jzjD1
jP.z/j for p D 1:

The values jjPjj1 and jjPjj1 are called the length and height of polynomial P.
• Distance from irreducible polynomials

For any field F, a polynomial with coefficients in F is said to be irreducible
over F if it cannot be factored into the product of two nonconstant polynomials
with coefficients in F. Given a metric d on the polynomials over F, the
distance (of a given polynomial P.z/) from irreducible polynomials is dir.P/ D
inf d.P;Q/, where Q.z/ is any irreducible polynomial of the same degree over F.

Polynomial conjecture of Turán, 1967, is that there exists a constant C with
dir.P/ � C for every polynomial P over Z, where d.P;Q/ is the length jjP � Qjj1
of P � Q.

Lee–Ruskey–Williams, 2007, conjectured that there exists a constant C with
dir.P/ � C for every polynomial P over the Galois field F2, where d.P;Q/ is the
Hamming distance between the .0; 1/-sequences of coefficients of P and Q.

• Bombieri metric
The Bombieri metric (or polynomial bracket metric) is a polynomial norm

metric on the set P of all real (complex) polynomials defined by

ŒP � Q�p;

where Œ:�p, 0 � p � 1, is the Bombieri p-norm.
For a polynomial P.z/ D Pn

kD0 akzk it is defined by

ŒP�p D .

nX

kD0
.nk/

1�pjakjp/
1
p :

• Metric space of roots
The metric space of roots is (Ćurgus–Mascioni, 2006) the space .X; d/where

X is the family of all multisets of complex numbers with n elements and the
distance between multisets U D fu1; : : : ; ung and V D fv1; : : : ; vng is defined by
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the following analog of the Fréchet metric:

min
�2Symn

max
1�j�n

juj � v�. j/j;

where � is any permutation of f1; : : : ; ng. Here the set of roots of some monic
complex polynomial of degree n is considered as a multiset with n elements. Cf.
metrics between multisets in Chap. 1.

The function assigning to each polynomial the multiset of its roots is a
homeomorphism between the metric space of all monic complex polynomials
of degree n with the polynomial norm metric l1 and the metric space of roots.

12.3 Metrics on Matrices

An m � n matrix A D ..aij// over a field F is a table consisting of m rows and n
columns with the entries aij from F. The set of all m�n matrices with real (complex)
entries is denoted by Mm;n or Rm�n (Cm�n). It forms a group .Mm;n;C; 0m;n/, where
..aij//C ..bij// D ..aij Cbij//, and the matrix 0m;n � 0. It is also an mn-dimensional
vector space over R (C).

The transpose of a matrix A D ..aij// 2 Mm;n is the matrix AT D ..aji// 2 Mn;m.
A m � n matrix A is called a square matrix if m D n, and a symmetric matrix if
A D AT . The conjugate transpose (or adjoint) of a matrix A D ..aij// 2 Mm;n is
the matrix A� D ..aji// 2 Mn;m. An Hermitian matrix is a complex square matrix A
with A D A�.

The set of all square n � n matrices with real (complex) entries is denoted by
Mn. It forms a ring .Mn;C; �; 0n/, where C and 0n are defined as above, and ..aij// �
..bij// D ..

Pn
kD1 aikbkj//. It is also an n2-dimensional vector space over R (over C).

The trace of a square n � n matrix A D ..aij// is defined by Tr.A/ D Pn
iD1 aii.

The identity matrix is 1n D ..cij// with cii D 1, and cij D 0, i ¤ j. An unitary
matrix U D ..uij// is a square matrix defined by U�1 D U�, where U�1 is the
inverse matrix of U, i.e., UU�1 D 1n. A matrix A 2 Mm;n is orthonormal if A�A D
1n. A matrix A 2 R

n�n is orthogonal if AT D A�1, normal if ATA D AAT and
singular if its determinant is 0.

If for a matrix A 2 Mn there is a vector x such that Ax D 	x for some scalar
	, then 	 is called an eigenvalue of A with corresponding eigenvector x. Given a
matrix A 2 C

m�n, its singular values si.A/ are defined as
p
	.A�A/. A real matrix A

is positive-definite if vTAv > 0 for all nonzero real vectors v; it holds if and only if
all eigenvalues of AH D 1

2
.A C AT/ are positive. An Hermitian matrix A is positive-

definite if v�Av > 0 for all nonzero complex vectors v; it holds if and only if all
	.A/ are positive.

The mixed states of a n-dimensional quantum system are described by their
density matrices, i.e., positive-semidefinite Hermitian n � n matrices of trace 1. The
set of such matrices is convex, and its extremal points describe the pure states. Cf.
monotone metrics in Chap. 7 and distances between quantum states in Chap. 24.
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• Matrix norm metric
A matrix norm metric is a norm metric on the set Mm;n of all real (complex)

m � n matrices defined by

jjA � Bjj;
where jj:jj is a matrix norm, i.e., a function jj:jj W Mm;n ! R such that, for all
A;B 2 Mm;n, and for any scalar k, we have the following properties:

1. jjAjj � 0, with jjAjj D 0 if and only if A D 0m;n;
2. jjkAjj D jkjjjAjj;
3. jjA C Bjj � jjAjj C jjBjj (triangle inequality).
4. jjABjj � jjAjj � jjBjj (submultiplicativity).

All matrix norm metrics on Mm;n are equivalent. The simplest example of such
metric is the Hamming metric on Mm;n (in general, on the set Mm;n.F/ of all m�n
matrices with entries from a field F) defined by jjA � BjjH, where jjAjjH is the
Hamming norm of A 2 Mm;n, i.e., the number of nonzero entries in A. Example
of a generalized (i.e., not submultiplicative one) matrix norm is the max element
norm jjA D ..aij//jjmax D maxi;j jaijj; but

p
mnjjAjjmax is a matrix norm.

• Natural norm metric
A natural (or operator, induced) norm metric is a matrix norm metric on

the set Mn defined by

jjA � Bjjnat;

where jj:jjnat is a natural (or operator, induced) norm on Mn, induced by the
vector norm jjxjj, x 2 R

n (x 2 C
n), is a matrix norm defined by

jjAjjnat D sup
jjxjj¤0

jjAxjj
jjxjj D sup

jjxjjD1
jjAxjj D sup

jjxjj�1
jjAxjj:

The natural norm metric can be defined in similar way on the set Mm;n of all
m � n real (complex) matrices: given vector norms jj:jjRm on R

m and jj:jjRn on
R

n, the natural norm jjAjjnat of a matrix A 2 Mm;n, induced by jj:jjRn and jj:jjRm ,
is a matrix norm defined by jjAjjnat D supjjxjjRn D1 jjAxjjRm .

• Matrix p-norm metric
A matrix p-norm metric is a natural norm metric on Mn defined by

jjA � Bjjp
nat;

where jj:jjp
nat is the matrix (or operator) p-norm, i.e., a natural norm, induced by

the vector lp-norm, 1 � p � 1:

jjAjjp
nat D max

jjxjjpD1
jjAxjjp; where jjxjjp D .

nX

iD1
jxijp/1=p:
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The maximum absolute column and maximum absolute row metric are the
matrix 1-norm and matrix 1-norm metric on Mn. For a matrix A D ..aij// 2
Mn, the maximum absolute column and maximum absolute row sum norm are

jjAjj1nat D max
1�j�n

nX

iD1
jaijj and jAjj1nat D max

1�i�n

nX

jD1
jaijj:

The spectral norm metric is the matrix 2-norm metric jjA � Bjj2nat on
Mn. The matrix 2-norm jj:jj2nat, induced by the vector l2-norm, is also called the
spectral norm and denoted by jj:jjsp. For a symmetric matrix A D ..aij// 2 Mn,
it is

jjAjjsp D smax.A/ D p
	max.A�A/;

where A� D ..aji//, while smax and 	max are largest singular value and eigenvalue.
• Frobenius norm metric

The Frobenius norm metric is a matrix norm metric on Mm;n defined by

jjA � BjjFr;

where jj:jjFr is the Frobenius (or Hilbert–Schmidt) norm. For A D ..aij//, it is

jjAjjFr D
sX

i;j

jaijj2 D
p

Tr.A�A/ D
s X

1�i�rank.A/

	i D
s X

1�i�rank.A/

s2i ;

where 	i; si are the eigenvalues and singular values of A.
This norm is strictly convex, is a differentiable function of its elements aij and

is the only unitarily invariant norm among jjAjjp D .
Pm

iD1
Pn

jD1 jaijjp/
1
p , p � 1.

The trace norm metric is a matrix norm metric on Mm;n defined by

jjA � Bjjtr;

where jj:jjtr is the trace norm (or nuclear norm) on Mm;n defined by

jjAjjtr D
minfm;ngX

iD1
si.A/ D Tr.

p
A�A/:

• Schatten norm metric
Given 1 � p < 1, the Schatten norm metric is a matrix norm metric on

Mm;n defined by

jjA � Bjjp
Sch;
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where jj:jjp
Sch is the Schatten p-norm on Mm;n. For a matrix A 2 Mm;n, it is defined

as the p-th root of the sum of the p-th powers of all its singular values:

jjAjjp
Sch D .

minfm;ngX

iD1
sp

i .A//
1
p :

For p D 1, 2 and 1, one obtains the spectral norm metric, Frobenius norm
metric and trace norm metric, respectively.

• .c; p/-norm metric
Let k 2 N, k � minfm; ng, c 2 R

k, c1 � c2 � � � � � ck > 0, and 1 � p < 1.
The .c; p/-norm metric is a matrix norm metric on Mm;n defined by

jjA � Bjjk
.c;p/;

where jj:jjk
.c;p/ is the .c; p/-norm on Mm;n. For a matrix A 2 Mm;n, it is defined by

jjAjjk
.c;p/ D .

kX

iD1
cis

p
i .A//

1
p ;

where s1.A/ � s2.A/ � � � � � sk.A/ are the first k singular values of A.
If p D 1, it is the c-norm. If, moreover, c1 D � � � D ck D 1, it is the Ky Fan

k-norm.
• Ky Fan k-norm metric

Given k 2 N, k � minfm; ng, the Ky Fan k-norm metric is a matrix norm
metric on Mm;n defined by

jjA � Bjjk
KF;

where jj:jjk
KF is the Ky Fan k-norm on Mm;n. For a matrix A 2 Mm;n, it is defined

as the sum of its first k singular values:

jjAjjk
KF D

kX

iD1
si.A/:

For k D 1 and k D minfm; ng, one obtains the spectral and trace norm metrics.
• Cut norm metric

The cut norm metric is a matrix norm metric on Mm;n defined by

jjA � Bjjcut;
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where jj:jjcut is the cut norm on Mm;n defined, for a matrix A D ..aij// 2 Mm;n, as:

jjAjjcut D max
I�f1;:::;mg;J�f1;:::;ng

j
X

i2I;j2J

aijj:

Cf. in Chap. 15 the rectangle distance on weighted graphs and the cut
semimetric, but the weighted cut metric in Chap. 19 is not related.

• Matrix nearness problems
A norm jj:jj is unitarily invariant on Mm;n if jjBjj D jjUBVjj for all B 2 Mm;n

and all unitary matrices U;V . All Schatten p-norms are unitarily invariant.
Given a unitarily invariant norm jj:jj on Mm;n, a matrix property P defining

a subspace or compact subset of Mm;n (so that djj:jj.A;P/ below is well defined)
and a matrix A 2 Mm;n, then the distance to P is the point-set distance on Mm;n

d.A/ D djj:jj.A;P/ D minfjjEjj W A C E has property Pg:

A matrix nearness problem is ([High89]) to find an explicit formula for
d.A/, the P-closest matrix (or matrices) Xjj:jj.A/ D A C E, satisfying the
above minimum, and efficient algorithms for computing d.A/ and Xjj:jj.A/. The
componentwise nearness problem is to find d0.A/ D minf� W jEj � �jAj;A C
E has property Pg, where jBj D ..jbijj// and the matrix inequality is interpreted
componentwise.

The most used norms for B D ..bij// are the Schatten 2- and
1-norms (cf. Schatten norm metric): the Frobenius norm jjBjjFr D
p

Tr.B�B/=
qP

1�i�rank.B/ s2i and the spectral norm jjBjjsp D p
	max.B�B/ D

s1.B/.
Examples of closest matrices X D Xjj:jj.A;P/ follow.
Let A 2 C

n�n. Then A D AH C AS, where AH D 1
2
.A C A�/ is Hermitian

and AH D 1
2
.A � A�/ is skew-Hermitian (i.e., A�

H D �AH). Let A D U†V� be a
singular value decomposition (SVD) of A, i.e., U 2 Mm and V� 2 Mn are unitary,
while † D diag.s1; s2; : : : ; sminfm;ng/ is an m � n diagonal matrix with s1 � s2 �
� � � � srank.A/ > 0 D � � � D 0. Fan and Hoffman, 1955, showed that, for any
unitarily invariant norm, AH ;AS;UV� are closest Hermitian (symmetric), skew-
Hermitian (skew-symmetric) and unitary (orthogonal) matrices, respectively.
Such matrix XFr.A/ is a unique minimizer in all three cases.

Let A 2 R
n�n. Gabriel, 1979, found the closest normal matrix XFr.A/. Higham

found in 1988 a unique closest symmetric positive-semidefinite matrix XFr.A/
and, in 2001, the closest matrix of this type with unit diagonal (i.e., ab correlation
matrix).

Given a SVD A D U†V� of A, let Ak denote U†kV�, where †k is a diagonal
matrix diag.s1; s2; : : : ; sk; 0; : : : ; 0/ containing the largest k singular values of A.
Then (Mirsky, 1960) Ak achieves minrank.ACE/�k jjEjj for any unitarily invariant

norm. So, jjA � AkjjFr D
qPrank.A/

iDkC1 s2i (Eckart–Young, 1936) and jjA � Akjjsp D
smax.A � Ak/ D skC1.A/. Ak is a unique minimizer XFr.A/ if sk > skC1.
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Let A 2 R
n�n be nonsingular. Then its distance to singularity d.A; Sing/ D

minfjjEjj W A C E is singularg is, for both above norms, sn.A/ D 1
s1.A�1/

D
1

jjA�1jjsp
D supfı W ıBRn � ABRng; here BRn D fx 2 R

n W jjxjj � 1g.

Given a closed convex cone C � R
n, call a matrix A 2 R

m�n feasible if
fAx W x 2 Cg D R

m; so, for m D n and C D R
n, feasibly means nonsingularity.

Renegar, 1995, showed that, for feasible matrix A, its distance to infeasibility
minfjjEjjnat W A C E is not feasibleg is supfı W ıBRm � A.BRn \ C/g.

Lewis, 2003, generalized this by showing that, given two real normed spaces
X;Y and a surjective convex process (or set valued sublinear mapping) F from X
to Y, i.e., a multifunction for which f.x; y/ W y 2 F.x/g is a closed convex cone, it
holds

minfjjEjjnat W E is any linear map X ! Y;F C E is not surjectiveg D 1

jj F�1jjnat
:

Donchev et al. 2002, extended this, computing distance to irregularity;
cf. metric regularity (Chap. 1). Cf. the above four distances to ill-posedness
with distance to uncontrollability (Chap. 18) and distances from symmetry
(Chap. 21).

• Sym.n;R/C and Her.n;C/C metrics
Let Sym.n;R/C and Her.n;C/C be the cones of n � n symmetric real and

Hermitian complex positive-definite n � n matrices. The Sym.n;R/C metric is
defined, for any A;B 2 Sym.n;R/C, as

.

nX

iD1
log2 	i/

1
2 ;

where 	1; c; 	n are the eigenvalues of the matrix A�1B (the same as those of
A� 1

2 BA� 1
2 ). It is the Riemannian distance, arising from the Riemannian metric

ds2 D Tr..A�1.dA//2/. This metric was rediscovered in Förstner–Moonen, 1999,
and Pennec et al., 2004, via generalized eigenvalue problem: det.	A � B/ D 0.

The Her.n;C/C metric is defined, for any A;B 2 Her.n;C/C, by

dR.A;B/ D jj log.A� 1
2 BA� 1

2 /jjFr;

where jjHjjFr D .
P

i;j jhijj2/ 12 is the Frobenius norm of the matrix H D ..hij//. It
is the Riemannian distance arising from the Riemannian metric of nonpositive
curvature, defined locally (at H) by ds D jjH� 1

2 dH H� 1
2 jjFr. In other words, this

distance is the geodesic distance

inffL.�/ W � is a (differentiable) path from A to Bg;
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where L.�/ D R B
A jj�� 1

2 .t/� 0.t/�� 1
2 .t/jjFrdt and the geodesic ŒA;B� is

parametrized by �.t/ D A
1
2 .A� 1

2 BA� 1
2 /tA

1
2 in the sense that dR.A; �.t// D

tdR.A;B/ for each t 2 Œ0; 1�. In particular, the geodesic midpoint �. 1
2
/ of ŒA;B�

can be seen as the geometric mean of two positive-definite matrices A and B.
The space .Her.n;C/C; dR// is an Hadamard (i.e., complete and CAT(0))

space, cf. Chap. 6. But Her.n;C/C is not complete with respect to matrix norms;
it has a boundary consisting of the singular positive-semidefinite matrices.

Above Sym.n;R/C and Her.n;C/C metrics are the special cases of the
distance dR.x; y/ among invariant distances on symmetric cones in Chap. 9.

Cf. also, in Chap. 24, the trace distance on all Hermitian of trace 1 positive-
definite n � n matrices and in Chap. 7, the Wigner–Yanase–Dyson metrics on
all complex positive-definite n � n matrices.

The Bartlett distance between two matrices A;B 2 Her.n;C/C, is defined
(Conradsen et al., 2003, for radar applications) by

ln

�
.det.A C B//2

4det.A/det.B/

�

:

• Siegel distance
The Siegel half-plane is the set SHn of n � n matrices Z D X C iY, where X;Y

are symmetric or Hermitian and Y is positive-definite. The Siegel–Hua metric
(Siegel, 1943, and independently, Hua, 1944) on SHn is defined by

ds2 D Tr.Y�1.dZ/Y�1.dZ//:

It is unique metric preserved by any automorphism of SHn. The Siegel–Hua
metric on the Siegel disk SDn D fW D .Z � iI/.Z C iI/�1 W Z 2 SHng is
defined by

ds2 D Tr..I � WW�/�1dW.I � W�W/�1dW�/:

For n=1, the Siegel–Hua metric is the Poincaré metric (cf. Chap. 6) on the
Poincaré half-plane SH1 and the Poincaré disk SD1, respectively.

Let An D fZ D iY W Y > 0g be the imaginary axe on the Siegel half-plane. The
Siegel–Hua metric on An is (cf. [Barb12]) the Riemannian trace metric ds2 D
Tr..P

1
dP/2/. The corresponding distances are Sym.n;R/C metric or Her.n;C/C

metric. The Siegel distance on SHn n An is defined by

d2Siegel.Z1;Z2/ D
nX

iD1
log2.

1C p
	i

1� p
	i
/I

	1; : : : ; 	n are the eigenvalues of the matrix .Z1 � Z2/.Z1 � Z2/�1.Z1 � Z2/.Z1 �
Z2/�1.
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• Barbaresco metrics
Let z.k/ be a complex temporal (discrete time) stationary signal, i.e., its mean

value is constant and its covariance function EŒz.k1/z�.k2/� is only a function of
k1�k2. Such signal can be represented by its covariance n �n matrix R D ..rij//,
where rij D EŒz.i/; z�. j/� D EŒz.n/z�.n� iC j/�. It is a positive-definite Toeplitz
(i.e. diagonal-constant) Hermitian matrix. In radar applications, such matrices
represent the Doppler spectra of the signal. Matrices R admit a parametrization
(complex ARM, i.e., m-th order autoregressive model) by partial autocorrelation
coefficients defined recursively as the complex correlation between the forward
and backward prediction errors of the .m � 1/-th order complex ARM.

Barbaresco ([Barb12]) defined, via this parametrization, a Bergman metric
(Chap. 7) on the bounded domain R C xDn 
 C

n of above matrices R; here D is
a Poincaré disk. He also defined a related Kähler metric on M � Sn, where M
is the set of positive-definite Hermitian matrices and SDn is the Siegel disk (cf.
Siegel distance). Such matrices represent spatiotemporal stationary signals, i.e.,
in radar applications, the Doppler spectra and spatial directions of the signal.

Ben Jeuris, 2015, extended above metrics on block Toeplitz matrices, i.e.,
those having blocks that are repeated (as elements of a Toeplitz matrix) down
the diagonals of the matrix.

Cf. Ruppeiner metric (Chap. 7) and Martin cepstrum distance (Chap. 21).
• Distances between graphs of matrices

The graph G.A/ of a complex m � n matrix A is the range (i.e., the span of
columns) of the matrix R.A/ D .ŒIAT �/T . So, G.A/ is a subspace of CmCn of all
vectors v, for which the equation R.A/x D v has a solution.

A distance between graphs of matrices A and B is a distance between the
subspaces G.A/ and G.B/. It can be an angle distance between subspaces or,
for example, the following distance (cf. also the Kadets distance in Chap. 1 and
the gap metric in Chap. 18).

The spherical gap distance between subspaces A and B is defined by

maxf max
x2S.A/

dE.x; S.B//; max
y2S.B/

dE.y; S.A//g;

where S.A/; S.B/ are the unit spheres of the subspaces A;B, d.z;C/ is the point-
set distance infy2C d.z; y/ and dE.z; y/ is the Euclidean distance.

• Angle distances between subspaces
Consider the Grassmannian space G.m; n/ of all n-dimensional subspaces of

Euclidean space Em; it is a compact Riemannian manifold of dimension n.m�n/.
Given two subspaces A;B 2 G.m; n/, the principal angles �

2
� �1 � � � � �

�n � 0 between them are defined, for k D 1; : : : ; n, inductively by

cos �k D max
x2A

max
y2B

xTy D .xk/Tyk

subject to the conditions jjxjj2 D jjyjj2 D 1, xTxi D 0, yTyi D 0, for 1 � i � k�1,
where jj:jj2 is the Euclidean norm.
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The principal angles can also be defined in terms of orthonormal matrices
QA and QB spanning subspaces A and B, respectively: in fact, n ordered singular
values of the matrix QAQB 2 Mn can be expressed as cosines cos �1, : : : , cos �n.

The Grassmann distance between subspaces A and B of the same dimension
is their geodesic distance defined by

v
u
u
t

nX

iD1
�2i :

The Martin distance between subspaces A and B is defined by

v
u
u
tln

nY

iD1

1

cos2 �i
:

In the case when the subspaces represent ARMs (autoregressive models), the
Martin distance can be expressed in terms of the cepstrum of the autocorrelation
functions of the models. Cf. the Martin cepstrum distance in Chap. 21.

The Asimov distance between subspaces A and B is defined by �1. The
spectral distance (or chordal 2-norm distance) is defined by 2 sin. �1

2
/.

The containment gap distance (or projection distance) is sin �1. It is the l2-
norm of the difference of the orthogonal projectors onto A and B. Many versions
of this distance are used in Control Theory (cf. gap metric in Chap. 18).

The Frobenius distance and chordal distance between subspaces A and B
are

v
u
u
t2

nX

iD1
sin2 �i and

v
u
u
t

nX

iD1
sin2 �i; respectively.

It is the Frobenius norm of the difference of above projectors onto A and B.
Similar distances

p
1 �Qn

iD1 cos2 �i and arccos.
Qn

iD1 cos �i/ are called the
Binet–Cauchy distance and (cf. Chap. 7) Fubini–Study distance, respectively.

• Larsson–Villani metric
Let A and B be two arbitrary orthonormal m � n matrices of full rank, and let

�ij be the angle between the i-th column of A and the j-th column of B.
We call Larsson–Villani metric the distance between A and B (used by

Larsson and Villani, 2000, for multivariate models) the square of which is
defined by

n �
nX

iD1

nX

jD1
cos2 �ij:
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The square of usual Euclidean distance between A and B is 2.1�Pn
iD1 cos �ii/.

For n D 1, above two distances are sin � and
p
2.1 � cos �/, respectively.

• Lerman metric
Given a finite set X and real symmetric jXj � jXj matrices ..d1.x; y///,

..d2.x; y/// with x; y 2 X, their Lerman semimetric (cf. Kendall � distance
on permutations in Chap. 11) is defined by

jf.fx; yg; fu; vg/ W .d1.x; y/ � d1.u; v//.d2.x; y/� d2.u; v// < 0gj
 

jXj C 1

2

!�2
;

where .fx; yg; fu; vg/ is any pair of unordered pairs of elements x; y; u; v from X.
Similar Kaufman semimetric between ..d1.x; y/// and ..d2.x; y/// is

jf.fx; yg; fu; vg/ W .d1.x; y/� d1.u; v//.d2.x; y/ � d2.u; v// < 0gj
jf.fx; yg; fu; vg/ W .d1.x; y/� d1.u; v//.d2.x; y/� d2.u; v// ¤ 0gj :



Chapter 13
Distances in Functional Analysis

Functional Analysis is the branch of Mathematics concerned with the study of
spaces of functions. This usage of the word functional goes back to the calculus
of variations which studies functions whose argument is a function. In the modern
view, Functional Analysis is seen as the study of complete normed vector spaces,
i.e., Banach spaces.

For any real number p � 1, an example of a Banach space is given by Lp-space
of all Lebesgue-measurable functions whose absolute value’s p-th power has finite
integral.

A Hilbert space is a Banach space in which the norm arises from an inner
product. Also, in Functional Analysis are considered continuous linear operators
defined on Banach and Hilbert spaces.

13.1 Metrics on Function Spaces

Let I 
 R be an open interval (i.e., a nonempty connected open set) in R. A real
function f W I ! R is called real analytic on I if it agrees with its Taylor series in

an open neighborhood Ux0 of every point x0 2 I: f .x/ D P1
nD0

f .n/.x0/
nŠ .x � x0/n for

any x 2 Ux0 . Let D 
 C be a domain (i.e., a convex open set) in C.
A complex function f W D ! C is called complex analytic (or, simply, analytic)

on D if it agrees with its Taylor series in an open neighborhood of every point
z0 2 D. A complex function f is analytic on D if and only if it is holomorphic on D,
i.e., if it has a complex derivative f

0

.z0/ D limz!z0
f .z/�f .z0/

z�z0
at every point z0 2 D.
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• Integral metric
The integral metric is the L1-metric on the set CŒa;b� of all continuous real

(complex) functions on a given segment Œa; b� defined by

Z b

a
j f .x/� g.x/jdx:

The corresponding metric space is abbreviated by C1
Œa;b�. It is a Banach space.

In general, for any compact topological space X, the integral metric is defined
on the set of all continuous functions f W X ! R (C) by

R
X j f .x/ � g.x/jdx.

• Uniform metric
The uniform metric (or sup metric) is the L1-metric on the set CŒa;b� of all

real (complex) continuous functions on a given segment Œa; b� defined by

sup
x2Œa;b�

j f .x/� g.x/j:

The corresponding metric space is abbreviated by C1
Œa;b�. It is a Banach space.

A generalization of C1
Œa;b� is the space of continuous functions C.X/, i.e., a

metric space on the set of all continuous (more generally, bounded) functions
f W X ! C of a topological space X with the L1-metric supx2X j f .x/� g.x/j.

In the case of the metric space C.X;Y/ of continuous (more generally,
bounded) functions f W X ! Y from one metric compactum .X; dX/ to another
.Y; dY/, the sup metric between two functions f ; g 2 C.X;Y/ is defined by
supx2X dY. f .x/; g.x//.

The metric space C1
Œa;b�, as well as the metric space C1

Œa;b�, are two of the most
important cases of the metric space Cp

Œa;b�, 1 � p � 1, on the set CŒa;b� with the

Lp-metric .
R b

a j f .x/ � g.x/jpdx/
1
p . The space Cp

Œa;b� is an example of an Lp-space.
• Dogkeeper distance

Given a metric space .X; d/, the dogkeeper distance is a metric on the set of
all functions f W Œ0; 1� ! X, defined by

inf



sup
t2Œ0;1�

d. f .t/; g.
.t///;

where 
 W Œ0; 1� ! Œ0; 1� is a continuous, monotone increasing function such that

.0/ D 0, 
.1/ D 1. This metric is a special case of the Fréchet metric.

For the case, when .X; d/ is Euclidean space R
n, this metric is the original

(1906) Fréchet distance between parametric curves f ; g W Œ0; 1� ! R
n. This

distance can be seen as the length of the shortest leash that is sufficient for the
man and the dog to walk their paths f and g from start to end. For example, the
Fréchet distance between two concentric circles of radius r1 and r2 is jr1 � r2j.
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The discrete Fréchet distance (or coupling distance, Eiter and Mannila,
1994) is an approximation of the Fréchet metric for polygonal curves f and g.
It considers only positions of the leash where its endpoints are located at vertices
of f and g. So, this distance is the minimum, over all order-preserving pairings of
vertices in f and g, of the maximal Euclidean distance between paired vertices.

If the two curves are embedded in a more general metric space (say, a polyhe-
dral terrain or some Euclidean space with obstacles), the distance between two
points on them is most naturally defined as the length of the shortest path. The
resulting geodesic Fréchet distance allows the leash to switch discontinuously.

• Bohr metric
Let R be a metric space with a metric �. A continuous function f W R ! R

is called almost periodic if, for every � > 0, there exists l D l.�/ > 0 such that
every interval Œt0; t0C l.�/� contains at least one number � for which �. f .t/; f .tC
�// < � for �1 < t < C1.

The Bohr metric is the norm metric jj f � gjj on the set AP of all almost
periodic functions defined by the norm

jj f jj D sup
�1<t<C1

j f .t/j:

It makes AP a Banach space. Some generalizations of almost periodic functions
were obtained using other norms; cf. Stepanov distance, Weyl distance,
Besicovitch distance and Bochner metric.

• Stepanov distance
The Stepanov distance is a distance on the set of all measurable functions

f W R ! C with summable p-th power on each bounded integral, defined by

sup
x2R

�
1

l

Z xCl

x
j f .x/� g.x/jpdx

�1=p

:

The Weyl distance is a distance on the same set defined by

lim
l!1 sup

x2R

�
1

l

Z xCl

x
j f .x/� g.x/jpdx

�1=p

:

• Besicovitch distance
The Besicovitch distance is a distance on the set of all measurable functions

f W R ! C with summable p-th power on each bounded integral defined by

�

limT!1
1

2T

Z T

�T
j f .x/ � g.x/jpdx

�1=p

:

The generalized Besicovitch almost periodic functions correspond to this dis-
tance.
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• Bochner metric
Given a measure space .�;A; �/, a Banach space .V; jj:jjV/, and 1 � p �

1, the Bochner space (or Lebesgue–Bochner space) Lp.�;V/ is the set of all
measurable functions f W � ! V such that jj f jjLp.�;V/ � 1.

Here the Bochner norm jj f jjLp.�;V/ is defined by .
R
�

jj f .!/jjp
Vd�.!//

1
p for

1 � p < 1, and, for p D 1, by ess sup!2� jj f .!/jjV .
• Bergman p-metric

Given 1 � p < 1, let Lp.
/ be the Lp-space of Lebesgue measurable
functions f on the unit disk 
 D fz 2 C W jzj < 1g with jj f jjp D
�R



j f .z/jp�.dz/
� 1

p < 1.
The Bergman space La

p.
/ is the subspace of Lp.
/ consisting of analytic
functions, and the Bergman p-metric is the Lp-metric on La

p.
/ (cf. Bergman
metric in Chap. 7). Any Bergman space is a Banach space.

• Bloch metric
The Bloch space B on the unit disk 
 D fz 2 C W jzj < 1g is the set of all

analytic functions f on 
 such that jj f jjB D supz2
.1� jzj2/j f
0

.z/j < 1. Using
the complete seminorm jj:jjB, a norm on B is defined by

jj f jj D j f .0/j C jj f jjB:

The Bloch metric is the norm metric jj f � gjj on B. It makes B a Banach space.
• Besov metric

Given 1 < p < 1, the Besov space Bp on the unit disk 
 D fz 2
C W jzj < 1g is the set of all analytic functions f in 
 such that jj f jjBp D
�R



.1� jzj2/pj f

0

.z/jpd	.z/
� 1

p
< 1, where d	.z/ D �.dz/

.1�jzj2/2 is the Möbius

invariant measure on 
. Using the complete seminorm jj:jjBp , the Besov norm
on Bp is defined by

jj f jj D j f .0/j C jj f jjBp:

The Besov metric is the norm metric jj f � gjj on Bp.
It makes Bp a Banach space. The set B2 is the classical Dirichlet space of

functions analytic on 
 with square integrable derivative, equipped with the
Dirichlet metric. The Bloch space B can be considered as B1.

• Hardy metric
Given 1 � p < 1, the Hardy space Hp.
/ is the class of functions, analytic

on the unit disk 
 D fz 2 C W jzj < 1g, and satisfying the following growth
condition for the Hardy norm jj:jjHp :

jjf jjHp.
/ D sup
0<r<1

�
1

2�

Z 2�

0

j f .rei� /jpd�

� 1
p

< 1:
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The Hardy metric is the norm metric jj f � gjjHp.
/ on Hp.
/. It makes Hp.
/

a Banach space.
In Complex Analysis, the Hardy spaces are analogs of the Lp-spaces of

Functional Analysis. Such spaces are applied in Mathematical Analysis itself,
and also in Scattering Theory and Control Theory (cf. Chap. 18).

• Part metric
The part metric is a metric on a domain D of R2 defined for any x; y 2 R

2

by

sup
f 2HC

ˇ
ˇ
ˇ
ˇln

�
f .x/

f .y/

�ˇ
ˇ
ˇ
ˇ ;

where HC is the set of all positive harmonic functions on the domain D.
A twice-differentiable real function f W D ! R is called harmonic on D if its

Laplacian
f D @2f
@x21

C @2f
@x22

vanishes on D.

• Orlicz metric
Let M.u/ be an even convex function of a real variable which is increasing

for u positive, and limu!0 u�1M.u/ D limu!1 u.M.u//�1 D 0. In this case the
function p.v/ D M

0

.v/ does not decrease on Œ0;1/, p.0/ D limv!0 p.v/ D 0,
and p.v/ > 0 when v > 0. Writing M.u/ D R juj

0
p.v/dv, and defining N.u/ D

R juj
0 p�1.v/dv, one obtains a pair .M.u/;N.u// of complementary functions.

Let .M.u/;N.u// be a pair of complementary functions, and let G be a
bounded closed set in R

n. The Orlicz space L�
M.G/ is the set of Lebesgue-

measurable functions f on G satisfying the following growth condition for the
Orlicz norm jj f jjM:

jj f jjM D sup

�Z

G
f .t/g.t/dt W

Z

G
N.g.t//dt � 1

�

< 1:

The Orlicz metric is the norm metric jj f � gjjM on L�
M.G/. It makes L�

M.G/ a
Banach space ([Orli32]).

When M.u/ D up; 1 < p < 1, L�
M.G/ coincides with the space Lp.G/, and,

up to scalar factor, the Lp-norm jj f jjp coincides with jj f jjM.
The Orlicz norm is equivalent to the Luxemburg norm jj f jj.M/ D inff	 > 0 WR

G M.	�1f .t//dt � 1g; in fact, jj f jj.M/ � jj f jjM � 2jj f jj.M/.
• Orlicz–Lorentz metric

Let w W .0;1/ ! .0;1/ be a nonincreasing function. Let M W Œ0;1/ !
Œ0;1/ be a nondecreasing and convex function with M.0/ D 0. Let G be a
bounded closed set in R

n.
The Orlicz–Lorentz space Lw;M.G/ is the set of all Lebesgue-measurable

functions f on G satisfying the following growth condition for the Orlicz–Lorentz
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norm jj f jjw;M:

jj f jjw;M D inf

�

	 > 0 W
Z 1

0

w.x/M

�
f �.x/
	

�

dx � 1

�

< 1;

where f �.x/ D supft W �.j f j � t/ � xg is the nonincreasing rearrangement of f .
The Orlicz–Lorentz metric is the norm metric jj f � gjjw;M on Lw;M.G/. It

makes Lw;M.G/ a Banach space.
The Orlicz–Lorentz space is a generalization of the Orlicz space L�

M.G/ (cf.
Orlicz metric), and the Lorentz space Lw;q.G/, 1 � q < 1, of all Lebesgue-
measurable functions f on G satisfying the following growth condition for the
Lorentz norm:

jj f jjw;q D
�Z 1

0

w.x/. f �.x//q
� 1

q

< 1:

• Hölder metric
Let L˛.G/ be the set of all bounded continuous functions f defined on a subset

G of Rn, and satisfying the Hölder condition on G. Here, a function f satisfies the
Hölder condition at a point y 2 G with index (or order) ˛, 0 < ˛ � 1, and with
coefficient A.y/, if j f .x/� f .y/j � A.y/jx � yj˛ for all x 2 G sufficiently close to
y.

If A D supy2G.A.y// < 1, the Hölder condition is called uniform on G, and

A is called the Hölder coefficient of G. The quantity j f j˛ D supx;y2G
j f .x/�f .y/j

jx�yj˛ ,
0 � ˛ � 1, is called the Hölder ˛-seminorm of f , and the Hölder norm of f is
defined by

jj f jjL˛.G/ D sup
x2G

j f .x/j C j f j˛:

The Hölder metric is the norm metric jj f � gjjL˛.G/ on L˛.G/. It makes L˛.G/
a Banach space.

• Sobolev metric
The Sobolev space Wk;p is a subset of an Lp-space such that f and its

derivatives up to order k have a finite Lp-norm. Formally, given a subset G of
R

n, define

Wk;p D Wk;p.G/ D f f 2 Lp.G/ W f .i/ 2 Lp.G/; 1 � i � kg;

where f .i/ D @˛1x1 : : : @
˛n
xn

f , ˛1 C � � � C ˛n D i, and the derivatives are taken in a
weak sense. The Sobolev norm on Wk;p is defined by

jj f jjk;p D
kX

iD0
jj f .i/jjp:
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In fact, it is enough to take only the first and last in the sequence, i.e., the norm
defined by jj f jjk;p D jj f jjp C jj f .k/jjp is equivalent to the norm above.

For p D 1, the Sobolev norm is equal to the essential supremum of j f j:
jj f jjk;1 D ess supx2G j f .x/j, i.e., it is the infimum of all numbers a 2 R for
which j f .x/j > a on a set of measure zero.

The Sobolev metric is the norm metric jj f � gjjk;p on Wk;p. It makes Wk;p a
Banach space.

The Sobolev space Wk;2 is denoted by Hk. It is a Hilbert space for the inner
product h f ; gik D Pk

iD1h f .i/; g.i/iL2 D Pk
iD1

R
G f .i/g.i/�.d!/.

• Variable exponent space metrics
Let G be a nonempty open subset of R

n, and let p W G ! Œ1;1/ be a
measurable bounded function, called a variable exponent. The variable exponent
Lebesgue space Lp.:/.G/ is the set of all measurable functions f W G ! R for
which the modular %p.:/. f / D R

G j f .x/jp.x/dx is finite. The Luxemburg norm on
this space is defined by

jj f jjp.:/ D inff	 > 0 W %p.:/. f=	/ � 1g:

The variable exponent Lebesgue space metric is the norm metric jj f � gjjp.:/

on Lp.:/.G/.
A variable exponent Sobolev space W1;p.:/.G/ is a subspace of Lp.:/.G/

consisting of functions f whose distributional gradient exists almost everywhere
and satisfies the condition jrf j 2 Lp.:/.G/. The norm

jj f jj1;p.:/ D jj f jjp.:/ C jjrf jjp.:/

makes W1;p.:/.G/ a Banach space. The variable exponent Sobolev space metric
is the norm metric jj f � gjj1;p.:/ on W1;p.:/.

• Schwartz metric
The Schwartz space (or space of rapidly decreasing functions) S.Rn/ is the

class of all Schwartz functions, i.e., infinitely-differentiable functions f W Rn ! C

that decrease at infinity, as do all their derivatives, faster than any inverse power
of x. More precisely, f is a Schwartz function if we have the following growth
condition:

jj f jj˛ˇ D sup
x2Rn

jxˇ11 : : : xˇn
n

@˛1C			C˛n f .x1; : : : ; xn/

@x˛11 : : : @x˛n
n

j < 1

for any nonnegative integer vectors ˛ and ˇ. The family of seminorms jj:jj˛ˇ
defines a locally convex topology of S.Rn/ which is metrizable and complete.
The Schwartz metric is a metric on S.Rn/ which can be obtained using this
topology (cf. countably normed space in Chap. 2).

The corresponding metric space on S.Rn/ is a Fréchet space in the sense of
Functional Analysis, i.e., a locally convex F-space.
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• Bregman quasi-distance
Let G 
 R

n be a closed set with the nonempty interior G0. Let f be a Bregman
function with zone G.

The Bregman quasi-distance Df W G � G0 ! R�0 is defined by

Df .x; y/ D f .x/� f .y/� hrf .y/; x � yi;

where rf D . @f
@x1
; : : : @f

@xn
/. Df .x; y/ D 0 if and only if x D y. Also Df .x; y/ C

Df .y; z/ � Df .x; z/ D hrf .z/ � rf .y/; x � yi but, in general, Df does not satisfy
the triangle inequality, and is not symmetric.

A real-valued function f whose effective domain contains G is called a
Bregman function with zone G if the following conditions hold:

1. f is continuously differentiable on G0;
2. f is strictly convex and continuous on G;
3. For all ı 2 R the partial level sets �.x; ı/ D fy 2 G0 W Df .x; y/ � ıg are

bounded for all x 2 G;
4. If fyngn 
 G0 converges to y�, then Df .y�; yn/ converges to 0;
5. If fxngn 
 G and fyngn 
 G0 are sequences such that fxngn is bounded,

limn!1 yn D y�, and limn!1 Df .xn; yn/ D 0, then limn!1 xn D y�.

When G D R
n, a sufficient condition for a strictly convex function to be a

Bregman function has the form: limjjxjj!1 f .x/
jjxjj D 1.

13.2 Metrics on Linear Operators

A linear operator is a function T W V ! W between two vector spaces V;W over
a field F, that is compatible with their linear structures, i.e., for any x; y 2 V and
any scalar k 2 F, we have the following properties: T.x C y/ D T.x/ C T.y/, and
T.kx/ D kT.x/.

• Operator norm metric
Consider the set of all linear operators from a normed space .V; jj:jjV/ into a

normed space .W; jj:jjW/. The operator norm jjTjj of a linear operator T W V !
W is defined as the largest value by which T stretches an element of V , i.e.,

jjTjj D sup
jjvjjV ¤0

jjT.v/jjW

jjvjjV
D sup

jjvjjV D1
jjT.v/jjW D sup

jjvjjV �1
jjT.v/jjW :

A linear operator T W V ! W from a normed space V into a normed space
W is called bounded if its operator norm is finite. For normed spaces, a linear
operator is bounded if and only if it is continuous.
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The operator norm metric is a norm metric on the set B.V;W/ of all
bounded linear operators from V into W, defined by

jjT � Pjj:

The space .B.V;W/; jj:jj/ is called the space of bounded linear operators. This
metric space is complete if W is. If V D W is complete, the space B.V;V/ is a
Banach algebra, as the operator norm is a submultiplicative norm.

A linear operator T W V ! W from a Banach space V into another Banach
space W is called compact if the image of any bounded subset of V is a relatively
compact subset of W. Any compact operator is bounded (and, hence, continuous).
The space .K.V;W/; jj:jj/ on the set K.V;W/ of all compact operators from V
into W with the operator norm jj:jj is called the space of compact operators.

• Nuclear norm metric
Let B.V;W/ be the space of all bounded linear operators mapping a Banach

space .V; jj:jjV/ into another Banach space .W; jj:jjW/. Let the Banach dual of
V be denoted by V

0

, and the value of a functional x
0 2 V

0

at a vector x 2 V by
hx; x

0i.
A linear operator T 2 B.V;W/ is called a nuclear operator if it can be

represented in the form x 7! T.x/ D P1
iD1hx; x

0

iiyi, where fx
0

igi and fyigi are
sequences in V

0

and W, respectively, such that
P1

iD1 jjx0

i jjV0 jjyijjW < 1. This
representation is called nuclear, and can be regarded as an expansion of T as a
sum of operators of rank 1 (i.e., with one-dimensional range). The nuclear norm
of T is defined as

jjTjjnuc D inf
1X

iD1
jjx0

i jjV0 jjyijjW ;

where the infimum is taken over all possible nuclear representations of T.
The nuclear norm metric is the norm metric jjT � Pjjnuc on the set N.V;W/

of all nuclear operators mapping V into W. The space .N.V;W/; jj:jjnuc/, called
the space of nuclear operators, is a Banach space.

A nuclear space is defined as a locally convex space for which all continuous
linear functions into an arbitrary Banach space are nuclear operators. A nuclear
space is constructed as a projective limit of Hilbert spaces H˛ with the property
that, for each ˛ 2 I, one can find ˇ 2 I such that Hˇ 
 H˛ , and the embedding
operator Hˇ 3 x ! x 2 H˛ is a Hilbert–Schmidt operator. A normed space is
nuclear if and only if it is finite-dimensional.

• Finite nuclear norm metric
Let F.V;W/ be the space of all linear operators of finite rank (i.e., with finite-

dimensional range) mapping a Banach space .V; jj:jjV/ into another Banach space
.W; jj:jjW/. A linear operator T 2 F.V;W/ can be represented in the form x 7!
T.x/ D Pn

iD1hx; x
0

iiyi, where fx
0

igi and fyigi are sequences in V
0

(Banach dual of
V) and W, respectively, and hx; x

0i is the value of a functional x
0 2 V

0

at a vector
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x 2 V . The finite nuclear norm of T is defined as

jjTjjfnuc D inf
nX

iD1
jjx0

i jjV0 jjyijjW ;

where the infimum is taken over all possible finite representations of T.
The finite nuclear norm metric is the norm metric jjT � Pjjfnuc on F.V;W/.

The space .F.V;W/; jj:jjfnuc/ is called the space of operators of finite rank. It is
a dense linear subspace of the space of nuclear operators N.V;W/.

• Hilbert–Schmidt norm metric
Consider the set of all linear operators from a Hilbert space .H1; jj:jjH1 / into a

Hilbert space .H2; jj:jjH2 /. The Hilbert–Schmidt norm jjTjjHS of a linear operator
T W H1 ! H2 is defined by

jjTjjHS D .
X

˛2I

jjT.e˛/jj2H2/1=2;

where .e˛/˛2I is an orthonormal basis in H1. A linear operator T W H1 ! H2 is
called a Hilbert–Schmidt operator if jjTjj2HS < 1.

The Hilbert–Schmidt norm metric is the norm metric jjT �PjjHS on the set
S.H1;H2/ of all Hilbert–Schmidt operators from H1 into H2. In Euclidean space
jj:jjHS is also called Frobenius norm; cf. Frobenius norm metric in Chap. 12.

For H1 D H2 D H, the algebra S.H;H/ D S.H/ with the Hilbert–Schmidt
norm is a Banach algebra. It contains operators of finite rank as a dense subset,
and is contained in the space K.H/ of compact operators. An inner product h; iHS

on S.H/ is defined by hT;PiHS D P
˛2IhT.e˛/;P.e˛/i, and jjTjjHS D hT;Ti1=2HS .

So, S.H/ is a Hilbert space (independent of the chosen basis .e˛/˛2I).
• Trace-class norm metric

Given a Hilbert space H, the trace-class norm of a linear operator T W H ! H
is

jjTjjtc D
X

˛2I

hjTj.e˛/; e˛i;

where jTj is the absolute value of T in the Banach algebra B.H/ of all bounded
operators from H into itself, and .e˛/˛2I is an orthonormal basis of H.

An operator T W H ! H is called a trace-class operator if jjTjjtc < 1. Any
such operator is the product of two Hilbert–Schmidt operators.

The trace-class norm metric is the norm metric jjT � Pjjtc on the set L.H/
of all trace-class operators from H into itself.

The set L.H/ with the norm jj:jjtc forms a Banach algebra which is contained
in the algebra K.H/ (of all compact operators from H into itself), and contains
the algebra S.H/ of all Hilbert–Schmidt operators from H into itself.
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• Schatten p-class norm metric
Let 1 � p < 1. Given a separable Hilbert space H, the Schatten p-class norm

of a compact linear operator T W H ! H is defined by

jjTjjp
Sch D

 
X

n

jsnjp

! 1
p

;

where fsngn is the sequence of singular values of T. A compact operator T W H !
H is called a Schatten p-class operator if jjTjjp

Sch < 1.
The Schatten p-class norm metric is the norm metric jjT � Pjjp

Sch on the set
Sp.H/ of all Schatten p-class operators from H onto itself. The set Sp.H/ with the
norm jj:jjp

Sch forms a Banach space. S1.H/ is the trace-class of H, and S2.H/ is the
Hilbert–Schmidt class of H. Cf. Schatten norm metric (in Chap. 12) for which
trace and Frobenius norm metrics are cases p D 1 and p D 2, respectively.

• Continuous dual space
For any vector space V over some field, its algebraic dual space is the set of

all linear functionals on V .
Let .V; jj:jj/ be a normed vector space. Let V

0

be the set of all continuous
linear functionals T from V into the base field (R or C). Let jj:jj0

be the operator
norm on V

0

defined by

jjTjj0 D sup
jjxjj�1

jT.x/j:

The space .V
0

; jj:jj0

/ is a Banach space which is called the continuous dual (or
Banach dual) of .V; jj:jj/.

The continuous dual of the metric space lnp (l1p ) is lnq (l1q , respectively), where
q is defined by 1

p C 1
q D 1. The continuous dual of ln1 (l11 ) is ln1 (l11, respectively).

• Distance constant of operator algebra
Let A be an subalgebra of B.H/, the algebra of all bounded operators on a

Hilbert space H. For any operator T 2 B.H/, let P be a projection, P? be its
orthogonal complement and ˇ.T;A/ D supfjjP?TPjj W P?AP D .0/g.

Let dist.T;A/ D infA2A jjT � Ajj be the distance of T to algebra A; cf.
matrix nearness problems in Chap. 12. It holds dist.T;A/ � ˇ.T;A/.

The algebra A is reflexive if ˇ.T;A/ D 0 implies T 2 A; it is hyperreflexive
if there exists a constant C � 1 such that, for any operator T 2 B.H/, it holds

dist.T;A/ � Cˇ.T;A/:

The smallest such C is called the distance constant of the algebra A.
In the case of a reflexive algebra of matrices with nonzero entries specified by

a given pattern, the problem of finding the distance constant can be formulated as
a matrix-filling problem: given a partially completed matrix, fill in the remaining
entries so that the operator norm of the resulting complete matrix is minimized.



Chapter 14
Distances in Probability Theory

A probability space is a measurable space .˝;A;P/, where A is the set of all
measurable subsets of ˝ , and P is a measure on A with P.˝/ D 1. The set ˝
is called a sample space. An element a 2 A is called an event. P.a/ is called the
probability of the event a. The measure P on A is called a probability measure, or
(probability) distribution law, or simply (probability) distribution.

A random variable X is a measurable function from a probability space .˝;A;P/
into a measurable space, called a state space of possible values of the variable; it is
usually taken to be R with the Borel 
-algebra, so X W ˝ ! R. The range X of the
variable X is called the support of the distribution P; an element x 2 X is called a
state.

A distribution law can be uniquely described via a cumulative distribution (or
simply, distribution) function CDF, which describes the probability that a random
value X takes on a value at most x: F.x/ D P.X � x/ D P.! 2 ˝ W X.!/ � x/.

So, any random variable X gives rise to a probability distribution which assigns
to the interval Œa; b� the probability P.a � X � b/ D P.! 2 ˝ W a � X.!/ � b/,
i.e., the probability that the variable X will take a value in the interval Œa; b�.

A distribution is called discrete if F.x/ consists of a sequence of finite jumps at
xi; a distribution is called continuous if F.x/ is continuous. We consider (as in the
majority of applications) only discrete or absolutely continuous distributions, i.e.,
the CDF function F W R ! R is absolutely continuous. It means that, for every
number � > 0, there is a number ı > 0 such that, for any sequence of pairwise
disjoint intervals Œxk; yk�, 1 � k � n, the inequality

P
1�k�n.yk � xk/ < ı implies the

inequality
P

1�k�n jF.yk/� F.xk/j < �.
A distribution law also can be uniquely defined via a probability density (or

density, probability) function PDF of the underlying random variable. For an
absolutely continuous distribution, the CDF is almost everywhere differentiable, and
the PDF is defined as the derivative p.x/ D F

0

.x/ of the CDF; so, F.x/ D P.X �
x/ D R x

�1 p.t/dt, and
R b

a p.t/dt D P.a � X � b/. In the discrete case, the PDF is is
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P
xi�x p.xi/, where p.x/ D P.X D x/ is the probability mass function. But p.x/ D 0

for each fixed x in any continuous case.
The random variable X is used to “push-forward” the measure P on ˝ to a

measure dF on R. The underlying probability space is a technical device used to
guarantee the existence of random variables and sometimes to construct them.

We usually present the discrete version of probability metrics, but many of
them are defined on any measurable space; see [Bass89, Bass13, Cha08]. For a
probability distance d on random quantities, the conditions P.X D Y/ D 1 or
equality of distributions imply (and characterize) d.X;Y/ D 0; such distances are
called ([Rach91]) compound or simple distances, respectively. Often, some ground
distance d is given on the state space X and the presented distance is a lifting of it
to a distance on distributions. A quasi-distance between distributions is also called
divergence or distance statistic.

Below we denote pX D p.x/ D P.X D x/, FX D F.x/ D P.X � x/, p.x; y/ D
P.X D x;Y D y/. We denote by EŒX� the expected value (or mean) of the random
variable X: in the discrete case EŒX� D P

x xp.x/, in the continuous case EŒX� DR
xp.x/dx.
The covariance between the random variables X and Y is Cov.X;Y/ D EŒ.X �

EŒX�/.Y � EŒY�/� D EŒXY� � EŒX�EŒY�: The variance and standard deviation of
X are Var.X/ D Cov.X;X/ and 
.X/ D p

Var.X/, respectively. The correlation
between X and Y is Corr.X;Y/ D Cov.X;Y/


.X/
.Y/ ; cf. Chap. 17.

14.1 Distances on Random Variables

All distances in this section are defined on the set Z of all random variables with the
same support X ; here X;Y 2 Z.

• p-average compound metric
Given p � 1, the p-average compound metric (or Lp-metric between

variables) is a metric on Z with X 
 R and EŒjZjp� < 1 for all Z 2 Z defined
by

.EŒjX � Yjp�/1=p D .
X

.x;y/2X�X
jx � yjpp.x; y//1=p:

For p D 2 and 1, it is called, respectively, the mean-square distance and
essential supremum distance between variables.

• Lukaszyk–Karmovski metric
The Lukaszyk–Karmovski metric (2001) on Z with X 
 R is defined by

X

.x;y/2X�X
jx � yjp.x/p.y/:
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For continuous random variables, it is defined by
R C1

�1
R C1

�1 jx�yjF.x/F.y/dxdy.
This function can be positive for X D Y. Such possibility is excluded, and so, it
will be a distance metric, if and only if it holds

Z C1

�1

Z C1

�1
jx � yjı.x � EŒX�/ı.y � EŒY�/dxdy D jEŒX� � EŒY�j:

• Absolute moment metric
Given p � 1, the absolute moment metric is a metric on Z with X 
 R and

EŒjZjp� < 1 for all Z 2 Z defined by

j.EŒjXjp�/1=p � .EŒjYjp�/1=pj:

For p D 1 it is called the engineer metric.
• Indicator metric

The indicator metric is a metric on Z defined by

EŒ1X¤Y � D
X

.x;y/2X�X
1x¤yp.x; y/ D

X

.x;y/2X�X ;x¤y

p.x; y/:

(Cf. Hamming metric in Chap. 1.)
• Ky Fan metric K

The Ky Fan metric K is a metric K on Z, defined by

inff� > 0 W P.jX � Yj > �/ < �g:

It is the case d.x; y/ D jX � Yj of the probability distance.
• Ky Fan metric K�

The Ky Fan metric K� is a metric on Z defined by

E

	 jX � Yj
1C jX � Yj




D
X

.x;y/2X�X

jx � yj
1C jx � yjp.x; y/:

• Probability distance
Given a metric space .X ; d/, the probability distance on Z is defined by

inff� > 0 W P.d.X;Y/ > �/ < �g:

14.2 Distances on Distribution Laws

All distances in this section are defined on the set P of all distribution laws such
that corresponding random variables have the same range X ; here P1;P2 2 P .
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• Lp-metric between densities
The Lp-metric between densities is a metric on P (for a countable X )

defined, for any p � 1, by

.
X

x

jp1.x/ � p2.x/jp/
1
p :

For p D 1, one half of it is called the variational distance (or total variation
distance, Kolmogorov distance). For p D 2, it is the Patrick–Fisher distance.
The point metric supx jp1.x/ � p2.x/j corresponds to p D 1.

The Lissak–Fu distance with parameter ˛ > 0 is defined as
P

x jp1.x/ �
p2.x/j˛ .

• Bayesian distance
The error probability in classification is the following error probability of

the optimal Bayes rule for the classification into two classes with a priori
probabilities �; 1 � � and corresponding densities p1; p2 of the observations:

Pe D
X

x

min.�p1.x/; .1 � �/p2.x//:

The Bayesian distance on P is defined by 1 � Pe.
For the classification into m classes with a priori probabilities �i, 1 � i � m,

and corresponding densities pi of the observations, the error probability becomes

Pe D 1 �
X

x

p.x/max
i

P.Cijx/;

where P.Cijx/ is the a posteriori probability of the class Ci given the observation
x and p.x/ D Pm

iD1 �iP.xjCi/. The general mean distance between m classes Ci

(cf. m-hemimetric in Chap. 3) is defined (Van der Lubbe, 1979) for ˛ > 0, ˇ > 1
by

X

x

p.x/.
X

i

P.Cijx/ˇ/˛:

The case ˛ D 1; ˇ D 2 corresponds to the Bayesian distance in Devijver, 1974;
the case ˇ D 1

˛
was considered in Trouborst et al., 1974.

• Mahalanobis semimetric
The Mahalanobis semimetric is a semimetric on P (for X 
 R

n) defined by

q
.EP1 ŒX� � EP2 ŒX�/T A.EP1 ŒX� � EP2 ŒX�/

for a given positive-semidefinite matrix A; its square is a Bregman quasi-
distance (Chap. 13). Cf. also the Mahalanobis distance in Chap. 17.
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• Engineer semimetric
The engineer semimetric is a semimetric on P (for X 
 R) defined by

jEP1 ŒX�� EP2 ŒX�j D j
X

x

x. p1.x/ � p2.x//j:

• Stop-loss metric of order m
The stop-loss metric of order m is a metric on P (for X 
 R) defined by

sup
t2R

X

x�t

.x � t/m

mŠ
. p1.x/ � p2.x//:

• Kolmogorov–Smirnov metric
The Kolmogorov–Smirnov metric (or Kolmogorov metric, uniform metric)

is a metric on P (for X 
 R) defined (1948) by

sup
x2R

jP1.X � x/ � P2.X � x/j:

This metric is used, for example, in Biology as a measure of sexual dimorphism.
The Kuiper distance on P is defined by

sup
x2R
.P1.X � x/� P2.X � x//C sup

x2R
.P2.X � x/� P1.X � x//:

(Cf. Pompeiu–Eggleston metric in Chap. 9.)
The Crnkovic–Drachma distance is defined by

sup
x2R
.P1.X � x/ � P2.X � x// ln

1
p
.P1.X � x/.1 � P1.X � x//

C

C sup
x2R
.P2.X � x/� P1.X � x// ln

1
p
.P1.X � x/.1 � P1.X � x//

:

• Cramér–von Mises distance
The Cramér–von Mises distance (1928) is defined on P (for X 
 R) by

!2 D
Z C1

�1
.P1.X � x/� P2.X � x//2dP2.x/:

The Anderson–Darling distance (1954) on P is defined by

Z C1

�1
.P1.X � x/ � P2/.X � x//2

.P2.X � x/.1 � P2.X � x//
dP2.x/:
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In Statistics, above distances of Kolmogorov–Smirnov, Cramér–von Mises,
Anderson–Darling and, below, �2-distance are the main measures of goodness
of fit between estimated, P2, and theoretical, P1, distributions.

They and other distances were generalized (for example by Kiefer, 1955, and
Glick, 1969) on K-sample setting, i.e., some convenient generalized distances
d.P1; : : : ;PK/ were defined. Cf. m-hemimetric in Chap. 3.

• Energy distance
The energy distance (Széely, 1985) between cumulative density functions

F.X/, F.Y/ of two independent random vectors X;Y 2 R
n is defined by

d.F.X/;F.Y// D 2EŒjj.X � Yjj� � EŒjjX � X0jj� � EŒjj.Y � Y 0jj�;

where X;X0 are iid (independent and identically distributed), Y;Y 0 are iid and jj:jj
is the length of a vector. For real-valued random variables this distance is exactly
twice Cramér–von Mises distance. Cf. distance covariance in Chap. 17.

It holds d.F.X/;F.Y// D 0 if and only if X;Y are iid.
• Prokhorov metric

Given a metric space .X ; d/, the Prokhorov metric on P is defined (1956)
by

inff� > 0 W P1.X 2 B/ � P2.X 2 B�/C � and P2.X 2 B/ � P1.X 2 B�/C �g;

where B is any Borel subset of X , and B� D fx W d.x; y/ < �; y 2 Bg.
It is the smallest (over all joint distributions of pairs .X;Y/ of random variables

X;Y such that the marginal distributions of X and Y are P1 and P2, respectively)
probability distance between random variables X and Y.

• Levy–Sibley metric
The Levy–Sibley metric is a metric on P (for X 
 R only) defined by

inff� > 0 W P1.X � x��/�� � P2.X � x/ � P1.X � xC�/C� for any x 2 Rg:

It is a special case of the Prokhorov metric for .X ; d/ D .R; jx � yj/.
• Dudley metric

Given a metric space .X ; d/, the Dudley metric on P is defined by

sup
f 2F

jEP1 Œ f .X/� � EP2 Œ f .X/�j D sup
f 2F

j
X

x2X
f .x/. p1.x/� p2.x//j;

where F D f f W X ! R; jj f jj1 C Lipd. f / � 1g, and Lipd. f / D
supx;y2X ;x¤y

j f .x/�f .y/j
d.x;y/ .
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• Szulga metric
Given a metric space .X ; d/, the Szulga metric (1982) on P is defined by

sup
f 2F

j.
X

x2X
j f .x/jpp1.x//

1=p � .
X

x2X
j f .x/jpp2.x//

1=pj;

where F D f f W X ! R; Lipd. f / � 1g, and Lipd. f / D supx;y2X ;x¤y
j f .x/�f .y/j

d.x;y/ .
• Zolotarev semimetric

The Zolotarev semimetric is a semimetric on P , defined (1976) by

sup
f 2F

j
X

x2X
f .x/. p1.x/� p2.x//j;

where F is any set of functions f W X ! R (in the continuous case, F is any set
of such bounded continuous functions); cf. Szulga metric, Dudley metric.

• Convolution metric
Let G be a separable locally compact Abelian group, and let C.G/ be the set

of all real bounded continuous functions on G vanishing at infinity. Fix a function
g 2 C.G/ such that jgj is integrable with respect to the Haar measure on G, and
fˇ 2 G� W Og.ˇ/ D 0g has empty interior; here G� is the dual group of G, and Og is
the Fourier transform of g.

The convolution metric (or smoothing metric) is defined (Yukich, 1985), for
any two finite signed Baire measures P1 and P2 on G, by

sup
x2G

j
Z

y2G
g.xy�1/.dP1 � dP2/.y/j:

It can also be seen as the difference TP1 .g/� TP2.g/ of convolution operators on
C.G/ where, for any f 2 C.G/, the operator TPf .x/ is

R
y2G f .xy�1/dP.y/.

In particular, this metric can be defined on the space of probability measures
on R

n, where g is a PDF satisfying above conditions.
• Discrepancy metric

Given a metric space .X ; d/, the discrepancy metric on P is defined by

supfjP1.X 2 B/� P2.X 2 B/j W B is any closed ballg:

• Bi-discrepancy semimetric
The bi-discrepancy semimetric (evaluating the proximity of distributions P1,

P2 over different collections A1;A2 of measurable sets) is defined by

D.P1;P2/C D.P2;P1/;

where D.P1;P2/ D supfinffP2.C/ W B 
 C 2 A2g � P1.B/ W B 2 A1g
(discrepancy).
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• Le Cam distance
The Le Cam distance (1974) is a semimetric, evaluating the proximity

of probability distributions P1;P2 (on different spaces X1;X2) and defined as
follows:

maxfı.P1;P2/; ı.P2;P1/g;

where ı.P1;P2/ D infB
P

x22X2
jBP1.X2 D x2/ � BP2.X2 D x2/j is the Le

Cam deficiency. Here BP1.X2 D x2/ D P
x12X1

p1.x1/b.x2jx1/, where B is a
probability distribution over X1 � X2, and

b.x2jx1/ D B.X1 D x1;X2 D x2/

B.X1 D x1/
D B.X1 D x1;X2 D x2/
P

x2X2
B.X1 D x1;X2 D x/

:

So, BP2.X2 D x2/ is a probability distribution over X2, since
P

x22X2
b.x2jx1/ D

1.
Le Cam distance is not a probabilistic distance, since P1 and P2 are defined

over different spaces; it is a distance between statistical experiments (models).
• Skorokhod–Billingsley metric

The Skorokhod–Billingsley metric is a metric on P , defined by

inf
f

max

(

sup
x

jP1.X � x/� P2.X � f .x//j; sup
x

j f .x/ � xj; sup
x¤y

ˇ
ˇ
ˇ
ˇln

f .y/� f .x/

y � x

ˇ
ˇ
ˇ
ˇ

)

;

where f W R ! R is any strictly increasing continuous function.
• Skorokhod metric

The Skorokhod metric is a metric on P defined (1956) by

inff� > 0 W maxfsup
x

jP1.X < x/ � P2.X � f .x//j; sup
x

j f .x/ � xjg < �g;

where f W R ! R is a strictly increasing continuous function.
• Birnbaum–Orlicz distance

The Birnbaum–Orlicz distance (1931) is a distance on P defined by

sup
x2R

f .jP1.X � x/ � P2.X � x/j/;

where f W R�0 ! R�0 is any nondecreasing continuous function with f .0/ D 0,
and f .2t/ � Cf .t/ for any t > 0 and some fixed C � 1. It is a near-metric, since
the C-triangle inequality d.P1;P2/ � C.d.P1;P3/C d.P3;P2// holds.

Birnbaum–Orlicz distance is also used, in Functional Analysis, on the
set of all integrable functions on the segment Œ0; 1�, where it is defined by
R 1
0 H.j f .x/ � g.x/j/dx, where H is a nondecreasing continuous function from
Œ0;1/ onto Œ0;1/ which vanishes at the origin and satisfies the Orlicz condition:
supt>0

H.2t/
H.t/ < 1.
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• Kruglov distance
The Kruglov distance (1973) is a distance on P , defined by

Z

f .P1.X � x/ � P2.X � x//dx;

where f W R�0 ! R�0 is any even strictly increasing function with f .0/ D 0, and
f .s C t/ � C. f .s/ C f .t// for any s; t � 0 and some fixed C � 1. It is a near-
metric, since the C-triangle inequality d.P1;P2/ � C.d.P1;P3/ C d.P3;P2//
holds.

• Bregman divergence
Given a differentiable strictly convex function �. p/ W Rn ! R and ˇ 2 .0; 1/,

the skew Jensen (or skew Burbea–Rao) divergence onP is (Basseville–Cardoso,
1995)

J.ˇ/� .P1;P2/ D ˇ�. p1/C .1 � ˇ/�. p2/� �.ˇp1 C .1 � ˇ/p2/:

The Burbea–Rao distance (1982) is the case ˇ D 1
2

of it, i.e., it is

X

x

�
�. p1.x//C �. p2.x//

2
� �.p1.x/C . p2.x/

2
/

�

:

The Bregman divergence (1967) is a quasi-distance on P defined by

X

x

.�. p1.x//� �. p2.x//� . p1.x/ � p2.x//�
0. p2.x/// D lim

ˇ!1

1

ˇ
J.ˇ/� .P1;P2/:

The generalised Kullback–Leibler distance
P

x p1.x/ ln p1.x/
p2.x/

� P
x. p1.x/ �

p2.x// and Itakura–Saito distance (Chap. 21)
P

x
p1.x/
p2.x/

�ln p1.x/
p2.x/

�1 are the cases
�. p/ D P

x p.x/ ln p.x/ � P
x p.x/ and �. p/ D �Px ln p.x/ of the Bregman

divergence. Cf. Bregman quasi-distance in Chap. 13.
Csizár, 1991, proved that the Kullback–Leibler distance is the only Breg-

man divergence which is an f -divergence.
• f -divergence

Given a convex function f .t/ W R�0 ! R with f .1/ D 0; f 0.1/ D 0; f 00.1/ D
1, the f -divergence (independently, Csizár, 1963, Morimoto, 1963, Ali–Silvey,
1966, Ziv–Zakai, 1973, and Akaike, 1974) on P is defined by

X

x

p2.x/f

�
p1.x/

p2.x/

�

:

The cases f .t/ D t ln t and f .t/ D .t � 1/2 correspond to the Kullback–Leibler
distance and to the �2-distance below, respectively. The case f .t/ D jt � 1j
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corresponds to the variational distance, and the case f .t/ D 4.1� p
t/ (as well

as f .t/ D 2.t C 1/� 4
p

t) corresponds to the squared Hellinger metric.
Semimetrics can also be obtained, as the square root of the f -divergence, in the

cases f .t/ D .t�1/2=.tC1/ (the Vajda–Kus semimetric), f .t/ D jta �1j1=a with

0 < a � 1 (the generalized Matusita distance), and f .t/ D .taC1/1=a�2.1�a/=a.tC1/
1�1=˛

(the Osterreicher semimetric).
• ˛-divergence

Given ˛ 2 R, the ˛-divergence (independently, Csizár, 1967, Havrda–
Charvát, 1967, Cressie–Read, 1984, and Amari, 1985) is defined as KL.P1;P2/,
KL.P2;P1/ for ˛ D 1; 0 and for ˛ ¤ 0; 1, it is

1

˛.1 � ˛/ .1 �
X

x

p2.x/

�
p1.x/

p2.x/

�˛
/:

The Amari divergence come from the above by the transformation ˛ D 1Ct
2

.
• Harmonic mean similarity

The harmonic mean similarity is a similarity on P defined by

2
X

x

p1.x/p2.x/

p1.x/C p2.x/
:

• Fidelity similarity
The fidelity similarity (or Bhattacharya coefficient, Hellinger affinity) on P

is

�.P1;P2/ D
X

x

p
p1.x/p2.x/:

Cf. more general quantum fidelity similarity in Chap. 24.
• Hellinger metric

In terms of the fidelity similarity �, the Hellinger metric (or Matusita
distance, Hellinger–Kakutani metric) on P is defined by

.
X

x

.
p

p1.x/ �p
p2.x//

2/
1
2 D p

2.1� �.P1;P2//:

• Bhattacharya distance 1
In terms of the fidelity similarity �, the Bhattacharya distance 1 (1946) is

.arccos�.P1;P2//2

for P1;P2 2 P . Twice this distance is the Rao distance from Chap. 7. It is used
also in Statistics and Machine Learning, where it is called the Fisher distance.
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The Bhattacharya distance 2 (1943) on P is defined by

� ln �.P1;P2/:

• �2-distance
The �2-distance (or Pearson �2-distance) is a quasi-distance on P , defined

by

X

x

. p1.x/� p2.x//2

p2.x/
:

The Neyman �2-distance is a quasi-distance on P , defined by

X

x

. p1.x/� p2.x//2

p1.x/
:

The half of �2-distance is also called Kagan’s divergence.
The probabilistic symmetric �2-measure is a distance on P , defined by

2
X

x

. p1.x/ � p2.x//2

p1.x/C p2.x/
:

• Separation quasi-distance
The separation distance is a quasi-distance on P (for a countable X ) defined

by

max
x

�

1 � p1.x/

p2.x/

�

:

(Not to be confused with separation distance in Chap. 9.)
• Kullback–Leibler distance

The Kullback–Leibler distance (or relative entropy, information deviation,
information gain, KL-distance) is a quasi-distance on P , defined (1951) by

KL.P1;P2/ D EP1 Œln L� D
X

x

p1.x/ ln
p1.x/

p2.x/
;

where L D p1.x/
p2.x/

is the likelihood ratio. Therefore,

KL.P1;P2/ D �
X

x

p1.x/ ln p2.x/C
X

x

p1.x/ ln p1.x/ D H.P1;P2/� H.P1/;

where H.P1/ is the entropy of P1, and H.P1;P2/ is the cross-entropy of P1 and P2.
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If P2 is the product of marginals of P1 (say, p2.x; y/ D p1.x/p1.y/), the KL-
distance KL.P1;P2/ is called the Shannon information quantity and (cf. Shannon
distance) is equal to

P
.x;y/2X�X p1.x; y/ ln p1.x;y/

p1.x/p1.y/
.

The exponential divergence is defined by
P

x p1.x/.ln
p1.x/
p2.x/

/2:

• Distance to normality
For a continuous distribution P on R, the differential entropy is defined by

h.P/ D �
Z 1

�1
p.x/ ln p.x/dx:

It is ln.ı
p
2�e/ for a normal (or Gaussian) distribution gı;�.x/ D

1p
2�ı2

exp
�
� .x��/2

2ı2

�
with variance ı2 and mean �.

The distance to normality (or negentropy) of P is the Kullback–Leibler

distance KL.P; g/ D R1
�1 p.x/ ln

�
p.x/
g.x/

�
dx D h.g/ � h.P/, where q is a normal

distribution with the same variance as P. So, it is nonnegative and equal to 0 if
and only if P D g almost everywhere. Cf. Shannon distance.

Also, h.ua;b/ D ln .b � a/ for an uniform distribution with minimum a and
maximum b > a, i.e., ua;b.x/ D 1

b�a , if x 2 Œa; b�, and it is 0, otherwise. It
holds h.ua;b/ � h.P/ for any distribution P with support contained in Œa; b�; so,
h.ua;b/ � h.P/ can be called the distance to uniformity. Tononi, 2008, used it in
his model of consciousness.

• Jeffrey distance
The Jeffrey distance (or J-divergence, KL2-distance) is a symmetric version

of the Kullback–Leibler distance defined (1946) on P by

KL.P1;P2/C KL.P2;P1/ D
X

x

.. p1.x/ � p2.x// ln
p1.x/

p2.x/
:

The Aitchison distance (1986) is defined by
qP

x.ln
p1.x/g. p1/
p2.x/g. p2/

/2, where

g. p/ D .
Q

x p.x//
1
n is the geometric mean of components p.x/ of p.

• Resistor-average distance
The resistor-average distance is (Johnson–Simanović, 2000) a symmetric

version of the Kullback–Leibler distance on P which is defined by the
harmonic sum

�
1

KL.P1;P2/
C 1

KL.P2;P1/

��1
:

• Jensen–Shannon divergence
Given a number ˇ 2 Œ0; 1� and P1;P2 2 P , let P3 denote ˇP1 C .1 � ˇ/P2.
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The skew divergence and the Jensen–Shannon divergence between P1 and
P2 are defined on P as KL.P1;P3/ and ˇKL.P1;P3/ C .1 � ˇ/KL.P2;P3/,
respectively. Here KL is the Kullback–Leibler distance; cf. clarity similarity.

In terms of entropy H.P/ D �Px p.x/ ln p.x/, the Jensen–Shannon diver-
gence is H.ˇP1C.1�ˇ/P2/�ˇH.P1/�.1�ˇ/H.P2/, i.e., the Jensen divergence
(cf. Bregman divergence).

Let P3 D 1
2
.P1 C P2/, i.e., ˇ D 1

2
. Then the skew divergence and twice the

Jensen–Shannon divergence are called K-divergence and Topsøe distance (or
information statistics), respectively. The Topsøe distance is a symmetric version
of KL.P1;P2/. It is not a metric, but its square root is a metric.

Related symmetric divergencies between P1 and P2—Taneja distance (1995)
and Kumar–Johnson distance (2005)—are defined, respectively, by

X

x

�
p1.x/C p2.x/

2
ln

p1.x/C p2.x/

2
p

p1.x/p2.x/

�

and
X

x

�
. p21.x/� p22.x//

2

2
p

p1.x/p2.x/

�

:

• Clarity similarity
The clarity similarity is a similarity on P , defined by

.KL.P1;P3/C KL.P2;P3//� .KL.P1;P2/C KL.P2;P1// D

D
X

x

�

p1.x/ ln
p2.x/

p3.x/
C p2.x/ ln

p1.x/

p3.x/

�

;

where KL is the Kullback–Leibler distance, and P3 is a fixed probability law.
It was introduced in [CCL01] with P3 being the probability distribution of

English.
• Ali–Silvey distance

The Ali–Silvey distance is a quasi-distance on P defined by the functional

f .EP1 Œg.L/�/;

where L D p1.x/
p2.x/

is the likelihood ratio, f is a nondecreasing function on R, and g
is a continuous convex function on R�0 (cf. f -divergence).

The case f .x/ D x, g.x/ D x ln x corresponds to the Kullback–Leibler
distance; the case f .x/ D � ln x, g.x/ D xt corresponds to the Chernoff
distance.

• Chernoff distance
The Chernoff distance (or Rényi cross-entropy) on P is defined (1954) by

max
t2.0;1/Dt.P1;P2/;

where 0 < t < 1 and Dt.P1;P2/ D � ln
P

x. p1.x//t. p2.x//1�t (called the
Chernoff coefficient) which is proportional to the Rényi distance.
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• Rényi distance
Given t 2 R, the Rényi distance (or order t Rényi entropy, 1961) is a quasi-

distance on P defined as the Kullback–Leibler distance KL.P1;P2/ if t D 1,
and, otherwise, by

1

1� t
ln
X

x

p2.x/

�
p1.x/

p2.x/

�t

:

For t D 1
2
, one half of the Rényi distance is the Bhattacharya distance 2. Cf.

f -divergence and Chernoff distance.
• Shannon distance

Given a measure space .˝;A;P/, where the set ˝ is finite and P is a
probability measure, the entropy (or Shannon information entropy) of a function
f W ˝ ! X, where X is a finite set, is defined by

H. f / D �
X

x2X

P. f D x/ loga.P. f D x//:

Here a D 2, e, or 10 and the unit of entropy is called a bit, nat, or dit (digit),
respectively. The function f can be seen as a partition of the measure space.

For any two such partitions f W ˝ ! X and g W ˝ ! Y, denote by H. f ; g/
the entropy of the partition . f ; g/ W ˝ ! X � Y (joint entropy), and by H. f jg/
the conditional entropy (or equivocation). Then the Shannon distance between
f and g is a metric defined by

H. f jg/C H.gj f / D 2H. f ; g/� H. f /� H.g/ D H. f /C H.g/� 2I. f I g/;

where I. f I g/ D H. f /C H.g/� H. f ; g/ is the Shannon mutual information.
If P is the uniform probability law, then Goppa showed that the Shannon

distance can be obtained as a limiting case of the finite subgroup metric.
In general, the shared information distance (or variation of information,

entropy metric) between random variables (information sources) X and Y is

H.XjY/C H.YjX/ D H.X;Y/� I.XI Y/;

where the conditional entropy H.XjY/ is
P

x2X

P
y2Y p.x; y/ ln p.xjy/, and

p.xjy/ D P.X D xjY D y/ is the conditional probability.
The Rajski distance (or normalized information metric) is defined (Rajski,

1961, for discrete probability distributions X, Y) by

H.XjY/C H.YjX/
H.X;Y/

D 1 � I.XI Y/

H.X;Y/
:



14.2 Distances on Distribution Laws 273

It is equal to 1 if X and Y are independent. Cf. Tanimoto distance in Chap. 17
and the normalized information distance in Chap. 11.

Now, maxfH.X/;H.Y/g � I.XI Y/ is also a metric.
• Transportation distance

Given a metric space .X ; d/, the transportation distance (and/or, according
to Villani, 2009, Monge–Kantorovich–Wasserstein–Rubinstein–Ornstein–
Gini–Dall’Aglio–Mallows–Tanaka distance) is the metric defined by

W1.P1;P2/ D inf ESŒd.X;Y/� D inf
S

Z

.X;Y/2X�X
d.X;Y/dS.X;Y/;

where the infimum is taken over all joint distributions S of pairs .X;Y/ of random
variables X;Y such that marginal distributions of X and Y are P1 and P2.

For any separable metric space .X ; d/, this is equivalent to the Lipschitz
distance between measures supf

R
fd.P1 � P2/, where the supremum is taken

over all functions f with j f .x/ � f .y/j � d.x; y/ for any x; y 2 X . Cf. Dudley
metric.

In general, for a Borel function c W X � X ! R�0, the c-transportation
distance Tc.P1;P2/ is inf ESŒc.X;Y/�. It is the minimal total transportation cost
if c.X;Y/ is the cost of transporting a unit of mass from the location X to the
location Y. Cf. the Earth Mover’s distance (Chap. 21), which is a discrete form
of it.

The Lp-Wasserstein distance is Wp D .Tdp/1=p D .inf ESŒdp.X;Y/�/1=p. For
.X ; d/ D .R; jx�yj/, it is also called the Lp-metric between distribution functions
(CDF) Fi with F�1

i .x/ D supu.Pi.X � x/ < u/, and can be written as

.inf EŒjX�Yjp�/1=p D
�Z

R

jF1.x/ � F2.x/jpdx

�1=p

D
�Z 1

0

jF�1
1 .x/ � F�1

2 .x/jpdx

�1=p

:

For p D 1, this metric is called Monge–Kantorovich metric (or Wasser-
stein metric, Fortet–Mourier metric, Hutchinson metric, Kantorovich–
Rubinstein metric). For p D 2, it is the Levy–Fréchet metric (Fréchet, 1957).

• Ornstein d-metric
The Ornstein d-metric is a metric on P (for X D R

n) defined (1974) by

1

n
inf
Z

x;y

 
nX

iD1
1xi¤yi

!

dS;

where the infimum is taken over all joint distributions S of pairs .X;Y/ of
random variables X;Y such that marginal distributions of X and Y are P1 and
P2, respectively.

• Distances between belief assignments
In Bayesian (or subjective, evidential) interpretation, a probability can be

assigned to any statement, even if no random process is involved, as a way
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to represent its subjective plausibility, or the degree to which it is supported
by the available evidence, or, mainly, degree of belief. Within this approach,
imprecise probability generalizes Probability Theory to deal with scarce, vague,
or conflicting information. The main model is Dempster–Shafer theory, which
allows evidence to be combined.

Given a set X, a (basic) belief assignment is a function m W P.X/ ! Œ0; 1�

(where P.X/ is the set of all subsets of X) with m.;/ D 0 and
P

A�P.X/m.A/ D 1.
Probability measures are a special case in which m.A/ > 0 only for singletons.

For the classic probability P.A/, it holds then Bel.A/ � P.A/ � Pl.A/, where
the belief function and plausibility function are defined, respectively, by

Bel.A/ D
X

BWB�A

m.B/ and Pl.A/ D
X

BWB\A¤;
m.B/ D 1 � Bel.A/:

The original (Dempster, 1967) conflict factor between two belief assignments
m1 and m2 was defined as c.m1;m2/ D P

A\BD; m1.A/m2.B/. This is
not a distance since c.m;m/ > 0. The combination of m1 and m2,
seen as independent sources of evidence, is defined by m1 ˚ m2.A/ D

1
1�c.m1;m2/

P
B\CDA m1.B/m2.C/.

Usually, a distance between m1 and m2 estimates the difference between
these sources in the form dU D jU.m1/ � U.m2/j, where U is an uncertainty
measure; see Sarabi-Jamab et al., 2013, for a comparison of their performance.
In particular, this distance is called:

confusion (Hoehle, 1981) if U.m/ D P
A m.A/ log2 Bel.A/;

dissonance (Yager, 1983) if U.m/ D E.m/ D �PA m.A/ log2 Pl.A/;
Yager’s factor (Eager, 1983) if U.m/ D 1 �P

A¤;
m.A/
jAj ;

possibility-based (Smets, 1983) if U.m/ D �PA log2
P

BWA�B m.B/;
U-uncertainty (Dubois–Prade, 1985) if U.m/ D I.m/ D �PA m.A/ log2 jAj;
Lamata–Moral’s (1988) if U.m/ D log2.

P
A m.A/jAj/ and U.m/ D E.m/C

I.m/;
discord (Klir–Ramer, 1990) if U.m/ D D.m/ D �PA m.A/ log2.1 �
P

B m.B/ jBnAj
jBj / and a variant: U.m/ D D.m/C I.m/;

strife (Klir–Parviz, 1992) if U.m/ D �PA m.A/ log2.
P

B m.B/ jA\Bj
jAj /;

Pal et al.’s (1993) if U.m/ D G.m/ D �PA log2 m.A/ and U.m/ D G.m/C
I.m/;
total conflict (George–Pal, 1996) if U.m/ D P

A m.A/
P

B.m.B/.1� jA\Bj
jA[Bj //.

Among other distances used are the cosine distance 1 � mT
1m2

jjm1jjjjm2 jj , the Maha-

lanobis distance
p
.m1 � m2/TA.m1 � m2/ for some matrices A, and pignistic-

based one (Tessem, 1993) maxAfjPB:;.m1.B/� m2.B/
jA\Bj

jBj jg.
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Distances in Applied Mathematics



Chapter 15
Distances in Graph Theory

A graph is a pair G D .V;E/, where V is a set, called the set of vertices of the graph
G, and E is a set of unordered pairs of vertices, called the edges of the graph G. A
directed graph (or digraph) is a pair D D .V;E/, where V is a set, called the set of
vertices of the digraph D, and E is a set of ordered pairs of vertices, called arcs of
the digraph D.

A graph in which at most one edge may connect any two vertices, is called a
simple graph. If multiple edges are allowed between vertices, the graph is called a
multigraph. A graph, together with a function which assigns a positive weight to
each edge, is called a weighted graph or network.

The graph is called finite (infinite) if the set V of its vertices is finite (infinite,
respectively). The order and size of a finite graph .V;E/ are jVj and jEj,
respectively.

A subgraph of a graph G D .V;E/ is a graph G
0 D .V

0

;E
0

/ with V
0 
 V and

E
0 
 E. If G

0

is a subgraph of G, then G is called a supergraph of G
0

. A subgraph
.V

0

;E
0

/ of .V;E/ is its induced subgraph if E
0 D fe D uv 2 E W u; v 2 V

0g.
A graph G D .V;E/ is called connected if, for any u; v 2 V , there exists a .u�v/

walk, i.e., a sequence of edges uw1 D w0w1, w1w2, : : : , wn�1wn D wn�1v from E.
A .u � v/ path is a .u � v/ walk with distinct edges. A graph is called m-connected
if there is no set of m � 1 edges whose removal disconnects the graph; a connected
graph is 1-connected. A digraph D D .V;E/ is called strongly connected if, for any
u; v 2 V , the directed .u � v/ and .v � u/ paths both exist. A maximal connected
subgraph of a graph G is called its connected component.

Vertices connected by an edge are called adjacent. The degree deg.v/ of a vertex
v 2 V of a graph G D .V;E/ is the number of its vertices adjacent to v.

A complete graph is a graph in which each pair of vertices is connected by an
edge. A bipartite graph is a graph in which the set V of vertices is decomposed into
two disjoint subsets so that no two vertices within the same subset are adjacent. A
simple path is a simple connected graph in which two vertices have degree 1, and
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other vertices (if they exist) have degree 2; the length of a path is the number of its
edges.

A cycle is a closed simple path, i.e., a simple connected graph in which every
vertex has degree 2. The circumference of a graph is the length of the longest
cycle in it. A tree is a simple connected graph without cycles. A tree having a path
from which every vertex has distance � 1 or � 2, is called a caterpillar or lobster,
respectively.

Two graphs which contain the same number of vertices connected in the same
way are called isomorphic. Formally, two graphs G D .V.G/;E.G// and H D
.V.H/;E.H// are called isomorphic if there is a bijection f W V.G/ ! V.H/ such
that, for any u; v 2 V.G/, uv 2 E.G/ if and only if f .u/f .v/ 2 E.H/.

We will consider mainly simple finite graphs and digraphs; more exactly, the
equivalence classes of such isomorphic graphs.

15.1 Distances on the Vertices of a Graph

• Path metric
The path metric (or graphic metric, shortest path metric) dpath is a metric

on the vertex-set V of a connected graph G D .V;E/ defined, for any u; v 2 V ,
as the length of a shortest .u � v/ path in G, i.e., a geodesic. Examples follow.

Given an integer n � 1, the line metric on f1; : : : ; ng in Chap. 1 is the path
metric of the path Pn D f1; : : : ; ng. The path metric of the Cayley graph � of a
finitely generated group .G; �; e/ is called a word metric.

The hypercube metric is the path metric of a hypercube graph H.m; 2/
with the vertex-set V D f0; 1gm, and whose edges are the pairs of vectors
x; y 2 f0; 1gm such that jfi 2 f1; : : : ; ng W xi ¤ yigj D 1; it is equal to
jfi 2 f1; : : : ; ng W xi D 1g4fi 2 f1; : : : ; ng W yi D 1gj. The graphic metric
space associated with a hypercube graph coincides with a Hamming cube, i.e.,
the metric space .f0; 1gm; dl1 /.

The belt distance (Garber–Dolbilin, 2010) is the path metric of a belt graph
B.P/ of a polytope P with centrally symmetric facets. The vertices of B.P/ are
the facets of P and two vertices are connected by an edge if the corresponding
facets lie in the same belt (the set of all facets of P parallel to a given face of
codimension 2).

The reciprocal path metric is called geodesic similarity.
• Weighted path metric

The weighted path metric dwpath is a metric on the vertex-set V of a
connected weighted graph G D .V;E/ with positive edge-weights .w.e//e2E

defined by

min
P

X

e2P

w.e/;

where the minimum is taken over all .u � v/ paths P in G.
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Sometimes, 1
w.e/ is called the length of the edge e. In the theory of electrical

networks, the edge-length 1
w.e/ is identified with the resistance of the edge e. The

inverse weighted path metric is minP
P

e2P
1

w.e/ .
• Filling of metric space

Given a finite metric space .X; d/, a connected weighted graph G D .V;EI!/
with X 
 V and edge-weights !.e/ � 0 is called (Ivanov–Tuzhilin, 2012) filling
of .X; d/ if for all x; y 2 X, d.x; y/ is bounded from above by the weighted path
metric dG.x; y/. Ivanov–Tuzhilin showed the existence of filings with minimalP

e2E !.e/ and some relations with Steiner problem; (cf. Steiner ratio in Sect.
1.3.

For the case when X is Riemannian manifold, a similar notion was defined by
Gromov (1983), and related to Systolic Geometry (cf. systole of metric space
in Sect. 1.2). Here a minimal filing is any compact manifold of minimal volume,
having boundary X and a distance function that bounds d on X from above.

• Metric graph
A metric (or metrized) graph is a connected graph G D .V;E/, where edges

e are identified with line segments Œ0; l.e/� of length l.e/. Let xe be the coordinate
on the segment Œ0; l.e/� with vertices corresponding to xe D 0; l.e/; the ends of
distinct segments are identified if they correspond to the same vertex of G. A
function f on G is the jEj-tuple of functions fe.xe/ on the segments.

A metric graph can be seen as an infinite metric space .X; d/, where X is the
set of all points on above segments, and the distance between two points is the
length of the shortest, along the line segments traversed, path connecting them.
Also, it can be seen as one-dimensional Riemannian manifold with singularities.

There is a bijection between the metric graphs, the equivalence classes of
finite connected edge-weighted graphs and the resistive electrical networks: if
an edge e of a metric graph has length l.e/, then 1

l.e/ is the weight of e in the
corresponding edge-weighted graph and l.e/ is the resistance along e in the
corresponding resistive electric circuit. Cf. the resistance metric.

A quantum graph is a metric graph equipped with a self-adjoint differential
operator (such as a Laplacian) acting on functions on the graph. The Hilbert
space of the graph is ˚e2EL2.Œ0;w.e/�/, where the inner product of functions is
h f ; gi D P

e2E

R w.e/
0 f �

e .xe/ge.xe/dxe.
• Spin network

A spin network is (Penrose, 1971) a connected graph .V;E/ with edge-
weights .w.e//e2E (spins), w.e/ 2 N, such that for any distinct edges e1; e2; e3
with a common vertex, it holds spin triangle inequality jw.e1/ � w.e2/j �
w.e3/ � w.e1/ C w.e2/ and fermion conservation: w.e1/ C w.e2/ C w.e3/ is
an even number.

The quantum space-time (Chap. 24) in Loop Quantum Gravity is a network
of loops at Planck scale. Loops are represented by adapted spin networks:
directed graphs whose arcs are labeled by irreducible representations of a
compact Lie group and vertices are labeled by interwinning operators from the
tensor product of labels on incoming arcs to the tensor product of labels on
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outgoing arcs. Such networks represent “quantum states” of the gravitational
field on a 3D hypersurface.

• Detour distance
Given a connected graph G D .V;E/, the detour distance is (Chartrand and

Zhang, 2004) a metric on the vertex-set V defined, for u ¤ v, as the length of the
longest .u � v/ path in G. So, this distance is 1 or jVj � 1 if and only if uv is a
bridge of G or, respectively, G contains a Hamiltonian .u � v/ path.

The monophonic distance is (Santhakumaran and Titus, 2011) a distance (in
general, not a metric) on the V defined, for u ¤ v, as the length of a longest
monophonic (or induced, minimal), i.e., chordless .u � v/ path in G.

The height of a DAG (acyclic digraph) is the number of vertices in a longest
directed path.

• Rainbow distance
In an edge-colored graph, the rainbow distance is (Chartrand and Zhang,

2005) the length of a shortest rainbow (i.e., containing no color twice) path.
In a vertex-colored graph, the colored distance is (Dankelmann et al., 2001)

the sum of distances between all unordered pairs of vertices having different
colors.

• Cutpoint additive metric
Given a graph G D .V;E/, Klein–Zhu, 1998, call a metric d on V graph-

geodetic metric if, for u;w; v 2 V , the triangle equality d.u;w/ C d.w; v/ D
d.u; v/ holds if w is a .u; v/-gatekeeper, i.e., w lies on any path connecting u and
v. Cf. metric interval in Chap. 1. Any gatekeeper is a cutpoint, i.e., removing
it disconnects G and a pivotal point, i.e., it lies on any shortest path between u
and v.

Chebotarev, 2010, call a metric d on the vertices of a multigraph without loops
cutpoint additive if d.u;w/Cd.w; v/ D d.u; v/ holds if and only if w lies on any
path connecting u and v. The resistance metric is cutpoint additive (Gvishiani
and Gurvich, 1992), while the path metric is graph-geodetic only (in the weaker
Klein–Zhu sense). See also Chebotarev–Shamis metric.

• Graph boundary
Given a connected graph G D .V;E/, a vertex v 2 V is (Chartrand et al.,

2003) a boundary vertex if there exists a witness, i.e., a vertex u 2 V such that
d.u; v/ � d.u;w/ for all neighbors w of v. So, the end-vertices of a longest path
are boundary vertices. The boundary of G is the set of all boundary vertices.

The boundary of a subset M 
 V is the set @M 
 E of edges having precisely
one endpoint in M. The isoperimetric number of G is (Buser, 1978) inf @M

jMj ,
where the infimum is taken over all M 
 V with 2jMj � jVj.

• Graph diameter
Given a connected graph G D .V;E/, its graph diameter is the largest value

of the path metric between vertices of G.
A connected graph is vertex-critical ( edge-critical) if deleting any vertex

(edge) increases its diameter. A graph G of diameter k is goal-minimal if for
every edge uv, the inequality dG�uv.x; y/ > k holds if and only if fu; vg D fx; yg.
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The mixed fault diameter D.a;b/.G/ is the maximum diameter among all
subgraphs obtained from G by deleting a vertices and b edges.

The a-wide distance da.u; v/ between vertices u and v is the minimum integer
l, for which there are at least a internally disjoint .u � v/ paths of length at
most l in G: cf. Hsu–Lyuu–Flandrin–Li distance. The a-wide diameter of G is
maxu;v2V da.u; v/; it is at least D.a�1;0/.G/.

Given a strong orientation O of a connected graph G D .V;E/, i.e., a strongly
connected digraph D D .V;E0/ with arcs e0 2 E0 obtained from edges e 2 E by
orientation O, the diameter of D is the maximal length of shortest directed .u�v/
path in it. The oriented diameter of a graph G is the smallest diameter among
strong orientations of G. If it is equal to the diameter of G, then any orientation
realizing this equality is called tight. For example, a hypercube graph H.m; 2/
admits a tight orientation if m � 4 (McCanna, 1988).

• Path quasi-metric in digraphs
The path quasi-metric in digraphs ddpath is a quasi-metric on the vertex-set

V of a strongly connected digraph D D .V;E/ defined, for any u; v 2 V , as the
length of a shortest directed .u � v/ path in D.

The circular metric in digraphs is a metric on the vertex-set V of a strongly
connected digraph D D .V;E/, defined by ddpath.u; v/C ddpath.v; u/.

• Strong distance in digraphs
The strong distance in digraphs is a metric between vertices v and v of

a strongly connected digraph D D .V;E/ defined (Chartrand–Erwin–Raines–
Zhang, 1999) as the minimum size (the number of edges) of a strongly connected
subdigraph of D containing v and v. Cf. Steiner distance of a set.

• � -metric
Given a class � of connected graphs, the metric d of a metric space .X; d/ is

called a� -metric if .X; d/ is isometric to a subspace of a metric space .V; dwpath/,
where G D .V;E/ 2 � , and dwpath is the weighted path metric on V with
positive edge-weight function w; cf. tree-like metric.

• Tree-like metric
A tree-like metric (or weighted tree metric) d on a set X is a � -metric for

the class � of all trees, i.e., the metric space .X; d/ is isometric to a subspace of
a metric space .V; dwpath/, where T D .V;E/ is a tree, and dwpath is the weighted
path metric on the vertex-set V of T with a positive weight function w. A metric
is a tree-like metric if and only if it satisfies the four-point inequality. Any such
metric has (Hendy, 1992) a unique tree representation.

A metric d on a set X is called a relaxed tree-like metric if the set X can be
embedded in some (not necessary positively) edge-weighted tree such that, for
any x; y 2 X, d.x; y/ is equal to the sum of all edge weights along the (unique)
path between corresponding vertices x and y in the tree. A metric is a relaxed
tree-like metric if and only if it satisfies the relaxed four-point inequality.

• Katz similarity
Given a connected graph G D .V;E/ with positive edge-weight function w D

.w.e//e2E, let V D fv1; : : : ; vng. Denote by A the .n � n/-matrix ..aij//, where
aij D aji D w.ij/ if ij is an edge, and aij D 0, otherwise. Let I be the identity
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.n � n/-matrix, and let t; 0 < t < 1
	

, be a parameter, where 	 D maxi j	ij is the
spectral radius of A and 	i are the eigenvalues of A. Define the .n � n/-matrix

K D ..kij// D
1X

iD1
tiAi D .I � tA/�1 � I:

The number kij is called the Katz similarity between vi and vj. Katz, 1953,
proposed it for evaluating social status.

Chebotarev, 2011, defined, for a similar .n � n/-matrix ..cij// D P1
iD0 tiAi D

.I � tA/�1 and connected edge-weighted multigraphs allowing loops, the walk
distance between vertices vi and vj as any positive multiple of dt.i; j/ D
� ln cijp

cii cjj
(cf. the Nei standard genetic distance in Chap. 23). He proved that dt

is a cutpoint additive metric and the path metric in G coincides with the short
walk distance limt!0C

dt� ln t in G, while the resistance metric in G coincides
with the long walk distance limt! 1

	

�
2dt

n.t�1�	/ in the graph G0 obtained from G by
attaching weighted loops that provide G0 with uniform weighted degrees.

If G is a simple unweighted graph, then A is its adjacency matrix. Let J be the
.n � n/-matrix of all ones and let � D mini 	i. Let N D ..nij// D �.I � J/ � A.
Neumaier, 1980, remarked that ..

p
nij// is a semimetric on the vertices of G.

• Resistance metric
Given a connected graph G D .V;E/ with positive edge-weight function w D

.w.e//e2E, let us interpret the edge-weights as electrical conductances and their
inverses as resistances. For any two different vertices u and v, suppose that a
battery is connected across them, so that one unit of a current flows in at u and
out in v. The voltage (potential) difference, required for this, is, by Ohm’s law,
the effective resistance between u and v in an electrical network; it is called the
resistance (or electric) metric˝.u; v/ between them (Sharpe, 1967, Gvishiani–
Gurvich, 1987, and Klein–Randic, 1993). So, if a potential of one volt is applied
across vertices u and v, a current of 1

˝.u;v/ will flow. The number 1
˝.u;v/ is a

measure of the connectivity between u and v.
Let r.u; v/ D 1

w.e/ if uv is an edge, and r.u; v/ D 0, otherwise. Formally,

˝.u; v/ D .
X

w2V

f .w/r.w; v//�1;

where f W V ! Œ0; 1� is the unique function with f .u/ D 1, f .v/ D 0 andP
z2V. f .w/� f .z//r.w; z/ D 0 for any w ¤ u; v.
The resistance metric is a weighted average of the lengths of all .u � v/ paths.

It is applied when the number of .u � v/ paths, for any u; v 2 V , matters.
A probabilistic interpretation (Gobel–Jagers, 1974) is: ˝.u; v/ D

.deg.u/Pr.u ! v//�1, where deg.u/ is the degree of the vertex u, and Pr.u ! v/

is the probability for a random walk leaving u to arrive at v before returning to
u. The expected commuting time between u and v is 2

P
e2E w.e/˝.u; v/.
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Then ˝.u; v/ � minP
P

e2P
1

w.e/ , where P is any .u � v/ path (cf. inverse
weighted path metric), with equality if and only if such a path P is unique. So, if
w.e/ D 1 for all edges, the equality means that G is a geodetic graph, and hence
the path and resistance metrics coincide. Also, it holds that˝.u; v/ D jftWuv2t2Tgj

jTj
if uv is an edge, and ˝.u; v/ D jT0�Tj

jTj , otherwise, where T;T 0 are the sets of
spanning trees for G D .V;E/ and G0 D .V;E [ fuvg/.

If w.e/ D 1 for all edges, then ˝.u; v/ D .guu C gvv/ � .guv C gvu/, where
..gij// is the Moore–Penrose generalized inverse of the Laplacian matrix ..lij//
of the graph G: here lii is the degree of vertex i, while, for i ¤ j, lij D �1
if the vertices i and j are adjacent, and lij D 0, otherwise. A symmetric (for an
undirected graph) and positive-semidefinite matrix ..gij// admits a representation
KKT . So, ˝.u; v/ is the squared Euclidean distance between the u-th and v-th
rows of K.

The distance
p
˝.u; v/ is a Mahalanobis distance (Chap. 17) with a weight-

ing matrix ..gij//. So, ˝u;v D auvj..gij//jauv, where auv are the vectors of zeros
except for C1 and �1 in the u-th and v-th positions. This distance is called a
diffusion metric in [CLMNWZ05] because it depends on a random walk.

The number 1
2

P
u;v2V ˝.u; v/ is called the total resistance (or Kirchhoff

index) of G.
• Hitting time quasi-metric

Let G D .V;E/ be a connected graph. Consider random walks on G, where
at each step the walk moves to a vertex randomly with uniform probability from
the neighbors of the current vertex. The hitting (or first-passage) time quasi-
metric H.u; v/ from u 2 V to v 2 V is the expected number of steps (edges) for
a random walk on G beginning at u to reach v for the first time; it is 0 for u D v.
This quasi-metric is a weightable quasi-semimetric (Chap. 1).

The commuting time metric is C.u; v/ D H.u; v/C H.v; u/.
Then C.u; v/ D 2jEj˝.u; v/, where ˝.u; v/ is the resistance metric (or

effective resistance), i.e., 0 if u D v and, otherwise, 1
˝.u;v/ is the current flowing

into v, when grounding v and applying a 1 volt potential to u (each edge is seen as

a resistor of 1 ohm). Also, ˝.u; v/ D supf WV!R;D. f />0
. f .u/�f .v//2

DE. f / , where DE. f /

is the Dirichlet energy of f , i.e.,
P

st2E. f .s/ � f .t//2.
The above setting can be generalized to weighted digraphs D D .V;E/ with

arc-weights cij for ij 2 E and the cost of a directed .u � v/ path being the sum
of the weights of its arcs. Consider the random walk on D, where at each step
the walk moves by arc ij with reference probability pij proportional to 1

cij
; set

pij D 0 if ij … E. Saerens et al., 2008, defined the randomized et al. shortest
path quasi-distance d.u; v/ on vertices of D as the minimum expected cost of a
directed .u � v/ path in the probability distribution minimizing the expected cost
among all distributions having a fixed Kullback–Leibler distance (Chap. 14)
with reference probability distribution. In fact, their biased random walk model
depends on a parameter � � 0. For � D 0 and large � , the distance d.u; v/ C
d.v; u/ become a metric; it is proportional to the commuting time and the usual
path metric, respectively.
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• Chebotarev–Shamis metric
Given ˛ > 0 and a connected weighted multigraph G D .V;EI w/ with

positive edge-weight function w D .w.e//e2E, denote by L D ..lij// the
Laplacian (or Kirchhoff ) matrix of G, i.e., lij D �w.ij/ for i ¤ j and lii DP

j¤i w.ij/. The Chebotarev–Shamis metric d˛.u; v/ (Chebotarev and Shamis,

2000, called 1
2
d˛.u; v/ ˛-forest metric) between vertices u and v is defined by

2quv � quu � qvv

for the protometric ..gij// D �.I C ˛L/�1, where I is the identity matrix.
Chebotarev and Shamis showed that their metric of G D .V;EI w/ is the

resistance metric of another weighted multigraph, G0 D .V 0;E0I w0/, where
V 0 D V [ f0g, E0 D E [ fu0 W u 2 Vg, while w0.e/ D ˛w.e/ for all e 2 E
and w0.u0/ D 1 for all u 2 V . In fact, there is a bijection between the forests of
G and trees of G0. This metric becomes the resistance metric of G D .V;EI w/ as
˛ ! 1.

Their forest metric (1997) is the case ˛ D 1 of the ˛-forest metric.
Chebotarev, 2010, remarked that 2 ln quv�ln quu�ln qvv is a cutpoint additive

metric d00̨.u; v/, i.e., d00̨.u;w/ C d00̨.w; v/ D d00̨.u; v/ holds if and only if w lies
on any path connecting u and v. The metric d00̨ is the path metric if ˛ ! 0C and
the resistance metric if ˛ ! 1.

• Truncated metric
The truncated metric is a metric on the vertex-set of a graph, which is equal

to 1 for any two adjacent vertices, and is equal to 2 for any nonadjacent different
vertices. It is the 2-truncated metric for the path metric of the graph. It is the
.1; 2/� B-metric if the degree of any vertex is at most B.

• Hsu–Lyuu–Flandrin–Li distance
Given an m-connected graph G D .V;E/ and two vertices u; v 2 V , a

container C.u; v/ of width m is a set of m .u � v/ paths with any two of them
intersecting only in u and v. The length of a container is the length of the longest
path in it.

The Hsu–Lyuu–Flandrin–Li distance between vertices u and v (Hsu–Lyuu,
1991, and Flandrin–Li, 1994) is the minimum of container lengths taken over all
containers C.u; v/ of width m. This generalization of the path metric is used in
parallel architectures for interconnection networks.

• Multiply-sure distance
The multiply-sure distance is a distance on the vertex-set V of an m-

connected weighted graph G D .V;E/, defined, for any u; v 2 V , as the
minimum weighted sum of lengths of m disjoint .u�v/ paths. This generalization
of the path metric helps when several disjoint paths between two points are
needed, for example, in communication networks, where m � 1 of .u � v/ paths
are used to code the message sent by the remaining .u � v/ path (see [McCa97]).
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• Cut semimetric
A cut is a partition of a set into two parts. Given a subset S of Vn D

f1; : : : ; ng, we obtain the partition fS;VnnSg of Vn. The cut semimetric (or split
semimetric) ıS defined by this partition, is a semimetric on Vn defined by

ıS.i; j/ D
�
1; if i ¤ j; jS \ fi; jgj D 1;

0; otherwise:

Usually, it is considered as a vector in R
jEnj, E.n/ D ffi; jg W 1 � i < j � ng.

A circular cut of Vn is defined by a subset SŒkC1;l� D fkC1; : : : ; lg. mod n/ 

Vn: if we consider the points f1; : : : ; ng as being ordered along a circle in that
circular order, then SŒkC1;l� is the set of its consecutive vertices from k C 1 to
l. For a circular cut, the corresponding cut semimetric is called a circular cut
semimetric.

An even cut semimetric (odd cut semimetric) is ıS on Vn with even
(odd, respectively) jSj. A k-uniform cut semimetric is ıS on Vn with jSj 2
fk; n � kg. An equicut semimetric (inequicut semimetric) is ıS on Vn with
jSj 2 fb n

2
c; d n

2
eg (jSj … fb n

2
c; d n

2
eg, respectively); see, for example, [DeLa97].

• Decomposable semimetric
A decomposable semimetric is a semimetric on Vn D f1; : : : ; ng which can

be represented as a nonnegative linear combination of cut semimetrics. The set
of all decomposable semimetrics on Vn is a convex cone, called the cut cone
CUTn.

A semimetric on Vn is decomposable if and only if it is a finite l1-semimetric.
A circular decomposable semimetric is a semimetric on Vn D f1; : : : ; ng

which can be represented as a nonnegative linear combination of circular cut
semimetrics. A semimetric on Vn is circular decomposable if and only if it is a
Kalmanson semimetric with respect to the same ordering (see [ChFi98]).

• Finite lp-semimetric
A finite lp-semimetric d is a semimetric on Vn D f1; : : : ; ng such that .Vn; d/

is a semimetric subspace of the lmp -space .Rm; dlp/ for some m 2 N.
If, instead of Vn, is taken X D f0; 1gn, the metric space .X; d/ is called the

lnp-cube. The ln1-cube is called a Hamming cube; cf. Chap. 4. It is the graphic
metric space associated with a hypercube graph H.n; 2/, and any subspace of it
is called a partial cube.

• Kalmanson semimetric
A Kalmanson semimetric d with respect to the ordering 1; : : : ; n is a

semimetric on Vn D f1; : : : ; ng which satisfies the condition

maxfd.i; j/C d.r; s/; d.i; s/C d. j; r/g � d.i; r/C d. j; s/

for all 1 � i � j � r � s � n.
Equivalently, if the points f1; : : : ; ng are ordered along a circle Cn in that

circular order, then the distance d on Vn is a Kalmanson semimetric if the
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inequality

d.i; r/C d. j; s/ � d.i; j/C d.r; s/

holds for i; j; r; s 2 Vn whenever the segments Œi; j�, Œr; s� are crossing chords
of Cn.

A tree-like metric is a Kalmanson metric for some ordering of the vertices of
the tree. The Euclidean metric, restricted to the points that form a convex polygon
in the plane, is a Kalmanson metric.

• Multicut semimetric
Let fS1; : : : ; Sqg, q � 2, be a partition of the set Vn D f1; : : : ; ng, i.e., a

collection S1; : : : ; Sq of pairwise disjoint subsets of Vn such that S1[� � �[Sq D Vn.
The multicut semimetric ıS1;:::;Sq is a semimetric on Vn defined by

ıS1;:::;Sq.i; j/ D
�
0; if i; j 2 Sh for some h; 1 � h � q;
1; otherwise:

• Oriented cut quasi-semimetric
Given a subset S of Vn D f1; : : : ; ng, the oriented cut quasi-semimetric ı

0

S is
a quasi-semimetric on Vn defined by

ı
0

S.i; j/ D
�
1; if i 2 S; j 62 S;
0; otherwise:

Usually, it is considered as the vector of RjInj, I.n/ D f.i; j/ W 1 � i ¤ j � ng.
The cut semimetric ıS is ı

0

S C ı
0

VnnS.
• Oriented multicut quasi-semimetric

Given a partition fS1; : : : ; Sqg, q � 2, of Vn, the oriented multicut quasi-
semimetric ı

0

S1;:::;Sq
is a quasi-semimetric on Vn defined by

ı
0

S1;:::;Sn
.i; j/ D

�
1; if i 2 Sh; j 2 Sm; h < m;
0; otherwise :

15.2 Distance-Defined Graphs

Below we first give some graphs defined in terms of distances between their vertices.
Then some graphs associated with metric spaces are presented.

A graph .V;E/ is, say, distance-invariant or distance monotone if its metric
space .V; dpath/ is distance invariant or distance monotone, respectively (cf.
Chap. 1). The definitions of such graphs, being straightforward subcases of corre-
sponding metric spaces, will be not given below.
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• k-power of a graph
The k-power of a graph G D .V;E/ is the supergraph Gk D .V;E0/ of G with

edges between all pairs of vertices having path distance at most k.
• Distance-residual subgraph

For a connected finite graph G D .V;E/ and a set M 
 V of its vertices, a
distance-residual subgraph is (Luksic and Pisanski, 2010) a subgraph induced
on the set of vertices u of G at the maximal point-set distance minv2M dpath.u; v/
from M. Such a subgraph is called vertex-residual if M consists of a vertex, and
edge-residual if M consists of two adjacent vertices.

• Isometric subgraph
A subgraph H of a graph G D .V;E/ is called an isometric subgraph if the

path metric between any two points of H is the same as their path metric in G.
A subgraph H is called a convex subgraph if it is isometric, and for any u; v 2

H every vertex on a shortest .u � v/ path belonging to H also belongs to H.
Taking, instead of shortest, other types of paths (say, any, longest, induced) or
walks, one gets corresponding notions of convexity.

A subset M 
 V is called gated if for every u 2 V n M there exists a unique
vertex g 2 M (called a gate) lying on a shortest .u � v/ path for every v 2 M.
The subgraph induced by a gated set is a convex subgraph.

• Retract subgraph
A subgraph H of G is called a retract subgraph if it is induced by an

idempotent metric mapping of G into itself, i.e., f 2 D f W V ! V with
dpath. f .u/; f .v// � dpath.u; v/ for u; v 2 V . Any retract subgraph is isometric.

• Partial cube
A partial cube is an isometric subgraph of a Hamming cube, i.e., of a

hypercube H.m; 2/. Similar topological notion was introduced by Acharya, 1983:
any graph .V;E/ admits a set-indexing f W V [E ! 2X with injective f jV ; f jR and
f .uv/ D f .u/�f .v/ for any .uv/ 2 E. The set-indexing number is min jXj.

• Median graph
A connected graph G D .V;E/ is called a median graph if, for any three

vertices u; v;w 2 V , there exists a unique vertex that lies simultaneously on a
shortest .u � v/, .u � w/ and .w � v/ paths, i.e., .V; dpath/ is a median metric
space.

The median graphs are exactly retract subgraphs of hypercubes and exactly
1-skeletons of a CAT(0) cube complexes. Also, they are exactly partial cubes
such that the vertex-set of any convex subgraph is gated (cf. isometric sub-
graph).

• Geodetic graph
A graph is called geodetic if there exists at most one shortest path between any

two of its vertices. A graph is called strongly geodetic if there exists at most one
path of length less than or equal to the diameter between any two of its vertices.

A uniformly geodetic graph is a connected graph such that the number of
shortest paths between any two vertices u and v depends only on d.u; v/.

A graph is a forest (disjoint union of trees) if and only if there exists at most
one path between any two of its vertices.
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The geodetic number of a finite connected graph .V;E/ ([BuHa90]) is min jMj
over sets M 
 V such that any x 2 V lies on a shortest .u�v/ path with u; v 2 M.

• k-geodetically connected graph
A k-connected graph is called (Entringer–Jackson–Slater, 1977) k-

geodetically connected (k � GC) if the removal of less than k vertices (or,
equivalently, edges) does not affect the path metric between any pair of the
remaining vertices.
2 � GC graphs are called self-repairing. Cf. Hsu–Lyuu–Flandrin–Li

distance.
• Interval distance monotone graph

A connected graph G D .V;E/ is called interval distance monotone if any
of its intervals IG.u; v/ induces a distance monotone graph, i.e., its path metric
is distance monotone, cf. Chap. 1.

A graph is interval distance monotone if and only if (Zhang–Wang, 2007) each
of its intervals is isomorphic to either a path, a cycle or a hypercube.

• Distance-regular graph
A connected regular (i.e., every vertex has the same degree) graph G D .V;E/

of diameter T is called distance-regular (or drg) if, for every two its vertices u; v
and any integers 0 � i; j � T, the number jfw 2 V W dpath.u;w/ D i; dpath.v;w/ D
jgj depends only on i; j and k D dpath.u; v/, but not on the choice of u and v.

A special case of it is a distance-transitive graph, i.e., such that its group of
automorphisms is transitive, for any 0 � i � T, on the pairs of vertices .u; v/with
dpath.u; v/ D i. Given a number s; 1 � s � T, a graph is said to be s-geodesic-
transitive or s-distance transitive if its automorphism group acts transitively on
the sets of i-geodesics (shortest paths of length i), for 0 � i � s, or, respectively,
on the sets of ordered vertex pairs at distance i, for 0 � i � s.

Any drg is a distance-balanced graph (or dbg), i.e., jWu;vj D jWv;uj, where
Wu;v D fx 2 V W d.x; u/ < d.x; v/g. Such graph is also called self-median since
it is exactly one, metric median (cf. eccentricity in Chap. 1) of which is V . A
gbg is called nicely distance-balanced if jWu;vj is the same for all edges uv.

Any drg is a distance degree-regular graph (i.e., jfx 2 V W d.x; u/ D igj
depends only on i; such graph is also called strongly distance-balanced), and a
walk-regular graph (i.e., the number of closed walks of length i starting at u
depends only on i). van Dam–Omidi, 2013, call a graph strongly walk-regular if
there is an l � 2 such that the number of walks of length l from u to v depends
only on whether the d.u; v/ is 0; 1, or � 2; for l D 2, it is a strongly regular graph,
i.e., a drg of diameter 2. A d-Deza graph (Gu, 2013) is a regular graph .V;E/ in
which there are exactly d different values of jfw 2 V W d.u;w/ D d.v;w/ D 1gj
for distinct u; v 2 V .

Any drg is a sphere-regular graph (Dehmer, 2008), i.e., its path metric is
distance-invariant (all closed balls of the same radius have the same size; cf.
Chap. 1).

A graph G is a distance-regularized graph if for each u 2 V , if admits
an intersection array at vertex u, i.e., the numbers ai.u/ D jGi.u/ \ G1.v/j,
bi.u/ D jGiC1.u/ \ G1.v/j and ci.u/ D jGi�1.v/ \ G1.v/j depend only on the
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distance d.u; v/ D i and are independent of the choice of the vertex v 2 Gi.u/.
Here, for any i, Gi.w/ is the set of all vertices at the distance i from w. Godsil–
Shawe-Taylor, 1987, defined such graph and proved that it is either drg or
distance-biregular (a bipartite one with vertices in the same class having the
same intersection array).

A drg is also called a metric association scheme or P-polynomial association
scheme. A finite polynomial metric space (Chap. 1) is a special case of it, also
called a (P and Q)-polynomial association scheme.

• Distance-regular digraph
A strongly connected digraph D D .V;E/ is called distance-regular

(Damerell, 1981) if, for any its vertices u; v with dpath.u; v/ D k and for any
integer 0 � i � k C 1, the number of vertices w, such that dpath.u;w/ D i and
dpath.v;w/ D 1, depends only on k and i, but not on the choice of u and v. In order
to find interesting classes of distance-regular digraphs with unbounded diameter,
the above definition was weakened by two teams in different directions.

Call d.x; y/ D .d.x; y/; d.y; x// the two-way distance in digraph D. A
strongly connected digraph D D .V;E/ is called weakly distance-regular
(Wang and Suzuku, 2003) if, for any its vertices u; v with d.u; v/ D .k1; k2/,
the number of vertices w, such that d.w; u/ D .i1; i2/ and d.w; v/ D . j1; j2/,
depends only on the values k1; k2; i1; i2; j1; j2. Comellas et al., 2004, defined a
weakly distance-regular digraph as one in which, for any vertices u and v, the
number of u ! v walks of every given length only depends on the distance
d.u; v/.

• Metrically almost transitive graph
An automorphism of a graph G D .V;E/ is a map g W V ! V such that u

is adjacent to v if and only if g.u/ is adjacent to g.v/, for any u; v 2 V . The
set Aut.G/ of automorphisms of G is a group with respect to the composition of
functions.

A graph G is metrically almost transitive (Krön–Möller, 2008) if there is an
integer r such that, for any vertex u 2 V it holds

[g2Aut.G/fg.B.u; r/ D fv 2 V W dpath.u; v/ � rg/g D V:

• Metric end
Given an infinite graph G D .V;E/, a ray is a sequence .x0; x1; : : :/ of distinct

vertices such that xi and xiC1 are adjacent for i � 0.
Two rays R1 and R2 are equivalent whenever it is impossible to find a

bounded—set of vertices F such that any path from R1 to R2 contains an element
of F.

Metric ends are defined as equivalence classes of metric rays which are rays
without infinite, bounded subsets.
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• Graph of polynomial growth
Let G D .V;E/ be a transitive locally finite graph. For a vertex v 2 V , the

growth function is defined by

f .n/ D jfu 2 V W d.u; v/ � ngj;

and it does not depend on v. Cf. growth rate of metric space in Chap. 1.
The graph G is a graph of polynomial growth if there are some positive

constants k;C such that f .n/ � Cnk for all n � 0. It is a graph of exponential
growth if there is a constant C > 1 such that f .n/ > Cn for all n � 0.

A group with a finite symmetric set of generators has polynomial growth rate
if the corresponding Cayley graph has polynomial growth. Here the metric ball
consists of all elements of the group which can be expressed as products of at
most n generators, i.e., it is a closed ball centered in the identity in the word
metric, cf. Chap. 10.

• Distance-polynomial graph
Given a connected graph G D .V;E/ of diameter T, for any 2 � i � T denote

by Gi the graph .V;E
0

/ with E
0 D fe D uv 2 E W dpath.u; v/ D ig. The graph G

is called a distance-polynomial if the adjacency matrix of any Gi, 2 � i � T, is
a polynomial in terms of the adjacency matrix of G.

Any distance-regular graph is a distance-polynomial.
• Distance-hereditary graph

A connected graph is called distance-hereditary (Howorka, 1977) if each of
its connected induced subgraphs is isometric.

A graph is distance-hereditary if each of its induced paths is isometric. A
graph is distance-hereditary, bipartite distance-hereditary, block graph, tree if
and only if its path metric is a relaxed tree-like metric for edge-weights being,
respectively, nonzero half-integers, nonzero integers, positive half-integers, pos-
itive integers.

A graph is called a parity graph if, for any u; v 2 V , the lengths of all induced
.u�v/ paths have the same parity. A graph is a parity graph (moreover, distance-
hereditary) if and only if every induced subgraph of odd (moreover, any) order
of at least five has an even number of Hamiltonian cycles (McKee, 2008).

• Distance magic graph
A graph G D .V;E/ is called (Vilfred, 1994) a distance magic graph if it

admits a distance magic labeling, i.e., a magic constant k > 0 and a bijection
f W V ! f1; 2; : : : ; jVjg with w.v/ D P

uv2E f .v/ D k for every u 2 V .
Cf. rendez-vous number in Chap. 1. These graphs generalize magic squares

(such complete n-partite graphs with parts of size n). Among such trees, cycles
and Kn, only P1;P3;C4 are distance magic. The hypercube graph H.m; 2/ is
distance magic if m D 2; 6 but not if m � 0; 1; 3 . mod 4/.

The graph G D .V;E/ is said (Kamatchi–Arumugam, 2013) to be distance
anti-magic if w.u/ ¤ w.v/ for all u; v 2 V . Cichacz et al., 2015, extended both
above notions on vertex-labeling by elements of an Abelian group.
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The graph G D .V;E/ is said (O’Neil–Slater, 2011) to be D-distance magic
if it admits a D-distance magic labeling, i.e., a magic constant k > 0 and a
bijection f W V ! f1; 2; : : : ; jVjg with w.v/ D P

u2VWd.u;v/2D f .u/ D k for every
u 2 V .

• Block graph
A graph is called a block graph if each of its blocks (i.e., a maximal 2-

connected induced subgraph) is a complete graph. Any tree is a block graph.
A graph is a block graph if and only if its path metric is a tree-like metric or,

equivalently, satisfies the four-point inequality.
• Ptolemaic graph

A graph is called Ptolemaic if its path metric satisfies the Ptolemaic
inequality

d.x; y/d.u; z/ � d.x; u/d.y; z/C d.x; z/d.y; u/:

A graph is Ptolemaic if and only if it is distance-hereditary and chordal, i.e., every
cycle of length greater than 3 has a chord. So, any block graph is Ptolemaic.

• k-cocomparability graph
A graph G D .V;E/ is called (Chang–Ho–Ko, 2003) k-cocomparability

graph if its vertex-set admits a linear ordering< such that for any three vertices
u < v < w, d.u;w/ � k implies d.u; v/ � k or d.v;w/ � k.

• Distance-perfect graph
Cvetković et al., 2007, observed that any graph of diameter T has at most

k C Tk vertices, where k is its location number (Chap. 1), i.e., the minimal
cardinality of a set of vertices, the path distances from which uniquely determines
any vertex. They called a graph distance-perfect if it meets this upper bound and
proved that such a graph has T ¤ 2.

• t-irredundant set
A set S 
 V of vertices in a connected graph G D .V;E/ is called t-

irredundant (Hattingh–Henning, 1994) if for any u 2 S there exists a vertex
v 2 V such that, for the path metric dpath of G, it holds

dpath.v; x/ � t < dpath.v;VnS/ D min
u…S

dpath.v; u/:

The t-irredundance number irt of G is the smallest cardinality jSj such that S is
t-irredundant but S [ fvg is not, for every v 2 VnS.

The t-independent number ˛t and distance t-domination number �t of G
are, respectively, the cardinality of the largest d t

2
e-packing and smallest .t C 1/-

covering (by the open balls of the radius tC1) of the metric space .V; dpath.u; v//;
cf. the radii of metric space in Chap. 1. Then it holds �tC1

2
� irt � �t � ˛t.

Let Cr be the largest constant such that �1 � Cr
P

1�i<j�r d.xi; xj/ for r

vertices of any connected graph; Kang, 2015, showed that C2 D 1
3

and Cr D
1

r.r�1/ for r � 3, implying that �1 � ad.G/, where ad denotes the average
distance.
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The distance t-vertex cover number of G is (Canales et al., 2015) the minimum
cardinality of the set S 
 V , such that for each edge e of G, there is a path of
length at most t that contains e and a vertex from S.

If G is plane graph, then its distance t-guarding number is (Canales et al.,
2015) the minimum cardinality of the set S 
 V , such that for every face f of G,
there is a vertex u in the boundary of f , and a vertex v 2 S with dpath.u; v/ < t.

• r-locating-dominating set
Let D=(V,E) be a digraph and C 
 V , and let B�

r .v/ denote the set of all
vertices x such that there exists a directed .x � v/ path with at most r arcs.

If B�
r .v/ \ C, v 2 V n C (respectively, v 2 V), are nonempty distinct

sets, C is called (Slater, 1984) an r-locating-dominating set (respectively, an r-
identifying code; cf. Chap. 16) of D. Such sets of smallest cardinality are called
optimal.

• Locating chromatic number
The locating chromatic number of a graph G D .V;E/ is the minimum

number of color classes C1; : : : ;Ct needed to color vertices of G so that any two
adjacent vertices have distinct colors and each vertex u 2 V has distinct color
code .minv2C1 d.u; v/; : : : ;minv2Ck d.u; v//.

• k-distant chromatic number
The k-distant chromatic number of a graph G D .V;E/ is the minimum

number of colors needed to color vertices of G so that any two vertices at distance
at most k have distinct colors, i.e., it is the chromatic number of the k-power of G.

• Distance between edges
The distance between edges in a connected graph G D .X;E/ is the number

of vertices in a shortest path between them. So, adjacent edges have distance 1.
A distance-k matching of G is a set of edges no two of which are within

distance k. For k D 1, it is the usual matching. For k D 2, it is also induced (or
strong) matching. A distance-k matching of G is equivalent to an independent set
in the k-power of the line graph of G. A distance-k edge-coloring of G is an
edge-coloring such that each color class induces a distance-k matching.

The distance-k chromatic index �k.G/ is the least integer t such that there
exists a distance-t edge-coloring of G. The distance-k matching number �k.G/
is the largest integer t such that there exists a distance-t matching in G with t
edges. It holds that �k.G/�k.G/ � jEj.

The distance between faces of a plane graph is the number of vertices in a
shortest path between them. A distance-k face-coloring is a face-coloring such
that any two faces at distance at most k have different colors. The distance-k
face chromatic index is the least integer t such that such coloring by t colors
exists. The dual notion is k-distance coloring of a graph G D .V;E/, i.e., a
vertex-coloring such that any two vertices at distance at most k receives different
colors.

• Distance integral graph
Given a finite graph G, its distance polynomial (cf. Chap. 1) is the determi-

nant det.D � 	I/, where D is the distance matrix of the path metric of G.
A graph is called distance integral if all roots of this polynomial are integers.
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• D-distance graph
Given a set D of positive numbers containing 1 and a metric space .X; d/, the

D-distance graph is a graph G D .V D X;E/ with the edge-set E D fuv W
d.u; v/ 2 Dg (cf. D-chromatic number in Chap. 1). If .X; d/ is path metric of a
graph H, then G is called the distance power HD of H.

Alon–Kupavsky, 2014, call G (in the case .X; d/ D E
n, d D f1g) the faithful

unit-distance graph, using term unit-distance graph for E � f.u; v/ W jju�vjj2 D
1g.

For a positive number t, the signed distance graph is (Fiedler, 1969) a signed
graph with the vertex-set X in which vertices x; y are joined by a positive edge if
t > d.x; y/, by a negative edge if d.x; y/ > t, and not joined if d.x; y/ D t.

A D-distance graph is called a distance graph (or unit-distance graph) if
D D f1g, an �-unit graph if D D Œ1 � �; 1 C ��, a unit-neighborhood graph if
D D .0; 1�, an integral-distance graph if D D ZC, a rational-distance graph if
D D QC, and a prime-distance graph if D is the set of prime numbers (with 1).

Every finite graph can be represented by a D-distance graph in some E
n. The

minimum dimension of such a Euclidean space is called the D-dimension of G.
A matchstick graph is a crossingless unit-distance graph in E

2.
• Distance-number of a graph

Given a graph G D .V;E/, its degenerate drawing is a mapping f W V ! R
2

such that jf .V/j D jVj and f .uv/ is an open straight-line segment joining the
vertices f .u/ and f .v/ for any edge uv 2 E; it is a drawing if, moreover, f .w/ …
f .uv/ for any uv 2 E and w 2 V .

The distance-number dn.G/ of a graph G is (Carmi et al. 2008) the
minimum number of distinct edge-lengths in a drawing of G.

The degenerate distance-number of G, denoted by ddn.G/, is the minimum
number of distinct edge-lengths in a degenerated drawing of G. The first of
the Erdös-type distance problems in Chap. 19 is equivalent to determining
ddn.Kn/.

• Dimension of a graph
The dimension dim.G/ of a graph G is (Erdös–Harary–Tutte, 1965) the

minimum k such that G has a unit-distance representation in R
k, i.e., every edge

is of length 1. The vertices are mapped to distinct points of Rk, but edges may
cross.

For example, dim.G/ D n � 1; 4; 2 for G D Kn;Km;n;Cn (m � n � 3).
• Bar-and-joint framework

A n-dimensional bar-and-joint framework is a pair .G; f /, where G D
.V;E/ is a finite graph (no loops and multiple edges) and f W V ! R

n is a map
with f .u/ ¤ f .v/ whenever uv 2 E. The framework is a straight line realization
of G in R

n in which the length of an edge uv 2 E is given by jjf .u/� f .v/jj2.
The vertices and edges are called joints and bars, respectively, in terms of

Structural Engineering. A tensegrity structure (Fuller, 1948) is a mechanically
stable bar framework in which bars are either cables (tension elements which
cannot get further apart), or struts (compression elements which cannot get closer
together).
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A framework .G; f / is globally rigid if every framework .G; f 0/, satisfying
jjf .u/ � f .v/jj2 D jjf 0.u/ � f 0.v/jj2 for all uv 2 E, also satisfy it for all
u; v 2 V . A framework .G; f / is rigid if every continuous motion of its vertices
which preserves the lengths of all edges, also preserves the distances between
all pairs of vertices. The framework .G; f / is generic if the set containing the
coordinates of all the points f .v/ is algebraically independent over the rationals.
The graph G is n-rigid if every its n-dimensional generic realization is rigid. For
generic frameworks, rigidity is equivalent to the stronger property of infinitesimal
rigidity.

An infinitesimal motion of .G; f / is a map m W V ! R
n with .m.u/ �

m.v//. f .u/ � f .v// D 0 whenever uv 2 E. A motion is trivial if it can be
extended to an isometry of Rn. A framework is an infinitesimally rigid if every
motion of it is trivial, and it is isostatic if, moreover, the deletion of any its edge
will cause loss of rigidity. .G; f / is an elastic framework if, for any � > 0,
there exists a ı > 0 such that for every edge-weighting w W E ! R>0 with
maxuv2E jw.uv/ � jjf .u/ � f .v/jj2j � ı, there exist a framework .G; f 0/ with
maxv2V jjf .u/� f 0.v/jj2 < �.

A framework .G; f / with jjf .u/ � f .v/jj2 > r if u; v 2 V; u ¤ c and
jjf .u/; f .v/jj2 � R if uv 2 E, for some 0 < r < R, is called (Doyle–Snell, 1984)
a civilized drawing of a graph. The random walks on such graphs are recurrent if
n D 1; 2.

• Distance constrained labeling
Given a sequence ˛ D .˛1; : : : ; ˛k/ of distance constraints ˛1 � � � � � ˛k >

0, a 	˛-labeling of a graph G D .V;E/ is an assignment of labels f .v/ from
the set f0; 1; : : : ; 	g of integers to the vertices v 2 V such that, for any t with
0 � t � k, jf .v/� f .u/j � ˛t whenever the path distance between u and v is t.

The radio frequency assignment problem, where vertices are transmitters
(available channels) and labels represent frequencies of not-interfering channels,
consists of minimizing 	. Distance-two labeling is the main interesting case
˛ D .2; 1/; its span is the difference between the largest and smallest labels
used.

• Distance-related graph embedding
An embedding of the guest graph G D .V1;E1/ into the host graph H D

.V2;E2/ with jV1j � jV2j, is an injective map from V1 into V2.
The wire length, dilation and antidilation of G in H are

min
f

X

.uv/2E1

dH. f .u/; f .v//; min
f

max
.uv/2E1

dH. f .u/; f .v//; max
f

min
.uv/2E1

dH. f .u/; f .v//;

respectively, where f is any embedding of G into H. The main distance-
related graph embedding problems consist of finding or estimating these three
parameters.

The bandwidth and antibandwidth of G is the dilation and antidilation,
respectively, of G in a path H with V1 vertices.
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• Bandwidth of a graph
Given a graph G D .V;E/ with jVj D n, its ordering is a bijective mapping

f W V ! f1; : : : ; ng. Given a number b > 0, the bandwidth problem for .G; b/ is
the existence of ordering f with the stretch maxuv2E jf .u/� f .v/j at most b.

The bandwidth of G, denoted by bw.G/, is the minimum stretch over all f .
The antibandwidth problem for G is to find ordering f with maximal

minuv2E jf .u/� f .v/j (antibandwidth).
• Path distance width of a graph

Given a connected graph G D .V;E/, an ordered partition V D [t
iD1Li of its

vertices is called a distance structure on G if Li D fv 2 V W minu2L1 dpath.u; v/ D
i � 1g for 1 � i � t. The structure is rooted if jL1j D 1.

The path distance width pwd.G/ of G is defined (Yamazaki et al., 1999) as
min max1�i�t jLij over all distance structures on G.

An ordered partition V D [t
iD1Li is called a level structure on G if for each

edge uv with u 2 Li and v 2 Lj, it holds that ji � jj � 1. The level width (or
strong pathwidth) lw.G/ is min max1�i�t jLij over all level structures.

Clearly, lw.G/ � pdw.G/. Yamazaki et al., 1999, proved that pdw.G/ can be
arbitrarily larger than the bandwidth bw.G/ and lw.G/ � bw.G/ < 2lw.G/.

• Tree-length of a graph
A tree decomposition of a graph G D .V;E/ is a pair of a tree T with vertex-

set W and a family of subsets fXi W i 2 Wg of V with [i2WXi D V such that

1. for every edge .uv/ 2 E, there is a subset Xi containing u; v, and
2. for every v 2 V , the set fi 2 W W v 2 Xig induces a connected subtree of T.

The chordal graphs (i.e., ones without induced cycles of length at least 4) are
exactly those admitting a tree decomposition where every Xi is a clique.

For tree decomposition, the tree-length is maxi2W diam.Xi/ (diam.Xi/ is the
diameter of the subgraph of G induced by Xi) and tree-width is maxi2W jXij �
1. The tree-length of G (Dourisboure–Gavoille, 2004) and its tree-width
(Robertson–Seymour, 1986) are the minima, over all tree decompositions, of
above tree-length and tree-width. The path-length G is defined taking as trees
only paths.

Given a linear ordering e1; : : : ; ejEj of the edges of G, let, for 1 � i <
jEj, denote by G�i and Gi< the graphs induced by the edges fe1; : : : ; eig and
feiC1; : : : ; ejEjg, respectively. The linear-length is max1�i<jEj diam.V.G�i/ \
V.Gi<//. The linear-length of G (Umezawa–Yamazaki, 2009) is the minimum
of the above linear-length taken over all the linear orderings of its edges.

• Spatial graph
A spatial graph (or spatial network) is a graph G D .V;E/, where each vertex

v has a spatial position .v1; : : : ; vn/ 2 R
n. (G is called a geometric graph if it is

drawn on R
2 and its edges are straight-line segments.)

The graph-theoretic dilation and geometric dilation of G are, respectively:

max
v;u2V

d.v; u/

jjv � ujj2 and max
.vu/2E

d.v; u/

jjv � ujj2 :
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• Distance Geometry problem
Given a weighted finite graph G D .V;EI w/, the Distance Geometry

problem (DGP) is the problem of realizing it as a spatial graph G D .V 0;E0/,
where x W V ! V 0 is a bijection with x.v/ D .v1; : : : ; vn/ 2 R

n for every v 2 V
and E0 D f.x.u/x.v// W .uv/ 2 Eg, so that for every edge .uv/ 2 E it holds that

jjx.u/� x.u/jj2 D w.uv/:

The main application of DGP is the molecular DGP: to find the coordinates of
the atoms of a given molecular conformation are by exploiting only some of the
distances between pairs of atoms found experimentally; cf. [MLLM13].

• Arc routing problems
Given a finite set X, a quasi-distance d.x; y/ on it and a set A � f.x; y/ W x; y 2

Xg, consider the weighted digraph D D .X;A/ with the vertex-set X and arc-
weights d.x; y/ for all arcs .x; y/ 2 A. For given sets V of vertices and E of arcs,
the arc routing problem consists of finding a shortest (i.e., with minimal sum
of weights of its arcs) .V;E/-tour, i.e., a circuit in D D .X;A/, visiting each
vertex in V and each arc in E exactly once or, in a variation, at least once.

The Asymmetric Traveling Salesman problem corresponds to the case V D X,
E D ;; the Traveling Salesman problem is the symmetric version of it (usually,
each vertex should be visited exactly once). The Bottleneck Traveling Salesman
problem consists of finding a .V;E/-tour T with smallest max.x;y/2T d.x; y/.

The Windy Postman problem corresponds to the case V D ;, E D A, while
the Chinese Postman problem is the symmetric version of it.

The above problems are also considered for general arc- or edge-weights;
then, for example, the term Metric TSP is used when edge-weights in the
Traveling Salesman problem satisfy the triangle inequality, i.e., d is a quasi-
semimetric.

• Steiner distance of a set
The Steiner distance of a set S 
 V of vertices in a connected graph

G D .V;E/ is (Chartrand et al., 1989) the minimum size (number of edges) of a
connected subgraph of G, containing S. Such a subgraph is a tree, and is called a
Steiner tree for S. Cf. general Steiner diversity in Steiner ratio (Chap. 1).

The Steiner distance of the set S D fu; vg is the path metric between u and
v. The Steiner k-diameter of G is the maximum Steiner distance of any k-subset
of V .

• t-spanner
A factor, i.e., a spanning subgraph, H D .V;E.H// of a connected graph

G D .V;E/ is called a t-spanner (or t-multiplicative spanner) of G if, for every
u; v 2 V , the inequality dH

path.u; v/=dG
path.u; v/ � t holds. The value t is called

the stretch factor (or dilation) of H. Cf. distance-related graph embedding and
spatial graph.

The graph H D .V;E.H// is called a k-additive spanner of G if, for every
u; v 2 V , the inequality dH

path.u; v/ � dG
path.u; v/C k holds.
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Mulder and Nebeský, 2012, defined, for connected H, the guide of .H;G/ as
the ternary relation R 
 V � V � V consisting of ordered triples .u;w; v/ such
that uw 2 E and dH

path.u;w/ C dH
path.w; v/ D dH

path.u; v/. The guide of .G;G/ is
called the step ternary relation; cf. metric betweenness in Chap. 1.

• Optimal realization of metric space
Given a finite metric space .X; d/, a realization of it is a weighted graph G D

.V;EI w/ with X 
 V such that d.x; y/ D dG.x; y/ holds for all x; y 2 X.
The realization is optimal if it has minimal

P
.uv/2E w.uv/.

• Proximity graph
Given a finite subset V of a metric space .X; d/, its proximity graph is a graph

representing neighbor relationships between points of V . Such graphs are used
in Computational Geometry and many real-world problems. The main examples
are presented below. Cf. underlying graph of a metric space in Chap. 1.

A spanning tree of V is a set T of jVj � 1 unordered pairs .x; y/ of different
points of V forming a tree on V; the weight of T is

P
.x;y/2T d.x; y/. A minimum

spanning tree MST.V/ of V is a spanning tree with the minimal weight. Such a
tree is unique if the edge-weights are distinct.

A nearest neighbor graph is the digraph NNG.V/ D .V;E/ with vertex-set
V D v1; : : : ; vjVj and, for x; y 2 V , xy 2 E if y is the nearest neighbor of x, i.e.,
d.x; y/ D minvi2Vnfxg d.x; vi/ and only vi with maximal index i is picked. The k-
nearest neighbor graph arises if k such vi with maximal indices are picked. The
undirect version of NNG.V/ is a subgraph of MST.V/.

A relative neighborhood graph is (Toussaint, 1980) the graph RNG.V/ D
.V;E/ with vertex-set V and, for x; y 2 V , xy 2 E if there is no point z 2 V
with maxfd.x; z/; d.y; z/g < d.x; y/. Also considered, for .X; d/ D .R2; jjx �
yjj2/, the related Gabriel graph GG.V/ (in general, ˇ-skeleton) and Delaunay
triangulation DT.V/; then NNG.V/ � MST.V/ � RNG.V/ � GG.V/ �
DT.V/.

For any x 2 V , its sphere of influence is the open metric ball B.x; rx/ D fz 2
X W d.x; z/ < rg in .X; d/ centered at x with radius rx D minz2Vnfxg d.x; z/.

Sphere of influence graph is the graph SIG.V/ D .V;E/ with vertex-set V
and, for x; y 2 V , xy 2 E if B.x; rx/ \ B.y; ry/ ¤ ;; so, it is a proximity graph
and an intersection graph. The closed sphere of influence graph is the graph
CSIG.V/ D .V;E/ with xy 2 E if B.x; rx/\ B.y; ry/ ¤ ;.

15.3 Distances on Graphs

• Chartrand–Kubicki–Schultz distance
The Chartrand–Kubicki–Schultz distance (or �-distance, 1998) between

two connected graphs G1 D .V1;E1/ and G2 D .V2;E2/ with jV1j D jV2j D n is

minf
X

jdG1.u; v/ � dG2 .�.u/; �.v//jg;
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where dG1 ; dG2 are the path metrics of graphs G1;G2, the sum is taken over
all unordered pairs u; v of vertices of G1, and the minimum is taken over all
bijections � W V1 ! V2.

• Subgraph metric
Let F D fF1 D .V1;E1/;F2 D .V2;E2/; : : : ; g be the set of isomorphism

classes of finite graphs. Given a finite graph G D .V;E/, denote by si.G/ the
number of injective homomorphisms from Fi into G, i.e., the number of injections
� W Vi ! V with �.x/�.y/ 2 E if xy 2 Ei divided by the number jVjŠ

.jVj�jVij/Š of such
injections from Fi with jVij � jVj into KjVj. Set s.G/ D .si.G//1iD1 2 Œ0; 1�1.

Let d be the Cantor metric (Chap. 18) d.x; y/ D P1
iD1 2�ijxi � yij on Œ0; 1�1

or any metric on Œ0; 1�1 inducing the product topology. Then Bollobás–Riordan,
2007, defined the subgraph metric between the graphs G1 and G2 as

d.s.G1/; s.G2//

and generalized it on kernels (or graphons), i.e., symmetric measurable functions
k W Œ0; 1� � Œ0; 1� ! R�0, replacing G by k and the above si.G/ by

si.k/ D
Z

Œ0;1�jVij

Y

st2Ei

k.xsxt/

jVijY

sD1
dxs:

• Benjamini–Schramm metric
The rooted graphs .G; o/ and .G0; o0/ (where G D .V;E/;G0 D .V 0;E0/ and

o 2 V; o0 2 V 0) are isomorphic is there is a graph-isomorphism of G onto G0
taking o to o0. Let X be the set of isomorphism classes of rooted connected locally
finite graphs and let .G; o/; .G0; o0/ be representatives of two classes.

Let k be the supremum of all radii r, for which rooted metric balls
.BG.o; r/; o/ and .BG0.o0; r/; o0/ (in the usual path metric) are isomorphic as
rooted graphs. Benjamini and Schramm, 2001, defined the metric 2�k between
classes represented by .G; o/ and .G0; o0/. Here 2�1 means 0. Benjamini and
Curien, 2011, defined the similar distance 1

1Ck .
• Rectangle distance on weighted graphs

Let G D G.˛; ˇ/ be a complete weighted graph on f1; : : : ; ng with vertex-
weights ˛i > 0, 1 � i � n, and edge-weights ˇij 2 R, 1 � i < j � n. Denote by

A.G/ the n � n matrix ..aij//, where aij D ˛i˛jˇij

.
P
1�i�n ˛i/2

.

The rectangle distance (or cut distance) between two weighted graphs G D
G.˛; ˇ/ and G0 D G.˛0; ˇ0/ (with vertex-weights .˛0

i/ and edge-weights .ˇ0
ij/) is

defined (Borgs–Chayes–Lovász–Sós–Vesztergombi, 2007) by

max
I;J�f1;:::;ng

j
X

i2I;j2J

.aij � a0
ij/j C

nX

iD1
j ˛i
P

1�j�n ˛j
� ˛0

iP
1�j�n ˛

0
j

j;

where A.G/ D ..aij// and A.G0/ D ..a0
ij//.
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In the case .˛0
i/ D .˛i/, the rectangle distance is jjA.G/ � A.G0/jjcut, i.e.,

the cut norm metric (cf. Chap. 12) between matrices A.G/ and A.G0/ and the
rectangle distance from Frieze–Kannan, 1999. In this case, the l1- and l2-metrics
between two weighted graphs G and G0 are defined as jjA.G/ � A.G0/jj1 and
jjA.G/�A.G0/jj2, respectively. The subcase ˛i D 1 for all 1 � i � n corresponds
to unweighted vertices. Cf. the Robinson–Foulds weighted metric.

Authors generalized the rectangle distance on kernels (or graphons), i.e.,
symmetric measurable functions k W Œ0; 1� � Œ0; 1� ! R�0, using the cut norm
jjkjjcut D supS;T�Œ0;1� j

R
S�T k.x; y/dxdyj.

A map � W Œ0; 1� ! Œ0; 1� is measure-preserving if, for any measurable subset
A 
 Œ0; 1�, the measures of A and ��1.A/ are equal. For a kernel k, define the
kernel k� by k�.x; y/ D k.�.x/; �.y//. The Lovász–Szegedy semimetric (2007)
between kernels k1 and k1 is defined by

inf
�

jjk�1 � k2jjcut;

where � ranges over all measure-preserving bijections Œ0; 1� ! Œ0; 1�. Cf.
Chartrand–Kubicki–Schultz distance.

• Spectral semimetric between graphs
Given a finite weighted graph G D .V;E;w/, its normalised Laplacian matrix

is�G D I �D�1A, where D is the diagonal matrix ..lij// with lii being the degree
of vertex i, while A is the adjacency matrix of G; cf. the resistance metric.

The spectrum of G consists of all eigenvalues 	i; 1 � i � jVj, of �G. The
spectrum, organised as 	G D .	1; : : : ; 	jVj/, where the 	i do not decrease, is
called the spectral vector.

The spectral semimetric between two finite weighted graphs G D .V;E;w/
and G0 D .V 0;E0;w0/ with jVj D jV 0j D n is defined (Gu–Hua–Liu, 2015) as

dp.G;G
0/ D 1

n
k	G � 	G0kp;

i.e., the lp-distance between the spectral vectors, for any 1 � p < 1.
In fact, by assigning a probability measure via the spectrum of the normalised

Laplacian matrix to each graph, Gu, Hua, and Liu defined their spectral distance
dp as the Lp-Wasserstein distance (cf. Chap. 14) between probability measures
on the set of all, including infinite and random, weighted graphs.

• Subgraph–supergraph distances
A common subgraph of graphs G1 and G2 is a graph which is isomorphic to

induced subgraphs of both G1 and G2. A common supergraph of graphs G1 and
G2 is a graph which contains induced subgraphs isomorphic to G1 and G2.

The Zelinka distance dZ ([Zeli75]) on the set G of all graphs (more exactly,
on the set of all equivalence classes of isomorphic graphs) is defined by

dZ D maxfn.G1/; n.G2/g � n.G1;G2/
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for any G1;G2 2 G, where n.Gi/ is the number of vertices in Gi, i D 1; 2, and
n.G1;G2/ is the maximum number of vertices of their common subgraph.

The Bunke–Shearer metric (1998) on the set of nonempty graphs is defined
by

1 � n.G1;G2/

maxfn.G1/; n.G2/g :

Given any set M of graphs, the common subgraph distance dM on M is

maxfn.G1/; n.G2/g � n.G1;G2/;

and the common supergraph distance d�
M is defined, for any G1;G2 2 M, by

N.G1;G2/� minfn.G1/; n.G2/g;
where n.Gi/ is the number of vertices in Gi, i D 1; 2, while n.G1;G2/ and
N.G1;G2/ are the maximal order of a common subgraph G 2 M and the minimal
order of a common supergraph H 2 M, respectively, of G1 and G2.

dM is a metric on M if the following condition (i) holds:

(i) if H 2 M is a common supergraph of G1;G2 2 M, then there exists a
common subgraph G 2 M of G1 and G2 with n.G/ � n.G1/Cn.G2/�n.H/.

d�
M is a metric on M if the following condition (ii) holds:

(ii) if G 2 M is a common subgraph of G1;G2 2 M, then there exists a common
supergraph H 2 M of G1 and G2 with n.H/ � n.G1/C n.G2/� n.G/.

One has dM � d�
M if the condition (i) holds, and dM � d�

M if (ii) holds.
The distance dM is a metric on the set G of all graphs, the set of all cycle-free

graphs, the set of all bipartite graphs, and the set of all trees. The distance d�
M

is a metric on the set G of all graphs, the set of all connected graphs, the set of
all connected bipartite graphs, and the set of all trees. The Zelinka distance dZ

coincides with dM and d�
M on the set G of all graphs. On the set T of all trees the

distances dM and d�
M are identical, but different from the Zelinka distance.

The Zelinka distance dZ is a metric on the set G.n/ of all graphs with n
vertices, and is equal to n � k or to K � n for all G1, G2 2 G.n/, where k is
the maximum number of vertices of a common subgraph of G1 and G2, and K is
the minimum number of vertices of a common supergraph of G1 and G2.

On the set T.n/ of all trees with n vertices the distance dZ is called the Zelinka
tree distance (see, for example, [Zeli75]).

• Fernández–Valiente metric
Given graphs G and H, let G1 D .V1;E1/ and G2 D .V2;E2/ be their

maximum common subgraph and minimum common supergraph; cf. subgraph–
supergraph distances. The Fernández–Valiente metric (2001) between G and
H is

.jV2j C jE2j/� .jV1j C jE1j/:
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• Graph edit distance
The graph edit distance (Axenovich–Kézdy–Martin, 2008, and Alon–Stav,

2008) between graphs G and G0 on the same labeled vertex-set is defined by

ded.G;G
0/ D jE.G/�E.G0/j:

It is the minimum number of edge deletions or additions needed to transform G
into G0, and half of the Hamming distance between their adjacency matrices.

Given a graph property (i.e., a family H of graphs), let ded.G;H/ be
minfded.G;G0/ W V.G0/ D V.G/;G0 2 Hg. Given a number p 2 .0; 1�, the
edit distance function of a property H is (if this limit exists) defined by

edH.p/ D lim
n!1 maxfded.G;H/ W jV.G/j D n; jE.G/j D b p

 
n

2

!

cg.
 

n

2

!

/�1:

If H is hereditary (closed under the taking induced subgraphs) and nontrivial
(contains arbitrarily large graphs), then (Balogh–Martin, 2008) it holds

edH.p/ D lim
n!1EŒded.G.n; p/;H/�.

 
n

2

!

/�1I

G.n; p/ is the random graph (Chap. 1) on n vertices with edge probability p.
Bunke, 1997, defined the graph edit distance between vertex- and edge-

labeled graphs G1 and G2 as the minimal total cost of matching G1 and G2, using
deletions, additions and substitutions of vertices and edges. Cf. also tree, top-
down, unit cost and restricted edit distance between rooted trees.

The Bayesian graph edit distance between two relational graphs (i.e., triples
.V;E;A/, where V;E;A are the sets of vertices, edges, vertex-attributes) is
(Myers–Wilson–Hancock, 2000) their graph edit distance with costs defined by
probabilities of operations along an editing path seen as a memoryless error
process. Cf. transduction edit distances (Chap. 11) and Bayesian distance
(Chap. 14).

The structural Hamming distance between two digraphs G D .X;E/ and
G0 D .X;E0/ is defined (Acid–Campos, 2003) as SHD.G;G0/ D jE�E0j. The
ring sum (or symmetric difference) of G and G0 is defined (Deo, 1974) as .X [
X0;E�E0/.

• Edge distance
The edge distance on the set of all graphs is defined (Baláž et al., 1986) by

jE1j C jE2j � 2jE12j C jjV1j � jV2jj

for any graphs G1 D .V1;E1/ and G2 D .V2;E2/, where G12 D .V12;E12/ is a
common subgraph of G1 and G2 with maximal number of edges. This distance
has many applications in Organic and Medical Chemistry.
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• Contraction distance
The contraction distance is a distance on the set G.n/ of all graphs with n

vertices defined by

n � k

for any G1;G2 2 G.n/, where k is the maximum number of vertices of a graph
which is isomorphic simultaneously to a graph, obtained from each of G1 and G2

by a finite number of edge contractions. To perform the contraction of the edge
uv 2 E of a graph G D .V;E/ means to replace u and v by one vertex that is
adjacent to all vertices of Vnfu; vg which were adjacent to u or to v.

• Edge move distance
The edge move distance (Baláž et al., 1986) is a metric on the set G.n;m/ of

all graphs with n vertices and m edges, defined, for any G1;G2 2 G.m; n/, as the
minimum number of edge moves necessary for transforming the graph G1 into
the graph G2. It is equal to m � k, where k is the maximum size of a common
subgraph of G1 and G2.

An edge move is one of the edge transformations, defined as follows: H can be
obtained from G by an edge move if there exist (not necessarily distinct) vertices
u; v;w, and x in G such that uv 2 E.G/, wx … E.G/, and H D G � uv C wx.

• Edge jump distance
The edge jump distance is an extended metric (which in general can take the

value 1) on the set G.n;m/ of all graphs with n vertices and m edges defined,
for any G1;G2 2 G.m; n/, as the minimum number of edge jumps necessary for
transforming G1 into G2.

An edge jump is one of the edge transformations, defined as follows: H can
be obtained from G by an edge jump if there exist four distinct vertices u; v;w,
and x in G, such that uv 2 E.G/, wx … E.G/, and H D G � av C wx.

• Edge flipping distance
Let P D fv1; : : : ; vng be a collection of points on the plane. A triangulation

T of P is a partition of the convex hull of P into a set of triangles such that each
triangle has a disjoint interior and the vertices of each triangle are points of P.

The edge flipping distance is a distance on the set of all triangulations of
P defined, for any triangulations T and T1, as the minimum number of edge
flippings necessary for transforming T into T1.

An edge e of T is called flippable if it is the boundary of two triangles t and
t
0

of T, and C D t [ t
0

is a convex quadrilateral. The flipping e is one of the
edge transformations, which consists of removing e and replacing it by the other
diagonal of C. Edge flipping is an special case of edge jump.

The edge flipping distance can be extended on pseudo-triangulations, i.e.,
partitions of the convex hull of P into a set of disjoint interior pseudo-triangles
(simply connected subsets of the plane that lie between any three mutually
tangent convex sets) whose vertices are given points.
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• Edge rotation distance
The edge rotation distance (Chartand–Saba–Zou, 1985) is a metric on the

set G.n;m/ of graphs with n vertices and m edges, defined, for any G1;G2, as
the minimum number of edge rotations needed for transforming G1 into G2.
Cf. Pospichal–Kvasnic̆ka chemical distance, called also reaction metric, in
Chap. 24.

An edge rotation is one of the edge transformations, defined as follows: H can
be obtained from G by an edge rotation if there exist distinct vertices u; v, and w
in G, such that uv 2 E.G/, uw … E.G/, and H D G � uv C uw.

• Tree edge rotation distance
The tree edge rotation distance is a metric on the set T.n/ of all trees with

n vertices defined, for all T1, T2 2 T.n/, as the minimum number of tree edge
rotations necessary for transforming T1 into T2. A tree edge rotation is an edge
rotation performed on a tree, and resulting in a tree.

For T.n/ the tree edge rotation and the edge rotation distances may differ.
• Edge shift distance

The edge shift distance (or edge slide distance) is a metric (Johnson, 1985)
on the set Gc.n;m/ of all connected graphs with n vertices and m edges defined,
for any G1;G2 2 Gc.m; n/, as the minimum number of edge shifts necessary for
transforming G1 into G2.

An edge shift is one of the edge transformations, defined as follows: H can be
obtained from G by an edge shift if there exist distinct vertices u; v, and w in G
such that uv; vw 2 E.G/, uw … E.G/, and H D G � uv C uw. Edge shift is a
special kind of edge rotation in the case when the vertices v;w are adjacent in G.

The edge shift distance can be defined between any graphs G and H with
components Gi.1 � i � k/ and Hi.1 � i � k/, respectively, such that Gi and Hi

have the same order and the same size.
• F-rotation distance

The F-rotation distance is a distance on the set GF.n;m/ of all graphs with
n vertices and m edges, containing a subgraph isomorphic to a given graph F of
order at least 2 defined, for all G1, G2 2 GF.m; n/, as the minimum number of
F-rotations necessary for transforming G1 into G2.

An F-rotation is one of the edge transformations, defined as follows: let F
0

be
a subgraph of a graph G, isomorphic to F, let u; v;w be three distinct vertices of
the graph G such that u 62 V.F

0

/, v;w 2 V.F
0

/, uv 2 E.G/, and uw … E.G/; H
can be obtained from G by the F-rotation of the edge uv into the position uw if
H D G � uv C uw.

• Binary relation distance
Let R be a nonreflexive binary relation between graphs, i.e., R 
 G � G, and

there exists G 2 G such that .G;G/ … R.
The binary relation distance is a metric (which can take the value 1) on the

set G of all graphs defined, for any graphs G1 and G2, as the minimum number
of R-transformations necessary for transforming G1 into G2. We say that a graph
H can be obtained from a graph G by an R-transformation if .H;G/ 2 R.
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An example is the distance between two triangular embeddings of a complete
graph (i.e., its cellular embeddings in a surface with only 3-gonal faces) defined
as the minimal number t such that, up to replacing t faces, the embeddings are
isomorphic.

• Crossing-free transformation metrics
Given a subset S of R

2, a noncrossing spanning tree of S is a tree whose
vertices are points of S, and edges are pairwise noncrossing straight line
segments.

The crossing-free edge move metric (see [AAH00]) on the set TS of all
noncrossing spanning trees of a set S, is defined, for any T1;T2 2 TS, as the
minimum number of crossing-free edge moves needed to transform T1 into T2.
Such move is an edge transformation which consists of adding some edge e in
T 2 TS and removing some edge f from the induced cycle so that e and f do not
cross.

The crossing-free edge slide metric is a metric on the set TS of all
noncrossing spanning trees of a set S defined, for any T1;T2 2 TS, as the
minimum number of crossing-free edge slides necessary for transforming T1 into
T2. Such slide is one of the edge transformations which consists of taking some
edge e in T 2 TS and moving one of its endpoints along some edge adjacent to
e in T, without introducing edge crossings and without sweeping across points
in S (that gives a new edge f instead of e). The edge slide is a special kind of
crossing-free edge move: the new tree is obtained by closing with f a cycle C of
length 3 in T, and removing e from C, in such a way that f avoids the interior of
the triangle C.

• Traveling salesman tours distances
The Traveling Salesman problem is the problem of finding the shortest tour

that visits a set of cities. We will consider only Traveling Salesman problem with
undirected links. For an n-city traveling salesman problem, the space Tn of tours
is the set of .n�1/Š

2
cyclic permutations of the cities 1; 2; : : : ; n.

The metric D on Tn is defined in terms of the difference in form: if tours
T;T

0 2 Tn differ in m links, then D.T;T
0

/ D m.
A k-OPT transformation of a tour T is obtained by deleting k links from T, and

reconnecting. A tour T
0

, obtained from T by a k-OPT transformation, is called
a k-OPT of T. The distance d on the set TN is defined in terms of the 2-OPT
transformations: d.T;T

0

/ is the minimal i, for which there exists a sequence of
i 2-OPT transformations which transforms T to T

0

. In fact, d.T;T
0

/ � D.T;T
0

/

for any T;T
0 2 TN (see, for example, [MaMo95]). Cf. arc routing problems.

• Orientation distance
The orientation distance (Chartrand–Erwin–Raines–Zhang, 2001) between

two orientations D and D0 of a finite graph is the minimum number of arcs of D
whose directions must be reversed to produce an orientation isomorphic to D0.
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• Subgraphs distances
The standard distance on the set of all subgraphs of a connected graph G D

.V;E/ is defined by

minfdpath.u; v/ W u 2 V.F/; v 2 V.H/g
for any subgraphs F;H of G. For any subgraphs F, H of a strongly connected
digraph D D .V;E/, the standard quasi-distance is defined by

minfddpath.u; v/ W u 2 V.F/; v 2 V.H/g:
Using standard operations (rotation, shift, etc.) on the edge-set of a graph, one
gets corresponding distances between its edge-induced subgraphs of given size
which are subcases of similar distances on the set of all graphs of a given size
and order.

The edge rotation distance on the set Sk.G/ of all edge-induced subgraphs
with k edges in a connected graph G is defined as the minimum number of edge
rotations required to transform F 2 Sk.G/ into H 2 Sk.G/. We say that H can be
obtained from F by an edge rotation if there exist distinct vertices u; v, and w in
G such that uv 2 E.F/, uw 2 E.G/nE.F/, and H D F � uv C uw.

The edge shift distance on the set Sk.G/ of all edge-induced subgraphs with
k edges in a connected graph G is defined as the minimum number of edge shifts
required to transform F 2 Sk.G/ into H 2 Sk.G/. We say that H can be obtained
from F by an edge shift if there exist distinct vertices u; v and w in G such that
uv; vw 2 E.F/, uw 2 E.G/nE.F/, and H D F � uv C uw.

The edge move distance on the set Sk.G/ of all edge-induced subgraphs
with k edges of a graph G (not necessary connected) is defined as the minimum
number of edge moves required to transform F 2 Sk.G/ into H 2 Sk.G/. We say
that H can be obtained from F by an edge move if there exist (not necessarily
distinct) vertices u; v;w, and x in G such that uv 2 E.F/, wx 2 E.G/nE.F/, and
H D F � uvC wx. The edge move distance is a metric on Sk.G/. If F and H have
s edges in common, then it is equal to k � s.

The edge jump distance (which in general can take the value 1) on the
set Sk.G/ of all edge-induced subgraphs with k edges of a graph G (not
necessary connected) is defined as the minimum number of edge jumps required
to transform F 2 Sk.G/ into H 2 Sk.G/. We say that H can be obtained from F
by an edge jump if there exist four distinct vertices u; v;w, and x in G such that
uv 2 E.F/, wx 2 E.G/nE.F/, and H D F � uv C wx.

15.4 Distances on Trees

Let T be a rooted tree, i.e., a tree with one of its vertices being chosen as the root.
The depth of a vertex v, depth.v/, is the number of edges on the path from v to the
root. A vertex v is called a parent of a vertex u, v D par.u/, if they are adjacent,
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and depth.u/ D depth.v/C 1; in this case u is called a child of v. A leaf is a vertex
without child. Two vertices are siblings if they have the same parent.

The in-degree of a vertex is the number of its children. T.v/ is the subtree of T,
rooted at a node v 2 V.T/. If w 2 V.T.v//, then v is an ancestor of w, and w is a
descendant of v; nca.u; v/ is the nearest common ancestor of the vertices u and v.

T is called a labeled tree if a symbol from a fixed finite alphabet A is assigned
to each node. T is called an ordered tree if a left-to-right order among siblings in
T is given. On the set Trlo of all rooted labeled ordered trees there are three editing
operations:

• Relabel—change the label of a vertex v;
• Deletion—delete a nonrooted vertex v with parent v

0

, making the children of
v become the children of v

0

; the children are inserted in the place of v as a
subsequence in the left-to-right order of the children of v

0

;
• Insertion—the complement of deletion; insert a vertex v as a child of a v

0

making
v the parent of a consecutive subsequence of the children of v

0

.

For unordered trees above operations (and so, distances) are defined similarly, but
the insert and delete operations work on a subset instead of a subsequence.

We assume that there is a cost function defined on each editing operation, and the
cost of a sequence of editing operations is the sum of the costs of these operations.

The ordered edit distance mapping is a representation of the editing operations.
Formally, the triple .M;T1;T2/ is an ordered edit distance mapping from T1 to T2,
T1;T2 2 Trlo, if M 
 V.T1/ � V.T2/ and, for any .v1;w1/, .v2;w2/ 2 M, the
following conditions hold: v1 D v2 if and only if w1 D w2 (one-to-one condition),
v1 is an ancestor of v2 if and only if w1 is an ancestor of w2 (ancestor condition), v1
is to the left of v2 if and only if w1 is to the left of w2 (sibling condition).

We say that a vertex v in T1 and T2 is touched by a line in M if v occurs in
some pair in M. Let N1 and N2 be the set of vertices in T1 and T2, respectively, not
touched by any line in M. The cost of M is given by �.M/ D P

.v;w/2M �.v !
w/CP

v2N1
�.v ! 	/CP

w2N2
�.	 ! w/, where �.a ! b/ D �.a; b/ is the cost

of an editing operation a ! b which is a relabel if a; b 2 A, a deletion if b D 	,
and an insertion if a D 	. Here 	 62 A is a special blank symbol, and � is a metric
on the set A [ 	 (excepting the value �.	; 	/).

• Tree edit distance
The tree edit distance (see [Tai79]) on the set Trlo of all rooted labeled

ordered trees is defined, for any T1;T2 2 Trlo, as the minimum cost of a sequence
of editing operations (relabels, insertions, and deletions) turning T1 into T2.

In terms of ordered edit distance mappings, it is equal to min.M;T1;T2/ �.M/,
where the minimum is taken over all such mappings .M;T1;T2/.

The unit cost edit distance between T1 and T2 is the minimum number of
three above editing operations turning T1 into T2, i.e., it is the tree edit distance
with cost 1 of any operation.
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• Selkow distance
The Selkow distance (or top-down edit distance, degree-1 edit distance)

is a distance on the set Trlo of all rooted labeled ordered trees defined, for
any T1;T2 2 Trlo, as the minimum cost of a sequence of editing operations
(relabels, insertions, and deletions) turning T1 into T2 if insertions and deletions
are restricted to leaves of the trees (see [Selk77]).

The root of T1 must be mapped to the root of T2, and if a node v is to be
deleted (inserted), then any subtree rooted at v is to be deleted (inserted).

In terms of ordered edit distance mappings, it is equal to min.M;T1;T2/ �.M/,
where the minimum is taken over all such mappings .M;T1;T2/ such that
.par.v/; par.w// 2 M if .v;w/ 2 M, where neither v nor w is the root.

• Restricted edit distance
The restricted edit distance is a distance on the set Trlo of all rooted labeled

ordered trees defined, for any T1;T2 2 Trlo, as the minimum cost of a sequence
of editing operations (relabels, insertions, and deletions) turning T1 into T2 with
the restriction that disjoint subtrees should be mapped to disjoint subtrees.

In terms of ordered edit distance mappings, it is equal to min.M;T1;T2/ �.M/,
where the minimum is taken over all such mappings .M;T1;T2/ satisfying the
following condition: for all .v1;w1/, .v2;w2/, .v3;w3/ 2 M, nca.v1; v2/ is a
proper ancestor of v3 if and only if nca.w1;w2/ is a proper ancestor of w3.

This distance is equivalent to the structure respecting edit distance which
is defined by min.M;T1;T2/ �.M/. Here the minimum is taken over all ordered
edit distance mappings .M;T1;T2/, satisfying the following condition: for all
.v1;w1/, .v2;w2/, .v3;w3/ 2 M, such that none of v1; v2, and v3 is an ancestor of
the others, nca.v1; v2/ D nca.v1; v3/ if and only if nca.w1;w2/ D nca.w1;w3/.

Cf. constrained edit distance in Chap. 11.
• Alignment distance

The alignment distance (see [JWZ94]) is a distance on the set Trlo of all
rooted labeled ordered trees defined, for any T1;T2 2 Trlo, as the minimum cost
of an alignment of T1 and T2. It corresponds to a restricted edit distance, where
all insertions must be performed before any deletions.

Thus, one inserts spaces, i.e., vertices labeled with a blank symbol 	, into
T1 and T2 so that they become isomorphic when labels are ignored; the resulting
trees are overlaid on top of each other giving the alignment TA which is a tree,
where each vertex is labeled by a pair of labels. The cost of TA is the sum of the
costs of all pairs of opposite labels in TA.

• Splitting-merging distance
The splitting-merging distance (see [ChLu85]) is a distance on the set Trlo

of all rooted labeled ordered trees defined, for any T1;T2 2 Trlo, as the minimum
number of vertex splittings and mergings needed to transform T1 into T2.

• Degree-2 distance
The degree-2 distance is a metric on the set Tl of all labeled trees (labeled free

trees), defined, for any T1;T2 2 Tl, as the minimum number of editing operations
(relabels, insertions, and deletions) turning T1 into T2 if any vertex to be inserted
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(deleted) has no more than two neighbors. This metric is a natural extension of
the tree edit distance and the Selkow distance.

A phylogenetic X-tree is an unordered unrooted tree with the labeled leaf set X and
no vertices of degree two. If every interior vertex has degree three, the tree is called
binary. Let T.X/ denote the set of all phylogenetic X-trees.

• Robinson–Foulds metric
A cut AjB of X is a partition of X into two subsets A and B (see cut

semimetric). Removing an edge e from a phylogenetic X-tree induces a cut of
the leaf set X which is called the cut associated with e.

The Robinson–Foulds metric (or Bourque metric, bipartition distance) is a
metric on the set T.X/, defined, for any phylogenetic X-trees T1;T2 2 T.X/, by

1

2
j˙.T1/4˙.T2/j D 1

2
j˙.T1/ n˙.T2/j C 1

2
j˙.T2/ n˙.T1/j;

where ˙.T/ is the collection of all cuts of X associated with edges of T.
The Robinson–Foulds weighted metric is a metric on the set T.X/ of all

phylogenetic X-trees defined by

X

AjB2˙.T1/[˙.T2/
jw1.AjB/� w2.AjB/j

for all T1;T2 2 T.X/, where wi D .w.e//e2E.Ti/ is the collection of positive
weights, associated with the edges of the X-tree Ti, ˙.Ti/ is the collection of all
cuts of X, associated with edges of Ti, and wi.AjB/ is the weight of the edge,
corresponding to the cut AjB of X, i D 1; 2. Cf. more general cut norm metric
in Chap. 12 and rectangle distance on weighted graphs.

• �-metric
Given a phylogenetic X-tree T with n leaves and a vertex v in it, let �.v/ D

.�1.v/; : : : ; �n.v//, where �i.v/ is the number of different paths from the vertex
v to the i-th leaf. Let �.T/ denote the multiset on the vertex-set of T with �.v/
being the multiplicity of the vertex v.

The �-metric (Cardona–Roselló–Valiente, 2008) is a metric on the set T.X/
of all phylogenetic X-trees defined, for all T1;T2 2 T.X/, by

1

2
j�.T1/��.T2/j;

where � denotes the symmetric difference of multisets.
Cf. the metrics between multisets in Chap. 1 and the Dodge–Shiode WebX

quasi-distance in Chap. 22.
• Nearest neighbor interchange metric

The nearest neighbor interchange metric (or crossover metric) on the
set T.X/ of all phylogenetic X-trees, is defined, for all T1;T2 2 T.X/, as the



15.4 Distances on Trees 309

minimum number of nearest neighbor interchanges required to transform T1 into
T2.

A nearest neighbor interchange consists of swapping two subtrees in a tree
that are adjacent to the same internal edge; the remainder of the tree is unchanged.

• Subtree prune and regraft distance
The subtree prune and regraft distance is a metric on the set T.X/ of all

phylogenetic X-trees defined, for all T1;T2 2 T.X/, as the minimum number of
subtree prune and regraft transformations required to transform T1 into T2.

A subtree prune and regraft transformation proceeds in three steps: one
selects and removes an edge uv of the tree, thereby dividing the tree into two
subtrees Tu (containing u) and Tv (containing v); then one selects and subdivides
an edge of Tv , giving a new vertex w; finally, one connects u and w by an edge,
and removes all vertices of degree two.

• Tree bisection-reconnection metric
The tree bisection-reconnection metric (or TBR-metric) on the set T.X/ of

all phylogenetic X-trees is defined, for all T1;T2 2 T.X/, as the minimum number
of tree bisection and reconnection transformations required to transform T1 into
T2.

A tree bisection and reconnection transformation proceeds in three steps: one
selects and removes an edge uv of the tree, thereby dividing the tree into two
subtrees Tu (containing u) and Tv (containing v); then one selects and subdivides
an edge of Tv , giving a new vertex w, and an edge of Tu, giving a new vertex z;
finally one connects w and z by an edge, and removes all vertices of degree two.

• Quartet distance
The quartet distance (see [EMM85]) is a distance of the set Tb.X/ of all

binary phylogenetic X-trees defined, for all T1;T2 2 Tb.X/, as the number of
mismatched quartets (from the total number .n4/ possible quartets) for T1 and T2.

This distance is based on the fact that, given four leaves f1; 2; 3; 4g of a tree,
they can only be combined in a binary subtree in three ways: .12j34/, .13j24/, or
.14j23/: the notation .12j34/ refers to the binary tree with the leaf set f1; 2; 3; 4g
in which removing the inner edge yields the trees with the leaf sets f1; 2g and
f3; 4g.

• Triples distance
The triples distance (see [CPQ96]) is a distance of the set Tb.X/ of all binary

phylogenetic X-trees defined, for all T1;T2 2 Tb.X/, as the number of triples
(from the total number .n3/ possible triples) that differ (for example, by which
leaf is the outlier) for T1 and T2.

• Perfect matching distance
The perfect matching distance is a distance on the set Tbr.X/ of all rooted

binary phylogenetic X-trees with the set X of n labeled leaves defined, for any
T1;T2 2 Tbr.X/, as the minimum number of interchanges necessary to bring the
perfect matching of T1 to the perfect matching of T2.

Given a set A D f1; : : : ; 2kg of 2k points, a perfect matching of A is a partition
of A into k pairs. A rooted binary phylogenetic tree with n labeled leaves has
a root and n � 2 internal vertices distinct from the root. It can be identified
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with a perfect matching on 2n � 2, different from the root, vertices by following
construction: label the internal vertices with numbers nC1; : : : ; 2n�2 by putting
the smallest available label as the parent of the pair of labeled children of which
one has the smallest label among pairs of labeled children; now a matching is
formed by peeling off the children, or sibling pairs, two by two.

• Tree rotation distance
The tree rotation distance is a distance on the set Tn of all rooted ordered

binary trees with n interior vertices defined, for all T1;T2 2 Tn, as the minimum
number of rotations, required to transform T1 into T2.

Given interior edges uv, vv0, vv00 and uw of a binary tree, the rotation is
replacing them by edges uv, uv00, vv0 and vw.

There is a bijection between edge flipping operations in triangulations of
convex polygons with n C 2 vertices and rotations in binary trees with n interior
vertices.

• Attributed tree metrics
An attributed tree is a triple .V;E; ˛/, where T D .V;E/ is the underlying

tree, and ˛ is a function which assigns an attribute vector ˛.v/ to every vertex
v 2 V . Given two attributed trees .V1;E1; ˛/ and .V2;E2; ˇ/, consider the set
of all subtree isomorphisms between them, i.e., the set of all isomorphisms f W
H1 ! H2, H1 
 V1, H2 
 V2, between their induced subtrees.

Given a similarity s on the set of attributes, the similarity between isomorphic
induced subtrees is defined as Ws. f / D P

v2H1
s.˛.v/; ˇ. f .v///. Let � be the

isomorphism with maximal similarity Ws.�/ D W.�/.
The following four semimetrics on the set Tatt of all attributed trees are used:

maxfjV1j; jV2jg � W.�/; jV1j C jV2j � 2W.�/ and

1 � W.�/

maxfjV1j; jV2jg ; 1 � W.�/

jV1j C jV2j � W.�/
:

They become metrics on the set of equivalences classes of attributed trees: two
such trees .V1;E1; ˛/ and .V2;E2; ˇ/ are called equivalent if they are attribute-
isomorphic, i.e., if there exists an isomorphism g W V1 ! V2 between the trees
such that, for any v 2 V1, we have ˛.v/ D ˇ.g.v//. Then jV1j D jV2j D W.g/.

• Maximal agreement subtree distance
The maximal agreement subtree distance (MAST) is (Finden–Gordon,

1985) a distance of the set T of all trees defined, for all T1;T2 2 T, as the
minimum number of leaves removed to obtain a (greatest) agreement subtree.

An agreement subtree (or common pruned tree) of two trees is an identical
subtree that can be obtained from both trees by pruning leaves with the same
label.
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• lp-distances between trees
Given p � 1, the lp-distance between trees T;T 0 on the same vertex-set is the

lp-metric between their (shortest path) distance matrices D;D0 seen as vectors.
For p D 1, it is edge difference distance (Williams–Clifford, 1971). For

p D 2, it is path difference distance (Steel–Penny, 1993). For p D 1, it is
path interval (or k-interval cospeciation, as in original Hugguns et al., 2012)
distance.



Chapter 16
Distances in Coding Theory

Coding Theory deals with the design and properties of error-correcting codes for
the reliable transmission of information across noisy channels in transmission lines
and storage devices. The aim of Coding Theory is to find codes which transmit and
decode fast, contain many valid code words, and can correct, or at least detect, many
errors. These aims are mutually exclusive, however; so, each application has its own
good code.

In communications, a code is a rule for converting a piece of information
(for example, a letter, word, or phrase) into another form or representation, not
necessarily of the same sort. Encoding is the process by which a source (object)
performs this conversion of information into data, which is then sent to a receiver
(observer), such as a data processing system. Decoding is the reverse process of
converting data which has been sent by a source, into information understandable
by a receiver.

An error-correcting code is a code in which every data signal conforms to
specific rules of construction so that departures from this construction in the
received signal can generally be automatically detected and corrected. It is used
in computer data storage, for example in dynamic RAM, and in data transmission.
Error detection is much simpler than error correction, and one or more “check”
digits are commonly embedded in credit card numbers in order to detect mistakes.
The two main classes of error-correcting codes are block codes, and convolutional
codes.

A block code (or uniform code) of length n over an alphabet A, usually, over
a finite field Fq D f0; : : : ; q � 1g, is a subset C 
 An; every vector x 2 C is
called a codeword, and M D jCj is called size of the code. Given a metric d on
F

n
q (for example, the Hamming metric, Lee metric, Levenstein metric), the value

d� D d�.C/ D minx;y2C;x¤y d.x; y/ is called the minimum distance of the code C.
The weight w.x/ of a codeword x 2 C is defined as w.x/ D d.x; 0/. An .n;M; d�/-
code is a q-ary block code of length n, size M, and minimum distance d�. A binary
code is a code over F2.
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When codewords are chosen such that the distance between them is maximized,
the code is called error-correcting, since slightly garbled vectors can be recovered
by choosing the nearest codeword. A code C is a t-error-correcting code (and a 2t-
error-detecting code) if d�.C/ � 2t C 1. In this case each neighborhood Ut.x/ D
fy 2 C W d.x; y/ � tg of x 2 C is disjoint with Ut.y/ for any y 2 C; y ¤ x.

A perfect code is a q-ary .n;M; 2t C 1/-code for which the M spheres Ut.x/
of radius t centered on the codewords fill the whole space F

n
q completely, without

overlapping.
A block code C 
 F

n
q is called linear if C is a vector subspace of Fn

q. An Œn; k�-
code is a k-dimensional linear code C 
 F

n
q (with the minimum distance d�); it

has size qk, i.e., it is an .n; qk; d�/-code. The Hamming code is the linear perfect
one-error correcting . qr�1

q�1 ;
qr�1
q�1 � r; 3/-code.

A k�n matrix G with rows that are basis vectors for a linear Œn; k�-code C is called
a generator matrix of C. In standard form it can be written as .1kjA/, where 1k is
the k � k identity matrix. Each message (or information symbol, source symbol) u D
.u1; : : : ; uk/ 2 F

k
q can be encoded by multiplying it (on the right) by the generator

matrix: uG 2 C.
The matrix H D .�AT j1n�k/ is called the parity-check matrix of C. The number

r D n � k corresponds to the number of parity check digits in the code, and is called
the redundancy of the code C. The information rate (or code rate) of a code C is the
number R D log2 M

n . For a q-ary Œn; k�-code, R D k
n log2 q; for a binary Œn; k�-code,

R D k
n .

A convolutional code is a type of error-correction code in which each k-bit
information symbol to be encoded is transformed into an n-bit codeword, where
R D k

n is the code rate (n � k), and the transformation is a function of the last m
information symbols, where m is the constraint length of the code. Convolutional
codes are often used to improve the performance of radio and satellite links.

A variable length code is a code with codewords of different lengths.
In contrast to error-correcting codes which are designed only to increase the

reliability of data communications, cryptographic codes are designed to increase
their security. In Cryptography, the sender uses a key to encrypt a message before it
is sent through an insecure channel, and an authorized receiver at the other end then
uses a key to decrypt the received data to a message.

Often, data compression algorithms and error-correcting codes are used in
tandem with cryptographic codes to yield communications that are efficient, robust
to data transmission errors, and secure to eavesdropping and tampering. Encrypted
messages which are, moreover, hidden in text, image, etc., are called steganographic
messages.

The encryption/assortment theory of humor (Flamson–Barrett, 2008) proposes
that people signal similarity in locally variable personal features through humor. In
a successful joke, both the producer and the receiver share common background
information—the key—and the joke is engineered in such a way (via devices such
as incongruity) that there is a nonrandom fit between the surface utterance and this
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information that would only be apparent to a person with access to it. The function
of encrypted humor is not secrecy per se, but rather, honestly indexing the presence
of shared keys.

16.1 Minimum Distance and Relatives

• Minimum distance
Given a code C 
 V , where V is an n-dimensional vector space equipped with

a metric d, the minimum distance d� D d�.C/ of the code C is defined by

min
x;y2C;x¤y

d.x; y/:

The metric d depends on the nature of the errors for the correction of which the
code is intended. For a prescribed correcting capacity it is necessary to use codes
with a maximum number of codewords. Such most widely investigated codes are
the q-ary block codes in the Hamming metric dH.x; y/ D jfi W xi ¤ yi; i D
1; : : : ; ngj.

For a linear code C the minimum distance d�.C/ D w.C/, where w.C/ D
minfw.x/ W x 2 Cg is a minimum weight of the code C. As there are rank.H/ �
n � k independent columns in the parity check matrix H of an Œn; k�-code C, then
d�.C/ � n � k C 1 (Singleton upper bound).

• Dual distance
The dual distance d? of a linear Œn; k�-code C 
 F

n
q is the minimum distance

of the dual code C? of C defined by C? D fv 2 F
n
q W hv; ui D 0 for any u 2 Cg.

The code C? is a linear Œn; n � k�-code, and its .n � k/� n generator matrix is
the parity-check matrix of C.

• Bar product distance
Given linear codes C1 and C2 of length n with C2 
 C1, their bar product

C1jC2 is a linear code of length 2n defined by C1jC2 D fxjxCy W x 2 C1; y 2 C2g.
The bar product distance between C1 and C2 is the minimum distance

d�.C1jC2/ of their bar product C1jC2.
• Design distance

A linear code is called a cyclic code if all cyclic shifts of a codeword also
belong to C, i.e., if for any .a0; : : : ; an�1/ 2 C the vector .an�1; a0; : : : ; an�2/ 2
C. It is convenient to identify a codeword .a0; : : : ; an�1/ with the polynomial
c.x/ D a0Ca1xC� � �Can�1xn�1; then every cyclic Œn; k�-code can be represented
as the principal ideal hg.x/i D fr.x/g.x/ W r.x/ 2 Rng of the ring Rn D
Fq.x/=.xn�1/, generated by the generator polynomial g.x/ D g0Cg1xC� � �Cxn�k

of C.
Given an element ˛ of order n in a finite field Fqs , a Bose–Chaudhuri–

Hocquenghem Œn; k�-code of design distance d is a cyclic code of length n,
generated by a polynomial g.x/ in Fq.x/ of degree n � k, that has roots at ˛,
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˛2, : : : , ˛d�1. The minimum distance d� of such a code of odd design distance d
is at least d.

A Reed–Solomon code is a Bose–Chaudhuri–Hocquenghem code with s D
1. The generator polynomial of a Reed–Solomon code of design distance d is
g.x/ D .x � ˛/ : : : .x � ˛d�1/ with degree n � k D d � 1; that is, for a Reed–
Solomon code the design distance d D n�kC1, and the minimum distance d� �
d. Since, for a linear Œn; k�-code, the minimum distance d� � n�k C1 (Singleton
upper bound), a Reed–Solomon code achieves this bound. Compact disc players
use a double-error correcting .255; 251; 5/ Reed–Solomon code over F256.

• Goppa designed minimum distance
The Goppa designed minimum distance ([Gopp71]) is a lower bound d?.m/

for the minimum distance of one-point geometric Goppa codes (or algebraic
geometry codes) G.m/. For G.m/, associated to the divisors D and mP, m 2 N,
of a smooth projective absolutely irreducible algebraic curve of genus g > 0 over
a finite field Fq, one has d?.m/ D m C 2 � 2g if 2g � 2 < m < n.

In fact, for a Goppa code C.m/ the structure of the gap sequence at P may
allow one to give a better lower bound of the minimum distance (cf. Feng–Rao
distance).

• Feng–Rao distance
The Feng–Rao distance ıFR.m/ is a lower bound for the minimum distance

of one-point geometric Goppa codes G.m/ which is better than the Goppa
designed minimum distance. The method of Feng and Rao for encoding the
code C.m/ decodes errors up to half the Feng–Rao distance ıFR.m/, and gives an
improvement of the number of errors that one can correct for one-point geometric
Goppa codes.

Formally, the Feng–Rao distance is defined as follows. Let S be a subsemi-
group S of N [ f0g such that the genus g D jN [ f0gnSj of S is finite, and
0 2 S. The Feng–Rao distance on S is a function ıFR W S ! N [ f0g such that
ıFR.m/ D minf�.r/ W r � m; r 2 Sg, where �.r/ D jf.a; b/ 2 S2 W a C b D rgj.

The generalized r-th Feng–Rao distance on S is ır
FR.m/ D minf�Œm1; : : : ;

mr� W m � m1 < � � � < mr;mi 2 Sg, where �Œm1; : : : ;mr� D jfa 2 S W mi � a 2
S for some i D 1; : : : ; rgj. Then ıFR.m/ D ı1FR.m/. See, for example, [FaMu03].

• Free distance
The free distance is the minimum nonzero Hamming weight of any codeword

in a convolutional code or a variable length code.
Formally, the k-th minimum distance d�

k of such code is the smallest
Hamming distance between any two initial codeword segments which are k frame
long and disagree in the initial frame. The sequence d�

1 ; d
�
2 ; d

�
3 ; : : : (d�

1 � d�
2 �

d�
3 � : : : ) is called the distance profile of the code. The free distance of a

convolutional code or a variable length code is maxl d�
l D liml!1 d�

l D d�1.
• Effective free distance

A turbo code is a long block code in which there are L input bits, and each of
these bits is encoded q times. In the j-th encoding, the L bits are sent through a
permutation box Pj, and then encoded via an ŒNj;L� block encoder (code fragment
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encoder) which can be thought of as an L � Nj matrix. The overall turbo code is
then a linear ŒN1 C � � � C Nq;L�-code (see, for example, [BGT93]).

The weight-i input minimum distance di.C/ of a turbo code C is the minimum
weight among codewords corresponding to input words of weight i. The effective
free distance of C is its weight-2 input minimum distance d2.C/, i.e., the
minimum weight among codewords corresponding to input words of weight 2.

Turbo codes were the first practical codes to closely approach the Shannon
limit (or channel capacity), the theoretical limit of maximum information transfer
rate over a symmetric memory-less noisy channel. These codes are used in 3G
mobile and satellite communications. Another capacity-approaching codes with
similar performance are linear LDPC (low-density parity-check) codes.

• Distance distribution
Given a code C over a finite metric space .X; d/ with the diameter

diam.X; d/ D D, the distance distribution of C is a .DC1/-vector .A0; : : : ;AD/,
where Ai D 1

jCj jf.c; c
0

/ 2 C2 W d.c; c
0

/ D igj. That is, one considers Ai.c/ as
the number of code words at distance i from the codeword c, and takes Ai as the
average of Ai.c/ over all c 2 C. A0 D 1 and, if d� D d�.C/ is the minimum
distance of C, then A1 D � � � D Ad��1 D 0.

The distance distribution of a code with given parameters is important,
in particular, for bounding the probability of decoding error under different
decoding procedures from maximum likelihood decoding to error detection. It
can also be helpful in revealing structural properties of codes and establishing
nonexistence of some codes.

• Unicity distance
The unicity distance of a cryptosystem (Shannon, 1949) is the minimal length

of a cyphertext that is required in order to expect that there exists only one
meaningful decryption for it. For classic cryptosystems with fixed key space, the
unicity distance is approximated by the formula H.K/=D, where H.K/ is the key
space entropy (roughly log2 N, where N is the number of keys), and D measures
the redundancy of the plaintext source language in bits per letter.

A cryptosystem offers perfect secrecy if its unicity distance is infinite. For
example, the one-time pads offer perfect secrecy; they were used for the “red
telephone” between the Kremlin and the White House.

More generally, Pe-security distance of a cryptosystem (Tilburg–Boekee,
1987) is the minimal expected length of cyphertext that is required in order to
break the cryptogram with an average error probability of at most Pe.

16.2 Main Coding Distances

• Arithmetic codes distance
An arithmetic code (or code with correction of arithmetic errors) is a finite

subset of the set Z of integers (usually, nonnegative integers). It is intended for
the control of the functioning of an adder (a module performing addition). When
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adding numbers represented in the binary number system, a single slip in the
functioning of the adder leads to a change in the result by some power of 2, thus,
to a single arithmetic error. Formally, a single arithmetic error on Z is defined
as a transformation of a number n 2 Z to a number n

0 D n ˙ 2i, i D 1; 2; : : : .
The arithmetic codes distance is a metric on Z defined, for any n1; n2 2 Z,

as the minimum number of arithmetic errors taking n1 to n2. It is w2.n1 � n2/,
where w2.n/ is the arithmetic 2-weight of n, i.e., the smallest possible number
of nonzero coefficients in representations n D Pk

iD0 ei2
i, where ei D 0;˙1, and

k is some nonnegative integer. For each n there is a unique such representation
with ek ¤ 0, eieiC1 D 0 for all i D 0; : : : ; k � 1, which has the smallest number
of nonzero coefficients (cf. arithmetic r-norm metric in Chap. 12).

• b-burst metric
Given the number b > 1 and the set Zn

m D f0; 1; : : : ;m �1gn, each its element
x D .x1; : : : ; xn/ can be uniquely represented as

.0k1u1v
b�1
1 0k2u2v

b�1
2 : : : /;

where ui ¤ 0, 0k is the string of k � 0 zeroes and vb�1 is any string of length
b � 1.

The b-burst metric between elements x and y of Zn
m is (Bridewell and Wolf,

1979) the number of b-tuples uvb�1 in x � y. It describes the burst errors.
• Sharma–Kaushik metrics

Let q � 2, m � 2. A partition fB0;B1; : : :Bq�1g of Zm is called a Sharma–
Kaushik partition if the following conditions hold:

1. B0 D f0g;
2. For any i 2 Zm, i 2 Bs if and only if m � i 2 Bs, s D 1; 2; : : : ; q � 1;
3. If i 2 Bs; j 2 Bt, and s > t, then minfi;m � ig > minf j;m � jg;
4. If s � t, s; t D 0; 1; : : : ; q � 1, then jBsj � jBtj except for s D q � 1 in which

case jBq�1j � 1
2
jBq�2j.

Given a Sharma–Kaushik partition of Zm, the Sharma-Kaushik weight wSK.x/ of
any element x 2 Zm is defined by wSK.x/ D i if x 2 Bi, i 2 f0; 1; : : : ; q � 1g.

The Sharma–Kaushik metric ([ShKa79]) is a metric on Zm defined by

wSK.x � y/:

The Sharma–Kaushik metric on Zn
m is defined by wn

SK.x � y/ where, for x D
.x1; : : : xn/ 2 Z

n
m, one has wn

SK.x/ D Pn
iD1 wSK.xi/.

The Hamming metric and the Lee metric arise from two specific partitions
of the above type: PH D fB0;B1g, where B1 D f1; 2; : : : ; q � 1g, and PL D
fB0;B1; : : : ;Bbq=2cg, where Bi D fi;m � ig, i D 1; : : : ; b q

2
c.
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• Varshamov metric
The Varshamov metric between two binary n-vectors x D .x1; : : : ; xn/ and

y D .y1; : : : ; yn/ from Z
n
2 D f0; 1gn is defined by

max.
nX

iD1
IxiD1�yiD0;

nX

iD1
IxiD1�yiD1/:

This metric was introduced by Varshamov, 1965, to describe asymmetric errors.
• Absolute summation distance

The absolute summation distance (or Lee distance) is the Lee metric on the
set Zn

m D f0; 1; : : : ;m � 1gn defined by

wLee.x � y/;

where wLee.x/ D Pn
iD1 minfxi;m � xig is the Lee weight of x D .x1; : : : ; xn/ 2

Z
n
m.

If Zn
m is equipped with the absolute summation distance, then a subset C of

Z
n
m is called a Lee distance code. The most important such codes are negacyclic

codes.
• Mannheim distance

The Mannheim distance is a 2D generalization of the Lee metric.
Let ZŒi� D fa C bi W a; b 2 Zg be the set of Gaussian integers. Let � D a C bi

(a > b > 0) be a Gaussian prime, i.e., either

(i) .a C bi/.a � bi/ D a2 C b2 D p, where p � 1 .mod 4/ is a prime number, or
(ii) up to an integer, � D p C 0 � i, where p � 3 .mod 4/ is a prime number.

The Mannheim distance is not a metric; it is defined ([Hube94a]), for any x; y 2
ZŒi�, as jx0j C jy0j, where x0 C y0i D x � y .mod�/, which is defined as .x �
y/ � Œ

.x�y/�
��

�� in the case (i). Here Œ:� denotes rounding to the closest Gaussian
integer, i.e., Œc C di� D Œc� C Œd�i with Œc� denoting the rounding to the closest
integer.

In general, the elements of the finite field Fp D f0; 1; : : : ; p � 1g for p � 1

.mod 4/, p D a2 C b2, and of the finite field Fp2 for p � 3 .mod 4/, p D a,
can be mapped on a subset of ZŒi� using the complex modulo function �.k/ D
k � Œ

k.a�bi/
p �.a C bi/, k D 0; : : : ; p � 1. The set of the selected Gaussian integers

aCbi with the minimal complex modulus norms
p
.a C bi/.a � bi/ D p

a2 C b2

is called a constellation.
The Mannheim distance between two vectors over ZŒi� is the sum of the

Mannheim distances of corresponding components. It was introduced to make
2D QAM-like signals more susceptible to algebraic decoding methods.

For codes over hexagonal signal constellations, a similar metric was

introduced over Z. i
p
3C1
2

/ in [Hube94b]. Cf. Z.�m/-related norm metrics in
Chap. 12.
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• Generalized Lee metric
Let Fpm denote the finite field with pm elements, where p is prime number and

m � 1 is an integer. Let ei D .0; : : : ; 0; 1; 0; : : : ; 0/, 1 � i � k, be the standard
basis of Zk. Choose elements ai 2 Fpm , 1 � i � k, and the mapping � W Zk !
Fpm , sending any x D Pk

iD1 xiei, xi 2 Z
k, to �.x/ D Pk

iD1 aixi.mod p/, so that
� is surjective. So, for each a 2 Fpm , there exists x 2 Z

k such that a D �.x/.
For each a 2 Fpm , its k-dimensional Lee weight is wkL.a/ D minfPk

iD1 jxij W x D
.xi/ 2 Z; a D �.x/g.

The generalized Lee metric between vectors .aj/ and .bj/ of Fn
pm is defined

(Nishimura–Hiramatsu, 2008) by

nX

jD1
wkL.aj � bj/:

It is the Lee metric (or absolute summation distance) if �.e1/ D 1 while
�.ei/ D 0 for 2 � i � k. It is the Mannheim distance if k D 2, p � 1 .mod 4/,
�.e1/ D 1 while �.e2/ D a is a solution in Fp of the quadratic congruence
x2 � �1 .mod p/.

• p-Lee metric
The p-Lee metric on Z

n
q is given by dp

p.x; y/ D Pn
iD1 d.xi; yi/

p if p 2 Œ1;1/,
and d.x; y/ D maxn

iD1 d.xi; yi/ if p D 1, where x D .x1; : : : ; xn/; y D
.y1; : : : ; yn/ 2 Z

n
q, and d.xi; yi/ is the Lee metric minfjxi � yij; q � jxi � yijg

on Z.
• Poset metric

Let .Vn;�/ be a poset on Vn D f1; : : : ; ng. A subset I of Vn is called ideal if
x 2 I and y � x imply that y 2 I. If J 
 Vn, then hJi denotes the smallest ideal
of Vn which contains J. Consider the vector space F

n
q over a finite field Fq. The

P-weight of an element x D .x1; : : : ; xn/ 2 F
n
q is defined as the cardinality of

the smallest ideal of Vn containing the support of x: wP.x/ D jhsupp.x/ij, where
supp.x/ D fi W xi ¤ 0g.

The poset metric (see [BGL95]) is a metric on F
n
q defined by

wP.x � y/:

If Fn
q is equipped with a poset metric, then a subset C of Fn

q is called a poset code.
If Vn forms the chain 1 � 2 � � � � � n, then the linear code C of dimension k
consisting of all vectors .0; : : : ; 0; an�kC1; : : : ; an/ 2 F

n
q is a perfect poset code

with the minimum (poset) metric d�
P.C/ D n � k C 1.

If Vn forms an antichain, then the poset distance coincides with the Hamming
metric. If Vn consists of finite disjoint union of chains of equal lengths, then the
poset distance coincides with the NRT metric.
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• Rank metric
Let Fq be a finite field, K D Fqm an extension of degree m of Fq, and K

n a
vector space of dimension n overK. For any a D .a1; : : : an/ 2 K

n define its rank,
rank.a/, as the dimension of the vector space over Fq, generated by fa1; : : : ; ang.

The rank metric (Delsarte, 1978) is a metric on K
n defined by

rank.a � b/:

A constant rank-distance k set is (Gow et al., 2014) a set U of n � n matrices
over a field F such that rank.A�B/ D k for all A;B 2 U;A ¤ B and rank.A/ D k
for all A 2 U;A ¤ 0. Such set is called a partial spread set if k D n; it
defines a partial spread in the .2n � 1/-dimensional projective, hermitian polar
or symplectic polar space, if U consists of arbitrary, hermitian or symmetric
matrices, respectively.

• Gabidulin–Simonis metrics
Let Fn

q be the vector space over a finite field Fq and let F D fFi W i 2 Ig be a
finite family of its subsets such that the minimal linear subspace of Fn

q containing
[i2IFi is Fn

q. Without loss of generality, F can be an antichain of linear subspaces
of Fn

q.
The F-weight wF of a vector x D .x1; : : : ; xn/ 2 F

n
q is the smallest jJj over

such subsets J 
 I that x belongs to the minimal linear subspace of Fn
q containing

[i2JFi. A Gabidulin–Simonis metric (or F-distance, see [GaSi98]) on F
n
q is

defined by

wF.x � y/:

The Hamming metric corresponds to the case of Fi; i 2 I; forming the standard
basis. The Vandermonde metric is F-distance with Fi; i 2 I; being the columns
of a generalized Vandermonde matrix. Among other examples are: the rank
metric and the combinatorial metrics (by Gabidulin, 1984), including the b-
burst metric.

• Subspace metric
Let Fn

q be the vector space over a finite field Fq and let Pn;q be the set of all
subspaces of Fn

q. For any subspace U 2 Pn;q, let dim.U/ denote its dimension
and let U? D fv 2 F

n
q W hu; vi D 0 for all u 2 Ug be its orthogonal space.

Let U CV D fuCv W u 2 U; v 2 Vg, i.e., U CV is the smallest subspace of Fn
q

containing both V and V . Then dim.U C V/ D dim.U/C dim.V/� dim.U \ V/.
If U \ V D ;, then U C V is a direct sum U ˚ V .

The subspace metric between two subspaces U and V from Pn;q is defined by

d.U;V/ D dim.U C V/� dim.U \ V/ D dim.U/C dim.V/� 2dim.U \ V/:

This metric was introduced by Koetter and Kschischang, 2007, for network
coding. It holds d.U;V/ D d.U?;V?/. Cf. the lattice valuation metric in
Chap. 10 and distances between subspaces in Chap. 12.
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• NRT metric
Let Mm;n.Fq/ be the set of all m � n matrices with entries from a finite field

Fq (in general, from any finite alphabet A D fa1; : : : ; aqg). The NRT norm jj:jjRT

on Mm;n.Fq/ is defined as follows: if m D 1 and a D .�1; �2; : : : ; �n/ 2 M1;n.Fq/,
then jj01;njjRT D 0, and jjajjRT D maxfi W �i ¤ 0g for a ¤ 01;n; if
A D .a1; : : : ; am/

T 2 Mm;n.Fq/, aj 2 M1;n.Fq/, 1 � j � m, then jjAjjRT DPm
jD1 jjajjjRT .
The NRT metric (or Niederreiter–Rosenbloom–Tsfasman metric, since intro-

duced by Niederreiter, 1991, and Rosenbloom–Tsfasman, 1997; or ordered
Hamming distance, in ([MaSt99]) is a matrix norm metric (in fact, an ultra-
metric) on Mm;n.Fq/, defined by

jjA � BjjRT:

For every matrix code C 
 Mm;n.Fq/ with qk elements the minimum NRT
distance d�

RT.C/ � mn � k C 1. Codes meeting this bound are called maximum
distance separable codes.

The most used distance between codewords of a matrix code C 
 Mm;n.Fq/ is
the Hamming metric on Mm;n.Fq/ defined by jjA � BjjH, where jjAjjH is the
Hamming weight of a matrix A 2 Mm;n.Fq/, i.e., the number of its nonzero
entries.

The LRTJ-metric (introduced as Generalized Lee–Rosenbloom–Tsfasman
pseudo-metric by Jain, 2008) is the norm metric for the following generalization
of the above norm jjajjRT in the case a ¤ 01;n:

jjajjLRTJ D max
1�i�n

minf�i; q � �ig C maxfi � 1 W �i ¤ 0g:

It is the Lee metric for m D 1 and the NRT metric for q D 2; 3.
• ACME distance

The ACME distance on a code C 
 An over an alphabet A is defined by

minfdH.x; y/; dI.x; y/g;

where dH is the Hamming metric, and dI is the swap metric (Chap. 11), i.e.,
the minimum number of interchanges of adjacent pairs of symbols, converting x
into y.

• Indel distance
Let W be the set of all words over an alphabet A. A deletion of a letter in

a word ˇ D b1 : : : bn of the length n is a transformation of ˇ into a word
ˇ

0 D b1 : : : bi�1biC1 : : : bn of the length n � 1. An insertion of a letter in
a word ˇ D b1 : : : bn of the length n is a transformation of ˇ into a word
ˇ

00 D b1 : : : bibbiC1 : : : bn, of the length n C 1.
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The indel distance is a metric on W, defined as the minimum number of
deletions and insertions of letters converting ˛ into ˇ. Cf. indel metric in
Chap. 11.

A code C with correction of deletions and insertions is an arbitrary finite
subset of W. An example of such a code is the set of words ˇ D b1 : : : bn of
length n over the alphabet A D f0; 1g for which

Pn
iD1 ibi � 0 .mod n C 1/. The

number of words in this code is equal to 1
2.nC1/

P
k �.k/2

.nC1/=k, where the sum
is taken over all odd divisors k of n C 1, and � is the Euler function.

• Interval distance
The interval distance (see, for example, [Bata95]) is a metric on a finite group

.G;C; 0/ defined by

wint.x � y/;

where wint.x/ is an interval weight on G, i.e., a group norm whose values are
consecutive nonnegative integers 0; : : : ;m. This distance is used for group codes
C 
 G.

• Fano metric
The Fano metric is a decoding metric with the goal to find the best sequence

estimate used for the Fano algorithm of sequential decoding of convolutional
codes. In a convolutional code each k-bit information symbol to be encoded is
transformed into an n-bit codeword, where R D k

n is the code rate (n � k), and
the transformation is a function of the last m information symbols.

The linear time-invariant decoder ( fixed convolutional decoder) maps an
information symbol ui 2 fu1; : : : ; uNg, ui D .ui1; : : : uik/, uij 2 F2, into a
codeword xi 2 fx1; : : : ; xNg, xi D .xi1; : : : ; xin/, xij 2 F2, so one has a code
fx1; : : : ; xNg with N codewords which occur with probabilities f p.x1/; : : : ;
p.xN/g. A sequence of l codewords forms a path x D xŒ1;l� D fx1; : : : ; xlg which
is transmitted through a discrete memoryless channel, resulting in the received
sequence y D yŒ1;l�.

The task of a decoder minimizing the sequence error probability is to find a
sequence maximizing the joint probability of input and output channel sequences
p.y; x/ D p.yjx/ � p.x/. Usually it is sufficient to find a procedure that maximizes
p.yjx/, and a decoder that always chooses as its estimate one of the sequences
that maximizes it or, equivalently, the Fano metric, is called a max-likelihood
decoder.

Roughly, we consider each code as a tree, where each branch represents one
codeword. The decoder begins at the first vertex in the tree, and computes the
branch metric for each possible branch, determining the best branch to be the one
corresponding to the codeword xj resulting in the largest branch metric, �F.xj/.

This branch is added to the path, and the algorithm continues from the new
node which represents the sum of the previous node and the number of bits in
the current best codeword. Through iterating until a terminal node of the tree is
reached, the algorithm traces the most likely path.
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In this construction, the bit Fano metric is defined by

log2
p.yijxi/

p.yi/
� R;

the branch Fano metric is defined by

�F.xj/ D
nX

iD1
.log2

p.yijxji/

p.yi/
� R/;

and the path Fano metric is defined by

�F.xŒ1;l�/ D
lX

jD1
�F.xj/;

where p.yijxji/ are the channel transition probabilities, p.yi/ D P
xm

p.xm/p.yijxm/

is the probability distribution of the output given the input symbols averaged over
all input symbols, and R D k

n is the code rate.
For a hard-decision decoder p.yj D 0jxj D 1/ D p.yj D 1jxj D 0/ D p,

0 < p < 1
2
, the Fano metric for a path xŒ1;l� can be written as

�F.xŒ1;l�/ D �˛dH.yŒ1;l�; xŒ1;l�/C ˇ � l � n;

where ˛ D � log2
p
1�p > 0, ˇ D 1 � R C log2.1 � p/, and dH is the Hamming

metric.
The generalized Fano metric is defined, for 0 � w � 1, by

�w
F.xŒ1;l�/ D

lnX

jD1

�

log2
p.yjjxj/

w

p.yj/1�w
� wR

�

:

For w D 1=2, it is the Fano metric with a multiplicative constant 1=2.
• Channel metrization

A square channel over Œn� D f1; : : : ; ng is an n � n probability matrix P D
../Pij/ such that Pij is the probability P. jji/ D P. j received if i sent).

For a code C � Œn�, the maximum likelihood decoder (MLD) decodes j as
c 2 C maximizing P. jjc/. If a metric d is defined on Œn�, then the minimum
distance decoder (MDD) decodes j as c 2 C minimizing d. j; c/.

Channel metrization is (D’Oliveira–Firer, 2015), for a given channel P over
Œn�, to find a metric d on Œn� with coinciding decoders MLD and MDD, i.e., for
every C � Œn� and j 2 Œn�, arg minfd. j; c/ W c 2 Cg D arg maxfP. jjc/ W c 2 Cg.
Main example: metrization of the binary symmetric channel by the Hamming
metric.
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• Metric recursion of a MAP decoding
Maximum a posteriori sequence estimation, or MAP decoding for variable

length codes, used the Viterbi algorithm, and is based on the metric recursion

�
.m/
k D �

.m/
k�1 C

l
.m/
kX

nD1
x.m/k;n log2

p.yk;njx.m/k;n D C1/
p.yk;njx.m/k;n D �1/

C 2 log2 p.u.m/k /;

where �.m/
k is the branch metric of branch m at time (level) k, xk;n is the

n-th bit of the codeword having l.m/k bits labeled at each branch, yk;n is the
respective received soft-bit, um

k is the source symbol of branch m at time k and,

assuming statistical independence of the source symbols, the probability p.u.m/k /

is equivalent to the probability of the source symbol labeled at branch m, that
may be known or estimated. The metric increment is computed for each branch,
and the largest value, when using log-likelihood values, of each state is used for
further recursion. The decoder first computes the metric of all branches, and then
the branch sequence with largest metric starting from the final state backward is
selected.

• Distance decoder
A graph family A is said (Peleg, 2000) to have an l.n/ distance labeling

scheme if there is a function LG labeling the vertices of each n-vertex graph
G 2 A with distinct labels up to l.n/ bits, and there exists an algorithm, called
a distance decoder, that decides the distance d.u; v/ between any two vertices
u; v 2 X in a graph G 2 A, i.e.,d.u; v/ D f .LG.u/;LG.v//, polynomial in time in
the length of their labels L.u/;L.v/.

Cf. distance constrained labeling in Chap. 15.
• Identifying code

Let G D .X;E/ be a digraph and C 
 V , and let B.v/ denote the set consisting
of v and all of its incoming neighbors in G. If the sets B.v/ \ C are nonempty
and distinct, C is called identifying code of G. Such sets of smallest cardinality
are called (Karpovsky–Chakrabarty–Levitin, 1998) minimum identifying codes;
denote this cardinality by M.G/. An r-locating-dominating set (Chap. 15) with
r D 1 differs from an identifying code only in that B.v/ \ C are not required to
be unique identifying sets for v 2 C.

A minimum identifying code graph of order n is a graph G D .X;E/ with
X D n and M.G/ D dlog 22.n C 1/e having the minimum number of edges jEj.



Chapter 17
Distances and Similarities in Data Analysis

A data set is a finite set comprising m sequences .x j
1; : : : ; x

j
n/, j 2 f1; : : : ;mg, of

length n. The values x1i ; : : : ; x
m
i represent an attribute Si.

Among numerical data, metric data is any reading at an interval scale, mea-
suring the degree of difference between items, or at a ratio scale measuring the
ratio between a magnitude of a continuous quantity and a unit magnitude of
the same kind; with them one have a meter permitting define distances between
scale values. Nonmetric (or categorial, qualitative) data are collected from binary
(presence/absence expressed by 1=0), ordinal (numbers expressing rank only), or
nominal (items are not ordered) scale.

Geometric data analysis refer to geometric aspects of image, pattern and shape
analysis that treats arbitrary data sets as clouds of points in R

n.
Often data are organized in a metric database (especially, metric tree), i.e., a

database indexed in a metric space. The term metric indexing is also used.
Cluster Analysis (or Classification, Taxonomy, Pattern Recognition) consists

mainly of partition of data A into a relatively small number of clusters, i.e., such sets
of objects that (with respect to a selected measure of distance) are at best possible
degree, “close” if they belong to the same cluster, “far” if they belong to different
clusters, and further subdivision into clusters will impair the above two conditions.

We give three typical examples. In Information Retrieval applications, nodes
of peer-to-peer database network export data (collection of text documents); each
document is characterized by a vector from R

n. An user needs to retrieve all
documents in the database which are relevant to a query object (say, a vector
x 2 R

n), i.e., belong to the ball in R
n, center x, of fixed radius and with a convenient

distance function. Such similarity query is called a metric range query. In Record
Linkage, each document (database record) is represented by a term-frequency vector
x 2 R

n or a string, and one wants to measure semantic relevancy of syntactically
different records. In Ecology, let x; y be species abundance distributions, obtained
by two sample methods (i.e., xj; yj are the numbers of individuals of species j,
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observed in a corresponding sample); one needs a measure of the distance between
x and y, in order to compare two methods.

Once a distance d between objects is selected, it is intra-distance or inter-
distance if the objects are within the same cluster or in two different clusters,
respectively.

The linkage metric, i.e., a distance between clusters A D fa1; : : : ; amg and B D
fb1; : : : ; bng is usually one of the following:

average linkage: the average of the distances between the all members of the

clusters, i.e.,
P

i
P

j d.ai;bj/

mn ;
single linkage: the distance mini;j d.ai;j / between the nearest members of the
clusters, i.e., the set-set distance (Chap. 1);
complete linkage: the distance maxi;j d.ai; bj/ between the furthest members of
the clusters, i.e., the spanning distance (Chap. 1);
centroid linkage: the distance between the centroids of the clusters, i.e, jjQa�Qbjj2,
where Qa D

P
i ai

m , and Qb D
P

j bj

n ;

Ward linkage: the distance
q

mn
mCn jjQa � Qbjj2.

Multidimensional Scaling is a technique developed in the behavioral and Social
Sciences for studying the structure of objects or people. Together with Cluster
Analysis, it is based on distance methods. But in Multidimensional Scaling, as
opposed to Cluster Analysis, one starts only with some m � m matrix D of distances
of the objects and (iteratively) looks for a representation of objects in R

n with low
n, so that their Euclidean distance matrix has minimal square deviation from the
original matrix D.

The related Metric Nearness Problem (Dhillon–Sra–Tropp, 2003) is to approxi-
mate a given finite distance space .X; d/ by a metric space .X; d0/. Other examples
of distance methods in Data Analysis are distance-based outlier detection (in Data
Mining) and distance-based redundancy analysis (in Multivariate Statistics).

There are many similarities used in Data Analysis; the choice depends on the
nature of data and is not an exact science. We list below the main such similarities
and distances.

Given two objects, represented by nonzero vectors x D .x1; : : : ; xn/ and y D
.y1; : : : ; yn/ from R

n, the following notation is used in this chapter.P
xi means

Pn
iD1 xi.

1F is the characteristic function of event F: 1F D 1 if F happens, and 1F D 0,
otherwise.

jjxjj2 D
qP

x2i is the ordinary Euclidean norm on R
n.

x denotes
P

xi
n , i.e., the mean value of components of x. So, x D 1

n if x is a
frequency vector (discrete probability distribution), i.e., all xi � 0, and

P
xi D 1;

and x D nC1
2

if x is a ranking (permutation), i.e., all xi are different numbers from
f1; : : : ; ng.

The k-th moment is
P
.xi�x/k

n ; it is called variance, skewness, kurtosis if k D
2; 3; 4.
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In the binary case x 2 f0; 1gn (i.e., when x is a binary n-sequence), let X D f1 �
i � n W xi D 1g and X D f1 � i � n W xi D 0g. Let jX \ Yj, jX [ Yj, jXnYj and
jX4Yj denote the cardinality of the intersection, union, difference and symmetric
difference .XnY/[ .YnX/ of the sets X and Y, respectively.

17.1 Similarities and Distances for Numerical Data

• Ruzicka similarity
The Ruzicka similarity is a similarity on R

n, defined by

P
minfxi; yig

P
maxfxi; yig :

The corresponding Soergel distance

1 �
P

minfxi; yig
P

maxfxi; yig D
P jxi � yij
P

maxfxi; yig
coincides on R

n�0 with the fuzzy polynucleotide metric (Chap. 23).
The Wave–Edges distance is defined by

X
.1 � minfxi; yig

maxfxi; yig / D
X jxi � yij

maxfxi; yig :

• Roberts similarity
The Roberts similarity is a similarity on R

n, defined by

P
.xi C yi/

minfxi;yig
maxfxi;yigP

.xi C yi/
:

• Ellenberg similarity
The Ellenberg similarity is a similarity on R

n defined by

P
.xi C yi/1xi	yi¤0P

.xi C yi/.1C 1xiyiD0/
:

• Gleason similarity
The Gleason similarity is a similarity on R

n, defined by

P
.xi C yi/1xi	yi¤0P
.xi C yi/

:
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The Czekanowsky–Dice distance (or nonmetric coefficient, Bray–Curtis, 1957)
is a near-metric on f0; 1gn defined by

1 � 2jX \ Yj
jXj C jYj D jX�Yj

jXj C jYj :

• Warrens inequalities on similarities
Denote by Sk, 1 � k � 7 above intersection, Kulczynski 2, Bray–Curtis,

Roberts, Ruzicka, Eilenberg and Gleason similarities, respectively.
Warrens (2016), showed that

1 � S1 � S2 � S3 � S4 � S5 � 0 and S5 � S6 � S7 � S3:

• Jaccard similarity
The Jaccard similarity of community, Jaccard, 1908, is a similarity on R

n

defined by
P

xiyi
P

x2i CP
y2i �P

xiyi
:

The corresponding Jaccard distance is defined by

1 �
P

xiyi
P

x2i CP
y2i �P

xiyi
D .

P
xi � yi/

2

P
x2i CP

y2i �P
xiyi

:

The binary cases of Jaccard, Ellenberg and Ruzicka similarities coincide; it is
called Tanimoto similarity:

jX \ Yj
jX [ Yj :

The Tanimoto distance (or biotope distance from Chap. 23) is a distance on
f0; 1gn defined by

1 � jX \ Yj
jX [ Yj D jX�Yj

jX [ Yj :

• Czekanowsky similarity
The Czekanowsky similarity is a similarity on R

n, defined by

P
minfxi; yig

P
.xi C yi/

:

The corresponding Czekanowsky distance is defined by

1 �
P

minfxi; yig
P
.xi C yi/

D
P jxi � yij
P
.xi C yi/

:
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• Dice similarity
The Dice similarity is a similarity on R

n, defined by

P
xiyi

P
x2i CP

y2i
:

The corresponding Dice distance is defined by

1 �
P

xiyi
P

x2i CP
y2i

D
P jxi � yij
P

x2i CP
y2i
:

• Maryland Bridge similarity
The Maryland Bridge similarity is (Mirkin and Koonin, 2003) a similarity

on R
n defined by

1

2

 P
xiyi

P
x2i

C
P

xiyi
P

y2i

!

:

The corresponding Maryland Bridge distance is defined by

1 � 1

2

 P
xiyi

P
x2i

C
P

xiyi
P

y2i

!

:

• Simpson similarity
The Simpson (or overlap) similarity is a similarity on R

n defined by

P
xiyi

minfP xi;
P

yig :

• Intersection distance
The intersection distance is a distance on R

n, defined by

1 �
P

minfxi; yig
minfP xi;

P
yig :

It becomes 1
2

P jxi � yij if x; y are frequency vectors.
• Kulczynski similarity 1

The Kulczynski similarity 1 is a similarity on R
n defined by

P
minfxi; yig
P jxi � yij :

The corresponding Kulczynski distance is
P jxi � yij
P

minfxi; yig :
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• Kulczynski similarity 2
The Kulczynski similarity 2 is a similarity on R

n defined by

n

2

�
1

x
C 1

y

�X
minfxi; yig:

In the binary case it coincides with Maryland bridge similarity; its form is

jX \ Yj � .jXj C jYj/
2jXj � jYj D jX \ Yj

2jXj C jX \ Yj
2jYj :

• Motyka similarity
The Motyka similarity is a similarity on R

n, defined by

P
minfxi; yig

P
.xi C yi/

D n

P
minfxi; yig
x C y

:

The corresponding Motyka distance is

1 �
P

minfxi; yig
P
.xi C yi/

D
P

maxfxi; yig
P
.xi C yi/

:

• Bray–Curtis similarity
The Bray–Curtis similarity, 1957, is a similarity on R

n defined by

2

n.x C y/

X
minfxi; yjg:

It is called Renkonen percentage similarity if x; y are frequency vectors.
• Sørensen distance

The Sørensen (or Bray–Curtis) distance on R
n is defined (Sørensen, 1948)

by

1 � 2

n.x C y/

X
minfxi; yjg D

P jxi � yij
P
.xi C yi/

:

The binary cases of Bray–Curtis, Cleason, Czekanowsky and Dice similarities
coincide; it is called Sørensen similarity:

2jX \ Yj
jX [ Yj C jX \ Yj D 2jX \ Yj

jXj C jYj :

• Canberra distance
The Canberra distance (Lance–Williams, 1967) is a distance on R

n, defined
by

X jxi � yij
jxij C jyij :
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• Baroni–Urbani–Buser similarity
The Baroni–Urbani–Buser similarity is a similarity on R

n defined by

P
minfxi; yig CpP

minfxi; yigP.max1�j�n xj � maxfxi; yig/
P

maxfxi; yig CpP
minfxi; yigP.max1�j�n xj � maxfxi; yig/

:

In the binary case it takes the form

jX \ Yj C
q

jX \ Yj � jX [ Yj
jX [ Yj C

q

jX \ Yj � jX [ Yj
:

17.2 Relatives of Euclidean Distance

• Power . p; r/-distance
The power . p; r/-distance is a distance on R

n defined, for x; y 2 R
n, by

.

nX

iD1
jxi � yijp/

1
r :

For p D r � 1, it is the lp-metric, including the Euclidean, Manhattan (or
magnitude) and Chebyshev (or maximum-value, dominance, template) metrics
for p D 2; 1 and 1, respectively.

The case . p; r/ D .2; 1/ corresponds to the squared Euclidean distance.
The power . p; r/-distance with 0 < p D r < 1 is called the fractional

lp-distance (not a metric since the unit balls are not convex). It is used for
“dimensionality-cursed” data, i.e., when there are few observations and the
number n of variables is large. The case 0 < p < r D 1, i.e., of the p-th power of
the fractional lp-distance, corresponds to a metric on R

n.

The weighted versions .
P

wijxi � yijp/
1
p (with nonnegative weights wi) are

also used, for p D 1; 2, in applications. Given weights wi � 0, the weighted
Manhattan quasi-metric for x; y 2 R

n is
Pn

iD1 di, where every di is the quasi-
metric defined by di D wi.xi � yi/ if xi > yi and di D Wi.yi � xi/, otherwise.

The ordinal distance on R
n is defined (Bahari and Van hamme, 2014) by

.

nX

iD1
j
X

1�j�i

.xj � yj/jp/
1
p :

• YJHHR metrics
We call YJHHR metrics the following metrics, introduced by Yang, Jiang,

Hahn, Housworth, and Radivojac, 2016.
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For any p � 1 and two finite sets X;Y, define

d.X;Y/ D .jX n Yjp C jY n Xjp/
1
p

and d0.X;Y/ D d.X;Y/

jX [ Yj if jX [ Yj > 0; d0.X;Y/ D 0; otherwise:

For any p � 1 and two bounded integrable functions f ; g on R, define

D. f ; g/ D
�� Z

.max. f � g; 0/dx
�p C

� Z

.max.g � f ; 0//x
�p� 1

p

and D0. f ; g/ D D. f ; g/
R

max.j f j; j f j; j f � gj/dx
:

• Multiplicative distance
In order to offset instability of the norm distances for high-dimensional data

(i.e., in R
n with large n), Mansouri and Khademi, 2014, introduced the following

multiplicative distance for any x; y 2 R
n:

dMK.x; y/ D �1C
nY

iD1
.1C jxi � yij/ci ;

where c1; : : : ; cn are given positive numbers.
Qureshi, 2015, introduced another multiplicative distance for any x; y 2 N

n:

dQ.x; y/ D
nX

iD1
jjl.xi/� l.yi/jj1;

where l.a/ D .˛1; ˛2; : : : / for any number a 2 N represented as p˛11 p˛22 : : : ; here
p1; p2; : : : is the sequence of prime numbers.

• Penrose size and shape distances
The Penrose size distance and Penrose shape distance are the distances on

R
n defined, respectively, by

p
n
X

jxi � yij and

r
X

..xi � x/� .yi � y//2:

The sum of their squares is the squared Euclidean distance.
The mean character distance (Czekanowsky, 1909) is defined by

P jxi�yij
n .

• Lorentzian distance
The Lorentzian distance is a distance on R

n, defined by

X
ln.1C jxi � yij/:
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• Effect size
Let x; y be the means of samples x; y and let s2 be the pooled variance of both

samples. The effect size (a term used mainly in social sciences) is defined by

x � y

s
:

Its symmetric version jx�yj
s is called statistical distance by Johnson–Wichern,

1982, and standard distance by Flury–Riedwyl, 1986.
Cf. the engineer semimetric in Chap. 14 and the ward linkage.

• Binary Euclidean distance
The binary Euclidean distance is a distance on R

n defined by

r
X

.1xi>0 � 1yi>0/
2:

• Mean censored Euclidean distance
The mean censored Euclidean distance is a distance on R

n defined by

sP
.xi � yi/2

P
1x2i Cy2i ¤0

:

• Normalized lp-distance
The normalized lp-distance, 1 � p � 1, is a distance on R

n defined by

jjx � yjjp

jjxjjp C jjyjjp
:

The only integer value p for which the normalized lp-distance is a metric, is pD2.

Moreover, the distance jjx�yjj2
aCb.jjxjj2Cjjyjj2/ is a metric for any a; b > 0 ([Yian91]).

• Clark distance
The Clark distance (Clark, 1952) is a distance on R

n, defined by

 
1

n

X�
xi � yi

jxij C jyij
�2
! 1

2

:

• Meehl distance
The Meehl distance (or Meehl index) is a distance on R

n defined by

X

1�i�n�1
.xi � yi � xiC1 C yiC1/2:
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• Hellinger distance
The Hellinger distance is a distance on R

nC defined by

s

2
X�r

xi

x
�
r

yi

y

�2

:

Cf. Hellinger metric in Chap. 14.
The Whittaker index of association is defined by 1

2

P j xi
x � yi

y j.
• Symmetric �2-measure

The symmetric �2-measure is a distance on R
n defined by

X 2

x � y
� .xiy � yix/2

xi C yi
:

• Symmetric �2-distance
The symmetric �2-distance (or chi-distance) is a distance on R

n defined by

s
X x C y

n.xi C yi/
.
xi

x
� yi

y
/2 D

s
X x C y

n.x � y/2
� .xiy � yix/2

xi C yi
:

It is a weighted Euclidean distance.
• Weighted Euclidean distance

The general quadratic-form distance on R
n is defined by

p
.x � y/TA.x � y/;

where A is a real nonsingular symmetric n�n matrix; cf. Mahalanobis distance.
The weighted Euclidean distance is the case A D diag.ai/; ai ¤ 0, i.e., it is

r
X

ai.xi � yi/2:

Some examples are: pseudo-Euclidean distance (Chap. 7), standardized
Euclidean distance and first two metrics (Euclidean R

6-distances) in Sect. 18.3.
• Mahalanobis distance

The Mahalanobis distance (or quadratic distance, or directionally weighted
distance) is a semimetric on R

n defined (Mahalanobis, 1936) by

jjx � yjjA D
p
.x � y/A.x � y/T ;

where A is a positive-semidefinite matrix. It is a metric if A is positive-definite.
Cf. Mahalanobis semimetric in Chap. 14. The square jjx � yjj2A is called
generalized ellipsoid (or generalized squared interpoint) distance.
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Usually, A D C�1, where C is a covariance matrix ..Cov.xi; xj/// of some
data points x; y 2 R

n (say, random vectors with the same distribution), or A D
.det.C//

1
n C�1 so that det.A/ D 1.

Clearly, jjx �yjjI is the Euclidean distance. If C D ..cij// is a diagonal matrix,
then cii D Var.xi/ D Var.yi/ D 
2i and it holds

jjx � yjjC�1 D
s
X

i

.xi � yi/2


2i
:

Such diagonal Mahalanobis distance is called the standardized Euclidean
distance (or normalized Euclidean distance, scaled Euclidean distance).

The maximum scaled difference (Maxwell–Buddemeier, 2002) is defined by

max
i

.xi � yi/
2


2i
:

17.3 Similarities and Distances for Binary Data

Usually, such similarities s range from 0 to 1 or from �1 to 1; the corresponding
distances are usually 1 � s or 1�s

2
, respectively.

• Hamann similarity
The Hamann similarity, 1961, is a similarity on f0; 1gn, defined by

2jX�Yj
n

� 1 D n � 2jX�Yj
n

:

• Rand similarity
The Rand similarity (or Sokal–Michener’s simple matching) is a similarity

on f0; 1gn defined by

jX�Yj
n

D 1 � jX�Yj
n

:

Its square root is called the Euclidean similarity. The corresponding metric jX�Yj
n

is called the variance or Manhattan similarity; cf. Penrose size distance.
• Sokal–Sneath similarities

The Sokal-Sneath similarities 1; 2; 3 are the similarity on f0; 1gn defined by

2jX�Yj
n C jX�Yj ;

jX \ Yj
jX [ Yj C jX�Yj ;

jX�Yj
jX�Yj :
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• Russel–Rao similarity
The Russel–Rao similarity is a similarity on f0; 1gn, defined by

jX \ Yj
n

:

• Forbes–Mozley similarity
The Forbes–Mozley similarity is a similarity on f0; 1gn defined by

njX \ Yj
jXjjYj :

• Braun–Blanquet similarity
The Braun–Blanquet similarity is a similarity on f0; 1gn defined by

jX \ Yj
maxfjXj; jYjg :

• Roger–Tanimoto similarity
The Roger–Tanimoto similarity, 1960, is a similarity on f0; 1gn defined by

jX�Yj
n C jX�Yj :

• Faith similarity
The Faith similarity is a similarity on f0; 1gn, defined by

jX \ Yj C jX�Yj
2n

:

• Tversky similarity
The Tversky similarity is a similarity on f0; 1gn, defined by

jX \ Yj
ajX�Yj C bjX \ Yj :

It becomes the Tanimoto, Sørensen and (the binary case of) Kulczynsky 1
similarities for .a; b/ D .1; 1/, . 1

2
; 1/ and .1; 0/, respectively.

• Mountford similarity
The Mountford similarity, 1962, is a similarity on f0; 1gn, defined by

2jX \ Yj
jXjjYnXj C jYjjXnYj :
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• Gower–Legendre similarity
The Gower–Legendre similarity is a similarity on f0; 1gn defined by

jX�Yj
ajX�Yj C jX�Yj D jX�Yj

n C .a � 1/jX�Yj :

• Anderberg similarity
The Anderberg (or Sokal–Sneath 4 similarity) on f0; 1gn is defined by

jX \ Yj
4

�
1

jXj C 1

jYj
�

C jX [ Yj
4

 
1

jXj C 1

jYj

!

:

• Yule similarities
The Yule Q similarity (Yule, 1900) is a similarity on f0; 1gn, defined by

jX \ Yj � jX [ Yj � jXnYj � jYnXj
jX \ Yj � jX [ Yj C jXnYj � jYnXj :

The Yule Y similarity of colligation (1912) is a similarity on f0; 1gn defined
by

q

jX \ Yj � jX [ Yj �pjXnYj � jYnXj
q

jX \ Yj � jX [ Yj CpjXnYj � jYnXj
:

• Dispersion similarity
The dispersion similarity is a similarity on f0; 1gn, defined by

jX \ Yj � jX [ Yj � jXnYj � jYnXj
n2

:

• Pearson � similarity
The Pearson � similarity is a similarity on f0; 1gn defined by

jX \ Yj � jX [ Yj � jXnYj � jYnXj
q

jXj � jXj � jYj � jYj
:

• Gower similarity 2
The Gower 2 (or Sokal–Sneath 5) similarity on f0; 1gn is defined by

jX \ Yj � jX [ Yj
q

jXj � jXj � jYj � jYj
:
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• Pattern difference
The pattern difference is a distance on f0; 1gn, defined by

4jXnYj � jYnXj
n2

:

• Q0-difference
The Q0-difference is a distance on f0; 1gn, defined by

jXnYj � jYnXj
jX \ Yj � jX [ Yj :

• Model distance
Let X, Y be two data sets, and let 	j be the eigenvalues of the symmetrized

cross-correlation matrix CXnY YnX � CYnX XnY .
The model distance (Todeschini, 2004) is a distance on f0; 1gn defined by

s

jXnYj C jYnXj � 2
X

j

q
	j:

The CMD-distance (or, canonical measure of distance, Todeschini et al., 2009)
is

s

jXj C jYj � 2
X

j

q
	j;

where 	j are the nonzero eigenvalues of the cross-correlation matrix CX Y � CY X .

17.4 Correlation Similarities and Distances

The covariance between two real-valued random variables X and Y is Cov.x; y/ D
EŒ.X � EŒX�/.Y � EŒY�/� D EŒXY� � EŒX�EŒY�. The variance of X is Var.X/ D
Cov.X;X/ and the Pearson correlation of X and Y is Corr.X;Y/ D Cov.X;Y/p

Var.X/Var.Y/
;

cf. Chap. 14.
Let .X;Y/; .X0;Y 0/; .X00;Y 00/ be independent and identically distributed. The

distance covariance (Székely, 2005) is the square root of dCov2.X;Y/ D EŒjX �
X0jjY � Y 0j�CEŒjX � X0j�EŒjY � Y 0j��EŒjX � X0jjY � Y 00j��EŒjX � X00jjY � Y 0j� D
EŒjX�X0jjY�Y 0j�CEŒjX�X0j�EŒjY�Y 0j��2EŒjX�X0jjY�Y 00j�: It is 0 if and only if X
and Y are independent. The distance correlation dCor.X;Y/ is dCov.X;Y/p

dCov.X;X/dCov.Y;Y/
.

The vectors x; y below can be seen as samples (series of n measurements) of X;Y.
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• Covariance similarity
The covariance similarity is a similarity on R

n defined by

P
.xi � x/.yi � y/

n
D
P

xiyi

n
� x � y:

• Pearson correlation similarity
The Pearson correlation similarity, or, by its full name, Pearson product-

moment correlation coefficient) is a similarity on R
n defined by

s D
P
.xi � x/.yi � y/

pP
.xj � x/2

P
.yj � y/2

:

The Pearson distance (or correlation distance) is defined by

1 � s D 1

2

X
 

xi � x
pP

.xj � x/2
� yi � y
pP

.yj � y/2

!

A multivariate generalization of the Pearson correlation similarity is the RV
coefficient (Escoufier, 1973) RV.X;Y/ D Covv.X;Y/p

Covv.X;X/Covv.Y;Y/
, where X;Y are

matrices of centered random (column) vectors with covariance matrix C.X;Y/ D
EŒXT Y�, and Covv.X;Y/ is the trace of the matrix C.X;Y/C.Y;X/.

• Cosine similarity
The cosine similarity (or Orchini similarity, angular similarity, normalized

dot product) is the case x D y D 0 of the Pearson correlation similarity, i.e., it
is

hx; yi
jjxjj2 � jjyjj2 D cos�;

where � is the angle between vectors x and y. In the binary case, it becomes

jX \ Yj
pjXj � jYj

and is called the Ochiai–Otsuka similarity.
In Record Linkage, cosine similarity is called TF-IDF similarity; it (or tf-idf,

TFIDF) are used as an abbreviation of Frequency-Inverse Document Frequency.
The angular semimetric on R

n is defined by arccos�. The cosine distance
is 1� cos�, and the Orloci distance (or chord distance) is

p
2.1� cos�/ D

rX
.

xi

jjxjj2 � yi

jjyjj2 /
2:
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• Similarity ratio
The similarity ratio (or Kohonen similarity, Kumar–Hassebrook similarity)

is a similarity on R
n defined by

hx; yi
hx; yi C jjx � yjj22

:

Its binary case is the Tanimoto similarity.
• Morisita–Horn similarity

The Morisita–Horn similarity (Morisita, 1959) is a similarity on R
n defined

by

2hx; yi
jjxjj22 � y

x C jjyjj22 � x
y

:

• Spearman rank correlation
If the sequences x; y 2 R

n are ranked separately, then the Pearson correlation
similarity is approximated by the following Spearman � rank correlation:

P
.ai � a/.bi � b/

qP
.aj � a/2

P
.bj � b/2

D 1 � 6

n.n2 � 1/
X

.ai � bi/
2;

where n > 1 and ai D rank.xi/; bi D rank.yi/; a D .a1; : : : ; an/; b D
.b1; : : : ; bn/. This approximation is good for such ordinal data when it holds
x D y D nC1

2
.

The Spearman footrule is defined by

1 � 3

n2 � 1

X
jxi � yij:

Cf. the Spearman � distance and Spearman footrule distance in Chap. 11.
Another correlation similarity for rankings is the Kendall � rank correlation:

2
P

1�i<j�n sign.xi � xj/sign.yi � yj/

n.n � 1/ :

Cf. the Kendall � distance on permutations in Chap. 11.
• Global correlation distance

Let x 2 R
n and .A; d/ be a metric space with n points a1; : : : ; an. For any

d > 0, the Moran autocorrelation coefficient is defined by

I.d/ D n
P

1�i¤j�n wij.d/.xi � x/.xj � x/
P

1�i¤j�n wij.d/
P

1�i�n.xi � x/2
;
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where the weight wij.d/ is 1 if d.ai; aj/ D d and 0, otherwise. In spatial
analysis, eventual clustering of .A; d/ implies that I.d/ decreases with increasing
d. I.d/ is a global indicator of the presumed spatial dependence that evaluate the
existence/size of clusters in the spatial arrangement .A; d/ of a given variable.

The global correlation distance is the least value d0 for which I.d/ D 0.
• Log-likelihood distance

Given two clusters A and B, their log-likelihood distance is the decrease
in log-likelihood (cf. the Kullback–Leibler distance in Chap. 14 and the log-
likelihood ratio quasi-distance in Chap. 21) as they are combined into one
cluster. Simplifying (taking A;B 
 R>0), it is defined by

X

x2A

x log
x

jAj C
X

x2B

x log
x

jBj �
X

x2A[B

x log
x

jA [ Bj :

• Spatial analysis
In Statistics, spatial analysis (or spatial statistics) includes the formal

techniques for studying entities using their topological, geometric, or geographic
properties. More restrictively, it refers to Geostatistics and Human Geography. It
considers spatially distributed data as a priori dependent one on another.

Spatial dependence is a measure for the degree of associative dependence
between independently measured values in an ordered set, determined in samples
selected at different positions in a sample space. Cf. spatial correlation in
Chap. 24. An example of such space-time dynamics: Gould, 1997, showed that

 80% of the diffusion of HIV in the US is highly correlated with the air
passenger traffic (origin-destination) matrix for 102 major urban centers.

SADIE (Spatial Analysis by Distance IndicEs) is a methodology (Perry, 1998)
to measure the degree of nonrandomness in 2D spatial patterns of populations.
Given n sample units xi 2 R

2 with associated counts Ni, the distance to
regularity is the minimal total Euclidean distance that the individuals in the
sample would have to move, from unit to unit, so that all units contained an
identical number of individuals. The distance to crowding is the minimal total
distance that individuals in the sample must move so that all are congregated in
one unit. The indices of aggregation are defined by dividing above distances by
their mean values. Cf. Earth Mover’s distance in Chap. 21.

• Distance sampling
Distance sampling is a widely-used group of methods for estimating the

density and abundance of biological populations. It is an extension of plot- (or
quadrate-based) sampling, where the number of objects at given distance from a
point or a segment is counted. Also, Distance is the name of a Windows-based
computer package that allows to design and analyze distance sampling surveys.

A standardized survey along a series of lines or points is performed, searching
for objects of interest (say, animals, plants or their clusters). Detection distances
r (perpendicular ones from given lines and radial ones from given points) are
measured to each detected object. The detection function g.r/ (the probability
that an object at distance r is detected) is fit then to the observed distances, and
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this fitted function is used to estimate the proportion of objects missed by the
survey. It gives estimates for the density and abundance of objects in the survey
area.

• Cook distance
The Cook distance is a distance on R

n giving a statistical measure of
deciding if some i-th observation alone affects much regression estimates. It
is a normalized squared Euclidean distance between estimated parameters
from regression models constructed from all data and from data without i-th
observation.

The main similar distances, used in Regression Analysis for detecting influ-
ential observations, are DFITS distance, Welsch distance, and Hadi distance.

• Periodicity p-self-distance
Ergun–Muthukrishnan–Sahinalp, 2004, call a data stream x D .x1; : : : ; xn/ p-

periodic approximatively, for given 1 � p � n
2

and distance function d between
p-blocks of x, if the periodicity p-self-distance

P
i¤j d..xjpC1; : : : ; xjpCp/;

.xipC1; : : : ; xipCp// is below some threshold.
Above notion of self-distance is different from ones given in Chaps. 1 and 28.

Also, the term self-distance is used for round-off error (or rounding error), i.e.,
the difference between the calculated approximation of a number and its exact
value.

• Distance metric learning
Let x1; : : : ; xn denote the samples in the training set X 
 R

m; here m is the
number of features. Distance metric learning is an approach for the problem
of clustering with side information, when algorithm learns a distance function
d prior to clustering and then tries to satisfy some positive (or equivalence)
constraints P and negative constraints D. Here S and D are the sets of similar
(belonging to the same class) and dissimilar pairs .xi; xj/, respectively.

Usually d is a Mahalanobis metric jjxi � xjjjA D p
.xi � xj/TA.xi � xj/,

where A is a positive-semidefinite matrix, i.e., A D WTW for a matrix W with m
columns and jjxi � xjjj2A D jjWxi � Wxjjj2. Then, for example, one look for (Xing
et al., 2003) A minimizing

P
.xi;xj/2S jjxi � xjjj2A while

P
.xi;xj/2D jjxi � xjjj2A � 1.

• Heterogeneous distance
The following IBL (instance-based learning) setting is used for many real-

world applications (neural networks, etc.), where data are incomplete and have
both continuous and nominal attributes. Given an m � .n C 1/ matrix ..xij//, its
row .xi0; xi1; : : : ; xin/ denotes an instance input vector xi D .xi1; : : : ; xin/ with
output class xi0; the set of m instances represents a training set during learning.
For any new input vector y D .y1; : : : ; yn/, the closest (in terms of a selected
distance d) instance xi is sought, in order to classify y, i.e., predict its output class
as xi0.

A heterogeneous distance d.xi; y/ is defined ([WiMa97]) by

v
u
u
t

nX

jD1
d2j .xij; yj/
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with dj.xij; yj/ D 1 if xij or yj is unknown. If the attribute (input variable) j is
nominal, then dj.xij; yj/ is defined, for example, as 1xij¤yj , or as

X

a

ˇ
ˇ
ˇ
ˇ
jf1 � t � m W xt0 D a; xij D xijgj

jf1 � t � m W xtj D xijgj � jf1 � t � m W xt0 D a; xij D yjgj
jf1 � t � m W xtj D yjgj

ˇ
ˇ
ˇ
ˇ

q

for q D 1 or 2; the sum is taken over all output classes, i.e., values a from
fxt0 W 1 � t � mg. For continuous attributes j, the number dj is taken to be
jxij � yjj divided by maxt xtj � mint xtj, or by 1

4
of the standard deviation of values

xtj, 1 � t � m.



Chapter 18
Distances in Systems and Mathematical
Engineering

In this chapter we group the main distances used in Systems Theory (such as
Transition Systems, Dynamical Systems, Cellular Automata, Feedback Systems)
and other interdisciplinary branches of Mathematics, Engineering and Theoretical
Computer Science (such as, say, Robot Motion and Multi-objective Optimization).

A labeled transition system (LTS) is a triple .S;T;F/ where S is a set of states,
T is a set of labels (or actions) and F � S � T � S is a ternary relation. Any
.x; t; y/ 2 F represents a t-labeled transition from state x to state y. A LTS with
jTj D 1 corresponds to an unlabeled transition system.

A path is a sequence ..x1; t1; x2/; : : : ; .xi; ti; xiC1/; : : : / of transitions; it gives rise
to a trace .t1; : : : ; ti; : : : /. Two paths are trace-equivalent if they have the same
traces. The term trace, in Computer Science, refers in general to the equivalence
classes of strings of a trace monoid, wherein certain letters in the string are allowed
to commute. It is not related to the trace in Linear Algebra.

A LTS is called deterministic if for any x 2 S and t 2 T it holds that jfy 2 S W
.x; t; y/ 2 Fgj D 1. Such LTS without output is called a semiautomaton .S;T; f /
where S is a set of states, T is an input alphabet and f W X � T ! S is a transition
function.

A deterministic finite-state machine is a tuple .S; s0;T; f ; S0/with S;T; f as above
but 0 < jSj; jTj < 1, while so 2 S is an initial state, and S0 
 S is the set of final
states.

The free monoid on a set T is a monoid (algebraic structure with an associative
binary operation and an identity element) T� whose elements are all the finite
sequences x D x0; : : : ; xm of elements from T. The identity element is the empty
string 	, and the operation is string concatenation. The free semigroup on T is
TC D T� n f	g. Let T! denote the set of all infinite sequences x D .x0; x1; : : : /
in T, and let T1 denote T� [ T! .

A finite-state machine is nondeterministic if the next possible state is not
uniquely determined. A weighted automaton is a such machine, say, M equipped
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with a cost function c � 0, over some semiring .S;˚;˝/, on transitions. For a
probabilistic automaton, the semiring is .R�0;C;�/ and 0 � c � 1.

A distance automaton is (Hashiguchi, 1982) a weighted automaton over the
tropical semiring TROP D .N [ f1g;min;C/. A run over a word (string in the
language of M) .a1; : : : ; ak/ is a sequence .s0; : : : ; sk/ of states. The run’s distance is
the sum

Pk
iD1 c.ai/pi�1pi of costs of involved transitions. The run is accepting if s0 is

initial and sk is a final state. The distance of a word recognized by M is the minimum
of the distances over the all accepting runs. The distance of M is the supremum over
the distances of all recognized words. Distance automata are equivalent to finitely
generated monoids of matrices over TROP: nondeterministic automata recognize
the same language as some deterministic ones but with transitions acting on the sets
of original states.

18.1 Distances in State Transition and Dynamical Systems

• Distances on formal languages
A formal language over an alphabet T is a set of words over T.
The similarity between two words of a language are measured usually by the

Hamming metric (cf. Sect. 1.5) or (cf. Sect. 11.1) by the Levenstein metric (or
edit distance) and prefix, suffix and substring distances.

Given a language L and a distance d on it, the distance between a word u
and L is the point-set distance (Sect. 1.5) minv2L d.u; v/.

The inner distance (or self distance) d of L is (Mihri, 2007) minu;v2L;u¤v
d.u; v/; cf. separation in the item metric spread in Sect. 1.3.

The similarity between two languages L and L0 are measured usually by the
following extensions: minu2L;v2L0 ;u¤v d.u; v/ and (called by Choffrut–Pighizzini,
2002, the relative distance d) maxu2L minv2L0 d.u; v/. In terms of Sect. 1.5, they
are, respectively, the set-set distance and the directed Hausdorff distance.

See also in Sect. 28.3 the language distance from English and other notions
of distance between words of a natural language and between languages.

• Fahrenberg–Legay–Thrane distances
Given a labeled transition system (LTS) .S;T;F/ Fahrenberg–Legay–Thrane,

2011, call T1 the set of traces and define a trace distance as an extended
hemimetric (or quasi-semimetric) h W T1 � T1 ! R�0 [ f1g such that
h.x; y/ D 1 for any sequences x; y 2 T1 of different length.

For a given distance d on the set T of labels and a discount factor q (0 < q �
1), they defined the pointwise, accumulating and limit-average trace distance
as, respectively, PWd;q.x; y/ D supi qid.xi; yi/, ACCd;q.x; y/ D P

i qid.xi; yi/ and
AVGd D limi!1 1

iC1
Pi

jD0 d.xj; yj/.
If d is a discrete metric, i.e., d.t; t0/ D 1 whenever t ¤ t0, then ACCd;1 is the

Hamming metric for finite traces of the same length, and ACCd;q with q < 1

and AVGd are analogs of the Hamming metric for infinite traces.
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Other examples of trace distances are a Cantor-like distance .1C inffi W xi ¤
yig/�1 and the maximum-lead distance, defined, for T � ˙ � R, by Henzinger–
Majumdar–Prabhu, 2005, as supi jPi

jD0 x00
j �Pi

jD0 y00
j j if x0

i D y0
i for all i and 1,

otherwise. Here any z 2 T is denoted by .z0; z00/, where z0 2 ˙ and z00 2 R.
Fahrenberg–Legay–Thrane, 2011, also define the two following extended

simulation hemimetrics between states x; y 2 S.
The accumulating simulation distance hac.x; y/ and the pointwise simulation

distance hpo.x; y/ are the least fixed points, respectively, to the set of equations

hac.x; y/ D max
t2TW.x;t;x0/2F

min
t02TW.y;t0 ;y0/2F

.d.t; t0/C qhac.x
0; y0// and

hpo.x; y/ D max
t2TW.x;t;x0/2F

min
t02TW.y;t0 ;y0/2F

maxfd.t; t0/; hpo.x
0; y0/g:

The above hemimetrics generalize the lifting by Alfaro–Faella–Stoelinga, 2004,
of the quasi-metric maxfx00 � y00; 0g between labels x; y 2 T D ˙ � R on an
accumulating trace distance and then the lifting of it on the directed Hausdorff
distance (Chap. 1) between the sets of traces from two given states.

The case hac.x; y/ D hpo.x; y/ D 0 corresponds to the simulation of x by y,
written x � y, i.e., to the existence of a weighted simulation relation R � S � S,
i.e., whenever .x; y/ 2 R and .x; t; x0/ 2 F, then .y; t; y0/ 2 F with .x0; y0/ 2 R.

The case hac.x; y/ < 1 or hpo.x; y/ < 1 corresponds to the existence of
an unweighted simulation relation R � S � S, i.e., whenever .x; y/ 2 R and
.x; t; x0/ 2 F, then .y; t0; y0/ 2 F with .x0; y0/ 2 R and d.t; t0/ < 1.

The relation � is a pre-order on S. Two states x and y are similar if x � y and
y � x; they are bisimilar if, moreover, the simulation R of x by y is the inverse
of the simulation of y by x. Similarity is an equivalence relation on S which is
coarser than the bisimilarity congruence.

The above trace and similarity system hemimetrics are quantitative gen-
eralizations of system relations: trace-equivalence and simulation pre-order,
respectively.

• Cellular automata distances
Let S; jSj � 2, be a finite set (alphabet), and let S1 be the set of Z-

indexed bi-infinite sequences fxig1
iD�1 (configurations) of elements of S. A

(one-dimensional) cellular automaton is a continuous self-map f W S1 ! S1
that commutes with all shift (or translation) maps g W S1 ! S1 defined by
g.xi/ D xiC1.

Such cellular automaton form a discrete dynamical system with the time set
T D Z (of cells, positions of a finite-state machine) on the finite-state space S.
The main distances between configurations fxigi and fyigi (see [BFK99]) follow.

The Cantor metric is a metric on S1 defined, for x ¤ y, by

2� minfi�0Wjxi�yijCjx�i�y�ij¤0g:

It corresponds to the case a D 1
2

of the generalized Cantor metric in Chap. 11.
The corresponding metric space is compact.
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The Besicovitch semimetric is a semimetric on S1 defined, for x ¤ y, by

liml!1
j � l � i � l W xi ¤ yij

2l C 1
:

Cf. Besicovitch distance on measurable functions in Chap. 13. The correspond-
ing semimetric space is complete.

The Weyl semimetric is a semimetric on S1, defined by

liml!1 max
k2Z

jk C 1 � i � k C l W xi ¤ yij
l

:

This and the above semimetric are translation invariant, but are neither
separable nor locally compact. Cf. Weyl distance in Chap. 13.

• Dynamical system
A (deterministic) dynamical system is a tuple .T;X; f / consisting of a metric

space .X; d/, called the state space, a time set T and an evolution function f W
T � X ! X. Usually, T is a monoid, .X; d/ is a manifold locally diffeomorphic
to a Banach space, and f is a continuous function.

The system is discrete if T D Z (cascade) or if T D f0; 1; 2 : : : g. It is real
(or flow) if T is an open interval in R, and it is a cellular automaton if X is finite
and T D Z

n. Dynamical systems are studied in Control Theory in the context of
stability; Chaos Theory considers the systems with maximal possible instability.

A discrete dynamical system with T D f0; 1; 2 : : : g is defined by a self-map
f W X ! X. For any x 2 X, its orbit is the sequence f f n.x/gn; here f n.x/ D
f . f n�1.x// with f 0.x/ D x. The orbit of x 2 X is called periodic if f n.x/ D x for
some n > 0.

A pair .x; y/ 2 X � X is called proximal if limn!1d. f n.x/; f n.y// D 0, and
distal, otherwise. The system is called distal if any pair .x; y/ of distinct points is
distal.

The dynamical system is called expansive if there exists a constant D > 0

such that the inequality d. f n.x/; f n.y// � D holds for any distinct x; y 2 X and
some n.

An attractor is a closed subset A of X such that there exists an open
neighborhood U of A with the property that limn!1 d. f n.b/;A/ D 0 for every
b 2 U, i.e., A attracts all nearby orbits. Here d.x;A/ D infy2A d.x; y/ is the
point-set distance.

If for large n and small r there exists a number ˛ such that

C.X; n; r/ D jf.i; j/ W d. f i.x/; f j.x// � r; 1 � i; j � ngj
n2

� r˛;

then ˛ is called (Grassberger–Hentschel–Procaccia, 1983) the correlation dimen-
sion.

The Lyapunov time is the characteristic timescale on which a dynamical
system is chaotic, i.e., small differences in initial conditions yield widely
diverging outcomes, rendering long-term prediction impossible in general.



18.1 Distances in State Transition and Dynamical Systems 351

• Melnikov distance
The evolution of a planar dynamical system can be represented in a 3D

state space with orthogonal coordinate axes Ox;Ox0;Ot. A homoclinic orbit
(nongeneric orbit that joins a saddle point) can be seen in that space as the
intersection with a plane of section t D const of the stable manifold (the surface
consisting of all trajectories that approach �0 D Ot asymptotically in forward
time) and the unstable manifold (the surface consisting of all trajectories that
approach Ot in reverse time).

Under a sufficiently small perturbation � which is bounded and smooth
enough, Ot persists as a smooth curve �� D �0 C O.�/, and the perturbed system
has (not coinciding since � > 0) stable and unstable manifolds contained in an
O.�/ neighborhood of the unperturbed manifolds.

The Melnikov distance is the distance between stable and unstable manifolds
measured along a line normal to the unperturbed manifolds, i.e., a direction that
is perpendicular to the unperturbed homoclinic orbit. Cf. Sect. 18.2.

• Fractal
For a metric space, its topological dimension does not exceed its Hausdorff

dimension; cf. Chap. 1. A fractal is a metric space for which this inequality is
strict. (Originally, Mandelbrot defined a fractal as a point set with noninteger
Hausdorff dimension.) For example, the Cantor set, seen as a compact metric
subspace of .R; d.x; y/ D jx � yj/ has the Hausdorff dimension ln 2

ln 3 ; cf. another
Cantor metric in Chap. 11. Another classical fractal, the Sierpinski carpet of
Œ0; 1��Œ0; 1�, is a complete geodesic metric subspace of .R2; d.x; y/ D jjx�yjj1/.

The term fractal is used also, more generally, for a self-similar (i.e., roughly,
looking similar at any scale) object (usually, a subset of Rn). Cf. scale invari-
ance.

• Scale invariance
Scale invariance is a feature of laws or objects which do not change if length

scales are multiplied by a common factor.
Examples of scale invariant phenomena are fractals and power laws; cf.

scale-free network in Chap. 22 and self-similarity in long range dependence.
Scale invariance arising from a power law y D Cxk, for a constant C and
scale exponent k, amounts to linearity log y D log C C k log x for logarithms.
Much of scale invariant behavior (and complexity in nature) is explained (Bak–
Tang–Wiesenfeld, 1987) by self-organized cruciality (SOC) of many dynamical
systems, i.e., the property to have the critical point of a phase transition as an
attractor which can be attained spontaneously without any fine-tuning of control
parameters.

Two moving systems are dynamically similar if the motion of one can be
made identical to the motion of the other by multiplying all lengths by one scale
factor, all forces by another one and all time periods by a third scale factor.
Dynamic similarity can be formulated in terms of dimensionless parameters as,
for example, the Reynolds number in Chap. 24.

• Long range dependence
A (second-order stationary) stochastic process Xk, k 2 Z, is called long range

dependent (or long memory) if there exist numbers ˛; 0 < ˛ < 1, and c� > 0
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such that limk!1 c�k˛�.k/ D 1, where �.k/ is the autocorrelation function. So,
correlations decay very slowly (asymptotically hyperbolic) to zero implying thatP

k2Z j�.k/j D 1, and that events so far apart are correlated (long memory). If
the above sum is finite and the decay is exponential, then the process is short
range.

Examples of such processes are the exponential, normal and Poisson processes
which are memoryless, and, in physical terms, systems in thermodynamic
equilibrium. The above power law decay for correlations as a function of time
translates into a power law decay of the Fourier spectrum as a function of
frequency f and is called 1

f noise.
A process has a self-similarity exponent (or Hust parameter) H if Xk and

t�HXtk have the same finite-dimensional distributions for any positive t. The
cases H D 1

2
and H D 1 correspond, respectively, to purely random process

and to exact self-similarity: the same behavior on all scales. Cf. fractal, scale
invariance and, in Chap. 22, scale-free network. The processes with 1

2
< H < 1

are long range dependent with ˛ D 2.1� H/.
Long range dependence corresponds to heavy-tailed (or power law) distribu-

tions. The distribution function and tail of a nonnegative random variable X are
F.x/ D P.X � x/ and F.x/ D P.X > x/. A distribution F.X/ is heavy-tailed if
there exists a number ˛; 0 < ˛ < 1, such that limx!1 x˛F.x/ D 1.

Many such distributions occur in the real world (for example, in Physics,
Economics, the Internet) in both space (distances) and time (durations). A
standard example is the Pareto distribution F.x/ D x�k, x � 1, where k > 0

is a parameter. Cf. Sect. 18.4 and, in Chap. 29, distance decay.
Also, the random-copying model (the cultural analog of genetic drift) of the

frequency distributions of various cultural traits (such as of scientific papers
citations, first names, dog breeds, pottery decorations) results (Bentley–Hahn–
Shennan, 2004) in a power law distribution y D Cx�k, where y is the proportion
of cultural traits that occur with frequency x in the population, and C and k are
parameters.

A general Lévy flight is a random walk in which the increments have a power
law probability distribution.

• Lévy walks in human mobility
A jump is a longest straight line trip from one location to another done without

a directional change or pause. Consider a 2D random walk (taking successive
jumps, each in a random direction) model that involves two distributions: a
uniform one for the turning angle �i and a power law P.li/ � l�˛i for the jump
length li.

Brownian motion has ˛ � 3 and normal diffusion, i.e., the MSD (mean
squared displacement) grows linearly with time t: MSD � t� ; � D 1.

A Lévy walk has 1 < ˛ < 3. Its jump length is scale-free, i.e., lacks an
average scale li, and it is superdiffusive: MSD � t� ; � > 1. Intuitively, Lévy
walks consist of many short jumps and, exceptionally, long jumps eliminating
the effect of short ones in average jump lengths.
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Lévy-like walk dispersal was observed in our Web browsing and image
scanning, as well as in foraging animals. It and two-mode Brownian search
strategies might be optimal for finding patches of randomly dispersed abundant
resources: to cluster, in order to save time and effort, closely located activities
and then make many short jumps within the clustered areas and a few long jumps
among areas.

Human mobility occurs on many length scales, ranging from walking to air
travel. On average, humans spend 1:1 h of their daily time budget traveling.
Schafer and Victor, 2000, estimated the average travel distance, per person per
year, as 1814, 4382 and 6787 km for 1960, 1990 and 2020, respectively.

Brockmann–Hafnagel–Geisel, 2006, studied long range human traffic via the
geographic circulation of money. To track a bill, a user stamps it and enters
data (serial number, series and local ZIP code) in a computer. The site www.
wheresgeorge.com reports the time and distance between the bill’s consecutive
sightings. 57% of all 
 465;000 considered bills traveled 50–800 km over 9
months in US. The probability of a bill traversing a distance r (an estimate of
the probability of humans moving such a distance) followed, over 10–3500 km, a
power law P.r/ D r�1:6. Banknote dispersal was fractal, and the bill trajectories
resembled Lévy walks.

González–Hidalgo–Barabási, 2008, studied the trajectory of 100;000

anonymized mobile phone users (a random sample of 6 million) over 6 months.
The probability of finding a user at a location of rank k (by the number of
times a user was recorded in the vicinity) was P.k/ � 1

k . 40% of the time users
were found at their first two preferred locations (home, work), while spending
remaining time in 5–50 places. Phithakkitnukoon et al., 2011, found that 
 80%
of places visited by mobile phone users are within of their geo-social radius
(nearest social ties’ locations) 20 km.

Jiang–Yin–Zhao, 2009, analyzed people’s moving trajectories, obtained from
GPS data of 50 taxicabs over 6 months in a large street network. They found
a Lévy behavior in walks (both origin-destination and between streets) and
attributed it to the fractal property of the underlying street network, not to the
goal-directed nature of human movement. Rhee et al., 2009, analyzed 
1000 h
of GPS traces of walks of 44 participants. They also got Lévy walks.

• Total distance between trajectories
A trajectory in R

k is a sequence X D ..x1; t1/; : : : ; .xn; tn// of state-time points
with xi 2 R

k and increasing “time” ti 2 N. In R
2, a trajectory can be seen as a list

of consecutive GPS points for a moving object; sometimes, a semantic tag (say,
“Shop, Restaurant”) is attached to each point.

Let c.X/ be the center of mass of fx1; : : : ; xng, l.X/ the length of X, and s.X/
the displacement of X (cf. Sect. 24.1), i.e., the vector from x1 to xn.

The total distance between trajectories X D ..x1; t1/; : : : ; .xn; tn// and X0 D
..x0

1; t
0
1/; : : : ; .x

0
n; t

0
n0// is (Liu–Schneider, 2012) Geo.X;X0/

1C˛Sem.X:X0/
, where ˛ 2 Œ0; 1�

is a parameter, the semantic similarity Sem.X;X0/ is the length of their longest

www.wheresgeorge.com
www.wheresgeorge.com
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common subsequence divided by min.n; n0/, while

dE.c.X/; c.X
0//.1C jl.X/� l.X0/j

max.l.X/; l.X0//
/� jjs.X/jj C jjs.X0/jj

2

hs.X/; s.X0/i
jjs.X/jj � jjs.X0/jj

is their geographic distance Geo.X;X0/.
The Lyapunov time, reflecting the limits of system’s predictability, is the time

for the distance between nearby system’s trajectories to increase by a factor of e.

18.2 Distances in Control Theory

Control Theory deals with influencing the behavior of dynamical systems. It
considers the feedback loop of a plant P (a function representing the object to
be controlled, a system) and a controller C (a function to design). The output y,
measured by a sensor, is fed back to the reference value r.

Then the controller takes the error e D r � y to make inputs u D Ce. Subject to
zero initial conditions, the input and output signals to the plant are related by y D
Pu, where r; u; v and P;C are functions of the frequency variable s. So, y D PC

1CPC r
and y 
 r (i.e., one controls the output by simply setting the reference) if PC is
large for any value of s.

If the system is modeled by a system of linear differential equations, then
its transfer function PC

1CPC , relating the output with the input, is a rational func-
tion. The plant P is stable if it has no poles in the closed right half-plane
CC=fz 2C W Re.z/� 0g.

The robust stabilization problem is: given a nominal plant (a model) P0 and some
metric d on plants, find the open ball of maximal radius which is centered in P0, such
that some controller (rational function) C stabilizes every element of this ball.

The graph G.P/ of the plant P is the set of all bounded input-output pairs .u; y D
Pu/. Both u and y belong to the Hardy space H2.CC/ of the right half-plane; the
graph is a closed subspace of H2.CC/C H2.CC/. In fact, G.P/ is a closed subspace
of H2.C2/, and G.P/ D f .P/ � H2.C2/ for some function f .P/, called the graph
symbol.

Cf. a dynamical system and the Melnikov distance in Sect. 18.1.

• Gap metric
The gap metric between plants P1 and P2 (Zames–El-Sakkary, 1980) is

defined by

gap.P1;P2/ D jj˘.P1/ �˘.P2/jj2;
where˘.Pi/, i D 1; 2, is the orthogonal projection of the graph G.Pi/ of Pi seen
as a closed subspace of H2.C2/. We have

gap.P1;P2/ D maxfı1.P1;P2/; ı1.P2;P1/g;
where ı1.P1;P2/ D infQ2H1 jj f .P1/� f .P2/QjjH1 , and f .P/ is a graph symbol.
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Here H1 is the space of matrix-valued functions that are analytic and bounded
in the open right half-plane fs 2 C W < s > 0g; the H1-norm is the maximum
singular value of the function over this space.

If A is an m � n matrix with m < n, then its n columns span an n-dimensional
subspace, and the matrix B of the orthogonal projection onto the column space
of A is A.ATA/�1AT . If the basis is orthonormal, then B D AAT .

In general, the gap metric between two subspaces of the same dimension
is the l2-norm of the difference of their orthogonal projections; see also the
definition of this distance as an angle distance between subspaces.

In applications, when subspaces correspond to autoregressive models, the
Frobenius norm is used instead of the l2-norm. Cf. Frobenius distance in
Chap. 12.

• Vidyasagar metric
The Vidyasagar metric (or graph metric) between plants P1 and P2 is

defined by

maxfı2.P1;P2/; ı2.P2;P1/g;

where ı2.P1;P2/ D infjjQjj�1 jj f .P1/� f .P2/QjjH1 .
The behavioral distance is the gap between extended graphs of P1 and P2; a

term is added to the graph G.P/, in order to reflect all possible initial conditions
(instead of the usual setup with the initial conditions being zero).

• Vinnicombe metric
The Vinnicombe metric (�-gap metric) between plants P1 and P2 is

defined by

ı�.P1;P2/ D jj.1C P2P
�
2 /

� 1
2 .P2 � P1/.1C P�

1P1/
� 1
2 jj1

if wno. f �.P2/f .P1// D 0, and it is equal to 1, otherwise.
Here f .P/ is the graph symbol function of plant P. See [Youn98] for the

definition of the winding number wno. f / of a rational function f and for a good
introduction to Feedback Stabilization.

• Lanzon–Papageorgiou quasi-distance
Given a plant P, a perturbed plant OP and an uncertainty structure expressed via

a generalized plant H, let � be the set of all possible perturbations that explain
the discrepancy between P and OP. Then Lanzon–Papageorgiou quasi-distance
(2009) between P and OP is defined as 1 if � D ; and infı2� jjıjj1, otherwise.

This quasi-distance corresponds to the worst-case degradation of the stability
margin due to a plant perturbation. For standard uncertainity structures H, it is a
metric, but it is only a quasi-metric for multiplicative uncertainity.

• Distance to uncontrollability
Linear Control Theory concerns a system of the form Nx D Ax.t/ C Bu.t/,

where, at each time t, x.t/ 2 C
n is the state vector, u.t/ 2 C

m is the control input
vector, and A 2 C

n�n, B 2 C
n�m are the given matrices. The system (matrix pair

.A;B/) is called controllable if, for any initial and final states x.0/ and x.T/, there
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exists u.t/; 0 � t � T, that drive the state from x.0/ to x.T/ within finite time, or,
equivalently (Kalman, 1963) the matrix A � 	IB has full row rank for all 	 2 C.
The distance to uncontrollability (Paige, 1981, and Eising, 1984) is defined as

minfjjŒE;F�jj W .A C E;B C F/ is uncontrollableg D min
	2C 
n.A � 	IB/;

where jj:jj is the spectral or Frobenius norm (cf. Sect. 12.3) and 
n.A � 	IB/
denotes the n-th largest singular value of the .n � .n C m//-matrix A � 	IB.

A matrix A 2 C
n�n is stable if any its eigenvalue 	 has real part Re.	/ < 0.

The distance to instability is (Van Loan, 1985) minfjjEjjg W A C E is unstableg,
where jj:jj is one of two above norms. Cf. nearness matrix problems in
Chap. 12.

18.3 Motion Planning Distances

Automatic motion planning methods are applied in Robotics, Virtual Reality Systems
and Computer Aided Design. A motion planning metric is a metric used in
automatic motion planning methods.

Let a robot be a finite collection of rigid links organized in a kinematic hierarchy.
If the robot has n degrees of freedom, this leads to an n-dimensional manifold C,
called the configuration space (or C-space) of the robot. The workspace W of the
robot is the space (usually, E3) in which the robot moves. Usually, it is modeled as
the Euclidean space E

3. A workspace metric is a motion planning metric in the
workspace R3.

The obstacle region CB is the set of all configurations q 2 C that either cause
the robot to collide with obstacles B, or cause different links of the robot to collide
among themselves. The closure cl.Cfree/ of Cfree D CnfCBg is called the space of
collision-free configurations. A motion planning algorithm must find a collision-
free path from an initial configuration to a goal configuration.

A configuration metric is a motion planning metric on the configuration
space C of a robot. Usually, the configuration space C consists of six-tuples
.x; y; z; ˛; ˇ; �/, where the first three coordinates define the position, and the last
three the orientation. The orientation coordinates are the angles in radians.

Intuitively, a good measure of the distance between two configurations is a
measure of the workspace region swept by the robot as it moves between them (the
swept volume distance). However, the computation of such a metric is prohibitively
expensive.

The simplest approach has been to consider the C-space as a Cartesian space and
to use Euclidean distance or its generalizations. For such configuration metrics,
one normalizes the orientation coordinates so that they get the same magnitude as
the position coordinates. Roughly, one multiplies the orientation coordinates by the
maximum x; y or z range of the workspace bounding box. Examples of such metrics
are given below.
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More generally, the configuration space of a 3D rigid body can be identified with
the Lie group ISO.3/: C Š R

3 � RP3. The general form of a matrix in ISO.3/ is
given by

�
R X
0 1

�

;

where R 2 SO.3/ Š RP3, and X 2 R
3.

If Xq and Rq represent the translation and rotation components of the configura-
tion q D .Xq;Rq/ 2 ISO.3/, then a configuration metric between configurations q
and r is given by wtrjjXq � Xrjj C wrotf .Rq;Rr/, where the translation distance
jjXq � Xrjj is obtained using some norm jj:jj on R

3, and the rotation distance
f .Rq;Rr/ is a positive scalar function which gives the distance between the rotations
Rq;Rr 2 SO.3/. The rotation distance is scaled relative to the translation distance
via the weights wtr , wrot.

There are many other types of metrics used in motion planning methods, in
particular, the Riemannian metrics, the Hausdorff metric and, in Chap. 9, the
separation distance, the penetration depth distance and the growth distances.

• Weighted Euclidean R
6-distance

The weighted Euclidean R
6-distance is a configuration metric on R

6

defined, for any x; y 2 R
6, by

 
3X

iD1
jxi � yij2 C

6X

iD4
.wijxi � yij/2

! 1
2

;

where x D .x1; : : : ; x6/, x1; x2; x3 are the position coordinates, x4; x5; x6 are the
orientation coordinates, and wi is the normalization factor. Cf. the general, i.e., in
R

n, weighted Euclidean distance in Chap. 17.
The scaled weighted Euclidean R

6-distance is defined, for any x; y 2 R
6, by

 

s
3X

iD1
jxi � yij2 C .1 � s/

6X

iD4
.wijxi � yij/2

! 1
2

:

This distance changes the relative importance of the position and orientation
components through the scale parameter s.

• Weighted Minkowskian distance
The weighted Minkowskian distance is a configuration metric on R

6

defined, for any x; y 2 R
6, by

 
3X

iD1
jxi � yijp C

6X

iD4
.wijxi � yij/p

! 1
p

:
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It gives the same importance to both position and orientation.
• Modified Minkowskian distance

The modified Minkowskian distance is a configuration metric on R
6

defined, for any x; y 2 R
6, by

 
3X

iD1
jxi � yijp1 C

6X

iD4
.wijxi � yij/p2

! 1
p3

:

It distinguishes between position and orientation coordinates using the parame-
ters p1 � 1 (for the position) and p2 � 1 (for the orientation).

• Weighted Manhattan distance
The weighted Manhattan distance is a configuration metric on R

6 defined,
for any x; y 2 R

6, by

3X

iD1
jxi � yij C

6X

iD4
wijxi � yij:

• Robot displacement metric
The robot displacement metric (or DISP distance, Latombe, 1991, and

LaValle, 2006) is a configuration metric on a configuration space C of a robot
defined by

max
a2A

jja.q/� a.r/jj

for any two configurations q; r 2 C, where a.q/ is the position of the point a in the
workspace R

3 when the robot is at configuration q, and jj:jj is one of the norms
on R

3, usually the Euclidean norm. Intuitively, this metric yields the maximum
amount in workspace that any part of the robot is displaced when moving from
one configuration to another (cf. bounded box metric).

• Euler angle metric
The Euler angle metric is a rotation metric on the group SO.3/ (for the

case of using three—Heading-Elevation-Bank—Euler angles to describe the
orientation of a rigid body) defined by

wrot

p
�.�1; �2/2 C�.�1; �2/2 C�.�1; �2/2

for all R1;R2 2 SO.3/, given by Euler angles .�1; �1; �1/, .�2; �2; �2/, respec-
tively, where �.�1; �2/ D minfj�1 � �2j; 2� � j�1 � �2jg, �i 2 Œ0; 2��, is the
metric between angles, and wrot is a scaling factor.

• Unit quaternions metric
The unit quaternions metric is a rotation metric on the unit quaternion

representation of SO.3/, i.e., a representation of SO.3/ as the set of points (unit
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quaternions) on the unit sphere S3 in R
4 with identified antipodal points (q �

�q).
This representation of SO.3/ suggested a number of possible metrics on it, for

example, the following ones:

1. minfjjq � rjj; jjq C rjjg,
2. jj ln.q�1r/jj,
3. wrot.1 � j	j/,
4. arccos j	j,
where q D q1Cq2iCq3jCq4k,

P4
iD1 q2i D 1, jj:jj is a norm on R

4, 	 D hq; ri D
P4

iD1 qiri, and wrot is a scaling factor.
• Center of mass metric

The center of mass metric is a workspace metric, defined as the Euclidean
distance between the centers of mass of the robot in the two configurations. The
center of mass is approximated by averaging all object vertices.

• Bounded box metric
The bounded box metric is a workspace metric defined as the maximum

Euclidean distance between any vertex of the bounding box of the robot in one
configuration and its corresponding vertex in the other configuration.

The box metric in Chap. 4 is unrelated.
• Pose distance

A pose distance provides a measure of dissimilarity between actions of agents
(including robots and humans) for Learning by Imitation in Robotics.

In this context, agents are considered as kinematic chains, and are represented
in the form of a kinematic tree, such that every link in the kinematic chain is
represented by a unique edge in the corresponding tree.

The configuration of the chain is represented by the pose of the corresponding
tree which is obtained by an assignment of the pair .ni; li/ to every edge ei. Here
ni is the unit normal, representing the orientation of the corresponding link in the
chain, and li is the length of the link.

The pose class consists of all poses of a given kinematic tree. One of the
possible pose distances is a distance on a given pose class which is the sum of
measures of dissimilarity for every pair of compatible segments in the two given
poses.

Another way is to view a pose D.m/ in the context of the a precedent and a
subsequent frames as a 3D point cloud fDj.i/ W m � a � i � m C a; j 2 Jg,
where J is the joint set. The set D.m/ contains k D jJj.2a C 1/ points (joint
positions) pi D .xi; yi; zi/, 1 � i � k. Let T�;x;z denote the linear transformation
which simultaneously rotates all points of a point cloud about the y axis by an
angle � 2 Œ0:2�� and then shifts the resulting points in the xz plane by a vector
.x; 0; z/ 2 R

3. Then the 3D point cloud distance (Kover and Gleicher, 2002)
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between the poses D.m/ D .pi/i2Œ1;k� and D.n/ D .qi/i2Œ1;k� is defined as

min
�;x;z

f
kX

iD1
jjpi � T�;x;z.qi/jj22g:

Cf. Procrustes distance in Chap. 21.
• Joint angle metric

For a given frame (or pose) i in an animation, let us define pi 2 R
3 as the global

(root) position and qi;k 2 S3 as the unit quaternion describing the orientation of
a joint k from the joint set J. Cf. unit quaternions metric and 3D point cloud
distance. The joint angle metric between frames x and y is defined as follows:

jpx � pyj2 C
X

k2J

wkj log.q�1
y;k qx;k/j2:

The second term describes the weighted sum of the orientation differences; cf.
weighted Euclidean R

6-distance. Sometimes, the terms expressing differences
in derivatives, such as joint velocity and acceleration, are added.

• Millibot train metrics
In Microbotics (the field of miniature mobile robots), nanorobot, microrobot,

millirobot, minirobot, and small robot are terms for robots with characteristic
dimensions at most one micrometer, mm, cm, dm, and m, respectively.

A millibot train is a team of heterogeneous, resource-limited millirobots
which can collectively share information. They are able to fuse range information
from a variety of different platforms to build a global occupancy map that
represents a single collective view of the environment.

In the construction of a motion planning metric of millibot trains, one casts a
series of random points about a robot and poses each point as a candidate position
for movement. The point with the highest overall utility is then selected, and the
robot is directed to that point. Thus:

the free space metric, determined by free space contours, only allows
candidate points that do not drive the robot through obstructions;
the obstacle avoidance metric penalizes for moves that get too close to
obstacles;
the frontier metric rewards for moves that take the robot towards open space;
the formation metric rewards for moves that maintain formation;
the localization metric, based on the separation angle between one or
more localization pairs, rewards for moves that maximize localization (see
[GKC04]).

Cf. collision avoidance distance and piano movers distance in Chap. 19.
A swarm-bot can form more complex (more sensors and actuators) and

flexible (interconnecting at several angles and with less accuracy) configurations.



18.4 MOEA Distances 361

The wingspan range of flying robots includes 2:8 cm (quadcopter Lisa/S)
and 40 m (Global Hawk). During 2012, a robot Papa Mau (PacX Wave Glider),
piloted remotely, swam 16;668 km from San Francisco to Australia.

18.4 MOEA Distances

Most optimization problems have several objectives but, for simplicity, only one
of them is optimized, and the others are handled as constraints. Multi-objective
optimization considers (besides some inequality constraints) an objective vector
function f W X 
 R

n ! R
k from the search (or genotype, decision variables)

space X to the objective (or phenotype, decision vectors) space f .X/ D f f .x/ W x 2
Xg 
 R

k.
A point x� 2 X is a Pareto-optimal solution if, for every other x 2 X, the decision

vector f .x/ does not Pareto-dominate f .x�/, i.e., f .x/ � f .x�/. The Pareto-optimal
front is the set PF� D f f .x/ W x 2 X�g, where X� is the set of all Pareto-optimal
solutions.

Multi-objective evolutionary algorithms (MOEA) produce, at each generation,
an approximation set (the found Pareto front PFknown approximating the desired
Pareto front PF�) in objective space in which no element Pareto-dominates another
element. Examples of MOEA metrics, i.e., measures evaluating how close PFknown

is to PF�, follow.

• Generational distance
The generational distance is defined by

.
Pm

jD1 d2j /
1
2

m
;

where m D jPFknownj, and dj is the Euclidean distance (in the objective space)
between f j.x/ (i.e., j-th member of PFknown) and the nearest member of PF�. This
distance is zero if and only if PFknown D PF�.

The term generational distance (or rate of turnover) is also used for the
minimal number of branches between two positions in any system of ranked
descent represented by a hierarchical tree. Examples are: phylogenetic distance
on a phylogenetic tree (cf. Chap. 23), the number of generations separating
a photocopy from the original block print, and the number of generations
separating the audience at a memorial from the commemorated event.

• Spacing
The spacing is defined by

 Pm
jD1.d � dj/

2

m � 1

! 1
2

;
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where m D jPFknownj, dj is the L1-metric (in the objective space) between f j.x/
(i.e., j-th member of PFknown) and the nearest other member of PFknown, while d
is the mean of all dj.

• Overall nondominated vector ratio
The overall nondominated vector ratio is defined by

jPFknownj
jPF�j :

• Crowding distance
The crowding distance (Deb et al., 2002) is a diversity metric assigned to

each Pareto-optimal solution. It is the sum, for all objectives, of the absolute
difference of the objective values of two nearest solutions on each side, if they
exist.

The boundary solutions, i.e., those with the smallest or the highest such value,
are assigned an infinite crowding distance.



Part V
Computer-Related Distances



Chapter 19
Distances on Real and Digital Planes

19.1 Metrics on Real Plane

Any Lp-metric (as well as any norm metric for a given norm jj:jj on R
2) can be

used on the plane R
2, and the most natural is the L2-metric, i.e., the Euclidean

metric dE.x; y/ D p
.x1 � y1/2 C .x2 � y2/2 which gives the length of the straight

line segment Œx; y�, and is the intrinsic metric of the plane.
However, there are other, often “exotic”, metrics on R

2. Many of them are used
for the construction of generalized Voronoi diagrams on R

2 (see, for example,
Moscow metric, network metric, nice metric). Some of them are used in Digital
Geometry.

• Erdős-type distance problems
Those distance problems were given by Erdős and his collaborators, usually,

for the Euclidean metric on R
2, but they are of interest for R

n and for other
metrics on R

2. Examples of such problems are to find out:

the least number of different distances (or largest occurrence of a given
distance) in an m-subset of R2;
the largest cardinality of a subset of R2 determining at most m distances;
the minimum diameter of an m-subset of R2 with only integral distances (or,
say, without a pair .d1; d2/ of distances with 0 < jd1 � d2j < 1);
the Erdős-diameter of a given set S, i.e., the minimum diameter of a rescaled
set rS, r > 0, in which any two different positive distances differ at least by
one;
the largest cardinality of an isosceles set in R

2, i.e., a set of points, any three
of which form an isosceles triangle;
existence of an m-subset of R2 with, for each 1 � i � m, a distance occurring
exactly i times (examples are known for m � 8);
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existence of a dense subset of R2 with rational distances (Ulam problem);
existence of m;m > 7, noncollinear points of R2 with integral distances;
forbidden (not occurring within each part) distances of a partition of R2.

The general Erdős distinct distances problem, still open for n > 2, is to prove
that if A 
 R

n, jAj D m and d.A/ denotes the set fPn
iD1.xi � yi/

2 W x; y 2 Ag,
then jd.A/j � Cm

n
2 for some constant C > 0. This problem was generalized for

distinct “distances” (cf. Chap. 3) over a finite field. Also, its continuous analog,
open Falconer distance problem is to prove that if the Hausdorff dimension
of A 
 R

n is > n
2
, then 1-dimensional Lebesque measure of d.A/ is positive.

Related result by Quas, 2009: if the upper density of A 
 R
n is positive, then

there is r0 > 0 such that for any r > r0, there are x; y 2 A with dE.x; y/ D r.
The three-distance theorem (Sós, 1957): given a 2 .0; 1/ and n 2 N, the

points f0g; fag; f2ag; : : : ; fnag .mod 1/ on the circle of perimeter 1, partition it
into n C 1 intervals having at most three lengths, one being the sum of the other
two.

The problem of dispersion (or finding System of Distant Representatives) in
a family of n subsets of a metric space is (Fiala et al., 2005) that of selecting
n points, one in each subset, such that the minimum inter-point distance is
maximized.

• Distance inequalities in a triangle
The multitude of inequalities, involving Euclidean distances between points

of Rn, is represented below by some distance inequalities in a triangle.
Let 4ABC be a triangle on R

2 with side-lengths a D d.B;C/; b D
d.C;A/; c D d.A;B/ and area A D 1

4

p
.a2 C b2 C c2/2 � 2.a4 C b4 C c4/.

Let P;P0 be two arbitrary interior points in 4ABC. Denote by DA;DB;DC

the distances d.P;A/; d.P;B/; d.P;C/ and by dA; dB; dC the point-line distances
(Chap. 4) from P to the sides BC;CA;AB opposite to A;B;C. For the point P0
define D0

A;D
0
B;D

0
C and d0

A; d
0
B; d

0
C similarly.

The point P is circumcenter if DA D DB D DC; this distance, R D abc
4A ,

is circumcircle’s radius. The point P is incenter if dA D dB D dC; this
distance, r D 2A

aCbCc , is incircle’s radius. The centroid (the center of mass)
is the point G of concurrency of three triangle’s medians ma;mb;mc; it holds
d.A;G/ D 2

3
ma; d.B;G/ D 2

3
mb; d.C;G/ D 2

3
mc. The symmedian point is the

point of concurrency of three triangle’s symmedians (reflections of medians at
corresponding angle bisectors).

The orthocenter is the point of concurrency of three triangle’s altitudes.
The centroid is situated on the Euler line through the circumcenter and the
orthocenter, at 1

3
of their distance. At 1

2
of their distance lies the center of the

circle going through the midpoints of three sides and the feet of three altitudes.

– If P and P0 are the circumcenter and incenter of 4ABC, then (Euler, 1765)

d2.P;P0/ � R.R � 2r/
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holds implying R � 2r with equality if and only if triangle is equilateral. In
fact, the general Euler’s inequality R � nr holds (Klamkin–Tsintsifas, 1979)
for the radii R; r of circumscribed and inscribed spheres of an n-simplex.

– For any P;P0, the Erdős–Mordell inequality (Mordell–Barrow, 1937) is

DA C DB C DC � 2.dA C dB C dC/:

Liu, 2008, generalized above as follows: for all x; y; z � 0 it holds

q
DAD0

Ax2C
q

DBD0
By2C

q
DCD0

Cz2 � 2.

q
dAd0

AyzC
q

dBd0
BxzC

q
dCd0

Cxy/:

– Lemoine, 1873, proved that

4A2

a2 C b2 C c2
� d2A C d2B C d2C

with equality if and only if P is the symmedian point.
– Posamentier and Salkind, 1996, showed

3

4
.aCbCc/ < maCmbCmc < aCbCc; while

3

4
.a2Cb2Cc2/ D m2

aCm2
bCm2

c :

– Kimberling, 2010, proved that

dAdBdC � 8A3

27abc

with equality if and only if P is the centroid.
He also gave (together with unique point realizing equality) inequality

.2A/q

.a
2

q�1 C b
2

q�1 C c
2

q�1 /q�1
� dq

A C dq
B C dq

C

for any q < 0 or q > 1. For 0 < q < 1, the reverse inequality holds.

The side-lengths d.A;B/; d.B;C/; d.C;A/ of a right triangle are in arithmetic
progression only if their ratio is 3:4:5. They are in geometric progression only if

their ratio is 1:
p
':', where ' is the golden section 1Cp

5
2

.
• City-block metric

The city-block metric is the L1-metric on R
2 defined by

jjx � yjj1 D jx1 � y1j C jx2 � y2j:
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It is also called the taxicab metric, Manhattan metric, rectilinear metric,
right-angle metric, 4-metric and, on Z

n, grid metric. The von Neumann
neighborhood of a point is the set of points at a Manhattan distance of 1 from it.

• Chebyshev metric
The Chebyshev metric (or chessboard metric, king-move metric,

8-metric) is the L1-metric on R
2 defined by

jjx � yjj1 D maxfjx1 � y1j; jx2 � y2jg:

On Z
n, this metric is called also the lattice (or uniform, sup) metric. A point’s

Moore neighborhood is the set of points at a Chebyshev distance of 1.
• ˛-metric

Given ˛ 2 Œ0; �
4
�, the ˛-metric for x; y 2 R

2 is defined (Tian, 2005) by

d˛.x; y/ D maxfjx1 � y1j; jx2 � y2jg � .sec˛ � tan˛/minfjx1 � y1j; jx2 � y2j:

It is the city-block metric if ˛ D 0. For ˛ D �
4

, i.e., sec˛ � tan ˛ D p
2 � 1,

it is the Chinese checkers metric (Chen, 1992). Chinese checkers (as well as
Hexagonal chess, Masonic chess, Sannin shogi, Hexshogi) is a strategy board
game with hexagonal cells, while Tiangular chess, Tri-chess, Trishogi have
triangular cells. Cf. hexagonal metric. Gelişgen and Kaya, 2006, generalized
˛-metric on R

n.
• Relative metrics on R

2

The . p; q/-relative and M-relative distances are defined in Chap. 5 on any
Ptolemaic space. The . p; q/-relative distance on R

2 (in general, on R
n) is

defined (for x or y ¤ 0) in the cases 1 � p < 1 and p D 1, respectively,
by

jjx � yjj2
. 1
2
.jjxjjp

2 C jjyjjp
2//

q
p

and
jjx � yjj2

.maxfjjxjj2; jjyjj2g/q :

Let f W Œ0;1/ ! .0;1/ be a convex increasing function such that f .x/
x is

decreasing for x > 0. The M-relative distance on R
2 (in general, on R

n), is
defined by

jjx � yjj2
f .jjxjj2/ � f .jjyjj2/ :

In particular, the distance below is a metric if and only if p � 1:

jjx � yjj2
p

q
1C jjxjjp

2
p

q
1C jjyjjp

2

:

A similar metric on R
2nf0g (in general, on R

nnf0g) is defined by jjx�yjj2
jjxjj2 	jjyjj2 .
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• MBR metric
The MBR metric (Schönemann, 1982, for bounded response scales in

Psychology) is a metric d..x1; x2/; .y1; y2// on R
2, defined by

jx1 � y1j C jx2 � y2j
1C jx1 � y1jjx2 � y2j D tanh.arctanh.jx1 � y1j/C arctanh.jx2 � y2j//:

• Moscow metric
The Moscow (or Karlsruhe, Amsterdam) metric is a metric on R

2, defined as
the minimum Euclidean length of all admissible connecting curves between x
and y 2 R

2, where a curve is called admissible if it consists only of radial streets
(segments of straight lines passing through the origin) and circular avenues
(segments of circles centered at the origin); see, for example, [Klei88]).

If the polar coordinates for points x; y 2 R
2 are .rx; �x/, .ry; �y/, respectively,

then the distance between them is equal to minfrx; ryg�.�x � �y/ C jrx � ryj
if 0 � �.�x; �y/ < 2, and is equal to rx C ry if 2 � �.�x; �y/ < � , where
�.�x; �y/ D minfj�x ��yj; 2��j�x ��yjg; �x; �y 2 Œ0; 2�/, is the metric between
angles.

• French Metro metric
Given a norm jj:jj on R

2, the French Metro metric is a metric on R
2 defined

by

jjx � yjj if x D cy for some 0 ¤ c 2 R .i.e., x1y2 D x2y1/;

and by

jjxjj C jjyjj; otherwise.

For the Euclidean norm jj:jj2, it is called the Paris metric, radial metric,
hedgehog metric, or French railroad metric, enhanced SNCF metric.

In this case it can be defined as the minimum Euclidean length of all
admissible connecting curves between two given points x and y, where a curve is
called admissible if it consists only of segments of straight lines passing through
the origin.

In graph terms, this metric is similar to the path metric of the tree consisting
of a point from which radiate several disjoint paths. In the case when only one
line radiates from the point, this metric is called the train metric.

The Paris metric is an example of an R-tree T which is simplicial, i.e., its set
of points x with Tnfxg not having exactly two components, is discrete and closed.

• Lift metric
The lift metric (or jungle river metric, raspberry picker metric, barbed wire

metric) is a metric d..x1; x2/; .y1; y2// on R
2 defined (see, for example, [Brya85])

by

jx1 � y1j if x2 D y2;
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and by

jx1j C jx2 � y2j C jy1j if x2 ¤ y2:

It is the minimum Euclidean length of all admissible (consisting only of segments
of straight lines parallel to the x1 axis and segments of the x2 axis) connecting
curves between points .x1; x2/ and .y1; y2/.

The lift metric is an nonsimplicial (cf. French Metro metric) R-tree.
• Radar screen metric

Given a norm jj:jj on R
2 (in general, on R

n), the radar screen metric is a
special case of the t-truncated metric (Chap. 4) defined by

minf1; jjx � yjjg:

• British Rail metric
Given a norm jj:jj on R

2 (in general, on R
n), the British Rail metric is a

metric defined as 0 for x D y and, otherwise, by

jjxjj C jjyjj:

It is also called the Post Office metric, caterpillar metric and shuttle metric.
• Flower-shop metric

Let d be a metric on R
2, and let f be a fixed point (a flower-shop) in the plane.

The flower-shop metric (sometimes called SNCF metric) is a metric on R
2

(in general, on any metric space) defined by

d.x; f /C d. f ; y/

for x ¤ y (and is equal to 0, otherwise). So, a person living at point x, who wants
to visit someone else living at point y, first goes to f , to buy some flowers. In the
case d.x; y/ D jjx � yjj and the point f being the origin, it is the British Rail
metric.

If k > 1 flower-shops f1; : : : ; fk are available, one buys the flowers, where the
detour is a minimum, i.e., the distance between distinct points x; y is equal to
min1�i�kfd.x; fi/C d. fi; y/g.

• Rickman’s rug metric
Given a number ˛ 2 .0; 1/, the Rickman’s rug metric on R

2 is a 2D case of
the parabolic distance (Chap. 6) defined by

d..x1; x2/; .y1; y2// D jx1 � y1j C jx2 � y2j˛:

• Burago–Burago–Ivanov metric
The Burago–Burago–Ivanov metric ([BBI01]) is a metric on R

2 defined by

j jjxjj2 � jjyjj2j C minfjjxjj2; jjyjj2g �p†.x; y/;



19.1 Metrics on Real Plane 371

where †.x; y/ is the angle between vectors x and y, and jj:jj2 is the Euclidean
norm on R

2. The corresponding internal metric on R
2 is equal to j jjxjj2� jjyjj2j

if †.x; y/ D 0, and is equal to jjxjj2 C jjyjj2, otherwise.
• 2n-gon metric

Given a centrally symmetric regular 2n-gon K on the plane, the 2n-gon metric
is a metric on R

2 defined, for any x; y 2 R
2, as the shortest Euclidean length of a

polygonal line from x to y with each of its sides parallel to some edge of K.
If K is a square with the vertices f.˙1;˙1/g, one obtains the Manhat-

tan metric. The Manhattan metric arises also as the Minkowskian met-
ric with the unit ball being the diamond, i.e., a square with the vertices
f.1; 0/; .0; 1/; .�1; 0/; .0;�1/g.

• A-distance
Given a set A, jAj � 2, of distinct orientations (i.e., angles with fixed x axis) on

the plane R
2, the A-distance (or fixed orientation metric) is (Widmayer–Wu–

Wong, 1987) Euclidean length of the shortest (zig-zag) path of line segments
with orientations from A. Any A-distance is a metric.

A-distance with A D f i�
n W 1 � i � ng for fixed n 2 Œ2;1�, is called a uniform

orientation metric; cf. 2n-gon metric. It is the l1-metric, hexagonal metric, l2-
metric for n D 2; 3;1, respectively.

• Central Park metric
The Central Park metric is a metric on R

2, defined as the length of a shortest
L1-path (Manhattan path) between two points x; y 2 R

2 in the presence of a
given set of areas which are traversed by a shortest Euclidean path (for example,
Central Park in Manhattan).

• Collision avoidance distance
Let O D fO1; : : : ;Omg be a collection of pairwise disjoint polygons on the

Euclidean plane representing a set of obstacles which are neither transparent nor
traversable.

The collision avoidance distance (or piano movers distance, shortest path
metric with obstacles) is a metric on the set R2nfOg, defined, for any x; y 2
R
2nfOg, as the length of the shortest path among all possible continuous paths,

connecting x and y, that do not intersect obstacles Oin@Oi (a path can pass
through points on the boundary @Oi of Oi), i D 1; : : :m.

• Rectilinear distance with barriers
Let O D fO1; : : : ;Omg be a set of pairwise disjoint open polygonal barriers

on R
2. A rectilinear path (or Manhattan path) Pxy from x to y is a collection of

horizontal and vertical segments in the plane, joining x and y. The path Pxy is
called feasible if Pxy \ .[m

iD1Bi/ D ;.
The rectilinear distance with barriers (or rectilinear distance in the pres-

ence of barriers) is a metric on R
2nfOg, defined, for any x; y 2 R

2nfOg, as the
length of the shortest feasible rectilinear path from x to y.

The rectilinear distance in the presence of barriers is a restriction of the
Manhattan metric, and usually it is considered on the set fq1; : : : ; qng 
 R

2 of
n origin-destination points: the problem to find such a path arises, for example,
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in Urban Transportation, or in Plant and Facility Layout (see, for example,
[LaLi81]).

• Link distance
Let P 
 R

2. The polygonal distance (or link distance as defined by Suri,
1986) between any two points of P is the smallest number of edges of a polygonal
path in P connecting them if such path exists and 1, otherwise.

If the path is restricted to be rectilinear, one obtains the rectilinear link
distance. If each line segment of the path is parallel to one from a set A of
fixed orientations, one obtains the A-oriented link distance; cf. fixed orientation
metric above.

If the turning points of the path are constrained to lie on the boundary of P,
then the path is called drp (diffuse reflection path). The drp-diameter of P is the
minimum number of diffuse reflections (segments in a drp) needed to illuminate
any target point from any point light source inside P.

• Facility layout distances
A layout is a partition of a rectangular plane region into smaller rectangles,

called departments, by lines parallel to the sides of original rectangle. All interior
vertices should be of degree 3, and some of them, at least one on the boundary of
each department, are doors, i.e., input-output locations.

The problem is to design a convenient notion of distance d.x; y/ between
departments x and y which minimizes the cost function

P
x;y F.x; y/d.x; y/, where

F.x; y/ is some material flow between x and y. The main distances used are:

the centroid distance, i.e., the shortest Euclidean or Manhattan distance
between centroids (the intersections of the diagonals) of x and y;
the perimeter distance, i.e., the shortest rectilinear distance between doors of
x and y, but going only along the walls (department perimeters).

• Quickest path metric
A quickest path metric (or network metric, time metric) is a metric on R

2

(or on a subset of R2) in the presence of a given transportation network, i.e., a
finite graph G D .V;E/ with V 
 R

2 and edge-weight function w.e/ > 1: the
vertices and edges are stations and roads. For any x; y 2 R

2, it is the time needed
for a quickest path (i.e., a path minimizing the travel duration) between them
when using, eventually, the network.

Movement takes place, either off the network with unit speed, or along its
roads e 2 E with fixed speeds w.e/ >> 1, with respect to a given (usually,
Euclidean or Manhattan) metric d on the plane. The network G can be accessed
or exited only at stations (usual discrete model) or at any point of roads (the
continuous model).

The heavy luggage metric (Abellanas–Hurtado–Palop, 2005) is a quickest
path metric on R

2 in the presence of a network with speed 1 outside of the
network and speed 1 (so, travel time 0) inside of it.

The airlift metric is a quickest path metric on R
2 in the presence of an

airports network, i.e., a planar graph G D .V;E/ on n vertices (airports) with
positive edge weights .we/e2E (flight durations). The graph may be entered and
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exited only at the airports. Movement off the network takes place with unit speed
with respect to the Euclidean metric. We assume that going by car takes time
equal to the Euclidean distance d, whereas the flight along an edge e D uv of G
takes time w.e/ < d.u; v/. In the simplest case, when there is an airlift between
two points a; b 2 R

2, the distance between x and y is equal to

minfd.x; y/; d.x; a/C w C d.b; y/; d.x; b/C w C d.a; y/g;

where w is the flight duration from a to b.
The city metric is a quickest path metric on R

2 in the presence of a city
public transportation network, i.e., a planar straight line graph G with horizontal
or vertical edges. G may be composed of many connected components, and may
contain cycles.

One can enter/exit G at any point, be it at a vertex or on an edge (it is possible
to postulate fixed entry points, too). Once having accessed G, one travels at
fixed speed v > 1 in one of the available directions. Movement off the network
takes place with unit speed with respect to the Manhattan metric, as in a large
modern-style city with streets arranged in north–south and east–west directions.

A variant of such semimetric is the subway semimetric defined ([O’Bri03]),
for x; y 2 R

2, as min.d.x; y/; d.x;L/C d.y;L//, where d is the Manhattan metric
and L is a (subway) line.

• Shantaram metric
For any numbers a; b with 0 < b � 2a � 2b, the Shantaram metric between

two points x; y 2 R
2 is 0; a or b if x and y coincide in exactly 2; 1 or 0 coordinates,

respectively.
• Periodic metric

A metric d on R
2 is called periodic if there exist two linearly independent

vectors v and u such that the translation by any vector w D mv C nu, m; n 2 Z,
preserves distances, i.e., d.x; y/ D d.x C w; y C w/ for any x; y 2 R

2.
Cf. translation invariant metric in Chap. 5.

• Nice metric
A metric d on R

2 with the following properties is called nice (Klein–Wood,
1989):

1. d induces the Euclidean topology;
2. The d-circles are bounded with respect to the Euclidean metric;
3. If x; y 2 R

2 and x ¤ y, then there exists a point z; z ¤ x; z ¤ y, such that
d.x; y/ D d.x; z/C d.z; y/;

4. If x; y 2 R
2, x 	 y (where 	 is a fixed order on R

2, the lexicographic order,
for example), C.x; y/ D fz 2 R

2 W d.x; z/ � d.y; z/g, D.x; y/ D fz 2 R
2 W

d.x; z/ < d.y; z/, and D.x; y/ is the closure of D.x; y/, then J.x; y/ D C.x; y/\
D.x; y/ is a curve homeomorphic to .0; 1/. The intersection of two such curves
consists of finitely many connected components.

Every norm metric fulfills 1, 2, and 3 Property 2 means that the metric d is
continuous at infinity with respect to the Euclidean metric. Property 4 is to ensure
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that the boundaries of the correspondent Voronoi diagrams are curves, and that
not too many intersections exist in a neighborhood of a point, or at infinity.

A nice metric d has a nice Voronoi diagram: in the Voronoi diagram
V.P; d;R2/ (where P D f p1; : : : ; pkg, k � 2, is the set of generator points)
each Voronoi region V. pi/ is a path-connected set with a nonempty interior, and
the system fV. p1/; : : : ;V. pk/g forms a partition of the plane.

• Contact quasi-distances
The contact quasi-distances are the following variations of the distance

convex function (Chap. 1) defined on R
2 (in general, on R

n) for any x; y 2 R
2.

Given a set B 
 R
2, the first contact quasi-distance dB is defined by

inff˛ > 0 W y � x 2 ˛Bg

(cf. sensor network distances in Chap. 29).
Given, moreover, a point b 2 B and a set A 
 R

2, the linear contact quasi-
distance is a point-set distance defined by db.x;A/ D inff˛ � 0 W ˛b C x 2 Ag.

The intercept quasi-distance is, for a finite set B, defined by
P

b2B db.x;y/
jBj .

• Radar discrimination distance
The radar discrimination distance is a distance on R

2 defined by

j�x � �y C �xyj

if x; y 2 R
2nf0g, and by

j�x � �yj

if x D 0 or y D 0, where, for each x 2 R
2, �x denotes the radial distance of x

from f0g and, for any x; y 2 R2nf0g, �xy denotes the radian angle between them.
• Ehrenfeucht–Haussler semimetric

Let S be a subset of R2 such that x1 � x2 � 1 � 0 for any x D .x1; x2/ 2 S.
The Ehrenfeucht–Haussler semimetric (see [EhHa88]) on S is defined by

log2

��
x1
y2

C 1

��
y1
x2

C 1

��

:

• Toroidal metric
The toroidal metric is a metric on T D Œ0; 1/ � Œ0; 1/ D fx D .x1; x2/ 2 R

2 W
0 � x1; x2 < 1g defined for any x; y 2 R

2 by

q
t21 C t22;

where ti D minfjxi � yij; jxi � yi C 1jg for i D 1; 2 (cf. torus metric).
• Circle metric

The circle metric is the intrinsic metric on the unit circle S1 in the plane.
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As S1 D f.x; y/ W x2 C y2 D 1g D fei� W 0 � � < 2�g, it is the length of the
shorter of the two arcs joining the points ei� ; ei# 2 S1, and can be written as

minfj� � #j; 2� � j� � #jg D
� j# � � j; if 0 � j# � � j � �;

2� � j# � � j; if j# � � j > �:

• Metric between angles
The metric between angles � is a metric on the set of all angles in the plane

R
2 defined for any �; # 2 Œ0; 2�/ (cf. circle metric) by

minfj� � #j; 2� � j� � #jg D
� j# � � j; if 0 � j# � � j � �;

2� � j# � � j; if j# � � j > �:

• Metric between directions
On R

2, a direction Ol is a class of all straight lines which are parallel to a given
straight line l 
 R

2. The metric between directions is a metric on the set L
of all directions on the plane defined, for any directions Ol; Om 2 L, as the angle
between any two representatives.

• Angular distance
The angular distance traveled around a circle is the number � D l

r of radians
the path subtends, � D l

r , where l is the path length, and r is the circle’s radius.
• Circular distance

The circular distance is the distance traveled by a wheel. Each revolution of
a wheel with radius r is equivalent to the distance of 2�r radians.

• Circular-railroad quasi-metric
The circular-railroad quasi-metric on the unit circle S1 
 R

2 is defined, for
any x; y 2 S1, as the length of the counterclockwise circular arc from x to y in S1.

• Inversive distance
The inversive distance between two nonintersecting circles in the plane R2 is

defined as the natural logarithm of the ratio of the radii (the larger to the smaller)
of two concentric circles into which the given circles can be inverted.

Let c be the distance between the centers of two nonintersecting circles of
radii a and b < a. Then their inversive distance is given by

cosh�1
ˇ
ˇ
ˇ
ˇ
a2 C b2 � c2

2ab

ˇ
ˇ
ˇ
ˇ :

The circumcircle and incircle of a triangle with circumradius R and inradius r
are at the inversive distance 2 sinh�1. 1

2

p
r
R /.

Given three noncollinear points, construct three tangent circles such that one
is centered at each point and the circles are pairwise tangent to one another. Then
there exist exactly two nonintersecting circles, called the Soddy circles, that are
tangent to all three circles. Their inversive distance is 2 cosh�1 2.
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19.2 Digital Metrics

Here we list special metrics which are used in Computer Vision (or Pattern
Recognition, Robot Vision, Digital Geometry).

A computer picture (or computer image) is a subset of Zn which is called a digital
nD space. Usually, pictures are represented in the digital plane (or image plane) Z2,
or in the digital space (or image space) Z3. The points of Z2 and Z

3 are called pixels
and voxels, respectively. An nD m-quantized space is a scaling 1

mZ
n.

A digital metric (see, for example, [RoPf68]) is any metric on a digital nD space.
Usually, it should take integer values.

The metrics on Z
n that are mainly used are the L1- and L1-metrics, as well as the

L2-metric after rounding to the nearest greater (or lesser) integer. In general, a given
list of neighbors of a pixel can be seen as a list of permitted one-step moves on Z

2.
Let us associate a prime distance, i.e., a positive weight, to each type of such move.

Many digital metrics can be obtained now as the minimum, over all admissible
paths (i.e., sequences of permitted moves), of the sum of corresponding prime
distances.

In practice, the subset .Zm/
n D f0; 1; : : : ;m � 1gn is considered instead of the

full space Zn. .Zm/
2 and .Zm/

3 are called the m-grill and m-framework, respectively.
The most used metrics on .Zm/

n are the Hamming metric and the Lee metric.

• Grid metric
The grid metric is the L1-metric on Z

n. It can be seen as the path metric of an
infinite graph: two points of Zn are adjacent if their L1-distance is 1.

For n D 2, this metric is the restriction on Z
2 of the city-block metric which

is also called the taxicab (or rectilinear, Manhattan, 4-) metric.
• Lattice metric

The lattice metric is the L1-metric on Z
n. It can be seen as the path metric of

an infinite graph: two points of Zn are adjacent if their L1-distance is 1. For Z2,
the adjacency corresponds to the king move in chessboard terms, and this graph
is called the L1-grid, while this metric is also called the chessboard metric,
king-move metric, 8-metric, or checking distance.

This metric is the restriction on Z
n of the Chebyshev metric which is also

called the sup metric, or uniform metric.
• Hexagonal metric

The hexagonal metric (or 6-metric) is a metric on Z
2 with a unit sphere

(centered at x 2 Z
2) defined by S1.x/ D S1L1 .x/[f.x1�1; x2�1/; .x1�1; x2C1/g

for even x2, and S1.x/ D S1L1 .x/[ f.x1 C 1; x2 � 1/; .x1 C 1; x2 C 1/g for odd x2.
For any x D .x1; x2/; y D .y1; y2/ 2 Z

2, this metric d6.x; y/ can be written as

max

�

jx2 � y2j; jx2 � y2j
2

˙
�

x2 � y2
2

C
�

x2 C 1

2




�
�

y2 C 1

2




� .x1 � y1/

��

:

It is the path metric of the triangular grid (or, dually, the minimum number of
cell moves of the hexagonal grid) on the plane. In hexagonal coordinates .h1; h2/
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(in which the h1- and h2-axes are parallel to the grid’s edges) the hexagonal
distance between points h D .h1; h2/ and i D .i1; i2/ is

d6.h; i/ D 1

2
.jh1 � i1j C jh2 � i2j C j.h1 � i1/� .h2 � i2/j/;

i.e., jh1 � i1j C jh2 � i2j, if .h1 � i1/.h2 � i2/ � 0, and maxfjh1 � i1j; jh2 � i2jg,
if otherwise; cf. [LuRo76]. The coordinates .h1; h2/ of a point x are related to its
Cartesian coordinates .x1; x2/ by h1 D x1 � b x2

2
c, h2 D x2.

This metric approximates the Euclidean metric better than L1- or L1-metric.
The hexagonal Hausdorff metric is a metric on the set of all bounded subsets

(pictures, or images) of the hexagonal grid on the plane defined by

inff p; q W A 
 B C qH; B 
 A C pHg

for any pictures A and B, where pH is the regular hexagon of size p (i.e., with pC1
pixels on each edge), centered at the origin and including its interior, and C is the
Minkowski addition: A C B D fx C y W x 2 A; y 2 Bg (cf. Pompeiu–Hausdorff–
Blaschke metric in Chap. 9). If A is a pixel x, then the distance between x and B
is equal to supy2B d6.x; y/, where d6 is the hexagonal metric.

• Digital volume metric
The digital volume metric is a metric on the set K of all bounded subsets

(pictures, or images) of Z2 (in general, of Zn) defined by

vol.A4B/;

where vol.A/ D jAj, i.e., the number of pixels contained in A, and A4B is the
symmetric difference between sets A and B.

This metric is a digital analog of the Nikodym metric in Chap. 9.
• Neighborhood sequence metric

On the digital plane Z2, consider two types of motions: the city-block motion,
restricting movements only to the horizontal or vertical directions, and the
chessboard motion, also allowing diagonal movements.

The use of both these motions is determined by a neighborhood sequence B D
fb.1/; b.2/; : : : ; b.l/g, where b.i/ 2 f1; 2g is a particular type of neighborhood,
with b.i/ D 1 signifying unit change in 1 coordinate (city-block neighborhood),
and b.i/ D 2 meaning unit change also in 2 coordinates (chessboard neighbor-
hood). The sequence B defines the type of motion to be used at every step (see
[Das90]).

The neighborhood sequence metric is a metric on Z
2 defined as the length

of a shortest path between x and y 2 Z
2, determined by a given neighborhood

sequence B. It can be written as

maxfd1B.u/; d
2
B.u/g;
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where u1 D x1 � y1, u2 D x2 � y2, d1B.u/ D maxfju1j; ju2jg, d2B.u/ D
Pl

jD1b ju1jCju2jCg. j/
f .l/ c, f .0/ D 0, f .i/ D Pi

jD1 b. j/, 1 � i � l, g. j/ D
f .l/ � f . j � 1/� 1, 1 � j � l.

For B D f1g one obtains the city-block metric, for B D f2g one obtains
the chessboard metric. The case B D f1; 2g , i.e., the alternative use of these
motions, results in the octagonal metric, introduced in [RoPf68].

A proper selection of the B-sequence can make the corresponding metric very
close to the Euclidean metric. It is always greater than the chessboard metric, but
smaller than the city-block metric.

• nD-neighborhood sequence metric
The nD-neighborhood sequence metric is a metric on Z

n, defined as the
length of a shortest path between x and y 2 Z

n, determined by a given nD-
neighborhood sequence B (see [Faze99]).

Formally, two points x; y 2 Z
n are called m-neighbors, 0 � m � n, if 0 �

jxi � yij � 1, 1 � i � n, and
Pn

iD1 jxi � yij � m. A finite sequence B D
fb.1/; : : : ; b.l/g, b.i/ 2 f1; 2; : : : ; ng, is called an nD-neighborhood sequence
with period l. For any x; y 2 Z

n, a point sequence x D x0; x1; : : : ; xk D y, where
xi and xiC1, 0 � i � k � 1, are r-neighbors, r D b..i mod l/C 1/, is called a path
from x to y determined by B with length k. The distance between x and y can be
written as

max
1�i�n

di.u/ with di.x; y/ D
lX

jD1

�
ai C gi. j/

fi.l/




;

where u D .ju1j; ju2j; : : : ; junj/ is the nonincreasing ordering of jumj, um D xm �
ym, m D 1; : : : ; n, that is, juij � jujj if i < j; ai D Pn�iC1

jD1 uj; bi. j/ D b. j/ if

b. j/ < n � i C 2, and is n � i C 1, otherwise; fi. j/ D Pj
kD1 bi.k/ if 1 � j � l,

and is 0 if j D 0; gi. j/ D fi.l/ � fi. j � 1/� 1; 1 � j � l.
• Strand–Nagy distances

The face-centered cubic lattice is A3 D f.a1; a2; a3/ 2 Z
3 W a1 C a2 C a3 �

0.mod 2/g, and the body-centered cubic lattice is its dual

A�
3 D f.a1; a2; a3/ 2 Z

3 W a1 � a2 � a3.mod 2/g:

Let L 2 fA3;A�
3 g. For any points x; y 2 L, let d1.x; y/ D P3

jD1 jxj � yjj denote the
L1-metric and d1.x; y/ D maxj2f1;2;3g jxj � yjj denote the L1-metric between
them. Two points x; y 2 L are called 1-neighbors if d1.x; y/ � 3 and 0 <

d1.x; y/ � 1; they are called 2-neighbors if d1.x; y/ � 3 and 1 < d1.x; y/ � 2.
Given a sequence B D fb.i/g1

iD1 over the alphabet f1; 2g, a B-path in L is a
point sequence x D x0; x1; : : : ; xk D y, where xi and xiC1, 0 � i � k � 1, are
1-neighbors if b.i/ D 1 and 2-neighbors if b.i/ D 2.

The Strand–Nagy distance between two points x; y 2 L (or B-distance in
Strand and Nagy, 2007) is the length of a shortest B-path between them. For
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L D A3, it is

minfk W k � maxfd1.x; y/

2
; d1.x; y/ � jf1 � i � k W b.i/ D 2gjg:

The Strand–Nagy distance is a metric, for example, for the periodic
sequence B D .1; 2; 1; 2; 1; 2; : : : / but not for the periodic sequence B D
.2; 1; 2; 1; 2; 1; : : : /.

• Path-generated metric
Consider the l1-grid, i.e., the graph with the vertex-set Z2, and two vertices

being neighbors if their l1-distance is 1. Let P be a collection of paths in the l1-
grid such that, for any x; y 2 Z

2, there exists at least one path from P between x
and y, and if P contains a path Q, then it also contains every path contained in Q.

Let dP.x; y/ be the length of the shortest path from P between x and y 2 Z
2.

If dP is a metric on Z
2, then it is called a path-generated metric (see [Melt91]).

Let G be one of the sets: G1 D f";!g, G2A D f";%g, G2B D f";-g,
G2C D f%;-g, G2D D f!;-g, G3A D f!;";%g, G3Bf!;";-g, G4A D
f!;%;-g, G4Bf";%;-; g, G5 D f!;";%;-g. Let P.G/ be the set of paths
which are obtained by concatenation of paths in G and the corresponding paths
in the opposite directions. Any path-generated metric coincides with one of the
metrics dP.G/. Moreover, one can obtain the following formulas:

1. dP.G1/.x; y/ D ju1j C ju2j;
2. dP.G2A/.x; y/ D maxfj2u1 � u2j; ju2jg;
3. dP.G2B/.x; y/ D maxfj2u1 C u2j; ju2jg;
4. dP.G2C/.x; y/ D maxfj2u2 C u1j; ju1jg;
5. dP.G2D/.x; y/ D maxfj2u2 � u1j; ju1jg;
6. dP.G3A/.x; y/ D maxfju1j; ju2j; ju1 � u2jg;
7. dP.G3B/.x; y/ D maxfju1j; ju2j; ju1 C u2jg;
8. dP.G4A/.x; y/ D maxf2d.ju1j � ju2j/=2e; 0g C ju2j;
9. dP.G4B/.x; y/ D maxf2d.ju2j � ju1j/=2e; 0g C ju1j;

10. dP.G5/.x; y/ D maxfju1j; ju2jg,

where u1 D x1 � y1, u2 D x2 � y2, and d:e is the ceiling function: for any real x
the number dxe is the least integer greater than or equal to x.

The metric spaces obtained from G-sets with the same numerical index are
isometric. dP.G1/ is the city-block metric, and dP.G5/ is the chessboard metric.

• Chamfer metric
Given numbers ˛; ˇ with 0 < ˛ � ˇ < 2˛, the .˛; ˇ/-weighted l1-grid

is the graph with the vertex-set Z2, two vertices being adjacent if their l1-
distance is one, while horizontal/vertical and diagonal edges have weights ˛ and
ˇ, respectively.

A chamfer metric (or .˛; ˇ/-chamfer metric, [Borg86]) is the weighted path
metric in this graph. For any x; y 2 Z

2 it can be written as

ˇm C ˛.M � m/;

where M D maxfju1j; ju2jg, m D minfju1j; ju2jg, u1 D x1 � y1, u2 D x2 � y2.
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If the weights ˛ and ˇ are equal to the Euclidean lengths 1,
p
2 of hori-

zontal/vertical and diagonal edges, respectively, then one obtains the Euclidean
length of the shortest chessboard path between x and y. If ˛ D ˇ D 1, one
obtains the chessboard metric. The .3; 4/-chamfer metric is the most used one
for digital images.

A 3D-chamfer metric is the weighted path metric of the graph with the
vertex-set Z3 of voxels, two voxels being adjacent if their l1-distance is one,
while weights ˛; ˇ, and � are associated, respectively, to the distance from 6 face
neighbors, 12 edge neighbors, and 8 corner neighbors.

• Weighted cut metric
Consider the weighted l1-grid, i.e., the graph with the vertex-set Z2, two

vertices being adjacent if their l1-distance is one, and each edge having some
positive weight (or cost). The usual weighted path metric between two pixels is
the minimal cost of a path connecting them. The weighted cut metric between
two pixels is the minimal cost (defined now as the sum of costs of crossed edges)
of a cut, i.e., a plane curve connecting them while avoiding pixels.

• Knight metric
The knight (or octogonal) metric on Z

2 is the minimum number of moves a
chess knight would take to travel from x to y 2 Z

2. Its unit sphere S1knight, centered
at the origin, contains exactly 8 integral points f.˙2;˙1/; .˙1;˙2/g, and can
be written as S1knight D S3L1 \ S2l1 , where S3L1 is the L1-sphere of radius 3, and S2L1

is the L1-sphere of radius 2, both centered at the origin (see [DaCh88]).
The distance between x and y is 3 if .M;m/ D .1; 0/, is 4 if .M;m/ D .2; 2/

and is equal to maxfd M
2

e; d MCm
3

eg C .M C m/ � maxfd M
2

e; d MCm
3

eg .mod 2/,
otherwise, where M D maxfju1j; ju2jg, m D minfju1j; ju2jg, u1 D x1 � y1, u2 D
x2 � y2.

• Super-knight metric
Let p; q 2 N. A . p; q/-super-knight (or . p; q/-leaper, . p; q/-spider) is a

(variant) chess piece whose move consists of a leap p squares in one orthogonal
direction followed by a 90ı direction change, and q squares leap to the destination
square. Rook, bishop and queen have q D 0, q D p and q D 0; p, respectively.

Chess-variant terms exist for a . p; 1/-leaper with p D 0; 1; 2; 3; 4 (Wazir,
Ferz, usual Knight, Camel, Giraffe), and for a . p; 2/-leaper with p D 0; 1; 2; 3

(Dabbaba, usual Knight, Alfil, Zebra).
A . p; q/-super-knight metric (or . p; q/-leaper metric) is a metric on Z

2

defined as the minimum number of moves a chess . p; q/-super-knight would
take to travel from x to y 2 Z

2. Thus, its unit sphere S1p;q, centered at the origin,
contains exactly 8 integral points f.˙p;˙q/; .˙q;˙p/g. (See [DaMu90].)

The knight metric is the .1; 2/-super-knight metric. The city-block metric
can be considered as the Wazir metric, i.e., .0; 1/-super-knight metric.

• Rook metric
The rook metric is a metric on Z

2 defined as the minimum number of moves
a chess rook would take to travel from x to y 2 Z

2. This metric can take only the
values f0; 1; 2g, and coincides with the Hamming metric on Z

2.
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• Chess programming distances
On a chessboard Z

2
8, files are 8 columns labeled from a to h and ranks are

8 rows labeled from 1 to 8. Given two squares, their file-distance and rank-
distance are the absolute differences between the 0–7 indices of their files or,
respectively, ranks. The Chebyshev distance and Manhattan distance are the
maximum or, respectively, the sum of their file-distance and rank-distance.

The center distance and corner distance of a square are its (Chebyshev or
Manhattan) distance to closest square among fd4; d5; e4; e5g or, respectively,
closest corner. For example, the program Chess 4.x uses in endgame evaluation
4:7d C 1:6.14� d0/, where d is the center Manhattan distance of losing king and
d0 is the Manhattan distance between kings.

Two kings at rank- and file-distances dr; df , are in opposition, which is direct,
or diagonal, or distant if .dr; df / 2 f.0; 2/; .2; 0/g, or D .2; 2/, or their Manhattan
distance is even � 6 and no pawns interfere between them.

Unrelated cavalry file distance is the number of files in which it rides.



Chapter 20
Voronoi Diagram Distances

Given a finite set A of objects Ai in a space S, computing the Voronoi diagram of A
means partitioning the space S into Voronoi regions V.Ai/ in such a way that V.Ai/

contains all points of S that are “closer” to Ai than to any other object Aj in A.
Given a generator set P D f p1; : : : pkg, k � 2, of distinct points (generators)

from R
n, n � 2, the ordinary Voronoi polytope V. pi/ associated with a generator

pi is defined by

V. pi/ D fx 2 R
n W dE.x; pi/ � dE.x; pj/ for any j ¤ ig;

where dE is the Euclidean distance on R
n. The set

V.P; dE;R
n/ D fV. p1/; : : : ;V. pk/g

is called the n-dimensional ordinary Voronoi diagram, generated by P.
The boundaries of (n-dimensional) Voronoi polytopes are called (.n � 1/-

dimensional) Voronoi facets, the boundaries of Voronoi facets are called .n �
2/-dimensional Voronoi faces, . . . , the boundaries of 2D Voronoi faces are called
Voronoi edges, and the boundaries of Voronoi edges are called Voronoi vertices.

The ordinary Voronoi diagram can be generalized in the following three ways:

1. The generalization with respect to the generator set A D fA1; : : : ;Akg which can
be a set of lines, a set of areas, etc.;

2. The generalization with respect to the space S which can be a sphere (spherical
Voronoi diagram), a cylinder (cylindrical Voronoi diagram), a cone (conic
Voronoi diagram), a polyhedral surface (polyhedral Voronoi diagram), etc.;

3. The generalization with respect to the function d, where d.x;Ai/ measures the
“distance” from a point x 2 S to a generator Ai 2 A.

This generalized distance function d is called the Voronoi generation distance
(or Voronoi distance, V-distance), and allows many more functions than the
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Euclidean metric on S. If F is a strictly increasing function of a V-distance d, i.e.,
F.d.x;Ai// � F.d.x;Aj// if and only if d.x;Ai/ � d.x;Aj/, then the generalized
Voronoi diagrams V.A;F.d/; S/ and V.A; d; S/ coincide, and one says that the V-
distance F.d/ is transformable to the V-distance d, and that the generalized Voronoi
diagram V.A;F.d/; S/ is a trivial generalization of the generalized Voronoi diagram
V.A; d; S/.

In applications, one often uses for trivial generalizations of the ordinary Voronoi
diagram V.P; d;Rn/ the exponential distance, the logarithmic distance, and the
power distance. There are generalized Voronoi diagrams V.P;D;Rn/, defined
by V-distances, that are not transformable to the Euclidean distance dE: the
multiplicatively weighted Voronoi distance, the additively weighted Voronoi
distance, etc.

The theory of generalized Voronoi diagrams V.P;D;Rn/, where D is a norm
metric jjx � pjj collapses even for the case, when P is a lattice in R

n. But [DeDu13]
adapted it for polyhedral, i.e., with a polytopal unit ball, norms; jj:jj1 and jj:jj1 are
among them.

For additional information see, for example, [OBS92, Klei89].

20.1 Classical Voronoi Generation Distances

• Exponential distance
The exponential distance is the Voronoi generation distance

Dexp.x; pi/ D edE.x;pi/

for the trivial generalization V.P;Dexp;R
n/ of the ordinary Voronoi diagram

V.P; dE;R
n/, where dE is the Euclidean distance.

• Logarithmic distance
The logarithmic distance is the Voronoi generation distance

Dln.x; pi/ D ln dE.x; pi/

for the trivial generalization V.P;Dln;R
n/ of the ordinary Voronoi diagram

V.P; dE;R
n/, where dE is the Euclidean distance.

• Power distance
The power distance is the Voronoi generation distance

D˛.x; pi/ D dE.x; pi/
˛; ˛ > 0;

for the trivial generalization V.P;D˛;R
n/ of the ordinary Voronoi diagram

V.P; dE;R
n/, where dE is the Euclidean distance.
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• Multiplicatively weighted distance
The multiplicatively weighted distance dMW is the Voronoi generation

distance of the generalized Voronoi diagram V.P; dMW ;R
n/ (multiplicatively

weighted Voronoi diagram) defined by

dMW.x; pi/ D 1

wi
dE.x; pi/

for any point x 2 R
n and any generator point pi 2 P D f p1; : : : ; pkg, k � 2,

where wi 2 w D fwi; : : : ;wkg is a given positive multiplicative weight of the
generator pi, and dE is the Euclidean distance.

A Möbius diagram (Boissonnat–Karavelas, 2003) is a diagram the midsets
(bisectors) of which are hyperspheres. It generalizes the Euclidean Voronoi and
power diagrams, and it is equivalent to power diagrams in R

nC1.
For R

2, the multiplicatively weighted Voronoi diagram is called a circular
Dirichlet tessellation. An edge in this diagram is a circular arc or a straight line.

In the plane R
2, there exists a generalization of the multiplicatively weighted

Voronoi diagram, the crystal Voronoi diagram, with the same definition of the
distance (where wi is the speed of growth of the crystal pi), but a different
partition of the plane, as the crystals can grow only in an empty area.

• Additively weighted distance
The additively weighted distance dAW is the Voronoi generation distance

of the generalized Voronoi diagram V.P; dAW ;R
n/ (additively weighted Voronoi

diagram) defined by

dAW.x; pi/ D dE.x; pi/ � wi

for any point x 2 R
n and any generator point pi 2 P D f p1; : : : ; pkg, k � 2,

where wi 2 w D fwi; : : : ;wkg is a given additive weight of the generator pi, and
dE is the Euclidean distance.

For R
2, the additively weighted Voronoi diagram is called a hyperbolic

Dirichlet tessellation. An edge in this diagram is a hyperbolic arc or a straight
line segment.

• Additively weighted power distance
The additively weighted power distance dPW is the Voronoi generation

distance of the generalized Voronoi diagram V.P; dPW;R
n/ (additively weighted

power Voronoi diagram) defined by

dPW.x; pi/ D d2E.x; pi/� wi

for any point x 2 R
n and any generator point pi 2 P D f p1; : : : ; pkg, k � 2,

where wi 2 w D fwi; : : : ;wkg is a given additive weight of the generator pi, and
dE is the Euclidean distance.

This diagram can be seen as a Voronoi diagram of circles or as a Voronoi
diagram with the Laguerre geometry.
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The multiplicatively weighted power distance dMPW.x; pi/ D 1
wi

d2E.x; pi/,
wi > 0, is transformable to the multiplicatively weighted distance, and gives a
trivial extension of the multiplicatively weighted Voronoi diagram.

• Compoundly weighted distance
The compoundly weighted distance dCW is the Voronoi generation dis-

tance of the generalized Voronoi diagram V.P; dCW ;R
n/ (compoundly weighted

Voronoi diagram) defined by

dCW.x; pi/ D 1

wi
dE.x; pi/ � vi

for any point x 2 R
n and any generator point pi 2 P D f p1; : : : ; pkg, k � 2,

where wi 2 w D fwi; : : : ;wkg is a given positive multiplicative weight of the
generator pi, vi 2 v D fv1; : : : ; vkg is a given additive weight of the generator pi,
and dE is the Euclidean distance.

An edge in the 2D compoundly weighted Voronoi diagram is a part of a fourth-
order polynomial curve, a hyperbolic arc, a circular arc, or a straight line.

20.2 Plane Voronoi Generation Distances

• Shortest path distance with obstacles
Let O D fO1; : : : ;Omg be a collection of pairwise disjoint polygons on the

Euclidean plane, representing a set of obstacles which are neither transparent nor
traversable.

The shortest path distance with obstacles dsp is the Voronoi generation
distance of the generalized Voronoi diagram V.P; dsp; R

2nfOg/ (shortest path
Voronoi diagram with obstacles) defined, for any x; y 2 R

2nfOg, as the length of
the shortest path among all possible continuous .x�y/-paths that do not intersect
obstacles Oin@Oi (a path can pass through points on the boundary @Oi of Oi),
i D 1; : : :m.

The shortest path is constructed with the aid of the visibility polygon and the
visibility graph of V.P; dsp;R

2nfOg/.
• Visibility shortest path distance

Let O D fO1; : : : ;Omg be a collection of pairwise disjoint line segments Ol D
Œal; bl� in the Euclidean plane, with P D f p1; : : : ; pkg, k � 2, the set of generator
points,

VIS. pi/ D fx 2 R
2 W Œx; pi�\�al; blŒD ; for all l D 1; : : : ;mg

the visibility polygon of the generator pi, and dE the Euclidean distance.
The visibility shortest path distance dvsp is the Voronoi generation distance

of the generalized Voronoi diagram V.P; dvsp; R
2nfOg/ (visibility shortest path
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Voronoi diagram with line obstacles), defined by

dvsp.x; pi/ D
�

dE.x; pi/; if x 2 VIS. pi/;

1; otherwise :

• Network distances
A network on R

2 is a connected planar geometrical graph G D .V;E/ with
the set V of vertices and the set E of edges (links).

Let the generator set P D f p1; : : : ; pkg be a subset of the set V D f p1; : : : ; plg
of vertices of G, and let the set L be given by points of links of G.

The network distance dnetv on the set V is the Voronoi generation distance
of the network Voronoi node diagram V.P; dnetv;V/ defined as the shortest path
along the links of G from pi 2 V to pj 2 V . It is the weighted path metric of the
graph G, where we is the Euclidean length of the link e 2 E.

The network distance dnetl on the set L is the Voronoi generation distance of
the network Voronoi link diagram V.P; dnetl;L/ defined as the shortest path along
the links from x 2 L to y 2 L.

The access network distance daccnet on R
2 is the Voronoi generation distance

of the network Voronoi area diagram V.P; daccnet;R
2/ defined by

daccnet.x; y/ D dnetl.l.x/; l.y//C dacc.x/C dacc.y/;

where dacc.x/ D minl2L d.x; l/ D dE.x; l.x// is the access distance of a point x.
In fact, dacc.x/ is the Euclidean distance from x to the access point l.x/ 2 L of
x which is the nearest to x point on the links of G. The access distance, among
memory distances in Chap. 22, is not related.

• Airlift distance
An airports network is an arbitrary planar graph G on n vertices (airports)

with positive edge weights (flight durations). This graph may be entered and
exited only at the airports. Once having accessed G, one travels at fixed speed
v > 1 within the network. Movement off the network takes place with the unit
speed with respect to the Euclidean distance.

The airlift distance dal is the Voronoi generation distance of the airlift
Voronoi diagram V.P; dal;R

2/, defined as the time needed for a quickest, i.e.,
minimizing the travel time, path between x and y in the presence of the airports
network G.

• City distance
A city public transportation network, like a subway or a bus transportation

system, is a planar straight line graph G with horizontal or vertical edges. G may
be composed of many connected components, and may contain cycles. One is
free to enter G at any point, be it at a vertex or on an edge (it is possible to
postulate fixed entry points, too). Once having accessed G, one travels at a fixed
speed v > 1 in one of the available directions. Movement off the network takes
place with the unit speed with respect to the Manhattan metric.
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The city distance dcity is the Voronoi generation distance of the city Voronoi
diagram V.P; dcity;R

2/, defined as the time needed for the quickest path, i.e., the
one minimizing the travel time, between x and y in the presence of the network G.

The set P D f p1; : : : ; pkg, k � 2, can be seen as a set of some city facilities
(say, post offices or hospitals): for some people several facilities of the same kind
are equally attractive, and they want to find out which facility is reachable first.

• Distance in a river
The distance in a river driv is the Voronoi generation distance of the general-

ized Voronoi diagram V.P; driv;R
2/ (Voronoi diagram in a river), defined by

driv.x; y/ D �˛.x1 � y1/Cp
.x1 � y1/2 C .1 � ˛2/.x2 � y2/2

v.1 � ˛2/ ;

where v is the speed of the boat on still water, w > 0 is the speed of constant flow
in the positive direction of the x1 axis, and ˛ D w

v
(0 < ˛ < 1) is the relative

flow speed.
• Boat-sail distance

Let ˝ 
 R
2 be a domain in the plane (water surface), let f W ˝ ! R

2 be
a continuous vector field on ˝ , representing the velocity of the water flow (flow
field); let P D f p1; : : : ; pkg 
 ˝ , k � 2, be a set of k points in ˝ (harbors).

The boat-sail distance ([NiSu03]) dbs is the Voronoi generation distance
of the generalized Voronoi diagram V.P; dbs;˝/ (boat-sail Voronoi diagram)
defined by

dbs.x; y/ D inf
�
ı.�; x; y/

for all x; y 2 ˝ , where ı.�; x; y/ D R 1
0

ˇ
ˇ
ˇF �

0

.s/

j� 0
.s/j C f .�.s//

ˇ
ˇ
ˇ
�1

ds is the time

necessary for the boat with the maximum speed F on still water to move from x
to y along the curve � W Œ0; 1� ! ˝ , �.0/ D x, �.1/ D y, and the infimum is
taken over all possible curves � .

• Peeper distance
Let S D f.x1; x2/ 2 R

2 W x1 > 0g be the half-plane in R
2, let P D f p1; : : : ; pkg,

k � 2, be a set of points contained in the half-plane f.x1; x2/ 2 R
2 W x1 < 0g, and

let the window be the interval .a; b/ with a D .0; 1/ and b D .0;�1/.
The peeper distance dpee is the Voronoi generation distance of the generalized

Voronoi diagram V.P; dpee; S/ (peeper’s Voronoi diagram) defined by

dpee.x; pi/ D
�

dE.x; pi/; if Œx; p�\�a; bŒ¤ ;;
1; otherwise ;

where dE is the Euclidean distance.
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• Snowmobile distance
Let ˝ 
 R

2 be a domain in the x1x2-plane of the space R
3 (a 2D

mapping), and let ˝� D f.q; h.q// W q D .x1.q/; x2.q// 2 ˝; h.q/ 2 Rg
be the three-dimensional land surface associated with the mapping ˝ . Let
P D f p1; : : : ; pkg 
 ˝ , k � 2, be a set of k points in ˝ (snowmobile stations).

The snowmobile distance dsm is the Voronoi generation distance of the gener-
alized Voronoi diagram V.P; dsm;˝/ (snowmobile Voronoi diagram) defined by

dsm.q; r/ D inf
�

Z

�

1

F
�
1 � ˛ dh.�.s//

ds

�ds

for any q; r 2 ˝ , and calculating the minimum time necessary for the
snowmobile with the speed F on flat land to move from .q; h.q// to .r; h.r//
along the land path �� W ��.s/ D .�.s/; h.�.s/// associated with the domain
path � W Œ0; 1� ! ˝ , �.0/ D q, �.1/ D r. The infimum is taken over all possible
paths � , and ˛ is a positive constant, since a snowmobile goes uphill more slowly
than downhill.

The situation is opposite for a forest fire, and it can be modeled using a
negative value of ˛. The resulting distance and Voronoi diagram are called forest-
fire distance and forest-fire Voronoi diagram.

• Skew distance
Let T be a tilted plane in R

3, obtained by rotating the x1x2 plane around the
x1 axis through the angle ˛, 0 < ˛ < �

2
, with the coordinate system obtained by

taking the coordinate system of the x1x2 plane, accordingly rotated. For a point
q 2 T, q D .x1.q/; x2.q//, define the height h.q/ as its x3 coordinate in R

3. Thus,
h.q/ D x2.q/ � sin ˛. Let P D f p1; : : : ; pkg 
 T, k � 2.

The skew distance is the Voronoi generation distance of the gen-
eralized Voronoi diagram V.P; dskew;T/ (skew Voronoi diagram) defined
([AACLMP98]) by

dskew.q; r/ D dE.q; r/C .h.r/� h.q// D dE.q; r/C sin ˛.x2.r/� x2.q//

or, more generally, by

dskew.q; r/ D dE.q; r/C k.x2.r/� x2.q//

for all q; r 2 T, where dE is the Euclidean distance, and k � 0 is a constant.
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20.3 Other Voronoi Generation Distances

• Voronoi distance for line segments
The Voronoi distance for (a set of) line segments dsl is the Voronoi gen-

eration distance of the generalized Voronoi diagram V.A; dsl;R
2/ (line Voronoi

diagram generated by straight line segments) defined by

dsl.x;Ai/ D inf
y2Ai

dE.x; y/;

where the generator set A D fA1; : : : ;Akg, k � 2, is a set of pairwise disjoint
straight line segments Ai D Œai; bi�, and dE is the ordinary Euclidean distance. In
fact,

dsl.x;Ai/ D

8
<̂

:̂

dE.x; ai/; if x 2 Rai ;

dE.x; bi/; if x 2 Rbi ;

dE.x � ai;
.x�ai/

T .bi�ai/

d2E.ai;bi/
.bi � ai//; if x 2 R

2nfRai [ Rbig;

where Rai D fx 2 R
2 W .bi�ai/

T.x�ai/ < 0g, Rbi D fx 2 R
2 W .ai�bi/

T.x�bi/ <

0g.
• Voronoi distance for arcs

The Voronoi distance for (a set of circle) arcs dca is the Voronoi generation
distance of the generalized Voronoi diagram V.A; dca;R

2/ (line Voronoi diagram
generated by circle arcs) defined by

dca.x;Ai/ D inf
y2Ai

dE.x; y/;

where the generator set A D fA1; : : : ;Akg, k � 2, is a set of pairwise disjoint
circle arcs Ai (less than or equal to a semicircle) with radius ri centered at xci , and
dE is the Euclidean distance. In fact,

dca.x;Ai/ D minfdE.x; ai/; dE.x; bi/; jdE.x; xci/� rijg;

where ai and bi are the endpoints of Ai.
• Voronoi distance for circles

The Voronoi distance for (a set of) circles dcl is the Voronoi generation
distance of a generalized Voronoi diagram V.A; dcl;R

2/ (line Voronoi diagram
generated by circles) defined by

dcl.x;Ai/ D inf
y2Ai

dE.x; y/;
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where the generator set A D fA1; : : : ;Akg, k � 2, is a set of pairwise disjoint
circles Ai with radius ri centered at xci , and dE is the Euclidean distance. In fact,

dcl.x;Ai/ D jdE.x; xci/� rij:

Examples of above Voronoi distances are d?cl.x;Ai/ D dE.x; xci/ � ri and
d�

cl.x;Ai/ D d2E.x; xci/� r2i (the Laguerre Voronoi diagram).
• Voronoi distance for areas

The Voronoi distance for areas dar is the Voronoi generation distance of the
generalized Voronoi diagram V.A; dar;R

2/ (area Voronoi diagram) defined by

dar.x;Ai/ D inf
y2Ai

dE.x; y/;

where A D fA1; : : : ;Akg, k � 2, is a collection of pairwise disjoint connected
closed sets (areas), and dE is the ordinary Euclidean distance.

For any generalized generator set A D fA1; : : : ;Akg, k � 2, one can use as the
Voronoi generation distance the Hausdorff distance from a point x to a set Ai:
dHaus.x;Ai/ D supy2Ai

dE.x; y/, where dE is the Euclidean distance.
• Cylindrical distance

The cylindrical distance dcyl is the intrinsic metric on the surface of a
cylinder S which is used as the Voronoi generation distance in the cylindrical
Voronoi diagram V.P; dcyl; S/. If the axis of a cylinder with unit radius is placed
at the x3 axis in R

3, the cylindrical distance between any points x; y 2 S with the
cylindrical coordinates .1; �x; zx/ and .1; �y; zy/ is given by

dcyl.x; y/ D
� p

.�x � �y/2 C .zx � zy/2; if �y � �x � �;p
.�x C 2� � �y/2 C .zx � zy/2; if �y � �x > �:

• Cone distance
The cone distance dcon is the intrinsic metric on the surface of a cone S

which is used as the Voronoi generation distance in the conic Voronoi diagram
V.P; dcon; S/. If the axis of the cone S is placed at the x3 axis in R

3, and the radius
of the circle made by the intersection of the cone S with the x1x2 plane is equal
to one, then the cone distance between any points x; y 2 S is given by

dcon.x; y/ D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

q
r2x C r2y � 2rxry cos.� 0

y � � 0

x/;

if �
0

y � �
0

x C � sin.˛=2/;
q

r2x C r2y � 2rxry cos.� 0

x C 2� sin.˛=2/� �
0

y/;

if �
0

y > �
0

x C � sin.˛=2/;

where .x1; x2; x3/ are the Cartesian coordinates of a point x on S, ˛ is the
top angle of the cone, �x is the counterclockwise angle from the x1 axis
to the ray from the origin to the point .x1; x2; 0/, �

0

x D �x sin.˛=2/, rx D
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q
x21 C x22 C .x3 � coth.˛=2//2 is the straight line distance from the top of the

cone to the point .x1; x2; x3/.
• Voronoi distances of order m

Given a finite set A of objects in a metric space .S; d/, and an integer m � 1,
consider the set of all m-subsets Mi of A (i.e., Mi 
 A, and jMij D m). The
Voronoi diagram of order m of A is a partition of S into Voronoi regions V.Mi/

of m-subsets of A in such a way that V.Mi/ contains all points s 2 S which are
“closer” to Mi than to any other m-set Mj: d.s; x/ < d.s; y/ for any x 2 Mi and
y 2 SnMi. This diagram provides first, second, . . . , m-th closest neighbors of a
point in S.

Such diagrams can be defined in terms of some “distance function” D.s;Mi/,
in particular, some m-hemimetric (Chap. 3) on S. For Mi D fai; big, there were
considered the functions jd.s; ai/�d.s; bi/j, d.s; ai/Cd.s; bi/, d.s; ai/ �d.s; bi/, as
well as 2-metrics d.s; ai/C d.s; bi/C d.ai; bi/ and the area of triangle .s; ai; bi/.



Chapter 21
Image and Audio Distances

21.1 Image Distances

Image Processing treats signals such as photographs, video, or tomographic output.
In particular, Computer Graphics consists of image synthesis from some abstract
models, while Computer Vision extracts some abstract information: say, the 3D
description of a scene from video footage of it. From about 2000, analog image
processing (by optical devices) gave way to digital processing, and, in particular,
digital image editing (for example, processing of images taken by popular digital
cameras).

Computer graphics (and our brains) deals with vector graphics images, i.e., those
represented geometrically by curves, polygons, etc. A raster graphics image (or
digital image, bitmap) in 2D is a representation of a 2D image as a finite set of
digital values, called pixels (short for picture elements) placed on a square grid
Z
2 or a hexagonal grid. Typically, the image raster is a square 2k � 2k grid with

k D 8; 9 or 10.
Video images and tomographic or magnetic resonance (obtained by cross-

sectional slices) images are 3D (2D plus time); their digital values are called voxels
(volume elements). The spacing between two pixels in one slice is referred to as the
interpixel distance, while the spacing between slices is the interslice distance.

A digital binary image corresponds to only two values 0,1 with 1 being
interpreted as logical “true” and displayed as black; so, such image is identified with
the set of black pixels. A continuous binary image is a (usually, compact) subset of
a locally compact metric space (usually, Euclidean space E

n with n D 2; 3).
The gray-scale images can be seen as point-weighted binary images. In general,

a fuzzy set is a point-weighted set with weights (membership values); cf. metrics
between fuzzy sets in Chap. 1. For the gray-scale images, xyi-representation is used,
where plane coordinates .x; y/ indicate shape, while the weight i (short for intensity,
i.e., brightness) indicates texture. Sometimes, the matrix ..ixy// of gray-levels is
used.
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The brightness histogram of a gray-scale image provides the frequency of each
brightness value found in that image. If an image has m brightness levels (bins
of gray-scale), then there are 2m different possible intensities. Usually, m D 8

and numbers 0; 1; : : : ; 255 represent the intensity range from black to white; other
typical values are m D 10; 12; 14; 16. Humans can differ between around 10million
different colors but between only 30 different gray-levels; so, color has much higher
discriminatory power.

For color images, (RGB)-representation is the better known, where space coordi-
nates R, G, B indicate red, green and blue levels; a 3D histogram provides brightness
at each point. Among many other 3D color models (spaces) are: (CMY) cube
(Cyan, Magenta, Yellow colors), (HSL) cone (Hue-color type given as an angle,
Saturation in %, Luminosity in %), and (YUV), (YIQ) used, respectively, in PAL,
NTSC television. CIE-approved conversion of (RGB) into luminance (luminosity)
of gray-level is 0:299R C 0:587G C 0:114B. The color histogram is a feature vector
with components representing either the total number of pixels, or the percentage of
pixels of a given color in the image.

Images are often represented by feature vectors, including color histograms,
color moments, textures, shape descriptors, etc. Examples of feature spaces are:
raw intensity (pixel values), edges (boundaries, contours, surfaces), salient features
(corners, line intersections, points of high curvature), and statistical features
(moment invariants, centroids). Typical video features are in terms of overlapping
frames and motions.

Image Retrieval (similarity search) consists of (as for other data: audio record-
ings, DNA sequences, text documents, time-series, etc.) finding images whose
features have values either mutual similarity, or similarity to a given query or in
a given range.

There are two methods to compare images directly: intensity-based (color and
texture histograms), and geometry-based (shape representations by medial axis,
skeletons, etc.). The imprecise term shape is used for the extent (silhouette) of the
object, for its local geometry or geometrical pattern (conspicuous geometric details,
points, curves, etc.), or for that pattern modulo a similarity transformation group
(translations, rotations, and scalings). The imprecise term texture means all that is
left after color and shape have been considered, or it is defined via structure and
randomness.

The similarity between vector representations of images is measured by the usual
practical distances: lp-metrics, weighted editing metrics, Tanimoto distance,
cosine distance, Mahalanobis distance and its extension, distance.

Among probabilistic distances, the following ones are most used: Bhattacharya
2, Hellinger, Kullback–Leibler, Kolmogorov–Smirnov, Jeffrey and (especially,
for histograms) �2-, Kuiper distances.

The main distances applied for compact subsets X and Y of Rn (usually, n D
2; 3) or their digital versions are: Asplund metric, Shephard metric, symmetric
difference semimetric Vol.X
Y/ (cf. Nykodym metric, area deviation, digital
volume metric and their normalizations) and variations of the Hausdorff distance
(see below).
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For Image Processing, the distances below are between “true” and approximated
digital images, in order to assess the performance of algorithms. For Image
Retrieval, distances are between feature vectors of a query and reference.

• Color distances
The visible spectrum of a typical human eye is about 380–760 nm. It

matches the range of wavelengths sustaining photosynthesis; also, at those
wavelengths opacity often coincides with impenetrability. A light-adapted eye
has its maximum sensitivity at 
 555 nm (540 THz), in the green region of the
optical spectrum.

A color space is a 3-parameter description of colors. The need for exactly
three parameters comes from the existence of three kinds of receptors (cells
on the retina) in the human eye: for short, middle and long wavelengths,
corresponding to blue, green, and red. Their respective sensitivity peaks are
situated around 570 nm, 543 nm and 442 nm. About 1 of 10 women has a 4-th
type of color receptor. Color blindness is 10 times more common in males. People
with absent or removed lens of the eye, can see UV (ultraviolet) wavelengths
(400–10 nm).

The mantis shrimp has 12 types of color receptors including 4 for UV;
its species Gonodactylus smithii is the only organism known to have optimal
polarization vision. Some dragonflies have 30 different receptors; they can see
UV and polarised light. Some spiders, jellyfish and scallops have, respectively,
8; 24, over 110 eyes.

The CIE (International Commission on Illumination) derived (XYZ) color
space in 1931 from the (RGB)-model and measurements of the human eye. In
the CIE (XYZ) color space, the values X, Y and Z are also roughly red, green
and blue.

In Colorimetry, chromaticity is intensity of a colour (hue), defined as the
distance in the particular colour space of a colour from the neutral grey colour
with the same value. The basic assumption of Colorimetry (Indow, 1991), is
that the perceptual color space admits a metric, the true color distance. This
metric is expected to be almost locally Euclidean, i.e., a Riemannian metric. A
continuous mapping from the metric space of light stimuli to this metric space is
also expected.

Such a uniform color scale, where equal distances in the color space cor-
respond to equal differences in color, is not obtained yet and existing color
distances are various approximations of it. A first step in this direction was
given by MacAdam ellipses, i.e., regions on a chromaticity .x; y/ diagram which
contains all colors looking indistinguishable to the average human eye; cf. JND
(just-noticeable difference) video quality metric. For any � > 0, the MacAdam
metric in a color space is the metric for which those 25 ellipses are circles of
radius �. Here x D X

XCYCZ and y D Y
XCYCZ are projective coordinates, and the

colors of the chromaticity diagram occupy a region of the real projective plane
RP2.
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The CIE (L�a�b�) (CIELAB) is an adaptation of CIE 1931 (XYZ) color
space; it gives a partial linearization of the MacAdam color metric. The L�; a�; b�
of the most complete model are derived from L; a; b which are: the luminance L
of the color from black L D 0 to white L D 100, its position a between green
a < 0 and red a > 0, and its position b between green b < 0 and yellow b > 0.

Examples of non-Euclidean metrics, fitting well to observed color differences,
are CIE94 (McDonald–Smith, 1995) and CIEDE2000 (Luo–Cui–Rigg, 2001).
The best performing Euclidean metrics are versions of DIN99 (Cui et al., 2002)
and the log-compressed OSA-UCS (Oleari et al., 2009).

Farup, 2014, proposed to transform a chromatic plane f.x; y/g (say, f.a�; b�/g
of CIELAB) with polar coordinates .r; �/ and an existing Euclidean metric, into
the R-scaled Poincaré disk by Qr D tanh. r

2R / and observed that the resulting
hyperbolic metrics (Chap. 6)) with optimised R perform better.

• Average color distance
For a given 3D color space OSA-UC a list of n colors, let .ci1; ci2; ci3/ be the

representation of the i-th color of the list in this space. For a color histogram
x D .x1; : : : ; xn/, its average color is the vector .x.1/; x.2/; x.3//, where x.j/ DPn

iD1 xicij (for example, the average red, blue and green values in (RGB)).
The average color distance between two color histograms ([HSEFN95]) is

the Euclidean distance of their average colors.
• Color component distance

Given an image (as a subset of R2), let pi denote the area percentage of this
image occupied by the color ci. A color component of the image is a pair .ci; pi/.

The color component distance (Ma–Deng–Manjunath, 1997) between color
components .ci; pi/ and .cj; pj/ is defined by

jpi � pjj � d.ci; cj/;

where d.ci; cj/ is the distance between ci and cj in a given color space.
Mojsilović–Hu–Soljanin, 2002, did an Earth Mover’s distance-like modifica-
tion of it.

• Riemannian color space
The proposal to measure perceptual dissimilarity of colors by a Riemannian

metric (Chap. 7) on a strictly convex cone C 
 R
3 comes from von Helmholtz,

1891, and Schrödinger, 1920. The challenge here is to choose a “good” one.
Roughly, it was shown in [Resn74] that the only such GL-homogeneous cones

C (i.e., the group of all orientation preserving linear transformations of R
3,

carrying C into itself, acts transitively on C) are either C1 D R>0 � .R>0 �R>0/,
or C2 D R>0 � C0, where C0 is the set SL.2;R/=SO.2/ of 2 � 2 real symmetric
matrices with determinant 1. The first factor R>0 can be identified with variation
of brightness and the other with the set of lights of a fixed brightness.
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Given some ˛i > 0, the Stiles color metric (1946) is the GL-invariant
Riemannian metric on C1 D f.x1; x2; x3/ 2 R

3 W xi > 0g given by the line
element

ds2 D
3X

iD1
˛i.

dxi

xi
/2:

The Resnikoff color metric (1974) is the GL-invariant Riemannian metric on
C2 D f.x; u/ W x 2 R>0; u 2 C0g given by the line element

ds2 D ˛1.
dx

x
/2 C ˛2ds2C0 ;

where ds2C0 ; is the Poincaré metric (Chap. 6) on C0.
• Histogram intersection quasi-distance

Given two color histograms x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/ (with
xi; yi representing the number of pixels in the bin i), the histogram intersection
quasi-distance between them (cf. intersection distance in Chap. 17) is (Swain–
Ballard, 1991) defined by

1 �
Pn

iD1 minfxi; yig
Pn

iD1 xi
:

For normalized histograms (total sum is 1) the above quasi-distance becomes the
usual l1-metric

Pn
iD1 jxi�yij. The normalized cross-correlation (Rosenfeld–Kak,

1982) between x and y is a similarity defined by
Pn

iD1 xi;yiPn
iD1 x2i

.

• Histogram quadratic distance
Given two color histograms x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/ (usually,

n D 256 or n D 64) representing the color percentages of two images, their
histogram quadratic distance (used in IBM’s Query By Image Content system)
is their Mahalanobis distance defined in Chap. !7 by

p
.x � y/TA.x � y/;

where A D ..aij// is a symmetric positive-definite matrix, and the weight aij is
some, perceptually justified, similarity between colors i and j.

For example (cf. [HSEFN95]), aij D 1 � dij

max1�p;q�n dpq
, where dij is the

Euclidean distance between 3-vectors representing i and j in some color space.
If .hi; si; vi/ and .hj; sj; vj/ are the representations of the colors i and j in the

color space (HSV), then aij D 1� 1p
5
..vi�vj/

2C.si cos hi�sj cos hj/
2C.si sin hi�

sj sin hj/
2/

1
2 is used.
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• Histogram diffusion distance
Given two histogram-based descriptors x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/,

their histogram diffusion distance (Ling–Okada, 2006) is defined by

Z T

0

jju.t/jj1dt;

where T is a constant, and u.t/ is a heat diffusion process with initial condition
u.0/ D x � y. In order to approximate the diffusion, the initial condition
is convoluted with a Gaussian window; then the sums of l1-norms after each
convolution approximate the integral.

• Gray-scale image distances
Let f .x/ and g.x/ denote the brightness values of two digital gray-scale images

f and g at the pixel x 2 X, where X is a raster of pixels. Any distance between
point-weighted sets .X; f / and .X; g/ (for example, the Earth Mover’s distance)
can be applied for measuring distances between f and g. However, the main used
distances (called also errors) between the images f and g are:

1. The root-mean-square error RMS. f ; g/ D
�
1

jXj
P

x2X. f .x/� g.x//2
� 1
2

(a

variant is to use the l1-norm j f .x/ � g.x/j instead of the l2-norm);

2. The signal-to-noise ratio SNR. f ; g/ D
� P

x2X g.x/2P
x2X. f .x/�g.x//2

� 1
2

(cf. SNR distance
between sonograms);

3. The pixel misclassification error rate 1
jXj jfx 2 X W f .x/ ¤ g.x/gj (normalized

Hamming distance);

4. The frequency root-mean-square error
�

1
jUj2

P
u2U.F.u/� G.u//2

� 1
2
, where

F and G are the discrete Fourier transforms of f and g, respectively, and U is
the frequency domain;

5. The Sobolev norm of order ı error
�

1
jUj2

P
u2U.1C j�uj2/ı.F.u/� G.u//2

� 1
2
,

where 0 < ı < 1 is fixed (usually, ı D 1
2
), and �u is the 2D frequency vector

associated with position u in the frequency domain U.

Cf. metrics between fuzzy sets in Chap. 1.
• Image compression Lp-metric

Given a number r, 0 � r < 1, the image compression Lp-metric is the usual

Lp-metric on R
n2�0 (the set of gray-scale images seen as n � n matrices) with

p being a solution of the equation r D p�1
2p�1 � e

p
2p�1 . So, p D 1; 2, or 1 for,

respectively, r D 0; r D 1
3
e
2
3 
 0:65, or r �

p
e
2


 0:82. Here r estimates the
informative (i.e., filled with nonzeros) part of the image. According to [KKN02],
it is the best quality metric to select a lossy compression scheme.

• Chamfering distances
The chamfering distances are distances approximating Euclidean distance

by a weighted path distance on the graph G D .Z2;E/, where two pixels are
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neighbors if one can be obtained from another by an one-step move on Z
2. The

list of permitted moves is given, and a prime distance, i.e., a positive weight (cf.
Chap. 19), is associated to each type of such move.

An .˛; ˇ/-chamfer metric corresponds to two permitted moves—with l1-
distance 1 and with l1-distance 1 (diagonal moves only)—weighted ˛ and ˇ,
respectively.

The main applied cases are .˛; ˇ/ D .1; 0/ (city-block metric, or 4-metric),
(1,1) (chessboard metric, or 8-metric), (1,

p
2) (Montanari metric), .3; 4/

(.3; 4/-metric), .2; 3/ (Hilditch–Rutovitz metric), .5; 7/ (Verwer metric).
The Borgefors metric corresponds to three permitted moves—with l1-

distance 1, with l1-distance 1 (diagonal moves only) and knight moves—
weighted 5, 7 and 11.

An 3D-chamfer metric (or .˛; ˇ; �/-chamfer metric) is the weighted path
metric of the infinite graph with the vertex-set Z3 of voxels, two vertices being
adjacent if their l1-distance is one, while weights ˛; ˇ and � are associated to 6
face, 12 edge and 8 corner neighbors, respectively. If ˛ D ˇ D � D 1, we obtain
l1-metric. The .3; 4; 5/- and .1; 2; 3/-chamfer metrics are the most used ones.

The Chaudhuri–Murthy–Chaudhuri metric between sequences x D
.x1; : : : ; xm/ and y D .y1; : : : ; yn/ is defined by

jxi.x;y/ � yi.x;y/j C 1

1C d n
2
e

X

1�i�n;i¤i.x;y/

jxi � yij;

where maxi jxi � yij D jxi.x;y/ � yi.x;y/j. For n D 2 it is the .1; 3
2
/-chamfer metric.

• Earth Mover’s distance
The Earth Mover’s distance is a discrete form of the transportation

distance (Chap. 14). Roughly, it is the minimal amount of work needed to
transport earth or mass from one position (properly spread in space) to the
other (a collection of holes). For any two finite sequences .x1; : : : ; xm/ and
.y1; : : : ; yn/ over a metric space .X; d/, consider signatures, i.e., point-weighted
sets P1 D .p1.x1/; : : : ; p1.xm// and P2 D .p2.y1/; : : : ; p2.yn//.

For example, in [RTG00]) signatures represent clustered color or texture
content of images: elements of X are centroids of clusters, and p1.xi/; p2.yj/ are
cardinalities of corresponding clusters. The ground distance d is a color distance,
say, the Euclidean distance in 3D CIE (L�a�b�) color space.

Let W1 D P
i p1.xi/ and W2 D P

j p2.yj/ be the total weights of P1 and P2,
respectively. Then the Earth Mover’s distance between P1 and P2 is defined as

P
i;j f �

ij d.xi; yj/
P

i;j f �
ij

;
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where the m�n matrix S� D .. f �
ij // is an optimal, i.e., minimizing

P
i;j fijd.xi; yj/,

flow. A flow is an m � n matrix S D .. fij// with following constraints:

1. all fij � 0;
2.
P

i;j fij D minfW1;W2g;
3.
P

i fij � p2.yj/ and
P

j fij � p1.xi/.

So, this distance is the average ground distance d that weights travel during an
optimal flow. It is not a bin-to-bin (component-wise, as Lp-, Kullback–Leibler,
�2-distances), but a cross-bin histogram distance.

In the case W1 D W2, the above two inequalities 3. become equalities.
Normalizing signatures to W1 D W2 D 1 (which not changes the distance) allows
us to see P1 and P2 as probability distributions of random variables, say, X and
Y. Then

P
i;j fijd.xi; yj/ is ESŒd.X;Y/�, i.e., the Earth Mover’s distance coincides,

in this case, with the transportation distance (Chap. 14).
For W1 ¤ W2, it is not a metric in general. However, replacing the inequalities

3 in the above definition by equalities
3

0

.
P

i fij D p2.yj/ and
P

j fij D p1.xi/W1

W2

produces the Giannopoulos–Veltkamp’s proportional transport semimetric.
• Parameterized curves distance

The shape can be represented by a parametrized curve on the plane. Usually,
such a curve is simple, i.e., it has no self-intersections. Let X D X.x.t// and
Y D Y.y.t// be two parametrized curves, where the (continuous) parametrization
functions x.t/ and y.t/ on Œ0; 1� satisfy x.0/ D y.0/ D 0 and x.1/ D y.1/ D 1.

The most used parametrized curves distance is the minimum, over all
monotone increasing parametrizations x.t/ and y.t/, of the maximal Euclidean
distance dE.X.x.t//;Y.y.t///. It is the Euclidean special case of the dogkeeper
distance (cf. Sect. 13.1), i.e., the Fréchet metric for the case of curves.

Among variations of this distance are dropping the monotonicity condition of
the parametrization (weak Fréchet distance), or finding the part of one curve to
which the other has the smallest such distance ([VeHa01]).

In a general Riemannian manifold M, the shape ŒC� of a curve C can be seen
as the class of all curves that differ from C only by a parametration, i.e., they pass
through the same points of M but at different speeds. The geodesic distances d
on curves and D on shapes are linked by D.ŒC�; ŒC0�/ D inf d.C;C0 ı ˛/, where
˛ W Œ0; 1� ! Œ0; 1� is any reparameterization (increasing diffeomorphism(.

A reparametrization-invariant metric on the space of curves induces a Rie-
mannian structure on the shape space. Two such metrics are pullback metrics
(cf. Chap. 4) on the tangent bundle via square root velocity function: from L2-
metric by Srivastava et al., 2011, and from a more adapted metric by Le Brigant,
2016.

• Homotopic Fréchet distance
Given a metric space .X; d/, a curve is a continuous function C W Œ0; 1� ! X.

The length of C is defined by the metric d. A reparameterization of C is any
curve C ı ˛, where ˛ W Œ0; 1� ! Œ0; 1� is a continuous nondecreasing surjection.
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An .s; t/-leash between two curves C and C0 is another curve 	 W Œ0; 1� ! X
such that 	.0/ D C.s/ and 	.1/ D C0.t/. A leash map is a continuous function
l W Œ0; 1�2 ! X such that l.�; 0/ and l.�; 1/ are reparameterizations of C and C0,
respectively. It describes the continuous motion of a leash between a dog walking
along C and its owner walking along C0; the curve l.t; �/ is the leash at time t. The
length of l is the maximum length of any leash l.t; �/.

The homotopic Fréchet distance between C and C0 is ([CCELLT10]) the
infimum, over all leash maps l between C and C0, of the length of l. This distance
can be thought of as the minimal amount of deformation needed to transform C
into C0, identifying points which are joined by a leash during its motion.

• Nonlinear elastic matching distance
Consider a digital representation of curves. Let r � 1 be a constant, and let

A D fa1; : : : ; amg, B D fb1; : : : ; bng be finite ordered sets of consecutive points
on two closed curves. For any order-preserving correspondence f between all
points of A and all points of B, the stretch s.ai; bj/ of .ai; f .ai/ D bj/ is r if either
f .ai�1/ D bj or f .ai/ D bj�1, or zero otherwise.

The relaxed nonlinear elastic matching distance is minf
P
.s.ai; bj/ C

d.ai; bj//, where d.ai; bj/ is the difference between the tangent angles of ai and
bj. It is a near-metric for some r. For r D 1, it is called the nonlinear elastic
matching distance. In general, Younes, 1998, and Mio–Srivastava–Joshi, 2005,
introduced elastic Riemannian distances between (seen as elastic) plane curves
(or enclosed shapes) measuring the minimal cost of elastic reshaping of a curve
into another.

• Turning function distance
For a plane polygon P, its turning function TP.s/ is the angle between the

counterclockwise tangent and the x axis as a function of the arc length s. This
function increases with each left hand turn and decreases with right-hand turns.

Given two polygons of equal perimeters, their turning function distance is
the Lp-metric between their turning functions.

• Size function distance
For a shape, seen as a plane graph G D .V;E/, and a measuring function f on

its vertex-set V (for example, the distance from v 2 V to the center of mass of
V), the size function SG.x; y/ is defined, on the points .x; y/ 2 R

2, as the number
of connected components of the restriction of G on vertices fv 2 V W f .v/ � yg
which contain a point v0 with f .v0/ � x.

Given two plane graphs with vertex-sets belonging to a raster R 
 Z
2, their

Uras–Verri’s size function distance is the normalized l1-distance between their
size functions over raster pixels. The matching distance (Chap. 1) between the
cornerpoints/cornerlines multisets of two size functions is also used.

• Reflection distance
For a finite union A of plane curves and each point x 2 R

2, let Vx
A denote the

union of intervals .x; a/, a 2 A which are visible from x, i.e., .x; a/ \ A D ;.
Denote by �x

A the area of the set fx C v 2 Vx
A W x � v 2 Vx

Ag.
The Hagedoorn–Veltkamp’s reflection distance between finite unions A and

B of plane curves is the normalized l1-distance between the corresponding
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functions �x
A and �x

B defined by

R
R2

j�x
A � �x

Bjdx
R
R2

maxf�x
A; �

x
Bgdx

:

• Distance transform
Given a metric space .X D Z

2; d/ and a binary digital image M 
 X, the
distance transform is a function fM W X ! R�0, where fM.x/ D infu2M d.x; u/
is the point-set distance d.x;M/. So, a distance transform can be seen as a
gray-scale digital image where each pixel is given a label (a gray-level) which
corresponds to the distance to the nearest pixel of the background. Distance
transforms, in Image Processing, are also called distance fields and distance
maps; but we reserve the last term only for this notion in any metric space as
in Chap. 1.

A distance transform of a shape is the distance transform with M being the
boundary of the image. For X D R

2, the graph f.x; f .x// W x 2 Xg of d.x;M/ is
called the Voronoi surface of M.

• Medial axis and skeleton
Let .X; d/ be a metric space, and let M be a subset of X. The medial axis of

X is the set MA.X/ D fx 2 X W jfm 2 M W d.x;m/ D d.x;M/gj � 2g, i.e.,
all points of X which have in M at least two elements of best approximation;
cf. metric projection in Chap. 1. MA.X/ consists of all points of boundaries of
Voronoi regions of points of M. The reach of M is the set-set distance (Chap. 1)
between M and MA.X/.

The cut locus of X is the closure MA.X/ of the medial axis. Cf. Shankar–
Sormani radii in Chap. 1. The medial axis transform MAT.X/ is the point-
weighted set MA.X/ (the restriction of the distance transform on MA.X/) with
d.x;M/ being the weight of x 2 X.

If (as usual in applications) X 
 R
n and M is the boundary of X, then the

skeleton Skel.X/ of X is the set of the centers of all d-balls inscribed in X and
not belonging to any other such ball; so, Skel.X/ D MA.X/. The skeleton with
M being continuous boundary is a limit of Voronoi diagrams as the number of
the generating points becomes infinite. For 2D binary images X, the skeleton is
a curve, a single-pixel thin one, in the digital case. The exoskeleton of X is the
skeleton of the complement of X, i.e., of the background of the image for which
X is the foreground.

• Procrustes distance
The shape of a form (configuration of points in R

2), seen as expression of
translation-, rotation- and scale-invariant properties of form, can be represented
by a sequence of landmarks, i.e., specific points on the form, selected accordingly
to some rule. Each landmark point a can be seen as an element .a

0

; a
00

/ 2 R
2 or

an element a
0 C a

00

i 2 C.
Consider two shapes x and y, represented by their landmark vectors

.x1; : : : ; xn/ and .y1; : : : ; yn/ from C
n. Suppose that x and y are corrected for
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translation by setting
P

t xt D P
t yt D 0. Then their Procrustes distance is

defined by

sX

1�t�n

jxt � ytj2;

where two forms are, first, optimally (by least squares criterion) aligned to correct
for scale, and their Kendall shape distance is defined by

arccos

s
.
P

t xtyt/.
P

t ytxt/

.
P

t xtxt/.
P

t ytyt/
;

where ˛ D a
0 � a

00

i is the complex conjugate of ˛ D a
0 C a

00

i.
Petitjean, 2002, extended the L2-Wasserstein distance (cf. Chap. 14) to colored

mixtures, i.e., ordinary mixtures of random vectors, for which an new axis (the
space of colors) has been added. He remarked that the Procrustes distance is an
instance of this colored Wasserstein distance, when this latter is minimized for a
class of affine transformations (rotations and translations).

• Shape parameters
Let X be a figure inR2 with area A.X/, perimeter P.X/ and convex hull conv X.

The main shape parameters of X are given below.

DA.X/ D 2

q
A.X/
�

and DP.X/ D P.X/
�

are the diameters of circles with area
A.X/ and with perimeter P.X/, respectively.

Feret’s diameters Fx.X/;Fy.X/;Fmin.X/;Fmax.X/ are the orthogonal projec-
tions of X on the x and y axes and such minimal and maximal projections on a
line.

Martin’s diameter M.X/ is the distance between opposite sides of X
measured crosswise of it on a line bisecting the figure’s area. Mx.X/ and My.X/
are Martin’s diameters for horizontal and vertical directions, respectively.

Rin.X/ and Rout.X/ are the radii of the largest disc in X and the smallest disc
including X. a.X/ and b.X/ are the lengths of the major and minor semiaxes of
the ellipse with area A.X/ and perimeter P.X/.

Examples of the ratios, describing some shape properties in above terms,
follow.

The area-perimeter ratio (or projection sphericity) and Petland’s projection
sphericity ratio are ArPe D 4�A.X/

.P.X//2
and 4A.X/

�.Fmax.X//2
.

The circularity shape factor and Horton’s compactness factor are 1
ArPe and

1p
ArPe

.
Wadell’s circularity shape and drainage-basin circularity shape ratios are

DA.X/
Fmax.X/

and A.X/
DP.X/

. Both ratios and ArPe are at most 1 with equality only for a
disc.
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Tickell’s ratio is . DA.X/
Dout.X/

/2. Cailleux’s roundness ratio is 2r.X/
Fmax.X/

, where r.X/ is
the radius of curvature at a most convex part of the contour of X.

The rugosity coefficient and convexity ratio (or solidity) are P.X/
P.conv X/ and

A.X/
A.conv X/ . Both the solidity and P.convX/

P.X/ are at most 1with equality only for convex
sets.

The diameters ratios are MDx.X/
Fx.X/

and MDy.X/
Fy.X/

. The radii ratio and ellipse ratio

are Rin.X/
Rout.X/

and a.X/
b.X/ . The Feret’s ratio and modification ratio are Fmin.X/

Fmax.X/
and

Rin.X/
Fmax.X/

. The aspect ratio in Chap. 1 is the reciprocal of the Feret’s ratio.

The symmetry factor of Blaschke is 1� A.X/
A.S.X// , where S.X/ D 1

2
.X˚fx W �x 2

Xg/.
• Distances from symmetry

Many measures of chirality and, in general, given symmetry G of a given set
A 2 R

n, were proposed. Several examples follow.
Let A0 be the enantiomorph (mirror image) of A. Gilat, 1985, proposed to

measure distance from achirality of A by V.A4A0/

V.A/ ; cf. normalized volume of
symmetric difference in Chap. 9.

Let shape A be represented by a sequence .a1; : : : ; am/ of points. Then
the symmetry distance of A is defined by Zabrodsky–Peleg–Avnir, 1992, as
the point-set distance infb

1
m

Pm
iD1 jjai � bijj22, where b D .b1; : : : ; bn/ is the

L2-nearest to a representation of a symmetric (i.e., invariant to rotation and
translation) shape. The symmetry distance of a function f with respect to any
transformation G is the L2-distance between f and the nearest function invariant
to G.

If A is a 2D object, and it is represented by its radial function R.r/,
then the distance of A from symmetry G can be measured (Köhler, 1993) by
R 2�
0

jG.R.r// � R.r/jdr. For a sequence .a1; : : : ; am/ of points, similar distance
is (Köhler, 1999) minp

Pm
iD1 dE.ai;G.p.ai///, where p is any of mŠ permutations

of .a1; : : : ; am/ and dE is the Euclidean distance.
• Tangent distance

For any x 2 R
n and a family of transformations t.x; ˛/, where ˛ 2 R

k is the
vector of k parameters (for example, the scaling factor and rotation angle), the set
Mx D ft.x; ˛/ W ˛ 2 R

kg 
 R
n is a manifold of dimension at most k. It is a curve

if k D 1. The minimum Euclidean distance between manifolds Mx and My would
be a useful distance since it is invariant with respect to transformations t.x; ˛/.

However, the computation of such a distance is too difficult in general; so, Mx

is approximated by its tangent subspace at x: fx C Pk
iD1 ˛kxi W ˛ 2 R

kg 
 R
n,

where the tangent vectors xi, 1 � i � k, spanning it are the partial derivatives of
t.x; ˛/ with respect to ˛. The one-sided (or directed) tangent distance between
elements x and y of Rn is a quasi-distance d defined by

v
u
u
tmin

˛
jjx C

kX

iD1
˛kxi � yjj2:
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The Simard–Le Cun–Denker’s tangent distance is defined by minfd.x; y/;
d.y; x/g.

• Pixel distance
Consider two digital images, seen as binary m � n matrices x D ..xij// and

y D ..yij//, where a pixel xij is black or white if it is equal to 1 or 0, respectively.
For each pixel xij, the fringe distance map to the nearest pixel of opposite

color DBW.xij/ is the number of fringes expanded from .i; j/ (where each fringe
is composed by the pixels that are at the same distance from .i; j/) until the first
fringe holding a pixel of opposite color is reached.

The pixel distance (Smith–Bourgoin–Sims–Voorhees, 1994) is defined by

X

1�i�m

X

1�j�n

jxij � yijj.DBW.xij/C DBW.yij//:

In a pixel-based device (computer monitor, printer, scanner), the pixel pitch
(or dot pitch) is the spacing between subpixels (dots) of the same color on the
inside of a display screen. Closer spacing usually produce a sharper image.

• Pratt’s figure of merit
In general, a figure of merit is a quantity used to characterize the performance

of a device, system or method, relative to its alternatives. Given two binary
images, seen as nonempty subsets, A and B, of a finite metric space .X; d/,
their Pratt’s figure of merit (or FOM, Abdou–Pratt, 1979) is a quasi-distance
defined by

 

maxfjAj; jBjg
X

x2B

1

1C ˛d.x;A/2

!�1
;

where ˛ is a scaling constant (usually, 1
9
), and d.x;A/ D miny2A d.x; y/ is the

point-set distance.
Similar quasi-distances are Peli–Malah’s mean error distance 1

jBj
P

x2B

d.x;A/, and the mean square error distance 1
jBj
P

x2B d.x;A/2.
• p-th order mean Hausdorff distance

Given p � 1 and two binary images, seen as nonempty subsets A and
B of a finite metric space (say, a raster of pixels) .X; d/, their p-th order
mean Hausdorff distance is ([Badd92]) a normalized Lp-Hausdorff distance,
defined by

 
1

jXj
X

x2X

jd.x;A/� d.x;B/jp

! 1
p

;

where d.x;A/ D miny2A d.x; y/ is the point-set distance. The usual Hausdorff
metric is proportional to the 1-th order mean Hausdorff distance.
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Venkatasubraminian’s †-Hausdorff distance ddHaus.A;B/ C ddHaus.B;A/ is
equal to

P
x2A[B jd.x;A/� d.x;B/j, i.e., it is a version of L1-Hausdorff distance.

Another version of the 1-st order mean Hausdorff distance is Lindstrom–
Turk’s mean geometric error (1998) between two images (seen as surfaces A
and B) defined by

1

Area.A/C Area.B/

�Z

x2A
d.x;B/dS C

Z

x2B
d.x;A/dS

�

;

where Area.A/ denotes the area of A. If the images are seen as finite sets A and
B, their mean geometric error is defined by

1

jAj C jBj

 
X

x2A

d.x;B/C
X

x2B

d.x;A/

!

:

• Modified Hausdorff distance
Given two binary images, seen as nonempty subsets A and B of a finite metric

space .X; d/, their Dubuisson–Jain’s modified Hausdorff distance (1994) is
defined as the maximum of point-set distances averaged over A and B:

max

(
1

jAj
X

x2A

d.x;B/;
1

jBj
X

x2B

d.x;A/

)

;

while their Eiter–Mannila’s sum of minimal distances (1997) is defined as

1

2
.
X

x2A

d.x;B/C
X

x2B

d.x;A//:

• Partial Hausdorff quasi-distance
Given two binary images, seen as subsets A;B ¤ ; of a finite metric space

.X; d/, and integers k; l with 1 � k � jAj, 1 � l � jBj, their Huttenlocher–
Rucklidge’s partial .k; l/-Hausdorff quasi-distance (1992) is defined by

maxfkth
x2Ad.x;B/; lthx2Bd.x;A/g;

where kth
x2Ad.x;B/ means the k-th (rather than the largest jAj-th ranked one)

among jAj distances d.x;B/ ranked in increasing order. The case k D b jAj
2

c,

l D b jBj
2

c corresponds to the modified median Hausdorff quasi-distance.
• Bottleneck distance

Given two binary images, seen as subsets A;B ¤ ; with jAj D jBj D m, of a
metric space .X; d/, their bottleneck distance is defined by

min
f

max
x2A

d.x; f .x//;
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where f is any bijective mapping between A and B. Cf. more general matching
distance in Chap. 1.

Variations of the above distance are:

1. The minimum weight matching: minf
P

x2A d.x; f .x//;
2. The uniform matching: minf fmaxx2A d.x; f .x//� minx2A d.x; f .x/g;
3. The minimum deviation matching: minf fmaxx2A d.x; f .x// � 1

jAj
P

x2A

d.x; f .x/g.

Given an integer t with 1 � t � jAj, the t-bottleneck distance between A and B
([InVe00]) is the above minimum but with f being any mapping from A to B such
that jfx 2 A W f .x/ D ygj � t.

The cases t D 1 and t D jAj correspond, respectively, to the bottleneck
distance and directed Hausdorff distance ddHaus.A;B/ D maxx2A miny2B d.x; y/
(Chap. 1).

• Hausdorff distance up to G
Given a group .G; �; id/ acting on the Euclidean space E

n, the Hausdorff
distance up to G between two compact subsets A and B (used in Image Process-
ing) is their generalized G-Hausdorff distance (Chap. 1), i.e., the minimum of
dHaus.A; g.B// over all g 2 G. Usually, G is the group of all isometries or all
translations of En.

• Hyperbolic Hausdorff distance
For any compact subset A of Rn, denote by MAT.A/ its Blum’s medial axis

transform, i.e., the subset of X D R
n � R�0, whose elements are all pairs

x D .x0; rx/ of the centers x0 and the radii rx of the maximal inscribed (in A)
balls, in terms of the Euclidean distance dE in R

n. (Cf. medial axis and skeleton
transforms for the general case.)

The hyperbolic Hausdorff distance ([ChSe00]) is the Hausdorff metric
on nonempty compact subsets MAT.A/ of the metric space .X; d/, where the
hyperbolic distance d on X is defined, for its elements x D .x0; rx/ and y D
.y0; ry/, by

maxf0; dE.x
0; y0/� .ry � rx/g:

• Nonlinear Hausdorff metric
Given two compact subsets A and B of a metric space .X; d/, their nonlinear

Hausdorff metric (or Szatmári–Rekeczky–Roska wave distance) is the Haus-
dorff distance dHaus.A \ B; .A [ B/�/, where .A [ B/� is the subset of A [ B
which forms a closed contiguous region with A \ B, and the distances between
points are allowed to be measured only along paths wholly in A [ B.

• Handwriting spatial gap distances
Automatic recognition of unconstrained handwritten texts (for example, legal

amounts on bank checks or pre-hospital care reports) require measuring the
spatial gaps between connected components in order to extract words.
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Three most used ones, among handwriting spatial gap distances between
two adjacent connected components x and y of text line, are:

– Seni–Cohen, 1994: the run-length (minimum horizontal Euclidean distance)
between x and y, and the horizontal distance between their bounding boxes;

– Mahadevan–Nagabushnam, 1995: Euclidean distance between the convex
hulls of x and y, on the line linking hull centroids.

• Video quality metrics
These metrics are between test and reference color video sequences, usually

aimed at optimization of encoding/compression/decoding algorithms. Each of
them is based on some perceptual model of the human vision system, the simplest
ones being RMSE (root-mean-square error) and PSNR (peak signal-to-noise
ratio) error measures. The threshold metrics estimate the probability of detecting
an artifact (i.e., a visible distortion that gets added to a video signal during digital
encoding).

Examples are: Sarnoff’s JND (just-noticeable difference), Winkler’s PDM
(perceptual distortion), and Watson’s DVQ (digital video quality) metrics. DVQ
is an lp-metric between feature vectors representing two video sequences. Some
metrics measure special artifacts in the video: the appearance of block structure,
blurriness, added “mosquito” noise (ambiguity in the edge direction), texture
distortion, etc.

• Time series video distances
The time series video distances are objective wavelet-based spatial-temporal

video quality metrics. A video stream x is processed into a time series x.t/ (seen
as a curve on coordinate plane) which is then (piecewise linearly) approximated
by a set of n contiguous line segments that can be defined by n C 1 endpoints
.xi; x0

i/, 0 � i � n, in the coordinate plane. In [WoPi99] are given the following
(cf. Meehl distance) distances between video streams x and y:

– Shape.x; y/ D Pn�1
iD0 j.x0

iC1 � x0
i/� .y0

iC1 � y0
i/j;

– Offset.x; y/ D Pn�1
iD0 j x0

iC1Cx0

i

2
� y0

iC1Cy0

i

2
j.

• Dynamic time wrapping distance
A time series is a temporal sequence, varied in time or speed, of numerical

data points, collected usually at regular intervals over a period of time; see above
time series video distances and, in Chap. 23, spike train distances.

Dynamic time warping (DTW) is a sequence alignment method allowing
a nonlinear mapping of one sequence to another by minimizing the (total
cumulative) distance between them. Used originally in speech recognition, DTW
is applied now to temporal sequences of video, audio, and graphics data.

Consider two sequences (say, time series) x D .x1; : : : ; xm/ and y D
.y1; : : : ; yn over a distance space .S; d/. The matrix ..DTW.i; j///0�j�n

0�i�m of
cumulative distances is defined by DTW.0; 0/ D 0, all DTW.0; i/ and DTW.i; 0/
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are 1, while

DTW.i; j/ D d.xi; yj/C min.DTW.i � 1; j;DTW.i; j � 1;DTW.i � 1; j � 1//;

for any i; j � 1, minimizing insertion, deletion, match, respectively. A warping
path W D .w1; : : : ;wk/ is a contiguous set of matrix elements wi that represent
a mapping between x and y. The optimal path is the one minimizing the warping

cost; this minimum DTW.x; y/ D min
qP

1�i�k w2k is called the DTW-distance.

The time series can be seen as discretizations of differentiable functions of
time. Optimal nonlinear time warping functions are computed by minimizing
a measure of distance of the set of functions to their warped average. Related
elastic matching is an optimization problem of 2D warping specifying cor-
responding pixels between subjected images; cf. nonlinear elastic matching
distance between curves.

21.2 Audio Distances

Sound is the vibration of gas or air particles that causes pressure variations within
our eardrums. Audio (speech, music, etc.) Signal Processing is the processing of
analog (continuous) or, mainly, digital representation of the air pressure waveform
of the sound. A sound spectrogram (or sonogram) is a visual 3D representation
of acoustic signal. It is obtained either by a series of bandpass filters (an analog
processing), or by application of the short-time Fourier transform to the electronic
analog of an acoustic wave. Three axes represent time, frequency and intensity
(acoustic energy). Often this 3D curve is reduced to two dimensions by indicating
the intensity with more thick lines or more intense gray or color values.

Sound is called tone if it is periodic (the lowest fundamental frequency plus its
multiples, harmonics or overtones) and noise, otherwise. The frequency is measured
in cps (the number of complete cycles per second) or Hz (Hertz). The range
of audible sound frequencies to humans is typically 20 Hz to 20 kHz. A moth
Galleria mellonella can hear up to 300 kHz, in order to locate predatory bats using
ultrasound.

The power P. f / of a signal is energy per unit of time; it is proportional to the
square of signal’s amplitude A. f /. Decibel dB is the unit used to express the relative
strength of two signals. One tenth of 1 dB is bel, the original outdated unit.

The amplitude of an audio signal in dB is 20 log10
A. f /
A. f 0/

D 10 log10
P. f /
P. f 0/

, where f 0
is a reference signal selected to correspond to 0 dB (usually, the threshold of human
hearing). The threshold of pain is about 120–140 dB.

Pitch and loudness are auditory subjective terms for frequency and amplitude.
The mel scale is a perceptual frequency scale, corresponding to the auditory

sensation of tone height and based on mel, a unit of pitch. It is connected to
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the acoustic frequency f hertz scale by Mel. f / D 1127 ln.1 C f
700
/ or, simply,

Mel. f / D 1000 log2.1C f
1000

.
The Bark scale (named after Barkhausen) is a psycho-acoustic scale of fre-

quency: it ranges from 0 to 24 Bark corresponding to the first 24 critical bands
of hearing:
0; 100; 200; : : : ; 1270; 1480; 1720; : : : ; 9500; 12;000; 15;500 Hz.
Those bands correspond to spatial regions of the basilar membrane (of the

inner ear), where oscillations, produced by the sound of given frequency, activate
the hair cells and neurons. Our ears are most sensitive in 2000–5000 Hz. The
Bark scale is connected to the acoustic frequency f kilohertz scale by Bark. f / D
13 arctan.0:76f /C 3:5 arctan. f

0:75
/2.

Terrestrial vertebrates perceive frequency on a logarithmic scale, i.e., pitch
perception is better described by frequency ratios than by differences on a linear
scale. It is matched by the distribution of cells sensitive to different frequencies in
their ears.

Power spectral density PSD. f / of a wave is the power per Hz. It is the Fourier
transform of the autocorrelation sequence. So, the power of the signal in the band
.�W;W/ is given by

R W
�W PSD. f /df . A power law noise has PSD. f / � f ˛ . The

noise is called violet, blue, white, pink (or 1
f ), red (or brown(ian)), black (or silent)

if ˛ D 2; 1; 0;�1;�2;< �2. PSD changes by 3˛ dB per octave (i.e., with frequency
doubling); it decreases for ˛ < 0.

Pink noise occurs in many physical, biological and economic systems; cf. long
range dependence in Chap. 18. It has equal power in proportionally wide frequency
ranges. Humans also process frequencies in a such logarithmic space (approximated
by the Bark scale). So, every octave contains the same amount of energy. Thus
pink noise is used as a reference signal in Audio Engineering. Steady pink noise
(including light music) reduces brain wave complexity and improve sleep quality.

Intensity of speech signal goes up/down within a 3–8 Hz frequency which
resonates with the theta rhythm of neocortex. The speakers produce 3–8 syllables
per second.

The main way that humans control their phonation (speech, song, laughter) is
by control over the vocal tract (the throat and mouth) shape. This shape, i.e.,
the cross-sectional profile of the tube from the closure in the glottis (the space
between the vocal cords) to the opening (lips), is represented by the cross-sectional
area function Area.x/, where x is the distance to the glottis. The vocal tract acts
as a resonator during vowel phonation, because it is kept relatively open. These
resonances reinforce the source sound (ongoing flow of lung air) at particular
resonant frequencies (or formants) of the vocal tract, producing peaks in the
spectrum of the sound.

Each vowel has two characteristic formants, depending on the vertical and
horizontal position of the tongue in the mouth. The source sound function is
modified by the frequency response function for a given area function. If the vocal
tract is approximated as a sequence of concatenated tubes of constant cross-sectional
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area, then the area ratio coefficients are the ratios Area.xiC1/

Area.xi/
for consecutive tubes;

those coefficients can be computed by LPC (linear predictive coding).
The spectrum of a sound is the distribution of magnitude (dB) (and sometimes the

phases) in frequency (kHz) of the components of the wave. The spectral envelope is
a smooth contour that connects the spectral peaks. Its estimation is based on either
LPC, or FFT (fast Fourier transform) using real cepstrum, i.e., the log amplitude
spectrum.

FT (Fourier transform) maps time-domain functions into frequency-domain rep-
resentations. The complex cepstrum of the signal f .t/ is FT.ln.FT. f .t/C 2�mi///,
where m is the integer needed to unwrap the angle or imaginary part of the complex
logarithm function. The FFT performs the Fourier transform on the signal and
samples the discrete transform output at the desired frequencies usually in the mel
scale.

Parameter-based distances used in recognition and processing of speech data are
usually derived by LPC, modeling the speech spectrum as a linear combination of
the previous samples (as in autoregressive processes). Roughly, LPC processes each
word of the speech signal in the following 6 steps: filtering, energy normalization,
partition into frames, windowing (to minimize discontinuities at the borders of
frames), obtaining LPC parameters by the autocorrelation method and conversion
to the LPC-derived cepstral coefficients. LPC assumes that speech is produced by
a buzzer at the glottis (with occasionally added hissing and popping sounds), and it
removes the formants by filtering.

The majority of distortion measures between sonograms are variations
of squared Euclidean distance (including a covariance-weighted one, i.e.,
Mahalanobis, distance) and probabilistic distances belonging to following general
types: generalized variational distance, f -divergence and Chernoff distance; cf.
Chap. 14.

The distances for sound processing below are between vectors x and y represent-
ing two signals to compare. For recognition, they are a template reference and input
signal, while for noise reduction they are the original (reference) and distorted signal
(see, for example, [OASM03]). Often distances are calculated for small segments,
between vectors representing short-time spectra, and then averaged.

• SNR distance
Given a sound, let P and As denote its average power and RMS (root-mean-

square) amplitude. The signal-to-noise ratio in decibels is defined by

SNRdB D 10 log10.
Psignal

Pnoise
/ D Psignal;dB � Pnoise;dB D 10 log10.

Asignal

Anoise
/2:

The dynamic range is such ratio between the strongest undistorted and minimum
discernable signals. It is roughly 140 dB for human hearing, 40 dB for human
speech and 80 dB for a music in a concert hall.



412 21 Image and Audio Distances

The Shannon–Hartley theorem express the capacity (maximal possible infor-
mation rate) of a channel with additive colored (frequency-dependent) Gaussian
noise, on the bandwidth B in Hz as

R B
0 log2.1C Psignal. f /

Pnoise. f / /df .
The SNR distance between signals x D .xi/ and y D .yi/ with n frames is

10 log10

Pn
iD1 x2iPn

iD1.xi � yi/2
:

If M is the number of segments, the segmented SNR between x and y is defined by

10

m

M�1X

mD0

 

log10

nmCnX

iDnmC1

x2i
.xi � yi/2

!

:

• Spectral magnitude-phase distortion
The spectral magnitude-phase distortion between signals x D x.!/ and

y D y.!/ is defined by

1

n

 

	

nX

iD1
.jx.w/j � jy.w/j/2 C .1 � 	/

nX

iD1
.†x.w/� †y.w//2

!

;

where jx.w/j, jy.w/j are magnitude spectra, and †x.w/, †y.w/ are phase spectra
of x and y, respectively, while the parameter 	; 0 � 	 � 1, is chosen in order to
attach commensurate weights to the magnitude and phase terms. The case 	 D 0

corresponds to the spectral phase distance.
Given a signal f .t/ D ae�btu.t/, a; b > 0 which has Fourier transform x.w/ D

a
bCiw , its magnitude (or amplitude) spectrum is jxj D ap

b2Cw2
, and its phase

spectrum (in radians) is ˛.x/ D tan�1 w
b , i.e., x.w/ D jxjei˛ D jxj.cos˛Ci sin ˛/.

The Fourier distance and Fourier phase distance are jjFFT.x/ � FFT.y/jj2
and jjarg.FFT.x// � arg.FFT.y//jj2, where the sums only contain the lower
frequency terms of fast Fourier transform in order to reduce noise. The similar
wavelet distance is based on the discrete wavelet transform separating low and
high frequencies.

• Spectral distances
Given two discrete spectra x D .xi/ and y D .yi/ with n channel filters, their

Euclidean metric EM, slope metric SM (Klatt, 1982) and 2-nd differential
metric 2DM (Assmann and Summerfield, 1989) are defined, respectively, by

v
u
u
t

nX

iD1
.xi � yi/2;

v
u
u
t

nX

iD1
.x0

i � y0
i/
2 and

v
u
u
t

nX

iD1
.x00

i � y00
i /
2;

where z0
i D ziC1 � zi and z00

i D max.2zi � ziC1 � zi�1; 0/. Comparing, say,
the auditory excitation patterns of vowels, EM gives equal weight to peaks and
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troughs although spectral peaks have more perceptual weight. SM emphasizes
the formant frequencies, while 2DM sets to zero the spectral properties other
than the formants.

The RMS log spectral distance (or root-mean-square distance, quadratic
mean distance) LSD.x; y/ is defined by

v
u
u
t1

n

nX

iD1
.ln xi � ln yi/2:

The corresponding l1- and l1-distances are called mean absolute distance and
maximum deviation. These three distances are related to decibel variations in
the log spectral domain by the multiple 10

log 10 . In fact, the log spectral distance
between power spectra x.!/ and y.!/ is defined as (expressed in dB):

s
1

2�

Z �

��
.10 log10

x.!/

y.!/
/2d!:

The square of LSD.x; y/, via the cepstrum representation ln x.!/ DP1
jD�1 cje�j!i (where x.!/ is the power cepstrum jFT.ln.jFT. f .t///j2/j2)

becomes, in the complex cepstral space, the cepstral distance.
The log area ratio distance LAR.x; y/ between x and y is defined by

v
u
u
t1

n

nX

iD1
10.log10 Area.xi/� log10 Area.yi//2;

where Area.zi/ is the cross-sectional area of the i-th segment of the vocal tract.
• Bark spectral distance

Let .xi/ and .yi/ be the Bark spectra of x and y, where the i-th component
corresponds to the i-th auditory critical band in the Bark scale. The Bark spectral
distance (Wang–Sekey–Gersho, 1992) is a perceptual distance, defined by

BSD.x; y/ D
nX

iD1
.xi � yi/

2;

i.e., it is the squared Euclidean distance between the Bark spectra.
A modification of the Bark spectral distance excludes critical bands i on which

the loudness distortion jxi � yij is less than the noise masking threshold.
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• Itakura–Saito quasi-distance
The Itakura–Saito (or maximum likelihood) quasi-distance between LPC-

derived spectral envelopes x D x.!/ and y D y.!/ is defined (1968) by

IS.x; y/ D 1

2�

Z �

��

�
x.w/

y.w/
� ln

x.w/

y.w/
� 1

�

dw:

The cosh distance is defined by IS.x; y/C IS.y; x/, i.e., is equal to

1

2�

Z �

��

�
x.w/

y.w/
C y.w/

x.w/
� 2

�

dw D 1

2�

Z �

��
2 cosh

�

ln
x.w/

y.w/
� 1

�

dw;

where cosh.t/ D etCe�t

2
is the hyperbolic cosine function.

• Log-likelihood ratio quasi-distance
The log-likelihood ratio quasi-distance between LPC-derived spectral

envelopes x D x.!/; y D y.!/ is defined (cf. Kullback–Leibler distance in
Chap. 14) by

1

2�

Z �

��
x.w/ ln

x.w/

y.w/
dw:

The weighted likelihood ratio distance between x.!/ and y.!/ is defined by

1

2�

Z �

��

0

@

�
ln
�

x.w/
y.w/

�
C y.w/

x.w/ � 1
�

x.w/

px
C
�

ln
�

y.w/
x.w/

�
C x.w/

y.w/ � 1
�

y.w/

py

1

A dw;

where P.x/ and P.y/ denote the power of the spectra x.w/ and y.w/.
• Cepstral distance

The cepstral distance (or squared Euclidean cepstrum metric) CEP.x; y/
between the LPC-derived spectral envelopes x D x.!/ and y D y.!/ is
defined by

1

2�

Z �

��

�

ln
x.w/

y.w/

�2
dw D 1

2�

Z �

��

.ln x.w/ � ln y.w//2 dw D
1X

jD�1

.cj.x/�cj.y//
2;

where cj.z/ D 1
2�

R �
�� ejwi ln jz.w/jdw is j-th cepstral (real) coefficient of z derived

from the Fourier transform or LPC.
The quefrency-weighted cepstral distance (or Yegnanarayana distance,

weighted slope distance) between x and y is defined by

1X

iD�1
i2.ci.x/ � ci.y//

2:
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“Quefrency” and “cepstrum” are anagrams of “frequency” and “spectrum”.
The Martin cepstrum distance between two ARMs (autoregressive models)

is defined, in terms of their cepstra, by

v
u
u
t

1X

iD0
i.ci.x/� ci.y//2:

Cf. general Martin distance in Chap. 12 and Martin metric in Chap. 11.
• Distances in Musicology

Pitch is a subjective correlate of the fundamental frequency. A note (or tone)
is a named pitch. Pitch, seen as extending along a 1D continuum from high to
low, is called pitch height. But it also varies circularly: a pitch class is a set of
all pitches that are a whole number of octaves (intervals between a frequency
and its double) apart. About 10 octaves cover the range of human hearing.
In Western music, the most used octave division is the chromatic scale: 12
notes C;C#;D;D#;E;F;F#;G;G#;A;A#;B drawn usually as pitch class space:
a circle of equal temperament, i.e., divided into 12 equal semitones (or half
steps). The distance between notes whose frequencies are f1, f2 is 12 log2.

f1
f2
/

semitones.
An interval is the difference between two pitches. Its width is the ratio a

b (with
g.c.d.a; b/ D 1) between their frequencies. The Benedetti height of this ratio is
ab; Tenney height (or Tenney harmonic distance) is log2 ab and Kees height is
max .a0; b0/, where a0; b0 come from a; b by removing factors of 2. The width of
a semitone is 12

p
2 or 100 cents. The width of octave is 2 or 1200 cents.

A pitch distance (or melodic distance) is the size of the section of the pitch-
continuum bounded by those two pitches, such as modeled in a given scale. A
MIDI (Musical Instrument Digital Interface) number of fundamental frequency
f is defined by p. f / D 69 C 12 log2

f
440

. The distance between notes, in terms
of this linear pitch space, becomes the natural metric jp. f1/ � p. f2/j on R.
This pitch distance corresponds to physical distance on keyboard instruments,
and psychological distance as measured by experiments and musicians.

Using integer notation 0; 1; : : : ; 11 of pitches, a pitch interval PI.x; y/ between
the pitches x and y is the number of semitones jx�yj that separates them linearly,
while a pitch-interval class PIC.x; y/ is jx � yj mod 12 and an interval class
ic.x; y/ is their Lee distance min jx � yj; 12� jx � yj on the circle.

In integer notation, the circle of fifths is f7i mod 12g0;:::;11, and its reversal,
the circle of fourths, is f5i mod 12g0;:::;11. Neighboring pitches are separated by
a perfect fifth (interval of 5 staff positions or 7 semitones).
7 letters of a musical alphabet, C–D–E–F–G–A–B, are called the natural

tones; they are the names of the white keys on a piano/keyboard, forming an
octave. Above sequence and any of its translations is a major diatonic scale. A
diatonic scale is a scale of 7 notes most used in Western music. Its structure is 1–
1–0.5–1–1–1–0.5, in terms of interval succession of steps. A distance model (in
Music) is the alternation of two different intervals to create a nondiatonic musical
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mode/scale, such as the 1:3 distance model (alternation of semitones and minor
thirds).

In tonal music, composition written in home key; it modulates (move to other
keys) and usually returns. The distance between keys approximates the ease of
modulation. Every key is associated with a scale of pitches, usually, major or
minor diatonic. The interkey distance of two keys is 7 minus the number of
tones shared by their scales. It is also their distance around the circle of fifths, i.e.,
the difference in the number of sharps (or flats) in their signatures. The relative
(having the same signatures) major and minor key share all 7 notes.

A chord in music is any set of at least 3 pitch classes in the same octave that is
heard as if sounding simultaneously. Music can be seen as a sequence of chords.
Interval vector of a given chord c is V.c/ D .c1; : : : ; c6/, where ci is the number
of times i-th interval class (having i or 12� i semitones) appears in it. Intervalic
distance and Estrada distance between chord c and c0 are (Mathieu, 2002):

6X

iD1
jci � c0

ij and max jcj; jc0j � jV.c/\ V.c0/j � 1:

The root distance is the number of fifths between the roots (pitches upon which
a chord may be built, often by stacking thirds) of the chords. In [RRHD10], a
survey of 8 distances between chords is given: above 3 and those by Chew
(2000), Costère (1962), Lerdahl (2001), Paiement et al. (2005) and Yoo et al.
(2006).

Alternatively to equal-temperement, just intonation is a tuning in which the
frequencies of notes are related by ratios of small whole numbers, say, 3

2
for

perfect fifth (G) and 4
3

for perfect forth (F). The pitches can be arranged in a
2D diagram. For an odd number n > 0, the n-limit diagram contains all rational
numbers such that any odd divisor of the numerator or denominator is at most
n. Such 5- and 7-limit can be seen as the hexagonal lattice A2 D f.a; b; c/ 2
Z
3 W a C b C c D 0g and face-centered cubic lattice A3 D f.a; b; c/ 2 Z

3 W
a C b C c � 0. mod 2/g, respectively, with vector space norms

p
a2 C ab C b2

and
p

a2 C ab C b2 C c.a C b C c/.
• Distances between rhythms

A rhythm timeline (music pattern) is represented, besides the standard music
notation, in the following ways, used in computational music analysis.

1. By a binary vector x D .x1; : : : ; xm/ of m time intervals (equal in a metric
timeline), where xi D 1 denotes a beat, while xi D 0 denotes a rest interval
(silence). For example, the five 12=8 metric timelines of Flamenco music are
represented by five binary sequences of length 12.

2. By a pitch vector q D .q1; : : : ; qn/ of absolute pitch values qi and a pitch
difference vector p D .p1; : : : ; pn�1/ where pi D qiC1 � qi represents the
number of semitones (positive or negative) from qi to qiC1.
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3. By an interonset interval vector t D .t1; : : : ; tn/ of n time intervals between
consecutive onsets.

4. By a chronotonic representation which is a histogram visualizing t as a
sequence of squares of sides t1; : : : ; tn; it can be seen as a piecewise linear
function.

5. By a rhythm difference vector r D .r1; : : : ; rn�1/, where ri D tiC1

ti
.

Examples of general distances between rhythms are the Hamming distance,
swap metric (Chap. 11) and Earth Mover’s distance between their given vector
representations.

The Euclidean interval vector distance is the Euclidean distance between
two interonset interval vectors. The Gustafson chronotonic distance is a varia-
tion of l1-distance between these vectors using the chronotonic representation.

Coyle–Shmulevich interval-ratio distance is defined by

1 � n C
n�1X

iD1

maxfri; r0
ig

minfri; r0
ig
;

where r and r0 are rhythm difference vectors of two rhythms (cf. the reciprocal
of Ruzicka similarity in Chap. 17).

• Long-distance drumming
Long-distance drumming (or drum telegraphy) is an early form of long-

distance communication which was used by cultures in Africa, New Guinea and
the tropical America living in deforested areas. A rhythm could represent an
signal, repeat the profile of a spoken utterance or simply be subject to musical
laws.

The message drums (or slit gongs) were developed from hollow tree trunks.
The sound could be understood at � 8 km but usually it was relayed to a next
village. Another oldest tools of audio telecommunication were horns (tapered
sound guides providing an acoustic impedance match between a sound source
and free air). Any mode of communication (as by means of drums or horns) for
use beyond the range of the articulate voice, is called distance language.

Soldier termites of some species drum their heads (11 times per second) on
the ground to signal danger. The initial vibrations travel 40 cm, but a chain of
soldiers relay the resulting wave, moving 1:3 m/s, over much greater distances.

• Sonority distance effect
People in warm-climate cultures spend more time outdoors and engage, on

average, in more distal oral communication. So, such populations have greater
sonority (audibility) of their phoneme inventory. Munroe et al., 1996 and 2009,
observed that speakers in such languages use more simple consonant-vowel
syllables, vowels and sonorant (say, nasal “n”, “m” rather than obstruents as “t”,
“g”) consonants.

Ember and Ember, 2007, found that number of cold months, as well as the
combination of cold climate and sparse vegetation, predicts less sonority. Larger



418 21 Image and Audio Distances

average distance of the baby from its caregivers, as well as higher frequency of
premarital and extramarital sex predicts more sonority.

• Vocal deviation
Vocal deviation is (Podos, 2001) the distance of birdsong performance to

the upper performance limit. Performance is measured by a variable combining
frequency bandwidth and note repetition rate (the number of notes per second).

The vocal deviation of a bird is the minimal point-line distance (Chap. 4) of
data points of its recordings from the (upper-bound regression) line representing
performance limit.

Fitch et al., 2014, found in hermit thrush’s songs the same intervals of pitch as
the common major chords (octave, perfect fifth, perfect third) in human music.

• Acoustics distances
The wavelength of a wave is the distance it travels to complete one cycle. This

distance is measured perpendicular to the wavefront in the direction of propaga-
tion between one peak of a sine wave (sinusoid) and the next corresponding peak.
The wavelength of any frequency sound may be found by dividing the speed of
sound (331:4 m=s at sea level) in the medium by the fundamental frequency.

The near field (cf. Chap. 24) is the part of a sound field (usually within about
two wavelengths from the source) where there is no simple relationship between
sound level and distance. The far field (cf. Chap. 24) is the area beyond the
near field boundary. It is comprised of the reverberant field and free field, where
sound intensity decreases as 1

d2
with the distance d from the source. This law

corresponds to a reduction of 
 6 dB in the sound level for each doubling of
distance and to halving of loudness (subjective response) for each reduction of

 10 dB.

The critical distance (or room radius) is the distance from the source at which
the direct sound and reverberant sound (reflected echo produced by the direct
sound bouncing off, say, walls, floor, etc.) are equal in amplitude.

The pickup distance of a microphone is the effective distance that it can be
used at. For an electric guitar, it is the distance from pickup (transducer that
captures mechanical vibrations) to strings.

A directional microphone may be placed farther away from a desired sound
source than an omnidirectional one of equal quality; the ratio of distances is
called the distance factor.

The proximity effect (audio) is the anomaly of low frequencies being enhanced
when a directional microphone is very close to the source.

Auditory distance cues (Chap. 28) are based on differences in loudness,
spectrum, direct-to-reverb ratio and binaural ones. The closer sound object is
louder, has more bass, high-frequencies, transient detail, dynamic contrast. Also,
it appear wider, has more direct sound level over its reflected sound and has
greater time delay between the direct sound and its reflections.

The acoustic metric is the term used occasionally for some distances between
vowels; for example, the Euclidean distance between vectors of formant fre-
quencies of pronounced and intended vowel. Cf. acoustic metric in Physics
(Chap. 24).



Chapter 22
Distances in Networks

22.1 Scale-Free Networks

A network is a graph, directed or undirected, with a positive number (weight)
assigned to each of its arcs or edges. Real-world complex networks usually have
a gigantic number N of vertices and are sparse, i.e., with relatively few edges.

Interaction networks (Internet, Web, social networks, etc.) tend to be small-
world ([Watt99]), i.e., interpolate between regular geometric lattices and random
graphs in the following sense. They have a large clustering coefficient (the prob-
ability that two distinct neighbors of a vertex are neighbors), as lattices in a local
neighborhood, while the average path distance between two vertices is small, about
ln N, as in a random graph.

A scale-free network ([Bara01]) ia a network with probability distribution for
a vertex to have degree k being similar to k�� , for some constant � > 0 which
usually belongs to the segment Œ2; 3�. This power law implies that very few vertices,
called hubs (connectors, gateways, super-spreaders), are far more connected than
other vertices. The power law (or long range dependent, heavy-tail) distributions,
in space or time, has been observed in many natural phenomena (both physical and
sociological).

• Collaboration distance
The collaboration distance is the path metric of the Collaboration graph,

having authors in Mathematical Reviews database as vertices with xy being an
edge if authors x and y have a joint publication among the papers from this
database.

The vertex of largest degree (1416) corresponds to Paul Erdős; the Erdős
number of a mathematician is his collaboration distance to Paul Erdős. An
example of a 3-path: Michel Deza–Paul Erdős–Ernst Gabor Straus–Albert
Einstein.
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• Co-starring distance
The co-starring distance is the path metric of the Hollywood graph, having

about 250;000 vertices (actors in the Internet Movie database) with xy being an
edge if the actors x and y appeared in a feature film together. The vertices of
largest degree are Christopher Lee and Kevin Bacon; the trivia game Six degrees
of Kevin Bacon uses the Bacon number, i.e., the co-starring distance to this actor.

The Morphy and Shusaku numbers are the similar measures of a chess or Go
player’s connection to Paul Morphy and Honinbo Shusaku by way of playing
games. Kasparov number of a chess-player is the length of a shortest directed
path, if any, from him/her to Garry Kasparov; here arc uv means victory of u
over v.

Similar popular examples of such social scale-free networks are graphs of
musicians (who played in the same rock band), baseball players (as team-mates),
scientific publications (who cite each other), mail exchanges, acquaintances
among classmates in a college, business board membership.

Among other such studied networks are air travel connections, word
co-occurrences in human language, US power grid, sensor networks, worm
neuronal network, gene co-expression networks, protein interaction networks
and metabolic networks (with two substrates forming an edge if a reaction
occurs between them via enzymes).

• WikiDistance
In 2015, Wikipedia had about 38million articles in 281 languages and 74;000

active editors. English Wikipedia alone had 5 million articles (4% of estimated
number of notable articles needed to cover all human knowledge) and 814 billion
of edits.

The WikiDistance is the directed path quasi-metric of the Wikipedia digraph,
having English Wikipedia articles as vertices, with xy being an arc if the article x
contains an hyperlink to the article y; cf. http://software.tanos.co.uk/wikidistance
and the Web hyperlink quasi-metric.

Gabrilovich–Markovich, 2007, proposed to measure semantic relatedness of
two texts by the cosine distance (cf. Web similarity metrics) between weighted
vectors, interpreting texts in terms of affinity with a host of Wikipedia concepts.

Crandall et al., 2008, considered the social network of Wikipedia editors:
two editors are assumed to be connected if one of them posted to the other’s
discussion page. Brandes et al., 2009, considered the edit network of a Wikipedia
page, where nodes are the authors of this page and edges correspond to undoing
each other edits.

The editing depth of Wikipedia is an indicator of its collaborativeness defined
as D D e

aCn � . n
a /
2, where e; a; n are the numbers of page edits, articles and

nonarticles (redirects, talk, user pages). At February 2016, English Wikipedia
had D D 916.

• Virtual community distance
Largest, in millions of active user accounts, virtual communities (online social

networking services) are, as of December 2014, Facebook (1590), WhatsApp
(1000), Tencent QQ (860), Facebook Messenger (800), Tencent Ozone (653),

http://software.tanos.co.uk/wikidistance
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WeChat (650), Google+ (540), Istagram (400), Twitter (305), Skype (300), all of
origin in the US or China. 3:3 billion has used the services of the Internet within
2015.

In 2012, about 30 billion documents were uploaded on Facebook, 300million
tweets sent on Twitter and 24 petabytes of data processed by Google per day,
while mankind published only 
5000 petabytes for the 20;000 years before
2003.

A virtual community distance is the path metric of the graph of active users,
two of them forming an edge if they are “friends”. In Twitter it means that both
“follow” each other. In particular, for the Facebook hop distance in November
2011, 99:6% of all pairs of users were connected by paths of length at most 5.
The mean distance was 4:74, down from 5:28 in 2008.

The Twitter friendship distance in Avril 2010 was 4; 5; 6 among
37%; 41%; 13% of 5:2 billion friendships. The average distance was 4:67 steps.
Cf. mean distance 5:2 in Milgram’s (1967) theory of six degrees of separation
on a planetary scale.

An example of application: analysing linguistically emotional content of
tweets and comments, one can obtain an interaction graph of the targeted region
mood.

• Distance effect in large e-mail networks
Takhteyev–Gruzd–Wellman, 2012, considered a sample representing Twitter

tie (i.e., “follow” relation in both directions) network. They found that distance
constrains ties, despite the seeming ease with which they can be formed: 39%
of the ties are shorter than 100 km (within the same regional cluster), ties up to
1000 km are more frequent than random ones, and ties longer than 5000 km are
rare. Cf. distance decay in Chap. 28. But the nonlocal ties are predicted better
by the frequency of airline connections than by physical proximity.

State et al., 2013, started with a graph of a sample about 10 million users of
Yahoo! email with an edge between two users whenever they exchanged at least
one email message in both directions, during the observation period in 2012.
A weighted complete graph of 141 countries was derived, with edge-weight
being the rescaled logarithm of the communication density between countries.
For each doubling of distance (between each country centroids) and doubling
of the number of direct flights, the density decreased by 66% and increased by
33%, respectively.

But the main (besides colonial link and common language) cultural factor,
nearly doubling the density, happens to be the common membership in the same
civilization from the list produced by Huntigton in a 1993 article The Clash
of Civilizations: Latin American, Islamic, Orthodox, Sinic, Buddist, Western,
African, Hindu, Japonic. For Latin American, Islamic, and Orthodox civilization,
this factor increases the density by the factor of 5:4, 3:1 and 2:4, respectively.

• Network’s hidden metric
Many social, biologic, and communication networks, including the Internet

and Web, are scale-free and strongly clustered (many triangular subgraphs).
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Greedy routing is a navigation strategy to do always the locally optimal step
with the hope of finding a globally shortest path. Krioukov et al., 2009, found
that successful greedy paths are shortest, mostly and asymptotically, in the large
complex networks.

They explain such efficiency by the existence of a hidden metric space .V; d/
on the set V of nodes, so that a node passes information to the neighbor that is
closest in .V; d/ to the final destination. Moreover, they suggest that .V; d/ is
hyperbolic, because the nodes are heterogeneous (can be classified into groups,
subgroups, and so on) implying a tree-like structure of such network.

• Sexual distance
Given a group of people, its sexual network is the graph of members two of

them forming an edge if they had a sexual contact. The sexual distance is the
path metric of a sexual network. Such networks of heterosexual individuals are
usually scale-free but not small-world since they have no 3-cycles and very few
4-cycles.

Several sexual networks were mapped in order to trace the spread of sexually
infectious diseases. The sexual network of all adults aged 18–35 in Licoma
(almost isolated island 18 km2 on lake Malawi) have a giant connected com-
ponent containing half of nonisolated vertices, and more than one quarter were
connected robustly, i.e., by multiple disjoint paths. Also, in the sexual network of
students of an Midwestern US high school, 52% of nonisolated vertices belong
to a giant connected component. But this graph contains very few cycles and have
large diameter (37).

A study of persons at risk for HIV (Colorado Springs, 1988–1992) compared
their sexual and geographical distance, measured as the actual distance between
their residences. The closest (at mean 2:9 km) pairs were HIV-positive persons
and their contacts. The most distant (at mean 6:1 km) pairs were prostitutes and
their paying partners. The mean distance between all persons in Colorado Springs
was 12:4 km compared with 5:4 km between all dyads the study.

Moslonka-Lefebre et al., 2012, consider weighted sexual networks, where the
weight of an edge is the number of sex acts that are actually realized between two
individuals per, say, a week. Such model is more consistent with epidemiological
data.

The sexual network for the human race have a giant connected component
containing many vertices of degree 1 and almost all vertices of larger degree.

A dating application Tinder, linked to Facebook, has an estimated 50 million
users since 2012; it generates 15 million mutual matches a day.

• Subway network core
Roth et al., 2012, observed that the world’s largest subway networks converge

to a similar shape: a core (ring-shaped set of central stations) with quasi-1D/linear
branches radiating from it. The average degree of core stations is 2:5; among
them 
 20% are transfer stations and > 60% have degree 2.

The average radial (from the geographical centroid of all stations) distance
(in km) to branched stations is about double of such distance to core stations,
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while the number of branches scales roughly as the square root of the number of
stations.

Cf. Moscow metric, Paris metric, and subway semimetric in Chap. 19.
• Normalized web distance

The normalized web distance (or normalized Google distance, as it was
derived by Cilibrasi and Vitanyi, 2007, from [BGLVZ98]) is a semantic distance,
not a metric, between search terms induced by a large data base (say, the Internet)
and a search engine (say, Google). It is applicable to any data-base search engine
pair. This distance between two search terms x and y is defined by

NWD.x; y/ D maxflog f .x/; log f .y/g � log f .x; y/

log N � minflog f .x/; log f .y/g ;

where f .x/ is the number of pages containing x, the frequency f .x; y/ is the
number of pages containing both x and y, and N is the total number of indexed
pages.

Cf. normalized information distance in Chap. 11.
• Drift distance

The drift distance is the absolute value of the difference between observed
and actual coordinates of a node in a NVE (Networked Virtual Environment).

In models of such large-scale peer-to-peer NVE (for example, Massively
Multiplayer Online Games), the users are represented as coordinate points on the
plane (nodes) which can move at discrete time-steps, and each has a visibility
range called the Area of Interest. NVE creates a synthetic 3D world where
each user assumes avatar (a virtual identity) to interact with other users or
computer AI.

The primary metric tool in MMOG and Virtual Worlds is the proximity sensor
recording when an avatar is within its specified range.

The term drift distance is also used for the current going through a material,
in tire production, etc.

• Betweenness centrality
For a geodesic metric space .X; d/ (in particular, for the path metric of a

graph), the stress centrality of a point x 2 X is defined (Shimbel, 1953) by

X

y;z2X;y¤x¤z

Number of shortest .y � z/ paths through x;

the betweenness centrality of a point x 2 X is defined (Freeman, 1977) by

g.x/ D
X

y;z2X;y¤x¤z

Number of shortest .y � z/ paths through x

Number of shortest .y � z/ paths
;
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and the distance-mass function is a function M W R�0 ! Q defined by

M.a/ D jfy 2 X W d.x; y/C d.y; z/ D a for some x; y 2 Xgj
jf.x; z/ 2 X � X W d.x; z/ D agj :

[GOJKK02] estimated that M.a/
a 
 4:5 for the Internet AS metric, and 
 1 for

the Web hyperlink quasi-metric for which the shortest paths are almost unique.
• Distance centrality

Given a finite metric space .X; d/ (usually, the path metric on the graph of a
network) and a point x 2 X, we give here examples of metric functionals used
to measure distance centrality, i.e., the amount of centrality of the point x in X
expressed in terms of its distances d.x; y/ to other points.

1. The eccentricity (or Koenig number) maxy2X d.x; y/ was given in Chap. 1;
Hage-Harary, 1995, considered 1

maxy2X d.x;y/ .

2. The closeness (Sabidussi, 1966) is the inverse 1P
y2X d.x;y/ of the farness.

3. Dangalchev, 2006, introduced
P

y2X; y¤x 2
�d.x;y/ which allows the case

d.x; y/ D 1 (disconnected graphs).
4. The functions f1 D P

y2X d.x; y/ and f2 D P
y2X d2.x; y/; cf. Fréchet mean

in Chap. 1.

In Location Theory applications, X0 
 X is a set of positions of “clients”
and one seeks points x 2 X of acceptable facility positions. The appropriate
objective function is, say, min maxy2X0 d.x; y/ to locate an emergency service,
min

P
y2X0 d.x; y/ for a goods delivering facility and max

P
y2X0 d.x; y/ for a

hazardous facility.

22.2 Network-Based Semantic Distances

Among the main lexical networks (such as WordNet, Framenet, Medical Search
Headings, Roget’s Thesaurus) a semantic lexicon WordNet is the most popular lex-
ical resource used in Natural Language Processing and Computational Linguistics.

WordNet (see http://wordnet.princeton.edu) is an online lexical database in
which English nouns, verbs, adjectives and adverbs are organized into synsets
(synonym sets), each representing one underlying lexical concept.

Two synsets can be linked semantically by one of the following links: upwards
x (hyponym) IS-A y (hypernym) link, downwards x (meronym) CONTAINS y
(holonym) link, or a horizontal link expressing frequent co-occurrence (antonymy),
etc. IS-A links induce a partial order, called IS-A taxonomy. The version 2:0 of
WordNet has 80;000 noun concepts and 13;500 verb concepts, organized into 9
and 554 separate IS-A hierarchies.

In the resulting DAG (directed acyclic graph) of concepts, for any two synsets
(or concepts) x and y, let l.x; y/ denote the length of the shortest path between

http://wordnet.princeton.edu
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them, using only IS-A links, and let LPS.x; y/ denote their least common subsumer
(ancestor) by IS-A taxonomy. Let d.x/ denote the depth of x (i.e., its distance from
the root in IS-A taxonomy) and let D D maxx d.x/.

The semantic relatedness of two nouns can be estimated by their ancestral
path distance (cf. Chaps. 10 and 23), i.e., the length of the shortest ancestral path
(concatenation of two directed paths from a common ancestor) to them). A list of
the other main semantic similarities and distances follows. See also [HRJM13].

• Length similarities
The path similarity and Leacock–Chodorow similarity between synsets x

and y are defined by

path.x; y/ D .l.x; y//�1 and lch.x; y/ D � ln
l.x; y/

2D
:

The conceptual distance between x and y is defined by l.x;y/
D .

• Wu–Palmer similarity
The Wu–Palmer similarity between synsets x and y is defined by

wup.x; y/ D 2d.LPS.x; y//

d.x/C d.y/
:

• Resnik similarity
The Resnik similarity between synsets x and y is defined by

res.x; y/ D � ln p.LPS.x; y//;

where p.z/ is the probability of encountering an instance of concept z in a large
corpus, and � ln p.z/ is called the information content of z.

• Lin similarity
The Lin similarity between synsets x and y is defined by

lin.x; y/ D 2 ln p.LPS.x; y//

ln p.x/C ln p.y/
:

• Jiang–Conrath distance
The Jiang–Conrath distance between synsets x and y is defined by

jcn.x; y/ D 2 ln p.LPS.x; y//� .ln p.x/C ln p.y//:

• Lesk similarities
A gloss of a synonym set z is the member of this set giving a definition or

explanation of an underlying concept. The Lesk similarities are those defined
by a function of the overlap of glosses of corresponding concepts; for example,
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the gloss overlap is

2t.x; y/

t.x/C t.y/
;

where t.z/ is the number of words in the synset z, and t.x; y/ is the number of
common words in x and y.

• Hirst–St-Onge similarity
The Hirst–St-Onge similarity between synsets x and y is defined by

hso.x; y/ D C � L.x; y/ � ck;

where L.x; y/ is the length of a shortest path between x and y using all links, k is
the number of changes of direction in that path, and C; c are constants.

The Hirst–St-Onge distance is defined by L.x;y/
k .

• Semantic biomedical distances
The semantic biomedical distances are the distances used in biomedical

lexical networks. The main clinical terminologies are UMLS (United Medical
Language System) and SNOMED (Systematized Nomenclature of Medicine)
CT.

An example of such distances used in SNOMED and presented in Melton et
al., 2006, is given by the interpatient distance between two medical cases (sets
X and Y of patient data). It is their Tanimoto distance (Chap. 1) jX4Yj

jX[Yj .
The conceptual distance between two biomedical concepts in UMLS is

(Caviedes and Cimino, 2004) the minimum number of IS-A parent links between
them in the directed acyclic graph of IS-A taxonomy of concepts.

• Semantic proximity
For the words in a document, there are short range syntactic relations and long

range semantic correlations, i.e., meaning correlations between concepts.
The main document networks are Web and bibliographic databases (digital

libraries, scientific databases, etc.); the documents in them are related by,
respectively, hyperlinks and citation or collaboration.

Also, some semantic tags (keywords) can be attached to the documents in
order to index (classify) them: terms selected by author, title words, journal titles,
etc.

The semantic proximity between two keywords x and y is their Tanimoto
similarity jX\Yj

jX[Yj , where X and Y are the sets of documents indexed by x and y,

respectively. Their keyword distance is defined by jX�Yj
jX\Yj ; it is not a metric.

• Dictionary digraph
Dictionary digraph .V;E/ have the words of a given dictionary as vertices,

and arcs uv 2 E whenever word u is used to define word v. The kernel .V 0;E0/
is its subdigraph induced by the vertices with out-degree ¤ 0. MF (minimum
feedback vertex set) is a smallest set of vertices, from which any v 2 V can be
reached.
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Picard et al., 2013, found that jVj 
 10jV 0j 
 20jMFj 
 20jV 00j in such
digraphs for four English dictionaries; here .V 00;E00/ is the core (largest strongly
connected component) of the kernel. They observed that the words in the kernel
V 0 are learned at a much younger age, and are more concrete, imageable and
frequent than the words in V n V 0. The same is true, but more so, comparing V 00
with V n V 00 and any MF with V n MF. Cf. Swadesh similarity (Chap. 28).

• SimRank similarity
Let D be a directed multigraph representing a cross-referred document corpus

(say, a set of citation-related scientific papers, hyperlink-related web pages, etc.)
and I.v/ be the set of in-neighbors of a vertex v.

SimRank similarity s.x; y/ between vertices x and y of D is defined (Jeh and
Widom, 2002) as 1 if x D y, 0 if jI.x/jjI.y/j D 0 and, otherwise, as

C

jI.x/jjI.y/j
X

a2I.x/;b2I.y/

s.a; b/;

where C is a constant, 0 < C < 1 (usually, C D 0:8 or 0:6 is used).
• D-separation in Bayesian network

A Bayesian network is a DAG (digraph with no directed cycles) .V;E/ whose
vertices represent random variables and arcs represent conditional dependencies;
so, the likelihood of each vertex can be calculated from the likelihood of its
ancestors. Bayesian networks, including causal networks, are used for modeling
knowledge.

A vertex v 2 V is called a collider of a trail (undirected path) t if there are two
consecutive arcs uv; vu0 2 E on t. A trail t is active by a set Z 
 V of vertices
if every its collider is or has a descendent in Z, while every other vertex along t
is outside of Z. If X;Y;Z 
 V are disjoint sets of vertices, then Z is said (Pearl,
1988) to d-separate X from Y if there is no active trail by Z between a vertex in
X and a vertex in Y. Such d-separation means that the variable sets, represented
by X and Y, are independent conditional on variables, represented by Z, in all
probability distributions the DAG .V;E/ can represent.

The minimal set which d-separates vertex v from all other vertices is v’s
Markov blanket; it consists of v’s parents, its children, and its children’s parents.
A moral graph of the DAG .V;E/, used to find its equivalent undirect form, is the
graph .V;E0/, where E0 consists all arcs from E made undirected plus all missing
marriages (edges between vertices having a common child).

Cf. the Bayesian graph edit distance in Chap. 15.
• Forward quasi-distance

In a directed network, where edge-weights correspond to a point in time, the
forward quasi-distance (backward quasi-distance) is the length of the shortest
directed path, but only among paths on which consecutive edge-weights are
increasing (decreasing, respectively).

The forward quasi-distance is useful in epidemiological networks (disease
spreading by contact, or, say, heresy spreading within a church), while the
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backward quasi-distance is appropriated in P2P (i.e., peer-to-peer) file-sharing
networks.

Berman, 1996, introduced scheduled network: a directed network (of, say,
airports), in which each edge (say, flight) is labeled by departure and arrival
times. Kempe–Kleinberg–Kumar, 2002, defined more general temporal network:
an edge-weighted graph, in which the weight of an edge is the time at which its
endpoints communicated. A path is time-respecting if the weights of its edges
are nondecreasing. Besides Scheduling and Epidemiology, such networks occur
in Distributed Systems (say, dissemination of information using node-to-node
communication).

In order to handle large temporal data on human behavior, Kostakos, 2009,
introduced temporal graph: an arc-weighted directed graph, where the vertices
are instances aitk (person ai in point tk of time), and the arcs are .tkC1 � tk/-
weighted ones .aitk; aitkC1/ linking time-consecutive pairs and unweighted ones
.aitk; ajtk/ representing a communication (say, e-mail) from ai to aj at time tk.

In order to handle temporally disconnected (not connected by a time-
respecting path) nodes, Tang et al., 2009, defined time-varying network: an
ordered set fDtgtD1;:::;T of directed (or not) graphs Dt D .X;Et/, where the arc-
sets Et may change in time and the arcs have temporal duration. As real-world
examples, they considered brain cortical and social interaction networks.

22.3 Distances in Internet and Web

Let us consider in detail the graphs of the Web and of its hardware substrate, Internet
which are small-world and scale-free.

The Internet is the largest WAN (wide area network), spanning the Earth. This
publicly available worldwide computer network came from 13-node ARPANET
(started in 1969 by US Department of Defense), NSFNet, Usenet, Bitnet, and
other networks. In 1995, the National Science Foundation in the US gave up the
stewardship of the Internet, and in 2009, US Department of Commerce accepted pri-
vatization/internationalization of ICANN, the body responsible for domain names
in the Internet.

Its nodes are routers, i.e., devices that forward packets of data along networks
from one computer to another, using IP (Internet Protocol relating names and
numbers), TCP and UDP (for sending data), and (built on top of them) HTTP,
Telnet, FTP and many other protocols (i.e., technical specifications of data transfer).
Routers are located at gateways, i.e., places where at least two networks connect.

The links that join the nodes together are various physical connectors, such as
telephone wires, optical cables and satellite networks. The Internet uses packet
switching, i.e., data (fragmented if needed) are forwarded not along a previously
established path, but so as to optimize the use of available bandwidth (bit rate, in
million bits per second) and minimize the latency (the time, in milliseconds, needed
for a request to arrive).
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Each computer linked to the Internet is usually given a unique “address”, called
its IP address. The new Internet Protocol IPv6 has address space 2128 
 4:4� 1038.
The most popular applications supported by the Internet are e-mail, file transfer,
Web, and some multimedia as YouTube and Internet TV. In 2012, 144 billions e-
mails (68:8% of which was spam) were sent daily by 2:2 billions users worldwide.
In 2015, global IP traffic will reach 1:0 zettabytes (10007 bytes) per year.

The Internet IP graph has, as the vertex-set, the IP addresses of all computers
linked to the Internet; two vertices are adjacent if a router connects them directly,
i.e., the passing datagram makes only one hop. The Internet also can be partitioned
into ASs (administratively Autonomous Systems). Within each AS the intradomain
routing is done by IGP (Interior Gateway Protocol), while interdomain routing is
done by BGP (Border Gateway Protocol) which assigns an ASN (16-bit number)
to each AS. The Internet AS graph has ASs (about 42;000 in 2012) as vertices and
edges represent the existence of a BGP peer connection between corresponding ASs.

The World Wide Web (WWW or Web, for short) is a major part of Internet content
consisting of interconnected documents (resources). It corresponds to HTTP (Hyper
Text Transfer Protocol) between browser and server, HTML (Hyper Text Markup
Language) of encoding information for a display, and URLs (Uniform Resource
Locators), giving unique “addresses” to web pages. The Web was started in 1989 in
CERN which gave it for public use in 1993. The Web digraph is a virtual network,
the nodes of which are documents (i.e., static HTML pages or their URLs) which
are connected by incoming or outcoming HTML hyperlinks, i.e., hypertext links. It
was at least 4:64 billion nodes (pages) in the Indexed Web digraph in May 2014.

The number of operating web sites (collections of related web pages found at a
single address) reached 634million in 2012 from 18;957 in 1995. In 2012, 54:7% of
websites were in English, followed by 5:9%, 5:7% in Russian and German. Along
with the Web lies the Deep (or Invisible) Web, i.e., content, which is not indexed by
standard search engines. This content (say, unlinked, or having dynamic URL, non-
HTML/text, technically limited access, or scripted, requiring registration/login) has
(Bergman, 2001) about 3000 times more pages than Surface Web, where Internet
searchers are searching.

There are several hundred thousand cyber-communities, i.e., clusters of nodes of
the Web digraph, where the link density is greater among members than between
members and the rest. The cyber-communities (a customer group, a social network,
a concept in a technical paper, etc.) are usually focused around a definite topic and
contain a bipartite hubs-authorities subgraph, where all hubs (guides and resource
lists) point to all authorities (useful and relevant pages on the topic).

Examples of new media, created by the Web are (we)blogs (digital diaries
posted on the Web), Skype (telephone calls), social sites (as Facebook, Twit-
ter, Linkedin) and Wikipedia (the collaborative encyclopedia). Original Web-as-
information-source is often referred as Web 1:0, while Web 2:0 means present
Web-as-participation-platform as, for example, web-based communities, blogs,
social-networking (and video-sharing) sites, wikis, hosted services and web appli-
cations. For example, with cloud servers one can access his data and applications
from the Internet rather than having them housed on-site.
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Web 3:0 is the third generation of WWW conjectured to include semantic tagging
of content. The project Semantic Web by W3C (WWW Consortium) aims at linking
to metadata, merging social data and (making all things addressable by the existing
naming protocols) transformation of WWW into GGG (Giant Global Graph) of
users.

The Internet of Things refers to uniquely identifiable objects (things) and their
virtual representations in an Internet-like structure. It would encode geographic
location and dimensions of 50–100 trillion objects, and be able to follow their
movement and send data between them. Every human being is surrounded by 1000–
5000 objects.

On average, nodes of the Web digraph are of size 10 kilobytes, out-degree 7:2,
and probability k�2 to have out-degree or in-degree k. A study in [BKMR00] of
over 200 million web pages gave, approximately, the largest connected component
“core” of 56 million pages, with another 44 million of pages connected to the core
(newcomers?), 44 million to which the giant core is connected (corporations?) and
44 million connected to the core only by undirected paths or disconnected from it.
For randomly chosen nodes x and y, the probability of the existence of a directed
path from x to y was 0:25 and the average length of such a shortest path (if it exists)
was 16, while maximal length of a shortest path was over 28 in the core and over
500 in the whole digraph.

A study in [CHKSS07] of Internet AS graphs revealed the following Medusa
structure of the Internet: “nucleus” (diameter 2 cluster of 
 100 nodes), “fractal”
(
15,000 nodes around it), and “tentacles” (
5000 nodes in isolated subnetworks
communicating with the outside world only via the nucleus).

The distances below are examples of host-to-host routing metrics, i.e., values
used by routing algorithms in the Internet, in order to compare possible routes.
Examples of other such measures are: bandwidth consumption, communication
cost, reliability (probability of packet loss). Also, the main computer-related quality
metrics are mentioned.

• Distance-vector routing protocol
A distance-vector routing protocol (DVRP) requires that a router informs its

neighbors of topology changes periodically and, in some cases, when a change
is detected in the topology of a network. Routers are advertised as vectors of a
distance (say, Internet IP metric) and direction, given by next hop address and
exit interface. Cf. displacement in Chap. 24.

Ad hoc on-demand distance-vector routing is a (both unicast and multicast)
routing protocol for mobile and other wireless ad hoc networks. It establishes a
route to a destination only on demand and avoids the counting-to-infinity problem
of other distance-vector protocols by using sequence numbers on route updates.

Between nodes of an ad hoc network with end-to-end delay constraints, head-
of-line packets compete for access to the shared medium. Each packet with
remaining lifetime T and remaining Internet IP metric H to its destination,
is associated with a ranking function �.H;T/ D T˛

H , denoting its transmission
priority. The number ˛ � 0 is called lifetime-distance factor; it should be



22.3 Distances in Internet and Web 431

optimized in order to minimize the probability of packet loss due to excessive
delay.

• Internet IP metric
The Internet IP metric (or hop count, RIP metric, IP path length) is the path

metric in the Internet IP graph, i.e., the minimal number of hops (or, equivalently,
routers, represented by their IP addresses) needed to forward a packet of data.

RIP (a distance-vector routing protocol first defined in 1988) imposes a
maximum distance of 15 and advertises by 16 nonreachable routes.

• Internet AS metric
The Internet AS metric (or BGP-metric) is the path metric in the Internet

AS graph, i.e., the minimal number of ISPs (Independent Service Providers),
represented by their ASs, needed to forward a packet of data.

• Geographic distance
The geographic distance is the great circle distance (Chap. 25) on the Earth

from the client x (destination) to the server y (source).
However, for economical reasons, the data often do not follow such geodesics;

for example, most data from Japan to Europe transits via US.
• RTT-distance

The RTT-distance (or ping time) is the round-trip time (to send a packet and
receive an acknowledgment back) of transmission between x and y, measured in
milliseconds (usually, by the ping command).

See [HFPMC02] for variations of this distance and connections with the
above three metrics. Fraigniaud–Lebbar–Viennot, 2008, found that RTT is a
C-inframetric (Chap. 1) with C 
 7.

• Synchcronization distance
In the Network Time Protocol (NTP), the synchcronization distance is the

root dispersion (maximum error relative to the primary reference source at the
root of the synchronization subnet) plus one half the root delay (total round-trip
delay to the primary reference source at the root of the synchronization subnet).

• Administrative cost distance
The administrative cost distance is the nominal number (rating the trustwor-

thiness of a routing information), assigned by the network to the route between
x and y. For example, Cisco Systems assigns values 0; 1; : : : ; 200; 255 for the
Connected Interface, Static Route, . . . , Internal BGP, Unknown, respectively.

• DRP-metrics
The DD (Distributed Director) system of Cisco uses (with priorities and

weights) the administrative cost distance, the random metric (selecting a
random number for each IP address) and the DRP (Direct Response Protocol)
metrics. DRP-metrics ask from all DRP-associated routers one of the following
distances:

1. The DRP-external metric: the number of BGP (Border Gateway Protocol)
hops between the client requesting service and the DRP server agent;

2. The DRP-internal metric: the number of IGP hops between the DRP server
agent and the closest border router at the edge of the autonomous system;
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3. The DRP-server metric: the number of IGP hops between the DRP server
agent and the associated server.

• Reported distance
In a Cisco Systems routing protocol EIGRP, reported distance (or RD,

advertised distance) is the total metric along a path to a destination network
as advertised by an upstream neighbor. RD is equal to the current lowest total
distance through a successor for a neighboring router.

A feasible distance is the lowest known distance from a router to a particular
destination. This is RD plus the cost to reach the neighboring router from which
the RD was sent; so, it is a historically lowest known distance to a particular
destination.

• Network tomography metrics
Consider a network with fixed routing protocol, i.e., a strongly connected

digraph D D .V;E/ with a unique directed path T.u; v/ selected for any pair
.u; v/ of vertices. The routing protocol is described by a binary routing matrix
A D ..aij//, where aij D 1 if the arc e 2 E, indexed i, belongs to the directed
path T.u; v/, indexed j. The Hamming distance between two rows (columns)
of A is called the distance between corresponding arcs (directed paths) of the
network.

Consider two networks with the same digraph, but different routing protocols
with routing matrices A and A0, respectively. Then a routing protocol semi-
metric ([Vard04]) is the smallest Hamming distance between A and a matrix B,
obtained from A0 by permutations of rows and columns (both matrices are seen
as strings).

• Web hyperlink quasi-metric
The Web hyperlink quasi-metric (or click count) is the length of the shortest

directed path (if it exists) between two web pages (vertices in the Web digraph),
i.e., the minimal number of necessary mouse-clicks in this digraph.

• Average-clicks Web quasi-distance
The average-clicks Web quasi-distance between two web pages x and y in

the Web digraph ([YOI03]) is the minimum
Pm

iD1 ln p
zC

i
˛

over all directed paths
x D z0; z1; : : : ; zm D y connecting x and y, where zC

i is the out-degree of the page
zi. The parameter ˛ is 1 or 0:85, while p (the average out-degree) is 7 or 6.

• Dodge–Shiode WebX quasi-distance
The Dodge–Shiode WebX quasi-distance between two web pages x and y

of the Web digraph is the number 1
h.x;y/ , where h.x; y/ is the number of shortest

directed paths connecting x and y.
• Web similarity metrics

Web similarity metrics form a family of indicators used to quantify the extent
of relatedness (in content, links or/and usage) between two web pages x and y.

Some examples are: topical resemblance in overlap terms, co-citation (the
number of pages, where both are given as hyperlinks), bibliographical cou-
pling (the number of hyperlinks in common) and co-occurrence frequency
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minfP.xjy/;P.yjx/g, where P.xjy/ is the probability that a visitor of the page
y will visit the page x.

In particular, search-centric change metrics are metrics used by search
engines on the Web, in order to measure the degree of change between two
versions x and y of a web page. If X and Y are the set of all words (excluding
HTML markup) in x and y, respectively, then the word page distance is the
Czekanowsky–Dice distance (cf. Chap. 17)

jX4Yj
jXj C jYj D 1 � 2jX [ Yj

jXj C jYj :

If vx and vy are weighted vector representations of x and y, then their cosine page
distance is given (cf. TF-IDF similarity in Chap. 17) by

1 � hvx; vyi
jjvxjj2 � jjvyjj2 :

• Web quality control distance function
Let P be a query quality parameter and X its domain. For example, P can be

query response time, or accuracy, relevancy, size of result.
The Web quality control distance function (Chen–Zhu–Wang, 1998) for

evaluating the relative goodness of two values, x and y, of parameter P is a
function � W X � X ! R (not a distance) such that, for all x; y; z 2 X:

1. �.x; y/ D 0 if and only if x D y,
2. �.x; y/ > 0 if and only if �.y; x/ < 0,
3. if �.x; y/ > 0 and �.y; z/ > 0, then �.x; z/ > 0.

The inequality �.x; y/ > 0 means that x is better than y; so, it defines a partial
order (reflexive, antisymmetric and transitive binary relation) on X.

• Lostness metric
Users navigating within hypertext systems often experience disorientation

(the tendency to lose sense of location and direction in a nonlinear document) and
cognitive overhead (the additional effort and concentration needed to maintain
several tasks/trails at the same time). Smith’s lostness metric measures it by

.
d

t
� 1/2 C .

r

d
� 1/2;

where t is the total number of nodes visited, d is the number of different nodes
among them, and r is the number of remaining nodes needed to complete a task.

• Trust metrics
A trust metric is, in Computer Security, a measure to evaluate a set of peer

certificates resulting in a set of accounts accepted and, in Sociology, a measure
of how a member of the group is trusted by the others in the group.
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For example, the UNIX access metric is a combination of only read, write
and execute kinds of access to a resource. The much finer Advogato trust metric
(used in the community of open source developers to rank them) is based on
bonds of trust formed when a person issues a certificate about someone else.
Other examples are: Technorati, TrustFlow, Richardson et al., Mui et al., eBay
trust metrics.

• Software metrics
A software metric is a measure of software quality which indicates the

complexity, understandability, description, testability and intricacy of code.
Managers use mainly process metrics which help in monitoring the processes
that produce the software (say, the number of times the program failed to rebuild
overnight).

An architectural metric is a measure of software architecture (development
of large software systems) quality which indicates the coupling (interconnectivity
of composites), cohesion (intraconnectivity), abstractness, instability, etc.

• Locality metric
The locality metric is a physical metric measuring globally the locations of

the program components, their calls, and the depth of nested calls by

P
i;j fijdij
P

i;j fij
;

where dij is a distance between calling components i and j, while fij is the
frequency of calls from i to j. If the program components are of about same
size, dij D ji � jj is taken. In the general case, Zhang–Gorla, 2000, proposed
to distinguish forward calls which are placed before the called component, and
backward (other) calls. Define dij D d0

i C d00
ij , where d0

i is the number of lines
of code between the calling statement and the end of i if call is forward, and
between the beginning of i and the call, otherwise, while d00

ij D Pj�1
kDiC1 Lk if the

call is forward, and d00
ij D Pi�1

kDjC1 Lk otherwise. Here Lk is the number of lines
in component k.

• Memory distances
In a computer, the microprocessor (or processor) is the chip doing all the

computations, and the memory usually refers to RAM (random access memory).
A (processor) cache stores small amounts of recently used information right
next to the processor, where it can be accessed much faster than memory. The
following distances estimate the cache behavior of programs.

The reuse distance (Mattson et al., 1970, and Ding–Zhong, 2003) of a
memory location x is the number of distinct memory references between two
accesses of x. Each memory reference is counted only once, because after access
it is moved in the cache. The reuse distance from the current access to the
previous one or to the next one is called the backward or forward reuse distance,
respectively.
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In general, a memory distance is (Fang et al., 2006) any dynamic quantifiable
distance in terms of memory references between two accesses to the same
memory location. In particular, the access distance of a memory reference is
the number of memory instructions between a store to and a load from the
same address. The instruction distance is the number of instructions between
two references to the same address; it typically correlates well to access distance.

The value distance of a reference is the access distance of a load to the first
store in a sequence of stores of the same value.

• Tethering distance
Tethering is connecting one device to another. For mobile phones and tablet

computers, it allows sharing their Internet connection with, say, laptops. Such
connection can be done over wireless LAN (Wi-Fi), over Bluetooth, or by a cable,
say USB.

If tethering is done over WLAN, the feature becomes a mobile hotspot (Wi-Fi
network access point), and the smartphone serves as a portable router. Tethering
distance is the maximum phone–computer distance for Wi-Fi tethering.

• Action at a distance (in Computing)
In Computing, the action at a distance is a class of programming problems

in which the state in one part of a program’s data structure varies wildly because
of difficult-to-identify operations in another part of the program.

In Software Engineering, Holland’s Law of Demeter is a style guideline: an
unit should “talk only to immediate friends” (closely related units) and have
limited knowledge about other units; cf. principle of locality in Chap. 24.
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Distances in Natural Sciences



Chapter 23
Distances in Biology

Distances are mainly used in Biology to pursue basic classification tasks, for
instance, for reconstructing the evolutionary history of organisms in the form of phy-
logenetic trees. In the classical approach those distances were based on comparative
morphology, physiology, mating studies, paleaontology and immunodiffusion. The
progress of modern Molecular Biology also allowed the use of nuclear- and amino-
acid sequences to estimate distances between genes, proteins, genomes, organisms,
species, etc.

DNA is a sequence of nucleotides (or nuclei acids) A, T, G, C, and it can be
seen as a word over this alphabet of four letters. The (single ring) nucleotides A, G
(short for adenine and guanine) are called purines, while (double ring) T, C (short
for thymine and cytosine) are called pyrimidines (in RNA, uracil U replaces T).
Over 25 base modifications are known, say, variants 5mC of cytosine and 6mA of
adenine.

Two strands of DNA are held together and in the opposite orientation (forming
a double helix) by weak hydrogen bonds between corresponding base pair of
nucleotides (necessarily, a purine and a pyrimidine) in the strands alignment.

A transition mutation is a substitution of a base pair, so that a purine/pyrimidine
is replaced by another purine/pyrimidine; say, GC is replaced by AT. A transversion
mutation is a substitution of a base pair, so that a purine/pyrimidine is replaced by a
pyrimidine/purine base pair, or vice versa; say, GC is replaced by TA.

DNA molecules occur (in the nuclei of eukaryote cells) in the form of long chains
called chromosomes. DNA from one human cell has length/width 
 1:8 m/2:4 nm.

Most human cells contain 46 chromosomes (23 pairs, one set of 23 from each
parent); the human gamete (sperm or egg) is a haploid, i.e., contains only one set of
23 chromosomes. The (normal) males and females differ only in the 23-rd pair:
XY for males, and XX for females. But a male ant Mirmecia pilosula has only
1 chromosome, while a plant Ophioglossum has 1260. A protozoan Tetrahymena
thermophila occurs in seven different variants (sexes) that can reproduce in

�
7
2

� D 21

combinations. A fungus Cryptococcus neoformans has two sexes but their ratio
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is 99:9%. More than 99% of multicellular eukaryotes reproduce sexually, while
bacteria only reproduce asexually.

A gene is a segment of DNA encoding (via transcription, information flow to
RNA, and then translation, information flow from RNA to enzymes) for a protein
or an RNA chain. The location of a gene on its chromosome is called the gene locus.
Different versions (states) of a gene are called its alleles.

A protein is a large molecule which is a chain of amino acids; among them are
hormones, catalysts (enzymes), antibodies, etc. The protein length is the number
of amino acids in the chain; average protein length is around 300.

The genetic code is a map, universal to all organisms, of 43 D 64 codons (ordered
triples of nucleotides) onto 21messages: 20 standard amino acids and stop-signal. It
express the genotype (information contained in genes, i.e., in DNA) as the phenotype
(proteins). Some codons have two meanings, one related to protein sequence, and
one related to gene control. Slight variations of the code were found for some
mitochondria, ciliates, yeasts, etc. The code also was expanded by encoding new
amino acids.

Besides genetic and epigenetic (not modifying the sequence) changes of DNA,
evolution (heritable changes) can happen by “protein mutations” (prions) or cultur-
ally (via behavior and symbolic communication). Holliger et al., 2012, synthesized
(replacing the natural sugar in DNA) a new polymer (HNA) capable of replication
and evolution.

A genome is the entire genetic constitution of a species or of an organism. The
human genome is the set of 23 chromosomes consisting of 
 3:2 billion bp (base
pairs) of DNA. It organized into 
21,000 genes, coding for 250,000–1,000,000
proteins. An apple have 
57,000 genes and a lungfish genome contains 
 133

billion bp.
A hologenome is the collection of genomes in a holobiont (host plus all its

symbionts), a possible unit of selection in evolution. The human microbiota consists
of 
 1014 (mainly, bacterial and fungal) cells of 
 500 species with 3 million
distinct genes.

First known evidence of life, photosynthesis, multicellular organisms and of ani-
mals (bilaterians) are dated about 4100, 3850, 2100 and 560Ma (million years ago),
respectively. During the Cambrian Explosion 540–520 Ma, the rate of evolution was
4–5 times faster than in any other era. But there is no evolution without changes in
environment: some deep sea bacteria remained virtually unchanged for 2:3 billion
years.
1:9 million extant nonvirus species are known: 1;200;000 invertebrates, 400;000

beetles, 290;000 plants, 250;000 bacteria/protists, 70;000 fungi and 60;000 verte-
brates, including 5416 mammals. About 10 million species are living today. The
numbers of living nonhuman mammals, birds, trees, fishes, ants, insects, nematodes,
viruses are about 5�1011, 2�1011, 3�1012, 4�1012, 5�1017, 5�1018, 1022, 1031,
respectively. At least 100 billion of microbial species are expected, but genomes
of only 100;000 have been sequenced and about 10;000 have been grown in a
laboratory.
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About 80% of the species are parasites of others, parasites included; over 100
are human-specific ones. About 75% of the links in food webs involve a parasitic
species.

About 30% of the vertebrates and 60% of invertebrates are nocturnal.
The global nonbacterial biomass is 560 GtC (billion tonnes of organically

bound carbon); only 5–10 GtC found in the oceans. Humans and their main
symbionts, domesticated animals and cultivated plants, contribute 0:1; 0:7; 2 GtC.
The animal species with largest biomass (
 0:5 GtC) is Antarctic krill, the largest
species (� 1027 individuals) is the smallest photosynthetic organism, cyanobacteria
Prochlorococcus.
99% of over 5 billion species that have ever existed on Earth became extinct.

But sponges originated at least 760 Ma (million years ago) and are still living.
Mammalian species’ longevity is 
 1 Ma; our ancestor, Homo erectus, survived
from 1:8 to 0:55 Ma. Our subspecies is relatively young (0.25–0.6 Ma), 6–7 % of
all humans that have ever been born are living today, and their median age is 29:7
years.

The world population was about 1 million 0:05 Ma and 5 million 0:01 Ma ago,
after the last glaciation. It grew continuously since the end of the Black Death in
1350, when it was 
 370million, and reached 3 billion in 1960, 7:4 billion in 2015.

Gott, 2007: with a 95% chance, the human race will last anywhere from another
5000 to 7;800;000 years; the same doomsday argument by Carter, 1983, gave only
10;000 years for us. Earth’s life was only unicellular 3.8–1.3 Ga (billion years) ago
and will be so again in 
 0:8Ga. But Earth will support some prokaryotes in refuges
until mean surface temperature reach 146 ıC in 1.6–2.8 Ga. Another Ga life can stay
on Mars.

IAM (infinite-alleles model of evolution) assumes that an allele can change from
any given state into any other given state. It corresponds to a primary role for genetic
drift (i.e., random variation in gene frequencies from one generation to another),
especially in small populations, over natural selection (stepwise mutations). IAM
corresponds to low-rate and short-term evolution, while SMM corresponds to high-
rate evolution.

SMM (stepwise mutation model of evolution) is more convenient for (recently,
most popular) microsatellite data. A repeat is a stretch of base pairs that is repeated
with a high degree of similarity in the same sequence. Microsatellites are highly
variable repeating short sequences of DNA; their mutation rate is 1 per 1000–
10,000 replication events, while it is 1 per 1,000,000 for allozymes used by IAM.
Microsatellite data (for example, for DNA fingerprinting) consist of numbers of
repeats of microsatellites for each allele.

Evolution, without design and purpose, has increased the life’s size, diversity
and maximal complexity. But organisms can evolve to become simpler and thus
multiply faster; for the Black Queen model, such evolution pushes microorganisms
to lose functions which are performed by another species around. Evolution has,
perhaps, a direction: convergent gene evolution (say, bats/dolphins echolocation,
primates/crows cognition), increase of energy flow per gram per second (Chaisson,
2003), etc.
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Evolution and learning share many common underlying principles. Natural
selection can favor increased evolvability under environmental pressure. Besides
natural selection, some species alter their environment through niche construction.
In general, selection can act at genic, cellular, individual, holobiont and group level.
Selection of species and even phyla could happen during rare abrupt extreme events.

Locally and over short time spans, macroevolution, is dominated by biotic factors
(competition, predation, etc.) as in the Red Queen model. But larger-scale (geo-
graphic and temporal) patterns and species diversity are driven largely by extrinsic
abiotic factors (climate, landscape, food supply, tectonic events, etc.), as in the Court
Jester model. The organisms evolve rapidly (sometimes, by macromutations), but
most changes cancel each other out. So, in the longer term, the evolution appears
slow. It is not simple accumulation of microevolutionary adaptations, but rather
nonlinear (or chaotic).

Besides vertical gene transfer (reproduction within species), the evolution is
affected by HGT (horizontal gene transfer), when an organism incorporates genetic
material from another one without being its offspring, and hybridization (extra-
species sexual reproduction). HGT is common among unicellular life and viruses,
even across large taxonomic distance. It accounts for 
 85% of the prokaryotic
protein evolution. HGT happens also in plants and animals, usually, by viruses.
40–50 % of the human genome consists of DNA imported horizontally by viruses.
The most taxonomically distant fertile hybrids are (very rare) interfamilial ones, for
instance, blue-winged parrot � cocktatiel, chicken � guineafowl in birds and (under
UV irradiation) carrot with tobacco, rice or barley. In 2012, an RNA-DNA virus
hybrid and a virophage of a (giant) virus were found.

The life is not well defined (say, for viroids), DNA could be only its recent
attribute. Neither life can be “anything undergoing evolution”, since the unit is this
evolution (gene, cell, organism, group, species?) is not clear. Lineweaver, 2012,
defined life as a far-from-equilibrium dissipative system. For Eigen, life is a type
of behavior of matter. An essential feature of life is autopoiesis (self-making); for
example, the human body replaces 98% of its atoms every year while maintaining
its unique pattern.

Neither complexity is well defined. Chaisson, 2014, measures complexity of any
Nature’s system by the amount of energy passing through it per second and per
gram. Earth’s biosphere use energy at 
 1021 erg/s (
 0:1% of obtained solar
power).

Examples of distances, representing general schemes of measurement in Biology,
follow.

The term taxonomic distance is used for every distance between two taxa, i.e.,
entities or groups which are arranged into a hierarchy (in the form of a tree designed
to indicate degrees of relationship).

The Linnaean taxonomic hierarchy is arranged in ascending series of ranks:
Zoology (Kingdom, Phylum, Class, Order, Family Genus, Species) and Botany
(12 ranks). A phenogram is a hierarchy expressing phenetic relationship, i.e.,
unweighted overall similarity. A cladogram is a strictly genealogical (by ancestry)
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hierarchy in which no attempt is made to estimate/depict rates or amount of genetic
divergence between taxa.

A phylogenetic tree is a hierarchy representing a hypothesis of phylogeny, i.e.,
evolutionary relationships within and between taxonomic levels, especially the
patterns of lines of descent. The phenetic distance is a measure of the difference
in phenotype between any two nodes on a phylogenetic tree; see, for example the
biodistances in Chap. 29.

The phylogenetic distance (or cladistic distance, genealogical distance)
between two taxa is the branch length, i.e., the minimum number of edges,
separating them in a phylogenetic tree. In such edge-weighted tree, the additive
distance between two taxa is the minimal sum of edge-weights in a path connecting
them. The phylogenetic diversity is (Faith, 1992) the minimum total length of all
the phylogenetic branches required to span a given set of taxa on the phylogenetic
tree.

The evolutionary distance (or patristic distance) between two taxa is a measure
of genetic divergence estimating the temporal remoteness of their most recent co-
ancestor. Their general immunological distance is a measure of the strength of
antigen-antibody reactions, indicating their evolutionary distance.

23.1 Genetic Distances

The general genetic distance between two taxa is a distance between the sets of
DNA-related data chosen to represent them. Among the three most popular genetic
distances below, the Nei standard genetic distance assumes that differences
arise due to mutation and genetic drift, while the Cavalli-Sforza–Edwards chord
distance and the Reynolds–Weir–Cockerham distance assume genetic drift only.

A population is represented by a vector x D .xij/ with
Pn

jD1 mj components,
where xij is the frequency of the i-th allele (the label for a state of a gene) at the j-th
gene locus (the position of a gene on a chromosome), mj is the number of alleles at
the j-th locus, and n is the number of considered loci. Since xij is the frequency, we
have xij � 0 and

Pmj

iD1 xij D 1. Denote by
P

summation over all i and j.

• Shared allele distance
The shared allele distance DSA (Stephens et al., 1992, corrected by

Chakraborty–Jin, 1993) between individuals a; b is 1� SA.a; b/; for populations
x; y it is

1 � SA.x; y/

SA.x/C SA.y/
;

where SA.a; b/ denotes the number of shared alleles summed over all n loci and
divided by 2n, while SA.x/, SA.y/, and SA.x; y/ are SA.a; b/ averaged over all
pairs .a; b/ with individuals a; b being in populations x; y, respectively.
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• MHC genetic dissimilarity
The MHC genetic dissimilarity of two individuals is defined as the number

of shared alleles in their MHC (major histocompatibility complex).
MHC is the most gene-dense and fast-evolving region of the mammalian

genome. In humans, it is a 3:6 Mb region containing 140 genes on chromosome
6 and called HLA (human leukocyte antigen system). HLA has the largest
polymorphism (allelic diversity) found in the population. Three most diverse
loci (HLA-A, HLA-B,HLA-DRB1) have roughly 1000; 1600; 870 known alleles.
This diversity is essential for immune function since it broadens the range of
antigens (proteins bound by MHC and presented to T-cells for destruction); cf.
immunological distance.

MHC (and related gut microbiota) diversity allows the marking of each
individual of a species with a unique body odor permitting kin recognition and
mate selection. MHC-negative assortative mating (the tendency to select MHC-
dissimilar mates) increases MHC variation and so provides progeny with an
enhanced immunological surveillance and reduced disease levels.

While about 6% of the non-African modern human genome is common with
other hominins (Neanderthals and Denisovans), the share of such HLA-A alleles
is 50%, 72%, 90% for people in Europe, China, Papua New Guinea.

• Dps distance
The Thorpe similarity (proportion of shared alleles) between populations x

and y is defined by
P

minfxij; yijg. The Dps distance between x and y is defined
by

� ln

P
minfxij; yijg
Pn

jD1 mj
:

• Prevosti–Ocana–Alonso distance
The Prevosti–Ocana–Alonso distance (1975) between populations x and y is

defined (cf. Manhattan metric in Chap. 19) by

P jxij � yijj
2n

:

• Roger distance
The Roger distance DR (1972) between populations x and y is defined by

1p
2n

nX

jD1

v
u
u
t

mjX

iD1
.xij � yij/2:
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• Cavalli-Sforza–Edwards chord distance
The Cavalli-Sforza–Edwards chord distance DCH (1967) between popula-

tions x and y (cf. Hellinger distance in Chap. 17) is defined by

2
p
2

�n

nX

jD1

v
u
u
t1 �

mjX

iD1

p
xijyij:

The Cavalli-Sforza arc distance between populations x and y is defined by

2

�
arccos

�Xp
xijyij

�
:

Cf. Bhattacharya distance 1 in Chap. 14.
• Nei–Tajima–Tateno distance

The Nei–Tajima–Tateno distance DA (1983) between populations x and y is

1 � 1

n

Xp
xijyij:

The Tomiuk–Loeschcke distance (1998) is � ln 1
n

pP
xij
P

yij.
The Nei standard genetic distance Ds (1972) between x and y is defined by

� ln
hx; yi

jjxjj2 � jjyjj2 :

Cf. Bhattacharya distances in Chap. 14 and angular semimetric in Chap. 17.
Under IAM, Ds increases linearly with time; cf. temporal remoteness.
The kinship distance is defined by � ln hx; yi. Caballero and Toro, 2002,

defined the molecular kinship coefficient between x and y as the probability
that two randomly sampled alleles from the same locus in them are identical
by state. Computing it as hx; yi and using the analogy with the coefficient of
kinship defined via identity by descent, they proposed several distances adapted
to molecular markers (polymorphisms). Cf. co-ancestry coefficient.

The Nei minimum genetic distance Dm (1973) between x and y is defined by

1

2n

X
.xij � yij/

2:

• Sangvi �2 distance
The Sangvi �2 (1953) distance between populations x and y is defined by

2

n

X .xij � yij/
2

xij C yij
:
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• Fuzzy set distance
The fuzzy set distance Dfs between populations x and y (Dubois–Prade, 1983;

cf. Tanimoto distance in Chap. 1) is defined by

P
1xij¤yijPn
jD1 mj

:

• Goldstein et al. distance
The Goldstein et al. distance (1995) between populations x and y is

.ı�/2 D 1

n

X
.ixij � iyij/

2:

It is the loci-averaged value .ı�/2 D .�.x/j � �.y/j/2, where �.z/j D P
i izij

is the mean number of repeats of allele at the j-th (microsatellite) locus in
population z.

The Feldman et al. distance (1997) is log.1�
P

i.ı�/
2
i

M /, where the summation
is over loci and M is the average value of the distance at maximal divergence.

The above two and the next two distances assume high-rate SMM.
• Average square distance

The average square distance between populations x and y is defined by

1

n

nX

kD1

0

@
X

1�i<j�mj

.i � j/2xikyjk

1

A :

• Shriver et al. stepwise distance
The Shriver et al. stepwise distance (1995) between populations x and y is

DSW D 1

n

nX

kD1

X

1�i;j�mk

ji � jj.2xikyjk � xikxjk � yikyjk/:

• Latter F-statistics distance
The Latter F-statistics distance (1972) between populations x and y is

defined by the following FST-estimator:

�� D
P
.xij � yij/

2

2.n � hx; yi/ :

The Latter distance DL (1973) is � ln .1 � ��/.
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• Reynolds–Weir–Cockerham distance
The Reynolds–Weir–Cockerham distance (1983) between populations x

and y is defined by

DW D � ln.1 � �/;

where � is their co-ancestry coefficient estimated as a
aCb .

Here a is the variance between populations x and y, and b is the variance within
them. If the sample size is large, then DW is close to the Latter F-statistics
distance. For short-term evolution (i.e., t

N small), DW 
 t
2N , where N is the

population size, and t is the number of generations; cf. temporal remoteness.
• Co-ancestry coefficient

The co-ancestry coefficient (or coefficient of kinship) of two populations
(or individuals) x and y is defined (Wright, 1922, and Malécot, 1948) as the
probability �.x; y/ that two alleles, sampled at random from x and y, are IBD
(or identical by descent), i.e., descending from the same ancestral allele.

Two genes can be IBS (or identical by state), i.e., similar due to random
chance. Cf. Nei standard genetic distance and coefficient of relationship.

An DNA segment, found consistently to be identical in two related people (or
populations) is IBD if it is so due to their common ancestry. The total and mean
IBD segment length of two people g generations since the founding event (i.e.,
with g meioses on the path of descent) are 
 1

2g -th of total genome length and

 50

g centiMorgans, respectively; cf. the map distance. For example, two people
are cryptic relatives if those lengths are at least 1500 cM and 25 cM.

• FST -based distances
Given a population T of size jTj partitioned into subpopulations S1; : : : ; Sk,

the F-statistics (or fixation indices) are the measures

FIS D 1 � HI

HS
; FST D 1 � HS

HT
; FIT D 1 � HI

HT

of the correlation between genes drawn within subpopulations Si, among them
and within the entire T, respectively.

Here HI;HS and HT are the heterozygosity indices over (i)ndividuals,
(s)ubpopulations and (t)otal T used to compare observed variation in gene
frequencies (partitioned into within and between group components) with
the expected one in HWE (Hardy–Weinberg equilibrium, i.e., an ideal state
when allele and genotype frequencies in population remain constant from

generation to generation). HI D
P
1�j�k jSjjHobs j

jTj (where Hobs j is the observed
heterozygosity, i.e., proportion of heterozygotes, in subpopulation Sj) is the mean

actual heterozygosity in individuals within subpopulations. HS D
P
1�j�k jSjjHexp j

jTj
(where Hexp j D 1 � P

i p2i is the expected, assuming HWE, heterozygosity in
Sj and pi is the frequency of the i-th allele of the locus) is the mean expected
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heterozygosity within subpopulations. HT D 1�Pi Np2i (where Npi is the frequency
of the i-th allele averaged over all subpopulations) is the expected, assuming
HWE, heterozygosity in T.

The above Nei’s (1973) FST generalizes Wright’s (1951) FST , when there
are only two alleles at a locus. This measure is equivalent to the co-ancestry
coefficient if all the alleles in the population are different. Nei, 1987, generalized
FST to multi-loci as GST D 1� NHSNHT

, where HS and HT are averaged across all loci.
The above relative measures underestimate the between-population difference

if the within-population diversity is high, such as, say, for microsatellites.
Slatkin’s RST is an analog of Wright’s FST , adapted for microsatellite loci by
assuming SMM. It is defined by RST D NS�SWNS , where SW is the sum over all
loci of twice the weighted mean of the within-population variances var.A/ and
var.B/, and NS is the sum over all loci of twice the variance var.A [ B/ of the
combined population.

In fact, SW and NS are the average square distance within a subpopulation and
the entire population. Slatkin (1995) developed RST using his (1991) SMM-based
F-statistics FST D Nt�t0Nt , where Nt and t0 are the average temporal remoteness
to the closest co-ancestor of any two randomly chosen alleles from the entire
population and from the same subpopulation, respectively.

Jost’s Dest (2008) is an estimator k
k�1

HT �HS
1�HS

of the actual differentiation based
on H’s estimated from allele identities rather than ratios of heterozygosity.

The Weir–Cockerham �ST (1984) is an estimation of FST , seen as the corre-
lation of pairs of alleles between individuals within a subpopulation and based
on partition of variance rather than heterozygosity. The total variance of allele
frequency within a population is the sum aCbCc of variances between subpopu-
lations, between individuals within a subpopulation, and between gametes within
individuals. Then �ST is defined, generalizing the Reynolds–Weir–Cockerham
distance, as

P
aP

.aCbCc/ , where the sum is taken over all alleles and loci.
The genetic FST -distance is the pairwise FST taking account only of the data

for the two subpopulations concerned, not all the data simultaneously. Such a
measure is valid only if the breeding system is similar for both populations.

Cavalli-Sforza–Menozzi–Piazza, 1994, evaluated, using 120 blood polymor-
phisms, the doubled genetic FST-distance between 42 native human populations
and between 9 resulting clusters. The largest such distances between two
continents were Africa–Oceania (0:247) and Africa–Americas (0:226), while the
shortest distances were Americas–Asia (0:089) and Americas–Europe (0:095).

The largest distance in Europe, FST D 0:02–0.023, was between Finland and
Southern Italy; cf. 0:11 (Europeans–Chinese) and 0:153 (Europeans–Africans
(Yoruba)). Mbuti Pygmies (the least “Neanderthal”) and Papuans (the most
“Denisovan”) are the two most divergent living humans with FST D 0:377.

A similar analysis by Atzmon et al., 2010, of seven Jewish groups indicated
a common origin and, 100–150 generations ago, the split into Middle Eastern
and European clusters. The most distant and differentiated are among Mizrahim:
FST of Iranian Jews to other Jews is 0:016. Ashkenazi Jews have the highest
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admixture with non-Jews but they are not descendants of converted Khazars or
Slavs. The closest by FST to them are Northern Italians, French, Palestinians, and
Druze.

Genetic variation in alleles of genes occurs both within (due to mutations and
gene exchange during meiosis) and among (due to natural selection and genetic
drift, i.e., random gene changes) populations. Human total genetic variation is
0:5% consisting of 0:1% in SNPs (single nucleotide polymorphisms), 
 0:4%
in CNVs (copy number variants—deletion, duplication or more—in a DNA
segment, instead of exactly two copies of DNA per cell) and a small variation in
repetitive DNA. Sudmant et al., 2015, found that CNVs (especially, duplications)
are a source of seven times greater diversity compared to SNPs.

Each human is born with about 50 new mutations, rarely noticeable. The main
other mechanisms of our genetic diversity are migrations and hybridization.

The genetic similarity of humans is 99:9% among them, while it is 99:85%
with Neanderthals and 96–98 % with (having SNP diversity 0:2%) chimpanzees.
After initial division, there was interbreeding with chimpanzees and, later, with
Neanderthals, Denisovans and archaic Africans. There are 2% of archaic genes
in sub-Saharan Africans, 2% of Neanderthal genes in Central Asians and 4% of
them in Europeans and Americans. There are 2:5% of Neanderthal and 6–8 %
Denisovan genes in South Asians and Australo-Melanesians.

75–85 % of human SNP variation 0:1% is among individuals within any
population, 5–10 % between local populations of the same continent, and 6–10 %
between large groups from different continents. So, differentiation between
continental groups is FST � 0:1, less than the threshold 0:25 used to define a
subspecies (race).

• Temporal remoteness
The temporal remoteness of most recent common ancestor (or TMRCA,

divergence time, time to coalescence) of two taxa is the time (or the number
of generations) that has passed since those populations existed as a single one.
The molecular clock hypothesis estimates that one unit of Nei standard genetic
distance between two taxa corresponds to 18–20 Ma of their TMRCA.

A human phylogenetic tree is derived from matrilineal mitochondrial DNA, or
patrilineal nonrecombinant part of the Y-chromosome of (usually blood) protein
sequences by measuring accumulated mutations. TMRCA is 0.2–0.19 Ma ago
along all-female ancestry lines for the Mitochondrial Eve and 0.24–0.58 Ma ago
along all-male lines for the Y-chromosomal Adam.

The resulting phylogenetic tree is rooted in the common ancestor of chim-
panzees and humans, which originated in Africa 8–6 Ma ago. The corresponding
genetic FST -distance between humans and chimpanzee is about 0:02, i.e., at least
30 million point mutations affecting 80% of genes.

Our primate ancestors evolved, probably, 40 Ma ago in Asia and sailed
across a narrow sea to Africa. Our genus Homo had diverged, as a carnivorous
scavenger, from the Australopithecines (bipedal ape-like using rudimentary stone
tools) 
 2:5Ma ago in East (Homo habilis) or South Africa. Then Homo erectus,
the first global and using fire human species, moved to Eurasia 1:8 Ma ago,
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followed by Denisovans and, later, Neanderthals, the common ancestor of which
split from our line 0:8 Ma ago.

At least ten extinct Homo species are known. Archaic Homo sapiens orig-
inated 0.7–0.6 Ma ago. They evolved to anatomically modern humans Homo
sapiens sapiens 
 0:2 Ma ago, as shown by the temporal remoteness of their
mitochondrial most recent common ancestor. Then their mitochondrial lineage
L3 (among L0, L1, L2, L3) migrated out of (east or southern) Africa 0:125 and
0:065 Ma ago.

Humans passed via population bottleneck 
 0:074 Ma ago (when Toba
supervolcano erupted), followed by a rapid expansion. They arrived about 0:075,
0:046, 0:044, 0:016Ma ago in West Africa, Australia, Europe and the Americas,
respectively. The last place on Earth (besides the Antarctica, occupied only in
1899, and tiny atolls) humans colonised was New Zealand where they arrived

1300 years ago.

Savanna living, use of fire, speech and sophisticated hand axes appeared about
1:7, 1:6, 0:6, 0:5 Ma ago. Modern human behavior (language, symbolic thought,
cultural universals) emerged 0.07–0.05 Ma, i.e., 
3000 generations, ago.

The main known gene mutations leading to us: improving blood supply to the
primate brain, weakening jaw muscle (so skull/brains could expand), speeding
up the neuron migration (crucial to intelligence), increasing the production of
the salivary enzyme (helping to the emergence of agriculture). Also, noncoding
sequence HACNS1 had 16 variations during last 6Ma; it led to more fine muscle
control allowing bipedality and tool use. The gene miR-941, unique to humans,
emerged 6–1 Ma ago; it could initiate our advanced brain functions.

• Pedigree-based distances
A cousin (or blood relative) is a relative with whom one shares a common

ancestor. A cousin chart (or table of consanguinity, family tree, pedigree digraph)
is a directed tree, where vertices represent relatives (usually humans, show dogs,
race horses or cultivars), and the arc uv means that v is a child of u. So, the
in-degree of each vertex is at most two (known parents). Moreover, unoriented
edges are added with edge uv meaning reproductive affinity, i.e., that u and v are
mated.

The genealogical quasi-distance (or, in Anthropology, genealogical distance,
degree of relative consanguinity) from the individual x to its relative y is defined
(Schneider, 1968) as the number of generations one must go before a common
ancestor is found, i.e., it is the length q.x; y/ of the shortest directed path to
x from a common ancestor of x and y in the family tree. Recently, the value
minfq.x; y/; q.y; x/g is preferred in English pedigree documents.

An ancestral path between the vertices x and y in a family tree (or any acyclic
digraph) is a concatenation of two directed paths from a common ancestor to
them. The ancestral path distance is the length of a shortest ancestral path, i.e.,
it is q.x; y/Cq.y; x/. Cf. genealogical distance between the vertices x and y (of a
phylogenetic tree representing taxa) which is the length of a shortest .x � y/-path
in the undirected family tree, i.e., also q.x; y/Cq.y; x/. Cf. ancestral path distance
in Chap. 22 and join semilattice distances in Chap. 10.
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The ancestral distance of an extant taxon (Hearn and Huber, 2006) is the time
(or the number of speciation events) separating it from its most recent ancestor
with at least one extant descendant having an independent trait.

Mycielski and Ulam, 1969, called genealogical distances between x and y the
value jS.x/
S.y/j, where S.z/ is the set of ancestors of z in a given family tree,
and the Manhattan metric between some vector representations of x and y.

Two cousins are a-removed of degree b if they are separated by a gen-
erations and the minimum number of generations between either cousin and
their common ancestor is b. The direct relatives are spouses and cousins with
.a; b/ D .1; 0/; .2; 0/; .1; 1/; .0; 2/ and .0; 1/, i.e., parents/children, grandpar-
ents/grandchildren, uncles (aunts)/nieces (nephews), first degree cousins and
siblings. Clearly, a D jq.x; y/�q.y; x/j and b D minfq.x; y/; q.y; x/g. Worldwide,

 10% of marriages are between closer than third degree cousins; the case of
third degree cousins results in progeny only slightly more homozygous than the
general population.

The above pedigree notions are important also in some family, inheritance and
nationality rules. For example, the Roman Catholic Church prohibits marriage of
x with a relative y if q.x; y/C q.y; x/ � 4. The closest legally permissible unions
are between double-first cousins, i.e., those sharing four grandparents (in Muslim
populations), or uncle-niece (in South India).

Another example: a Jew in Halakha’s (Jewish Law) sense is a child born to a
Jewish mother or an converted adult. Israel’s Law of Return permits independent
repatriation to anyone with a nonapostate Jewish grandparent and/or his spouse.
In Nazi Germany, a full Jew was anyone with three Jewish grandparents, while
part-Jews of first/second degree were those (not practicing Judaism and not
having a Jewish spouse) who had two/one Jewish grandparents.

The inbreeding coefficient F.z/ of an individual z is the probability of
autozygosity, i.e., that z received the same ancestral gene from both its parents;
so, F.z/ is the co-ancestry coefficient �.z1; z2/ of its parents z1; z2. When
pedigree data are available, �.x; y/ is estimated as

P
z2Z.x;y/ 0:5

jP.z/j.1 C F.z//,
where Z.x; y/ is the set of least common ancestors of x and y in the pedigree
digraph, and jP.z/j is the number of vertices in the shortest ancestral path
between x and y through z. In practice, ancestors z are counted only up to a given
number of generations and not all of them are known.

The coefficient of relationship between two relatives x and y is the fraction of
genome inherited from common ancestors. It is almost 1 for identical twins (they
differ due to mutations during development and gene copy number variation)
and 
 3

4
for semi-identical twins inheriting the same genes from only one parent.

Otherwise, it is 2�.x; y/, since any progeny have a risk 1
2

of inheriting identical
alleles from both parents. It is 1

2
for siblings and for parent-offspring.

The coefficient of relatedness (or genetic similarity) between social partners
x; y relative to the population is defined (Hamilton, 1970) by

r.x; y/ D cov.g; g0/
cov.g; g/

D EŒ.g � EŒg�/.g0 � EŒg0�/�
EŒ.g � EŒg�/.g � EŒg�/�

;
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where g; g0 are genetic (i.e., heritable) components of the phenotype (for the
character of interest) of x; y, respectively, and cov denotes a statistical covariance
taken over all individuals in the population. This coefficient quantifies the indirect
fitness, i.e., the component of fitness gained from aiding related individuals.

Fitness is an individual’s ability to propagate its genes, i.e., to both survive
and reproduce. A measure of it is the average contribution to the gene pool of the
next generation that is made by an average individual of the specified genotype or
phenotype. The relative reproductive value of an individual is the probability that
it is the ancestor of a randomly chosen individual in a distant future generation.

Fowler–Christakis, 2013: pairs of nonkin friends are, on average, as geneti-
cally similar to one another as fourth cousins,

• Mating distances
Individual migration distances are the distances between birthplaces of paired

individuals. If the pairs are spouses (gametes) or siblings, we have marital
distance or sib distance, respectively. Also, the parent-offspring distance is
used to describe gene migration per generation.

For humans, those distances are measured either in km, or, say, as the number
of municipalities crossed by a straight line between municipality midpoints of
each pair’s birthplaces. The term marital migration distance is also used for
the distance between premarital town of a person and town of marriage. Cf.
migration distances (in Economics) in Chap. 28.

Until the twentieth century, men usually went courting no more than about
8 km from home (the distance they could walk out and back on their day off
from work). 80% of all marriages in history could be between second cousins or
closer. Also, young birds, leaving the nest, usually move 4–5 home ranges away;
so, they stay within breeding distance of their cousins.

For a population, critical mating distances, are maximum spatial (physical)
and genetic (number of genes bearing different alleles) distances allowed for
mating; cf. isolation by distance. For honey bees, the mating distance is the
range of queen’s nuptial flight from her hive to the drone congregation areas over
their hives; it is typically within 7:5 km but can reach 17 km.

• Lasker distance
The Lasker distance between two human populations x and y, characterized

by surname frequency vectors .xi/ and .yi/, is the number � ln 2Rx;y, where
Rx;y D 1

2

P
i xiyi is Lasker’s (1977) coefficient of relationship by isonymy.

Surname structure is related to inbreeding and (in patrilineal societies) to
random genetic drift, mutation and migration. Surnames can be considered as
alleles of one locus, and their distribution can be analyzed by Kimura’s theory of
neutral mutations; an isonymy points to a common ancestry.

• Isolation by distance
Isolation by distance (or ibd, Wright, 1943) is the tendency for most

individuals to migrate and find mates between neighbors; so, populations that
are a geographically closer are more similar than those that are further apart. It
results in a smooth increase in a cline, i.e., the gradual change in a character
(say, allele frequency, within- or between-population genetic differentiation) or
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feature (phenotype) with increasing geographic distance. The above distance can
be Euclidean or along a great circle, river, or topographic isocline.

Ibd for humans was studied, for example, via migration patterns and the
distribution of surnames (cf. Lasker distance). At both continental and global
scales, the genetic FST -distance and differentiation in cranial morphology
between populations increases with great circle distance (Chap. 25).

The geographic distance explains > 75% of the variation between human
populations, and this distance from East Africa explains 85% of the smooth
decrease in genetic diversity. Atkinson, 2011, claims that phoneme diversity also
declines with distance from Africa. The occurrence of alleles 7R and 2R, linked
to risk-taking, of the dopamine-related gene DRD4 increases with distance from
Africa.

A strong Europe-wide (except Basques, Finns and Sardinians isolates) cor-
relation, based on >300,000 single nucleotide polymorphisms, between geo-
graphic and genetic distance was found. South-to-North was the main smooth
gradient.

The ibd model explains the emergence of regional differences (races) and new
species by restricted gene flow and adaptive variations. Speciation (branching of
new species from an ancestral population) occurs when subpopulations become
reproductively isolated. The dominating mode of speciation is allopatry when
habitat splits into discontinuous parts by the formation of a physical barrier to
gene flow or dispersal. Examples of natural barriers are the Himalayas, Wallace
Line, Grand Canyon. All modes, in a continuum from complete (allopatric) to
zero (sympatric) spatial segregation of diverging groups, occur, mainly, in marine
ecosystems.

In spatially extended population, another mode—topopatric (or distance-
forced) speciation can occur via ibd only, without geographic isolation and
selection. de Aguiar and Bat-Yam, 2011, gave the conditions for speciation in
such population as a function of its density, mutation rate, genome size and
critical mating distances. They see such speciation as a case of breakdown of
unstable uniform distribution, leading to the self-organization of its members into
clusters.

Absolute distances between diverged groups can be, say, tens of meters for
pathogen resistance to hundreds of kilometers in marine invertebrates.

• Wright
Dispersal neighborhood (DN) is the geographic area within which individuals

and genes regularly move and interact. It is estimated as the area within a radius
extending 2 standard deviations from the mean of species’s dispersal distribution.

Richardson et al., 2014, proposed to measure microgeographic adaptive evo-
lution by the wright indicating the phenotypic difference between populations
relative to the number of species-specific DN’s separating them. It is

w D jx1 � x2j
dsp

;
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where x1; x2 are the means of the genetically determined traits of populations, sp

is the pooled standard deviation of those trait values across populations, and d is
the distance in number of DN’s separating the two populations.

The wright is a spatial analog of the haldane, a metric for rate of microevolu-
tion defined (Gingerich, 1993, and Lynch, 1990) as jx1�x2j

gsp
, where g the number

of generations separating the populations (or samples of the same populations).
Haldan, 1949, defined the darwin as j ln x1 � ln x2j (or, respectively, j ln x1�ln x2j

t ),
where t is the time in Ma separating samples of the same populations).

• Malécot’s distance model
Genealogy, migration and surname isonymy are used to predict kinship (usu-

ally estimated from blood samples). But because of incomplete knowledge on
ancestors, pedigree-independent methods for kinship assays utilize the distance-
dependent correlations of any parameter influenced by identity in descent:
phenotype, gene frequency, or, say, isonymy.

Malécot’s distance model (1948, 1959) is expressed by the following
kinship-distance formula for the mean coefficient of kinship between two
populations isolated by distance d:

�d D ae�bddc;

where c D 0; 1
2

correspond to one-, two-dimensional migration, b is a function
of the systematic pressure (joint effect of co-ancestry, selection, mutations and
long range migration), and a is the local kinship (the correlation between random
gametes from the same locality). In fact, the results in 2D for small and moderate
distances agree closely with c D 0. The model is most successful when the
systematic pressure is dominated by migration.

Malécot’s model was adapted for the dependency �d of alleles at two loci at
distance d (allelic association, linkage disequilibrium, polymorphism distance):

�d D .1 � L/Me��d C L;

where d is the distance (say, from a disease gene) between loci along the
chromosome (either genome distance on the physical scale in kilobases, or map
distance on the genetic scale in centiMorgans), � is a constant for a specified
region, M � 1 is a parameter expressing mutation rate and L is the parameter
predicting association between unlinked loci.

Selection generates long blocks of linkage disequilibrium (places in the
genome where genetic variations are occurring more often than by chance, as
in the genetic drift) across hundreds of kilobases. Using it, Hawks et al., 2007,
found that selection in humans much accelerated during the last 40;000 years,
driven by exponential population growth and cultural adaptations.

Examples of accelerated (perhaps, under diet and diseases pressures) human
evolution and variation include disease resistance, lactose tolerance, skin
color, skeletal gracility. A mutation in microcephalin (gene MCPH1) appeared
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14,000–62,000 years ago and is now carried by 70% of people but not in sub-
Saharan Africa. Distinctive traits of East Asians (about 93% of Han Chinese
and 70% of Japanese and Tai)—thicker hair shafts, more sweat glands, smaller
breasts and specific teeth—are the result of a mutation in gene EDAR that
occurred 
35,000 years ago.

The fastest genetic change ever observed in humans is that the ethnic Tibetans
split off from the Han Chinese less than 3000 years ago and since then evolved
a unique ability to thrive at high (4000 m above sea level) altitudes and low
oxygen levels. It also come from their gene EPAS1 found only in Denisovans. An
example of quick nongenetic evolution: the average height of a European male
at age 21 rose from 167 cm in early 1870s to 178 cm in 1980. Crabtree, 2012,
argues that our intellectual and emotional abilities diminish gradually (after a
peak 2000–6000 years ago) because of weakened control of genetic mutations
by natural selection.

Over the past 20;000 years, the average volume of the human brain has
decreased by 10%. Possible reason: our dwindling intelligence (Geary, 2011),
or improved brain efficiency (Hawks, 2011), or social self-domestication (Hood,
2014).

23.2 Distances for DNA/RNA and Protein Data

The main way to estimate the genetic distance between DNA, RNA or proteins
is to compare their nucleotide or amino acid, sequences, respectively. Besides
sequencing, the main techniques used are immunological ones, annealing (cf.
hybridization metric) and gel electrophoresis (cf. read length).

Distances between nucleotide (DNA/RNA) or protein sequences are usually
measured in terms of substitutions, i.e., mutations, between them.

A DNA sequence is a sequence x D .x1; : : : ; xn/ over the four-letter alphabet of
four nucleotides A, T, C, G (or two-letter alphabet purine/pyrimidine, or 16-letter
dinucleotide alphabet of ordered nucleotide pairs, etc.). Let

P
denote

Pn
iD1.

A protein sequence is a sequence x D .x1; : : : ; xn/ over a 20-letter alphabet of 20
standard amino acids;

P
again denotes

Pn
iD1.

A short sequence is called nullomer if it do not occur in a given species and prime
if it has not been found in nature. Hampikian–Andersen, 2007, lists 80 human DNA
nullomers of length 11 and many primes: DNA of length 15 and protein of length 5.

For a macromolecule, a primary structure is its atomic composition and the
chemical bonds connecting atoms. For DNA, RNA or protein, it is specified by
its sequence. The secondary structure is the 3D form of local segments defined
by the hydrogen bonds. The tertiary structure is the 3D structure, as defined by
atomic positions. The quaternary structure describes the arrangement of multiple
molecules into larger complexes.
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• Number of DNA differences
The number of DNA differences between DNA sequences x D .x1; : : : ; xn/

and y D .y1; : : : ; yn/ is the number of mutations, i.e., their Hamming metric:

X
1xi¤yi :

• p-distance
The p-distance dp between DNA sequences x D .x1; : : : ; xn/ and y D

.y1; : : : ; yn/ is defined by

P
1xi¤yi

n
:

• Jukes–Cantor nucleotide distance
The Jukes–Cantor nucleotide distance between DNA sequences x and y is

defined, using the p-distance dp with dp � 3
4
, by

�3
4

ln

�

1 � 4

3
dp.x; y/

�

:

If the rate of substitution varies with the gamma distribution, and a is the
parameter describing the shape of this distribution, then the gamma distance for
the Jukes–Cantor model is defined by

3a

4

 �

1 � 4

3
dp.x; y/

��1=a

� 1
!

:

• Tajima–Nei distance
The Tajima–Nei distance between DNA sequences x and y is defined by

�b ln

�

1 � dp.x; y/

b

�

; where

b D 1

2

0

@1 �
X

jDA;T;C;G

�
1xiDyiDj

n

�2
C 1

c

X�
1xi¤yi

n

�2
1

A ; and

c D 1

2

X

i;k2fA;T;G;Cg;j¤k

�P
1.xi;yi/D. j;k/

�2

.
P
1xiDyiDj/.

P
1xiDyiDk/

:

Let P D 1
n jf1 � i � n W fxi; yig D fA;Gg or fT;Cggj, and Q D 1

n jf1 � i �
n W fxi; yig D fA;Tg or fG;Cggj, i.e., P and Q are the frequencies of, respectively,
transition and transversion mutations between DNA sequences x and y.

The following four distances are given in terms of P and Q.
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• Jin–Nei gamma distance
The Jin–Nei gamma distance between DNA sequences is defined by

a

2

�

.1 � 2P � Q/�1=a C 1

2
.1 � 2Q/�1=a � 3

2

�

;

where the rate of substitution varies with the gamma distribution, and a is the
parameter describing the shape of this distribution.

• Kimura 2-parameter distance
The Kimura 2-parameter distance K2P (Kimura, 1980) between DNA

sequences is defined by

�1
2

ln.1� 2P � Q/ � 1

4
ln
p
1 � 2Q:

• Tamura 3-parameter distance
The Tamura 3-parameter distance between DNA sequences is defined by

�b ln

�

1 � P

b
� Q

�

� 1

2
.1 � b/ ln.1 � 2Q/;

where fx D 1
n jf1 � i � n W xi D G or Cgj, fy D 1

n jf1 � i � n W yi D G or Cgj,
and b D fx C fy � 2fxfy. If b D 1

2
, it is the Kimura 2-parameter distance.

• Tamura–Nei distance
The Tamura–Nei distance between DNA sequences is defined by

�2fA fG
fR

ln

�

1 � fR
2fA fG

PAG � 1

2fR
PRY

�

� 2fT fC
fY

ln

�

1 � fY
2fT fC

PTC � 1

2fY
PRY

�

�

�2
�

fR fY � fA fGfY
fR

� fT fCfR
fY

�

ln

�

1 � 1

2fR fY
PRY

�

;

where fj D 1
2n

P
.1xiDj C1yiDj/ for j D A;G;T;C, and fR D fA C fG, fY D fT C fC ,

while PRY D 1
n jf1 � i � n W jfxi; yig \ fA;Ggj D jfxi; yig \ fT;Cgj D 1gj

(the proportion of transversion differences), PAG D 1
n jf1 � i � n W fxi; yig D

fA;Gggj (the proportion of transitions within purines), and PTC D 1
n jf1 � i � n W

fxi; yig D fT;Cggj (the proportion of transitions within pyrimidines).
• Lake paralinear distance

Given two DNA sequences x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/, denote by
det.J/ the determinant of the 4 � 4 matrix J D ..Jij//, where Jij D 1

n jf1 �
t � n W xt D i; yt D jgj (joint probability) and indices i; j D 1; 2; 3; 4

represent nucleotides A, T, C, G, respectively. Let fi.x/ denote the frequency
of the i-th nucleotide in the sequence x (marginal probability), and let f .x/ D
f1.x/f2.x/f3.x/f4.x/.
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The Lake paralinear distance (1994) between sequences x and y is defined
by

�1
4

ln
det.J/

p
f .x/f .y/

:

It is a four-point inequality metric, and it generalizes trivially for sequences
over any alphabet. Related are the LogDet distance (Lockhart et al., 1994)
� 1
4

ln det.J/ and the symmetrization 1
2
.d.x; y/C d.y; x// of the Barry–Hartigan

quasi-metric (1987) d.x; y/ D � 1
4

ln det.J/p
f .x/

.

• Eigen–McCaskill–Schuster distance
The Eigen–McCaskill–Schuster distance between DNA sequences x D

.x1; : : : ; xn/ and y D .y1; : : : ; yn/ is defined by

jf1 � i � n W fxi; yig ¤ fA;Gg; fT;Cggj:

It is the number of transversions, i.e., positions i with one of xi; yi denoting a
purine and another one denoting a pyrimidine.

• Watson–Crick distance
The Watson–Crick distance between DNA sequences x D .x1; : : : ; xn/ and

y D .y1; : : : ; yn/ is defined, for x ¤ y, by

jf1 � i � n W fxi; yig ¤ fA;Tg; fG;Cggj

It is the Hamming metric (number of DNA differences)
P
1xi¤yi

between x
and the Watson–Crick complement y D .y1; : : : ; yn/ of y, where yi D A;T;G;C
if yi D T;A;C;G, respectively. Let y� be the reversal .yn; : : : ; y1/ of y.

Hybridization is the process of combining complementary single-stranded
nucleic acids into a single molecule. Annealing is the binding of two strands
by the Watson–Crick complementation. Denaturation is the reverse process.

A DNA cube is any maximal set of DNA n-sequences, such that, for any
two x; y of them, it holds that H.x; y/ D min�n�k�n

P
1xi¤y�

iCk .mod n/
D 0. The

hybridization metric (Garzon et al., 1997) between DNA cubes A and B is

min
x2A;y2B

H.x; y/:

• RNA structural distances
An RNA sequence is a string over the alphabet fA;C;G;Ug of nucleotides

(bases). Inside a cell, such a string folds in 3D space, because of pairing of
nucleotide bases (usually, by bonds A � U, G � C and G � U). The secondary
structure of an RNA is, roughly, the set of helices (or the list of paired bases)
making up the RNA. Such structure can be represented as a planar graph and
further, as a rooted tree. The tertiary structure is the geometric form the RNA
takes in space; the secondary structure is its simplified/localized model.
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An RNA structural distance between two RNA sequences is a distance
between their secondary structures. These distances are given in terms of their
selected representation. For example, the tree edit distance (and other distances
on rooted trees given in Chap. 15) are based on the rooted tree representation.

Let an RNA secondary structure be represented by a simple graph .V;E/ with
vertex-set V D f1; : : : ; ng such that, for every 1 � i � n, .i; i C 1/ … E and
.i; j/; .i; k/ 2 E imply j D k. Let E D f.i1; j1/; : : : ; .ik; jk/g, and let .ij/ denote the
transposition of i and j. Then �.G/ D Qk

tD1.itjt/ is an involution.
Let G D .V;E/ and G0 D .V;E0/ be such planar graph representations of

two RNA secondary structures. The base pair distance between G and G0 is
the number jE
E0j, i.e., the symmetric difference metric between secondary
structures seen as sets of paired bases.

The Zuker distance between G and G0 is the smallest number k such that, for
every edge .i; j/ 2 E, there is an edge .i0; j0/ 2 E0 with maxfji � i0j; jj � j0jg � k
and, for every .k0; l0/ 2 E0, there is an .k; l/ 2 E with maxfjk � k0j; jl � l0jg � k.

The Reidys–Stadler–Roselló metric between G and G0 is defined by

jE
E0j � 2T;

where T is the number of cyclic orbits of length greater than 2 induced by the
action on V of the subgroup h�.G/; �.G0/i of the group Symn of permutations on
V . It is the number of transpositions needed to represent �.G/�.G0/.

Let IG D hxixj W .xi; xj/ 2 Ei be the monomial ideal (in the ring of polynomials
in the variables x1; : : : ; xn with coefficients 0; 1), and let M.IG/m denote the set
of all monomials of total degree � m that belong to IG. For every m � 3, a
Liabrés-Roselló monomial metric between G D .V;E/ and G0 D .V 0;E0/ is

jM.IG/m�1
M.IG0/m�1j:

Chen–Li–Chen, 2010, proposed the following variation of the directed Haus-
dorff distance (Chap. 1) between two intervals x D Œx1; x2� and y D Œy1; y2�,
representing two RNA secondary structures:

max
a2x

min
b2y

ja � bj
�

1 � O.x; y/

x2 � x1 C 1

�

;

where O.x; y/ D minfx2; y2g � maxfx1; y1g, represents the overlap of intervals x
and y; it is seen as a negative gap between x and y, if they are disjoint.

• Fuzzy polynucleotide metric
The fuzzy polynucleotide metric (or NTV-metric) is the metric introduced

by Nieto, Torres and Valques-Trasande, 2003, on the 12-dimensional unit cube
I12. Four nucleotides U;C;A and G of the RNA alphabet being coded as
.1; 0; 0; 0/, .0; 1; 0; 0/, .0; 0; 1; 0/ and .0; 0; 0; 1/, respectively, 64 possible triplet
codons of the genetic code can be seen as vertices of I12.
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So, any point .x1; : : : ; x12/ 2 I12 can be seen as a fuzzy polynucleotide codon
with each xi expressing the grade of membership of element i, 1 � i � 12, in the
fuzzy set x. The vertices of the cube are called the crisp sets.

The NTV-metric between different points x; y 2 I12 is defined by

P
1�i�12 jxi � yij

P
1�i�12 maxfxi; yig :

Dress and Lokot showed that
P
1�i�n jxi�yijP

1�i�n maxfjxij;jyi jg is a metric on the whole of Rn.

On R
n�0 this metric is equal to 1 � s.x; y/, where s.x; y/ D

P
1�i�n minfxi;yigP
1�i�n maxfxi;yig is the

Ruzicka similarity (Chap. 17).
• Genome rearrangement distances

The genomes of related unichromosomal species or single chromosome
organelles (such as small viruses and mitochondria) are represented by the order
of genes along chromosomes, i.e., as permutations (or rankings) of a given
set of n homologous genes. If one takes into account the directionality of the
genes, a chromosome is described by a signed permutation, i.e., by a vector
x D .x1; : : : ; xn/, where jxij are different numbers 1; : : : ; n, and any xi can be
positive or negative.

The circular genomes are represented by circular (signed) permutations
.x1; : : : ; xn/, where xnC1 D x1 and so on.

Given a set of considered mutation moves, the corresponding genomic
distance between two such genomes is the editing metric (Chap. 11) with the
editing operations being these moves, i.e., the minimal number of moves needed
to transform one (signed) permutation into another.

In addition to (and, usually, instead of) local mutation events, such as character
indels or replacements in the DNA sequence, the large (i.e., happening on a large
portion of the chromosome) mutations are considered, and the corresponding
genomic editing metrics are called genome rearrangement distances. In fact,
such rearrangement mutations being rarer, these distances estimate better the true
genomic evolutionary distance.

The genome (chromosomal) rearrangements are inversions (block rever-
sals), transpositions (exchanges of two adjacent blocks), inverted transpositions
(inversions combined with transpositions) in a permutation, and, for signed
permutations, signed reversals (sign reversal combined with inversion). The main
genome rearrangement distances between two unichromosomal genomes are:

Cayley, reversal and signed reversal metrics (cf. Chap. 11);
ITT-distance: the minimal number of inversions, transpositions and inverted

transpositions needed to transform one of them into another.
Given two circular signed permutations x D .x1; : : : ; xn/ and y D .y1; : : : ; yn/

(so, xnC1 D x1, etc.), a breakpoint is a number i, 1 � i � n, such that yiC1 ¤
xj.i/C1, where the number j.i/, 1 � j.i/ � n, is defined by the equality yi D xj.i/.
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The breakpoint distance (Watterson et al., 1982) between genomes, represented
by x and y, is the number of breakpoints.

This distance and the permutation editing metric (the Ulam metric from
Chap. 11: the minimal needed number of one-character transpositions) are used
for the approximation of genome rearrangement distances.

• Syntenic distance
This is a genomic distance between multi-chromosomal genomes, seen as

unordered collections of synteny sets of genes, where two genes are syntenic if
they appear in the same chromosome. The syntenic distance (Ferretti–Nadeau–
Sankoff, 1996) between two such genomes is the minimal number of mutation
moves—translocations (exchanges of genes between two chromosomes), fusions
(merging of two chromosomes into one) and fissions (splitting of one chromo-
some into two)—needed to transfer one genome into another. All (input and
output) chromosomes of these mutations should be nonempty and not duplicated.

The above three mutation moves correspond to interchromosomal genome
rearrangements which are rarer than intrachromosomal ones; so, they give
information about deeper evolutionary history.

• Genome distance
The genome distance between two loci on a chromosome is a physical

distance: the number of base pairs (bp) separating them on the chromosome.
In particular, the intragenic distance of two neighboring genes is the smallest

distance in bp separating them on the chromosome. Sometimes, it is defined as
the genome distance between the transcription start sites of those genes.

Nelson, Hersh and Carrol, 2004, defined the intergenic distance of a gene as
the amount of noncoding DNA between the gene and its nearest neighbors, i.e.,
the sum of upstream and downstream distances, where upstream distance is the
genome distance between the start of a gene’s first exon and the boundary of
the closest upstream neighboring exon and downstream distance is the distance
between the end of a gene’s last exon and the boundary of the closest downstream
neighboring exon. If exons overlap, the intergenic distance is 0.

• Strand length
A single strand of nucleic acid (DNA or RNA sequence) is oriented down-

stream, i.e., from the 50 end toward the 30 end (sites terminating at the 5-th and
3-rd carbon in the sugar-ring; 50-phosphate binds covalently to the 30-hydroxyl
of another nucleotide). So, the structures along it (genes, transcription factors,
polymerases) are either downstream or upstream. The strand length is the
distance from its 5’ to 3’ end. Cf. end-to-end distance (in Chap. 24) for a general
polymer.

For a molecule of messenger RNA (mRNA), the gene length is the dis-
tance from the cap site 50, where post-translational stability is ensured, to the
polyadenylation site 30, where a poly(A) tail of 50–250 adenines is attached after
translation.

• Map distance
The map distance between two loci on a genetic map is the recombination

frequency expressed as a percentage; it is measured in centiMorgans cM (or map
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units), where 1 cM corresponds to a 1% ( 1
100

) chance that a segment of DNA will
crossover or recombine within one generation. Genes at map distance 50 cM are
unlinked.

For humans, 1:3 cM corresponds to a genome distance of 1 Mb (million bp).
In the female this recombination rate (and so map distances) are twice that of the
male. In males, the total length of intervals between linked genes is 2500 cM.

During meiosis in humans, there is an average of 2 to 3 crossovers for
each pair of homologous chromosomes. The intermarker meiotic recombination
distance (Dib et al., 1992) counts only meiotic crossovers. Mitotic crossover is
rare.

• tRNA interspecies distance
Transfer RNA (tRNA) molecules are necessary to translate codons (nucleotide

triplets) into amino acids; eukaryotes have up to 80 different tRNAs. Two tRNA
molecules are called isoacceptor tRNAs if they bind the same amino acid.

The tRNA interspecies distance between species m and n is (Xue et al.,
2003), averaged for all 20 amino acids, the tRNA distance for a given amino acid
aai which is, averaged for all pairs, the Jukes–Cantor protein distance between
each isoacceptor tRNAs of aai from species m and each isoacceptor tRNAs of
the same amino acid from species n.

• PAM distance
There are many notions of similarity/distance (20 � 20 scoring matrices) on

the set of 20 standard amino acids, based on genetic codes, physico-chemical
properties, secondary structural matching, structural properties (hydrophilicity,
polarity, charge, shape, etc.) and observed frequency of mutations. The most
frequently used one is the Dayhoff distance, based on the 20 � 20 Dayhoff
PAM250 matrix which expresses the relative mutability of amino acids.

The PAM distance (or Dayhoff–Eck distance, PAM value) between protein
sequences is defined as the minimal number of accepted (i.e., fixed) point
mutations per 100 amino acids needed to transform one protein into another.
1 PAM is a unit of evolution: it corresponds to 1 point mutation per 100 amino

acids. PAM values 80, 100, 200, 250 correspond to the distance (in %) 50, 60,
75, 92 between proteins.

• Genetic code distance
The genetic code distance (Fitch and Margoliash, 1967) between amino acids

x and y is the minimum number of nucleotides that must be changed to obtain x
from y. In fact, it is 1; 2 or 3, since each amino acid corresponds to three bases.

• Miyata–Miyazawa–Yasanaga distance
The Miyata–Masada–Yasanaga distance (or Miyata’s biochemical distance,

1979) between amino acids x, y with polarities px; py and volumes vx; vy is defined
by

s

.
jpx � pyj

p

/2 C .
jvx � vyj

v

/2;

where 
p and 
v are the standard deviations of jpx � pyj and jvx � vyj.
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This distance is derived from the similar Grantam’s chemical distance
(Grantam, 1974) based on polarity, volume and carbon-composition of amino
acids.

• Polar distance (in Biology)
The following three physico-chemical distances between amino acids x and y

were defined in Hughes–Ota–Nei, 1990.
Dividing amino acids into two groups—polar (C, D, E, H, K, N, Q, R, S, T,

W, Y) and nonpolar (the rest)—the polar distance is 1, if x; y belong to different
groups, and 0, otherwise. The second polarity distance is the absolute difference
between the polarity indices of x and y. Dividing amino acids into three groups—
positive (H, K, R), negative (D, E) and neutral (the rest)—the charge distance
is 1, if x; y belong to different groups, and 0, otherwise.

• Feng–Wang distance
20 amino acids can be ordered linearly by their rank-scaled functions

CI;NI of pKa values for the terminal amino acid groups COOH and NHC
3 ,

respectively. 17CI is 1,2,3,4,5,6,7,7,8,9,10,11,12,13,14,14,15,15,16,17 for
C,H,F,P,N,D,R,Q,K,E, Y,S,M,V,G,A,L,I,W,T, while 18 NI is 1,2,3,4,5,5,6,7,8,9,
10,10,11,12,13,14,15,16,17,18 for N,K,R,Y,F,Q,S,H,M,W,G,L,V,E,I,A,D,T,P,C.

Given a protein sequence x D .x1; : : : ; xm/, define xi < xj if i < j;CI.xi/ <

CI.xi/ and NI.xi/ < NI.xi/ hold. Represent the sequence x by the augmented
m � m Hasse matrix ..aij.x///, where aii.x/ D CI.xi/CNI.xi/

2
and, for i ¤ j, aij.x/ D

�1 or 1 if xi < xj or xi � xj, respectively.
The Feng–Wang distance ([FeWa08]) between protein sequences x D

.x1; : : : ; xm/ and y D .y1; : : : ; yn/ is defined by

jj	.x/p
m

� 	.y/p
n

jj2;

where 	.z/ denotes the largest eigenvalue of the matrix ..aij.z///.
• Number of protein differences

The number of protein differences between protein sequences x D
.x1; : : : ; xm/ and y D .y1; : : : ; yn/ is just the Hamming metric between protein
sequences:

X
1xi¤yi :

• Amino p-distance
The amino p-distance (or uncorrected distance) dp between protein

sequences x D .x1; : : : ; xm/ and y D .y1; : : : ; yn/ is defined by

P
1xi¤yi

n
:
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• Amino Poisson correction distance
The amino Poisson correction distance between protein sequences x and y

is defined, via the amino p-distance dp, by

� ln.1 � dp.x; y//:

• Amino gamma distance
The amino gamma distance (or Poisson correction gamma distance)

between protein sequences x and y is defined, via the amino p-distance dp,
by

a..1� dp.x; y//
�1=a � 1/;

where the substitution rate varies with i D 1; : : : ; n according to the gamma
distribution with the shape described by the parameter a. For a D 2:25 and
a D 0:65, it estimates the Dayhoff distance and Grishin distances, respectively.
In some applications, this distance with a D 2:25 is called simply the Dayhoff
distance.

• Jukes–Cantor protein distance
The Jukes–Cantor protein distance between protein sequences x and y is

defined, via the amino p-distance dp, by

�19
20

ln

�

1 � 20

19
dp.x; y/

�

:

• Kimura protein distance
The Kimura protein distance between protein sequences x and y is defined,

via the amino p-distance dp, by

� ln

 

1 � dp.x; y/ � d2p.x; y/

5

!

:

• Grishin distance
The Grishin distance d between protein sequences x and y can be obtained,

via the amino p-distance dp, from the formula

ln.1C 2d.x; y//

2d.x; y/
D 1 � dp.x; y/:

• k-mer distance
The k-mer distance (Edgar, 2004) between sequences x D .x1; : : : ; xm/ and

y D .y1; : : : ; yn/ over a compressed amino acid alphabet is defined by

ln

�
1

10
C
P

a minfx.a/; y.a/g
minfm; ng � k C 1

�

;
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where a is any k-mer (a word of length k over the alphabet), while x.a/ and y.a/
are the number of times a occurs in x and y, respectively, as a block (contiguous
subsequence). Cf. q-gram similarity in Chap. 11.

• Santoni–Felici–Vergni proximity
Given a protein sequence v D .v1; : : : ; vN/ and two amino acids a and b in

it, let .x1; : : : ; xn/ and .y1; : : : ym/ be arrays of occurrence positions in v of a and
b, respectively. The proximity in v between a and b is (Santoni–Felici–Vergni,
2016)

Pv.a; b/ D 1

n

nX

iD1
min

jD1;:::;mfjxi � yjjg:

Using the above function and machine learning, the authors found a way to
discriminate between natural and random protein sequences. It shows how
natural selection dominates the randomising effect of casual mutations in protein
evolution.

• Whole genome composition distance
Let Ak be the set of all

Pk
iD1 4i nonempty words of length at most k over the

alphabet of four RNA nucleotides. For an RNA sequence x D .x1; : : : ; xn/ and
any a 2 Ak, let ga.x/ be the number of occurrences of a as a block (contiguous
subsequence) in x and fa.x/ be ga.x/ divided by the number of blocks of the same
length in x.

The whole genome composition distance (Wu et al., 2006) between RNA
sequences x and y (of two strains of HIV-1 virus) is the Euclidean distance

sX

a2Ak

. fa.x/ � fa.y//2:

The D2 distance (Torney et al., 1990) is
P

a2AknAl
.ga.x/�ga.y//2 for some l � k.

The D2 statistic (Lippert et al., 2002) is the number of k-word matches of x; y.
• Huang ensemble distance

Consider a genome, represented by a nucleotide sequence s D .s1; : : : ; sl/,
of length l, where si 2 fAC;G;Tg. For t D A;C;G;T, define wt.si/ D 1 if
si D t and wt.s1/ D 0, otherwise. The natural vector of s is defined to be the
concatenation

.nA; nC; nG; nT ; �A; �C; �G; �T ;DA;DC;DG;DT/

of three following vectors: the counting vector .nA; nC; nG; nT/, where nt DPl
iD1 wt.si/, the first moment of positions .�A; �C; �G; �T /, where �t D

Pl
iD1 i wt.si/

nt
and the second moment of positions .DA;DC;DG;DT/, where Dt D

Pl
iD1.i � �t/

2 wt.si/

lnt
.



466 23 Distances in Biology

The k-mer vector is .m.1/; : : : ;m.4k// where m. j/ is the number of times the
j-th of 4k possible strings of k nucleotides occurs as k consecutive elements in s.

A multipartite, i.e., consisting of several nucleic acid molecules, virus can be
represented by a set of natural and k-mer counting vectors of its multiple genome
segments. The Huang ensemble distance between such viruses X and Y is

s
N2

XY

ı2N
C K2

XY

ı2K

(Huang, 2016), where NXY ;KXY are the Hausdorff distances between the sets of
their natural vectors and between the sets of their k-mer counting vectors, and
ı2N ; ı

2
K are the variances of the upper triangular matrix with elements NIJ and KIJ

(for all pairs IJ of considered viruses), respectively.
NXY , NXY are maxfmaxx2X miny2Y d.x; y/;maxy2Y minx2X d.x; y/g, where

d.x; y/ is the Euclidean distance of two natural or k-mer counting vectors x 2 X,
y 2 Y.

• Additive stem w-distance
Given an alphabet A, let w D w.a; b/ > 0 for a; b 2 A, be a weight function

on it. The additive stem w-distance between two n-sequences x; y 2 An is
defined (D’yachkov and Voronina, 2008) by

Dw.x; y/ D
n�1X

iD1
.sw

i .x; x/� sw
i .x; y//;

where sw
i .x; y/ D w.a; b/ if xi D yi D a; xiC1 D yiC1 D b and sw

i .x; y/ D 0,
otherwise. If all w.a; b/ D 1, then

Pn�1
iD1 si.x; y/ is the number of common 2-

blocks containing adjacent symbols in the longest common subsequence of x and
y; then Dw.x; y/ is called a stem Hamming distance.

• ACS-distance
Given an alphabet A, the average common substring length between

sequences x D .x1; : : : ; xm/ and y D .y1; : : : ; yn/ over A is (Ulitsky et al.,
2006) L.x; y/ D 1

m

Pm
iD1 li, where li is the length of the longest substring

.xi; : : : ; xi�1Cli/ which matches a substring of y. So, L.x; x/ D mC1
2

.
The ACS-distance is defined by

1

2
.

log.n/

L.x; y/
� log.m/

L.x; x/
C log.m/

L.y; x/
� log.n/

L.y; y/
/:

A similar distance was considered (Haubold et al., 2009) replacing the longest
common substring by the shortest absent one.
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23.3 Distances in Ecology, Biogeography, Ethology

Main distance-related notions in Ecology, Biogeography and Animal Behavior
follow.

• Niche overlap similarities
A niche is environmental space, while a biotope is a geographic space.
Let p.x/ D . p1.x/; : : : ; pn.x// be a frequency vector (i.e., all pi.x/ � 0 andP
i pi.x/ D 1) representing an ecological niche of species x, for instance, the

proportion of resource i, i 2 f1; : : : ; ng, used by species x.
Four main niche overlap similarities of species x and y are:
Schoener’s D, introduced by Renkonen in 1938:

D.x; y/ D 1 � 1

2

nX

iD1
jpi.x/ � pi.y/jI

cosine similarity (Chap. 17), called in Ecology (from 1973) Pianka’s O:

O.x; y/ D hp.x/; p.y/i
jjp.x/jj2 � jjp.y/jj2 I

Hellinger I (i.e., fidelity similarity, cf. Chap. 14) and Bray–Curtis (or, since
p.x/; p.y/ are frequency vectors, Renkonen percentage) similarity (Chap. 17).

• Ecological distance
Let a given species be distributed in subpopulations over a given landscape,

i.e., a textured mosaic of patches (homogeneous areas of land use, such as
fields, lakes, forest) and linear frontiers (river shores, hedges and road sides).
The individuals move across the landscape, preferentially by frontiers, until they
reach a different subpopulation or they exceed a maximum dispersal distance.

The ecological distance between two subpopulations (patches) x and y is
defined (Vuilleumier–Fontanillas, 2007) by

D.x; y/C D.y; x/

2
;

where D.x; y/ is the distance an individual covers to reach patch y from patch x,
averaged over all successful dispersers from x to y. If no such dispersers exist,
D.x; y/ is defined as minz.D.x; z/C D.z; x//.

Ecotopes are the smallest ecologically distinct features in a landscape map-
ping.

Effective ecological distance (or cost-distance) is the Euclidean distance
modified for the effect of landscape and behavior on the dispersal of an organism
between locations in the landscape. Such functional distance can be computed
as least-cost path using either cost surface (matrix between patches assigning
degree of permeability depending on hostile habitat or physical barriers), or
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resistance surface accounting for costs (resistance per unit distance) of passing
through different landscape elements. Cf. resistance metric in Chap.15. Pinto–
Kein, 2009, proposed least-cost corridors formed by multiple paths with similar
costs, since animals, even birds, rarely move along straight-line paths in a
landscape.

• Biotope distance
The biotopes here are represented as binary sequences x D .x1; : : : ; xn/, where

xi D 1 means the presence of the species i. The biotope (or Tanimoto, cf.
Chap. 17) distance between biotopes x and y is defined by

jf1 � i � n W xi ¤ yigj
jf1 � i � n W xi C yi > 0gj D jX
Yj

jX [ Yj ;

where X D f1 � i � n W xi D 1g and Y D f1 � i � n W yi D 1g.
• Prototype distance

Given a finite metric space .X; d/ (usually, a Euclidean space) and a selected,
as typical by some criterion, vertex x0 2 X, called the prototype, the prototype
distance of every x 2 X is the number d.x; x0/.

Usually, the elements of X represent phenotypes or morphological traits. The
average of d.x; x0/ over x 2 X estimates the corresponding variability.

• Critical domain size
In Spatial Ecology, the critical domain size is (Kierstead and Slobodkin,

1953) the minimal amount of habitat, surrounded by a hostile matrix, required
for a population to persist. For example, in the invasion and persistence of algal
and insect populations in rivers, such a size is the minimal length of a river (with
a given, less than the threshold, flow speed) that supports a population.

• Island distance effect
An island, in Biogeography, is any area of habitat surrounded by areas

unsuitable for the species on the island: true islands surrounded by ocean,
mountains isolated by surrounding lowlands, lakes surrounded by dry land,
isolated springs in the desert, grassland or forest fragments surrounded by
human-altered landscapes.

The island distance effect is that the number of species found on an island is
smaller when the degree of isolation (distance to nearest neighbor and mainland)
is larger. Also, organisms with high dispersal, such as plants and birds, are much
more common on islands than are poorly dispersing taxa like mammals.

• Dispersal distance
In Biology, the dispersal distance is a range distance to which a species

maintains or expands the distribution of a population. It refers, say, to seed dis-
persal by pollination and to natal, breeding and migration dispersal. For animals,
natal dispersal is permanent emigration from the natal range to a disjoint adult
range, and dispersal distance is the distance between their barycenters.

The dispersal distance is usually described by a dispersal kernel which gives
the probability distribution of the distance traveled by any individual.
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When outcrossing (gene flow) is used to increase genetic diversity of a plant
species, the optimal outcrossing distance is the dispersal distance at which seed
production is maximized. It is less than the mean pollen dispersal distance.

Plant height matters more than seed mass for its dispersal distance. Unusual
way of wind dispersal include tumbleweeds.

Pollen from Pinus sylvestris can fly 100 km, but oceanic larvae dispersal is
at least one order of magnitude greater than that of pollen-dispersing terrestrial
biotas.

• Long-distance dispersal
Long-distance dispersal (or LDD) refers to the rare events of biological

dispersal on distances an order of magnitude greater than the median dispersal
distance. For the regional survival of some plants, LDD is more important than
local (median-distance) dispersal. The longest recorded distance traveled by a
drift seed is 28;000 km by a Mary’s bean from the Marshall Islands to Norway.

LDD emerged in Biogeography as greater factor of biodiversity and species
migration patterns than original vicarience theory (dispersal via land bridges)
based on continental drift. Such relatively recent chance dispersal explain the
fast spread of organisms in new habitats, for example, plant pathogens, invasive
species and in paleocolonization events, such as the joining of North and South
America 3 Ma ago, or Africa and India with Eurasia 30 and 50 Ma ago.

Human colonization of Madagascar (isolated for 88 Ma) 
2000 years ago
may have resulted from an accidental transoceanic crossing; other animals
arrived by rafting from Africa 60–70 Ma ago. LDD followed traders and
explorers, especially, in Columbian Exchange after 1492.

Transoceanic LDD by wind/water currents can explain strong floristic sim-
ilarities among landmasses in the southern hemisphere. Monkey, rodents, and
crocodiles dispersed 50–30 Ma ago to the Americas from Africa via the Atlantic.

Free-living microbes occupy every niche but their biodiversity is low, because
they are carried by wind thousands of km on dust particles protecting them from
UV. Extreme example of such (or via underground rivers, before the continents
split) LDD: sunlight-independent bacterium Desulforudis audaxviator, living 1–
3.3 km deep in South Africa (the only species known to be alone in its ecosystem
and radiation-relying), reached deep boreholes in eastern California.

Some other LDD vehicles are: rafting by water (corals can traverse 40;000
km during their lifetime), migrating birds, human transport, ship ballast water,
and extreme climatic events. Snails can travel hundreds of km inside bird guts:
1–10 % of eaten snails survive up to 5 h until being ejected in bird feces.

Also, cancer invasion (spread from primary tumors invading new tissues)
can be thought as an invasive species spread via LDD, followed by localized
dispersal.

The most invasive mammal species (besides humans) are: rabbits, black rats,
gray squirrels, goats, pigs, deers, mice, cats, red foxes, mongooses. Invasive
Argentine ants form the largest global insect mega-colony: they do not attack
each other.
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• Migration distance (in Biogeography)
Migration distance is the distance between regular breeding and foraging

areas within seasonal large-scale return movement of birds, fish, insects, turtles,
seals, etc.

The longest such recorded round-trip is 71;000 km pole-to-pole traveled each
year by the Arctic tern. The highest migration altitude is 9 km by bar-headed
goose. Longest each way migration for a mammal is 
9800 km, traveled by
a humpback whale from the Brazilian coast to Madagascar, and, for an insect,

4500 km by desert locust and Monarch butterfly.

One of unsolved problems in Biology is: how do the descendants of Monarch
butterfly, migrating from Canada to central Mexico for several generations,
manage to return to a few small overwintering spots? Also, why the ancient
murrelets fly almost 8000 km across entire North Pacific and back—for no
obvious benefit?

Migration differs from ranging, i.e., the movement of an animal beyond its
home range which ceases when a suitable new home range (a resource: food,
mates, shelter) is found. It differs also from foraging/commuting as occurs, say,
for albatrosses or plankton. Wandering albatrosses, having the largest (3:63 m)
wingspan, make several-days foraging round trips of up to 3000 km. Krill, 1–2
cm long, move up to 500 m vertically each night, to feed in the sunlit waters,
where plants are abundant, while avoiding being seen by predators. Mesopelagic
(living 0.2–1 km deep) fish also travel to upper layers at night.

At the population level, migration involves displacement, while rang-
ing/foraging result only in mixing. Entire species migrate slowly by shifting,
because of rapid climate change, their geographical or elevation ranges. Chen et
al., 2011, found that the mean travel poleward of over 1300 species, considered
by them, was 17 km a decade; vertically, the mean had a species moving 11 m
uphill.

During ice ages species move to hotspots, say, volcanoes. In early Holocene,
forests migrated northward, up to 5 km per decade, using LDD (by birds) and
low-density founder populations. Root et al., 2003, claim that butterflies, birds
and plants move towards the poles by 6:1 km per decade over the past 100 years.

Lyons et al., 2015: during last 300 Mya, more pairs of land species with
correlated co-occurrence were positively correlated than negatively correlated
ones, and 6000 years ago this pattern was reversed. They explains it by barriers
to dispersal introduced by increasing human population and the spread of
agriculture.

• Daily distance traveled
Daily distance traveled D (m/day) is an important parameter of the energy

budget of ranging/foraging mammals.
The foraging efficiency is the ratio B

C , where C;B (J/m) are the energy costs of
travel and of acquiring energy. Over a day, the expected total net energy return
is D.B � C/. The locomotor cost is the distance traveled per unit energy spent
on locomotion. The limb length determines this cost in terrestrial animals but no
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link with D has been observed. Pontzer, 2011, explains this paradox by high B
C in

most taxa: only for B
C < 10, would selection for limb length be needed.

Within species, over a lifetime, increased D is associated with decreased B �
C, reproductive effort and maintenance. But among species, over evolutionary
time, it is associated with a greater number of offspring and their total mass per
lifetime.

The mean D traveled by carnivores is four times such distance by herbivores.
Also, D and feeding/grooming time are much greater in larger groups of primates.
Foraging radius, D and annual travel distance of Neanderthal was 
 75% of that
of humans.

• Collective motion of organisms
Organisms aggregate to procure resources (pack-hunting), to find mates

(plankton, plants) and to lower predation risk (meerkats, schools of sardines,
flocks of starlings). Animals moving in large groups at the same speed and in
the same direction, tend to have similar size and to be regularly spaced.

The near-constant distance which an animal maintains from its immedi-
ate neighbors is called the nearest-neighbor distance (NDD). When NDD
decreases, the mode of movement can change: marching locusts align, ants build
bridges, etc.

Moving in file when perception is limited to one individual (ants, caterpillars
in processions up to 300, spiny lobsters in parallel chains of 3–30), animals use
tactile cues or just perceive and follow the choice of the preceding individual,
such as sheep in mountain path or cows in cattle-handling facilities. Penguins in
the huddle move (“traveling wave”, like the stop-and-go of cars in a traffic jam)
trigger movements in their neighbors as soon as the threshold distance (
 2 cm,
i.e., twice the thickness of their compressive feather layer) is formed between
two penguins.

The greatest recorded group of moving animals was a swarm in US, 1875, by
12:5 trillion insects (Rocky Mountain locust, extinct by now) covering 510;000
km2. A swarm by extant desert locusts in Kenya, 1954, covered 200 km2.

Flights of migratory pest insects occur usually at altitudes up to 1 km, and are
downwind; they last for a few hours with displacement up tp 400 km. Flocks of
red-billed Quelea (the most abundant wild bird species) take up to 5 h to fly past.
Herring schools occupy up to 4:8 km3 with density 0.5–1.0 fish per m3. Jellyfish
Rhopilema nomadica form swarms 100 km long.

Schools of sardines, anchovy and krill, despite being variable in size, share
a ratio S

V D 3:3 m�1 of surface area to volume; it has been interpreted as the
optimal trade-off between predator avoidance and resource acquisition.

The spatiotemporal movement patterns, emerging from such groups, result
from interactions between individuals. This local mechanism can be allelomime-
sis (“do what your neighbor does”), social attraction (say, to the center of mass of
neighbors), or the threat of cannibalism from behind (in running Mormon crickets
and desert locusts), mass mate-searching (in burrow-dwelling crabs). Vicsek,
1995, modelled a swarm as a collection of particles moving with a constant
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speed but adopting, if perturbation, at each time increment the average motion’s
direction of the neighbors.

Migrating birds tend to fly in a V, J, or W shaped formation. In energy-saving
V-formation (or skein), they sync their flapping to hook the former bird’s updraft.
The birds flying at the front and the tips are rotated. The changes in distance
between members and in direction propagate like sound waves: for distance
better in bigger flocks, while for direction better in smaller flocks.

Most spectacular are aerial displays of flocks of starlings highly variable in
shape. Scale-free behavioral correlation was observed: regardless of flock size,
the correlations of a bird’s orientation and velocity with the other birds did not
vary and was near-instantaneous. Cf. SOC in scale invariance (Chap. 18).

Silverberg et al., 2013, discovered self-organized emergent behavior in mosh-
ing (when 100–100,000 fans at heavy metal concert form circles and then run
together with abandon, bouncing off one another). In fact, the speed distribution
of people closely matches that of molecules in a 2D gas at equilibrium and
moshing corresponds to domination of the model’s parameters by noise.

Such emerging, when their number increases, collective behavior can be seen
as a critical phase transition; it was observed also for simple automatons.

Besides animals, collective directed motion occurs also in cellular popula-
tions. Some aggregated bacterial populations (say, foraging swarms of billions of
Paenibacillus vortex) can migrate rapidly and coordinately over a surface. A grex
is an slug-like aggregate 2–4 mm long of up to 100;000 amoebas formed when
they are under stress. It moves as a unit, only forward, 1 mm/h. Other example
of small-scale moving super-organism: oceanic pyrosomes (clonal colonies of
zooids-tunicates).

In a multicellular organism, collective cell migration occurs (usually by
chemotaxis: response to chemical concentration) throughout embryonic devel-
opment, wound healing (fibroplasts and epithelial cells), immune response
(leukocytes), and cancerous tumor invasion. Similarly to migration of songbirds,
cancerous cells prepare for metastatic travel by gathering proteins near their
leading edges.

During development, some cells migrate to very long distances. For example,
newborn neurons in the adult brain can traverse 2

3
of its length.

• Distances in Animal Behavior
The first such distance was derived by Hediger for zoos; his interanimal dis-

tance is the maximum species-specific distance at which conspecifics approach
each other. In 1955, he defined flight distance (run boundary), critical distance
(attack boundary), personal distance (at which members of noncontact species
feel comfortable) and social distance (at which within-species groups tolerate
each other).

The exact such distances are highly context dependent. An example: a tamer
manipulate a semi-tamed lion moving in and out of its critical zone.

For humans, flight and critical distances have been, with few exceptions,
eliminated. So, Hall adapted above space boundaries; cf. his distances between
people in Chap. 28. The main distances in Animal Behavior follow.
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The individual distance: the distance which an animal attempts to maintain
between itself and other animals. It ranges between “proximity” and “far apart”
(for example, � 8m and � 61m in elephant social calls). Bell et al., 2012, found
that gaining and maintaining a preferred interanimal distance, accounts for much
of the variability in dodging by rats and field crickets.

The group distance: the distance which a group of animals attempts to
maintain between it and other groups. Cf. the nearest-neighbor distance.

The alert distance: the distance from the disturbance source (say, a predator
or a dominating conspecific) when the animal changes its behavior (say, turns
towards as perception advertisement) in response to an approaching threat.

The flight initiation distance (or FID, escape distance): the distance from
the disturbing stimulus when escape begins. FID, corrected for the distance to
refuge, is a measure of animal’s boldness.

The reaction distance: the distance at which the animal reacts to the
appearance of prey; catching distance: the distance at which the predator can
strike a prey.

The detection distance: the maximal distance from the observer at which the
individual or cluster of them is seen, heard, or detected by some other remote
way. For example, it is 2000m for an eagle searching for displaying sage-grouse
and 1450 m for a sage-grouse scanning for a flying eagle.

The social recognition distance: the distance over which a contact call can
be identified as belonging to a family.

In the main nonresource-based mating system, lek mating, females in estrous
visit a congregation of displaying males, the lek and mate preferentially with
males of higher lekking distance rank, i.e., relative distance from male territory
(the median of his positions) to the center of the lek. High-ranking individuals
have smaller, centrally located (so, less far to travel and more secure) home
ranges.

The distance-to-shore: the distance to the coastline used to study clustering of
whale strandings (by distorted echo-location, anomalies of magnetic field, etc.).

The sleeping distance of a mating pair: for example, it is no further than 0:5
m in Arctic blue fox, but more than 2–2.5 m one month after copulation.

• Snout-vent length
The snout-vent length (SVL) or nose–cloaca distance (NCD) is an animal’s

length taken from the tip of the nose (snout) to the cloaca’s opening (vent) at the
tail base.

The gape distance is the width of the widely opened mouth of a vertebrate.
• Animal proximity network

An animal proximity network is a digraph of individuals with a pair of them
forming an edge or arc in the case of spatiotemporal co-occurrence using some
range criteria: a mutual distance threshold or some distance rule (say, nearest
neighbor) within a given distance around a focal individual.

In general, the amount of time spent in proximity to another individual
does not correlate with the proportion of social interactions between pairs of
individuals. But proximity is a good proxy for interaction rates in mixed-species
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bird flocks, for social information or disease transmission, and for some social
behaviors, such as foraging, grooming, sleeping, mate guarding, and parent–
offspring relationships.

• Animal depth/distance perception
Many animals, including humans, have two eyes with overlapping visual fields

that use parallax (cf. parallax distance in Chap. 26) for depth perception and
distance estimation. Some animals (for example, pigeons) use motion parallax in
which they move head to gain different viewpoints. Anoter example: the velocity
of the mantis’s head movement is kept constant during peering. So, the distance
to the target (prey) is inversely proportional to the velocity of the retinal image.

All animals have a binocular region (growing as eyes become more forward-
facing) which allows for vision through the clutter, as long as the width of the
objects causing clutter is less than the interpupillary distance (cf. Chap. 29) d.

Changizi–Shimojo, 2008, suggested that the degree of binocular convergence
is selected to maximize how much the animal can see. Most animals exist
in noncluttered environments or surroundings where the cluttering objects are
bigger in size than d. They tend to have sideways-facing eyes allowing panoramic
vision. But humans and other large mammals evolved in leafy environments like
forests and their forward-facing eyes (and smaller distance d) maximize ability
to see.

Still, the human eye sockets are much wider relative to their height and the
outer margin is recessed much further back in the human skull, than those of
the apes. So, unlike “forest view” of other apes, our “savannah eyes” can have a
lateral view that is unimpeded by the bones of the skull.

Larvae of the sunburst diving beetle (Thermonectus marmoratus) have 6 pairs
of eyes. Four eyes of two frontal pairs (used to scan potential prey) have bifocal
lenses and at least two 1D-retinas: distant and close-up. The two focused images
produced by the lens sit at different distances and vertically separated.

• Distance-related animal settings
Spatial fidelity zones specific to individuals (say, at a given distance from a

colony center, or within a particular zone of the total foraging area) have been
observed for some social insect species, molluscan communities, birds, etc.

Home range is the area where an animal (or a group) lives and travels within.
Within it, the area of intensive and exclusive use by resident animals is the core
area. The distance between range centroids of two individuals (or groups) is a
parameter used in studies of spatially based animal social systems. Cf. dispersal
distance.

An animal is territorial if it consistently occupies, marks and defends a
territory, i.e., an area with a focused resource (say, a nest, den, mating site or
sufficient food resources). Territories are held by an individual, a mated pair, or
a group. An extraterritorial foray is the movement of a territorial animal into
a conspecific’s territory.Dear enemy recognition is the stronger response of a
territorial animal to strangers than to its neighbors from adjacent territories.

Lizards Varanus panoptes dig, in a spiral, the deepest known, � 3:6 m, nests.
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A linear relationship between the logarithm of faecal egg (of internal para-
sites) counts and the mean distance moved by a sheep per time step was found.

The defense region is the region that a male must defend in a mating
competition to monopolize a female. It can be 1D (burrow, tunnel), 2D (dry land),
bounded 3D (tree, coral reef), or open 3D (air, water). Puts, 2010, claims that 1D
and 2D (as for humans) mating environments favor the evolution of contests.

The reliability of a threat display in animal contests is maintained by the
proximity risk, i.e., the display is credible only within a certain distance of the
opponent. This threshold distance is related to weaponry and the species-specific
fighting technique. Here, greater formidability and dominance can be reached
solely behaviorally; for example, an elephant’s musth status overrides its body
size and tusks.

The landscape of fear of a foraging animal is defined by the spatial variation
of presumed predation risk. Its horizontal and vertical components correspond
to terrestrial and aerial predators. It include clearness of sightlines (to spot
predators), shrubs/trees/edge cover and the interplay of the distances to food
and shelter. For example, small fish stay close to the coral reef when grazing
seaweed; this creates “grazing halos” of bare sand, visible from space, around all
reefs. Similar natural features are “fairy rings” of green eelgrass (up to 1500 m
in width, off Denmark’s coast), of mushrooms (10–600 m) and of barren sand
(2–15 m, in Africa).

The domain of danger (DOD, or Voronoi polygon, cf. Chap. 20) of an
animal, risking predation, in aggregation is the area closer to it than to any
other group member. Selfish herd theory (Hamilton, 1971) posits that a cover-
seeking dominant animal tends to minimize its DOD by occupying the center,
thus diluting its risk by placing another individual between itself and a predator or
parasite. Moreover, some fish bite a group member, when exposed to a searching
predator.

During traveling, dominant animals are closer to the front of the herd. During
foraging, their trajectories are shorter, more direct and more aligned both with
their nearest neighbors and with the whole herd.

Romey et al., 2015: for beetles, flash expansion of repulsive herd, i.e., a rapid
disassembly of a prey group detecting a predator, is away from the centroid
rather than from density maximum or starter. The starter tend to be a female at
the group’s edge; she moved more quickly than others and favoured the group’s
centroid.

Distance senses include sight, hearing, and smell (they can be in stereo),
while contact senses include taste, the senses of pressure, thermoception, and
internal senses include the sense of balance and muscle stretch. The buzzard
can see small rodents from a height of 4:6 km. The spotted hyaena hears noises
from predators feeding on carcasses over distances of up to 10 km. The silkmoth
detects pheromones up to 11 km distant. The grizzly bear smells food from up to
29 km away.

An example of unexplained distance prediction by animals is given (Vannini
et al., 2008) by snails Cerithidea decollata migrating up and down mangrove
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shores in synchrony with tidal phases. In the absence of visual cues and chemical
marks, snails cluster just above the high water line, and the distance from the
ground correlates better with the incoming tide level than with previous ones.

Ants initially wander randomly and upon finding food return to their colony
while laying down pheromone trails. So, when one ant finds a shortest path to a
food source, other (and eventually all) ants are likely to follow it. Inspired by this
idea, the ant colony optimization algorithm (ACO) is a probabilistic technique
for finding shortest paths through graphs; cf. arc routing problems in Chap. 15.
Also, ants routinely find the maximal distance from all entrances to dispose of
dead bodies.

The distance effect avoidance is the observed selection of some good distant
source of interest over a poor but nearer one in the same direction. For example,
females at a chorusing lek of anurians or arthropods may use the lower pitch of
a bigger or better distant male’s call to select it over a weaker but louder call
nearby. High-quality males help them by timing their calls to precede or follow
those of inferior males. Ant colonies can select a good distant nest over a poorer
one in the way, even when it is 9 times closer. Ants compensate for the distance
effect by increasing recruitment latencies and quorum thresholds at nearby poor
nests. Another example: foraging vervet monkeys optimize travel distance when
alone but prioritize high-reward food sites when in competition.

In land locomotion, animals crawl, walk, run, hop, climb or crawl, slither,
undulate. In fluids (water, air) animals swim and fly by beating flagella, tails,
wings, undulating their bodies, or actuating pumps. Some animals can switch the
medium. Fish Exocoetidae can spend 45 s in flight gliding up to 200m at altitudes
of up to 6 m; using waves, it can span distances up to 400 m. Some squids fly
in shoals covering up to 50 m at 6 m above the water. Squirrels Petauristinae,
snakes Chrysopelea and lemurs Dermoptera can glide with small loss of height
up to 200, 100 and 70m, respectively. The deepest dive for a flying bird is 210m
by a thick-billed murre. The deepest (3 km) and longest (2:3 h) mammal’s dive
was recorded for a Cuvier’s beaked whale in 2014. The human free-diving record
is 253:2 m by Nitsch in 2012.

Flying and swimming animals can move through volumes with six degrees
of freedom: 3 translational (left/right, forwards/backwards, up/down) and 3

rotational (pitch, roll, yaw). Surface-constrained animals have only three degrees:
left/right, forwards/backwards and yaw; moving in 3D, they have higher place
field resolution in the horizontal plane and showed a preference for movement in
the horizontal.

Maximal relative speed (in body lengths per second) is 6:2, 16 and 322 for
human (Usain Bolt, 2009), cheetah and a mite Paratarsotomus macropalpis. But
Meyer-Vernet and Rospars, 2015, showed that it is (except flying and very large
organisms) � bm�


�1 � 10 across 20 orders of magnitude in body mass. Here
� 
 103 kg m�3 is the density of liquid water, while 
 
 2 � 105 N m�2 and
bm 
 2 � 103 W kg�1, roughly constant across life forms, are the applied force
per unit cross-sectional area of tissue and maximum metabolic rate per unit of
working tissue.
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Navigating animals use an egocentric orientation mechanism and simple
panoramic views, within which proximal objects dominate because their image
on the retina change significantly with displacement. Animals rely on the spatial
arrangement of the objects/landmarks across the scene rather than on their
individual identification and geometric cues. Humans and, perhaps, chimpanzees
and capuchin monkeys, possess, in addition, an allocentric reference system,
centered on objects/features of the environment, and a more flexible geometric
representation of space, with true distance and direction, i.e., closer to an abstract
mental map.

Gaze monitoring and pointing: four great apes, canids and ravens follow
another’s head and eye orientation into distant space, even behind an obstacle.
Moreover, bonobos and chimpanzees take barrier opacity into consideration.
African elephants can use communicative intent of human pointing as a cue to
find food. Horses use their facial expressions (direction of eyes and ears) to “talk”
to other horses.

Great apes, dolphins, elephants, magpies recognise themselves in mirrors.
Metacognition (cognitive self-awareness) was found in great apes, dolphins and
rhesus monkeys. A basic Theory of Mind (ability to attribute mental states),
mental time travel, meta-tool use and empathy are expected in primates and
corvides. Ravens are as clever as chimpanzees, despite having much smaller
brains.

Mammals, birds and octopuses possess neurological substrates generating
consciousness. Chimpanzees have a system of intentional communication. But
shared intentionality and cumulative culture seems to be uniquely human.

• Animal communication
Only humans, songbirds, hummingbirds, parrots, cetaceans and bats have

complex, learned vocalisation. Conceptual generalizations (bottlenose dolphins
can transmit up to 9 km identity information independent of the caller’s
voice/location), syntax (calls of some monkeys, Bengal finches, Japanese great
tits are built as “word sequences”) and meta-communication (“play face” and
tail-to-the-right signals in dogs that the subsequent aggressive signal is a play)
have been observed.

Matters of relevance at a distance (a distant food source or shelter) can be
communicated by body language. For example, honeybees dancing convey (by
duration of the waggle phase and orientation of the dance relative to the vertical)
the polar coordinates (distance D to the goal and angle between the direction
towards it and to that of the Sun’s azimuth) of locations of interest. The mean
number of waggings of bee’s waggle phases increases with D. Also, wolves,
before a hunt, howl to rally the pack, become tense and have their tails pointing
straight. Dogs express their spatial needs by body language and vocalizations.
Stiffness, pilorection, aggressive barking/lunging are distance-increasing, while
play bow, tail wagging to the right, “positive” barking/lunging are distance-
decreasing signals.

A distance pheromone is a soluble (for example, in the urine) and/or
evaporable substance emitted by an animal, as a chemosensory cue, in order to
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send a message (on alarm, sex, food trail, recognition, etc.) to other members
of the same species. In contrast, a contact pheromone is such an insoluble
nonevaporable substance; it coats the animal’s body and is a contact cue. The
action radius of a distance pheromone is its attraction (or repulsion) range, the
maximum distance over which animals can be shown to direct their movement to
(or from) a source.

In species, such as carnivores occurring at low densities or having large
home ranges, individuals are widely spaced and communicate via chemical
broadcast signaling at latrines, i.e., collections of scent marks (feces, urine or
glandular secretions), or via visually conspicuous landmarks of the boundary
such as scratches and middens. Herrings communicate by farting. Shelter-
dwelling caterpillars ballistically eject faecal pellets great distances (7–39 times
their body length) at great speeds, in order to remove olfactory chemical cues for
natural enemies.

The communication distance is the maximal distance at which the receiver
can still get the signal. For example, a typical bird can detect a sound, coming
from 300m away amidst a background racket of human speech (roughly, 60 dB).

Animals can vary the signal amplitude and visual display with receiver
distance in order to ensure signal transmission. For example, baleen whales have
been observed calling more loudly, in order to compensate for human-generated
noise.

Another example of distance-dependent communication is the protective
coloration of some aposematic animals: it switches from conspicuousness (sig-
naling nonedibility) to crypsis (camouflage) with increasing distance from a
predator. Examples of interspecies communication of nonhuman animals, other
than predator-prey signaling, are: eavesdropping, heterospecific alarm calls and
cooperative hunting.

The main modes of animal communication are infrasound (< 20 Hz), sound,
ultrasound (> 20 kHz), vision (light), chemical (odor), tactile, seismic and
electrical. Infrasound, low-pitched sound (as territorial calls) and light in air can
be long-distance. Some frogs, spiders, insects, small mammals have vibrotactile
sense.

In a diverse ecosystem’s soundscape, mammals tend to monopolize the low
frequencies; birds call at higher pitches; and sound of insects is higher still.

A blue whale infrasound could (prior to noise pollution caused by ships) travel
over 6000 km through the ocean water using the SOFAR channel (Chap. 25).

Most elephant communication is in the form of infrasonic rumbles which
may be heard by conspecifics 5–10 km away. Also, they drum their soles on
the ground, and resulting seismic waves can be detected as far as 16–32 km.

Many animals hear infrasound generated by earthquakes, tsunami and hurri-
canes before they strike. Elephants can hear storms 160–240 km away.

High-frequency sounds attenuate more rapidly with distance, more directional
and vulnerable to scattering. But ultrasounds are used by bats (echo-location)
and arthropods. Rodents use them to communicate to nearby receivers without
alerting predators and competitors. Some anurans shift to ultrasound signals in
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the presence of continuous background noise (such as waterfall, human traffic).
Animals, including frogs, insects, birds and whales, increase the minimum
frequency, amplitude or signal-to-noise ratio (Chap. 21) in the presence of
antropogenic noise.

• Plant long-distance communication
Long-distance signaling was observed from roots and mature leaves, exposed

to an environmental stress, to newly developing leaves of a higher plant.
This communication is done cell-to-cell through the plant vascular tran-

spiration system. In this system, macromolecules (except for water, ions and
hormones) carry nutrients and signals, via phloem and xylem tissues, only
in one direction: from lower mature regions to shoots. The identity of long-
distance signals in plants is still unknown but the existence of information
macromolecules is expected.

Besides the above vascular signaling, plants communicate chemically with
each other or with mutualistic animals (pollinators, bodyguards, etc.). For
example, plants respond to attack by herbivores or pathogens with the release
of volatile compounds, informing neighboring plants and attracting predators of
attackers.

Some 80% of plants are colonized by ectosymbiotic fungi that form a network
of fine white threads, mycorrhizae, which take in water and minerals from the
soil, and hand some over to the plant in exchange for nutrients. A mycorrhizal
network can take over an entire forest and tie together plants of different species.
Plants use this network as a signaling and kin (or host) detection system too.
They assist neighbors or kin in deterring pests, attracting pollinators and nutrient
uptake.

• Internodal distance
A node on a plant stem is a joint where a leaf is attached. The internodal

distance (or internode length) is the distance between two consecutive nodes.
A ramet is an independent member of a clone. The interramet distance (or

propagule dispersal distance) is the internodal distance in plant clonal species.
• Leaf size

According to Boland et al., 2006, the leaf is mesophyll, notophyll, microphyll,
nanophyll, if its length is > 12:7, 7.6–12.7, 2.5–7.6,< 2:5 cm, respectively.

• Body size rules
Body size, measured as mass or length, is one of the most important traits of

an organism. Food webs, describing “who eat whom” (cf. trophic distance ), are
nearly interval, i.e., the species can be ordered so that almost all the resources of
each consumer are adjacent in the order. Zook et al., 2011, found that ordering
by body size is the best proxy to produce this near-interval ordering.

The lower limits (10 kg and 2 g) to body size is set by the size of offspring
for marine and by energetic limitations for terrestrial mammals. The largest
known sizes for them are 190 t and 16 t, but the upper limit is still unclear. The
length ranges for mammals, fish, insects, vascular plants, algae, bacteria, virions
are Œ10�1; 102�, Œ10�2; 101�, Œ10�4; 10�1�, Œ10�2; 102�, Œ10�5; 100�, Œ10�7; 10�3�,
Œ10�8; 10�6� m.
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According to Payne et al., 2008, the maximum size of the Earth’s organisms
increased by 16 orders of magnitude over the last 3:5 billion years. 75% of the
increase happened in two great leaps (about 1900 and 600–400 Ma ago: the
appearance of eukaryotic cells and multi-cellularity) due to leaps in the oxygen
level, and each time it increased about million times. The average animal in the
oceans today is 150 times larger in mass than the average one half a billion years
ago.

Smith et al., 2010: the maximum size of mammals increased (from 2 g to
190 t) near-exponentially after the C-T (Cretaceous-Paleogene) extinction of the
nonavian dinosaurs 65:5Ma ago; with little food, only small, no larger than a cat,
species survived on land. After this C-T event, homeothermic animals (mammals
and birds) radiated globally from northern Asia and became dominant.

The maximum size of insects also followed O2 level 350–150 Ma ago,
reaching 71 cm. Then it dropped (while O2 went up) with evolution of birds and
65 Ma ago with their specialization and evolution of bats. Larsson–Dececchi,
2013, explain the origin of birds by a change of body-to-limb length ratio in
Maniraptoran dinosaurs: the hind legs shrank, while forelimbs got long enough
to work as an airfoil. From 230–220 to 163Ma ago, theropods shrinked (
 0:5%
of mass) to first birds.

Evans et al., 2012, claim that an increase in size (100, 1000, 5000 times) of
land and marine mammals took 1:6, 5:1, 10 and 1, 1:3, 5 million generations,
respectively. Mouse-sized mammals evolved into elephant-sized ones during
24 million generations, but decreasing in size occurred about 30 times faster.

Clauset and Erwin, 2008: 60 Ma of mammalian body size evolution can
be explained by simple diffusion model of a trade-off between the short-term
selective advantages (Cope’s rule, common among mammals: a slight within-
lineage drift toward larger masses) and long-term selective risks of increased
size.

The size has costs as well as benefits; for example, reversals to unicellularity
occurred at least 5 times in cyanobacteria. It favors the individual but renders the
clade more susceptible to extinction via, for example, dietary specialization.

Large size enhances reproductive success, the ability to avoid predators and
capture prey, and improves thermal efficiency. In large carnivores, bigger species
dominate better over smaller competitors. Predator-prey mass ratio is typically
around 10. But, for example, cookiecutter shark, only 0.5–1 m in length, preys on
all larger animals in ocean, and the larvae of beetle Epomis preys on amphibians.

By mean body size (67 kg now and 50 kg in the Stone Age) humans are a small
megafauna (� 44 kg) species. A rapid average decline of 
 20% in size-related
traits was observed in human-harvested species.

Benthic (living on/in the bottom of a water body) animals are generally
classified according to size: microbenthos < 0:063 mm, meiobenthos 0.063–1
(or 0:5) mm, macrobenthos> 1 (or 0:5) mm and, sometimes, megabenthos> 10
mm.

Given below are the other main rules of large-scale Ecology involving body
size.
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Foster’s (or island) rule is a principle that size of members of a species
changes depending on the resources available in the environment. Damuth, 1993:
there is an optimum mammal body size 
 1 kg for energy acquisition, and so
island species should, in the absence of the usual competitors and predators,
evolve to it.

Insular dwarfism is an evolutionary trend of the reduction in size of large
mammals when their gene pool is limited to a very small environment (say,
islands). One explanation is that smaller animals need fewer resources and
reproduce faster.

Island gigantism is a form of natural selection where the size of animals
isolated on an island increases dramatically over generations due the removal of
constraints. Also, island bird species evolve smaller flight muscles and longer
legs.

Abyssal gigantism is a tendency of deep-sea species to be larger than their
shallow-water counterparts. For example, the colossal squid and the king-of-
herrings (giant oarfish) can reach 14 and 17 m in length. It can be adaptation
for scarcer food resources, greater pressure and lower temperature.

The lilliput effect is a reduction in the biota’s size after mass extinctions.
1 ıC of warming reduces the adult body mass of cold-blooded organisms

by 2:5% on average. For warm-blooded animals, Allen’s rule holds: those
from colder climates have shorter limbs than the equivalent ones from warmer
climates.

Rensch’s rule is that males are the larger sex in big-bodied species (such as
humans) and the smaller sex in small-bodied species (such as spiders). It holds for
plants also. Often, natural selection on females to maximize fecundity results in
female-biased sexual size dimorphism, whereas sexual selection for large males
promotes male-biased dimorphism. The males in some cichlid fish are up to 60
times larger than that of the females, while tremoctopus females may reach 2 m
versus the males, at most a few cm long.

Size-assortative mating (positive correlation between male and female size
among couples) has been found in crustaceans, insects, birds, reptiles, fishes and
humans, for which it is a part of homophily (tendency to associate and bond with
similar others). Humans have the largest, among apes, penises and breasts.

Cognitive and behavioral capacities do not correlate either with body or brain
size, nor with their ratio, which is, say, 1

7
; 1
40
; 1
2496

for small (0:06mg) ant, human
and shark. The encephalization quotient is the ratio of actual to predicted brain
mass for a given size animal; it is the record 7.4–7.8 for humans. The number
of neurons is 302; 85 � 109; 2 � 1011 in a nematode, human and elephant. Fish
with smaller brain have more offspring. Echinoderms (say, starfish) lack a brain
entirely.

Bromage et al., 2012, found a correlation between body mass and RI (repeat
interval), i.e., the number of days between adjacent striae of Retzius (incremental
growth lines seen in tooth) in primate’s enamel. RI is also represented by the
increments in bone. RI is an integer within Œ1; 11�; the mean RI is 8–9 in humans.
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The surface-to-volume ratio A
V is the main compactness measure for 3D

shapes in Biology. Higher A
V means increased exposure to the environment. It

permits smaller cells to gather nutrients and reproduce very rapidly. Also, smaller
animals in hot and dry climates lose heat better through the skin and cool the
body. But lower A

V (and so, larger size) improves temperature control: slower
heat loss or gain. Bergmann’s rule is a principle that, within a species, the body
size increases with colder climate. For example, Northern Europeans on average
are taller than Southern ones.

The Hutchinson’s ratio is the ratio of the size differences between competing
species when they were living together as compared to when they were isolated.

• Allometry
Allometry concerns relative change in structure or function of organisms

(within individuals, among individuals, and across groups/species) with change
in body size (length l, or mass M). The dependence of a biological variable Y on
body size is usually given by an empirical allometric scaling law, i.e., a power
function Y D Y0Mb or Y D Y0lb, where b is the scaling exponent and Y0 a
constant.

Geometrically similar (i.e., of the same basic shape) objects have proportional
relationships between surface area A, volume V , and length l, i.e., A0 D A. l0

l /
2

and V 0 D V. l0

l /
3, in terms of the square–cube law. Also, M0 D M. l0

l /
3 holds for

the mass M if a scaled-up object maintains the same density.
Isometric scaling occurs when the above proportions are preserved as size

changes. Frogs grow isometrically, as well as Ediacaran biota.
An isometrically scaling organism will have all V- (or M-), A-, and l-based

properties change to the power 1; 2
3
; 1
3

of M, respectively.
Allometric scaling is any change that deviates from isometry. Such scaling is

positive or negative if the value is larger or smaller than predicted by isometry.
Positive scaling occurs for some fishes, whose weight grows as about l3:325.

An example of negative allometric scaling is Kleiber’s law: metabolic rate
(V-based property) is proportional to M0:75 over 27 orders of magnitude, from
the molecular level up to the largest organisms. According to Garland, 1983, the
speed of mammals tend to increase as M0:17, and 119 kg is the optimal weight
for the fastest runner.

A unicellular organism of size l has metabolic activity roughly proportional
to cell volume (so, to l3) and flux of nutrient and energy dissipation proportional
to cell envelope area (so, to l2). Hence, l is close to their ratio. The size of viral
particles is roughly proportional to the third root of the genome size.

Let d;D denote mean size and distance between organisms. A proxy D
d of

animal abundance is very similar over a size span of 7 orders of magnitude. In
fact, D

d D 44�

3�
, 390�
40�

, 5:8mm
0:5mm , 35mm

5mm , 50 cm
5 cm , 300 cm

10 cm , 100m
1:5m , respectively, for bacteria,

amoeba, nematodes, antropodes, shrews, birds and large mammals.
• Size spectrum

The term size spectrum is used generally when comparing objects of a
given class, say, shoes or phones. But mainly, it is (Sheldon–Parsons, 1967) the
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relationship between body size of individuals and their abundance or biomass,
regardless of their species, in a given (aquatic or soil) size-based food web.

For a population, the main considered sizes (lengths or masses) are: maximal,
asymptotic (which individuals would reach if they were to grow indefnitely),
of maximal yield (with highest biomass) and average in maturity. Example
of corresponding size-spectrum models: Andersen and Beyer, 2006, derived
proportionality of the number of individuals of given species and size to their
asymptotic size raised to the power �2:05.

• Trophic distance
Given an ecosystem, its ecological network is a digraph in which species are

(biomass- or abundance-weighted) vertices with two of them being connected
by arc or edge if there is a trophic or, respectively, symbiotic interaction. A
community food web (or ecological pyramid) is a such digraph with only trophic
arcs.

The trophic distance from resource u to consumer v is the length of a shortest
food chain (directed .u � v/ path) if it exists,

The trophic level of a vertex v is 1 if it is a primary resource (usually, producer
as plants, algae, phytoplankton) and 1 plus the trophic level of its principal diet,
otherwise. The fractional tropic level of v is (Pauly–Palomares, 2005) 1 plus the
weighted average (using stomach contents) trophic level of all its food items.

The mean trophic level for fishery overall catch should be preserved to avoid
fishing down the food web, when fisheries in a given ecosystem deplete the large
predatory fish and end up with small fish and invertebrates.

In a size-based food web, the layers are defined by body-size class rather than
by trophic level. Community-based predator-prey body mass ratios (PPMR) and
energy transfer efficiency (TE) are key parameters in such webs. In marine food
webs, typically, PPMR 2 Œ100; 3000� and TE 2 Œ0:1; 0:13�, i.e., 10–13 % of prey
biomass is converted into predator production.

An energy and functional food webs are weighted digraphs where arcs
correspond to energy flow and interaction strength. Consumers at each level
convert to tissue about 10% of their food’s chemical energy.

• Insecticide distance effect
The main means of pest (termites, ants, etc.) control are chemical liquid

insecticides and repellents. The efficiency of an insecticide can be measured
by its all dead distance, i.e., the maximum distance from the standard toxicant
source within which no targeted insects are found alive after a fixed period.

The insecticide distance effect is that the toxicant is spread through the
colony because insects groom and feed each other. The toxicant should act slowly
in order to maximize this effect and minimize secondary repellency created by
the presence of dying, dead and decaying insects. Nearly all animals, when they
die, emit the same stench of fatty acids which acts as repellent and it is universal.
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23.4 Other Biological Distances

Here we collect the main examples of other notions of distance and distance-related
models used in Biology.

• Immunologic distance
An antigen (or immunogen, pathogen) is any molecule eliciting an immune

response. Once it gets into the body, the immune system either neutralizes its
pathogenic effect or destroys the infected cells. The most important cells in this
response are white blood cells: T-cells and B-cells responsible for the production
and secretion of antibodies (specific proteins that bind to the antigen).

When an antibody strongly matches an antigen, the corresponding B-cell is
stimulated to divide, produce clones of itself that then produce more antibodies,
and then differentiate into a plasma or memory cell. A secreted antibody binds to
an antigen, and antigen-antibody complexes are removed.

A mammal (usually a rabbit) when injected with an antigen will produce
immunoglobulins (antibodies) specific for this antigen. Then antiserum (blood
serum containing antibodies) is purified from the mammal’s serum. The produced
antiserum is used to pass on passive immunity to many diseases.

Immunological distance procedures (immunodiffusion and, the mainly used
now, micro-complement fixation) measure the relative strengths of the immuno-
logical responses to antigens from different taxa. This strength is dependent upon
the similarity of the proteins, and the dissimilarity of the proteins is related to the
evolutionary distance between the taxa concerned.

The index of dissimilarity id.x; y/ between two taxa x and y is the factor
r.x;x/
r.x;y/ by which the heterologous (reacting with an antibody not induced by it)
antigen concentration must be raised to produce a reaction as strong as that to the
homologous (reacting with its specific antibody) antigen.

The immunological distance between two taxa is given by

100.log id.x; y/C log id.y; x//:

It can be 0 for two closely related species. It is not symmetric in general.
Earlier immunodiffusion procedures compared the amount of precipitate

when heterologous bloods were added in similar amounts as homologous ones,
or compared with the highest dilution giving a positive reaction.

The name of the applied antigen (target protein) can be used to specify
immunological distance, say, albumin, transferring lysozyme distances. Propo-
nents of the molecular clock hypothesis estimate that one unit of albumin distance
between two taxa corresponds to 
 0:54 Ma of their divergence time, and that
one unit of Nei standard genetic distance corresponds to 18–20 Ma.

Adams and Boots, 2006, call the immunological distance between two
immunologically similar pathogen strains (actually, serotypes of dengue virus)
their cross-immunity, i.e., 1minus the probability that primary infection with one
strain prevents secondary infection with the other. Lee and Chen, 2004, define
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the antigenic distance between two influenza viruses to be the reciprocal of their
antigenic relatedness which is (presented as a percentage) the geometric meanq

r.x;y/
r.x;x/

r.y;x/
r.y;y/ of two ratios between the heterologous and homologous antibody

titers.
An antiserum titer is a measurement of concentration of antibodies found in a

serum. Titers are expressed in their highest positive dilution.
• Metabolic distance

Enzymes are proteins that catalyze (increase the rates of) chemical reactions.
The metabolic distance (or pathway distance) between enzymes is the

minimum number of metabolic steps separating two enzymes in the metabolic
pathways.

• Pharmacological distance
The protein kinases are enzymes which transmit signals and control cells

using transfer of phosphate groups from high-energy donor molecules to specific
target proteins. So, many drug molecules (against cancer, inflammation, etc.) are
kinase inhibitors (blockers). Designed drugs should be specific (say, not to bind
to � 95% of other proteins), in order to avoid toxic side-effects.

Given a set fa1; : : : ; ang of drugs in use, the affinity vector of kinase x is
defined as .� ln B1.x/; : : : ;� ln Bn.x//, where Bi.x/ is the binding constant for
the reaction of x with drug ai, and Bi.x/ D 1 if no interaction was observed.
The binding constants are the average of several experiments where the con-
centration of binding kinase is measured at equilibrium. The pharmacological
distance (Fabian et al., 2005) between kinases x and y is the Euclidean distance
.
Pn

iD1.ln Bi.x/� ln Bi.y//2/
1
2 between their affinity vectors.

The secondary structure of a protein is given by the hydrogen bonds
between its residues. A dehydron in a solvable protein is a hydrogen bond
which is solvent-accessible. The dehydron matrix of kinase x with residue-set
fR1; : : : ;Rmg is the m � m matrix ..Dij.x///, where Dij.x/ is 1 if residues Ri

and Rj are paired by a dehydron, and is 0, otherwise. The packing distance
(Maddipati–Fernándes, 2006) between kinases x and y is the Hamming distanceP

1�i;j�m jDij.x/ � Dij.y/j between their dehydron matrices; cf. base pair
distance among RNA structural distances. The environmental distance (Chen,
Zhang and Fernándes, 2007) between kinases is a normalized variation of their
packing distance.

Besides hydrogen bonding, residues in protein helices adopt backbone dihe-
dral angles. So, the secondary structure of a protein much depends on its
sequence of dihedral angles defining the backbone. Wang and Zheng, 2007,
presented a variation of Lempel–Ziv distance between two such sequences.

• Global distance test
The secondary structures of proteins are mainly composed of the ˛-helices,

ˇ-sheets and loops. Protein tertiary structure refers to the 3D structure of a single
protein molecule. The ˛ and ˇ structures are folded into a compact globule.

The global distance test (GDT) is a measure of similarity between two
(model and experimental) proteins x and y with identical primary structures
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(amino acid sequences) but different tertiary structures. GDT is calculated as the
largest set of amino acid residues’ ˛ carbon atoms in x falling within a defined
cutoff distance (Chap. 29) d0 of their position y.

For proteins, in order for this set to define all intermolecular stabilizing
(relevant short range) interactions, d0 D 0:5 nm is usually sufficient. Sometimes,
d0 D 0:6 nm, in order to include contacts acting through another atom.

• Migration distance (in Biomotility)
The migration (or penetration) distance, in cattle reproduction and human

infertility diagnosis, is the distance in mm traveled by the vanguard sperma-
tozoon during sperm displacement in vitro through a capillary tube filled with
homologous cervical mucus or a gel mimicking it. Sperm swim 1–4 mm/min.
90% of human sperm swim forward with small side-to-side movements, while

 5% swim in a faster-paced helical pattern and the remaining 
 5% swim in a
hyper-helical manner, where the sperm are more active but less directional.

Such measurements, under different specifications (duration, temperature,
etc.) of incubation, estimate the ability of spermatozoa to colonize the oviduct
in vivo.

In general, the term migration distance is used in biological measurements
of directional motility using controlled migration; for example, determining the
molecular weight of an unknown protein via its migration distance through a gel.

• Penetration distance
The penetration distance is a general term used in (especially, biological)

measurements for the distance from the given surface to the point where the
concentration of the penetrating substance (say, a drug) in the medium (say, a
tissue) had dropped to the given level. Several examples follow.

During penetration of a macromolecular drug into the tumor interstitium,
tumor interstitial penetration is the distance that the drug carrier moved away
from the source at a vascular surface; it is measured in 3D to the nearest vascular
surface.

During the intraperitoneal delivery of cisplatin and heat to tumor metastases
in tissues adjacent to the peritoneal cavity, the penetration distance is the depth
to which the drug diffuses directly from the cavity into tissues. Specifically, it is
the distance beyond which such delivery is not preferable to intravenous delivery.

It can be the distance from the cavity surface into the tissues within which
drug concentration is, for example, (a) greater, at a given time point, than that
in control cells distant from the cavity, or (b) is much higher than in equivalent
intravenous delivery, or (c) has a first peak approaching its plateau value within
1% deviation.

The penetration distance of a drug in the brain is the distance from the probe
surface to the point where the concentration is roughly half its far field value.

The penetration distance of chemicals into wood is the distance between
the point of application and the 5 mm cut section in which the contaminant
concentration is at least 3% of the total.

The forest edge-effect penetration distance is the distance to the point where
invertebrate abundance ceased to differ from forest interior abundance.
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Cf. penetration depth distance in Chap. 9, penetration depth in Chap. 24
and distance sampling in Chap. 17.

• Capillary diffusion distance
One of the diffusion processes is osmosis, i.e., the net movement of water

through a permeable membrane to a region of lower solvent potential. In the
respiratory system (the alveoli of mammalian lungs), oxygen O2 diffuses into the
blood and carbon dioxide CO2 diffuses out.

The capillary diffusion distance is, similarly to penetration distance,
a general term used in biological measurements for the distance, from the
capillary blood through the tissues to the mitochondria, to the point where the
concentration of oxygen has dropped to the given low level.

This distance is measured as the average distance from the capillary wall to
the mitochondria, or the distance between the closest capillary endothelial cell to
the epidermis, or in percentage terms, say, the distance where a given percentage
(95% for maximal, 50% for average) of the fiber area is served by a capillary.

Another practical example: the effective diffusion distance of nitric oxide NO
in microcirculation in vivo is the distance within which N concentration is greater
than the equilibrium dissociation constant of the target enzyme for oxide action.

Cf. the immunological distance for immunodiffusion and, in Chap. 29, the
diffusion tensor distance among distances in Medicine.

• Főrster distance
FRET (fluorescence resonance energy transfer; Főrster, 1948) is a distance-

dependent quantum mechanical property of a fluorophore (molecule component
causing its fluorescence) resulting in direct nonradiative energy transfer between
the electronic excited states of two dye molecules, the donor fluorophore and
a suitable acceptor fluorophore, via a dipole. In FRET microscopy, fluorescent
proteins are used as noninvasive probes in living cells since they fuse genetically
to proteins of interest.

The efficiency of FRET transfer depends on the square of the donor electric
field magnitude, and this field decays as the inverse sixth power of the intermolec-
ular separation (the physical donor-acceptor distance). The distance at which this
energy transfer is 50% efficient, i.e., 50% of excited donors are deactivated by
FRET, is called the Főrster distance of these two fluorophores.

Measurable FRET occurs only if the donor-acceptor distance is less than 
 10

nm, the mutual orientation of the molecules is favorable, and the spectral overlap
of the donor emission with acceptor absorption is sufficient.

• Gendron–Lemieux–Major distance
The Gendron–Lemieux–Major distance (2001) between two base-base

interactions, represented by 4� 4 homogeneous transformation matrices X;Y, is

S.XY�1/C S.X�1Y/
2

;

where S.M/ D p
l2 C .�=˛/2, l is the translation length, � is the rotation angle,

and ˛ is a scaling factor between the translation and rotation contributions.
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• Spike train distances
A human brain has 85 � 109 neurons (nerve cells) each communicating

with an average 1000 other neurons dozens of times per second. Most neurons
are capable of making 104–106 individual microconnections. One human brain,
using 
 1015 synapses, produces 
 6:4 � 1018 nerve impulses per second.

The neuronal response to a stimulus is a continuous time series. It can be
reduced, by a threshold criterion, to a simpler discrete series of spikes (short
electrical pulses). A spike train is a sequence x D .t1; : : : ; ts/ of s events
(neuronal spikes, or heart beats, etc.) listing absolute spike times or interspike
time intervals. The main distances between spike trains x D x1; : : : ; xm and
y D y1; : : : ; yn follow.

1. The spike count distance is defined by

jn � mj
maxfm; ng :

2. The firing rate distance is defined by

X

1�i�s

.x0
i � y0

i/
2;

where x0 D x0
1; : : : ; x

0
s is the sequence of local firing rates of train x D

x1; : : : ; xm partitioned in s time intervals of length Trate.
3. Let �ij D 1

2
minfxiC1 � xi; xi � xi�1; yiC1 � yi; yi � yi�1g and c.xjy/ D

Pm
iD1

Pn
jD1 Jij, where Jij D 1 if 0 < xi � yi � �ij, D 1

2
if xi D yi and

D 0, otherwise. The event synchronization distance (Quiroga et al., 2002)
is defined by

1 � c.xjy/C c.yjx/p
mn

:

4. Let xisi.t/ D minfxi W xi > tg � maxfxi W xi < tg for x1 < t < xm, let
I.t/ D xisi.t/

yisi.t/
� 1 if xisi.t/ � xisi.t/ and I.t/ D 1 � yisi.t/

xisi.t/
, otherwise. The time-

weighted and spike-weighted ISI distances (Kreuz et al., 2007) are

Z T

0

jI.t/jdt and
mX

iD1
jI.xi/j:

5. Various information distances were applied to spike trains: the Kullback–
Leibler distance, and the Chernoff distance (Chap. 14). Also, if x and y are
mapped into binary sequences, the Lempel–Ziv distance and a version of the
normalized information distance (Chap. 11) are used.

6. The Victor–Purpura distance (1996) is a cost-based editing metric (i.e., the
minimal cost of transforming x into y) defined by the following operations
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with their associated costs: insert a spike (cost 1), delete a spike (cost 1),
shift a spike by time t (cost qt); here q > 0 is a parameter. The fuzzy
Hamming distance (Chap. 11), introduced in 2001, identifies cost functions
of shift preserving the triangle inequality.

7. The van Rossum distance, 2001, is defined by

sZ 1

0

. ft.x/ � ft.y//2dt;

where x is convoluted with h.t/ D 1
�
e�t=� and � 
 12 ms (best); ft.x/ DPm

0 h.t � xi/. This and above distances are the most commonly used metrics.
8. Given two sets of spike trains labeled by neurons firing them, the Aronov

et al. distance (2003) between them is a cost-based editing metric (i.e., the
minimal cost of transforming one into the other) defined by the following
operations: insert or delete a spike (cost 1), shift a spike by time t (cost qt),
relabel a spike (cost k), where q; k > 0 are parameters.

• Bursting distances
Bursts refers to the periods in a spike train when the spike frequency is

relatively high, separated by periods when it is relatively low or spikes are absent.
Given neurons x1; : : : ; xn and SBEs (synchronized bursting events) Y1; : : : ;Ym

with similar patterns of neuronal activity, let Cij denote the cross-correlation
between the activity of a neuron in Yi and Yj maximized over neurons, and let
Cij denote the correlation between neurons xi and xj averaged over SBEs.

Baruchi and Ben-Jacob, 2004, defined the interSBE distance between Yi and
Yj and the interneuron distance between xi and xj by 1

m .
Pm

sD1.Cis � Cjs/2/
1
2 and

1
n .
Pn

sD1.Cis � Cjs/
2/

1
2 , respectively.

• Long-distance neural connection
Unlike Computing, neural systems are not exclusively optimized for minimal

global wiring, but for a variety of factors including the minimization of pro-
cessing steps. Kaiser and Hilgetag, 2006, showed that, due to the existence of
long-distance projections, the total wiring among 95 primate (Macaque) cortical
areas could be decreased by 32%, and the wiring of neuronal networks in the
nematode C. elegans could be reduced by 48% on the global level. For example,
> 10% of the primate cortical projections connect components separated by
> 40 mm, while 69 mm is the maximal possible distance. For the global C.
elegans network, some connections are almost as long as the entire organism.

Long-distance and long-lasting neural connections may be the architecture
linking the separate regions/processes together during a single global conscious
state.

In autism there are more local connections and more local processing,
while the psychosis/schizophrenia spectrum is marked by more long-distance
connections.
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About 5%; 10%; 6:7% of variation in individual intelligence is predicted
by activity level in LPFC (lateral prefrontal cortex), by the strength of neural
pathways connecting left LPFC to the rest of the brain and by overall brain size.

• Long-distance cell communication
Human cell size is within [4–135]�m; typically, 10 �m. In gap junctions, the

intercellular spacing is reduced from 25–450 nm to a gap of 1–3 nm, bridged by
hollow tubes. Animal cells may communicate locally, either directly through gap
junctions, or by cell-cell recognition (in immune cells), or (paracrine signaling)
using messenger molecules that travel, by diffusion, only short distances. Mam-
mal’s, astrocytes form, via gap junctions, a network of neurons and vasculature.
Neurons may use interferon signals transmitted over great distances to fend off
viral infection.

In synaptic signaling, the electrical signal along a neuron’s axon triggers the
release of a neurotransmitter to diffuse across the synapse through a gap junction.
Signal transmission through the nervous system is a long-distance signaling.
Slower long-distance signaling is done by hormones transported in the blood.
A hormone reaches all parts of the body, but only target cells have receptors for
it.

Another means of long-distance cell communication, via TNTs (tunneling
nanotubes), was found in 1999. TNTs are membrane tubes, 50–200 nm thick with
length up to several cell diameters. Cells can send out several TNTs, creating a
network lasting hours. TNTs can carry cellular components and pathogens (HIV
and prions). Also, electrical signals can spread bidirectionally between TNT-
connected cells (over distances 10–70 �m) through interposed gap junctions.

Some bacteria gain energy by oxidizing H2S via electron transfer, hundreds of
cell-lengths away. Thousands of Desulfobulbus form cm-long conductive chains,
transporting electrons from H2S-rich marine sediment to the upper O2-rich one.

• Length constant
In an excitable cell (nerve or muscle), the length constant is the distance

over which a nonpropagating, passively conducted electrical signal decays to 1
e

(36:8%) of its maximum.
During a measurement, the conduction distance between two positions on a

cell is the distance between the first recording electrode for each position.
• Ontogenetic depth

The ontogenetic depth (or egg-adult distance) is (Nelson, 2003) the number
of cell divisions, from the unicellular state (fertilized egg) to the adult metazoan
capable of reproduction (production of viable gametes).

The mitotic length is the number of intervening mitoses, from the normal
(neither immortal nor malignant) cells in the immature precursor stage to their
progeny in a state of mitotic death (terminal differentiation) and phenotypic
maturity.

Adult humans produce daily 
 200 billion red cells, 100 billion neutrophils
and 50 billion other cells. About 7 � 1015 mature cells are produced in a human
lifetime and these could be produced in 53 cell generations (253 
 9 � 1015).
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• Interspot distance.
A DNA microarray is a technology consisting of an arrayed series of thou-

sands of features (microscopic spots of DNA oligonucleotides, each containing
picomoles of a specific DNA sequence) that are used as probes to hybridize a
target (cRNA sample) under high-stringency conditions. Probe-target hybridiza-
tion is quantified by fluorescence-based detection of fluorophore-labeled targets
to determine the relative abundance of nucleic acid sequences in the target.

The interspot distance is the spacing distance (Chap. 29) between features.
Typical values are 375, 750, 1500 micrometers (1�m D 10�6 m).

• Read length
In gene sequencing, automated sequencers transform electropherograms

(obtained by electrophoresis using fluorescent dyes) into a four-color
chromatogram where peaks represent each of the DNA bases A, T, C, G.
Chromosomes stained by some dyes show a 2D pattern of traverse bands of
light and heavy staining.

The read length is the length, in the number of bases, of the sequence
obtained from an individual clone chosen. Computers then assemble those short
blocks into long continuous stretches which are analyzed for errors, gene-coding
regions, etc.

• Action at a distance along DNA/RNA
An action at a distance along DNA/RNA happens when an event at one

location on a molecule affects an event at a distant (say, more than 2500 base
pairs) location on the same molecule.

Many genes are regulated by distant (up to a million bp away and, possi-
bly, located on another chromosome) or short (30–200 bp) regions of DNA,
enhancers. Enhancers increase the probability of such a gene to be transcribed
in a manner independent of distance and position (the same or opposite strand of
DNA) relative to the transcription initiation site (the promoter).

DNA supercoiling is the twisting of a DNA double helix around its axis, once
every 10:4 bp of sequence (forming circles and figures of eight) because it has
been bent, overwound or underwound. Such folding puts a long range enhancer,
which is far from a regulated gene in genome distance, geometrically closer to
the promoter.

The genomic radius of regulatory activity of a genome is the genome distance
of the most distant known enhancer from the corresponding promoter; in the
human genome it is 
 106 bp (for the enhancer of SSH, Sonic Hedgehog gene).

There is evidence that genomes are organized into enhancer-promoter loops.
But the long range enhancer function is not fully understood yet.

Similarly, some viral RNA elements interact across thousands of intervening
nucleotides to control translation, genomic RNA synthesis and mRNA transcrip-
tion.

Genes are controlled either locally (from the same molecule) by specialized
cis regulators, or at a distance by trans regulators. Comparing genes in key brain
regions of human and primates, the most drastic changes were found in trans-
controlled genes.
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• Length variation in 5-HTTLPR
5-HTTLPR is a repeat polymorphic region in SLC6A4, the gene (on chromo-

some 17) coding for SERT (serotonin transporter) protein. This polymorphism
has short (14 repeats) and long (16 repeats) variations. So, an individual can
have short/short, short/long, or long/long genotypes at this location in the DNA.

A short/short allele leads to less transcription for SLC6A4, and its carriers
are more attuned and responsive to their environment; so, social support is more
important for their well-being. They have less gray matter, more neurons and a
larger thalamus. Whereas 2

3
of East Asians have the short/short variant, only 1

5
of

Americans and Western Europeans have it.
Other gene variants of central neurotransmitter systems—dopamine receptor

(DRD4 7R), dopamine/serotonin breaking enzyme (MAOA VNTR) and �-opioid
receptor (OPRM1 A118G)—are also associated with novelty-seeking, plasticity
and social sensitivity. They appeared < 0:08Ma ago and spread into 20–50 % of
the population. They generate anxiety and aggression, but could be selected for
extending behavioral range and boosting resilience at the group level.

• ER-mitochondria distance
The endoplasmic reticulum (ER) is a large membrane-bound compartment

spread throughout the cytoplasm of eukaryotic cells. The interface between
mitochondria and ER is a crucial hub for bidirectional communication regulating
mitochondrial energy, lipid biosynthesis, calcium Ca2+ signalling, and cell death.

Mitochondria are surrounded by tubules of the ER that lie preferentially within
200 nm apart, whereas 20% of the mitochondrial surface is in direct contact with
the ER. Mitochondria and ER are physically coupled by protein tethers. The size
of these bridges between the two organelles are 10–25 nm in length. Altering this
physical ER-mitochondria distance leads inevitably to cell dysfunction.

When this distance is decreased, Ca(2+) overload occurs both in the cytosol
and mitochondria. Qi–Shuai, 2016, proposed that the resultant death of neurons,
which are responsible for memory and cognition, contributes to Alzheimer’s
disease.

• Telomere length
The telomeres are the caps of repetitive DNA sequences (.TTAGGG/n in

vertebrates cells) at both ends of each linear chromosome in the cell nucleus.
They are long stretches of noncoding DNA protecting coding DNA. The number
n of TTAGGG repeats is called the telomere length (TL); it is 
2000 in humans.
TL is a robust indicator of biological age and a prognostic marker of disease risk.
A limit of life—about 120 years—can be defined by TL in blood stem cells.

Every time a normal cell divides, its telomeres shorten (due to incomplete
lagging strand DNA synthesis) and eventually they are so short that cell stops
dividing, self-destructs, or tries to self-replicate and creates cancer. The Hayflick
limit is the maximal number of divisions beneath which a normal cell will stop
dividing, because of shortened telomeres or DNA damage, and die; for humans
it is about 52.

Human telomeres are 15–20 kb in length at birth and shorten gradually
throughout life in dividing cells: they lose 
 100 bp, i.e., 16 repeats, at each
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mitosis (i.e., every 20–180 min). But telomere length can increase: by transfer of
repeats between telomers or by synthesizing new telomeric DNA from either an
RNA template using the enzyme telomerase, or a DNA template using alternative
lengthening of telomeres (ALT). In humans, telomerase acts only in germ, stem
or actively dividing tumor cells; ALT occurs only in cancer cells.

Hydras, lobsters, planarian flatworms, trees maintain telomere lengths. Also,
bacterial colonies and Turritopsis dohrnii, whose medusa form can revert to the
polyp stage, are biologically immortal, i.e., there is no aging (sustained increase
of mortality rate with age) since the Hayflick limit does not apply. Animals with
negligible aging die mainly because of growth: they lose agility to get food. The
oldest living animals are some sponges and black corals: 2000–10,000 years. The
oldest known cell line is 11;000 years-old canine transmissible venereal tumor.

Phenoptsis is genetically programmed death of organism. It acts quickly in
semelparous (capable of only single reproduction) species, say, Pacific salmon,
cicada, mayflies, annual plants and some bamboo, arachnids, squids. Extreme
examples: the male praying mantis ejaculates only after being decapitated by the
female, and the Adactyllidium tick larvae kill their mother eating her from the
inside out.

Aging is slow phenoptsis in other species. The telomere shortening is one
of its main mechanisms. Vascular disease, osteoarthritis, cancer and menopause
are other means of human phenoptsis. Human mortality doubles every 8 years.
Mortality rate of people with cancer behave as if the cancer had aged them by
15 years.

• Gerontologic distance
The gerontologic distance between individuals of ages x and y from a

population with survival fraction distributions S1.t/ and S2.t/, respectively, is
defined by

j ln
S2.y/

S1.x/
j:

A function S.t/ can be either an empirical distribution, or a parametric one
based on modeling. The main survival functions S.t/ are: N.t/

N.0/ (where N.t/ is the

number of survivors, from an initial population N.0/, at time t), ekt (exponential

model), e
a
b .1�ebt/ (Gompertz model), and e� atbC1

bC1 (Weibull model); here a and b
are, respectively, age independent and age dependent mortality rate coefficients.

But late-life mortality deceleration was observed for humans and fruit flies:
the probability that organism’s somatic cells become senescent tends to be
independent of its age in the long-time limit. The one-year probability of death
at advanced age asymptotically approaches 44% for women and 54% for men.
Such a plateau is typical for many Markov processes. Human species-specific
life span (age at which death rates of different populations converge) is close to
95 years.
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Since 1840, life expectancy has risen linearly: almost three months per year
for women and more slowly for men. But the age of super-long livers is linked to
their genes rather than their lifestyle; at least 100 genes are linked to longevity.

Distances are used in Human Gerontology also to model the link between
geographical distance and contact between adult children and their elderly
parents.

Aging/death are adaptive species-specific trade-offs with reproduction. But
the Akela effect (long post-reproductory period with intergenerational transfers)
was observed, besides humans, in two species of toothed whales, Asian ele-
phants, social aphids and, in zoo, Japanese macaques and chimpanzees.

• Distance to death
80% of the persons, who die in any one year, are age 65 or older. Elderly

persons think and talk readily about death, but perceived temporal nearness of it
is not quantified by 
 50% of them. Still this proximity determines one’s attitude
on it.

Gerstorf et al., 2008: relative to age-related decline, mortality-related one (i.e.,
distance to death) in reported life satisfaction account for more variance in the
change of subjective well-being. At a point about 4 years before death of an
old, i.e., 70C years, person, this decline showed a 2-fold increase (3-fold for the
oldest old, i.e., 85C years) in steepness relative to the preterminal phase.

Bosworth et al., 1999: distance to death explains much of the variance
in intellectual performance (verbal meaning, psychomotor speed, spatial and
reasoning abilities) associated with age. Higher baseline intelligence test scores
are associated with reduced risk of mortality and reduced effects of impending
death on cognition.

The terminal drop hypothesis (Riegel–Riegel, 1972) states that death is
preceded by a decrease in cognitive (especially, verbal) functioning over an 
 5

years period.
The cascade model (Birren–Cunningham, 1985) posits primary (normal), sec-

ondary (disease-related) and tertiary (distance to death) aging, which influence 3-
rd, 2–3-rd and 1–3-rd, respectively, classes of intellectual function: cristallilized
abilities (to think logically and solve problems knowledge-independently), fluid
abilities (to use skills, knowledge and experience) and perceptual speed.

Borjigin et al., 2013, observed neural correlates of heightened conscious
processing at near-death: a surge 30 s of coherence and connectivity in the dying
rat’s brain.

Micromort and microlife are the units of risk: 10�6 probability of death and
half an hour (
 10�6-th of 57 years) change of life expectancy, respectively.

The farthest from Earth that any human has died is about 167 km, when three
cosmonauts on Soyuz 11 suffered a depressurization accident while returning
to Earth. They were moving at about 7755 m/sec at the time, which is also the
highest forward speed at which any human has ever died.
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• Distance running model
Bipedality is a key behavior of hominins which appeared 6–4.2 Ma ago. It

allowed australopithecines to see approaching danger further off, to walk long
distances and to use hands for gathering food. Our genus Homo emerged 
 2:5

Ma ago.
The distance running model anthropogenesis, proposed in [BrLi04], claims

that our capacity to run long distances in the savanna arised, prior to the invention
of the spear, as adaptation for persistence hunting (by running prey to exhaustion)
and scavenging (allowing to compete for widely dispersed carcasses).

This model specifies how endurance running defined the human body form,
producing balanced head, low/wide shoulders, narrow chest, short forearms and
heels, large hip, etc. Even now, a good athlete can run at 20 km/h for several
hours which is comparable to endurance specialists as, say, zebras and antelopes.
By sweating we can dissipate body heat faster than any other large mammal
and reach large sustainable distance. The capacity of humans to travel vast
distances using little energy contributed also to the evolution of their complex
social networks.

• Distance coercion model
The distance coercion model ([OkBi08]) of the origin of uniquely human

kinship-independent cooperation see all complex symbolic speech, cognitive
virtuosity, transmission of fitness-relevant information, etc. as elements and
effects of this cooperation catalyzed by advances in lethal projectile weapons.

The model argues that such cooperation can arise only as a result of the pursuit
of individual self-interest by animals who can project “death from a distance”.

Among rare organisms able to project coercive threat remotely, humans are
the most efficient on long distances, say, to kill adult conspecifics up to 18–27 m
by throwing a spear and up to 91 m by a bow. The chimpanzee and Neanderthal
also could throw objects but not with human’s precision.

The model posits that this capacity, permitting to repel predators and scavenge
their kills in the African savanna, briefly preceded the emergence of brain
expansion and social support. Comparing with Neanderthals, evidence of a huge
number of injuries suggests that their hunting involved dangerously close contact
with large prey animals; they used conventional spears rather than true projectile
weapons.

Throwing and language capacities enabled humans to survive rapid climatic
and environmental changes, to spread and to become the dominant large-
scale species on the planet. Historical increases in social cooperation could be
associated with prior acquisition of a new coercive technology; for instance, the
bow and agricultural civilizations, gunpowder weaponry and the modern state.
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Humans are most efficient enforcers of cooperation (even relying mainly on
indirect cues): our cognitive abilities expanded the range of situations in which
cooperation can be favored. Also, while the strong reciprocity (generous third-
party enforcement) is prevalent in large societies, Marlowe et al., 2012, claim that
motivated by the basic emotion of anger, humans-special tendency to retaliate
on their own behalf, even at a cost, is sufficient to explain the origin of human
cooperation.

• Distance model of altruism
In Evolutionary Ecology, altruism is explained by kin selection, reciprocity,

sexual selection, etc. The cooperation between nonrelatives was a driving force in
some major transitions (say, from symbiotic bacteria to mitochondria, eukaryotes
or multicellular organisms). Individual selection, including social selection in
which fitness is influenced by the behaviors of others, interacts with group
selection.

The distance model of altruism ([Koel00]) claims that altruists spread
locally, i.e., with small interaction distance and offspring dispersal distance,
while the egoists invest in increasing of those distances. The intermediate
behaviors are not maintained, and evolution will lead to a stable bimodal spatial
pattern.

• Distance grooming model of language
In primates, being groomed produces mildly narcotic effects, because it

stimulates the production of the body’s natural opiates, the endogenous opioid
peptides. Kulahci et al., 2015, observed in lemurs vocal grooming-at-a-distance.

Language, according to Dunbar, 1993, evolved in archaic Homo sapiens
as more distance/time efficient replacement of social grooming. Their brain
size expanded 0:5 Ma ago from 900 cm3 in Homo erectus to 1300 cm3, and
they lived in large groups (over 120 individuals) requiring cohesion. Language
allowed them to produce the reinforcing, social-bonding effects of grooming-at-
a-distance and to use more efficiently the time available for social interaction.

Language achieves this through information transfer, gossip and emotional
means (say, laughter, facial expression, Duchenne smile). Many primate species
extensively use contact calls such as the long-distance pant-hoot call of chim-
panzees. Dunbar interprets such calls as a grooming-at-a-distance from which
language evolved. But gestures are far more likely precursor of language than
vocalizations.

He deduced (from the link between group and brain sizes in primates) that
human social networks tend to be structured in layers: 5 intimates (support
clique), 15 best friends (sympathy group), active network of “persons” (50 good
friends and 150 friends), 500 acquaintances, 1500 “people I recognize”. One
need to be in contact every week, month, half-year, year with groups 1–4,
respectively. A natural group size (Dunbar’s number) is 150 for humans and
50 for chimpanzees.
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Dunbar explain above sizes by cognitive and time constraints on the number
of relationships ego can maintain at a given level of intensity. The clique size
correlates with the highest achievable order of intentionality recursion, in which
mind states are reflexively attributed to others. 0-order means responses to stimuli
(as bacteria and computers); 1-st order: belief about the real or imagined world
(as most organisms with brains); 2-nd order: belief about the mental state of
others; i-th order: as, for i D 5, in the sentence “I think that you believe that I
suppose that we understand that Jane wants. . . ”. We operate usually at 3-rd and
sometimes at 4-th, 5-th, 6-th or 7-th order. Language is essential for 4-th order
recursion.



Chapter 24
Distances in Physics and Chemistry

24.1 Distances in Physics

Physics studies the behavior and properties of matter in a wide variety of contexts,
ranging from the submicroscopic particles from which all ordinary matter is made
(Particle Physics) to the behavior of the material Universe as a whole (Cosmology).

Physical forces which act at a distance (i.e., a push or pull which acts without
“physical contact”) are nuclear and molecular attraction and, beyond the atomic
level, gravity (completed, perhaps, by anti-gravity), static electricity, and mag-
netism. Last two forces can be both push and pull, depending on the charges
of involved bodies. The nucleon-nucleon interaction (or residual strong force) is
attractive but becomes repulsive at very small distances keeping the nucleons apart.
Dark matter is attractive while dark energy is repulsive (if they exist).

Distances on a relatively small scale are treated in this chapter, while large
distances (as in Astronomy and Cosmology) are the subject of Chaps. 25 and 26.

The distances having physical meaning range from 1:6�10�35 m (Planck length)
to 8:8 � 1026 m (estimated size of the observable Universe). We can see things
of about 10�4 � 1021 m and measure them within Œ10�18; 1026� m. The smallest
measurable distance, time and weight are 10�18 m (by LHC), 10�17 sec and 10�24 g.

The Theory of Relativity, Quantum Theory and Newtonian laws permit us to
describe and predict the behavior of physical systems in the range 10�15 � 1012

m, i.e., from proton to Solar System. Weakened description is still possible up to
1025 m.

The world appears Euclidean at distances less than about 1025 m (if gravitational
fields are not too strong). Relativity and Quantum Theory effects, governing Physics
on very large and small scales, are already accounted for in technology, say, of GPS
satellites and nanocrystals of solar cells.

© Springer-Verlag Berlin Heidelberg 2016
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• Moment
In Physics and Engineering, moment is the product of a quantity (usually,

force) and a distance (or a power of it) to some point associated with that quantity.
• Momentum

In classical mechanics, momentum p D . px; py; pz/ is the product mv of the
mass m and velocity vector v D .vx; vy; vz/ of an object.

In relativistic 4D mechanics, momentum-energy .E
c ; px; py; pz/, where c is the

speed of light and E D mc2 is energy, is compared with space-time .ct; x; y; z/.
• Displacement

In Mechanics, a displacement (or relative position) vector of a moving particle

from its initial position Pi to the final position Pf , is the vector
��!
PiPf D �������!

0.Pf � Pi/,
where O is a reference point (usually the origin of a coordinate system).

A displacement is the length jjPf � Pijj2 of this vector, i.e., the Euclidean
distance from Pi to Pf . It is never greater than the distance traveled by a particle.

• Acceleration distance
The acceleration distance is the minimum distance at which an object (or,

say, flow, flame), accelerating in given conditions, reaches a given speed.
• Mechanic distance

The mechanic distance is the position of a particle as a function of time t.
For a particle, moving linearly with initial position x0 and initial speed v0,

which is acted upon by a constant acceleration a, it and the speed are given by

x.t/ D x0 C v0t C 1

2
at2 and v.t/ D v0 C at:

So, the acceleration distance fallen under uniform acceleration a, in order
to reach a speed v, is v2

2a . A body is free falling if it is falling subject only
to acceleration g by gravity; the free fall distance (distance fallen by it) is
y.t/ D 1

2
gt2.

• Terminal distance
The terminal distance is the distance of an object, moving linearly in a

resistive medium, from an initial position to a stop.
If object’s initial position and speed are x0; v0, and the drag per unit mass in

the medium is proportional to speed with constant of proportionality ˇ, then the
position and speed of a body are given by

x.t/ D x0 C v0

ˇ
.1 � e�ˇt/ and v.t/ D x

0

.t/ D v0e
�ˇt:

The speed decreases to 0, and the body reaches a maximum terminal distance

xterminal D lim
t!1 x.t/ D x0 C v0

ˇ
:
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For a body, moving from initial position .x0; y0/ and speed .vx0 ; vy0 /, the position

.x.t/; y.t// is x.t/ D x0C vx0
ˇ
.1� e�ˇt/, y.t/ D .y0C vy0

ˇ
� g

ˇ2
/C vy0 ˇ�g

ˇ2
e�ˇt. The

horizontal motion ceases at a maximum terminal distance xterminal D x0 C vx0
ˇ

.
• Ballistics distances

Ballistics is the study of the motion of projectiles, i.e., bodies which are
propelled (or thrown) with some initial velocity, and then allowed to be acted
upon by the forces of gravity and possible drag.

The trajectory, range and height of a projectile are its parabolic path, total
horizontal distance traveled and maximum upward distance reached. If projectile
is launched on flat ground at velocity v and angle � to the horizontal, then at the
time t of motion, its horizontal and vertical positions are

x.t/ D vt cos � and y.t/ D vt cos � � 1

2
gt2:

So, the range, realized by the time of flight tof D 2v sin �
g , and height are

xmax D x.tof / D v2 sin 2�

g
and ymax D y.

1

2
tof / D v sin2 �

2g
;

which are maximized when � D �=4 and � D �=2, respectively.
The bullet drop is the height it loses, because of gravity, between leaving the

rifle and reaching the target. In order to ensure that the “zero” (point at which
the bullet’s path intersects with the LOS, line of sight, to the target) will be at
a specific range, the shooter should set (using a sight, device mounted on the
rifle) the bore angle between the rifle bore and the LOS. A properly adjusted rifle
barrel and sight are said to be zeroed (or sighted-in). The shooter zeroes rifle at a
standard zero range and then adjustments are made for other ranges.

The point-blank range is the distance at which the bullet is expected to strike
a target of a given size without adjusting the elevation of the firearm.

• Interaction distance
The impact parameter is the perpendicular distance between the velocity

vector of a projectile and the center of the object it is approaching.
The interaction distance between two particles is the farthest distance of

their approach at which it is discernible that they will not pass at the impact
parameter, i.e., their distance of closest approach if they had continued to move
in their original direction at their original speed.

The coefficient of restitution (COR) of colliding objects A;B is the ratio of
speeds after and before an impact, taken along its line. The collision is inelastic
if COR< 1. COR2 is the ratio of rebound and drop distances if A bounces off
stationary B.

• Mean free path (length)
The mean free path (length) of a particle (photon, atom or molecule) in a

medium measures its probability to undergo a situation of a given kind K; it
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is the average of an exponential distribution of distances until the situation K
occurs. In particular, this average distance d is called:

nuclear collusion length if K is a nuclear reaction;
interaction length if K is an interaction which is neither elastic, nor quasi-
elastic;
scattering length if K is a scattering event;
attenuation length (or absorption length) if K means that the probability
P.d/, that a particle has not been absorbed, drops to 1

e 
 0:368, cf. Beer-
Lambert law;
radiation length (or cascade unit) if K means that the energy of (high
energy electromagnetic-interacting) relativistic charged particles drops by the
factor 1

e ;
free streaming length if K means that particles become nonrelativistic.

In Gamma-ray Radiography, the mean free path of a beam of photons is the
average distance a photon travels between collisions with atoms of the target
material. It is 1

˛�
, where ˛ is the material opacity and � is its density.

• Neutron scattering length
In Physics, scattering is the random deviation or reflection of a beam of

radiation or a stream of particles by the particles in the medium.
In Neutron Interferometry, the scattering length a is the zero-energy limit of

the scattering amplitude f D � sin ı
k . Since the total scattering cross-section (the

likelihood of particle interactions) is 4�j f j2, it can be seen as the radius of a hard
sphere from which a point neutron is scattered.

The spin-independent part of the scattering length is the coherent scattering
length. In order to expand the scattering formalism to absorption, the scattering
length is made complex a D a0 � ia00.

Thomson scattering length is the classical electron radius 
 2:818 �
10�15 m.

• Inelastic mean free path
In Electron Microscopy, the inelastic mean free path (or IMFP) is the average

total distance that an electron traverses between events of inelastic scattering,
while the effective attenuation length (or EAL) is an experimental parameter
reflecting the average net distance traveled.

The EAL is the thickness in the material through which electron can pass with
probability 1

e that it survives without inelastic scattering. It is about 20% less than
the IMFP due to the elastic scatterings which deflect the electron trajectories.

Both are smaller than the total electron range which may be 10–100 times
greater.

• Sampling distance
In Electron Spectroscopy for chemical analysis, the sampling distance is the

lateral distance between areas to be measured for characterizing a surface, i.e.,
the volume from which the photo-electrons can escape.
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• Debye screening distance
The Debye screening distance (or Debye length, Debye–Hückel length) is

the distance over which a local electric field affects the distribution of mobile
charge carriers (for example, electrons) present in the material (plasmas and other
conductors).

Its order increases with decreasing concentration of free charge carriers, from
10�4 m in gas discharge to 105 m in intergalactic medium.

• Range of a charged particle
The range of a charged particle, passing through a medium and ionizing, is

the distance to the point where its energy drops to almost zero.
• Gyroradius

The gyroradius (or cyclotron radius, Larmor radius) is the radius of the
circular orbit of a charged particle in the presence of a uniform magnetic field.

• Radius of gyration
The radius of gyration of a body about a given axis is the distance from

this axis to the centre of gyration. It is the RMS (square root of the mean of the
squares) of the distances from the axis of rotation to all the points in the body.

• Inverse-square laws
An inverse-square law is any law stating that a quantity or intensity is

inversely proportional to the square of the distance d from its source.
Such law applies when some conserved quantity is evenly radiated outward

from a point source in 3D space. The intensity of radiation passing through any
unit area (directly facing the point source) is inversely proportional to d2, since
radiation is spread out over the surface area 4�d2 of a sphere.

Newton’s law of universal gravitation (checked above 6 � 10�5 m): the
gravitational attraction between two point-like masses m1, m2 at distance d is

G
m1m2

d2
;

where G D 6:67384.80/ � 10�11 m3kg�1s�2 is the Newton gravitational
constant.

The existence of extra dimensions, postulated by M-theory, will be checked
by LHC (Large Hadron Collider at CERN, near Geneva) based on the inverse
proportionality of the gravitational attraction in nD space to the .n �1/-th degree
of the distance between objects; if the Universe has a 4-th dimension, LHC will
find out the inverse proportionality to the cube of the small interparticle distance.

The effects of electric, magnetic, light, sound, and radiation phenomena also
follows, an inverse-square law for large d. Coulomb law: the force of attraction
or repulsion between two point-like objects with charges e1, e2 at distance d is
given by

ke
e1e2
d2

;
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where ke is the Coulomb constant depending upon the medium that the charged
objects are immersed in. The gravitational and electrostatic forces of two bodies
with Planck mass mP and e1 D e2 D 1 have equal strength.

The irradiance (power per unit area in the direction of propagation) of a
spherical wavefront (light, sound, etc.) radiating from a point source decreases
(assuming that there are no losses caused by absorption or scattering) inversely
proportional to the square d2 of the distance from the source (cf. distance decay
in Chap. 29). However, for a radio wave, it decrease like 1

d .
The far field is the region, where the emitter can be considered as a point

source (so, inverse-square law holds), usually at a distance of more than 5–10
times the source diameter; the near field is the region closer to source.

For light, the distance, from which far field starts, is called photometric
distance. Cf. Fraunhofer distance and, in Chap. 21, acoustics distances.

• Fraunhofer distance
The Maxwell equations, governing the field strength decay, can be approxi-

mated as d�3, d�2 and d�1 for three regions surrounding an radiating antenna:
the reactive near field, the radiating near field (or Fresnel region) and the far
field (or Fraunhofer region). Cf. inverse-square law. The Fresnel region begins
about at 0:62.D3

	
/
1
2 , where D is the largest dimension of the antenna and 	 is the

wavelength. The propagating waves start to dominate here, but only in the far
field the distribution of the diffracted energy no longer change with distance.

The Fraunhofer (or far field, Rayleigh) distance is 2D2

	
, the distance where

the far field begin. Cf. acoustic distances in Chap. 21.
In Optics, beam divergence is defined by its radius, i.e., for a Gaussian

beam, the distance from the beam propagation axis where intensity drops to
1
e2


 13:5% of the maximum. The beam’s waist (or focus) is the position on its
axis where the radius is at its minimum. The imaginary-distance BPM (Jevick–
Hermansson, 1989) refers to beam propagating the (complex electric) field along
the imaginary axis.

The beam’s Rayleigh length (or Rayleigh range) Rl is the distance from
the waist (in the propagation direction) where the radius increases from w0 top
2w0, i.e., the beam propagates without diverging much. For Gaussian beams,

Rl D �w20
	

, where 	 is the vacuum wavelength divided by the refractive index of
the material. The Rayleigh length divides the near-field and mid-field; it is the
distance from the waist at which the wavefront curvature is at a maximum. The
divergence really starts in the far field where the beam radius is at least 10Rl. The
confocal parameter (or depth of focus) of the beam is 2Rl. Cf. lens distances in
Chap. 28.

• Half-value layer
Ionizing radiation consists of highly-energetic particles or waves (especially,

X-rays, gamma rays and far ultraviolet light) which are progressively absorbed
during propagation through the surrounding medium, via ionization, i.e., remov-
ing an electron from some of its atoms or molecules. The half-value layer is the
depth within a material where half of the incident radiation is absorbed.
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A basic rule of protection against ionizing radiation exposure: multiplying the
distance from its source by a distance factor r decreases this exposure to 1

r2
of it.

In Maxwell Render light simulation software, the attenuation distance (or
transparency) is the thickness of object that absorbs 50% of light energy.

• Range of fundamental forces
The fundamental forces (or interactions) are gravity and electromagnetic,

weak nuclear and strong nuclear forces. The range of a force is considered short
if it decays (approaches 0) exponentially as the distance d increases.

Both electromagnetic force and gravity are forces of infinite range which obey
inverse-square laws. The shorter the range, the higher the energy. Both weak
and strong forces are very short range (about 10�17 m and 10�15 m, respectively)
which is limited by the uncertainty principle.

At subatomic distances, Quantum Field Theory describes electromagnetic,
weak and strong interactions with the same formalism but different constants.
Quantum Electrodynamics describes electromagnetism via photon exchanges
between charged particles and Quantum Chromodynamics describe strong inter-
actions via gluon exchanges between quarks. Strong interaction force grows
stronger with the distance. Three forces almost coincide at very large energy,
but at large distances they are irrelevant compared with gravity. The number of
fundamental particles increases on smaller distance scales. But at macroscopic
scales, those particles can collectively create emerging phenomena, say, super-
conductivity.

General Relativity has been probed from submillimeter up to Solar System
scales but at cosmological scale it require the presence of dark matter and dark
energy. Maxwell’s electromagnetism has been probed from atomic distances up
to 1:3 AU (order of the coherence lengths of the magnetic fields dragged by the
solar wind) but it does not explain magnetic fields found in galaxies, clusters and
voids.

At cosmological scale, the repulsive force of putative dark energy, due
to vacuum energy (or cosmological constant) overtakes gravity; cf. metric
expansion of space in Chap. 26. Dark energy is the only substance known to
act both on subatomic and cosmological scale. Its effect is measured only on a
scale larger than superclusters. Khoury–Weltman, 2004, in order to explain dark
energy, conjectured fifth force with range depending on density of matter in its
environment, say, 1 mm in Earth’s vicinity and 107 ly in cosmos. An alternative
to dark energy: possible, in String Theory, modifications of gravity at ultra large
distances (i.e., small curvatures) due to some specific compactification of extra
dimensions.

Alexander-Katz et al., 2016, found a new kind of long-range interaction
between particles, in a liquid medium, that is based entirely on their motions.
A small number of magnetic metal microparticles a few �m across, were
interspersed with a much larger quantity of inert particles of comparable size,
all suspended in water. When a rotating magnetic field was applied, the metal
particles would begin to spin and, even when separated by distances tens of times
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their size, would migrate toward each other, through a slow series of motions. The
attraction depends on the speed of spinning and amount of inert matter.

• EM radiation wavelength range
The wavelength is the distance 	 D c

f the wave travels to complete one cycle.
Electromagnetic (EM) radiation wavelength range is infinite and continu-

ous in principle. The limits of short and long waves are the vicinity of the Planck
length and the size of Universe, respectively.

The wavelengths are: < 0:01 nm for gamma rays, 0.01–10 nm for X-rays,
100–400 nm for ultraviolet, 400–780 nm for visible light, 0.78–1000 �m for
infrared (in lasers), 1–330 mm for microwave, 0.33–3000 m for radio frequency
radiation, > 3 km for low frequency, and 1 for static field.

Besides gamma rays, X-rays and far ultraviolet, the EM radiation is nonioniz-
ing, i.e., passing through matter, it only excites electrons: moves them to a higher
energy state, instead of removing them completely from an atom or molecule.

• Compton wavelength
Compton scattering is the scattering of (X-ray or gamma ray) photons by

electrons. It results in a decrease in energy (so, increase in wavelength) of the
photon.

Compton wavelength 	C.m/ and reduced Compton wavelength 	C.m/ of
a particle with rest mass m (where c is the speed of light, „ is the reduced Planck
constant h

2�
and lP;mP are Planck length and mass) are defined by

1

2�
	C.m/ D 	C.m/ D „

mc
D mP

m
lP:

• Radiation attenuation with distance
Radiation is the process by which energy is emitted from a source and

propagated through the surrounding medium. Radiant energy described in wave
terms includes sound and electromagnetic radiation, such as light, X-rays
and gamma rays. The incident radiation partially changes its direction, gets
absorbed, and the remainder transmitted. The change of direction is reflection,
diffraction, or scattering if the direction of the outgoing radiation is reversed,
split into separate rays, or randomized (diffused), respectively. Scattering occurs
in nonhomogeneous media.

In Physics, attenuation is any process in which the flux density, power
amplitude or intensity of a wave, beam or signal decreases with increasing
distance from the energy source, as a result of absorption of energy and scattering
out of the beam by the transmitting medium. It comes in addition to the
divergence of flux caused by distance alone as described by the inverse-square
laws.

Attenuation of light is caused mainly by scattering and absorption of photons.
The primary causes of attenuation in matter are the photoelectric effect (emission
of electrons), Compton scattering (cf. Compton wavelength) and pair produc-
tion (creation of an elementary particle and its antiparticle from a high-energy
photon).
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In Physics, absorption is a process in which atoms, molecules, or ions enter
some bulk phase—gas, liquid or solid material; in adsorption, the molecules
are taken up by the surface, not by the volume. Absorption of EM radiation is
the process by which the energy of a photon is taken up (and destroyed) by,
for example, an atom whose valence electrons make the transition between two
electronic energy levels. The absorbed energy may be re-emitted or transformed
into heat.

Attenuation is measured in units of decibels (dB) or nepers (
 8:7 dB)
per length unit of the medium and is represented by the medium attenuation
coefficient ˛. When possible, specific absorption or scattering coefficient is used
instead.

Attenuation (or loss) of signal is the reduction of its strength during trans-
mission. In Signal Propagation, attenuation of a propagating EM wave is called
the path loss. Path loss may be due to free-space loss, refraction, diffraction,
reflection, absorption, aperture-medium coupling loss, etc. of antennas. Path loss
in decibels is L D 10n lg d C C, where n is the path loss exponent, d is the
transmitter-receiver distance in m, and C is a constant accounting for system
losses.

The free-space path loss (FSPL) is the loss in signal strength of an EM wave
that would result from a line-of-sight path through free space, with no obstacles
to cause reflection or diffraction. FSPL is . 4�d

	
/2, where d is the distance from

the transmitter and 	 is the signal wavelength (both in m), i.e., in dB it is
10 lg .FSPL/ D 20 lg d C 20 lg f � 147:56, where f is the frequency in Hz.

• Beer–Lambert law
The Beer–Lambert law is an empirical relationship for the absorbance Ab of

a substance when a radiation beam of given frequency goes through it:

Ab D ˛d D � loga T;

where a D e or (for liquids) 10, d is the path length (distance the beam travels
through the medium), T D Id

I0
is the transmittance (Id and I0 are the intensity of

the transmitted and incident radiation), and ˛ is the medium opacity (or linear
attenuation coefficient, absorption coefficient); ˛ is the fraction of radiation lost
to absorption and/or scattering per unit length of the medium.

The extinction coefficient is 	w
4�
˛, where 	w is the same frequency wavelength

in a vacuum. In Chemistry, ˛ is given as �C, where C is the absorber concentra-
tion, and � is the molar extinction coefficient.

The optical depth is � D � ln Id
I0

, measured along the true (slant) optical path.
The penetration depth (or attenuation length, mean free path, optical

extinction length) is the thickness d in the medium where the intensity Id has
decreased to 1

e of I0; so, it is 1
˛

. Cf. half-value layer.
Also, in Helioseismology, the (meridional flow) penetration depth is the

distance from the base of the solar convection zone to the location of the first
reversal of the meridional velocity. In an information network, the message
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penetration distance is the maximum distance from the event message traverses
in the valid routing region.

The skin depth is the thickness d where the amplitude Ad of a propagating
wave (say, alternating current in a conductor) has decreased to 1

e of its initial
value A0; it is twice the penetration depth. The propagation constant is � D
� ln Ad

A0
.

The Beer–Lambert law can describe also the attenuation of solar or stellar
radiation. The main components of the atmospheric light attenuation are: absorp-
tion and scattering by aerosols, Rayleigh scattering (from molecular oxygen O2

and nitrogen Ni2) and (only absorption) by carbon dioxide CO2, O2, nitrogen
dioxide NiO2, water vapor, ozone O3. Cf. atmospheric visibility distances in
Chap. 25.

The sea is nearly opaque to light: less than 1% penetrates 100 m deep. Cf.
distances in Oceanography in Chap. 25. In Oceanography, attenuation of light
is the decrease in its intensity with depth due to absorption (by water molecules)
and scattering (by suspended fine particles). The transparency of the water in
oceans and lakes is measured by the Secchi depth dS at which the reflectance
equals the intensity of light backscattered from the water. Then ˛ D 10dS

17
is used

as the light attenuation coefficient in the Beer–Lambert law ˛d D � ln Id
I0

, in
order to estimate Id, the intensity of light at depth d, from I0, its intensity at the
surface.

In Astronomy, attenuation of EM radiation is called extinction (or reddening).
It arises from the absorption and scattering by the interstellar medium, the Earth’s
atmosphere and dust around an observed object.

The photosphere of a star is the surface where its optical depth is 2
3
. energy

emitted. The optical depth of a planetary ring is the proportion of light blocked
by the ring when it lies between the source and the observer.

• Atmospheric depth
The total absorption along a slanted path through matter of density � at

the angle � from the vertical is measured by the interaction depth, i.e.,
1

cos �

R
�.x/d.x/.

In particular, the atmospheric depth (or effective thickness of the atmosphere)
at altitude h is defined as

A.h/ D 1

cos �

Z 1

h
�.x/d.x/:

It is 
 11 times larger when the Sun is just above the horizon than at the shortest
path (solar zenith). Vertical A.h/ is approximatively equal to the pressure divided
by g D 9:8 m/s2.

• Arago distance
The Arago point is a neutral point (where the degree of polarization of

skylight goes to zero) located 
 20ı directly above the antisolar point (the point
on the celestial sphere that lies directly opposite the sun from the observer) in
relatively clear air and at higher elevations in turbid air.
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So, the Arago distance, i.e., the angular distance from the antisolar point
to the Arago point, is a measure of atmospheric turbidity (effect of aerosols in
reducing the transmission of direct solar radiation).

Another useful measure of turbidity is aerosol optical depth, i.e., the optical
depth due to extinction by the aerosol component of the atmosphere.

• Sound attenuation with distance
Vibrations propagate through elastic solids and liquids, including the Earth,

and consist of elastic (or seismic, body) waves and surface (occurring since
it acts as an solid-gas interface) waves. Elastic waves are: primary (P) wave
moving in the propagation direction of the wave and secondary (S) wave moving
in this direction and perpendicular to it. Surface waves are: the Love wave
moving perpendicular to the direction of the wave and the Rayleigh (R) wave
moving in the direction of the wave and circularly within the vertical surface
perpendicular to it. The attenuation of P- and S-waves is proportional to 1

d2
or

1
d , when propagated by the surface or inside of an infinite elastic body. For the
R-wave, it is proportional to 1p

d
.

Sound propagates through gas (say, air) as a P-wave and attenuates over a
distance, at a rate of 1

d2
. The far field (cf. Fraunhofer distance) is the part of a

sound field in which sound pressure (if it is the same in all directions) decreases
according to the inverse distance law 1

d ; but sound intensity decreases as 1
d2

.
In natural media, further weakening occurs from attenuation, i.e., scattering

(reflection of the sound in other directions) and absorption (conversion of the
sound energy to heat). Cf. critical distance among acoustics distances in
Chap. 21.

The sound extinction distance is the distance over which its intensity falls
to 1

e of its original value. For sonic boom intensities (say, supersonic flights),
the lateral extinction distance is the distance where in 99% of cases the sound
intensity is lower than 0.1–0.2 mbar (10–20 pascals) of atmospheric pressure. Cf.
earthquake extinction length in distances in Seismology (Chap. 25).

Water is transparent to sound. Sound energy is absorbed (due to viscosity)
and 
 6% of it is scattered (due to water inhomogeneities). Absorbed less, low
frequency sounds can propagate over large distances along lines of minimum
sound speed. High frequency waves attenuate more rapidly. So, low frequency
waves are dominant further from the source (say, a musical band or earthquake).

Attenuation of ultrasound waves with frequency f MHz at a given distance
r cm is ˛fr decibels, where ˛ is the attenuation coefficient of the medium. It
is used in Ultrasound Biomicroscopy; in a homogeneous medium (so, without
scattering) ˛ is 0:0022, 0:18, 0:85, 20, 41 for water, blood, brain, bone, lung,
respectively.

• Lighting distance
Sound travels through air at 330–350 m/s (depending on altitude, relative

humidity, pressure, etc.), while the speed of light is c 
 300 � 106 m/s. In fact,
structure of light pulses reduces their speed, even in a vacuum.
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So, the lighting distance (of a lightning bolt from an observer) in km is 
 1
3

of the delay, in seconds, between observer’s seeing it and hearing thunder.
• Optical distance

The optical distance (or optical path length) is a distance dn traveled by
light, where d is the physical distance in a medium and n D c

v
is the medium’s

refractive index (c; v are the speeds of an EM wave in a vacuum and in the
medium). By Fermat’s principle light follows the shortest optical path. Cf.
optical depth.

The light extinction distance is the distance where light propagating through
a given medium reaches its steady-state speed, i.e., a characteristic speed that it
can maintain indefinitely. It is proportional to 1

�	
, where � is the density of the

medium and 	 is the wavelength, and it is very small for most common media.
• Edge perimeter distance

In semiconductor technology, the edge perimeter distance is the distance
from the edge of a wafer (thin slice with parallel faces cut from a semiconductor
crystal) in a wafer carrier to the top face of the wafer carrier.

• Proximity effects
In Electronic Engineering, an alternating current flowing through an electric

conductor induces (via the associated magnetic field) eddy currents within the
conductor. The electromagnetic proximity effect is the “current crowding” which
occurs when such currents are flowing through several nearby conductors such as
within a wire. It increases the alternating current resistance (so, electrical losses)
and generates undesirable heating.

In Nanotechnology, the quantum 1
f proximity effect is that the 1

f fundamental
noise in a semiconductor sample is increased by the presence of another similar
current-carrying sample placed in the close vicinity.

The superconducting proximity effect is the propagation of superconductivity
through a NS (normal-superconductor) interface, i.e., a very thin layer of
“normal” metal behaves like a superconductor (that is, with no resistance) when
placed between two thicker superconductor slices.

In Lithography, if a material is exposed to an electronic beam, some molecular
chains break and many electron scattering events occur. Any pattern written by
the beam on the material can be distorted by this E-beam proximity effect.

In LECD (localized electrochemical deposition) technique for fabrication
of miniature devices, the electrode (anode) is placed close to the tip of a
fabricated structure (cathode). Voltage is applied and the structure is grown
by deposition. The LECD proximity effect: at small cathode-anode distances,
migration overcomes diffusion, the deposition rate increases greatly and the
products are porous.

In Atomic Physics, the proximity effect refers to the intramolecular inter-
action between two (or more) functional groups (in terms of group contributions
models of a molecule) that affects their properties and those of the groups located
nearby.

Cf. also proximity effect (audio) among acoustics distances in Chap. 21.
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The term proximity effect is also used more abstractly, to describe some
undesirable proximity phenomena. For example, the proximity effect in the
production of chromosome aberrations (when ionizing radiation breaks double-
stranded DNA) is that DNA strands can misrejoin if separated by less than 1

3
of

the diameter of a cell nucleus. The proximity effect in innovation process is the
tendency to the geographic agglomeration of innovation activity.

• Hopping distance
Hopping is atomic-scale long range dynamics that controls diffusivity and

conductivity. For example, oxidation of DNA (loss of an electron) generates a
radical cation which can migrate a long (more that 20 nm) distance, called the
hopping distance, from site to site before it is trapped by reaction with water.

• Atomic jump distance
In the solid state, the atoms are about closely packed on a rigid lattice. The

atoms of some elements (carbon, hydrogen, nitrogen), being too small to replace
the atoms of metallic elements on the lattice, are located in the interstices between
metal atoms and they diffuse by squeezing between the host atoms.

Interstitial diffusion is the only mechanism by which atoms can be transported
through a solid substance while, in a gas or liquid, mass transport is possible by
both diffusion and the flow of fluid (for example, convection currents).

The jump distance is the distance an atom is moved through the lattice in a
given direction by one exchange of its position with an adjacent lattice site.

Some crystals can jump 1000 times their own length under light, since light
energy rearranges atoms and builds strain, which is then explosively released.

The mean square diffusion distance dt from the starting point which a
molecule will have diffused in time t, satisfies d2t D r2N D r2�t D 2nDt, where
r is the jump distance, N is the number of jumps (equal to �t assuming a fixed
jump rate �), n D 1; 2; 3 for 1; 2; 3-dimensional diffusion, and D D �r2

2n is the
diffusivity in cm2/s.

In diffusion alloy bonding, a characteristic diffusion distance is the distance
between the joint interface and the site wherein the concentration of the diffusing
substance (say, aluminum in high carbon-steel) falls to zero up to a given error.

• Diffusion length
Diffusion is a process of spontaneous spreading of matter, heat, momentum, or

light: particles move to lower chemical potential implying concentration change.
In Microfluidics, the diffusion length is the distance from the point of initial

mixing to the complete mixing point where the equilibrium composition is
reached.

In semiconductors, electron-hole pairs are generated and recombine. The
(minority carrier) diffusion length of a material is the average distance a
minority carrier can move from the point of generation until it recombines with
majority carriers. Also, in electron transport by diffusion, the diffusion length
is the distance over which concentration of free charge carriers injected into
semiconductor falls to 1

e of its original value.
Cf. jump distance and, in Chap. 23, capillary diffusion distance.
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• Thermal diffusion length
The heat propagation into material is represented by the thermal diffusion

length, i.e., the propagation distance of the thermal wave producing an attenua-
tion of the peak temperature to about 0:1 of the maximum surface value.

The propagation of the laser-generated shock wave is approximated as blast
wave (instantaneous, massless point explosion). The expansion distance is the
distance between the surface of the target and the position of a blast wave; it
depends on the energy converted into the plasma state.

• Thermal entrance length
In heat transfer at a boundary (surface) within a fluid, the thermal entrance

length is the distance required for the Nusselt number (ratio of convective to
conductive heat transfer across normal to the boundary) associated with the pipe
flow to decrease to within 5% of its value for a fully developed heat flow.

• Distance-to-spot ratio
The distance-to-spot ratio of an infrared temperature sensing device is the

ratio of the distance to the object and the diameter of the tı measurement area.
• Bjerrum length

The Bjerrum length is the separation at which the electrostatic interaction
between two elementary charges is comparable in magnitude to the thermal
energy scale, kB;T, where kB is the Boltzmann constant and T is the temperature
in kelvin.

• Lagrangian radius
The Lagrangian radius of the particle is the distance from the explosion

center to a particle at the moment the shock front passes through it.
Cf. unrelated Lagrangian radii among the radii of a star system (Chap. 25).

• Reynolds number
For an object of a characteristic length (Chap. 29) l, flowing with mean relative

velocity v in a fluid (liquid or gas) of the density � and dynamic viscosity �, the
Reynolds number is the ratio Re D �vl

�
of inertial forces to viscous forces. The

flow is smooth (or laminar) if Re is low (viscous forces dominate), rough (or
turbulent) if Re is high (usually Re � 105) and transitional in between. In a
Stokes flow (laminar flow with very low Re), the inertial forces are negligible.

The law of the wall (von Kármán, 1930) states that the average velocity of a
turbulent flow close to the wall (boundary of the fluid region) is proportional to
ln yC, where the wall distance yC D u0

�
y is the distance y to the wall, made

dimensionless with the friction velocity u0 at the wall and fluid’s kinematic
viscosity �.

In swimming, Re is 10�5; 4�10�3; 10�1�10; 5�104 and 3�108 for bacterium,
spermatozoa, small zooplankton, large fish and whale, respectively. In flying, Re
is 30–4� 104 for insects, 103–105 for birds, 1:6� 106 for a glider and 2� 109 for
Boeing 747. Blood flow has Re D 10�3; 140; 500 and 3:4�103 in capillary, vein,
artery and aorta, respectively. Re is a dimensionless parameter, i.e., the units of
measurement in it cancel out. Examples of other such flow parameters follow.

The Mach number Ma is a ratio of the speed of flow to the speed of sound in
a fluid. Ma is ratio of inertia to compressibility (volume change as a response to
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a pressure). The flow is subsonic, supersonic, transonic or hypersonic if Ma <
1; 0:8 � Ma � 1:5 or Ma � 5, respectively. Ma governs compressible (i.e., those
with Ma > 0:3) flows.

The Froude number Fr D �p
gl

, where �; d; g are characteristic flow velocity,
depth and external field (usually, gravity), is the ratio of the flow inertia to the
external field; it governs open-channel flows. Alexander, 1984: legged animals
moving with the same Froude number have similar gait patterns and duty factors
(percentages of a stride when a foot touch the ground); cf. gait distances in
Chap. 29.

The lift L and drag D are perpendicular and, respectively, parallel (to the
oncoming flow direction) components of the force fluid flowing past the surface
of a body exerts on it. In a flight without wind, the lift-to-drag ratio L

D is
the horizontal distance traveled divided by the altitude lost. L

D is 4; 17; 20; 37
for cruising house sparrow, Boeing 747, albatross, Lockheed U-2, respectively.
Küchemann, 1978, found that range-maximizing L for high Ma is 
 4C 12

Ma .
• Turbulence length scales

Turbulence is the time dependent chaotic behavior of fluid flows. The turbu-
lent field consists of the superposition of interacting eddies (coherent patterns
of velocity, vorticity and pressure) of different length scales. The kinetic energy
cascades from the eddies of largest scales down to the smallest ones generated
from the larger ones through the nonlinear process of vortex stretching.

The turbulence length scales are measures of the eddy scale sizes in
turbulent flow. Such standard length scales for largest, smallest and intermediate
eddy sizes are called integral length scale, Kolmogorov microscale and
Taylor microscale, respectively. The corresponding ranges are called energy-
containing, dissipation and inertial range.

Integral length scale measures the largest separation distance over which
components of the eddy velocities at two distinct points are correlated; it depends
usually of the flow geometry. For example, the largest integral scale of pipe flow
is the pipe diameter. For atmospheric turbulence, this length can reach several
hundreds km. On intermediate Taylor microscale, turbulence kinetic energy is
neither generated nor destroyed but is transferred from larger to smaller scales.

At the smallest scale, the dynamics of the small eddies become independent of
the large-scale eddies, and the rate at which energy is supplied is equal to the rate
at which it is dissipated into heat by viscosity. The Kolmogorov length microscale
is given by � D . �

3

�
/
1
4 , where � is the average rate of energy dissipation per unit

mass and � is the kinematic viscosity of the fluid. This microscale describe the
smallest scales of turbulence before viscosity dominates.

Similarly, the Batchelor scale (usually, smaller) describes the smallest length
of fluctuations in scalar concentration before molecular diffusion dominates.

Quantum turbulence is the chaotic motion of quantum fluids (say, superfluids)
at high flow rates and close to absolute zero.
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Turbulence is well described by the Navier–Sokes equations. Clay Mathemat-
ics Institute list the investigation, whether those equations in 3D always have a
nonsingular solution, among the six US 1,000,000-valued open problems.

• Meter of water equivalent
The meter of water equivalent (mwe) of a material is the thickness of that

material that provides the equivalent shielding of 1 m of water.
Also, the mass balance of a glacier is reported in mwe as the ratio of the

volume (of water that would be obtained from melting the snow/ice) and area; it
gives the change of thickness in water depth.

Unrelated centimeter of water (cmH2O) is the pressure 
 98:1 Pa (pascals)
exerted by a column of water of 1 cm in height at 4ı at acceleration g. A similar
manometric unit of pressure is the millimeter of mercury (mmHg) 
 1 Torr 

133:3 Pa.

• Hydraulic diameter
For flow in a (in general, noncircular) pipe or tube, the hydraulic diameter

is 4A
P , where A is the cross-sectional area and P is the wetted perimeter, i.e., the

perimeter of all channel walls that are in direct contact with the flow.
So, in open liquid flow, the length exposed to air is not included in P. The

hydraulic diameter of a circular tube is equal to its inside diameter. The hydraulic
radius is (nonstandardly) defined as 1

4
of the hydraulic diameter.

• Hydrodynamic radius
The hydrodynamic radius (or Stokes radius, Stokes–Einstein radius) of a

molecule, undergoing diffusion in a solution (homogeneous mixture of two or
more substances), is the hypothetical radius of a hard sphere which diffuses with
the same rate as the molecule. Cf. the characteristic diameters in Chap. 29.

• Wigner–Seitz radius
The Wigner–Seitz radius is the radius of a sphere whose volume is equal to

the mean volume V
n D 1

n per particle in a solid; n is the particle density.

So, it is . 4
3�n /

1
3 an estimation of the mean interparticle distance.

• Chromatographic migration distances
In thin layer Chromatography, the solvent migration distance is the distance

dsl traveled by the front line of the liquid or gas entering a chromatographic bed
for elution (the process of using a solvent to extract an absorbed substance from
a solid medium). The migration distance of substance is distance dsb traveled
by the center of a spot. The retardation and retention factors are dsl

dsb
and dsl

dsb
� 1.

The retention distance is a measure of equal-spreading of the spots on the
chromatographic plate, defined via retention factors of sorted compounds.

• Droplet radii
Let A be a small liquid droplet in equilibrium with a supersaturated vapor,

i.e., a vapor which will begin to condense in the presence of nucleation centers.
Let �l; �v be the liquid and vapor density, respectively, and let pl; pv be the

liquid and vapor pressure. Let � and �0 be the actual value at the surface of
tension and planar limit value of surface tension. The capillarity radius Rc of A
is defined by the Young–Laplace equation �0

Re
D 1

2
. pl � pv/.
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The surface of tension radius (or Kelvin–Laplace radius, equilibrium
radius of curvature) Rs is defined by �

Rs
D 1

2
. pl � pv/. The reciprocal of Rs is the

mean curvature H D 1
2
.k1Ck2/ (cf. Chap. 8) of the Gibbs surface of tension, for

which the Young–Laplace equation holds exactly for all droplet radii.
The equimolar radius (or Gibbs adsorption radius) Re of A is the radius of

a ball of equimolar (i.e., with the same molar concentration) volume. Roughly,
this ball has uniform density �l in the cubic cell of density �v .

The Tolman length and the excess equimolar radius of the droplet A are
ı D Re � Rs and � D Re � Rc, respectively.

On the other hand, the cloud drop effective radius is a weighted mean of the
size distribution of cloud droplets.

• Dephasing length
Intense laser pulses traveling through plasma can generate, for example, a

wake (the region of turbulence around a solid body moving relative to a liquid,
caused by its flow around the body) or X-rays. The dephasing length is the
distance after which the electrons outrun the wake, or (for a given mismatch in
speed of pulses and X-rays) laser and X-rays slip out of phase.

• Healing length
A Bose–Einstein condensate (BEC) is a state of dilute gas of weakly inter-

acting bosons confined in an external potential, and cooled to temperatures near
absolute zero (0 K, i.e., �273:15 ıC), so that a large fraction of them occupy the
lowest quantum state of the potential, and quantum effects become apparent on a
macroscopic scale. Examples of BEC are superconductors (materials loosing all
electrical resistance if cooled below critical temperature), superfluids liquid states
with no viscosity) and supersolids (spatially ordered materials with superfluid
properties).

The healing length of BEC is the width of the bounding region over which
the probability density of the condensate drops to zero. For a superfluid, say, it is
a length over which the wave function can vary while still minimizing energy.

• Coupling length
In optical fiber devices mode coupling occurs during transmission by mul-

timode fibers (mainly because of random bending of the fiber axis). Between
two modes, a and b, the coupling length lc is the length for which the complete
power transfer cycle (from a to b and back) take place, and the beating length
z is the length along which the modes accumulate a 2� phase difference. The
resonant coupling effect is adiabatic (no heat is transferred) if and only if lc > z.
Furuya–Suematsu–Tokiwa, 1978, define the coupling length of modes a and b as
the length of transmission at which the ratio Ia

Ib
of mode intensities reach e2.

• Localization length
Generally, the localization length is the average distance between two

obstacles in a given scale.
The localization scaling theory of metal-insulator transitions predicts that, in

zero magnetic field, electronic wave functions are always localized in disordered
2D systems over a length scale called the localization length.
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• Thermodynamic length
Thermodynamic length (Weinhold, 1975) is a Riemannian metric defined on

a manifold of equilibrium states of a thermodynamic system.
It is a path function that measures the distance along a path in the state space.

Cf. the thermodynamic metrics in Chap. 7.
• Magnetic length

The magnetic length (or effective magnetic length) is the distance between
the effective magnetic poles of a magnet.

The magnetic correlation length is a magnetic-field dependent correlation
length.

• Correlation length
The correlation length (or correlation radius) is the distance from a point

beyond which there is no further correlation of a physical property associated
with that point. It is used mainly in statistical mechanics as a measure of the
order in a system for phase transitions (fluid, ferromagnetic, nematic).

For example, in a spin system at high temperature, the correlation length
is � ln d	C.d/

d where d is the distance between spins and C.d/ is the correlation
function.

In particular, the percolation correlation length is an average distance between
two sites belonging to the same cluster, while the thermal correlation length is an
average diameter of spin clusters in thermal equilibrium at a given temperature.
In second-order phase transitions, the correlation length diverges at the critical
point.

In wireless communication systems with multiple antennas, spatial correla-
tion is a correlation between a signal’s direction and the average received signal
gain.

• Long range order
A physical system has long range order if remote portions of the same

sample exhibit correlated behavior. For example, in crystals and some liquids,
the positions of an atom and its neighbors define the positions of all other atoms.

Examples of long range ordered states are: superfluidity and, in solids,
magnetism, charge density wave, superconductivity. Most strongly correlated
systems develop long range order in their ground state.

Short range refers to the finite correlation length, say, to the first- or second-
nearest neighbors of an atom.

The system has long range order, quasi-long range order or is disordered if
the corresponding correlation function decays at large distances to a constant, to
0 polynomially, or to 0 exponentially. Cf. long range dependency in Chap. 18.

• Spatial coherence length
The spatial coherence length is the propagation distance from a coherent

source to the farthest point where an electromagnetic wave still maintains
a specific degree of coherence. This notion is used in Telecommunication
Engineering (usually, for the optical regime) and in synchrotron X-ray Optics
(the advanced characteristics of synchrotron sources provide highly coherent X-
rays).
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The spatial coherence length is about 20 cm, 100 m and 100 km for helium-
neon, semiconductor and fiber lasers, respectively. Cf. temporal coherence length
which describes the correlation between signals observed at different moments
of time.

For vortex-loop phase transitions (superconductors, superfluid, etc.), coher-
ence length is the diameter of the largest thermally excited loop. Besides
coherence length, the second characteristic length (Chap. 29) in a superconduc-
tor is its penetration depth. If the ratio of these values (the Ginzburg–Landau
parameter) is <

p
2, then the phase transition to superconductivity is of second-

order.
• Decoherence length

In disordered media, the decoherence length is the propagation distance of a
wave from a coherent source to the point beyond which the phase is irreversibly
destroyed (for example, by a coupling with noisy environment).

• Critical radius
Critical radius is the minimum size that must be formed by atoms or

molecules clustering together (in a gas, liquid or solid) before a new-phase
inclusion (a bubble, a droplet, or a solid particle) is stable and begins to grow. Say,
when atoms, under changes in temperature, pressure or composition (doping),
get closer together in a solid, their electronic state levels broaden, overlap and
hybridize. At a certain critical distance, a Mott insulator-metal transition occurs.

• Binding energy
The binding energy of a system is the mechanical energy required to separate

its parts so that their relative distances become infinite. For example, the binding
energy of an electron or proton is the energy needed to remove it from the atom
or the nucleus, respectively, to an infinite distance.

In Astrophysics, gravitational binding energy of a celestial body is the energy
required to disassemble it into dust and gas, while the lower gravitational
potential energy is needed to separate two bodies to infinite distance, keeping
each intact.

• Metric theory of gravity
A metric theory of gravity assumes the existence of a symmetric metric

(seen as a property of space-time itself) to which matter and nongravitational
fields respond. Such theories differ by the types of additional gravitational fields,
say, by dependency or not on the location and/or velocity of the local systems.
General Relativity is one such theory; it contains only one gravitational field,
the space-time metric itself, and it is governed by Einstein’s partial differen-
tial equations. It has been found empirically that, besides Nordström’s 1913
conformally-flat scalar theory, every other metric theory of gravity introduces
auxiliary gravitational fields.

A bimetric theory of gravity is (Rosen, 1973) a metric theory of gravity in
which two, instead of one, metric tensors are used for, say, effective Riemannian
and background Minkowski space-times. But usually, rather two frames (not two
metric tensors) are considered. Cf. multimetric in Chap. 3.
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The Brans–Dicke theory is a metric theory of gravity, in which 1
G , where G is

the gravitational constant, is replaced by a scalar field. Another direct competitor
of General Relativity is affine Einstein–Cartan–Sciama–Kibble theory relaxing
the assumption that the metric be torsion-free and interpreting spin as affine tor-
sion. It supposes (Sakharov, 1967) Induced Gravity with space-time background
emerging as a mean field approximation of underlying microscopic degrees of
freedom. Such quantum gravity is implied by a World Crystal model of quantum
space-time.

Østvang, 2001, proposed a quasi-metric framework for relativistic gravity.
Classical physics adequately describes gravity only for masses of 10�23 �

1030 kg.
• Schwarzschild radius

The Schwarzschild radius of a mass m is the radius rs.m/ D 2Gm
c2

D 2m
mP

lP of
a sphere S such that, if m is compressed within S, it will become a Schwarzschild
(i.e., uncharged and with angular momentum zero) black hole, and so, the escape
speed from the surface of S would be the speed c of light.

For such hole, the radii of photon sphere (where photons are forced by gravity
to travel in circular orbits), of marginally bound orbit (where a test particle starts
to be gravitationally bound) and of marginally stable orbit (smallest circular orbit
for material, usually the inner edge of the accretion cloud) are 3

2
rg, 2rg and 3rg.

A typical (stellar) black hole has mass 
 6Mˇ (where Mˇ 
 1:98 � 1030 kg
denotes the solar mass), diameter 
 18 km, temperature 
 10�8 K and lifetime

 2 � 1068 years. The mass of Sgr A�, the black hole in the center of Milky
Way is 4� 106Mˇ; its radius is at most 12:5 light-hours (45 AU). The masses of
known stellar and supermassive black holes are within [3.8–15.7] and [5 � 104–
3� 1010] suns, respectively. Most black holes do not exceed 0:1% of the mass of
their host galaxies, but the one in NGC 1277 reached 17 � 109Mˇ (14% of this
galaxy’s mass).

The Schwarzschild radius of H1821+643 (black hole with largest precisely
measured mass, 3 � 1010Mˇ) is about 575 AU, 28 times the radius of Pluto’s
orbit.

The transition point separating neutron stars and black holes is expected
within 1.7–2.7 Mˇ. Neutron stars are composed of the densest known form of
matter. The radius of J0348-0432, the largest known (2:04Mˇ) neutron star is

 10 km, i.e., only about twice its Schwarzschild radius.

The “mini” black hole would be a hypothetical Planck particle with massp
�mP, for which rs.m/ D 	C.m/ (cf. Compton wavelength), and radius

rs.
p
�mP/ D 2

p
� lP. Cf. planckeon in quantum space-time; it should have

radius lP D 	C.mP/ and mass mP, for which 	C.m/ D 1
2
rs.m/.

A quasar (quasi-stellar radio source) is a compact region in the center of
a massive galaxy surrounding its central supermassive black hole; its size is
10–10,000 times the Schwarzschild radius of the black hole.
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The Schwarzschild radius of observable Universe is 
 10 Gly. So, Pathria–
Good, 1972, then Poplawski, from 2010, proposed that the observable Universe
is the interior of a black hole existing inside a larger universe, or multiverse.

• Jeans length
The Jeans length (or acoustic instability scale) is (Jeans, 1902) the length

scale LJ D vstg D vsp
�G

of a cloud (usually, of interstellar dust) where thermal
energy causing the cloud to expand, is counteracted by self-gravity causing it to
collapse. Here vs; tg; � are the speed of sound, gravitational free fall time and
enclosed mass density. So, Lj is also the distance a sound wave would travel in
the collapse time.

The Jeans mass is the mass contained in a sphere of Jeans length diameter.
• Acoustic metric

In Acoustics and Fluid Dynamics, the acoustic metric (or sonic metric) is a
characteristic of sound-carrying properties of a given medium: air, water, etc.

In General Relativity and Quantum Gravity, it is a characteristic of signal-
carrying in a given analog model (with respect to Condensed Matter Physics)
where, for example, the propagation of scalar fields in curved space-time is
modeled (see, for example, [BLV05]) as the propagation of sound in a moving
fluid, or slow light in a moving fluid dielectric, or superfluid (quasi-particles in
quantum fluid).

The passage of a signal through an acoustic metric modifies the metric;
for example, the motion of sound in air moves air and modifies the local
speed of the sound. Such “effective” (i.e., recognized by its “effects”) Lorentz
metric (Chap. 26) governs, instead of the background metric, the propagation of
fluctuations: the particles associated to the perturbations follow geodesics of that
metric.

In fact, if a fluid is barotropic and inviscid, and the flow is irrotational, then
the propagation of sound is described by an acoustic metric which depends on
the density � of flow, velocity v of flow and local speed s of sound in the fluid. It
can be given by the acoustic tensor

g D g.t; x/ D �

s

0

B
B
@

�.s2 � v2/ ::: �vT

� � � � � �
�v

::: 13

1

C
C
A ;

where 13 is the 3 � 3 identity matrix, and v D jjvjj. The acoustic line element is

ds2 D �

s

��.s2 � v2/dt2 � 2vdxdt C .dx/2
� D �

s

��s2dt2 C .dx � vdt/2
�
:

The signature of this metric is .3; 1/, i.e., it is a Lorentz metric. If the speed of
the fluid becomes supersonic, then the sound waves will be unable to come back,
i.e., there exists a mute hole, the acoustic analog of a black hole.
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The optical metrics are also used in analog gravity and effective metric
techniques; they correspond to the representation of a gravitational field by an
equivalent optical medium with magnetic permittivity equal to electric one.

• Aichelburg–Sexl metric
In Quantum Gravity, the Aichelburg–Sexl metric (Aichelburg and Sexl,

1971) is a 4D metric created by a relativistic particle (having an energy of the
order of the Planck mass) of momentum p along the x axis, described by its line
element

ds2 D dudv � d�2 � �2d�2 C 8p ln
�

�0
ı.u/du2;

where u D t � x; v D t C x are null coordinates, � and � are standard polar
coordinates, � D p

y2 C z2, and �0 is an arbitrary scale constant.
This metric admits an nD generalization (de Vega and Sánchez, 1989), given

by

ds2 D dudv � .dXi/2 C fn.�/ı.u/du2;

where Xi are the traverse coordinates, � D
qP

1�i�n�2.Xi/2, fn.�/ D K. �
�0
/4�n,

k D 8�2�0:5n

n�4 �.0:5n�1/GP, n > 4, f4 D 8GP ln �

�0
, P is the particle’s momentum.

• Quantum space-time
Quantum space-time is a generalization of the usual space-time in which

some variables that ordinarily commute are assumed not to commute, form a
different Lie algebra, and, as a result, some variables may become discrete.
For example, noncommutative field theory supposes that, on sufficiently small
(quantum) distances, the spatial coordinates do not commute, i.e., it is impossible
to measure exactly the position of a particle with respect to more than one axis.
Any noncommutative algebra with � 4 generators could be interpreted as a
quantum space-time.

At Planck scale lP 
 1:6 � 10�35 m, “quantum foam” (Wheeler,1950) is
expected: violent warping and turbulence of space-time, which loses the smooth
continuous structure (apparent macroscopically) of a Riemannian manifold, to
become discrete, fractal, nondifferentiable.

Many models of granular space were proposed. Planckeon is (Markov, 1965)
a hypothetical “grain of space” of size lP and Planck rest mass mP. In the World
Crystal model, quantum space-time is a lattice with spacing of the order lP, and
matter creates defects generating curvature and all effects of General Relativity.

A quantum metric is a general term used for a metric expected to describe the
space-time at quantum scales. Cf. Rieffel metric space, Fubini–Study distance
(Chaps. 7, 12), quantum graph (Chap. 15), statistical geometry of fuzzy lumps
([ReRo01]), quantization of the semimetric cone (Chap. 1) in [IKP90].

Loop Quantum Gravity (LQG), String Theory, Causal Sets and Black Hole
Thermodynamics, predict a quantum space-time at Planck scale. LQG predict,
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moreover, that its geometry (area, volume) is quantized via spin networks
(Chap. 15). Analyses of gamma ray bursts rule out quantum graininess at >
10�48 m.

• Distances between quantum states
A distance between quantum states is a metric which is preferably preserved

by unitary operations, monotone under quantum operations, stable under addition
of systems and having clear operational interpretation.

The pure states correspond to the rays in the Hilbert space of wave functions.
Every mixed state can be purified in a larger Hilbert space. The mixed quantum
states are represented by density operators (i.e., positive operators of unit trace)
in the complex projective space over the infinite-dimensional Hilbert space. Let
X denote the set of all density operators in this Hilbert space. For two given
quantum states, represented by x; y 2 X, we mention the following main distances
on X.

The trace distance is a metric on density matrices defined by

T.x; y/ D 1

2
jjx � yjjtr D 1

2
Tr
p
.x � y/�.x � y/ D 1

2
Tr
p
.x � y/2 D 1

2

X

i

j	ij;

where 	i are eigenvalues of the Hermitian matrix x � y. It is the maximum
probability that a quantum measurement will distinguish x from y. Cf. the trace
norm metric jjx � yjjtr in Chap. 12. When matrices x and y commute, i.e.,
are diagonal in the same basis, T.x; y/ coincides with variational distance in
Chap. 14.

The quantum fidelity similarity is defined (Jorza, 1994) by

F.x; y/ D .Tr.
p

xy
p

x//2 D .jjpx
p

yjjtr/
2:

When the states x and y are classical, i.e., they commute,
p

F.x; y/ is the classical
fidelity similarity �.P1;P2/ D P

z

p
p1.z/p2.z/ from Chap. 14.

When x and y are pure states, F.x; y/ is called transition probability andp
F.x; y/ D jhx0; y0ij (where x0; y0 are the unit vectors representing x; y) is called

overlap. In general, F.x; y/ is the maximum overlap between purifications of x
and y. Useful lower and upper bounds for F.x; y/ are

Tr.xy/C
p
2..Tr.xy//2 � Tr.xyxy// (subfidelity) and

Tr.xy/C
p
..Tr.x//2 � Tr.x2//..Tr.y//2 � Tr.y2// (super-fidelity).

The Bures distance is
q
2.1�p

F.x; y//. The Bures length (or Bures angle) is

arccos
p

F.x; y/; it is the minimal such distance between purifications of x and y.
Cf. the Bures metric and Fubini–Study metric in Chap. 7. In general, the
Riemannian monotone metrics in Chap. 7 generalize the Fisher information
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metric on the class of probability densities (classical or commutative case) to the
class of density matrices (quantum or noncommutative case). Fujiwara–Nagaoka,
1995, derived the quantum Fisher metric, coinciding, up to a scalar, on pure states
with Fubini–Study metric on the associated projective Hilbert space.

The distances based on the Shannon entropy H. p/ D �Pi pi log pi are gen-
eralized on quantum setting via the von Neumann entropy S.x/ D �Tr.x log x/.
Balian–Alhassid–Reinhardt, 1986 (see [Bali14]) defined a such metric by the
Hessian of von Neumann entropy; cf. Hessian metric in Sect. 7.3.

The sine distance (Rastegin, 2006) is a metric defined by

sin min
x0;y0

.arccos.jhx0; y0ij// D p
1 � F.x; y/;

where x0; y0 are purifications of x; y. It holds 1 � p
F.x; y/ � T.x; y/ �p

1 � F.x; y/.
Examples of other known metrics generalized to the class of density matrices

are the Hilbert–Schmidt norm metric, Sobolev metric (Chap. 13) and Monge–
Kantorovich metric (Chap. 21).

• Action at a distance (in Physics)
An action at a distance is the interaction, without known mediator, of two

objects separated in space. Einstein used the term spooky action at a distance
for quantum mechanical interaction (like entanglement and quantum nonlocality)
which is instantaneous, regardless of distance. His principle of locality is: distant
objects cannot have direct influence on one another, an object is influenced
directly only by its immediate surroundings.

Alice–Bob distance is the distance between two entangled particles, “Alice”
and “Bob”. Quantum Theory predicts that the correlations based on quantum
entanglement should be maintained over arbitrary Alice–Bob distances. But a
strong nonlocality, i.e., a measurable action at a distance (a superluminal prop-
agation of real, physical information) never was observed and is not expected.
Salart et al., 2008, estimated that such signal should be 10;000 times faster than
light.

At 2012, some quantum information—the polarization property of a photon—
to its mate in an entangled pair of photons, was teleported over 143 km. But
such photon systems transport only half of the information. Used with continuous
variable systems, they are 100% effective but limited to short distances.

Two-particle entanglement occurs in any temperature.
“Mental action at a distance” (say, telepathy, clairvoyance, distant anticipa-

tion, psychokinesis) is controversial because it challenge classical concepts of
time/causality as well as space/distance.

The term short range interaction is used for the transmission of action at
a distance by a material medium from point to point with a certain velocity
dependent on properties of this medium. In Information Storage, the term near-
field interaction is used for very short distance interaction using scanning probe
techniques. Near-field communication is a set of standards-based technologies
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enabling short range (� 4 cm) wireless communication between electronic
devices.

• Macroscale entanglement/superposition
Quantum superposition is the addition of the amplitudes of wave-functions,

occurring when an object simultaneously “possesses” two or more values for
an observable quantity, say, the position or energy of a particle. If the system
interacts with its environment in a thermodynamically irreversible way (say, the
quantity is measured), then quantum decoherence occurs: the state randomly
collapses onto one of those values. But it can happen also without any influence
from the outside world.

Superposition and entanglement (nonlocal correlation which cannot be
described by classical communication or common causes) were observed at
atomic scale. Entangling in time (a pair of photons that never existed at the same
time) was observed as well. With increasing duration and size/complexity of
objects, these quantum effects are lost: decoherence, due to many interactions at
the molecular level, occurs. To find out this threshold, if any, is a hot research
topic. Kasevich et al., 2015, got superposition on human scales: 54 cm apart for
about 1 sec. Kaiser et al., 2016, got it, for the oscillations of neutrinos, at 735 km.

Nimmrichter and Hornberger, 2013 assign the macroscopicity � to a quantum
state, if the equivalent (in terms of ruling out even a minimal modification of
Quantum Mechanics, which would predict a failure of the superposition principle
on the macroscale) superposition state of a single electron last for 10� seconds.
The record score so far is � 
 12 and 24 looks reachable. But the Schrödinger’s
cat (seen as a 4-kg sphere of water) in a superposition, where it sits in two
positions spaced 10 cm apart for 1 s, would score unconceivable 57.

Szarek–Aubrun–Ye, 2013, found a threshold k0 
 N
5

such that two subsystems
of k particles each of a system of N identical particles in a random pure state,
typically share entanglement if k > k0, and typically do not share it if k < k0.

“Warm” quantum coherence was observed in plant photosynthesis, animal
magnetoreception, our sense of smell and microtubules inside brain neurons.
Hameroff and Penrose, 2014: EEG rhythms (brain waves) and consciousness
derive from quantum vibrations in microtubules, i.e., on the quantum-realm scale
(� 100 nm) rather than, or in addition to, the larger scale of neurons (4–100�m).

Schmied et al., 2016, got a special case of entanglement—Bell correlation
(correlations between the spins)—of about 480 atoms in a Bose-Einstein con-
densate.

• Entanglement distance
The entanglement distance is the maximal distance between two entangled

electrons in a degenerate electron gas beyond which all entanglement is observed
to vanish. Degenerate matter (say, a white dwarf star) is matter having so
high density that the main contribution to its pressure arises from the Pauli
exclusion principle: no two identical fermions may occupy the same quantum
state together.
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• Tunneling distance
Quantum Tunneling is the quantum mechanical phenomenon where a particle

tunnels through a barrier that it classically could not surmount.
For example, in STM (Scanning Tunneling Microscope), electron tunneling

current and a net electric current from a metal tip of STM to a conducting surface
result from overlap of electron wavefunctions of tip and sample, if they are
brought close enough together and an electric voltage is applied between them.

The tip-sample current depends exponentially (about exp.�d0:5/) on their
distance d, called tunneling distance. Formally, d is the sum of the radii of the
electron delocalization regions in the donor and the acceptor atoms.

By keeping the current constant while scanning the tip over the surface
and measuring its height, the contours of the surface can be mapped out. The
tunneling distance is longer (< 1 nm) in aqueous solution than in vacuum
(< 0:3 nm).

24.2 Distances in Chemistry and Crystallography

Main chemical substances are ionic (held together by ionic bonds), metallic (giant
close packed structures held together by metallic bonds), giant covalent (as diamond
and graphite), or molecular (small covalent). Molecules are made of a fixed number
of atoms joined together by covalent bonds; they range from small (single-atom
molecules in the noble gases) to very large ones (as in polymers, proteins or DNA).

The largest known (55 tons and 12; 4m in diameter) crystal is a selenite found in
Naica Mine, Mexico. The largest stable synthetic molecule is PG5 with a diameter
of 10 nm and a mass equal to 2 � 108 hydrogen atoms.

The interatomic distance of two atoms is the distance (in angstroms or
picometers, where 1Å D 10�10 m D 10 pm) between their nuclei. The bond
between helium atoms in molecules He2 is the longest (54:6Å) and weakest known;
it is 0:75Å in H2. The C � C distance (distance between two carbon atoms) in
graphene is 1:42Å. The C-length (number of carbon atoms) is carbyne (chain of
carbon atoms) can reach 6400.

• Atomic radius
Quantum Mechanics implies that an atom is not a ball having an exactly

defined boundary. Hence, atomic radius is defined as the distance from the
atomic nucleus to the outermost stable electron orbital in a atom that is at
equilibrium. Atomic radii represent the sizes of isolated, electrically neutral
atoms, unaffected by bonding.

Atomic radii are estimated from bond distances if the atoms of the element
form bonds; otherwise (like the noble gases), only van der Waals radii are used.

The atomic radii of elements increase as one moves down the column (or
to the left) in the Periodic Table of Elements. internuclear distance, Re is the
equilibrium internuclear distance (bond length)
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• Bond distance
The bond distance (or bond length) is the equilibrium internuclear distance

of two bonded atoms. For example, typical bond distances for carbon-carbon
bonds in an organic molecule are 0:15, 0:13 and 0:12 pm (picometers 10�9 m) for
single, double and triple bonds, respectively. The atomic nuclei repel each other;
the equilibrium distance between two atoms in a molecule is the internuclear
distance at the minimum of the electronic (or potential) energy surface.

Depending on the type of bonding of the element, its atomic radius is called
covalent or metallic. The metallic radius is one half of the metallic distance, i.e.,
the closest internuclear distance in a metallic crystal (lattice of metallic element).

Covalent radii of atoms of elements that form covalent bonds are inferred
from bond distances between pairs of covalently-bonded atoms. If the two atoms
are of the same kind, then their covalent radius is one half of their bond distance.
Covalent radii for other elements is inferred by combining the radii of those that
bond with bond distances between pairs of atoms of different kind.

• van der Waals contact distance
Intermolecular distance data are interpreted by viewing atoms as hard spheres.

The spheres of two neighboring nonbonded atoms (in touching molecules or
atoms) are supposed to just touch. So, their interatomic distance, called the van
der Waals contact distance, is the sum of radii, called van der Waals radii (of
effective sizes), of their hard spheres.

The van der Waals contact distance corresponds to a “weak bond”, when
repulsion forces of electronic shells exceed London (attractive electrostatic)
forces.

• Molecular RMS radius
The molecular RMS radius (cf. radius of gyration in Sect. 24.1) is the

root-mean-square distance of a molecule’s atoms from their common center of
gravity:

sP
1�i�n d20i

n C 1
D
sP

i

P
j d2ij

.n C 1/2
;

where n is the number of atoms in the molecule, d0i is the Euclidean distance
of the i-th atom from the center of gravity of the molecule (in a specified
conformation), and dij is the Euclidean distance between the i-th and j-th atoms.

The mean molecular radius is the number
P

i ri
n , where n is the number of

atoms, and ri is the Euclidean distance of the i-th atom from the centroid
P

j xij

n of
the molecule (here xij is the i-th Cartesian coordinate of the j-th atom).

• Molecular sizes
There are various descriptions of the molecular sizes; examples as follows.
The kinetic diameter of a molecule (most applicable to transport phenomena)

is its smallest effective dimension.
The effective diameter of a molecule is the general extent of the electron

cloud surrounding it as calculated in any of several ways.
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Sometimes, it is defined as diameter of the sphere containing 98% of the total
electron density; then its half is close to the experimental van der Waals radius.

The effective molecular radius is the size a molecule displays in solution.
For liquids and solids it is usually defined via packing density.

For a gas, molecular sizes can be estimated from the intermolecular separa-
tion, speed, mean free path and collision rate of gas molecules.

For example, in the model of kinetic theory of gases, assuming that molecules
interact like hard spheres, the molecular diameter d is

q
m

�
p
2�

, where m is the

mass of molecule, l is mean free path and � is density.
• Range of molecular forces

Molecular forces (or interactions) are the following electromagnetic forces:
ionic bonds (charges), hydrogen bonds (dipolar), dipole-dipole interactions,
London forces (the attraction part of van der Waals forces) and steric repulsion
(the repulsion part of van der Waals forces). If the distance (between two
molecules or atoms) is d, then (experimental observation) the potential energy
function P relates inversely to dn with n D 1; 3; 3; 6; 12 for the above five forces,
respectively.

The range (or the radius) of an interaction is considered short if P approaches
0 rapidly as d increases. It is also called short if it is at most 3Å; so, only the
range of steric repulsion is short (cf. range of fundamental forces).

An example: for polyelectrolyte solutions, the long range ionic solvent-water
force competes with the shorter range water-water (hydrogen bonding) force.

In protein molecule, the range of London van der Waals force is 
 5Å, and
the range of hydrophobic effect is up to 12Å, while the length of hydrogen bond
is 
 3Å, and the length of peptide bond is 
 1:5Å.

• Chemical distance
Various chemical systems (single molecules, their fragments, crystals, poly-

mers, clusters) are well represented by graphs where vertices (say, atoms,
molecules acting as monomers, molecular fragments) are linked by, say, chemical
bonding, van der Waals interactions, hydrogen bonding, reactions path.

In Organic Chemistry, a molecular graph G D .V;E/ is a graph representing
a given molecule, so that the vertices v 2 V are atoms and the edges e 2 E
correspond to electron pair bonds. The Wiener number of a molecule is one half
of the sum of all pairwise distances between vertices of its molecular graph.The
Wiener polarity index is the number of unordered vertex pairs at distance 3 in this
graph. Cf. Wiener-like distance indices in Chap. 1.

The (bonds and electrons) BE-matrix of a molecule is the jVj � jVj matrix
..eij//, where eii is the number of free unshared valence electrons of the atom Ai

and, for i ¤ j, eij D eji D 1 if there is a bond between atoms Ai and Aj, and D 0,
otherwise.

Given two stoichiometric (i.e., with the same number of atoms) molecules x
and y, their Dugundji–Ugi chemical distance is the Hamming metric

X

1�i;j�jVj
jeij.x/ � eij.y/j;



24.2 Distances in Chemistry and Crystallography 527

and their Pospichal–Kvasnic̆ka chemical distance is

min
�

X

1�i;j�jVj
jeij.x/ � e�.i/�. j/.y/j;

where � is any permutation of the atoms. The above distance is equal to
jE.x/j C jE.y/j � 2jE.x; y/j, where E.x; y/ is the edge-set of the maximum
common subgraph of the molecular graphs G.x/ and G.y/. Cf. Zelinka distance
in Chap. 15.

The Pospichal–Kvasnic̆ka reaction distance, assigned to a molecular trans-
formation x ! y, is the minimum number of elementary transformations needed
to transform G.x/ onto G.y/.

• Molecular similarities
Given two 3D molecules x and y characterized by some structural (shape or

electronic) property P, their similarities are called molecular similarities.
The main electronic similarities correspond to some correlation similarities

from Chap. 17. For example, the Carbó similarity (Carbó–Leyda–Arnau, 1980)
is the cosine similarity (Chap. 17) defined by

h f .x/; f .y/i
jj f .x/jj2 � jj f .y/jj2 ;

where the electron density function f .z/ of a molecule z is the volumic integralR
P.z/dv over the whole space.
The Hodgkin–Richards similarity (1991) is defined (cf. the Morisita–Horn

similarity in Chap. 17) by

2h f .x/; f .y/i
jj f .x/jj22 C jj f .y/jj22

;

where f .z/ is the electrostatic potential or electrostatic field of a molecule z.
Petitjean, 1995, proposed to use the distance V.x [ y/ � V.x \ y/, where the

volume V.z/ of a molecule z is the union of van der Waals spheres of its atoms.
Cf. van der Waals contact distance and, in Chap. 9, Nikodym metric V.x
y/.

• End-to-end distance
A polymer is a large macromolecule composed of repeating structural units

connected by covalent chemical bonds.
For a coiled polymer, the end-to-end distance (or displacement length) is

the distance between the ends of the polymer chain. The maximal possible such
distance (i.e., when the polymer is stretched out) is called contour length.

The root-mean-square end-to-end distance of ideal linear or randomly
branched polymer scales as n0:5 or, respectively, n0:25 if n is the number of
monomers. For a polymer chain following a random walk in 3D, it is also 6
times molecular RMS radius. The strand length in Chap. 23 is the end-to-end
distance for a special linear polymer, single-stranded RNA or DNA.
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• Persistence length
The persistence length of a polymer chain is the length over which correla-

tions in the direction of the tangent are lost.
The molecule behaves as a flexible elastic rod for shorter segments, while for

much longer ones it can only be described statistically, like a 3D random walk.
Cf. correlation length.

Twice the persistence length is the Kuhn length, i.e., the length of hypothetical
segments which can be thought of as if they are freely jointed with each other in
order to form given polymer chain.

• Bend radius
In Polymer Tubing, the bend radius of a tube is the distance from the center

of an imaginary circle on which the arc of the bent tube falls to a point on that
arc.

• Intermicellar distance
Micelle is an electrically charged particle built up from polymeric molecules

or ions and occurring in certain colloidal electrolytic solutions like soaps and
detergents. This term is also used for a submicroscopic aggregation of molecules,
such as a droplet in a colloidal system, and for a coherent strand or structure in a
fiber.

The intermicellar distance is the average distance between micelles.
• Interionic distance

An ion is an atom that has a positive or negative electrical charge. The
interionic distance is the distance between the centers of two adjacent (bonded)
ions. Ionic radii are inferred from ionic bond distances in real molecules and
crystals.

The ion radii of cations (positive ions, for example, sodium NaC) are smaller
than the atomic radii of the atoms they come from, while anions (negative ions,
for example, chlorine Cl�) are larger than their atoms.

• Repeat distance
Given a periodic layered structure, its repeat distance is the period, i.e., the

spacing between layers (say, lattice planes, bilayers in a liquid-crystal system, or
graphite sheets along the unit cell’s hexagonal axis).

A crystal lattice, the unit cell in it and cell spacing are called also a repeat
pattern, basic repeat unit and cell repeat distance (or lattice spacing, interplaner
distance).

The repeat distance in a polymer is the ratio of the unit cell length along its
axis of propagation to the number of monomeric units this length covers.

• Metric symmetry
The full crystal symmetry is given by its space group.
The metric symmetry of the crystal lattice is its symmetry without taking

into account the arrangement of the atoms in the unit cell.
In between lies the Laue group giving equivalence of different reflections, i.e.,

the symmetry of the crystal diffraction pattern. In other words, it is the symmetry
in the reciprocal space (taking into account the reflex intensities).
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The Laue symmetry can be lower than the metric symmetry (for example, an
orthorhombic unit cell with a D b is metrically tetragonal) but never higher.

There are seven crystal systems—triclinic, monoclinic, orthorhombic, tetrag-
onal, trigonal, hexagonal, and cubic (or isometric). Taken together with possible
lattice centerings, there are 14 Bravais lattices.

• Homometric structures
Two structures of identical atoms are homometric if they are characterized

by the same multiset of interatomic distances; cf. distance list in Chap. 1.
Homometric crystal structures produce identical X-ray diffraction patterns.
In Music, two rhythms with the same multiset of intervals are called homo-

metric.
• Dislocation distances

In Crystallography, a dislocation is a defect extending through a crystal for
some distance (dislocation path length) along a dislocation line. It either forms
a complete loop within the crystal or ends at a surface or other dislocation.

The mean free path of a dislocation is (Gao et al., 2007), in 2D, the average
distance between its origin and the nearest particle or, in 3D, the maximum radius
of a dislocation loop before it reaches a particle in the slip plane.

The pinning distance is the distance between two endpoints of a mobile
dislocation, where one of the endpoints has to be within the volume. It is a
characteristic length for the dislocation microstructure.

The Burgers vector of a dislocation is a crystal vector denoting the direction
and magnitude of the atomic displacement that occurs within a crystal when
a dislocation moves through the lattice. A dislocation is called edge, screw or
mixed if the angle between its line vector and the Burgers vector is 90ı, 0ı or
otherwise, respectively. The edge dislocation width is the distance over which
the magnitude of the displacement of the atoms from their perfect crystal position
is greater than 1

4
of the magnitude of the Burgers vector.

The dislocation density � is the total length of dislocation lines per unit
volume; typically, it is 10 km per cm3 but can reach 106 km per cm3 in a heavily
deformed metal. The average distance between dislocations depends on their
arrangement; it is �� 1

2 for a quadratic array of parallel dislocations. If the average
distance decreases, dislocations start to cancel each other’s motion.

The spacing dislocation distance is the minimum distance between two
dislocations which can coexist on separate planes without recombining spon-
taneously.

• Dynamical diffraction distances
Diffraction is the apparent bending of propagating waves around obstacles of

about the wavelength size. Diffraction from a 3D periodic structure such as an
atomic crystal is called Bragg diffraction. It is a convolution of the simultaneous
scattering of the probe beam (light as X-rays, or matter waves such as electrons
or neutrons) by the sample and interference (superposition of reflections from
crystal planes). Some materials, lacking 3D translational periodicity, still have
aspects of long range order, that give rise to sharp Bragg reflections in their



530 24 Distances in Physics and Chemistry

X-ray diffraction patterns. Such distance doubling between layers of a material
is called c-axis periodicity.

The Bragg Law, modeling diffraction as reflection from crystal planes of
atoms, states that waves (with wavelength 	 scattered under angle � from planes
at spacing d) interfere only if they remain in phase, i.e., 2d sin �

	
is an integer.

The decay of intensity with depth traversed in the crystal occurs by dynamical
extinction, redistributing energy within the wave field, and by photoelectric
absorption (a loss of energy from the wave field to the atoms of the crystal).

The former kinematic theory works for imperfect crystals and estimates
absorption. The dynamical (multiple diffraction) theory is used to model the
perfect (no disruptions in the periodicity) crystals. It considers the incident
and diffracted wave fronts as coupled/interacting parts of a wave field and the
periodically varying electrical susceptibility of the medium so as to satisfy the
Maxwell equations.

Dynamical theory distinguishes two cases: Laue (or transmission) and Bragg
(or reflection) case, when the reflected wave is directed toward the inside and
outside of the crystal. The wave field is represented by its dispersion surface. The
inverse of the diameter of this surface is called (Autier, 2001) the Pendellösung
distance ƒL in the Laue case and the extinction distance ƒB in the Bragg case.

At the exit face of the crystal, the wave splits into two single waves with
different directions: incident 0-beam and diffracted H-beam. With increasing
thickness of the crystal, the wave leaving it will first appear mainly in the 0-
beam, then entirely in the H-beam at thickness ƒL

2
, and then it will oscillate

between these beams with a period ƒL, called the Pendellösung length; cf.
similar coupling length.

The wave amplitude (and the intensity of the diffracted beam) is transferred
back-and-forth once, i.e., the physical distance acquires a phase change of 2� .
Pendellösung oscillations happen also in Bragg case, but with very rapidly
decaying amplitudes, and Pendellösung fringes are visible only for � close to
00 or 450.

Diffraction that involves multiple scattering events is called extinction since it
reduces the observed integrated diffracted intensity. Extinction is very significant
for perfect crystals and is then called primary extinction. In the Bragg case, the
primary extinction length (James, 1964) is the inverse of the extinction factor
(maximum extinction coefficient for the middle of the range of total reflection):

�V cos �

	rejFjC ;

where F, C (valued 1 or cos 2�) are the structure and polarization factors, V is
the volume of unit cell, re 
 2:81794 � 10�15m is the classical electron radius
and 	 is the X-ray beam wavelength. The diffracted intensity with sufficiently
large thickness no longer increases significantly with increased thickness.

The extinction length of an electron or neutron diffraction is �V cos �
	jFj . Half of

it gives the number of atom planes needed to reduce the beam to 0 intensity.
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The X-ray penetration depth (or attenuation length, mean free path, extinc-
tion distance) is (Wolfstieg, 1976) the depth into the material where the intensity
of the diffracted beam has decreased e-fold. Cf. penetration depth.

In Gullity, 1956, X-ray penetration depth is the depth z such that Iz
I1

D 1� 1
e ,

where I1, Iz are the total diffraction intensities given from the whole specimen
and, respectively, the range between the surface and the depth, z, from it.

• X-ray absorption length
The absorption edge is a sharp discontinuity in the absorption spectrum of

X-rays by an element that occurs when the energy of the photon is just above the
binding energy of an electron in a specific shell of the atom.

The X-ray absorption length of a crystal is the thickness s of the sample
such that the intensity of the X-rays incident upon it at an energy 50 eV above
the absorption edge is attenuated e-fold.

For an X-ray laser, the extinction length is the thickness needed to fully reflect
the beam; usually, it is a few microns while the absorption length is much larger.

In Segmüller, 1968, the absorption length is sin �
�

, where � is the linear
absorption coefficient, and the beam enters the crystal at an angle � .

• Diamond-cutting distances
Diamond is the hardest natural gem and the only gemstone composed of a

single element—carbon. Diamond takes a fine polish, which makes its surfaces
highly reflective. Color in diamond (the rarest being red) is caused by structural
irregularities, or trace elements. Diamonds are graded according to carat weight,
clarity, color and cut. Diamonds are cut to maximize the play of light within the
stone. Their beauty comes from a combination of fire (rainbow flash from within)
and brilliance (burst of sparkling light). Both are a direct result of the cut.

A faceted stone can be divided into an upper (crown) and lower (pavilion)
section. The perimeter, where both parts meet, is referred to as the girdle. The
depth of a gemstone is measured from the table (highest crown facet) to the
culet (tip of the pavilion). On a round brilliant diamond, the depth percentage
represents the ratio of the table-culet distance to the average girdle diameter.

Normally, the table is the largest surface on a gemstone. On a round brilliant-
cut diamond it forms an octagon, but some cutting styles do not have a table. The
table percentage of a diamond represents the ratio of table width to overall stone
width. A beautiful, well-cut stone will normally have a table percentage 53 �
�64%. A stone’s luster (appearance of the surface dependent upon its reflecting
qualities) is directly affected by its depth and table percentages.



Chapter 25
Distances in Earth Science and Astronomy

25.1 Distances in Geography

• Spatial scale
In Geography, spatial scales are shorthand terms for distances, sizes and

areas. For example, micro, meso, macro, mega may refer to local (0.001–1),
regional (1–100), continental (100–10,000), global (>10,000) km, respectively.

• Earth radii
The Earth’s maximal and minimal radii (the center-surface distances) are

6384 km (the Chimborazo’s summit) and 6353 km (the Arctic Ocean’s floor).
An object, moved from the 2-nd spot to the 1-st, will loose 
 1% of its weight.

In the ellipsoidal model, the Earth’s equatorial radius (semimajor axis) a, is
6378 km and the polar radius (semiminor axis) b, is 6357 km. The equatorial and
polar radii of curvature are b2

a and a2

b . The mean radius is 2aCb
3

D 6371 km.
The Earth’s authalic and volumetric radius (the radii of the spheres with the

same surface area and volume, respectively, as the Earth’s ellipsoid) are 6371 and
6371 km; cf. the characteristic diameters in Chap. 29.

In Telecommunications, the effective Earth radius is the radius of a sphere
for which the distance to the radio horizon, assuming rectilinear propagation,
is the same as that for the Earth with an assumed uniform vertical gradient of
atmospheric refractive index. For the standard atmosphere, this radius is 4

3
that

of the Earth.
• Great circle distance

The great circle distance (or orthodromic distance, air line) is the shortest
distance between points x and y on the Earth’s surface measured along a path on
this surface. It is the length of the great circle arc, passing through x and y, in the
spherical model of the planet. Cf. spherical metric in Chap. 6.

Let ı1, �1 be the latitude and the longitude of x, and ı2, �2 be those of y; let r
be the Earth’s radius. Here 2r2 D a2 C b2, where a and b are the equatorial and

© Springer-Verlag Berlin Heidelberg 2016
M.M. Deza, E. Deza, Encyclopedia of Distances,
DOI 10.1007/978-3-662-52844-0_25

533



534 25 Distances in Earth Science and Astronomy

polar radii of the Earth. Then the great circle distance is equal to

r arccos.sin ı1 sin ı2 C cos ı1 cos ı2 cos.�1 � �2//:

In the spherical coordinates .�; �/, where � is the azimuthal angle and � is the
colatitude, the great circle distance between x D .�1; �1/ and y D .�2; �2/ is

r arccos .cos �1 cos �2 C sin �1 sin �2 cos.�1 � �2// :

For �1 D �2, the formula above reduces to rj�1 � �2j.
The tunnel distance between points x and y is the length of the line segment

through 3D space connecting them. For a spherical Earth, this line is the chord
of the great circle between the points.

The Earth resembles a flattened spheroid with extreme values for the radius of
curvature of 6335:4 km at the equator and 6399:6 km at the poles. The spheroidal
distance between points x and y is their distance in this spheroidal model.

The geoid (the shape the Earth would have if it was entirely covered by water
and influenced by gravity alone) looks like a lumpy potato; cf. potato radius.

• Loxodromic distance
A loxodrome (or, rhumb line) is a curve on the Earth’s surface that crosses each

meridian at the same angle. It is the path taken by a ship or plane maintaining a
constant compass direction; it is a straight line on the Mercator projection.

The loxodromic distance is a distance between two points on the Earth’s
surface on the rhumb line joining them. It is never shorter than the great circle
distance.

The nautical distance is the length in nautical miles of the rhumb line joining
any two places on the Earth’s surface. One nautical mile is equal to 1852 m.

• Continental shelf distance
Article 76 of the United Nations Convention on the Law of the Sea (1999)

defined the continental shelf of a coastal state (its sovereignty domain) as the
seabed and subsoil of the submarine areas that extend beyond its territorial sea
as the natural prolongation of its land territory to the outer edge of the continental
margin. It postulated that the continental shelf distance, i.e., the range distance
from the baselines from which the breadth of the territorial sea is measured to
above the other edge, should be within 200–350 nautical miles (370–648 km),
and gave rules of its (almost) exact determination.

Territorial sea is a belt of coastal waters extending at most 22 km. Next 370
km form the exclusive economic zone; first 22 km of it form the contiguous zone.

Example of arising problems: Canada, Denmark and Russia, all claim a large
portion of the Arctic, including North Pole, arguing that underwater Lomonosov
Ridge belongs to their extended continental shelf.

Article 47 of the same convention postulated that, for an archipelagic state,
the ratio of the area of its waters (sovereignty domain) to the area of its land,
including atolls, should be between 1 to 1 and 9 to 1, and elaborated case-by-
case rules.
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There is no defined bottom underground and upper airspace limit for
sovereignty. The international waters/seabed and celestial bodies are the common
heritage of mankind for the signatories of the Law of the Sea and Outer Space
(1967) treaties.

Among divided islands, the largest one (785;753 km2) is New Guinea and the
smallest one is Koiluoto (200 m � 110 m), shared by Finland and Russia.

• Port-to-port distance
The port-to-port distance is the shortest great circle distance between two

ports that does not intersect any land contours.
Officially published distance between ports represent the shortest navigable

route or longer routes using favorable currents and/or avoiding some dangers to
navigation. Reciprocal distances between two ports may differ.

• Airway distance
An airway is a designated route in the air. Low altitude (or victor) airways

are those below 5500 m AMSL (above mean sea level). High altitudes (or jet)
airways are those above 5500 m AMSL. Airway distance is the actual (as
opposed to straight line) distance flown by the aircraft between two points, after
deviations required by air traffic control and navigation along published routes.

The stage length is the distance of a nonstop leg of an itinerary. Radar altitude
is the height with respect to the terrain below.

• Point-to-point transit
Point-to-point transit is a route structure (common among low-fare airlines)

where a plane, bus or train travels directly to a destination, rather than going
through a central hub as in a spoke-hub network.

A point-to-point telecommunication is a connection restricted to two end-
points as opposed to a point-to-multipoint link used in hub and switch circuits;
cf. flower-shop metric in Chap. 19.

• Lighthouse distance
The lighthouse distance is the distance from which the light from the

lighthouse is first seen from of a sailboat. This distance (in feet) is 
 1:17.
p

he Cp
hl), where hl is the lighthouse’s height above tide level and he is the observer’s

eye level above sea. For hl D 0, it estimates the distance to horizon.
• Optical horizon

Optical (or, say, neutrino, gravitational wave) horizon is the farthest distance
that any photon (respectively, neitrino and gravitational wave) can freely streem.

• Distance to horizon
The horizon is the locus of points at which line of sight is tangent to the

surface of the planet. At a height h above the surface of a spherical planet
of radius R without atmosphere, the line-of-sight distance to the horizon is
d D p

.R C h/2 � R2, and the arc length distance to it along the curved planet’s
surface is R cos�1. R

RCh/.
Taking the equatorial radius 6378 km of the Earth as a typical value, gives

d 
 357
p

h m for small h
R . Allowing for refraction, gives roughly d 
 386

p
h m.

The middle distance is halfway between the observer and the horizon.
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• Radio distances
Marconi’s law, 1897, claims that the maximum signalling distance of an

antenna in meters is cH2, where H is antenna’s height and c is a constant.
The electrical length is the length of a transmission medium or antenna

element expressed as the number of wavelengths of the signal propagating in
the medium. In coaxial cables and optical fibers, it is 
 1:5 times the physical
length.

The electrical distance is the distance between two points, expressed in terms
of the duration of travel of an electromagnetic wave in free space between the
two points. The light microsecond, 
 300 m, is a convenient unit of electrical
distance.

The main modes of electromagnetic wave (radio, light, X-rays, etc.) propa-
gation are direct wave (line-of-sight), surface wave (interacting with the Earth’s
surface and following its curvature) and skywave (relying on refraction in the
ionosphere).

The line-of-sight distance is the distance which radio signals travel, from one
antenna to another, by a line-of-sight path, where both antennas are visible to one
another, and there are no metallic obstructions.

The radio horizon is the locus of points in telecommunications at which direct
rays from an antenna are tangential to the surface of the Earth. The horizon
distance is the distance on the Earth’s surface reached by a direct wave; due to
ionospheric refraction or tropospheric events, it is sometimes greater than the
distance to the visible horizon. In television, the horizon distance is the distance
of the farthest point on the Earth’s surface visible from a transmitting antenna.

The skip distance is the shortest distance that permits a radio signal (of given
frequency) to travel as a skywave from the transmitter to the receiver by reflection
(hop) in the ionosphere.

If two radio frequencies are used (for instance, 12:5 kHz and 25 kHz in
maritime communication), the interoperability distance and adjacent channel
separation distance are the range within which all receivers work with all
transmitters and, respectively, the minimal distance which should separate
adjacent tunes for narrow-band transmitters and wide-band receivers, in order
to avoid interference.

DX is amateur radio slang (and Morse code) for distance; DXing is a
distant radio exchange (amplifiers required). Specifically, DX can mean distance
unknown, short for DXing and a far-away station that is hard to hear.

Radio waves need 138 ms to go round the world and 
 2:57 s to be reflected
from the Moon. Long delayed echoes (LDEs) are radio echoes which return
to the sender later than 2:7 s after transmission; it is a rare and not explained
phenomenon.

• Ground sample distance
In Remote Sensing of the surfaces of terrestrial objects of the Solar System,

including the Earth, the ground sample distance (or GSD, ground sampling
distance, ground-projected sample interval) is the spacing of areas represented
by each pixel in a digital photo of the ground from air or space.
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For example, in an image with GSD 22 m, provided by UK-DMC2 (a British
Earth imaging satellite), each pixel represents a ground area of 222 m2.

• Map’s distance
The map’s distance is the distance between two points on the map (not to be

confused with map distance from Chap. 23). The length of a curved line feature
on a map is usually measured by an opisometer (or curvimeter).

The horizontal distance is determined by multiplying the map’s distance by
the numerical scale of the map.

Map resolution is the size of the smallest feature that can be represented on a
surface; more generally, it is the accuracy at which the location and shape of map
features can be depicted for a given map scale.

• Equidistant map
An equidistant map is a map projection of Earth having a well-defined

nontrivial set of standard lines, i.e., lines (straight or not) with constant scale
and length proportional to corresponding lines on the Earth. Some examples are:

Sanson–Flamsteed equatorial map: all parallels are straight lines;
cylindric equidistant map: the vertical lines and equator are straight lines;
an azimuthal equidistant map preserves distances along any line through the

central point; a Werner cordiform map preserves, moreover, distances along any
arc centered at that point.

Maurer–Close (or doubly equidistant) map preserves distances from two
central points. If those points are identical, the map is azimuthal equidistant.

A gnomonic map displays all great circles as straight lines; so, it preserves the
shortest route between two locations.

• Distance cartogram
A distance (or linear) cartogram is a diagram or abstract map in which

distances are distorted proportionally to the value of some thematic variable.
Typically, it shows the relative travel times and directions from vertices in a
network.

• Tolerance distance
In GIS (computer-based Geographic Information System), the tolerance

distance is the maximal distance between points which must be established so
that gaps and overshoots can be corrected (lines snapped together) as long as they
fall within it.

• Space syntax
Space syntax is a set of theories and techniques (cf. Hiller–Hanson, 1984) for

the analysis of spatial configurations complementing Transport Engineering and
geographic accessibility analysis in a GIS (Geographical Information System).

It breaks down space into components, analyzed as networks of choices, and
then represents it by maps and graphs describing the relative connectivity and
integration of parts. The basic notions of space syntax are, for a given space:

isovist (or visibility polygon), i.e., the field of view from any fixed point;
axial line, i.e., the longest line of sight and access through open space;
convex space, i.e., the maximal inscribed convex polygon (all points within it

are visible to all other points within it).
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These components are used to quantify how easily a space is navigable, for
the design of settings where way-finding is important such as museums, airports,
hospitals. Space syntax has also been applied to predict the correlation between
spatial layouts and social effects such as crime, traffic flow, sales per unit area,
etc.

• Defensible space
In landscape use, defensible space refers to the 30 m zone surrounding a

structure that has been maintained/designed to reduce fire danger. The first 9 m
(
 30 feet) is where vegetation is kept to a minimum combustible mass. The
remaining area 9–30 m is the reduced fuel zone, where fuels and vegetation
should be separated (by thinning, pruning, etc.) vertically and/or horizontally.

• Sanitation distances
The drinking distance of a dwelling is its distance from the closest source of

water.
A latrine is a communal facility containing (usually many) toilets. It should

be at most 50 m away from dwellings to be served and at least 50 m away
from communal food-storage and preparation. A latrine should be � 30 m from
water-storage and treatment facilities, as well as from surface water and shallow
groundwater sources. A septic tank should be � 15 m from a water supply well.

The vertical separation distance is the distance between the bottom of
the drain field of a sewage septic system and the underlying water table.
This separation distance allows pathogens (disease-causing bacteria, viruses, or
protozoa) in the effluent to be removed by the soil before it comes in contact with
the groundwater.

• Setback distance
In land use, a setback (or buffer) distance is the minimum horizontal distance

at which a building or other structure must legally be from property lines, or the
street, or a watercourse, or any other place which needs protection. Setbacks
may also allow for public utilities to access the buildings, and for access to utility
meters. Cf. also buffer distance and clearance distance in Chap. 29.

• Shy distance
Shy distance is the space left between vehicles (or pedestrians and vehicles)

as they pass each other.
• Distance-based numbering

The distance-based exit number is a number assigned to a road junction,
usually an exit from a freeway, expressing in miles (or km) the distance from the
beginning of the highway to the exit. A milestone (or kilometer sign) is one of a
series of numbered markers placed along a road at regular intervals.

The Kilometer Zero (or km 0) is a particular location (usually in the nation’s
capital city), from which distances are traditionally measured. For France, it is
on the square facing the entrance of Notre Dame cathedral in Paris. For Russia,
it is in a short passage connecting Red Square with Manege Square in Moscow.

Distance-based house addressing is the system when buildings and blocks
are numbered according to the distance, i.e., the number of increments (feet or
division of miles), from a given baseline. For example, the number 67W430
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in Naperville, US, can express that the house is 67 miles west of downtown
Chicago. One of the GIS-inspired guidelines: to use the address n D d

10
C 100,

where d is the distance in feet of the house from the reference point; roughly,
d D n

500
miles.

Metes and bounds is a traditional system of land description (in Real Estate
and town boundary determination) by courses and distances. Metes is a boundary
defined by the measurement of each straight run specified as displacement, i.e.,
by the distance and direction. Bounds refers to a general boundary description in
terms of local geography (along some watercourse, public road, wall, etc.). The
boundaries are described in a running prose style, all the way around the parcel
of land in sequence.

Surveying is the technique of determining the terrestrial and spatial position
of points and the distances and angles between them; cf., for example, Surveyor’s
Chain measures among imperial length measures in Chap. 27.

• Driveway distances
A driveway is a private road giving access from a public way. The main

driveway distances follow.
The throat length is the distance between the street and the end of the driveway

inside the land development. It should be 200–250 feet (about 61–76 m or 15 car
lengths) for shopping centers and 25–28, 9–15 m for small developments with or
without signalized access.

The optimal one-way driveway width is 4.5–5 m. Driveways entering a
roadway at traffic signals should have two outbound lanes (for right and left
turns) at least 7 m and an inbound lane at least 4:5 m wide. The normal width of
residential driveways is 4.5–7.5 m.

The turn radius is the extent that the edge of a commercial driveway is
“rounded” to permit easier entry/exit by turning vehicles. In urban settings, it
is 8–15 m.

• Road sight distances
In Transportation Engineering, the normal visual acuity is the ability of a

person to recognize a letter (or an object) of size 25mm from a distance of 12m.
The visibility distance of a traffic control device is the maximum distance

at which one can see it, while its legibility distance is the distance from which
the driver can discern the intended message in order to have time to take the
necessary action. For a safety sign, the distance factor is the ratio of the
observation distance to the size of the symbol or text.

The clear sight distance is the length of highway visible to a driver. The
safe sight distance is the necessary sight distance needed to a driver in order to
accomplish a fixed task. The main safe distances, used in Road Design, are:

– the stopping sight distance—to stop the vehicle before reaching an unex-
pected obstacle;

– the maneuver sight distance—to drive around an unexpected small obstacle;
– the road view sight distance—to anticipate the alignment (eventually curved

and horizontal/vertical) of the road (for instance, choosing a speed);



540 25 Distances in Earth Science and Astronomy

– the passing sight distance—to overtake safely (the distance the opposing
vehicle travels during the overtaking maneuver).

The safe overtaking distance is the sum of four distances: the passing sight
distance, the perception-reaction distance (between decision and action; cf.
Chap. 25), the distance physically needed for overtaking and the buffer safety
distance.

Also, adequate sight distances are required locally: at intersections and in
order to process information on traffic signs. A warning “objects in mirror are
closer than they appear” can be required on vehicle’s passenger side mirrors.

In a traffic flow, the spacing (or distance headway) is the distance between
corresponding points (front to front) of consecutive vehicles moving in the same
lane, while the clearance is the spacing minus the length of the leading vehicle.
The corresponding time measures are headway and gap.

• Road travel distance
The road travel (or road, driving, wheel, actual) distance between two

locations (say, cities) of a region is the length of the shortest road connecting
them.

Some GISs (Geographic Information Systems) approximate road distances as
the lp-metric with p 
 1:7 or as a linear function of great circle distances; in
the US the distance factor (multiplier) is 
 1:15 in an east–west direction and

 1:21 in the north–south direction. Several relevant notions of distance follow.

The GPS navigation distance: the distance directed by GPS (Global Position-
ing System, cf. radio distance measurement in Chap. 29) navigation devices.
But this shortest route, from the GPS system point of view, is not always the
best, for instance, when it directs a large truck to drive through a tiny village; cf.
the Talmudic little boy’s paradox among distance-related quotes in Chap. 28.

The official distance: the officially recognized (by, say, an employer or an
insurance company) driving distance between two locations that will be used
for travel or mileage reimbursement. Distance data (shortest paths between
locations) are taken from a large web map service (say, MapQuest, Google,
Yahoo or Bing) which uses a variation of the Dijkstra algorithm; cf. Steiner
ratio in Chap. 1.

The distance between zip codes (in general, postal or telephone area codes)
is the estimated driving distance (or driving time) between two corresponding
locations.

Time-distance and cost-distance are time and cost measures of how far apart
places are. The journey length is a general notion of distance used as a reference
in transport studies. It can refer to, say, the average distance traveled per person
by some mode of transport (walk, cycle, car, bus, rail, taxi) or a statutory vehicle
distance as in the evaluation of aircraft fuel consumption.

An odometer is an instrument that indicates distance traveled by a vehicle. A
hubometer is such device mounted on the axle of a vehicle, while a trip meter is
an electronic device recording such distance in any particular journey.
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Distance-based (or mileage-based, per-mile) pricing means that vehicle
charges are based on the amount a vehicle is driven during a time period.

Dead mileage is when a public transit vehicle operates without carrying or
accepting passengers, such as when coming from a garage to begin its first trip
of the day.

• Death/kilometer
In countries collecting data on distance travelled, the traffic volume is mea-

sured in vehicle-kilometrs (calculated by odometer readings, traffic counts, driver
survey or fuel consumption) or in person-kilometers, accounting for vehicle
occupancy.

The most objective indicator to describe risk on the road network is fatalities
per billion vehicle-kilometrs, or fatalities per billion person-kilometrs.

In the UK, the lifetime risk of dying according to various forms of transport
is measured as relative traffic and crude death rate per 100 million vehicle-
kilometrs.

In French-speaking journalism, loi du mort-kilomètre, i.e., the law of death-
kilometer, is the principle that information (especially on victims) is more or
less important according to its proximity—geographic, temporal, emotional, or
social—to the news medium’s user. Cf. distance to death in Chap. 23 and
distant suffering in Chap. 28.

• Horizontal distance
The horizontal distance (or ground distance) is the distance on a true

level plane between two points, such as scaled off the map (it does not take
into account the relief between two points). There are two types of horizontal
distance: straight line distance (the length of the straight line segment between
two points as scaled off the map), and distance of travel (the length of the
shortest path between two points as scaled off the map, in the presence of roads,
rivers, etc.).

The thalweg (valley way) of a river or valley is the deepest inline within it.
The stream gradient is the slope measured (say, in m/km) by the ratio of drop

in a stream per unit distance; the relief ratio is such average drop. The gradient
of a road is the ratio of the vertical to the horizontal distance, measured in m/km
or as slop tangent of the angle of the elevation. The pitch (or slope, incline) of a
roof is the ratio of the rise to the roof span, expressed in cm/m.

• Slope distance
The slope distance (or slant distance) is the inclined distance (as opposed to

the true horizontal or vertical distance) between two points.
In Engineering, the rollout distance is the distance that a boulder or rock took

to finally reach its resting point after rolling down a slope. The release height is
the height at which a boulder or rock was released in relation to a slope.

Naismith’s rule in mountaineering: eight units of walking flat distance are
time-equivalent to one unit of climb on a typical decline 12ı.

Craeme et al, 2014, claim that the cost for an organism of mass M kg to walk
uphill, gaining 100 m in altitude, is 2:94M kilojoules.
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Walking uphill, humans and animals minimize metabolic energy expenditure;
so, at critical slopes, they shift to zigzag walking. Langmuir’s hiking handbook
advises one to do it at 25ı. Llobera and Sluckin, 2007, explain switchbacks in
hill trails by the need to zigzag in order to maintain the critical slope, 
 16ı
uphill and 
 12:4ı downhill. Skiing and sailing against the wind also require
zigzagging.

The west face of Mount Thor, in the Canadian Arctic, is the Earth’s greatest
vertical drop: a uninterrupted wall 1250 m, with an average angle of 105ı.
The world record for the longest rappel (slope descent using ropes), 33 days,
was set here in 2006. The world’s highest unclimbed mountain is Gangkhar
Puensum (7570 m) on the Bhutan-Tibet border. The most dangerous by fatality
rate mountains are: Annapurna and K2, 10-th and 2-nd highest ones: 8091 and
8611.

• Vertical distance
The vertical distance of a location is its height above or depth below a fixed

vertical datum, i.e., reference surface, say, the Earth’s surface, mean sea level
(MSL) or its model. On other planets, the elevations of solid surface are measured
relative to the mean radius.

The terms elevation (or geometric height), altitude (or geopotential height)
and depth are used for points/planes on the ground, in the air and below the
surface, respectively. AMSL, AGL, AAE and (in Broadcasting) HAAT mean height
above MSL, ground level, nearest aerodrome and average (surrounding) terrain,
respectively. The height of an aircraft is its AGL, i.e., AMSL plus elevation of
the ground.

For measuring the height of land objects, the usual datum used is MSL,
defined as the mean hourly water elevation taken over a specific 19 years cycle.
Countries tend to choose MSL at one specific point to be used as the standard
“zero elevation”.

Depths and tides on a nautical chart are measured relative to chart datum,
defined as a level below which tide rarely falls: the lowest tide predictable from
the effects of gravity, average lowest tide of each day, or (in waters with very low
tidal ranges) MSL. Bridge clearances are given relative to a datum based on high
tide.

The geoid is a surface of a constant potential which is the best approximation,
in a least-square sense, of the global MSL. The orthometric height of an object
is its vertical distance above the geoid. Main nontidal datums are gravimetric,
based on integral-mean gravity M between the geoid and the Earth’s surface
along some levelling line, and ellipsoidal one, used in satellite techniques.

A gravimetric height of Earth’s surface is W0�W
M , where W;W0 are the

potentials of the Earth’s gravity field on Earth’s and geoid’s levels. In particular,
the rigorous orthometric height is the curved distance between the geoid and the
Earth’s surface along the plumbline (line orthogonal to the geoid). At present,
there is no vertical datum, that is based on this height, due to difficulty in
obtaining such M.
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The minimal, maximal and average land heights are �418 m at the Dead Sea,
8848 m at the top of Mount Everest and 840 m, while the average and maximal
depths of the ocean are 3680 m and 10;911 m (Challenger Deep in Mariana
Trench). The surface’s points closest (6353 km) and farthest (6384 km) from the
Earth’s center are the bottom of the Arctic Ocean and the summit of the Andean
volcano Chimborazo (6268m).

• Prominence
In Topography, prominence (or autonomous height, relative height, shoulder

drop) is a measure of the stature of a summit of a hill or mountain. The
prominence of a peak is the minimum height of climb to the summit on any
route from a higher peak (called the parent peak), or from sea level if there is no
higher peak. The lowest point on that route is the col. So, the prominence of any
island or continental highpoint is equal to its elevation above sea level.

The highest mountains of the two largest isolated landmasses, Afro-Eurasia
(Mount Everest) and the Americas (Aconcagua), have the most prominent peaks,
8848 m and 6962 m. But from its ocean base, the elevation of the Hawaiian
volcano Mauna Kea (4205 m) is 10;203 m, and the mountain with the highest
(5486 m) elevation from its land base is Mount McKinley (6193m) in Alaska.

The topographic isolation of a summit is the great circle distance to the nearest
point of equal elevation; for Everest, it is 40;008 km (Earth’s circumference
between the poles). Spire measure (or ORS, short for omnidirectional relief
and steepness) is a rough measure of the visual “impressiveness” of a peak. It
averages out how high and steep a peak is in all directions above local terrain.

• Special parallels and meridians
A network of parallels and meridians (lines of latitude and longitude, cf.

Chap. 25) provides a locational system on Earth, using North Pole, South Pole
(parallels 90ıN and 90ıS), rotation axis, and equatorial plane (an imaginary
plane passing through Earth halfway between the poles and perpendicular to
rotation axis).

The equator is the imaginary midline, where the equatorial plane intersects
Earth’s surface. It is the parallel of 0ı latitude separating North and South
hemispheres.

The Prime meridian and the Date line are internationally agreed at 0ı and
(with some bends, so as not to cross any land) 
 180ı longitude; they form a
great circle separating the Eastern and Western hemispheres. The point 0ı; 0ı is
located in the Atlantic Ocean 
 614 km south of Accra, Ghana.

A degree of latitude varies from 110:567 km apart at the equator to 111:699
km at the poles; each minute ( 1

60
-th of a degree) is 
 1 mile. A degree of

longitude shrinks from 111:321 km at the equator to 0 at the poles.
The (solar) terminator (or, circle of illumination, grey line) is the great circle

that divides Earth between a light half and a dark half. The land hemisphere is
the hemisphere containing the largest possible area, 
 7

8
, of land. It is centered

on 47ı130N 1ı320W (in the city of Nantes, France). The other half is the water
hemisphere.
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The tropic of Cancer and the tropic of Capricorn are parallels at which
the Sun is directly overhead at the northern and the southern summer solstice,
respectively. Their positions depend on the Earth’s axial tilt. The region between
them, centered on the equator, is the tropics. The regions around 25–30ıN and S
are subtropics, and the regions 30–35ıN and S are horse latitudes (or subtropical
highs).

Equatorial and polar regions are within a few degrees of the equator or a pole.
The Arctic circle and the Antarctic circle are parallels at which the Sun does not
appear above the horizon at the northern and the southern winter solstice.

The longest land, continuous land, continuous sea latitudes are 48ı24053N
(10;726 km France–Ukraine–Kazakhstan–China), 78ı350S (7958 km Antarc-
tica), 55ı590S (22;471 km). The longest land, continuous land, continuous sea
longitudes are 22ıE (13;035 km Russia–China–Thailand), 99ı1030"E (7590 km),
34ı45045"W (15;986 km). The longest continuous land and sea distances along
a great circle are 13;573 km (Liberia–Suez Canal–China) and 
32,000 km.

Many parallels and meridians, often named and/or approximated, represent
political boundaries. For example, 49ıN latitude is (much of, from British
Columbia to Manitoba) the border between Canada and US, 38ıN is the
boundary between North and South Korea, and 60ıS is the northern boundary of
Antarctica in the Antarctic Treaty. 2ı20014:02500E longitude is the Paris meridian
(historic rival of the Prime meridian through Greenwich), 52:5ıE is the official
meridian of Iran, and 
 70ıE was agreed in 1941 by Nazi Germany and the
Empire of Japan as division of their spheres of interest in Asia. The Brandt Line
(Brandt, 1980), represents socio-economic and political divide between the “rich
North” and the “poor South”. It encircles the world at 
 30ıN latitude, passing
between North and Central America, north of Africa and the Middle East, then
going north so as to exclude China, Mongolia, Korea and going south so as to
include Australia.

• Remotest places on Earth
In medieval geographies, ultima Thule was any distant place located beyond

the borders of the known world. Eratosthenes (c. 276–195 BC), measuring the
oikoumene (inhabited world), put its northern limit in a mythical island Thule.

The remotest island is uninhabited Bouvet island in the South Atlantic Ocean.
Its nearest (1600 km) land is Antarctica and nearest inhabited land is Tristan da
Cunha, the remotest inhabited archipelago.

Among other remotest (i.e., lacking normal transportation links) places on the
Earth are: Kergelen (France), Pitcairn (UK), Svalbard (Norway) archipelagos,
Easter (Chili), Foula (UK), Macquarie (Australia) islands, Motuo (China) county,
McMurdo Station (Antarctica-US), La Rinconada (Peru, at an altitude of 5100
km) towns, Alert (Canada, 800 km below the North Pole) village.

The continental pole of inaccessibility (Point Nocean), the point on land
farthest (2514 km) from any ocean, lies in the Xinjiang, China, around 45ı220N
88ı110E. The oceanic pole of inaccessibility (Point Nemo), the point far-
thest (2690 km) from any land, lies in the South Pacific Ocean at 48ı52:60S
123ı23:60W.
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The northern pole of inaccessibility (84ı030N 174ı510W) is the point on the
Arctic Ocean pack ice, 661 km from the North Pole, farthest (1094 km) from any
land mass. The southern pole of inaccessibility (82ı060S 54ı580E) is the point on
the Antarctic, 878 km from the South Pole, farthest (1300 km) from the ocean.

For a country, accessibility to its coast from its interior is measured by the
ratio of coastline length in meters to land area in km2. This ratio is the highest
(10;100) for Tokelau and the lowest nonzero (0:016) for the Democratic Republic
of the Congo. Canada has the longest (202;080 km) coastline.

The largest antipodal (diametrically opposite) land masses are the
Malay Archipelago–Amazon Basin, and east China C Mongolia, antipodal to
Chile C Argentina. Capitals close to being antipodes are: Buenos Aires–Beijing,
Madrid–Wellington, Lima–Bangkok, Quito–Singapore, Montevideo–Seoul.

Politically unaccessed areas include isolated people (as Sentinelese and 

100 tribes in dense forests) and unclaimed areas (antarctic Marie Byrd Land, Bir
Tawil).

The geographical centre of Earth is the superficial barycenter produced by
treating the geoid as a sphere and each continent or island as a region of a thin
shell of uniform density. It is at 40ı520N 34ı340E (180 km northeast of Ankara).

Counting as different only population centers at >1000 km, the point of
minimum aggregate travel (or geometric median, cf. Fréchet mean in Chap. 25)
of the world’s population lies around Afghanistan-Kashmir. This point is closest,
5200 km of the mean great circle distance, to all humans, and its antipodal point
is the farthest from mankind. But the closest, 5600 km, point to the world’s entire
wealth (measured in GNP) lies in southern Scandinavia.

In terms of altitude, the number of people decreases faster than exponentially
with increasing elevation (Cohen–Small, 1998). Within 100 m of sea level,
lies 15:6% of all inhabited land but 33:5% of the world population live there.
Altitude of residence is, via hypoxia, a risk factor for psychological distress in
bipolar disorder.

• Latitudinal distance effect
Diamond, 1997, explained the larger spread of crops and domestic animals

along an east–west, rather than north–south, axis by the greater longitudinal
similarity of climates and soil types.

Ramachandran and Rosenberg, 2006, confirmed that genetic differentiation
increases (and so, cultural interaction decreases) more with latitudinal distance
in the Americas than with longitudinal distance in Eurasia. Randler, 2008: within
the same time zone, people in the east get up and go to bed earlier than people in
the west.

Turchin–Adams–Hall, 2006, observed that 
 80% of land-based, contiguous
historical empires are wider in the east–west compared to the north–south
directions. Three main exceptions—Egypt (New Kingdom), Inca, Khmer—obey
a more general rule of expansion within an ecological zone.

Taylor et al., 2014: polyandry in species is more common in northern latitudes.
The latitudinal biodiversity gradient (LBG) refers to the decrease in in both

terrestrial and marine biodiversity, that occurs, the past 30 Ma, from the equator
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to the poles for most fauna and flora. Its causes remain unresolved. Deep-time
studies indicate that it might characterise cold icehouse climatic regimes,

Mace and Pagel, 1995 and 2004, found the same gradient for the density
(number per range) of language groups and cultural variability. Around 60%
of the world’s languages are found in the great belts of equatorial forest. Papua
New Guinea (14% of languages), sub-Saharan Africa and India have the largest
linguistic diversity. The number of phonemes in a language decrease, but the
number of color terms increase, from the equator to the poles.

25.2 Distances in Geophysics

• Atmospheric visibility distances
Atmospheric extinction (or attenuation) is a decrease in the amount of

light going in the initial direction due to absorption (stopping) and scattering
(direction change) by particles with diameter 0.002–100�m or gas molecules.
The dominant processes responsible for it are Rayleigh scattering (by particles
smaller than the wavelength of the incident light) and absorption by dust, ozone
O3 and water. For example, mountains in the distance look blue due to the
Rayleigh scattering effect.

In extremely clean air in the Arctic or mountainous areas, the visibility can
reach 70–100 km. But it is often reduced by air pollution and high humidity:
haze (in dry air) or mist (moist air). Haze is an atmospheric condition where
dust, smoke and other dry particles (from farming, traffic, industry, fires, etc.)
obscure the sky.

The World Meteorological Organization classifies the horizontal obscuration
into the categories of fog (a cloud in contact with the ground), ice fog, steam fog,
mist, haze, smoke, volcanic ash, dust, sand and snow. Fog and mist are composed
mainly of water droplets, haze and smoke can be of smaller particle size.

Visibility of less than 100 m is usually reported as zero. The international
definition of fog, mist and haze is a visibility of < 1 km, 1–2 km and 2–5 km.

In the air pollution literature, visibility is the distance at which the contrast of
a visual target against the background (usually, the sky) is equal to the threshold
contrast value for the human eye, necessary for object identification, while visual
range is the distance at which the target is just visible. Visibility can be smaller
than the visual range since it requires recognition of the object.

Visibility is usually characterized by either visual range or by the extinction
coefficient (attenuation of light per unit distance due to four components:
scattering and absorption by gases and particles in the atmosphere). It has units
of inverse length and, under certain conditions, is inversely related to the visual
range.

Meteorological range (or standard visibility, standard visual range) is an
instrumental daytime measurement of the (daytime sensory) visual range of a
target. It is the furthest distance at which a black object silhouetted against
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a sky would be visible assuming a 2 % threshold value for an object to be
distinguished from the background. Numerically, it is ln 50 divided by the
extinction coefficient.

In Meteorology, visibility is the distance at which an object or light can be
clearly discerned with the unaided eye under any particular circumstances. It is
the same in darkness as in daylight for the same air. Visual range is defined as
the greatest distance in a given direction at which it is just possible to see and
identify with the unaided eye in the daytime, a prominent dark object against the
sky at the horizon, and at night, a known, unfocused, moderately intense light
source.

The International Civil Aviation Organization defines the nighttime visual
range as the greatest distance at which lights of 1000 candelas can be seen and
identified against an unlit background. Daytime and nighttime ranges measure
the atmospheric attenuation of contrast and flux density, respectively.

In Aviation Meteorology, the runway visual range is the maximum distance
along a runway at which the runway markings are visible to a pilot after
touchdown. It is measured assuming constant contrast and luminance thresholds.

Oblique visual range (or slant visibility) is the greatest distance at which
a target can be perceived when viewed along a line of sight inclined to the
horizontal.

• Atmosphere distances
The atmosphere distances are the altitudes above Earth’s surface (mean

sea level) which indicate approximately the following specific (in terms of
temperature, gravity, electromagnetism, etc.) layers of its atmosphere.

Below 1–2 km: planetary boundary layer, where winds are directly retarded
by surface friction. The reminder of the atmosphere: the free atmosphere.

From 8 km: the death zone for human climbers (lack of oxygen).
From the Armstrong line (18.900–19.350 km) water boils at 37 ıC (low

pressure) and a pressure suit is needed.
Below 7–20 km (over the poles and equator, respectively): unstable tropo-

sphere in which temperature decreases with height (the weather and clouds occur
here).

Above the troposphere to 
 51 km: stable stratosphere, where the temperature
increases with height (the ozone layer is at 19–48 km). The tropopause (its
boundary with the troposphere) occurs at a pressure 
 0:1 bar.

Above the stratosphere to 80–85 km: the mesosphere, in which temperature
again decreases with height. Above the mesosphere to 500–1000 km: the
thermosphere, where the temperature again increases with height.

20–100 km: near space (or upper atmosphere), above airliners but below
satellites.
100 km: the Kármán line prescribed by Fédération Aéronautique International

as the boundary separating Aeronautics and Astronautics, near and outer space.
Above the thermosphere to 
190,000 km : the exosphere, where molecules

are still gravitationally bound but they can escape into space. Below the exo-
sphere: the homosphere, where atmosphere has relatively uniform composition
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since turbulence causes a continuous mixing. The reminder of the atmosphere:
the heterosphere.

From 50–80 to 2000 km: the ionosphere, an electrically conducting region.
From 
 160 km upwards: the anacoustic zone, where distances between air
particles are so great that sound can no longer propagate; high-frequency sounds
disappear first.

Up to 6–10 Earth radii on the sunward side: the magnetosphere, where Earth’s
magnetic field still dominates that of the solar wind. Geospace is the region from
the beginning of ionosphere to the end of magnetosphere.

The altitude of the International Space Station is 278–460 km. 35,786 km: the
altitude of geostationary (communication and weather) satellites. For observation
and science satellites, it is 480–770 km and 4800–9700 km, respectively.
Geocentric orbits with altitudes up to 2000 km, 2000–35,786 km and more than
35;786 km are called low, medium and high Earth orbits, respectively.

From 320;000 km: Moon’s (at 356,000–406,700 km) gravity exceeds Earth’s.
1;496;000 km D 0:011 AU: Earth’s Hill radius, where Sun’s gravity Earth’s.

• Wind distances
Examples of wind-related distances follow.
Monin–Obukhov length: a rough measure of the height over the ground,

where mechanically produced (by vertical wind shear) turbulence becomes
smaller than the buoyant production of turbulent energy (dissipative effect of
negative buoyancy). In the daytime over land, it is usually 1–50 m.

The aerodynamic roughness length (or roughness length) z0 is the height at
which a wind profile assumes zero velocity.

The wind daily run is the distance that results by integrating the wind speed,
measured at a point, over 24 h. The fastest recorded wind speed near Earth’s
surface was 318 mph (i.e., 511:76 km/h) in Oklahoma, US, in 1999.

Rossby radius of deformation is the distance that cold pools of air can spread
under the influence of the Coriolis force, i.e., the apparent deflection of moving
objects when they are viewed from a rotating reference frame. It is the length
scale at which effects, caused by Earth’s rotation and the inertia of the mass
experiencing the effect, become as important as buoyancy or gravity wave effects
in the evolution of the flow about some disturbance.

The aerial plankton carried aloft by winds or convection, consists of bacteria,
fungi, spores, pollen and small invertebrates. Even in the upper troposphere (8–
15 km altitude), viable bacteria cells represent 
 20% of 0:25 � �1 �m-sized
particles.

The jet streams are fast flowing, narrow air currents found in the atmosphere.
The strongest jet streams are, both west-to-east and in each hemisphere, the Polar
jet, at 7–12 km above sea level, and the weaker Subtropical jet at 10–16 km.

The atmospheric rivers are narrow (a few hundred km across but several
thousand km long) corridors of atmospheric water vapor transport over mid-
latitude ocean regions. They account for over 90% of such global meridional
daily transport.
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A teleconnection refers to climate anomalies being related to each other at
large, say, thousands of km distances. For example, teleconnection between sea
level pressure at Tahiti and Darwin, Australia, defines ENSO (El Niño Southern
Oscillation).

• Distances in Oceanography
Sea-surface height (SSH) is the height of the ocean’s surface. Decay dis-

tance: the distance through which ocean waves travel after leaving the generating
area.

Wavelength is the distance between the troughs at the bottom of consecutive
waves. A wave’s height and amplitude are its trough-crest and rest-crest dis-
tances.

The significant wave height (SWH) is the mean height H1=3 of the highest
third of waves. More modern and very close value is four times the root-mean-
square of the surface elevation. Unusual rogue waves are defined as those with
height > 2H1=3; the tallest recorded one (by ship USS Ramapo in 1933) was 34
m. A wave up to 11H1=3 is possible. Large internal waves occur at thermoline and
saltwater-freshwater interface. A hundred-year wave is a statistically projected
water wave, the height of which, on average, is met or exceeded once in a 100
years for a given location.

The maximum horizontal distance inland and height reached there by tsunami
waters are called the run-up (or inundation) distance and run-up height. It
was 1100 and 525 m for the 1958 Lituya Bay, Alaska, megatsunami, the largest
recorded.

Deep water (or short, Stokesian) wave: a surface ocean wave that is traveling
in water depth greater than one-quarter of its wavelength; the velocity of deep
water waves is independent of the depth. Shallow water (or long, Lagrangian)
wave: a surface ocean wave of length 25 or more times larger than the water
depth.

Littoral (or intertidal): the zone between high and low water marks. Some-
times, littoral refers to the zone between the shore and water depths of 
 200m.

Oceanographic (or thermal) equator: the zone of maximum sea surface
temperature located near (generally, north) the geographic equator. Sometimes, it
is defined more specifically as the zone within which the sea surface temperature
exceeds 28 ıC. Below about 500m, all of the world’s oceans are at about 1:1 ıC.

Standard depth: a depth below the sea surface at which water proper-
ties should be measured and reported (in m): 0, 10, 20, 30, 50, 75, 100,
150, 200, 250, 300, 400, 500, 600, 800, 1000, 1200, 1500, 2000, 2500,
3000; 4000; : : : ; 9000; 10;000.

Charted depth: the recorded vertical distance from the lowest astronomical
tide (LAT, the lowest low water that can be expected in normal circumstances) to
the seabed. Drying height: the vertical distance of the seabed that is exposed by
the tide, above sea level at LAT. Actual depth of water is height of tide + charted
depth or height of tide—drying height. Tidal range: the difference between the
heights of high water and low water at any particular place. The empirical rule
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of twelfths assigns 6 h for it and subdivides the range into 1; 2; 3; 3; 2; 1 twelfths
per hour.

The thermocline, halocline and pycnocline: the layers where the water
temperature, salinity and density, respectively, change rapidly with depth.

Depth of no motion: a reference depth in a body of water at which it is
assumed that the horizontal velocities are practically zero. On a horizontal scale,
ocean fronts are the boundaries between water masses with different properties.

Plankton (viruses, bacteria, phytoplankton, zooplankton and small pelagic
larvae) aggregate at the clines, depth of no motion and persistent ocean fronts.

 75% of the water column’s biomass consist of plankton organized in thin
(<3–4 m) layers 1–12 km in horizontal extent. Standard proxies for phyto- and
zooplankton abundance are chlorofill-a imagery and sound attenuation. Giant (up
to 130;000 km2) bacterial mats float in the oxygen minimum zone off Chili and
Peru.

Depth of the effective sunlight penetration: the depth at which 
 1% of
solar energy penetrates; in general, it does not exceed 100m. The ocean is opaque
to electromagnetic radiation with a small window in the visible spectrum. But it
is transparent to acoustic transmission.

Depth of compensation: the depth at which illuminance has diminished to the
extent that oxygen production through photosynthesis and oxygen consumption
through respiration by plants are equal. The maximum depth for photosynthesis
depends on plants and weather. Within the epipelagic zone there is enough light
for photosynthesis, and thus plants and animals are largely concentrated here.

Below the mesopelagic zone lies the aphotic zone which is not exposed to
sunlight. Organisms there depend on “marine snow” (a continuous shower of
mostly organic detritus, decaying creatures and feces, falling from above) and
chemosynthesis. The deep sea is the layer in the ocean below thermocline, at the
depth 1800m or more.

The pelagic zone consists of all the sea other than that near the coast or the
sea floor, while the benthic zone is the ecological region at the very bottom of the
sea.

The ocean is divided into the following horizontal layers from the top down:

– From the surface down 200 m: epipelagic (sunlit zone);
– 200–1000m: mesopelagic (twilight zone);
– 1000–4000m: bathypelagic (dark zone);
– 4000–6000m: abyssopelagic (abyss);
– below 6000m: hadalpelagic (trenches).

The deep sound (or SOFAR, i.e., SOund Fixing And Ranging) channel is a
layer of ocean water where the speed of sound is at a minimum (
1480 m/s),
because water pressure, temperature and salinity cause a minimum of water
density. Sound waves of low frequency, caught and bent here, can travel hundreds
of km. In low and middle latitudes, the SOFAR channel axis lies 600–1200 m
below the sea surface; it is deepest in the subtropics and comes to the surface in
high latitudes.
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The SLD (sonic layer depth) is the depth of maximum sound speed above this
axis. The best depth for a submarine to avoid detection is SLD plus 100 m.

Mixing length: the distance at which an eddy (a circular movement of water)
maintains its identity until it mixes. An eddy can reach 500 km across and persist
for months. Cf. the mean free path and diffusion length in Chap. 24.

Mixed layer depth: the depth of the bottom of the mixed layer, i.e., a nearly
isothermal surface layer of 40–150 m depth where water is mixed through wave
action or thermohaline convection.

Depth of exponential mixing or depth of homogeneous mixing refers to a
surface turbulent mixing layer in which the distribution of a constituent decreases
exponentially, or is constant, respectively, with height.

Depth of frictional resistance: the depth at which the wind-induced current
direction is 180ı from that of the true wind.

The fetch (or fetch length): the horizontal distance along open water over
which wave-generating wind or waves have traveled uninterrupted. In an
enclosed body of water, the fetch is the distance between the points of minimum
and maximum water-surface elevation. In Meteorology, the fetch is the distance
upstream of a measurement site, receptor site, or region of interest that is
relatively uniform.

The total volume of Earth’s water is 
 1:39 billion km3 (0:2% Earth’s
mass) of which 
 96% is liquid. For each sustained 1 ıC increase in global
temperature, the sea level could rise by 2:3 m. Global sea level will rise by at
least 1 m by 2100. At 2016, it is higher than anytime during last 115;000 years.

The ocean on Ganymede (Jupiter’s satellite and the largest Solar System’s
moon) has total volume 40 billion km3 and depth 800 km (30% of Ganymede’s
radius).

• River length
Meaning of river length, i.e., the distance between source and mouth, depend

on their definitions, anabranches (multiple channels), map scale, etc.
The maximal river length is the length of the longest continuous river

channel in a given river system, regardless of name. Here, a river’s “true source”
is considered to be the source of whichever tributary is farthest from the mouth.

The world’s longest rivers are Nile-Kagera (
6650–6853 km), Amazon-
Ucayali-Apurmac (
6400–6992 km) and Yangtze (
6300–6418 km).

• Soil distances
Soil is composed of particles of broken rock that have been altered by

chemical and environmental processes that include weathering and erosion. It
is a mixture of mineral and organic constituents that are in solid, gaseous and
aqueous states. A soil horizon is a specific layer in the land area that is parallel
to the soil surface and possesses physical characteristics which differ from the
layers above and beneath. Each soil type usually has 3–4 horizons.

– A Horizon (or topsoil): the upper layer (usually 5–20 cm) with most organic
matter accumulation and soil life.
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– B Horizon (or subsoil): the deeper layer accumulating by illuviation (action of
rainwater), iron, clay, aluminum and organic compounds.

– C Horizon: the layer which is little affected by soil forming processes.
– R Horizon: the layer of partially weathered bedrock at the base of the soil

profile.

The current average rate of erosion over the Earth’s land is 30 B, where B is
the Bubnoff unit of speed (for lowering of earth surfaces due to erosion) equal
to 1 m in a million year, i.e., removing 1 m3 of earth from an area of 1 km2 in
1 year.

The pedosphere is the outermost layer of the Earth that is composed of soil
and subject to soil formation processes. It lies below the vegetative cover of the
biosphere and above the groundwater and lithosphere (outermost shell of the
Earth).

Larger Critical Zone includes vegetation, the pedosphere, groundwater aquifer
systems and ends in the bedrock where the biosphere and hydrosphere (combined
mass of Earth’s water) cease to make significant changes to the chemistry.

The water table (or phreatic surface) is the level at which the groundwater
pressure is equal to atmospheric pressure.

The cryosphere is the part of the hydrosphere describing the Earth’s ice:
sea/lake/river ice, snow cover, glaciers, ice caps, ice sheets and frozen ground
including permafrost. The Bentley Subglacial Trench in Antarctica is the world’s
deepest, 2555 m, ice.

The Earth is now in a warm phase of the 5-th (Quaternary) major Ice Age,
which started 2:58 Ma ago, The last glacial expansion ended 11;700 years ago
with the start of the Holocene. Next one is expected within coming 1500–10,000
years unless anthropogenic global warming will delay it. The planet has warmed
by only 0:74 ıC since the early 1900s.

• Frost line (in Earth Science)
The frost line (or freezing depth) is the depth to which the groundwater in soil

is expected to freeze. In polar locations with year-round permafrost, the thaw
depth is the depth to which the permafrost is expected to thaw each summer.

In tropical regions, frost line may refer to the vertical geographic elevation
below which frost does not occur. The climatic snow line is the point above which
snow and ice cover the ground throughout the year; seasonally, snow occurs much
lower. Cf. frost line (in Astrophysics).

• Moho distance
The Earth’s oceanic crust (or sima for Si and Mg in basaltic rocks) is the

surface, 5–10 km thick, of the ocean basins. The continental crust (or sial for Si
and Al) is the layer of granitic rocks, 20–90 km thick, forming continents and
continental shelves. The Moho interface (or Mohorovicić seismic discontinuity)
is the boundary between the crust and the mantle, where the velocity of seismic
P-waves increases. The Moho distance is the crustal thickness, i.e., the distance
from a surface’s point to the Moho interface beneath it.
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The world’s lowest sea-drilled point was 10;680 m-deep (in the Gulf of
Mexico) under 1259 m of water. The Japanese research vessel Chikyu, aiming
to the Moho interface, drilled 7740 m below the sea level and 2466 m below the
seafloor. Cf. the lowest point on dry land (the shore of Dead Sea: 418m), deepest
cave (Krubera, Caucasus: 2191 m and, Chavé Cave, Mexico, possibly, � 2500

m), deepest mine (Mponeng gold mine, South Africa: about 4 km) and deepest
drill (Kola Superdeep Borehole: 12;262 m). The temperature rises usually by 1ı
every 33 m.

The Curie depth is the depth (usually 10–50 km) where the temperature
reaches the Curie point at which rocks lose their ferromagneticic properties.

The Earth’s mantle extends from the Moho interface to the mantle-core
boundary at 
 2890 km. The liquid outer core of radius 3480 km (i.e., Mars-
sized) contains a solid iron inner core (expanding 
 0:5 mm per year) of radius
1220 km. The mantle is divided into the upper and lower one at 
 660 km. Main
other seismic boundaries are at about 60–90 km, 50–150 km, 220 km (Hales,
Gutenberg and Lehmann discontinuities) and 410 km, 520 km, 710 km.

The lithosphere comprises the crust and the rigid portion of the upper mantle
that behaves elastically on large time scales. Its thickness is the depth of the
isotherm 
1000ı of the transition between brittle and viscous behavior. The
lithosphere is broken into tectonic plates which float on the more plastic part
of the mantle, the asthenosphere, 100–200 km deep.

The Eurasian and African plates are moving at the rates of 2 and 2:15 cm per
year. The maximum earthquakes occur on the boundaries of the major moving
plates. The eastern part of Indo-Australian plate is moving north 5:6 cm per year
while the western part (India) is moving (north-east) only 3:7 cm per year due to
impediment by Himalayas. The sequence of earthquakes in 2012 off the coast of
Sumatra indicates that this plate has broken up into 2 or 3 separate plates.

• Distances in Seismology
The Earth’s crust is broken into tectonic plates that move around (at some cm

per year) driven by the thermal convection of the deeper mantle and by gravity.
At their boundaries, plates stick most of the time and then slip suddenly.

An earthquake, i.e., a sudden (several seconds) motion or trembling in the
Earth, caused by the abrupt release of slowly accumulated strain, was, from 1906,
seen mainly as a rupture (the sudden appearance, nucleation and propagation of
a new crack or fault) due to elastic rebound. However, from 1966, it is seen
within the framework of slippage along a pre-existing fault or plate interface, as
the result of stick-slip frictional instability. One of most important parameters
controlling fault instability is the slip-weakening distance Dc over which a
fault weakens during its seismogenic motion. The coefficient of friction degrades
linearly with slip until Dc is reached; then it stays constant.

So, an earthquake happens when dynamic friction becomes less than static
friction. The advancing boundary of the slip region is called the rupture front.
The standard approach assumes that the fault is a definite surface of tangential
displacement discontinuity, embedded in a liner elastic crust.
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Most earthquakes occur at near-vertical faults but a magnitude 6:0 earthquake
at Kohat, Pakistan, in 1992, moved a 80 km2 swath of land 30 cm horizontally.
Almost all (81% and 17%) world’s largest earthquakes occur along the Ring
of Fire (circum-Pacific seismic belt) and the Alpide belt (from Java to Sumatra
through the Himalayas, the Mediterranean, and out into the Atlantic).
90% of earthquakes are of tectonic origin, but they can also be caused by

volcanic eruption, nuclear explosion and work in a large dam, well or mine.
Earthquakes can be measured by focal depth, speed of slip, intensity (modified
Mercali scale of earthquake effects), magnitude, acceleration (main destruction
factor), etc.

The Richter scale of magnitude is computed from the amplitude and frequency
of shock waves received by a seismograph, adjusted to account for the epicentral
distance. An increase of 1:0 of this magnitude corresponds to an increase of 10
times in amplitude of the waves and 
 31 times in energy; the largest recorded
value is 9:5 (Chile, 1960). Asteroid’s impact in Yucatan 66 Ma ago was 12:55.

An earthquake first releases energy in the form of shock pressure waves that
move quickly through the ground with an up-and-down motion. Next come shear
S-waves which move along the surface, causing much damage: Love waves in a
side-to-side fashion, followed by Rayleigh waves which have a rolling motion.
The earthquake extinction length is the distance over which the S-wave energy is
decreased by 1

e .
Distance attenuation models (cf. distance decay in Chap. 29), used in

Earthquake Engineering for buildings and bridges, postulate acceleration decay
with an increase of some site-source distance, i.e., the distance between
seismological stations and the crucial (for the given model) “central” point of
the earthquake.

The simplest model is the hypocenter (or focus), i.e., the point inside the Earth
from which an earthquake originates (the waves first emanate, the seismic rupture
or slip begins). The epicenter is the point of the Earth’s surface directly above
the hypocenter. This terminology is also used for other catastrophes, such as an
impact or explosion of a nuclear weapon, meteorite or comet but, for an explosion
in the air, the term hypocenter refers to the point on the Earth’s surface directly
below the burst. A list of the main Seismology distances follows.

The focal depth: the distance between the hypocenter and epicenter. Earth-
quake is shallow-, mid- or deep-focus if it is < 70 km, 70–300 km or 300–700
km.

The hypocentral distance: the distance from the station to the hypocenter.
The epicentral distance (or earthquake distance): the great circle distance

from the station to the epicenter.
The Joyner–Boore distance (1981): the distance from the station to the

closest point, located over the rupture surface (rupturing portion of the fault
plane).

The rupture distance: the distance from the station to the closest point on the
rupture surface. The seismogenic depth distance: the distance from the station
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to the closest point of the rupture surface within the seismogenic zone, i.e., the
depth range where the earthquake may occur; usually at depth 8–12 km.

The crossover distance: the distance on a seismic refraction survey time-
distance chart at which the travel times of the direct and refracted waves are the
same.

Also used are the distances from the station to:

– the center of static energy release and the center of static deformation of the
fault plane;

– the surface point of maximal macroseismic intensity, i.e., of maximal ground
acceleration (it can be different from the epicenter);

– the epicenter such that the reflection of body waves from the Moho interface
(the crust-mantle boundary) contribute more to ground motion than directly
arriving shear waves (it is called the critical Moho distance);

– the line extending the fault trace (top edge of the rupture) in both directions;
– the sources of noise and disturbances: oceans, lakes, rivers, railroads, build-

ings.

The space-time link distance between two earthquakes x and y is defined by

q
d2.x; y/C Cjtx � tyj2;

where d.x; y/ is the distance between their epicenters or hypocenters, jtx � tyj is
the time lag, and C is a scaling constant needed to connect distance and time.

The earthquake distance effect: at greater distances from its center, the
perception of an earthquake weaken and lower frequency shaking dominates
it. Many animals hear infrasound of imminent earthquakes and feel primary
P-waves.

Another space-time measure for catastrophic events is distance between
landfalls for hurricanes hitting a US state. It is (Landreneau, 2003) the length
of state’s coastline divided by the number of hurricanes which have affected it
from 1899.

Also, Shennan et al., 2015, compare archeological cultures by both, great
circle distance between sites and Euclidean distance between median culture
dates.

• Plume height
In a volcanic eruption, plume height refers to the highest point the eruptive

cloud reaches before it flattens out and begins to drift downwind.
The Volcanic Explosivity Index (VEI) is a scale measuring known eruptions

by their volume of ejecta and plume height from VEI 0 (1000 m3, < 100 m) to
mega-colossal (or super-volcano) VEI 8 (1000 km3, > 50 km).

• Weather distance records
For a tornado, maximum width of damage, highest elevation, longest path:

4000 m, 3650 m, 472 km. The longest transport of a surviving human and of an
object: 398 m and 359 km (personal check).
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Longest path of a tropical cyclone: 13;500 km; highest storm surge: 13 m.
Largest snowflake and hail diameter: 38 and 20 cm. Longest lighting bolt:

190 km.
Greatest minute, hour, day, month, year rainfall: 31:2 mm, 0:3 m, 1:82 m,

9:3 m, 26:47 m. Lowest and highest mean annual precipitation: 0:762 mm and
11:872 m.

• Extent of Earth’s biosphere
Life has adapted to every (except, perhaps, ocean vent locales > 130 ıC)

ecological niche possessing liquid water and a source of free energy (say,
sunlight, plate tectonics, water-rock chemistry). The main physical factors are
temperature and pressure; their range for known active life as Œ�20ı; 122ı�C and
Œ5 � 10�2; 1:3 � 103� bar. But the range, say, Œ�30ı; 135ı�C looks possible. The
acidity/alkalinity range of known life is Œ0; 11� on the pH scale, from acidic hot
springs to soda lakes.

In Jones–Lineweaver, 2010, the depth 5–10 km of the 122 ıC isotherm and the
altitude 10–15 km (a tropopause boundary of the vertical movement of particles)
are the boundaries of active life. In Nussinov–Lysenko, 1991, the boundaries of
biosphere are Moho interface (say, �30 km) and Kármán line (100 km).

For humans, the typical bounds for main physiologic factors are: core tem-
perature 35–38 ıC, serum pH 7.35–7.45, plasma osmolality 270–290 mOsm/kg,
fasting plasma glucose 3.3–5.6 mmol/l and serum calcium 2.2–2.6 mmol/l. But
there are permanent human habitations at mean annual temperatures of 34:4 ıC,
�19:7 ıC and at an altitude of 5:1 km. Birds usually fly at altitudes 0.65–1.8 km
but a vulture collided, at 11:3 km, with an aircraft.

A fish has been spotted at 8372 m down in the Puerto Rico Trench. Deepest
multicellular life are worms found at depths up to 3:6 km in gold mines and up
to 10:8 km in the Challenger Deep. Stoddard, 2015, expects microbial life up to
19 km deep since high pressure can offset the heat’s destructive effects.

Microbes, supported by chemosynthesis, have been found in cores drilled 5:3
km, in hydrothermal vents at 11 km depth and 2:5 km beneath ocean’s floor.
Such deep biosphere (1–10 % of the world’s biomass and the Earth vastest) is
expected below the surface of continents and bottom of the ocean up to isotherm
122 ıC. Some of such microbes have doubling times in millennia, while Vibrio
natriegens divide in 9:8min. The same 19 deep-rock bacteria found to be similar
worldwide.

The ranges for latent life (cryptobiosis: reversible state of low or undetectable
metabolism) are much larger. Fungi and bacterial spores were found at an altitude
18–41 km. Examples of survival limits follow.

Some frogs, turtles and snakes survive the winter by freezing solid. A brine
shrimp Artemia tolerates salt amounts of 25%. Tardigrades, in cryptobiosis,
survive �272 ıC, 151 ıC (a few minutes), �20 ıC (30 years), pressure 6000 bar,
radiation 6200 gray of gamma rays and 120 years without water. Fly’s larva
Polypedilium vanderplanki dehydrates, in dry period, to 3% water content, and
it can survive �270 ıC, 102 ıC, radiation 7000 g and 18 months in outer space
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vacuum. Some Antarctic fungi and Alpine lichens survive 18 months in Mars-
like conditions or space travel.

A parasitic leach Ozobranchus jantseanus survives �196 ıC (24 h) and
�90 ıC during 32months. Archea Thermococcus gammatolerans survive 30;000
gray. Bacteria growing under hypergravity 403;627 g were cultivated. A bac-
terium survived 2:5 years on the Moon. Deinococcus radiodurans, listed as
the world’s toughest bacterium, survive extreme cold, dehydration, vacuum,
radiation and acid. A bacteria Tersicoccus phoenicis has only been found in two
spacecraft assembly clean rooms and is resistant to the methods used to clean
such facilities.

Millions of years old (nondormant, just slow metabolizing) microbs, repro-
ducing only every 10;000 years, were found in ocean floor. Bacterial spores were
revived after 34;000 years of stasis; it was claimed also for 40 Ma old spores. A
1300 years old lotus seed and 2000 year old seed from extinct Judean date palm
were germinated. Silene stenophylla was grown from 31;800 years old fruit.

Among the proponents of panspermia (the hypothesis that life, via
extremophile bacteria and crystallized viruses surviving in space, propagates
throughout the Universe), Yang et al., 2009, expect microbe density to be
10�3 � 10�2 cells/m3 at altitude 100 km and 10�6 � 10�4 at 500 km. A
large amount is expected at the altitude of the ISS (278–460 km). Napier–
Wickramasinghe, 2010, claim that 1014 � 1016 microorganisms (
 10 tonnes)
per year are ejected from Earth at survivable temperatures. Organics preserved
in cometary amorphous ice and meteorite-formed glass can be transported from
one planet to another. Also, microbes, if somehow protected from UV, survive in
meteorites with transit time of a few years.

A total of 7:5 � 1015 terrestrial microbes could reach the Moon per year, and
the Solar System could be surrounded by an expanding biosphere of radius >
5 parsecs containing 1019 � 1021 microbes. No ubiquitous ultrasmall bacteria
were found but large Bacillus and eukaryotes (5–100 � fungal spores) have been
isolated from the stratosphere 27 km up, too high to have been lifted from Earth’s
surface. So, some viable but nonculturable microbes could be incoming from
space. Hoover, 2011, found microfossils similar to filamentous prokaryotes in
CI1 (Alais, Ivuna and Orgueil) and CM2 (Murchison and Murray) meteorites.

Life on Mars, if any, is expected to be of the same origin (and, perhaps,
earlier) as that on Earth, but it would have to be under at least 1 m of soil/rock
to survive. Impact of icy comets crashing into Earth billions of years ago could
have produced a variety of prebiotic or life-building compounds, including amino
acids.

Interstellar panspermia, when the Sun passes a star-forming cloud, and even
intergalactic panspermia, when galaxies collide, are debated. But on a cosmic
scale, even enthusiasts of panspermia see it as a local, “a few megaparsecs”,
phenomenon.
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25.3 Distances in Astronomy

A celestial object (or celestial body) is a term describing astronomical objects such
as stars and planets. The celestial sphere is the projection of celestial objects into
their apparent positions in the sky as viewed from the Earth. The celestial equator
is the projection of the Earth’s equator onto the celestial sphere. The celestial poles
are the projections of Earth’s North and South Poles onto the celestial sphere. The
hour circle of a celestial object is the great circle of the celestial sphere, passing
through the object and the celestial poles.

The ecliptic is the intersection of the plane, containing the Earth’s orbit, with
the celestial sphere: seen from the Earth, it is the path that the Sun appears to follow
over the course of a year. The vernal equinox point (or the First point in Aries) is one
of the two points on the celestial sphere, where the equator intersects the ecliptic: it
is the position of the Sun at the time of the vernal equinox.

In Astronomy, the horizon is the horizontal plane through the eyes of the
observer. The horizontal coordinate system is a celestial coordinate system using
the observer’s local horizon as the fundamental plane, the locus of points having an
altitude of 0ı. The horizon is the line separating Earth from sky; it divides the sky
into the upper hemisphere that the observer can see, and the lower hemisphere that
he cannot. The pole of the upper hemisphere (the point of the sky directly overhead)
is called the zenith; the pole of the lower hemisphere is called the nadir.

Positions and distances are calculated with respect to the center of mass of a body,
not with respect to the geometric center, or surface. In general, an astronomical
distance is a distance from one celestial body to another measured in astronomical
units or gygameters for planets, light-years (ly) or parsecs for stars, kiloparsecs at
the galactic scale, in megaparsecs (Mpc) for nearby galaxies and in terms of redshift
for distant galaxies.

The average distance between stars (in a galaxy) is several ly; it is about 4 ly in
Milky Way and 6.57 ly in the solar neighborhood. The average distance between
galaxies (in a cluster) is several Mpc, while between clusters of galaxies (in a
supercluster) it is of order 10 Mpc. The large structures are groups of galaxies,
clusters, galaxy clouds (or groups of clusters), superclusters, and supercluster
complexes (or galaxy filaments, great walls). A range of structures: galaxies (� 10

kpc), groups (0.3–1 Mpc), clusters (few Mpc), superclusters (10–100 Mpc).
The Universe appears as a collection of giant bubble-like voids separated by

great walls, with the superclusters appearing as relatively dense nodes. The average
density of stars is about 1:4 per 100 billion cubic light-years, i.e., the average
distance between them is about 4150 light-years. The mean density of visible matter
(i.e., galaxies) in the Universe is � 10�31 g/cm3, while 1 g/cm3 is the mass density
of water.

ESA’s Herschel space observatory found that our galaxy is threaded with
filamentary structures on every length scale, from a few to a hundreds light-years,
revealing the “skeleton” of Milky Way. These filaments appear to have a universal
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width of about one third of a light-year, and they seem to be the preferred sites for
stellar birth.

• Latitude
In spherical coordinates .r; �; �/, the latitude is the angular distance ı

from the xy plane (fundamental plane) to a point, measured from the origin;
ı D 90ı � � , where � is the colatitude.

In a geographic coordinate system (or earth-mapping coordinate system), the
latitude is the angular distance from the Earth’s equator to an object, measured
from the center of the Earth. Latitude is measured in degrees, from �90ı (South
Pole) to C90ı (North Pole). Parallels are the lines of constant latitude. The
colatitude is the angular distance from the Earth’s North Pole to an object.

The celestial latitude is an object’s latitude (measured in degrees) on the
celestial sphere from the intersection of the fundamental plane with the celestial
sphere in a given celestial coordinate system. In the equatorial coordinate
system the fundamental plane is the plane of the Earth’s equator; in the ecliptic
coordinate system the fundamental plane is the plane of the ecliptic; in the
galactic coordinate system the fundamental plane is the plane of the Milky
Way; in the horizontal coordinate system the fundamental plane is the observer’s
horizon.

Geomagnetic latitude is a parameter analogous to geographic latitude, except
that bearing is with respect to the magnetic poles. The intersection between the
magnetic and rotation axes of the Earth is located 
 500 km North from its
centre.

• Longitude
In spherical coordinates .r; �; �/, the longitude is the angular distance �

in the xy plane from the x axis to the intersection of a great circle, that passes
through the point, with the xy plane.

In a geographic coordinate system (or Earth-mapping coordinate system), the
longitude is the angular distance measured eastward along the Earth’s equator
from the Greenwich meridian (or Prime meridian) to the intersection of the
meridian that passes through the object. Longitude is measured in degrees, from
0ı to 360ı. A meridian is a great circle, passing through Earth’s North and South
Poles; the meridians are the lines of constant longitude.

The apparent longitude shift, 102 m east, at Greenwich is a local effect due to
the direction of gravity there, and not a global shift in the longitude system.

The celestial longitude is the longitude of a celestial object (measured in units
of time) on the celestial sphere measured eastward, along the intersection of the
fundamental plane with the celestial sphere in a given celestial coordinate system,
from the chosen point. In the equatorial coordinate system the fundamental plane
is the plane of the Earth’s equator; in the ecliptic coordinate system it is the plane
of the ecliptic; in the galactic coordinate system it is the plane of the Milky Way;
and in the horizontal coordinate system it is the observer’s horizon.
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• Declination
In the equatorial (or geocentric) coordinate system, the declination ı is the

celestial latitude of a celestial object on the celestial sphere, measured from the
celestial equator. Declination is measured in degrees, from �90ı to C90ı.

• Right ascension
In the equatorial (or geocentric) coordinate system, fixed to the stars, the

right ascension RA is the celestial longitude of a celestial object on the celestial
sphere, measured eastward along the celestial equator from the First point in
Aries to the intersection of the hour circle of the celestial object. RA is measured
in units of time with 1 h approximately equal to 15ı.

The time needed for one complete cycle of the precession of the equinoxes is
called a Platonic (or Great) year); it is 257–258 centuries and slightly decreases.
This cycle is important in Astrology. Also, it is close to the Maya calendar’s
longest cycle—5Great Periods of 5125 years; cf. distance numbers in Chap. 29.

The time (225–250 million Earth years) it takes the Solar System to revolve
once around the center of the Milky Way (Solar circle) is called the Galactic year.

• Hour angle
In the equatorial (or geocentric) coordinate system, fixed to the Earth, the

hour angle HA is the celestial longitude of a celestial object on the celestial
sphere, measured along the celestial equator from the observer’s meridian to the
intersection of the hour circle of the celestial object.

HA gives the time elapsed since the celestial object’s last transit at the
observer’s meridian (for HA > 0), or the time until the next transit (for HA < 0).

• Polar distance (in Geography)
In the equatorial (or geocentric) coordinate system, the polar distance (or

codeclination) PD is the colatitude of a celestial object, i.e., the angular
distance from the celestial pole to a celestial object on the celestial sphere.
Similarly as the declination ı, it is measured from the celestial equator: PD D
90ı ˙ ı. An object on the celestial equator has PD D 90ı.

• Ecliptic latitude
In the ecliptic coordinate system, the ecliptic latitude is the celestial latitude

(in degrees) of a celestial object on the celestial sphere from the ecliptic.
The object’s ecliptic longitude is its celestial longitude on the celestial

sphere measured eastward along the ecliptic from the First point in Aries.
• Zenith distance

In the horizontal (or Alt/Az) coordinate system, the zenith distance (or North
polar distance, zenith angle) ZA is the object’s colatitude, measured from the
zenith.

• Altitude
In the horizontal (or Alt/Az) coordinate system, the altitude ALT is the

celestial latitude of an object from the horizon. It is the complement of the
zenith distance ZA: ALT D 90ı � ZA. Altitude is measured in degrees.
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• Azimuth
In the horizontal (or Alt/Az) coordinate system, the azimuth is the celestial

longitude of an object, measured eastward along the horizon from the North
point. Azimuth is measured in degrees, from 0ı to 360ı.

• Morning width
Morning (or rise) width is the horizontal angular distance between the rise

azimuth of a celestial body and the easterly direction.
• Elliptic orbit distance

The elliptic orbit distance is the distance from a body in an elliptical orbit
around a central body at a focus to that body. This distance is given by

r.�/ D a.1 � e2/

1C e cos �
D a.1 � e cos E/;

where a; b are the semimajor and semiminor axes (halves of the major and minor

diameters), e is the eccentricity
q
1 � . b

a /
2, and �;E are the true anomaly (angle

between the direction of periapsis and the current position of the body, as seen
from the central body) and the eccentric anomaly E D arccos eCcos �

1Ce cos � . The mean
anomaly is F D 1 � e sin E. The orbital distance is mean r.�/ over E.

The periapsis distance and apoapsis distance are the closest and farthest
distances rmin D r.0/ D a.1 � e/ and rmax D r.�/ D a.1C e/.

For Earth’s orbit, e D 0:01671; it wire the points at periapsis and apoapsis
distances of an elliptical orbit around the Earth, while the perihelion and aphelion
are such points around the Sun. The periastron and apastron of a double star
are the closest and farthest points of the smaller star to its primary. ll reach a
minimum, 0:00236, in 0:027 Ma.

The near-Earth objects are asteroids, comets, spacecraft, and large meteoroids
whose perigee is closer than 1:3 AU; the largest such asteroids are 1036
Ganymede and 433 Eros, about 34 km across. The perigee and apogee are the
points at periapsis and apoapsis distances of an elliptical orbit around the Earth,
while the perihelion and aphelion are such points around the Sun. The periastron
and apastron of a double star are the closest and farthest points of the smaller star
to its primary.

In addition to a; e and F, the other three main parameters required to uniquely
identify a Kepler orbit (ellipse, parabola, hyperbola, or straight line) are the
orbital inclination (angle between reference and orbital planes), the longitude
of the ascending node (angle � from a reference direction to the direction
of the ascending node, measured in a reference plane), and the argument of
periapsis (angle ! from the body’s ascending node to its periapsis, measured
in the direction of motion).

Sedna, 2012VP113, and other distant detached Kuiper Belt objects exhibit
unusual alignment in orbital planes and clustering around ! D 0 if a > 150

AU and � D 113ı ˙ 13ı if a > 250 AU. Batygin–Brown, 2016, explain it by
resonant coupling with a hypothetical super-Earth, whose orbit lies in about the
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same plane, but perihelion is 180ı away from the perihelia of the minor bodies.
This Planet Nine should have perihelion 200 AU and aphelion 1200 AU; so,
a D 700 AU.

• Minimum orbit intersection distance
The minimum orbit intersection distance (MOID) between two bodies is

the distance between the closest points of their gravitational Kepler orbits.
An asteroid or comet is a potentially hazardous object (PHO) if its Earth

MOID is less than 0:05 AU and its diameter is at least 150 m. Impact with a
PHO occurs on average around once per 10;000 years. The only known asteroid
whose hazard could be above the background is 1950 DA (of mean diameter 1:2
km) which can, with probability 1

300
, hit Earth on March 16, 2880. Object up to

about 25 m in size burn up in the atmosphere, and even the 50 to 80 m objects
disintegrate before reaching Earth, although they can create a damaging airburst.
The closest known geocentric distance for a comet was 0:0151 AU (Lexell’s
comet on July 1, 1770).

• Impact distances
After an impact event, the falling debris forms an ejecta blanket, i.e., a

generally symmetrical apron of ejecta that surrounds crater. About half the
volume of ejecta falls within 2 radii from the center of the crater, and over 90%
falls within 
 5 radii. Beyond it, the debris are discontinuous and are called
distal ejecta.

Main parameter of an impact crater is the ratio of rim-to-floor depth d to the
rim-to-rim diameter D. The simple craters are small with 1

7
� d

D � 1
5

and a
smooth bowl shape. If D > D0, where the transitional diameter D0 scales as
the inverse power of the planet’s surface gravity, the initially steep crater walls
collapse gravitationally downward and inward, forming a complex structure. On
Earth, 2 � D0 � 4 km depending on target rock properties; on the Moon, 15 �
D0 � 20 km.

The largest known (diameter of 300 km) and old (2023 Ma ago) astrobleme
(meteorite impact crater) is Vredefort Dome, 120 km south-west of Johannes-
burg. It was the world’s greatest known single energy release event and largest
asteroid known to have impacted the Earth (
 10 km). The diameter of MAPCIS
crater in Australia is 600 km, but it is not confirmed impact crater.

Sometimes, the term impact distance is used more generally as a setback
distance from some possible hazard (say, explosion, toxic chemical release, odor
from swine facilities) or from the action of some equipment (say, laser, homoge-
nizer); Cf. standoff distance and protective action distance in Chap. 29.

• Elongation
Elongation (or digression) is the angular distance in longitude of a celestial

body from another around which it revolves (usually a planet from the Sun).
• Lunar distance

The lunar distance is the angular distance between the Moon and another
celestial object.

In Astronomy, new moon (or dark moon) is a lunar phase that occurs at the
moment of conjunction in ecliptic longitude with the Sun. If, moreover, the Sun,
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Moon, and Earth are aligned exactly, a solar eclipse occurs. Full moon occurs
when the Moon is on the opposite side of the Earth from the Sun. If, moreover,
the Sun, Earth, and Moon are aligned exactly, a lunar eclipse occurs.

A supermoon (or perigee-syzygy of the Earth-Moon-Sun system) is the near-
coincidence of a full moon or a new moon with the closest approach the Moon
makes to the Earth on its orbit, resulting in its largest apparent size.

• Sun-Earth-Moon distances
The Sun, Earth and Moon have masses 1:99 � 1030, 5:97 � 1024, 7:36 � 1022

kg and equatorial radii 695;500, 6378, 1738 km, respectively.
Earth’s axial tilt varies 22.1–24.5ı about every 41;000 years, its rotation

occurs about every 19;000 years and eccentricity cycles 0.003–0.058 about every
0:1 Ma.

The Earth and the Moon are at a mean distance of 1 AU 
 1:496 � 108 km
from the Sun. This distance increases at the present rate 
 15 cm per year.

The Moon, at distance 0:0026 AU (
 60 Earth radii R˚), is within the Hill
radius (1;496;000 km) of the Earth, but well outside of the Roche radius (9496
km).

Asimov argued that the Earth-Moon system is a double planet because their
diameter and mass ratios (
4:1 and 
81:1) are smallest for a planet in the Solar
System. Also, the Sun’s gravitational effect on the Moon is more than twice that
of Earth’s. But the barycenter (common center of mass) of the Earth and Moon
lies well inside the Earth, 
 3

4
of its radius.

The Moon has a greater tidal influence on the Earth than the Sun. Because
of tidal forces, the Moon is receding from the Earth at 
 3:8 cm per year. So,
Earth’s rotation is slowing, and Earth’s day increases by 
 23 s every million
years (excluding glacial rebounds). At present rate, the Moon’s orbital distance
will reach, 
 1 Ga from now, 67R˚, and Earth’s axial tilt will become chaotic.

• Opposition distance
A syzygy is a straight line configuration of three celestial bodies A;B;C. Then,

as seen from A, B and C are in conjunction, and the passage of B in front of C
is called occultation if the apparent size of B is larger, and transit, otherwise.
Appulse is the closest approach of B and C as seen from A.

If B and C are planets orbiting the star A, then C said to be in opposition to A,
and the distance between B and C (roughly, their closest approach) is called their
opposition distance. It can vary at different oppositions.

A greatest conjunction is a conjunction of Jupiter and Saturn at or near
their opposition to the Sun. The “Star of Bethlehem”—thought by Kepler to
have appeared c. 7 BC—was theorized to be such triple conjunction and almost
occultation of Saturn by Jupiter. The next such occultation will happen in 7541.

The closest possible distance between Earth and a planet is 38million km: the
minimal opposition distance with Venus. The closest known approach between
exoplanets is 0:0016 AU 
 240;000 km (by Kepler-70b and Kepler-70c).

The closest known distance between two stars is 80;000 km in the binary HM
Cancri; their orbital period is 5:4min. The orbital period of exoplanet 2MASS
J2126-8140 around a red dwarf star TYC 9486-927-1 takes nearly a million Earth
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years. The largest and smallest known orbits of a planet around a single star are
6900 AU (by 2MASS J2126-8140) and 0:006 AU (by Kepler-70b).

• Planetary aspects
In Astrology, an aspect is an angle (measured by the angular distance of

ecliptic longitude, as viewed from Earth) the planets make to each other and other
selected points in the horoscope, i.e., a chart representing the apparent positions
and selected angles of the celestial bodies at the time of an event, say, a person’s
birth. Astrology claims a link between aspects and events in the human world.

Major aspects are 1–10ı (conjunction) and 90ı (square), 180ı (opposition) for
which an orb (error) of 5–10ı is usually allowed. Then follow 120˙ 4ı (trine),
60˙ 4ı (sextile) and (with orb 2ı) 150ı (quincunx), 45ı, 135ı, 72ı, 144ı. Other
aspects are based on the division of the zodiac circle by 7; 9; 10; 11; 14; 16 or 24.

• Primary-satellite distances
Consider two celestial bodies: a primary M and a smaller one m (a satellite,

orbiting around M, or a secondary star, or a comet passing by).
Let �M , �m and RM , Rm be the densities and radii of M and m. The Roche

radius (or Roche limit, tidal radius) of the pair .M;m/ is the maximal distance
between them within which m will disintegrate due to the tidal forces of M

exceeding the gravitational self-attraction of m. This distance is 
 1:26RM
3

q
�M
�m

or 
 2:423RM
3

q
�M
�m

if m is rigid or fluid. The Roche lobe of a star is the region

of space around the star within which orbiting material is gravitationally bound
to it.

The tidal locking radius of M is the distance at which the axial and orbital
rotations of m become synchronized, i.e., the same side of m always faces M.
The Moon is tidally locked by the Earth. Pluto and Charon are mutually tidally
locked.

Let d.m;M/ denote the mean distance between m and M, i.e., the arithmetic
mean of their maximum and minimum distances; let Sm and SM denote the masses
of m and M. The barycenter of .M;m/ is the point (in a focus of their elliptical
orbits) where M and m balance and orbit each other. The distance from M to the
barycenter is d.m;M/ Sm

SmCSM
. For the .Earth;Moon/ system, it is 4670 km (1710

km below the Earth’s surface). Pluto and Charon, the largest of its five moons,
form rather a binary planet, since their barycenter lies outside of either body.

The Hill sphere of a body is the region in which it dominates the attraction of

satellites. The Hill radius of m in the presence of M is 
 d.m;M/ 3
q

Sm
3SM

; within

it m can have its own satellites. The Earth’s Hill radius is 0:01 AU; in the Solar
System, Neptune has the largest Hill radius, 0:775 AU.

The pair .M;m/ can be characterized by five Lagrange points Li, 1 � i � 5,
where a third, much smaller body (say, a spacecraft) will be relatively stable
because its centrifugal force is equal to the combined gravitational attraction of
M and m, i.e., gravitational force of M and m balance out. These points are:

L1, L2, L3 lying on the line through the centers of M and m, so that d.L3;m/ D
2d.M;m/, d.M;L2/ D d.M;L1/Cd.L1;m/Cd.m;L2/, d.L1;m/ D d.m;L2/ (the
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satellite SOHO is at the point L1 of the Sun-Earth system, where the view of the
Sun is uninterrupted; the satellites WMAP and Planck are at L2);

L4 and L5 are the points forming equilateral triangles with the centers of M
and m. These points are more stable; each of them forms with M and m a partial
solution of the unsolved gravitational 3-body problem. Objects orbiting at L4 or
L5 are called Trojans of Greek and Trojan camp, respectively. The Moon was
created 4:5 Ga ago by head-on impact of a Mars-sized Trojan planetoid Theia on
the Earth. The only known Sun-Earth Trojan is asteroid 2010 TK7, about 300 m
across.

Other instances of the circular restricted 3-body problem are provided by
planet–co-orbital moons and star–planet–quasi-satellite systems. Co-orbital
moons are natural satellites that orbit at a very similar distance from their parent
planet. Only Saturn’s system is known to have them; it has three sets.

Orbital resonance occurs when the bodies orbital periods are in a close-
to-integer ratio. For example, Pluto-Neptune are in a 2:3 ratio and Jupiter’s
moons Ganymede-Europa-Io are in a 1:2:4 ratio. Earth and Venus are in a quasi-
resonance only 0:032% away from 8:13. A quasi-satellite is an object in a 1:1
orbital resonance with its planet that stays close to the planet over many orbital
periods. The largest of four known Earth’s quasi-satellites is 3753 Cruithne, 
 5

km across.
The most tenuously linked long-distance binary in the Solar System is 2001

QW322: two icy bodies (
 130 km in diameter) in the Kuiper Belt, at mean
distance > 105 km, orbiting each other at 3 km/h. One of widest binaries is the
Alpha Centauri system with Proxima separated from the A/B stars by 15;000AU.

The elliptic restricted 3-body problem treats the circumbinary (orbiting two
stars) planets such as Kepler-16b. A planet PH1 was found in a quadruple (binary
pair) star system Kepler-64. Systems with up to 5 stars are known; most are
triples.

• Low-energy trajectory
The Hohmann transfer orbit is an elliptical orbit used to transfer between two

circular orbits of different radii in the same plane. Currently, it is the favored
method for getting a spacecraft into orbit around its destination. Leaving Earth’s
atmosphere, the craft makes, at high speed, a beeline for the destination; at
approach, it slams on the brakes and starts to orbit the destination. Such a transfer
is a highly effective, but it is time-specific and expensive, since it requires much
energy.

A low-energy (or ballistic capture) trajectory is a route in space that allows
a spacecraft to change orbits using very little fuel. In such transfer to a planet, the
craft is launched out ahead of the planet’s orbital path. It would gradually slow
and hold in place, waiting for the planet to swing by—the gravity of the planet
pulls it into its orbit. Such transfers are very slow, and useful only for automated
probes.

Low-energy transfers follow the Interplanetary Transport Network (ITN), i.e.,
a collection of gravitationally determined pathways through the Solar System that
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require very little energy (fuel) for an object to follow. The ITN uses Lagrange
points as locations where trajectories are redirected using little or no energy.

• Dynamical spacing
Let M;m1;m2 be the masses of a star and two adjacent planets orbiting it with

semimajor axes a1 and a2. The mutual Hill radius of two planets is

RH D a1 C a2
2

3

r
m1 C m2

3M

and their dynamical spacing is (Gladman, 1993; Chambers et al., 1996)


 D ja2 � a1j
RH

.
Fang–Margot, 2013, claim that on average 
 D 21:7, and 
 < 10 leads to

instability in giga-year time span. In the Solar System, 
 > 26 for terrestrial
planets.

• Titius–Bode law
The Titius–Bode law, 1766, is an empirical rule approximating the mean

distance di of i-th planet from the Sun (its orbital semimajor axis) by 3kC4
10

AU.
Here 1 AU 
 1:5 � 108 km and k1 D 0 D 2�1 (for Mercury), ki D 2i�2 for

i � 2, i.e., Venus, Earth, Mars, Ceres (the largest one in the Asteroid Belt, 
 1
3

of its mass), Jupiter, Saturn, Uranus, Pluto. (But Neptune does not fit in the law
while Pluto fits Neptune’s spot k D 27.) The best fit for the form (Wurm, 1787)
di D ACi�2 C B is given by C 
 1:925;A 
 0:334;B D 0:382. Cf. elliptic orbit
distance.

In the Solar System, the period ratios between adjacent orbits scatter around
the dominant 5 W 2 ratio; it is 3 W 2 for Earth-Venus and 2 W 1 for Mars-Earth.

A generalized Titius–Bode relation di D ACi for some A;C fits even
better for many other exoplanet systems showing such preference towards near
mean motion resonance; cf. dynamical spacing. It helps to locate undetected
exoplanets.

Hamano et al., 2013, claim that between 108 (as Venus) and 150 (as Earth)
million km from the Sun, there is a critical distance explaining their difference.
Venus has a similar size and bulk composition to those of Earth, but it lacks
water. Earth solidified from its molten magma state within several million years,
trapping water in rock and under its hard surface, while Venus got more of the
Sun’s heat and remained in molten state for 
 100Ma giving time for any water
to escape.

• Planetary distance ladder
The scale of interstellar-medium dust, chondrules (round grains found in stony

meteorites, the oldest solid material in the Solar System), boulders (rock with
grain size of diameter � 256 mm), planetesimals (kilometer-sized solid objects
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in protoplanetary disks) and protoplanets (internally melted Moon-to-Mars-sized
planetary embryos) is 10�6; 10�3; 100; 103 and 106 m.

In the Solar System’s protoplanetary gas/dust disk, the binary electrostatic
coagulation of dust/ice grains resulted in the creation, of planetesimals. Then
gravity took over the accretion process. The growth was runaway (when T1 < T2,
for growth time scales of the first and second most-massive bodies) at first and
then (with T1 > T2 at some transition radius) it became oligarchic. A few tens
of protoplanets were formed and then, by giant impacts, they were transformed
into Earth and the other rocky planets. The process took 
 90 Ma from 
 4:57

to 
 4:48 Ga ago.
Brilliantov et al., 2015: if a system is comprised of particles that, colliding,

can merge at low velocities and break at large velocities, the size distribution of
particles abundance follow the inverse cubes law. Rare collisions of fast particles
lead to a balance between aggregation and fragmentation. It explained Saturn’s
rings.

• Potato radius
The basic shape-types of objects in the Universe are: an irregular dust, rounded

“potatoes” (asteroids, icy moons), spheres (planets, stars, black holes), disks
(Saturn’s rings, galactic disks) and halos (elliptic galaxies, globular star clusters).

At mean radius R < few km, objects (dust, crystals, life forms) have irregular
shape dominated by nonmass-dependent electronic forces. Solid objects with
R > 200–300 km are gravity-dominated spheres. If both energy E and angular
momentum L are exported (by some dissipative processes), the object, if large
enough, collapses into a sphere. If only E is exported, the shape is a disk. If
neither E, nor L is exported, the shape is a halo, i.e., the body is spheroidal.

If R (R > few km) increases, there is a smooth size-dependent transition to
more and more rounded potatoes until 
200–300 km, where gravity begins to
dominate. Ignoring surface tension, erosion and impact fragmentation, the potato
shape comes mainly from a compromise between electronic forces and gravity.
It also depends on the density and the structural yield strength of the (rocky or
icy) material.

Lineweaver and Norman, 2010, define the potato radius Rpot as this potato-
to-sphere transition radius. They derived Rpot D 300 km for asteroids (Vesta,
Pallas, Ceres have mean radius R D 265; 275; 475 km, respectively) and Rpot D
200 km for icy moons (Hyperion, Mimas, Miranda have R D 135; 198; 235 km,
respectively). Mimas is the smallest body in the Solar System to be rounded,
while Hyperion is the largest nonspherical one; their masses are 3:75 � 1019 and
5:62 � 1018 kg.

In 2006, the IAU (International Astronomical Union) defined a planet as a
orbiting body which has sufficient mass for its self-gravity to overcome rigid
body forces so that it assumes a hydrostatic equilibrium (nearly round) shape
and cleared the neighborhood around its orbit. If the body has not cleared its
neighborhood, it is called a dwarf planet. The potato radius, at which self-gravity
makes internal overburden pressures equal to the yield strengths of the material,
marks the boundary of hydrostatic equilibrium used in above IAU definition.
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Buchhave et al., 2014: planets smaller than 1:7 Earths are likely to be
completely rocky, while those larger than 3:9 Earths are probably gas giants.

• Frost line (in Astrophysics)
In Astrophysics, by analogy with frost line (in Earth Science), the frost

(or snow, ice) line is the distance from a star (or a nebula’s protostar) where
hydrogen compounds such as water, ammonia, methane condense into ice grains.
It separates an inner region of rocky objects from an outer region of icy objects.

Water and methane condensate at 180 K and 40 K, respectively. Sun’s water-
frost and methane-frost lines are roughly at 2:7 AU and 48 AU, i.e., in the
Asteroid Belt (between the orbits of Mars and Jupiter) and the Kuiper Belt (at
30–55 AU). On the other hand, inside of 
 0:1 AU, rocky grains cannot exist:
dust evaporates.

Martin and Livio, 2012, claim that a giant planet like Jupiter should be in
the right location outside of the frost line to produce an asteroid belt of the
appropriate size, offering the potential for life on a nearby rocky planet like Earth.

• Solar distances
Following a supernova explosion 4570 Ma ago in our galactic neighborhood,

the Sun was formed 4567 Ma ago by rapid gravitational collapse of a fragment
(about 1 parsec across) of a giant (about 20 parsecs) hydrogen molecular cloud.

The mean distance of the Sun from Earth is 1 AU 
 1:496 � 108 km. The
mean distance of the Sun from the Milky Way core is 27;200 light-years.

The Sun is more massive than 95% of nearby stars and its orbit around the
Galaxy is less eccentric than 
 93% of similar (i.e., of spectral types F, G,
K) stars within 40 parsecs. The Sun’s mass (99:86% of the Solar System) is

 1:988 � 1030 kg.

The Sun’s radius is 6:955� 105 km; it is measured from its center to the edge
of the photosphere (
 500 km thick layer below which the Sun is opaque to
visible light). The Sun will expand 
 256 times in 7–8 Ga and then become a
white dwarf.

The Sun does not have a definite boundary, but it has a well-defined interior
structure: the core extending from the center to 
 0:2 solar radii, the radiative
zone at 
0.2–0.8 solar radii, where thermal radiation is sufficient to transfer
the intense heat of the core outward, the tachocline (transition layer) and
the convection zone, where thermal columns carry hot material to the surface
(photosphere) of the Sun.

The principal zones of the solar atmosphere (the parts above the photosphere)
are: temperature minimum, chromosphere, transition region, corona, and helio-
sphere.

The chromosphere, a 
 3000 km deep layer, is more visually transparent. The
corona is a highly rarefied region continually varying in size/shape; it is visible
only during a total solar eclipse. The chromosphere-corona region is much hotter
than the Sun’s surface. Extending further, the corona becomes the solar wind, a
very thin gas of charged particles that travels through the Solar System.

The heliosphere is the teardrop-shaped region around the Sun created by
the solar wind and filled with solar magnetic fields and outward-moving gas.
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It extends from 
 20 solar radii (0:1 AU) outward 86–100 AU past the orbit
of Pluto to the heliopause, its outermost edge, where the interstellar medium
and solar wind pressures balance. The interstellar medium and solar wind are
moving supersonically in opposite directions, towards and away from the Sun.
The points, 
 80 AU and 
 230 AU from the Sun, where the solar wind and
interstellar medium become subsonic, are the termination shock and bow shock,
respectively.

The tidal truncation radius (100,000–200,000 AU, say, 
 2 ly from the Sun)
is the outer limit of the Oort Cloud. It is the boundary of the Solar System, i.e.,
Sun’s Hill/Roche sphere, where its gravity is overtaken by the galactic tidal force.

• Dyson radius
The Dyson radius of a star is the radius of a hypothetical Dyson sphere around

it, i.e., a megastructure (say, a system of orbiting star-powered satellites) meant
to completely encompass a star and capture a large part of its energy output.
The solar energy, available at distance d (measured in AU) from the Sun, is 1366

d2

watts/m2. The inner surface of the sphere is intended to be used as a habitat.
For example, at Dyson radius 300 � 106 km from the Sun a continuous

structure with ambient temperature 20 ıC (on the inner surface) and efficiency
3% of power generation (by a heat flux to �3 ıC on the outer surface) is
conceivable.

• Star’s radii
The corotation radius of a star is the distance from it where the centrifugal

force on a particle corotating with it balances the gravitational attraction, i.e., the
accretion disk rotates at the same angular velocity as the star.

The Bondi-Hoyle accretion radius is the radius where star’s gravitational
energy is larger than the kinetic energy and, so, at which material is bound to
star.

The Hayashi radius (or Hayashi limit) of a star is its maximum radius for
a given mass. A star within hydrostatic equilibrium (where the inward force of
gravity is matched by the outward pressure of the gas) cannot exceed this radius.

The Eddington radius (or Eddington limit) of a star is the radius where
the gravitational force inwards equals the continuum radiation force outwards,
assuming hydrostatic equilibrium and spherical symmetry. A star exceeding it
would initiate a very intense continuum driven stellar wind from its outer layers.

The largest and smallest known stars, the red hypergiant UY Scuti and red
dwarf OGLE-TR-122b, have respective radii 1708˙ 192 and 0:12 solar radii.

• Galactocentric distance
A star’s galactocentric distance (or galactocentric radius) is its range

distance from the galactic center; it may also refer to a distance between two
galaxies. The galactic anticenter is the point lying opposite, for an observer on
Earth, this center.

The Sun’s present galactocentric distance is nearly fixed 
 8:4 kiloparsec,
i.e., 27;400 light-years, but it may have been 2.5–5 kpc in the past. Einasto’s
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law, 1963, claims that the density �.r/ of a spherical stellar system (say, a galaxy
or its halo) varies as exp.�Ar˛/, where r is the distance from the center.

• M31–M33 bridge
Braun and Thilker, 2004, discovered that the distance 782;000 light-years

between Andromeda (M31) and Triangulum (M33) galaxies is spanned by a link
consisting of about 500 million Sun’s masses of ionized hydrogen.

A third of all baryonic matter is in stars and galaxies; another 1
3

is diffuse
and thought to be in filamentary networks spread through space. Remaining 1

3
,

called warm-hot intergalactic medium (WHIM), is expected to be of intermediate
density. The M31–M33 bridge consists of WHIM, the first evidence of this
medium. Such WHIM bridges are likely remnants of collisions between galaxies.

• Radii of a star system
Given a star system, say, a galaxy or a globular cluster (a spherical collection

of stars that orbits a galactic core as a satellite), its half-light radius (or effective
radius) hr is the distance from the core within which half the total luminosity
from the system, assumed to be circularly symmetric, is received. The core
radius cr is the distance at which the apparent surface luminosity has dropped
by half; so, cr � hr. If the luminosity profile rises steeply to a break, and then
more slowly, we have the break radius. In general, isophotal radius is the size
attributed to the system corresponding to a particular level of surface brightness.

The half-mass radius r0:5 is the radius from the core that contains half the
total mass of the system. In general, the Lagrangian radii are the distances from
the center at which various percentages of the total mass are enclosed.

The tidal radius of a globular cluster is the distance from its center at which
the external gravitation of the galaxy has more influence over the stars in the
cluster than does the cluster itself.

Unlike a star cluster, all galaxies are filled with and surrounded by a halo of
dark matter acting (via gravity) as a sort of glue within and between galaxies.
Thin tendrils of dark matter connect nodes of galaxy clusters, creating a cosmic
web.

The virial radius Rvir of a galaxy is the radius centered on it containing matter
at 200 (sometimes, 18�2 
 178 or 130) times the critical (or, mean) density of
the Universe. The mass within Rvir is a measure of the total mass inside a dark
matter halo. Kravtsov, 2011, claim that r0:5 
 0:015Rvir. Also, Harris, 2013,
explains speed anomalies of Earth’s satellites by 0.005–008% increase of its
mass due to a dark matter’s disk, 191 km thick and 70;000 km across, around the
equator.

The Abell radius of a cluster is 1:72
z arcminutes, where z is the cluster’s

redshift. At least 50 cluster’s members should lie within this radius of its centre.
• Habitable zone radii

A maximally Earth-like mean temperature is expected at the distance
q

Lstar
Lsun

AU from a star, where L is the total radiant energy.
The habitable zone radii of a star are the minimal and maximal orbital radii

r;R such that liquid water may exist on a terrestrial (i.e., primarily composed of



25.3 Distances in Astronomy 571

silicate rocks or metals) planet orbiting within this range, so that life, constructed
from carbon and reliant on liquid water, could develop there in a similar way as
on the early Earth. For Sun, Œr; R� is Œ0:99; 1:70�; AU; it includes Earth and Mars.
It moves outwards, according to Rushby et al., 2012, 0:1 Au every billion years.
For best candidates—orange dwarf stars—HZ is within Œ0:5; 1� AU.

The Kasting distance (or habitable zone distance) of an exoplanet, at distance
d from its star, is an index defined by

HZD.d/ D 2d � .R C r/

R � r
:

So, �1 � HZD.d/ � 1 correspond to r � d � R.
The above notion of surface habitability is modeled from tempera-

ture/humidity; the edges r;R of HZ are determined by loss of water and,
respectively, by the maximum greenhouse provided by a CO2 atmosphere.
Among known exoplanets of 2–10 Earth’s mass of our galaxy, good candidates
for Earth-like habitability are GJ 667Cc, HD-85512b, Kepler-438b (24, 36, 470
ly away) orbiting, respectively, stars Gliese 667C, Gliese 370, Kepler-438 in the
constellations Scorpius, Vela, Lyra.

Habitable zones are 10–14 times wider for subsurface life. Protected inside a
warm mineral-rich rocks, it can be much more typical than Earth’s surface life.

Instead of zones, habitability can be defined in terms of, say, geothermal vents
on ocean floor, as on Saturn’s moon Enceladus.

Petigra et al., 2013: eta-Earth of our galaxy, i.e., fraction of Sun-like stars with
an Earth-size (1–2 Earth’s radii) planet orbiting in habitable zones, is 22˙ 8%,
depending on the definition of HZ. There could be 4 � 1010 habitable Earth-size
planets in the Milky Way with the nearest one being within 12 ly.

Our galactic habitable zone is (Lineweaver et al., 2004) a slowly expanding
region between 7 and 9 kpc of galactocentric distance; so, the minimal and
maximal radii are 22;000 and 28;000 ly. They used four prerequisites for complex
life: the presence of a host star, enough heavy elements to form terrestrial
planets, sufficient time (4˙1Ga) for biological evolution and an supernovae-free
environment.

Di Stefano et al., 2015, claim that the globular clusters (there are about 160 in
Milky Way) could be best places to look for space-faring civilizations.

Most life-friendly are giant elliptical galaxies: their low rate of star formation
means less supernovae and gamma bursts. Dwarf irregular galaxies are the least
hospitable.

Behroozi–Peeples, 2015, claim that the Hubble volume, � 10Mpc3, contains
� 1020 Earth-like planets, � 1021 will be formed in 100 Gyr to 1 Tyr from now
and the likehood of us being the only civilisation the Universe will ever have is
< 8%.
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• Earth similarity index
The Earth similarity index of a planet P is (Schulze-Makuch et al., 2011):

ESI.P/ D
nY

iD1
.1 � j xi.P/� xi.E/

xi.P/C xi.E/
j/ wi

n ;

where xi.P/ is a planetary parameter (including surface temperature, escape
velocity, mean radius, bulk density), xi.E/ is the reference value for Earth (i.e.,
14:85ı C, 1,1,1), wi is a weight (5:58, 0:70, 0:57, 1:07) and n is the number of
parameters. ESI(P)D 1, 0:88, 0:85, 0:84, 0:70 for Earth, Kepler-438b, Kepler-
296e, GJ 667Cc and Mars. Many exomoons and unconfirmed NASA Kepler
candidates rank within Œ0:76; 0:96�. Terrestrial, but only simple extremophilic,
life might be possible if ESI(P)> 0:6, while plants/animals may require > 0:8.

The same authors proposed a planetary habitability index based on the
presence of a stable substrate, atmosphere, magnetic field, available energy,
appropriate chemistry and the potential for holding a liquid solvent, such as 100-
km deep ocean beneath the surface of Jupiter’s moon Europa and hydrocarbon
lakes on Saturn’s moon Titan. Unicellular life has been found in the most adverse
conditions on Earth. So, the presence of extremophiles on Mars and, with very
different biochemistry, on Europa and Titan is plausible. For primary producers
(say, plants and cyanobacteria), Earth was more habitable 500Ma ago, with less
seasonal ice and deserts.

Barnes et al., 2015, habitability index for star-transiting planet, observed
by Kepler telescope, is based on orbital period, transit depth (planet-star ratio
of areas), transit duration and host star’s surface gravity, radius and effective
temperature.

Observing oxygen in a planet’s atmosphere will indicate photosynthetic life
since the photosynthesis is the only known process able to release O2 in any real
quantity. But the importance of oxygen and carbon can be a peculiarity of Earth
life. For Oze et al., 2012, low (< 40) hydrogen/methane ratio indicate that life is
likely present. Also, infrared, or heat, radiation can indicate an alien civilization.

• SETI detection ranges
SETI (Search for Extra Terrestrial Intelligence) involves using radio tele-

scopes to search for a possible alien radio transmission. The recorded signals are
mostly random noise but in 1977 a strong signal (called WOW!) was received
at � 10 kHz of the frequency 
1420.406 MHz (21 cm) of the hydrogen line.
Also, a puzzling radio source SHGb02+14a was observed three times in 2003 at

1420 MHz.

SETI detection ranges are the maximal distances over which detection is still
possible using given frequency, antenna dish size, receiver bandwidth, etc. They
are low for broadband signals from Earth (from 0:007AU for AM radio up to 5:4
AU for EM radio) but reach 720 light-years for the S-Band of the world’s largest
(with dish’s diameter 305 m) single-aperture radio telescope at Arecibo.
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SETI searches in the microwave window 1–10 GHz (the part of the radio spec-
trum that can pass through the atmosphere), especially around the “waterhole”
1420–1666 MHz (21–18 cm) between hydrogen, H, and hydroxyl, OH.

All known signals with spectral width< 5 Hz arise from artificial sources; so,
such extraterrestrial signal will indicate an intelligent civilization. SETI searched
those narrow band signals in L-band (1.1–1.9 GHz) from 86 stars in the Kepler
field of view hosting most life-promising exoplanets, but not found none. Tarter
et al., 2013, deduce from it that the number of Kardashev type II (using all energy
from their star; our total power consumption today is 
 0:01% of the sunlight
falling on Earth) civilizations in the Milky Way loud in L-band, is less than 1 in a
million per sun-like star. The volume V of our galaxy is about�.50;0002/1000 

7:9� 1012 (ly)3. If N civilizations are distributed there uniformly with spacing d,
then d3 D V

N .
Active SETI (or METI) consists of sending radio or optical signals into space

hoping that they will be picked up by an alien intelligence. The first radio signals
from Earth to reach space were produced around 1940 but TV and radio signals
decompose into static within 1–2 ly. In 1974 Arecibo telescope sent an elaborate
radio signal aimed at the star cluster M13 located 25;000 ly away.

About the perceived risk of revealing the location of the Earth to an alien
civilization, METI enthusiasts reply that an advanced civilization within a radius
of 100 ly already knows of our existence due to electromagnetic signals leaking
from TV, radio and radar. But now, with digital transmissions replacing analogue
ones and virtually no radiation escaping into outer space, the Earth become
electronically invisible to aliens. Still, a civilization even slightly more advanced
than ours could detect the lights of our big cities from up to 500 light years
away, using its sun as a gravitational lens. Also, some life (plants, lichens, algae,
bacterial mats) can be recognized by its light signature from space.

Besides radio signals and light, nonmicrobial alien life can be discovered by
analyzing the output of methane or oxygen in the atmosphere of exoplanets.

• Voyager 1 distance
The Voyager 1 is a 722-kg robotic space probe launched by NASA in 1977; it

has power to operate its radio transmitters until 2025 but only 69 kB of memory.
It is currently the farthest man-made object from Earth, the first probe to leave

the Solar System (in 2012) and the fastest probe (moving at 
 17 km/s or 3:6
AU/year). As of January 2016, Voyager 1 distance from Earth was 2:1 � 1010

km 
 134:4 AU, while for Voyager 2, it was 
 110:9 AU.
Voyager 1 is moving now, until at least 2025, through a special region of

interstellar space where magnetic fields are rotated away from true magnetic
north.

The NASA Juno spacecraft to Jupiter holds from 2016 solar power distance
record. Its maximum distance from the Sun will be about 832 million km.

Even though the NASA New Horizons was launched (in 2006, to see Pluto and
Kuiper Belt) far faster, it will never be more distant from Earth than Voyager 1.
Close flybys of Saturn and Titan gave Voyager 1 an advantage with their gravity
assist. In 2038, New Horizons will reach, at 13 km/s, the distance of 100 AU.
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The Earth-Moon distance (
 1:28 light-seconds) can be covered, with current
technologies, in 
 8 h. The distance from Earth to other planets ranges from 3

light-minutes to 
 4 light-hours. At Voyager 1’s current rate, a journey to Prox-
ima Centauri (the nearest known star, 4:24 ly away) would take 72;000 years.

Interstellar travel will be possible only with new technology, say, beamed-light
sails, hydrogen-fuelled ramjet, nuclear pulse propulsion, warp drive, wormholes.

Human spaceflight beyond the close neighborhood in the Solar System looks,
as now, unlikely, because of duration, cost and health threat due to microgravity,
radiation and isolation. Also, long (more than a month) sojourns in space produce
potentially serious brain anomalies and severe eyesight problems.

• Earth in space
The Earth, spinning 0:5 km/s, orbits the Sun at 30 km/s. The Sun orbits the

galactic center at 219 km/s and it moves at 16:5 km/s, with respect to the motion
of its galactic neighborhood, towards Vega, a star in the constellation Lyra. There
are 45 stars within 15 ly of the Solar System, the nearest one at 4:24 ly.

The Local Bubble is a cavity, 300–800 ly across (with hydrogen density 0:05
atoms per cm3, one tenth of the galactic density) in the Local (or Orion-Cygnus)
Arm of the Milky Way. The Solar System has been traveling through this Bubble
for the last 5–10 Ma and is located now close to its inner rim, about half-way
along the Arm’s length. From 0.044 to 0.15 Ma ago and for another 0.01–0.02
Ma, the Sun is traversing the Local Interstellar Cloud 30 ly across at 23 km/s.

The Milky Way (0:1 Mly across and 1 kly thick) and Andromeda galaxies
are 2:5 Mly apart and are approaching at 100–140 km/s. In 4 C 1:3 C 0:1 Ga
(3 consecutive collisions) they will merge to form the Milkomeda, new elliptical
galaxy in which our Solar System would remain intact but Sun’s galactocentric
distance will be 0:16Mly. Their stars will not collide but central black holes will
merge.

Our Local Group (LG) is a poor (small and not centered) cluster, 10 Mly
across, consisting of Andromeda (M31), Milky Way (MW), Triangulum and
about 50 small galaxies. It lies in the outskirts (on a small filament connecting
the Fornax and Virgo clusters) of our small Local Supercluster (LSC), 110 Mly
across and with a mass 1015 suns. The number of galaxies per unit volume, in
the LSC, falls off with the square of the distance from its center, near the Virgo
cluster.

Tully and Courtois, 2014, defined superclusters (by analogy with drainage
basins in Hydrology) via the relative velocities of galaxies: within a given
supercluster, all galaxy motions will be directed inward, toward the center of
mass. By new definition, LSC, Pavo-Indus Supercluster and Hydra-Centaurus
Supercluster, containing Great Attractor (GrAt), formtogether “truly local”
Supercluster, called Laniakea. Laniakea, about of diameter 520 Mly and mass
1017 suns, is centered in GrAt, toward which all its galaxies are moving at
630 km/s.

The Extended Local Group is the LG plus the “nearby” (3:9 Mpc) Maffei and
Sculptor groups. It belongs to our Local Filament (LF, or Coma-Sculptor Cloud),
a branch of the Fornax-Virgo filament of the LSC.
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The LF bounds the Local Void (LV), extending 60 Mpc from the edge of the
LG. The Local Sheet (LS) is all LF’s matter within 7 Mpc. The Milky Way and
Andromeda are encircled by 12 large galaxies arranged in a ring about 24-Mly
across.

With respect to the CMBR (cosmic microwave background radiation) filling
the Universe almost uniformly, the Solar System, Milky Way, and LG velocities
are 369, 600, 627 km/s. Peculiar velocities Vpec are the deviations from the
Hubble expansion, i.e., Vpec D Vobs � H0d, where Vobs is the observed velocity,
d is the distance and H0 is the Hubble constant, 
 72 km/s for every Mpc.
The Hubble flow, dominating at large distances, is negated by gravity at smaller
distances; for example, its recession velocity is < 1mm/s at the edge of the Solar
System.

According to Tully et al., 2007, the Local Sheet is moving as a unit with
low internal dispersion; the LG moves at only 66 km/s with respect to the
LS. The bulk flow of the LS is sharply discontinuous from the flows of other
nearby structures. The vector of this flow has, with respect to the CMBR,
amplitude 631 km/s. It can be decomposed into a vector sum of three quasi-
orthogonal components: local (259 km/s away from the center of the Local Void),
intermediate (185 km/s to the Virgo cluster) and large (455 km/s towards the
Great Attractor (GrAt)).

All matter within 4:6 Mpc moves away from the Local Void at 268 km/s.
It will collide, in 
 10 Ga, with the nearest adjacent filament, the Leo Spur.
The Local Sheet moves toward the Virgo cluster, at the distance 17 Mpc. All
matter within 50Mpc moves at 600 km/s towards overdensities at 200Mly (GrAt
dominated by the Norma cluster) and 600 Mly (Shapley supercluster, roughly
behind GrAt). Lebeskind et al., 2015, claim that a dark matter bridge of some
2000 galaxies, bound by voids, stretches from our Local Group to Virgo cluster.



Chapter 26
Distances in Cosmology and Theory of Relativity

26.1 Distances in Cosmology

The Universe is defined as the whole space-time continuum in which we exist,
together with all the energy and matter within it.

Cosmology is the study of the large-scale structure of the Universe. Specific
cosmological questions of interest include the isotropy of the Universe (on the
largest scales, the Universe looks the same in all directions, i.e., is invariant to
rotations), the homogeneousness of the Universe (any measurable property of the
Universe is the same everywhere, i.e., it is invariant to translations), the density
of the Universe, the equality of matter and antimatter, and the origin of density
fluctuations in galaxies.

Hubble, 1929, discovered that all galaxies have a positive redshift, i.e., all
galaxies, except for a few nearby galaxies like Andromeda, are receding from the
Milky Way. By the Copernican principle (that we are not at a special place in the
Universe), we deduce that all galaxies are receding from each other, i.e., we live
in an expanding Universe, and the further a galaxy is away from us, the faster
it is moving away (this is now called the Hubble law). The Hubble flow is the
general outward movement of galaxies and clusters of galaxies resulting from the
expansion of the Universe. It occurs radially away from the observer, and obeys
the Hubble law. The gravitation in galaxies can overcome this expansion, but the
clusters and superclusters (largest gravitationally bound objects) only slow the rate
of their expansion.

In Cosmology, the prevailing scientific theory about the early development and
shape of the Universe is the Big Bang Theory. The observation that galaxies appear
to be receding from each other, combined with the General Theory of Relativity,
leads to the construction that, as one goes back in time, the Universe becomes
increasingly hot and dense, then leads to a gravitational singularity, at which all
distances become zero, and temperatures and pressures become infinite.
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The term Big Bang is used to refer to a hypothesized point in time when the
observed expansion of the Universe began. Based on measurements of this
expansion, it is currently believed that the Universe has an age of 
 13:82 Ga
(billion years).

In Cosmology (or, more exactly, astrometry, the study of the positions, distances
between, and motions of astronomical objects) there are many ways to specify
the distance between two points, because in the expanding Universe, the distances
between comoving objects are constantly changing, and Earth-bound observers look
back in time as they look out in distance. But all distance measures somehow
measure the separation between events on radial null trajectories, i.e., trajectories
of photons which terminate at the observer. In general, the cosmological distance
is a distance far beyond the boundaries of our Galaxy.

The geometry of the Universe is determined by several cosmological parameters:
the cosmic scale factor a, the Hubble constant H, the density � and the critical
density �crit (the density required for the Universe to stop expansion and, eventually,
collapse back onto itself), the cosmological constant ƒ, the curvature k of the
Universe. Many of these quantities are related under the assumptions of a given
cosmological model. The most common cosmological models are the closed
and open Friedmann–Lemaître cosmological models and the Einstein–de Sitter
cosmological model.

This model assumes a homogeneous, isotropic, constant curvature Universe with
zero cosmological constantƒ and pressure p. For constant mass M of the Universe,
H2 D 8

3
�G�, t D 2

3
H�1, a D 1

RC
. 9GM

2
/
1
3 t

2
3 , where G D 6:67� 10�11 m3 kg�1 s�2 is

the gravitational constant, RC D jkj� 1
2 is the radius of curvature, and t is the age of

the Universe.
The scale factor a D a.t/ is an expansion parameter, relating the size of the

Universe R D R.t/ at time t to its size R0 D R.t0/ at time t0 by R D aR0.
The Hubble constant H is the constant of proportionality between the speed

of expansion v and the size of the Universe R, i.e., v D HR. This equality

is just the Hubble law with the Hubble constant H D a
0

.t/
a.t/ . This is a linear

redshift-distance relationship, where redshift is interpreted as recessional velocity
v, typically expressed in km/s.

The current value of the Hubble constant is H0 D 71 ˙ 4 km s�1 Mpc�1, where
the subscript 0 refers to the present epoch because H changes with time. The
Hubble time and the Hubble distance are defined by tH D 1

H0

 13:82 Ga and

DH D c
H0


 4:24 Gpc. The Hubble volume (or Hubble sphere) is the region, about

1013 Mpc3, of the Universe surrounding an observer beyond which the recessional
velocity exceeds the speed c of light, i.e., any object beyond particle horizon
(4:4 � 1026 m D 47 light-Ga), is receding (due to the expansion of the Universe
itself) at a rate greater than c.

The volume of observable Universe is the volume 
 4:1�1034 cubic light-years,
or 
 3:4�1080 m3, of Universe with a comoving size of c

H0
, i.e., a sphere with radius


 14 Gpc (about 3 times larger than that of Hubble volume). It has mass 
 1:6 �
1053 kg and contains 
 1023 stars (in at least 8 � 1010 galaxies) and 
 1080 atoms.
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The mass density � (�0 in the present epoch) and the value of the cosmological
constant ƒ are dynamical properties of the Universe; today � � 9:47 � 10�27 kg
m�3 andƒ � 10�52 m�2. They can be made into dimensionless parameters�M and
�ƒ by �M D 8�G�0

3H3
0

, �ƒ D ƒ

3H3
0

. A third parameter �R D 1 ��M ��ƒ measures

the “curvature of space”. These parameters determine the geometry of the Universe
if it is homogeneous, isotropic, and matter-dominated.

The velocity of a galaxy is measured by the Doppler effect, i.e., the fact that light
emitted from a source is shifted in wavelength by the motion of the source. (The
Doppler shift is reversed in some metamaterials: a light source moving toward an
observer appears to reduce its frequency.) A relativistic form of the Doppler shift

exists for objects traveling very quickly, and is given by 	obser
	emit

D
q

cCv
c�v , where

	emit is the emitted wavelength, and 	obser is the shifted (observed) wavelength. The
change in wavelength with respect to the source at rest is called the redshift (if
moving away), and is denoted by the letter z. The relativistic redshift z for a particle

is given by z D 
	obser
	emit

D 	obser
	emit

� 1 D
q

cCv
c�v � 1.

The cosmological redshift is directly related to the scale factor a D a.t/: z C1 D
a.to/
a.te/

. Here a.to/ is the value of the scale factor at the time the light from the object
is observed, and a.te/ is its value at the time it was emitted. It is usually chosen
a.to/ D 1, where to is the present age of the Universe.

• Metric expansion of space
The metric expansion of space is the averaged increase of measured dis-

tances between objects in the Universe with time.
It is not a motion of space and not a motion into pre-existing space. Only

distances expand (and contract). The expansion has no center: all distances
increase by the same factor, and every observer sees the same expanding cosmos.
The observed Hubble law quantifies expansion from an observer. Expansion rate
between two points in free space 1 m apart is 2:2 � 10�18 m/s.

The mean distances between widely separated galaxies increase by 
 1%
every 140 million years. FLRW metric models, at large (superclusters of
galaxies) scale, this expansion. On the scales of galaxies, there is no expansion
since the metric of the local Universe has been altered by the presence of the mass
of the galaxy. Full expansion, at the Hubble rate 
7000 km/s, commences only
at distances 
 100 Mpc. Superclusters are expanding but remain gravitationally
bound, i.e., their expansion rate is decelerated.

Expansion is thought to start due to cosmic inflation and then, due mainly to
inertia. Its rate decelerated about 12 Ga ago due to gravity by dark and normal
matter and then, from about 6 Ga ago when dark energy took over, accelerated.
Now, for every megaparsec of distance from the observer, the rate of expansion
increases by about 74 km/s. When the Universe doubles in volume, the dark
energy doubles too. In 1011 years our galaxy will be the only one left in the
observable Universe.

The Universe was radiation-dominated with the scale factor a.t/ � t
1
2 first


 70;000 years, then matter-dominated with a.t/ � t
2
3 until 
 4:5 Ma ago,
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then dark-energy-dominated with a.t/ � exp.Ht/ and the Hubble constant

H D
q

8�G�
3

D
q

ƒ
3

. In fact, its expansion caused the matter surpass the
radiation in energy density and further, when matter and radiation dropped to
low concentrations, the repulsive dark energy (or vacuum energy) overtook the
gravity of matter.

The most commonly accepted scenario for the future is the Big Freeze:
continued expansion results in a universe that asymptotically approaches 0ı K
and the Heat Death, a state of maximum entropy in which everything is evenly
distributed. Caldwell, 2003, claimed that the scale factor a will become infinite
in the finite future, resulting in Big Rip, final singularity in which all distances
diverge to 1.

• Zero-gravity radius
For a cluster of mass M, its zero-gravity (or zero-velocity, turnover) radius

RV is (Sandage, 1986, and Chernin–Teerikorpi–Baryshev, 2006) the distance r
from the cluster’s barycenter, where the radial force GM

r2
of the point mass M

gravity become equal to the radial force (G2�V
4�
3

r3 divided by r2) of vacuum
antigravity. So,

R3V D 3M

8��V
:

Here G is the gravitational constant and �V 
 7 � 10�30 g/cm3 is the constant
density of dark energy inferred from global observations of supernovae 1a.

The Einstein–Straus radius RM is the radius besides which expansion rate
reach the global level. It is estimated that RM

RV
is 1.5–1.7 if the ratio of local and

global density of dark energy is 0.1–1. If above ration is 1, then RM D RV.1CzV /,
where zV 
 0:7 is the global zero-acceleration redshift.

For the Local Group (LG), containing Milky Way and of mass 2–3:5 � 1012
suns, above model corresponds to observed RV D 1:3–1.55 Mpc and RM D 2:2–
2.6 Mpc. The Virgo cluster, dominating Local supercluster, contains over 1000
galaxies in a volume slightly larger than LG; its mass is 
 1015 suns and RV D
10:3 Mpc.

• Hubble distance
The Hubble distance (or cosmic light horizon, Hubble radius) is an

increasing maximum distance DH D ctH that a light signal could have traveled
since the Big Bang, the beginning of the Universe. Here c is the speed of light
and tH is the Hubble time (or age of the Universe). It holds tH D 1

H0
, where H0

is the Hubble constant which is estimated as 71˙ 4 km s�1Mpc�1 at present. So,
at present, tH 
 4:32 � 1017 s 
 13:82 Ga, and DH D c

H0

 13:82 billion

light-years 
 1:31 � 1026 m 
 4:24 Gpc, i.e., 4:6 � 1061 Planck lengths.
But we are observing now, due to the space expansion, objects much farther

away than a static distance 13:82 Gly.
For small v

c or small distance d in the expanding Universe, the velocity is
proportional to the distance, and all distance measures, for example, angular
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diameter distance, luminosity distance, etc., converge. In the linear approx-
imation, this reduces to d 
 zDH . But for large v

c , the relativistic Lorentz

length contraction L D L0
q
1 � . vc /2, where L0 is a proper length, of an object

traveling at velocity v relative to an observer, become noticeable to that observer.
Above Hubble radius was measured (by the Wilkinson Microwave Anisotropy

Probe) as a light travel distance to the source of cosmic background radiation.
Other estimations: 13:1Gly (calibrating the distances to supernovae of a standard
brightness), 14:3 Gly (measuring radio galaxies of a standard size) and 14:5
Gly (basing on the abundance ratio of uranium/thorium chondritic meteorites,
[Dau05]).

• Cosmic sound horizon
Cosmic background radiation (CMB) is thermal radiation (strongest in the

microwave region of the radio spectrum) filling the observable Universe almost
uniformly. It originated tr 
 380;000 years after the Big Bang (or at a redshift of
z D 1100), at recombination, when the Universe (ionized plasma of electrons
and baryons, i.e., protons and neutrons) cooled to below 3000 K. (Now, the
Universe’s temperature is 
 1100 times cooler and its size is 
 1100 times
larger.)

The electrons and protons start to form neutral hydrogen atoms, allowing
photons (trapped before by Thomson scattering) to travel freely. During next

 100;000 years radiation decoupled from the matter and the Universe became
transparent.

The plasma of photons and baryons can be seen as a single fluid. The
gravitational collapse around “seeds” (point-like overdensities produced during
inflation) into dark matter hierarchical halos was opposed by outward radiation
pressure from the heat of photon-matter interactions. This competition created
longitudinal (acoustic) oscillations in the photon-baryon fluid, analogic to sound
waves, created in air by pressure differences, or to ripples in a pond.

At recombination, the only remaining force on baryons is gravitation, and
the pattern of oscillations (configuration of baryons and, at the centers of
perturbations, dark matter) became frozen into the CMB. Baryon radiative
cooling into gas and stars let this pattern of seeds to grow into structure of the
Universe.

More matter existed at the centers and edges of these waves, leading eventu-
ally to more galaxies there. Today, we detect the sound waves (regular, periodic
fluctuations in the density of the visible baryonic matter) via the primary CMB
anisotropies.

These baryon acoustic oscillations (BAO) started at t D 0 (post-inflation) and
stopped at t D tr (recombination). The cosmic sound horizon is the distance
sound waves could have traveled. At recombination, it was 
 cstr � 100 kpc,
approximating the speed cs of sound as cp

3
.

Expanding by factor 1 C z D 1100, it is 120–150 Mpc today. It is a standard
ruler; an excess of galaxy pairs separated by this horizon was confirmed. Cf.
cosmological distance ladder and, in Chap. 24, acoustic metric.
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• GZK-horizon
Greisen and Kuzmin–Zatsepin, 1966, computed that a cosmic ray with kinetic

energy over GZK-limit (5 � 1019 eV) traveling from its distant, over GZK-
horizon (50 Mpc 
 163 Mly) source, will be absorbed (due to slowing
interaction with photons of the CMB and associated mean path) and so never
observed on Earth.

Several cosmic rays apparently exceeding GZK-limit were observed; this
GZK-paradox is still unexplained.

• Comoving distance
The standard Big Bang model uses comoving coordinates, where the spatial

reference frame is attached to the average positions of galaxies. With this set of
coordinates, both the time and expansion of the Universe can be ignored and the
shape of space is seen as a spatial hypersurface at constant cosmological time.

The comoving (or cosmological) distance is a distance (denoted � or dcomov)
in comoving coordinates between two points in space at a single cosmological
time, i.e., the distance between two nearby (close in redshift z) objects, which
remains constant with epoch if these objects are moving with the Hubble flow.

The (cosmological) proper distance dproper is a distance between two nearby
events in the frame in which they occur at the same time. It is the distance
measured by a ruler at the time to of observation. It holds

dcomov.x; y/ D dproper.x; y/ � a.to/

a.te/
D dproper.x; y/ � .1C z/;

where a.t/ is the scale factor. In the time to, i.e., at the present, a D a.to/ D 1,
and dcomov D dproper, In general, dproper.t/ D a.t/dcomov , for a cosmological time t.

The total line-of-sight comoving distance DC from us to a distant object
is computed by integrating the infinitesimal dcomov.x; y/ contributions between
nearby events along the time ray from the time te, when the light from the object
was emitted, to the time to, when the object is observed:

DC D
Z to

te

cdt

a.t/
:

In terms of redshift, DC from us to a distant object is computed by integrating the
infinitesimal dcomov.x; y/ contributions between nearby events along the radial ray
from z D 0 to the object: DC D DH

R z
0

dz
E.z/ , where DH is the Hubble distance,

and E.z/ D .�M.1C z/3 C�R.1C z/2 C�ƒ/
1
2 .

In a sense, the comoving distance is the fundamental distance measure in
Cosmology, since all other distances can simply be derived in terms of it.

• Proper motion distance
The proper motion distance (or transverse comoving distance, contempo-

rary angular diameter distance) DM is a distance from us to a distant object
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defined as the ratio of the actual transverse velocity (in distance over time) of the
object to its proper motion (in radians per unit time). It is given by

DM D

8
<̂

:̂

DH
1p
�R

sinh.
p
�RDC=DH/; for �R > 0;

DC; for �R D 0;

DH
1pj�Rj sin.

pj�RjDC=DH/; for �R < 0;

where DH is the Hubble distance, and DC is the line-of-sight comoving
distance. For �ƒ D 0, there is an analytic solution (z is the redshift):

DM D DH
2.2��M.1 � z/ � .2 ��M/

p
1C�Mz/

�2
M.1C z/

:

The proper motion distance DM coincides with the line-of-sight comoving
distance DC if and only if the curvature of the Universe is equal to zero. The
comoving distance between two events at the same redshift or distance, but
separated in the sky by some angle ı� , is equal to DMı� .

The distance DM is related to the luminosity distance DL and the angular
diameter distance DA by DM D .1C z/�1DL D .1C z/DA.

• Luminosity distance
The luminosity distance DL is a distance from us to a distant object defined

by the relationship between the observed flux S and emitted luminosity L:

DL D
r

L

4�S
:

This distance is related to the proper motion distance DM and t the angular
diameter distance by DL D .1C z/DM D .1C z/2DA, where z is the redshift.

The luminosity distance does take into account the fact that the observed lumi-
nosity is attenuated by two factors, the relativistic redshift and the Doppler shift
of emission, each of which contributes an .1C z/ attenuation: Lobser D Lemiss

.1Cz/2
.

The corrected luminosity distance D
0

L is defined by D
0

L D DL
1Cz .

• Distance modulus
The distance modulus is DM D 5 ln. DL

10pc /, where DL is the luminosity
distance. The distance modulus is the difference between the absolute magnitude
(the brightness that star would appear to have if it was at a distance of 10 parsec)
and apparent magnitude (the actual brightness) of an astronomical object.

Distance moduli are most commonly used when expressing the distances to
other galaxies. For example, the Andromeda Galaxy’s DM is 24:5, and the Virgo
cluster has DM equal to 31:7. For a much smaller object (planet, comet or aster-
oid), the absolute magnitude is its apparent visual magnitude at zero phase angle
and at unit (1AU) heliocentric and geocentric distances. The brightest (with peak
apparent magnitude �7:5) recorded stellar event was the supernova in 1006.
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• Angular diameter distance
The angular diameter distance (or angular size distance) DA is a distance

from us to a distant object defined as the ratio of an object’s physical transverse
size to its angular size (in radians). It is used to convert angular separations
in telescope images into proper separations at the source. It is special for not
increasing indefinitely as z ! 1; it turns over at z � 1, and so more distant
objects actually appear larger in angular size. DA is related to the proper motion
distance DM and the luminosity distance DL by DA D DM

1Cz D DL
.1Cz/2

, where z is
the redshift.

The distance duality DL.z/
DA.z/

D .1Cz/2 links DL, based on the apparent luminos-
ity of standard candles (for example, supernovae) and DA, based on the apparent
size (”visual diameter” measured as an angle) of standard rulers (for example,
cosmic sound horizon). It holds for any general metric theory of gravity
(Chap. 24) in any background in which photons travel on unique null geodesics.

If the angular diameter distance is based on the representation of object
diameter as angle � distance, the area distance is defined similarly according
the representation of object area as solid angle � distance2.

• Einstein radius
General Relativity predicts gravitational lensing, i.e., deformation of the light

from a source (a galaxy or star) in the presence of a gravitational lens, i.e., a
body of large mass M (another galaxy, or a black hole) bending it.

If the source S, lens L and observer O are all aligned, the gravitational
deflection is symmetric around the lens. The Einstein radius is the radius of the
resulting Einstein (or Chwolson) ring. In radians it is

s

M
4G

c2
D.L; S/

D.O;L/D.O; S/
;

where D.O;L/ and D.O; S/ are the angular diameter distances of the lens and
source, while D.L; S/ is the angular diameter distance between them.

• Light travel distance
The light travel (or look-back) distance is a distance from us to a distant

object, defined by Dlt D cDt, where Dt is the difference to � te between the time,
when the object was observed, and the time, when the light from it was emitted.
The look-back time Dt is a proper time, but Dlt is not a proper distance.

Dlt is not a very useful distance, because it is hard to determine te, the age
of the Universe at the time of emission of the light which we see. Cf. Hubble
radius.

• Parallax distance
Given an object O viewed along two different lines of sight, its parallax is the

angle p D AOB between its directions of view from the two ends of a baseline
AB. If AO 
 BO and p;AB are small, the distance A0 can be easily estimated.
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Animals use their two eyes (stereoopsis) or two positions of moving head
(motion parallax) as points A;B. Cf. animal depth/distance perception in
Chap. 23.

In Astronomy, the parallax distance is a distance DP from us to a distant
object (say, a star) defined from measuring of stellar parallaxes, i.e., its apparent
changes of position in the sky caused by the motion of the observer on the Earth.

Usually, it is the annual (or heliocentric) paralllax, i.e., p is the angle Earth-
star-Sun (in arcseconds) subtended at a star by the longest baseline—mean
radius R D 1 AU of the Earth’s orbit around the Sun. So, this distance (in
parsecs, corresponding to p D 1 arcsec) is given by DP D 1

tan.p/ 
 1
p , since p is

usually very small.
• Kinematic distance

The kinematic distance is the distance to a galactic source, which is
determined from differential rotation of the galaxy: the radial velocity of a
source directly corresponds to its galactocentric distance. But the kinematic
distance ambiguity arises since, in our inner galaxy, any given galactocentric
distance corresponds to two distances along the line of sight, near and far
kinematic distances.

This problem is solved, for some galactic regions, by measurement of their
absorption spectra, if there is an interstellar cloud between the region and
observer.

• Radar distance
The radar (or target) distance DR is a distance from us to a distant object,

measured by a radar, i.e., a high frequency radio pulse sent out for a short interval
of time. When it encounters a conducting object, sufficient energy is reflected
back to allow radar to detect it. Since radio waves travel in air at close to their
speed c (of light) in vacuum, one can calculate the distance DR of the detected
object from the round-trip time t between the transmitted and received pulses as

DR D 1

2
ct:

In general, Einstein protocol is to measure the distance between two objects
A and B as 1

2
c.t3 � t1/. Here a light pulse is sent from A to B at time t1 (measured

in A), received at time t2 (measured in B) and immediately sent back to A with a
return time t3 (measured with A).

• Pulsar dispersion measure
A pulsar is an extraterrestrial source of radiation having a regular periodicity,

detected as short bursts in, usually, the radio region of the spectrum.
The pulsar dispersion measure (DM) is the integrated column density of

free electrons (their number per unit area) between an observer and a pulsar. DM
is shown by a pulse’s broadening when it is observed over a finite bandwidth.

The distance to the pulsar is DM
ne

, where ne is the mean electron density.
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• Cosmological distance ladder
For measuring distances to astronomical objects, one uses a kind of “ladder”

of different methods; each method applies only for a limited distance, and each
method which applies for a larger distance builds on the data of the preceding
methods.

The starting point is knowing the distance from the Earth to the Sun; this
distance is called one astronomical unit (AU), and is roughly 150 million km.
Distances in the inner Solar System are measured by bouncing radar signals off
planets or asteroids, and measuring the time until the echo is received.

The next step in the ladder consists of simple geometrical methods; with them,
one can go to a few hundred ly. The distance to nearby stars can be determined
by their parallaxes: using Earth’s orbit as a baseline, the distances to stars are
measured by triangulation. This is accurate to about 1% at 50 ly, 10% at 500 ly.

Using data acquired by the geometrical methods, and adding photometry
(measurements of the brightness) and spectroscopy, one gets the next step in
the ladder for stars so far away that their parallaxes are not measurable yet. The
distance-luminosity relation is that the light intensity from a star is inversely
proportional to the square of its distance; cf. distance modulus.

For even larger distances, are used standard candles, i.e., several types of
cosmological objects, for which one can determine their absolute brightness
without knowing their distances. Primary standard candles are the Cepheid
variable stars. They periodically change their size and temperature. There is a
relationship between the brightness of these pulsating stars and the period of
their oscillations, and this relationship can be used to determine their absolute
brightness. Cepheids can be identified as far as in the Virgo cluster (60Mly).

Secondary standard candles are supernovae 1a (having equal peak
brightness), red giant branch stars, active galactic nuclei and entire galaxies.
Main other techniques to estimate the angular diameter distance to galaxies are
gravitational lensing (cf. Einstein radius) and using baryon acoustic oscillations
matter clustering (cf. cosmic sound horizon) as a standard ruler.

For very large distances (hundreds of Mly or several Gly), the cosmological
redshift and the Hubble law are used. A complication is that it is not clear what
is meant by “distance” here, and there are several types of distances used here:
luminosity distance, proper motion distance, angular diameter distance, etc.

Depending on the situation, there is a large variety of special techniques to
measure distances in Cosmology, such as light echo, Bondi radar, RR Lyrae,
maser distances and secular, statistical, expansion, spectroscopic parallax
distances.

NASA’s Chandra X-ray Observatory measures large distances via the delay of
the halo of scattering material (interstellar dust grains) between the source and
Earth. Also, frequency-dependent dispersion of fast radio bursts indicate the dis-
tance via amount of ionized plasma that lies between the burst’s origin and Earth.

• VLBI distance measurements
Very-long-baseline interferometry (VLBI) is a technique of radio

astronomy.
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In VLBI a signal from a compact bright astronomical radio source (say,
pulsar or maser) is collected by an array of radio telescopes on Earth and in
near space. The distance between the telescopes is then calculated using the time
difference between the arrivals of the signals at different telescopes. Observations
of an object made simultaneously by many telescopes are combined, emulating
a telescope with a size equal to the maximum distance between the telescopes.
VLBI arrays can be combined, increasing the resolution to, say, microarcseconds.

VLBI directly measure distance, via annual parallax, and proper motions.

26.2 Distances in Theory of Relativity

The Minkowski space-time (or Minkowski space, Lorentz space-time, flat space-
time) is the usual geometric setting for the Einstein Special Theory of Relativity.
In this setting the three ordinary dimensions of space are combined with a single
dimension of time to form a 4D space-time R

1;3 in the absence of gravity. See, for
example, [Wein72] for details.

Vectors in R
1;3 are called 4-vectors (or events). They can be written as .ct; x; y; z/,

where the first component is the unidirectional time-like dimension (c is the speed of
light in vacuum, and t is the time), while the other three components are bidirectional
spatial dimensions. Formally, c is a conversion factor from time to space.

In fact, c is the speed of gravitational waves and any massless particle: the photon
(carrier of electromagnetism), the gluon (carrier of the strong force) and the graviton
(theoretical carrier of gravity). It is the highest possible speed for any physical
interaction in nature and the only speed independent of its source and the motion
of an observer.

In the spherical coordinates, the events can be written as .ct; r; �; �/, where r
(0 � r < 1) is the radius from a point to the origin, � (0 � � < 2�) is the
azimuthal angle in the xy plane from the x axis (longitude), and � (0 � � � �) is
the polar angle from the z axis (colatitude). 4-vectors are classified according to the
sign of their squared norm:

jjvjj2 D hv; vi D c2t2 � x2 � y2 � z2:

They are said to be time-like, space-like, and light-like (isotropic) if their squared
norms are positive, negative, or equal to zero, respectively. The set of all light-like 4-
vectors forms the light cone. If the coordinate origin is singled out, the space can be
broken up into three domains: domains of absolute future and absolute past, falling
within the light cone, whose points are joined to the origin by time-like vectors
with positive or negative value of time coordinate, respectively, and the domain of
absolute elsewhere, falling outside of the light cone, whose points are joined to the
origin by space-like vectors.

A world line of an object is the sequence of events that marks its time history. A
world line is a time-like curve tracing out the path of a single point in the Minkowski
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space-time, i.e., at any point its tangent vector is a time-like 4-vector. All world
lines fall within the light cone, i.e., the curves whose tangent vectors are light-like
4-vectors correspond to the motion of light and other particles of zero rest mass.

World lines of particles at constant speed (equivalently, of free falling particles)
are called geodesics. In Minkowski space they are straight lines. A geodesic in
Minkowski space which joins two given events x and y, is the longest curve
among all world lines which join these two events. This follows from the Einstein
time triangle inequality (cf. inverse triangle inequality and, in Chap. 5, reverse
triangle inequality):

jjx C yjj � jjxjj C jjyjj;

according to which a time-like broken line joining two events is shorter than the
single time-like geodesic joining them, i.e., the proper time of the particle moving
freely from x to y is greater than the proper time of any other particle whose world
line joins these events. It holds also in Minkowski space extended to any number of
spatial dimensions, assuming null or time-like vectors in the same time direction. It
is called twin paradox.

The space-time is a 4D manifold which is the usual mathematical setting for
the Einstein General Theory of Relativity, which is the generalization of Special
Relativity to include gravitation. Here the three spatial components with a single
time-like component form a 4D space-time in the presence of gravity. Gravity
is equivalent to the geometric properties of space-time, and in the presence of
gravity the geometry of space-time is curved. (Bean, 2009, found evidence that over
extragalactic distances gravity exerts a greater pull on time than on space.) So, the
space-time is a 4D curved manifold for which the tangent space to any point is the
Minkowski space, i.e., it is a pseudo-Riemannian manifold—a manifold, equipped
with a nondegenerate indefinite metric (called pseudo-Riemannian metric in
Chap. 7) of signature (1,3).

In the General Theory of Relativity, gravity is described by the properties of the
local geometry of space-time. In particular, the gravitational field can be built out
of a metric tensor, a quantity describing geometrical properties space-time such as
distance, area, and angle. Matter is described by its stress-energy tensor, a quantity
which contains the density and pressure of matter. The strength of coupling between
matter and gravity is determined by the gravitational constant G.

The Einstein field equation is an equation in the General Theory of Relativity, that
describes how matter creates gravity and, conversely, how gravity affects matter. A
solution of the Einstein field equation is a certain Einstein metric appropriated for
the given mass and pressure distribution of the matter.

A black hole is an astrophysical object that is theorized to be created from the
collapse of a neutron or “quark” star. The gravitational forces are so strong in a
black hole that they overcome neutron degeneracy pressure and, roughly, collapse to
a singularity (point of infinite density and space-time curvature). Even light cannot
escape the gravitational pull of a black hole within the black hole’s its event horizon.
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Uncharged black holes are called Schwarzschild or Kerr black holes if their
angular momentum is zero or not, respectively. Charged black holes are called Kerr–
Newman or Reissner–Nordström black holes if they are spinning or not, respectively.

Universe and black hole both have singularities—in time and space, respectively.
Naked (not surrounded by a black hole) singularities were not observed but they
might exist also. Kerr metric and Reissner–Nordström metric below admit such
case. Also, a kugelblitz is a putative black hole formed from energy as opposed to
mass.

Experimentally, General Relativity is still untested for strong fields (such as near
neutron-star surfaces or black-hole horizons) or over distances on a galactic scale
and larger. Neither Newton law of gravitation was tested below 6 � 10�5 m.

Putative gravitational waves (fluctuations in the curvature of space-time propa-
gating as a wave, predicted by Einstein), have been detected in 2014. Also predicted
frame-dragging effect (the spinning Earth pulls space-time around with it) is under
probe. The geodetic effect, confirming that space-time acts on matter, was found.

• Minkowski metric
The Minkowski metric is a pseudo-Riemannian metric, defined on the

Minkowski space R
1;3, i.e., a 4D real vector space which is considered as the

pseudo-Euclidean space of signature .1; 3/. It is defined by its metric tensor

..gij// D

0

B
B
@

1 0 0 0

0 �1 0 0

0 0 �1 0

0 0 0 �1

1

C
C
A :

The line element ds2 of this metric are given by

ds2 D c2dt2 � dx2 � dy2 � dz2:

In spherical coordinates .ct; r; �; �/, one has ds2 D c2dt2 � dr2 � r2d�2 �
r2 sin2 �d�2.

The pseudo-Euclidean space R
1;3 of signature .1; 3/ with the line element

ds2 D �c2dt2 C dx2 C dy2 C dz2

can also be used as a space-time model of the Special Theory of Relativity.
Above notion of space-time (Minkowski, 1908) was the first application

of geometry to a nonlength-like quantity. But there were some precursors of
such union of space and time. Lagrange, 1797, observed that with time as
a 4-th coordinate, “one can regard mechanics as 4-dimensional geometry”.
Schopenhauer wrote in On the Fourfold Root of the Principle of Sufficient
Reason (1813): “. . . it is only by the combination of Time and Space that the
representation of coexistence arises.” Poe wrote “Space and Duration are one” in
Eureka: A Prose Poem (1848).
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Wells wrote on the first page of The Time Machine (1895): ‘Clearly,’ the Time
Traveler proceeded, ‘any real body must have extension in four directions: it
must have Length, Breadth, Thickness, and Duration . . . There is no difference
between Time and any of the tree dimensions of Space except that our conscious-
ness moves along it”. Quechua, the language of Inca and 8–10 million modern
speakers, have a single concept, pacha, for the location in time and space.

• Proper distance and time
In Relativistic Physics, proper distance and proper time between any two

events are true physical distance and time difference: the spatial distance between
them when the events are simultaneous and the temporal distance between them
when the events occur at the same spatial location. They are the invariant (with
respect to Lorentz transformations, describing a transition to a coordinate system
associated with a moving body) intervals of a space-like path or pair of space-
like separated events, and, respectively, of a time-like path or pair of time-like
separated events.

In General Relativity, proper time is the pseudo-Riemannian arc length of
world lines in 4D-spacetime. In particular, in SR (Special Relativity), it is

� D
Z

P

p
dt2 � c�2.dx2 C dy2 C dz2/;

where t and x; y; z are time and spatial coordinates, while P is the path of the
clock in space-time. In the subcase of inertial motion, it become


� D
p
.
t/2 � c�2..
x/2 C .
y/2 C .
z/2//;

where 
 means “the change in” between two events. Cf. the kinematic metric.
In SR, the proper distance between two space-like separated events is



 D
p
.
x/2 C .
y/2 C .
z/2 � c2.
t/2:

• Proper length
In Special Theory of Relativity, the proper (or rest) length between two

space-like separated events is the distance between them, such as measured in
an inertial frame of reference in which the events are simultaneous. In contrast to
invariant proper distance, such simultaneity depends on the observer.

In a flat space-time, the proper length between two events is the proper length
of a straight path between them. General Relativity consider the curved space-
times in which may be more than one straight path (geodesic) between two
events.

So, the general proper length is defined as the path integral
R

P

p�gijdxidxj,
where gij is the metric tensor for the space-time with signature .1; 3/, along the
shortest curve joining the endpoints of the space-like path P at the same time.
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• Affine space-time distance
Given a space-time .M4; g/, there is a unique affine parametrization s ! �.s/

for each light ray (i.e., light-like geodesic) through the observation event po, such
that �.0/ D po and g. d�

dt ;Uo/ D 1, where Uo is the 4-velocity of the observer
at po (i.e., a vector with g.Uo;Uo/ D �1). In this case, the affine space-time
distance is the affine parameter s, viewed as a distance measure.

This distance is monotone increasing along each ray, and it coincides, in a
small neighborhood of po, with the Euclidean distance in the rest system of Uo.

• Lorentz metric
A Lorentz metric is a pseudo-Riemannian metric (i.e., nondegenerate

indefinite metric, cf. Chap. 7) of signature .1; p/.
The curved space-time of the General Theory of Relativity can be modeled as

a Lorentzian manifold (a manifold equipped with a Lorentz metric) of signature
.1; p/. The Minkowski space R

1;p with the flat Minkowski metric is a model of
it, in the same way as Riemannian manifolds can be modeled on Euclidean space.

Given a rectifiable non-space-like curve � W Œ0; 1� ! M in the space-time M,

the length of the curve is defined as l.�/ D R 1
0

q
�h d�

dt ;
d�
dt idt. For a space-like

curve, we set l.�/ D 0 and define the Lorentz distance between two points
p; q 2 M as

sup
�2�

l.�/;

if p 	 q, i.e., if the set � of future directed non-space-like curves from p to q is
nonempty; otherwise, this distance is 0.

The Lorentz–Minkowski distance is a pseudo-Euclidean distance
(Chap. 7)

p
D.x; y/, where D.x; y/ D jx1 � y1j2 � P

2�i�n jxi � yij2. The points
are called time-, space-, null-separated if D.x; y/ is more, less or equal to 0,
respectively, i.e., if they can be joined by a time-like, space-like or null path.

• Distances on causal sets
Causal Set Theory is a fundamentally discrete approach to quantum gravity.

A causal set (or causet) is a partially ordered set .X;�/, which is locally finite,
i.e., the interval .x; y/ D fz 2 X W x 	 z 	 yg is finite for any x; y 2 X. A link is
a pair x; y 2 X such that x 	 y and .x; y/ D ;. A chain is a subcauset such that
x 	 y or y 	 x for any two its elements x; y.

Given x; y 2 X with x 	 y, their time-like distance dt.x; y/ is (Brightwell–
Gregory, 1991) the length (number of links) in any geodesic between them, i.e.,
longest chain between and including x and y. Given two unrelated elements x; y 2
X, their naive space-like distance is defined (Brightwell–Gregory, 1991) as

dns.x; y/ D min
u;v2XWu�.x;y/�v dt.u; v/:

Rideout–Wallden, 2013, modified dns.x; y/, replacing the minimum above with
an average over suitably selected minimizing pairs.
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The elements of X can be seen as events in a discrete space-time, where the
partial order represent causal relationship. In a causet embedded in Minkowski
space-time, the distance dt.x; y/ is proportional to the proper time. A related
discrete space-time is a random poset obtained by sampling from a compact
domain in a space-time manifold. Cf. also D-separation in Bayesian network
in Chap. 22.

• Kinematic metric
Given a set X, a kinematic metric (or abstract Lorentzian distance) is

(Pimenov, 1970) a function � W X�X ! R�0[f1g such that, for all x; y; z 2 X:

1. �.x; x/ D 0;
2. �.x; y/ > 0 implies �.y; x/ D 0 (antisymmetry);
3. �.x; y/; �.y; z/ > 0 implies �.x; z/ > �.x; y/ C �.y; z/ (inverse triangle

inequality or anti-triangle inequality).

The space-time set X consists of events x D .x0; x1/ where, usually, x0 2 R

is the time and x1 2 R
3 is the spatial location of the event x. The inequality

�.x; y/ > 0 means causality, i.e., x can influence y; usually, it is equivalent to
y0 > x0 and the value �.x; y/ > 0 can be seen as the largest (since it depends on
the speed) proper time of moving from x to y.

If the gravity is negligible, then �.x; y/ > 0 implies y0 � x0 � jjy1 � x1jj2, and

�p.x; y/ D ..y0 � x0/p � jjy1 � x1jjp
2//

1
p (as defined by Busemann, 1967) is a real

number. For p 
 2 it is consistent with Special Relativity observations.
A kinematic metric is not our usual distance metric; also it is not related to the

kinematic distance in Astronomy.
But Zapata, 2013, proved that supz max.j�.x; z/ � �.y; z/j; j�.z; x/ � �.z; y/j/

is a continuous metric on a compact part of space-time and it generates
the same topology as a nonphysical coordinate-dependent Euclidean distanceqP4

iD2 jxi � yij2.
• Galilean distance

The Galilean distance is a distance on R
n defined by

jx1 � y1j if x1 ¤ y1;

and by

p
.x2 � y2/2 C � � � C .xn � yn/2 if x1 D y1:

The space R
n, equipped with the Galilean distance, is called Galilean space.

For n D 4, it is a setting for the space-time of classical mechanics according
to Galilei–Newton in which the distance between two events taking place at the
points p and q at the moments of time t1 and t2 is defined as the time interval
jt1 � t2j, while if t1 D t2, it is defined as the distance between the points p and q.
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• Einstein metric
In the General Theory of Relativity, describing how space-time is curved by

matter, the Einstein metric is a solution to the Einstein field equation

Rij � gijR

2
Cƒgij D 8�G

c4
Tij;

i.e., a metric tensor ..gij// of signature .1; 3/, appropriated for the given mass

and pressure distribution of the matter. Here Eij D Rij � gijR
2

Cƒgij is the Einstein
curvature tensor, Rij is the Ricci curvature tensor, R is the Ricci scalar, and Tij is
a stress-energy tensor. Empty space (vacuum) is the case of Rij D 0.

Einstein introduced in 1917 the cosmological constant ƒ to counteract the
effects of gravity on ordinary matter and keep the Universe static, i.e., with
scale factor always being 1. He put ƒ D 4�G�

c2
. The static Einstein metric for

a homogeneous and isotropic Universe is given by the line element

ds2 D �dt2 C dr2

.1 � kr2/
C r2.d�2 C sin2 �d�2/;

where k is the curvature of the space-time. The radius of this curvature is cp
4�G�

and numerically it is of the order 10 Gly. Einstein from 1922 call this model his
“biggest blunder” but ƒ was reintroduced in modern dynamic models as dark
energy.

• de Sitter metric
The de Sitter metric is a maximally symmetric vacuum solution to the

Einstein field equation with a positive cosmological constant ƒ, given by the
line element

ds2 D dt2 C e2
p

ƒ
3 t.dr2 C r2d�2 C r2 sin2 �d�2/:

Expansion of Universe is accelerating at the rate consistent withƒ � 10�123, but
Hartie–Hawking–Hertog, 2012, gave a quantum model of it with ƒ < 0.

The most symmetric solutions to the Einstein field equation in a vacuum for
ƒ D 0 and ƒ < 0 are the flat Minkowski metric and the anti de Sitter metric.

The n-dimensional de Sitter space dSn and anti de Sitter space AdSn are
Lorentzian manifold analogs of elliptic and hyperbolic space, respectively.

In order to explain the hierarchy problem (why the weak nuclear force is
1032 times stronger than gravity?), Randall and Sundram, 1999, proposed that
Universe is 5D anti de Sitter space AdS5 with elementary particles, except for the
graviton, being on a .3C 1/-D brane or branes. This Randall–Sundrum metric
is ds2 D e�2kygabdxadyb C dy2; where k is of order the Planck scale (� 10�35 m)
and xa; y are coordinates in 4D and extra-dimension.
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• BTZ metric
The BTZ metric (Banados, Teitelboim and Zanelli, 2001) is a black hole

solution for (2C1)-dimensional gravity with a negative cosmological constantƒ.
There are no such solutions withƒ D 0. BTZ black holes without any electric

charge are locally isometric to anti de Sitter space.
This metric is given by the line element

ds2 D �k2.r2 � R2/dt2 C 1

k2.r2 � R2/
dr2 C r2d�2;

where R is the black hole radius, in the absence of charge and angular momentum.
• Schwarzschild metric

The Schwarzschild metric is a vacuum solution to the Einstein field equation
around a spherically symmetric mass distribution; this metric represents the
Universe around a black hole of a given mass, from which no energy can be
extracted.

It was found by Schwarzschild, 1915, only a few months after the publication
of the Einstein field equation, and was the first exact solution of this equation.

The line element of this metric is given by

ds2 D
�
1 � rg

r

�
c2dt2 � 1

�
1 � rg

r

�dr2 � r2.d�2 C sin2 �d�2/;

where rg D 2Gm
c2

is the Schwarzschild radius and m is the mass of the black hole.
This solution is only valid for radii larger than rg, as at r D rg there is a

coordinate singularity. This problem can be removed by a transformation to a
different choice of space-time coordinates, called Kruskal–Szekeres coordinates.
As r ! C1, the Schwarzschild metric approaches the Minkowski metric.

• Kottler metric
The Kottler metric is the unique spherically symmetric vacuum solution to

the Einstein field equation with a cosmological constantƒ. It is given by

ds2 D �
�

1 � 2m

r
� ƒr2

3

�

dt2C
�

1 � 2m

r
� ƒr2

3

��1
dr2Cr2.d�2Csin2 �d�2/:

It is called also the Schwarzschild–de Sitter metric for ƒ > 0 and
Schwarzschild–anti de Sitter metric for ƒ < 0. Cf. Delaunay metric in
Chap. 7.

• Reissner–Nordström metric
The Reissner–Nordström metric is a vacuum solution to the Einstein field

equation around a spherically symmetric mass distribution in the presence of a
charge; it represents the Universe around a charged black hole. This metric is
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given by

ds2 D
�

1 � 2m

r
C e2

r2

�

dt2 �
�

1 � 2m

r
C e2

r2

��1
dr2 � r2.d�2 C sin2 �d�2/;

where m is the mass of the hole, e is the charge (e < m), and we have used units
with the speed c of light and the gravitational constant G equal to one.

• Kerr metric
The Kerr metric (or Kerr–Schild metric) is an exact solution to the Einstein

field equation for empty space (vacuum) around an axially symmetric, rotating
mass distribution, This metric represents the Universe around a rotating black
hole. Its line element is given (in Boyer–Lindquist form) by

ds2 D �2
�

dr2



C d�2

�

C .r2 C a2/ sin2 �d�2 � dt2 C 2mr

�2
.a sin2 �d� � dt/2;

where �2 D r2 C a2 cos2 � and 
 D r2 � 2mr C a2. Here m is the mass of the
black hole and a is the angular velocity as measured by a distant observer.

The Schwarzschild metric is the Kerr metric with a D 0. A black hole is
rotating if radiation processes are observed outside its Schwarzschild radius (the
event horizon radius as dependent on the mass only) but inside its Kerr radius
(where the rotational kinetic energy is comparable with the rest energy). For the
Earth, those radii are about 1 cm and 3 m, respectively.

In 2013, the spin of a black hole was directly measured for the first time: the
central black hole of the galaxy NGC 1365 rotates at 84% of the speed c of light.

• Kerr–Newman metric
The Kerr–Newman metric is an exact, unique and complete solution to the

Einstein field equation for empty space (vacuum) around an axially symmetric,
rotating mass distribution in the presence of a charge, This metric represents the
Universe around a rotating charged black hole. Its line element is given by

ds2 D �

�2
.dt � a sin2 �d�/2 C sin2 �

�2
..r2 C a2/d� � adt/2 C �2



dr2 C �2d�2;

where �2 D r2 C a2 cos2 � and 
 D r2 � 2mr C a2 C e2. Here m is the mass of
the black hole, e is the charge, and a is the angular velocity.

The Kerr–Newman metric becomes the Kerr metric if the charge is 0 and the
Reissner–Nordström metric if the angular momentum is 0.

• Ozsváth–Schücking metric
The Ozsváth–Schücking metric (1962) is a rotating vacuum solution to the

field equations having in Cartesian coordinates the form

ds2 D �2Œ.x2 � y2/ cos.2t/� 2xy sin.2t/�dt2 C dx2 C dy2 � 2dtdz:
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• Static isotropic metric
The static isotropic metric is the most general solution to the Einstein field

equation for empty space (vacuum); this metric can represent a static isotropic
gravitational field. The line element of this metric is given by

ds2 D B.r/dt2 � A.r/dr2 � r2.d�2 C sin2 �d�2/;

where B.r/ and A.r/ are arbitrary functions.
• Eddington–Robertson metric

The Eddington–Robertson metric is a generalization of the Schwarzschild
metric which allows that the mass m, the gravitational constant G, and the
density � are altered by unknown dimensionless parameters ˛, ˇ, and � (all equal
to 1 in the Einstein field equation). The line element of this metric is given by

ds2 D
 

1 � 2˛
mG

r
C 2.ˇ � ˛�/

�
mG

r

�2
C : : :

!

dt2 �
�

1C 2�
mG

r
C : : :

�

dr2�

�r2.d�2 C sin2 �d�2/:

• Janis–Newman–Wincour metric
The Janis–Newman–Wincour metric is the most general spherically sym-

metric static and asymptotically flat solution to the Einstein field equation
coupled to a massless scalar field. It is given by the line element

ds2 D �
�

1 � 2m

�r

��
dt2C

�

1 � 2m

�r

�
��

dr2C
�

1 � 2m

�r

�1��
r2.d�2Csin2 �d�2/;

where m and � are constants. For � D 1 one obtains the Schwarzschild metric.
In this case the scalar field vanishes.

• FLRW metric
The FLRW (Friedmann–Lemaître–Robertson–Walker) metric is a exact

solution to the Einstein field equation for a simply connected, homogeneous,
isotropic expanding (or contracting) Universe filled with a constant density and
negligible pressure. This metric represents a matter-dominated Universe filled
with a dust (pressure-free matter); it models the metric expansion of space.

Its line element is usually written in the spherical coordinates .ct; r; �; �/:

ds2 D c2dt2 � a.t/2
�

dr2

1 � kr2
C r2.d�2 C sin2 �d�2/

�

;

where a.t/ is the scale factor and k is the curvature of the space-time.
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• Vaidya metric
The Vaidya metric is a inhomogeneous solution to Einstein field equation

describing a spherically symmetric space-time composed purely of radially
propagating radiation. It has been used to describe the radiation emitted by a
shining star, by a collapsing star and by evaporating black hole.

The Vaidya metric is a nonstatic generalization of the Schwarzschild metric
and the radiation limit of the LTB metric. Let M.u/ be the mass parameter; the
line element of this metric (Vaidya, 1953) is given by

ds2 D �Œ1 � 2M.u/

r
�du2 C 2dudr C r2.d�2 C sin2 �d�2/:

• LTB metric
The LTB Lemaître–Tolman–Bondi) metric is a solution to the Einstein field

equation describing a spherical (finite or infinite) cloud of dust (pressure-free
matter) that is expanding or collapsing under gravity.

The LTB metric describes an inhomogeneous space-time expected on very
large (Gpc) scale. It generalizes the FLRW metric and the Schwarzschild
metric.

The line element of this metric in the spherical coordinates is:

ds2 D dt2 � .R0/2

1C 2E
dr2 � R2.d�2 C sin2 �d�2/;

where R D R.t; r/, R0 D @R
@r , E D E.r/. The shell r D r0 at a time t D t0 has

an area 4�R2.r0; t0/, and the areal radius R evolves with time as @R
@t D 2E C

2M
R , where M D M.r/ is the gravitational mass within the comoving sphere at

radius r.
• Kantowski–Sachs metric

The Kantowski–Sachs metric is a solution to the Einstein field equation,
given by the line element

ds2 D �dt2 C a.t/2dz2 C b.t/2.d�2 C sin �d�2/;

where the functions a.t/ and b.t/ are determined by the Einstein equation. It is
the only homogeneous model without a 3D transitive subgroup.

In particular, the Kantowski–Sachs metric with the line element

ds2 D �dt2 C e2
p
ƒtdz2 C 1

ƒ
.d�2 C sin2 �d�2/

describes an anisotropic Universe with two spherical dimensions having a fixed
size during the cosmic evolution and exponentially expanding 3-rd dimension.
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• Bianchi metrics
The Bianchi metrics are solutions to the Einstein field equation for cosmolog-

ical models that have spatially homogeneous sections, invariant under the action
of a 3D Lie group, i.e., they are real 4D metrics with a 3D isometry group,
transitive on 3-surfaces. Using the Bianchi classification of 3D Lie algebras over
Killing vector fields, we obtain the nine types of Bianchi metrics.

Each Bianchi model B defines a transitive group GB on some 3D simply
connected manifold M; so, the pair .M;G/ (where G is the maximal group
acting on X and containing GB) is one of eight Thurston model geometries if
M=G0 is compact for a discrete subgroup G0 of G. In particular, Bianchi type IX
corresponds to the geometry S3. Only the model geometry S2 � R is not realized
in this way.

The Bianchi type I metric is a solution to the Einstein field equation for an
anisotropic homogeneous Universe, given by the line element

ds2 D �dt2 C a.t/2dx2 C b.t/2dy2 C c.t/2dz2;

where the functions a.t/, b.t/, and c.t/ are determined by the Einstein equation. It
corresponds to flat spatial sections, i.e., is a generalization of the FLRW metric.

The Bianchi type IX metric, or Mixmaster metric (Misner, 1969), exhibits
chaotic dynamic behavior near its curvature singularities.

• Kasner metric
The Kasner metric is a Bianchi type I metric, which is a vacuum solution to

the Einstein field equation for an anisotropic homogeneous Universe, given by

ds2 D �dt2 C t2p1dx2 C t2p2dy2 C t2p3dz2;

where p1 C p2 C p3 D p21 C p22 C p23 D 1.
The equal-time slices of Kasner space-time are spatially flat, but space

contracts in one dimension (i with pi < 0), while expanding in the other two.
The volume of the spatial slices is proportional to t; so, t ! 0 can describe either
a Big Bang or a Big Crunch, depending on the sense of t.

• GCSS metric
A GCSS (i.e., general cylindrically symmetric stationary) metric is a

solution to the Einstein field equation, given by the line element

ds2 D �fdt2 C 2kdtd� C e�.dr2 C dz2/C ld�2;

where the space-time is divided into two regions: the interior, with 0 � r � R, to
a cylindrical surface of radius R centered along z, and the exterior, with R � r <
1. Here f ; k; � and l are functions only of r, and �1 < t; z < 1, 0 � � � 2�;
the hypersurfaces � D 0 and � D 2� are identical.
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• Lewis metric
The Lewis metric is a cylindrically symmetric stationary metric which is

a solution to the Einstein field equation for empty space (vacuum) in the exterior
of a cylindrical surface. The line element of this metric has the form

ds2 D �fdt2 C 2kdtd� � e�.dr2 C dz2/C ld�2;

where f D ar�nC1 � c2

n2a
rnC1, k D �Af , l D r2

f � A2f , e� D r
1
2 .n

2�1/ with

A D crnC1

naf C b. The constants n; a; b, and c can be either real or complex, the
corresponding solutions belong to the Weyl class or Lewis class, respectively. In
the last case, such metrics form a subclass of the Kasner type metrics.

• van Stockum dust metric
The van Stockum dust metric is a stationary cylindrically symmetric

solution to the Einstein field equation for empty space (vacuum) with a rigidly
rotating infinitely long dust cylinder. The line element of this metric for the
interior of the cylinder is given (in comoving, i.e., corotating, coordinates) by

ds2 D �dt2 C 2ar2dtd� C e�a2r2 .dr2 C dz2/C r2.1 � a2r2/d�2;

where 0 � r � R, R is the radius of the cylinder, and a is the angular velocity of
the dust particles. There are three vacuum exterior solutions (i.e., Lewis metrics)
that can be matched to the interior solution, depending on the mass per unit length
of the interior (the low mass case, the null case, and the ultrarelativistic case).

Under some conditions (for example, if ar > 1), the existence of closed time-
like curves (and, hence, time-travel) is allowed.

• Levi-Civita metric
The Levi-Civita metric is a static cylindrically symmetric vacuum solution

to the Einstein field equation, with the line element, given (in the Weyl form) by

ds2 D �r4
dt2 C r4
.2
�1/.dr2 C dz2/C C�2r2�4
d�;

where the constant C refers to the deficit angle, and 
 is a parameter.
In the case 
 D � 1

2
, C D 1 this metric can be transformed either into the

Taub’s plane symmetric metric, or into the Robinson–Trautman metric.
• Weyl–Papapetrou metric

The Weyl–Papapetrou metric is a stationary axially symmetric solution to
the Einstein field equation, given by the line element

ds2 D Fdt2 � e�.dz2 C dr2/� Ld�2 � 2Kd�dt;

where F, K, L and � are functions only of r and z, LF CK2 D r2, 1 < t; z < 1,
0 � r < 1, and 0 � � � 2�; the hypersurfaces � D 0 and � � 2� are identical.
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• Bonnor dust metric
The Bonnor dust metric is a solution to the Einstein field equation which

is an axially symmetric metric describing a cloud of rigidly rotating dust
particles moving along circular geodesics about the z axis in hypersurfaces
of z D constant. The line element of this metric is given by

ds2 D dt2 C .r2 � n2/d�2 C 2ndtd� C e�.dr2 C dz2/;

where, in Bonnor comoving (i.e., corotating) coordinates, n D 2hr2

R3
, � D

h2r2.r2�8z2/
2R8

, R2 D r2 C z2, and h is a rotation parameter.
As R ! 1, the metric coefficients tend to Minkowski values.

• Weyl metric
The Weyl metric is a general static axially symmetric vacuum solution to the

Einstein field equation given, in Weyl canonical coordinates, by the line element

ds2 D e2	dt2 � e�2	 �e2�.dr2 C dz2
�C r2d�2/;

where 	 and � are functions only of r and z such that @2	
@r2

C 1
r � @	

@r C @2	
@z2

D 0,
@�

@r D r. @	
2

@r � @	2

@z /, and @�

@z D 2r @	
@r
@	
@z .

• Zipoy–Voorhees metric
The Zipoy–Voorhees metric (or � -metric) is a Weyl metric, obtained for

e2	 D
�

R1CR2�2m
R1CR2C2m

��
, e2� D

�
.R1CR2C2m/.R1CR2�2m/

4R1R2

��2
, where R21 D r2C.z�m/2,

R22 D r2 C .z C m/2. Here 	 corresponds to the Newtonian potential of a line
segment of mass density �=2 and length 2m, symmetrically distributed along the
z axis.

The case � D 1 corresponds to the Schwartzschild metric, the cases � > 1

(� < 1) correspond to an oblate (prolate) spheroid, and for � D 0 one obtains
the flat Minkowski space-time.

• Straight spinning string metric
The straight spinning string metric is given by the line element

ds2 D �.dt � ad�/2 C dz2 C dr2 C k2r2d�2;

where a and k > 0 are constants. It describes the space-time around a straight
spinning string. The constant k is related to the string’s mass-per-length � by
k D 1–4�, and the constant a is a measure of the string’s spin. For a D 0 and
k D 1, one obtains the Minkowski metric in cylindrical coordinates.

• Tomimatsu–Sato metric
A Tomimatsu–Sato metric ([ToSa73]) is one of the metrics from an infinite

family of spinning mass solutions to the Einstein field equation, each of which
has the form � D U=W, where U and W are some polynomials.

The simplest solution has U D p2.x4 � 1/ C q2.y4 � 1/ � 2ipqxy.x2 � y2/,
W D 2px.x2 � 1/ � 2iqy.1 � y2/, where p2 C q2 D 1. The line element for it is
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given by

ds2 D †�1 �.˛dt C ˇd�/2 � r2.�dt C ıd�/2
� � †

p4.x2 � y2/4
.dz2 C dr2/;

where ˛ D p2.x2�1/2Cq2.1�y2/2, ˇ D � 2q
p W.p2.x2�1/.x2�y2/C2.pxC1/W/,

� D �2pq.x2 � y2/, ı D ˛ C 4..x2 � 1/C .x2 C 1/.px C 1//, † D ˛ı � ˇ� D
jU C Wj2.

• Gödel metric
The Gödel metric is an exact solution to the Einstein field equation with

cosmological constant for a rotating Universe, given by the line element

ds2 D �.dt2 C C.r/d�/2 C D2.r/d�2 C dr2 C dz2;

where .t; r; �; z/ are the usual cylindrical coordinates.
The Gödel Universe is homogeneous if C.r/ D 4�

m2
sinh2

�
mr
2

�
, D.r/ D

1
m sinh.mr/, where m and� are constants. The Gödel Universe is singularity-free.
But there are closed time-like curves through every event, and hence time-travel
is possible here. The condition required to avoid such curves is m2 > 4�2.

• Conformally stationary metric
The conformally stationary metrics are models for gravitational fields that

are time-independent up to an overall conformal factor. If some global regularity
conditions are satisfied, the space-time must be a product R � M3 with a
(Hausdorff and paracompact) 3-manifold M3, and the line element of the metric
is given by

ds2 D e2f .t;x/.�.dt C
X

�

��.x/dx�/
2 C

X

�;�

g��.x/dx�dx�/;

where �; � D 1; 2; 3. The conformal factor e2f does not affect the light-
like geodesics apart from their parametrization, i.e., the paths of light rays are
completely determined by the Riemannian metric g D P

�;� g��.x/dx�dx� and
the one-form � D P

� ��.x/dx� which both live on M3.
In this case, the function f is called the redshift potential, the metric g is called

the Fermat metric. For a static space-time, the geodesics in the Fermat metric
are the projections of the null geodesics of space-time.

In particular, the spherically symmetric and static metrics, including
models for nonrotating stars and black holes, wormholes, monopoles, naked
singularities, and (boson or fermion) stars, are given by the line element

ds2 D e2f .r/.�dt2 C S.r/2dr2 C R.r/2.d�2 C sin2 �d�2//:

Here, the one-form � vanishes, and the Fermat metric g has the special form

g D S.r/2dr2 C R.r/2.d�2 C sin2 �d�2/:
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For example, the conformal factor e2f .r/ of the Schwartzschild metric is equal
to 1 � 2m

r , and the corresponding Fermat metric has the form

g D .1 � 2m

r
/�2.1 � 2m

r
/�1r2.d�2 C sin �d�2/:

• pp-wave metric
The pp-wave metric is an exact solution to the Einstein field equation, in

which radiation moves at the speed c of light. The line element of this metric is
given (in Brinkmann coordinates) by

ds2 D H.u; x; y/du2 C 2dudvC dx2 C dy2;

where H is any smooth function. The term “pp” stands for plane-fronted waves
with parallel propagation introduced by Ehlers–Kundt, 1962.

The most important class of particularly symmetric pp-waves are the plane
wave metrics, in which H is quadratic. The wave of death, for example, is a
gravitational (i.e., the space-time curvature fluctuates) plane wave exhibiting a
strong nonscalar null curvature singularity which propagates through an initially
flat space-time, progressively destroying the Universe.

Examples of axisymmetric pp-waves include the Aichelburg–Sexl ultraboost
modeling the motion past a spherically symmetric gravitating object at nearly c,
and the Bonnor beam modeling the gravitational field of an infinitely long beam
of incoherent electromagnetic radiation. The Aichelburg–Sexl wave is obtained
by boosting the Schwarzschild solution to the speed c at fixed energy, i.e., it
describes a Schwarzschild black hole moving at c. Cf. Aichelburg–Sexl metric
(Chap. 24).

• Bonnor beam metric
The Bonnor beam metric is an exact solution to the Einstein field equation

which models an infinitely long, straight beam of light. It is an pp-wave metric.
The interior part of the solution (in the uniform plane wave interior region

which is shaped like the world tube of a solid cylinder) is defined by the line
element

ds2 D �8�mr2du2 � 2dudvC dr2 C r2d�2;

where �1 < u; v < 1, 0 < r < r0, and �� < � < � . This is a null dust
solution and can be interpreted as incoherent electromagnetic radiation.

The exterior part of the solution is defined by

ds2 D �8�mr20.1C 2 log.r=r0//du2 � 2dudvC dr2 C r2d�2;

where �1 < u; v < 1, r0 < r < 1, and �� < � < � .
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• Plane wave metric
The plane wave metric is a vacuum solution to the Einstein field equation,

given by the line element

ds2 D 2dwdu C 2f .u/.x2 C y2/du2 � dx2 � dy2:

It is conformally flat, and describes a pure radiation field. The space-time with
this metric is called the plane gravitational wave. It is an pp-wave metric.

• Wils metric
The Wils metric is a solution to the Einstein field equation, given by

ds2 D 2xdwdu � 2wdudx C �
2f .u/x.x2 C y2/� w2

�
du2 � dx2 � dy2:

It is conformally flat, and describes a pure radiation field which is not a plane
wave.

• Koutras–McIntosh metric
The Koutras–McIntosh metric is a solution to the Einstein field equation,

given by the line element

ds2 D 2.axCb/dwdu�2awdudxC�2f .u/.ax C b/.x2 C y2/� a2w2
�

du2�dx2�dy2:

It is conformally flat and describes a pure radiation field which, in general, is not
a plane wave. It gives the plane wave metric for a D 0, b D 1, and the Wils
metric for a D 1, b D 0.

• Edgar–Ludwig metric
The Edgar–Ludwig metric is a solution to the Einstein field equation,

given by

ds2 D 2.ax C b/dwdu � 2awdudxC

C �
2f .u/.ax C b/.g.u/y C h.u/C x2 C y2/ � a2w2

�
du2 � dx2 � dy2:

This metric is a generalization of the Koutras–McIntosh metric. It is the most
general metric which describes a conformally flat pure radiation (or null fluid)
field which, in general, is not a plane wave. If plane waves are excluded, it has
the form

ds2 D 2xdwdu�2wdudxC�2f .u/x.g.u/y C h.u/C x2 C y2/ � w2
�

du2�dx2�dy2:

• Bondi radiating metric
The Bondi radiating metric describes the asymptotic form of a radiating

solution to the Einstein field equation, given by the line element

ds2 D �
�

V

r
e2ˇ � U2r2e2�

�

du2�2e2ˇdudr�2Ur2e2�dud�Cr2.e2�d�2Ce�2� sin2 �d�2/;
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where u is the retarded time, r is the luminosity distance, 0 � � � � , 0 � � �
2� , and U;V; ˇ; � are functions of u; r, and � .

• Taub–NUT de Sitter metric
The Taub–NUT de Sitter metric (cf. de Sitter metric) is a positive-definite

(i.e., Riemannian) solution to the Einstein field equation with a cosmological
constant ƒ, given by the line element

ds2 D r2 � L2

4

dr2 C L2


r2 � L2
.d C cos �d�/2 C r2 � L2

4
.d�2 C sin2 �d�2/;

where
 D r2 � 2Mr C L2 C ƒ
4
.L4 C 2L2r2 � 1

3
r4/, L and M are parameters, and

� , �,  are the Euler angles.
If ƒ D 0, one obtains the Taub–NUT metric (Chap. 7).

• Eguchi–Hanson de Sitter metric
The Eguchi–Hanson de Sitter metric (cf. de Sitter metric) is a positive-

definite (i.e., Riemannian) solution to the Einstein field equation with a cosmo-
logical constant ƒ, given by the line element

ds2 D
�

1 � a4

r4
� ƒr2

6

��1
dr2 C r2

4

�

1 � a4

r4
� ƒr2

6

�

.d C cos �d�/2C

Cr2

4
.d�2 C sin2 �d�2/;

where a is a parameter, and � , �,  are the Euler angles.
If ƒ D 0, one obtains the Eguchi-Hanson metric.

• Barriola–Vilenkin monopole metric
The Barriola–Vilenkin monopole metric is given by the line element

ds2 D �dt2 C dr2 C k2r2.d�2 C sin2 �d�2/;

with a constant k < 1. There is a deficit solid angle and a singularity at r D 0;
the plane t D constant, � D �

2
has the geometry of a cone.

This metric is an example of a conical singularity; it can be used as a model
for monopole, i.e., a hypothetical isolated magnetic poles. It has been theorized
that such things might exist in the form of tiny particles similar to electrons or
protons, formed from topological defects in a similar manner to cosmic strings.

Cf. Gibbons–Manton metric in Chap. 7.
• Bertotti–Robinson metric

The Bertotti–Robinson metric is a solution to the Einstein field equation in
a universe with a uniform magnetic field. The line element of this metric is

ds2 D Q2.�dt2 C sin2 tdw2 C d�2 C sin2 �d�2/;

where Q is a constant, t 2 Œ0; ��, w 2 .�1;C1/, � 2 Œ0; ��, and � 2 Œ0; 2��.
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• Wormhole metric
A wormhole is a hypothetical region of space-time containing a world tube

(the time evolution of a closed surface) that cannot be continuously deformed to
a world line (the time evolution of a point).

Wormhole metric is a theoretical distortion of space-time in a region of the
Universe that would link one location or time with another, through a “shortcut”,
i.e., a path that is shorter in distance or duration than would otherwise be
expected. A wormhole geometry can only appear as a solution to the Einstein
equations if the stress-energy tensor of matter violates the null energy condition
at least in a neighborhood of the wormhole throat.

Einstein–Rosen bridge (1935) is a nontraversable (unstable) wormhole
formed from either black hole or spherically symmetric vacuum regions; it
possesses a singularity and impenetrable event horizon. Traversable wormholes,
as well as warp drive (faster-than-light propulsion system) and time machines,
permitting journeys into the past, require bending of space-time by exotic matter
(negative mass or energy).

Whereas the curvature of space produced by the attractive gravitational field of
ordinary matter acts like a converging lens, negative energy acts like a diverging
lens. The negative mass required for engineering, say, a wormhole of throat
diameter 4:5 m, as in Stargate’s inner ring (from TV franchise Stargate), is

 �3�1027 kg. But oscillating warp and tweaking wormhole’s geometry (White,
2012) can greatly reduce it. Also, negative energy can be created (Butcher, 2014)
at the centre of a wormhole if its throat is orders of magnitude longer than its
mouth.

Lorentzian wormholes, not requiring exotic matter to exist, were proposed,
using higher-dimensional extensions of Einstein’s theory of gravity, by
Bronnikov–Kim, 2002, and Kanti–Kleihaus–Kunz, 2011. Still, only atomic-
scale wormholes would be practical to build, using them solely for superluminal
information transmission.

Lorentzian wormholes can be seen as maximally entangled states of two
black holes in a Einstein–Podolsky–Rosen correlation, i.e., nonclassical one (it
cannot be approximated by convex combinations of product states). Maldacena–
Susskind, 2013: any two entangled quantum subsystems (cf. Chap. 24) are
connected by a such wormhole. For Sonner, 2013, gravity might emerge from
quantum entanglement.

• Morris–Thorne metric
The Morris–Thorne metric (Morris–Thorne, 1988) is a traversable worm-

hole metric which is a solution to the Einstein field equation with the line
element

ds2 D e
2ˆ.w/

c2 c2dt2 � dw2 � r.w/2.d�2 C sin2 �d�2/;

where w 2 Œ�1;C1�, r is a function of w that reaches some minimal value
above zero at some finite value of w, and ˆ.w/ is a gravitational potential
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allowed by the space-time geometry. It is the most general static and spherically
symmetric metric able to describe a stable and traversable wormhole.

Morris–Thorne–Yurtsever, 1988, stated that two closely spaced (10�9�10�10
m) concentric thin charged hollow spheres the size of 1 AU can create negative
energy, required for engineering this wormhole, using the quantum Casimir
effect.

• Alcubierre metric
The Alcubierre metric (Alcubierre, 1994) is a wormhole metric which is a

solution to the Einstein field equation, representing warp drive space-time where
the existence of closed time-like curves is allowed. The Alcubierre construction
corresponds to a warp (i.e., faster than light) drive in that it causes space-time
to contract in front of a spaceship bubble and expand behind, thus providing the
spaceship with a velocity that can be much greater than the speed of light relative
to distant objects, while the spaceship never locally travels faster than light.

In this case, only the relativistic principle that a space-traveler may move with
any velocity up to, but not including or exceeding, the speed of light, is violated.

Also, light has another speed, phase velocity, measured by how fast a
wavelength’s crests move. This speed depends on the material it’s moving
through.

The line element of this metric has the form

ds2 D �dt2 C .dx � vf .r/dt/2 C dy2 C dz2;

where v D dxs.t/
dt is the apparent velocity of the warp drive spaceship, xs.t/ is

spaceship trajectory along the coordinate x, the radial coordinate is r D ..x �
xs.t//2 C y2 C z2/

1
2 , and f .r/ an arbitrary function subject to the conditions that

f D 1 at r D 0 (the location of the spaceship) and f .1/ D 0.
Another warp drive space-time was proposed by Krasnikov, 1995. Krasnikov

metric in the 2D subspace t; x is given by the line element

ds2 D �dt2 C .1 � k.x; t//dxdt C k.x; t/dx2;

where k.x; t/ D 1� .2� ı/��.t � x/.��.x/� ��.x C � � D//, D is the distance to
travel, �� is a smooth monotonic function satisfying ��.z/ D 1 at z > �, ��.z/ D 0

at z < 0 and ı; � are arbitrary small positive parameters.
• Misner metric

The Misner metric (Misner, 1960) is a metric, representing two black holes,
instantaneously at rest, whose throats are connected by a wormhole. The line
element of this metric has the form

ds2 D �dt2 C  4.dx2 C dy2 C dz2/;
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where the conformal factor  is given by

 D
NX

nD�N

1

sinh.�0n/

1
p

x2 C y2 C .z C coth.�0n//2
:

The parameter �0 is a measure of the ratio of mass to separation of the throats
(equivalently, a measure of the distance of a loop in the surface, passing through
one throat and out of the other). The summation limit N tends to infinity.

The topology of the Misner space-time is that of a pair of asymptotically flat
sheets connected by a number of wormholes. In the simplest case, it can be seen
as a 2D space R � S1, in which light progressively tilts as one moves forward in
time, and has closed time-like curves (so, time-travel is possible) after a certain
point.

• Rotating C-metric
The rotating C-metric is a solution to the Einstein–Maxwell equations,

describing two oppositely charged black holes, uniformly accelerating in oppo-
site directions. The line element of this metric has the form

ds2 D A�2.x C y/�2
�

dy2

F.y/
C dx2

G.x/
C k�2G.X/d�2 � k2A2F.y/dt2

�

;

where F.y/ D �1C y2 � 2mAy3 C e2A2y4, G.x/ D 1� x2 � 2mAx3 � e2A2x4, m,
e, and A are parameters related to the mass, charge and acceleration of the black
holes, and k is a constant fixed by regularity conditions.

This metric should not be confused with the C-metric from Chap. 11.
• Myers–Perry metric

The Myers–Perry metric describes a 5D rotating black hole. Its line ele-
ment is

ds2 D �dt2 C 2m

�2
.dt � a sin2 �d� � b cos2 �d /2C

C�2

R2
dr2 C �2d�2 C .r2 C a2/ sin2 �d�2 C .r2 C b2/ cos2 �d 2;

where �2 D r2Ca2 cos2 �Cb2 sin2 � , and R2 D .r2Ca2/.r2Cb2/�2mr2

r2
. Above black

hole is asymptotically flat and has an event horizon with S3 topology.
Emparan and Reall, 2001, using the possibility of rotation in several indepen-

dent rotation planes, found a 5D black ring, i.e., asymptotically flat black hole
solution with the event horizon’s topology of S1 � S2.

• Ponce de León metric
The Ponce de León metric (1988) is a 5D metric, given by the line element

ds2 D l2dt2 � .t=t0/
2pl

2p
p�1 .dx2 C dy2 C dz2/� t2

.p � 1/2
dl2;
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where l is the 5-th (space-like) coordinate. This metric represents a 5D apparent
vacuum. It is not flat but embed the flat 4D FLRW metric.

• Kaluza–Klein metric
The Kaluza–Klein metric is a metric in the Kaluza–Klein model of 5D space-

time which seeks to unify classical gravity and electromagnetism.
Kaluza, 1921 (but sent to Einstein in 1919), found that, if the Einstein theory

of pure gravitation is extended to a 5D space-time, the Einstein field equation
can be split into an ordinary 4D gravitation tensor field, plus an extra vector field
which is equivalent to the Maxwell equation for the electromagnetic field, plus
an extra scalar field known as the dilation (or radion).

Klein, 1926, assumed that the 5-th dimension (i.e., 4-th spatial dimension) is
curled up in a circle of an unobservable size, below 10�20 m. Almost all modern
higher-dimensional unified theories are based on Kaluza–Klein approach.

An alternative proposal is that the extra dimension(s) is extended, and the
matter is trapped in a 4D submanifold. In a model of a such large extra dimension,
the 5D metric of a universe can be written in Gaussian normal coordinates as

ds2 D �.dx5/
2 C 	2.x5/

X

˛;ˇ

�˛ˇdx˛dxˇ;

where �˛ˇ is the 4D metric tensor and 	2.x5/ is any function of the 5-th
coordinate.

In particular, the STM (space-time-matter) theory (Wesson and Ponce de
León, 1992) relate the 5-th coordinate to mass via either x5 D Gm

c2
or x5 D h

mc ,
where G is the Newton gravitational constant and h is the Planck constant.

The Ponce de León metric is a STM solution. In STM (or induced matter)
theory, the 4D curvature arises not due to the distribution of matter in the
Universe (as claims Relativity Theory) but because the Universe is embedded
in some higher-dimensional vacuum manifold M, and all the matter in our world
can be thought of as being manifestations of the geometrical properties of M.

Wesson and Seahra, 2005, claim that the Universe may be a 5D black hole.
Life is not excluded since in 5D there is no physical plughole and the “tidal”
forces are negligible. Suitable manifolds for such STM theory are given by two
isometric solutions of the 5D vacuum field equations: Liu–Mashhoon–Wesson
metric and Fukui–Seahra–Wesson metric; both embed 4D FLRW metric.

• Carmeli metric
The Carmeli metric (Carmeli, 1996) is given by the line element

ds2 D dx2 C dy2 C dz2 � �2dv2;

where � D 1
H is the inverse of Hubble constant and v is the cosmological

recession velocity. So, comparing with the Minkowski metric, it has � and
velocity v, instead of c and time t. This metric was used in Carmeli’s Relativity
Theory which is intended to be better than General Relativity on cosmological
scale.
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The Carmeli metric produces the Tulli–Fisher type relation in spiral galaxies:
4-th power of the rotation speed is proportional to the mass of galaxy; it obviate
the need for dark matter. This metric predicts also cosmic acceleration.

Including icdt component of the Minkowski metric, gives the Kaluza–
Klein–Carmeli metric (Harnett, 2004) defined by

ds2 D dx2 C dy2 C dz2 � c2dt2 � �2dv2:

• Prasad metric
A de Sitter Universe can be seen as the sum of the external and internal space.
The internal space has a negative constant curvature � 1

r2
and can be charac-

terized by the symmetry group SO3;2. The Prasad metric of this space is given,
in hyperspherical coordinates, by the line element

ds2 D r2 cos2 t.d�2 C sinh2 �.d�2 C sin2 �d�2//� r2dt2:

The value sin� is called adimensional normalized radius of the de Sitter
Universe.

The external space has constant curvature 1
R2

and can be characterized by the
symmetry group SO4;1. Its metric has the line element of the form

ds2 D R2 cosh2 t.d�2 C sin2 �.d�2 C sin2 �d�2//� R2dt2:



Part VII
Real-World Distances



Chapter 27
Length Measures and Scales

The term length has many meanings: distance, extent, linear measure, span, reach,
end, limit, etc.; for example, the length of a train, a meeting, a book, a trip, a shirt,
a vowel, a proof. The length of an object is its linear extent, while the height is
the vertical extent, and width (or breadth) is the side-to-side distance at 90ı to the
length, wideness. The depth is the distance downward, distance inward, deepness,
profundity, drop.

The ancient Greek mathematicians saw all numbers as lengths (of segments),
areas or volumes. In Mathematics, a length function is a function l W G ! R�0 on
a group .G;C; 0/ such that l.0/ D 0 and l.g/ D l.�g/, l.g C g0/ � l.g/C l.g0/ for
g; g0 2 G.

In Engineering and Physics, “length” usually means “distance”. Unit distance is
a distance taken as a convenient unit of length in a given context.

In this chapter we consider length only as a measure of physical distance. We
give selected information on the most important length units and present, in length
terms, a list of interesting physical objects.

27.1 Length Scales

The main length measure systems are: Metric, Imperial (British and American),
Japanese, Thai, Chinese Imperial, Old Russian, Ancient Roman, Ancient Greek,
Biblical, Astronomical, Nautical, and Typographical.

There are many other specialized length scales; for example, to measure cloth,
shoe size, gauges (such as interior diameters of shotguns, wires, jewelry rings), sizes
for abrasive grit, sheet metal thickness, etc.

Many units express relative or inverse distances. Quantities measured in recipro-
cal length include: radius of curvature, density of a linear feature in an area, surface-
area-to-volume ratio, vector’s magnitude (in Crystallography and Spectroscopy),
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optical power (cf. lens distances in Chap. 29), absorption (or attenuation) coefficient
(cf. Chap. 24), gain (in Laser Physics). Common units used for such measures are
inverse meter m�1 (called diopter in Optics), cm�1 and cycles per unit length (for
spatial frequency).

Some units express nonlength quantities in length terms. For example, the
denudation rate (wearing down of the Earth’s surface) is measured in cm per 1000
years. Cf. also meter of water equivalent in Chap. 24.

• International Metric System
The International Metric System (or SI, short for Système International),

also known as MKSA (meter–kilogram–second–ampere), is a modernized ver-
sion of the system of units, established by the Treaty of the Meter from 20
May 1875, which provides a logical and interconnected framework for all
measurements in science, industry and commerce. The system is built on a
foundation consisting of the following seven SI base units, assumed to be
mutually independent:

(1) length: meter (m); it is equal to the distance traveled by light in a vacuum
in 1/299,792,458 of a second; (2) time: second (s); (3) mass: kilogram (kg); (4)
temperature: kelvin (K); (5) electric current: ampere (A); (6) luminous intensity:
candela (cd); (7) amount of substance: mole (mol).

Meter, second, candela are already defined in terms of fundamentals of nature.
Kilogram, kelvin, mole and ampere are expected to be redefined in terms of the
Planck, Boltzmann, Avogadro constants and the charge of proton, respectively.

Meter is defined as a proper length (the length of the object in its rest frame,
cf. Sect. 26.2). So, it is well defined only over short distances where relativistic
effects are negligible (cf. Lorentz length contraction in Sect. 26.1), and all
cosmic distances, given in meters, are approximations.

Originally, on March 26, 1791, the mètre (French for meter) was defined as
1

10;000;000
of the distance from the North Pole to the equator along the Dunkirk-

Barcelona meridian. The name mètre was derived from the Greek metron
(measure). In 1799 the standard of mètre became a meter-long platinum-iridium
bar kept in Sèvres, a town outside Paris, for people to come and compare their
rulers with. (The metric system, introduced in 1793, was so unpopular that
Napoleon was forced to abandon it and France returned to the mètre only in
1837.) In 1960–1983, the meter was defined in terms of wavelengths.

The initial metric unit of mass, the gram, was defined as the mass of one
cubic centimeter of water at its temperature of maximum density. A metric ton
(or metric tonne, tonne) is a unit of mass equal to 1000 kg; this non-SI unit is
used instead of the SI term megagram (106 grams). For capacity, the litre (liter)
was defined as the volume of a cubic decimeter.

• Metrication
The metrication is an ongoing (especially, in the US, the UK and Caribbean

countries) process of conversion to the International Metric System, SI. Only
the US, Liberia and Myanmar have not fully switched to SI.
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For example, the US uses only miles for road distance signs (milestones).
Altitudes in aviation are usually described in feet, and resolutions of output
devices are specified in dpi (dots per inch). In shipping, nautical miles and knots
are used; both are accepted for use with SI.

Hard metric means designing in the metric measures from the start and
conformation, where appropriate, to internationally recognized sizes and designs.

Soft metric means multiplying an inch-pound number by a metric conversion
factor and rounding it to an appropriate level of precision; so, the soft converted
products do not change size. The American Metric System consists of converting
traditional units to embrace the uniform base 10 used by the Metric System.

Such SI-Imperial hybrid units, used in soft metrication, are, for example,
kiloyard (914:4 m), kilofoot (304:8 m), mil or milli-inch (25:4 micron), and min
or microinch (25:4 nm). The metric inch (2:5 cm 
 1 inch) and metric foot
(30 cm) were used in some Soviet computers when building from American
blueprints.

In athletics and skating, races of 1500 m or 1600 m are often called metric
miles. Examples of traditional units adapted to the meter are Chinese li D 500 m
D 1500 chi (Chinese feet), Thai wa D 2 m D 4 sok, Vietnamese xich D 1 m
D 1000 ly.

• Meter, in Poetry and Music
In Poetry, meter (or cadence) is a measure of rhythmic quality, the regular

linguistic sound patterns of a verse or line in it. The meter of a verse is the
number of lines, the number of syllables in each line and their arrangement
as sequences of feet. Each foot is a specific sequence of syllable types—such
as unstressed/stressed or long/short. Fussell, 1965, define four types of meter:
syllabic, accentual, accentual-syllabic and quantitative, where patterns are based
on syllable weight (number and/or duration of segments in the rhyme) rather than
stress.

Hypermeter is part of a verse with an extra syllable; metromania is a mania
for writing verses and metrophobia is a fear/hatred of poetry.

In Music, meter (or metre) is the regular rhythmic patterns of a musical line,
the division of a composition into parts of equal time, and the subdivision of
them. It is derived from the poetic meter of song. Different tonal preferences in
voiced speech are reflected in music; it explains why Eastern and Western music
differ.

Metrical rhythm is where each time value is a multiple or fraction of a fixed
unit (beat) and normal accents re-occur regularly providing systematic grouping
(measures). Isometre is the use of a pulse (unbroken series of periodically
occurring short stimuli) without a regular meter, and polymetre is the use of two
or more different meters simultaneously, whereas multimetre is using them in
succession.

A rhythmic pattern/unit is either intrametric (confirming the pulses on
the metric level), or contrametric (syncopated, not following the beat/meter),
or extrametric (irregular with respect to the metric structure of the piece).
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Rhythms/chords with the same multiset of intervals/distances are called homo-
metric.

A temporal pattern is metrically represented if it can be subdivided into equal
time intervals. A metronome is any device that produces regular, metrical ticks
(beats); metronomy: measurement of time by a metronome or, in general, an
instrument.

• Meter-related terms
We present this large family of terms by the following examples (besides the

unit of length and use in Poetry and Music).
Metrograph: a device attached to a locomotive to record its speed and

the number and duration of its stops. Cf. unrelated metrography in Medicine
(Chap. 29).

Metrogon: a high resolution, low-distortion, extra-wide field photographic
lens design used extensively in aerial photography.

The names of various measuring instruments contain meter at the end, say,
ammeter, gas meter, multimeter (or volt-ohm meter).

Metrosophy: a cosmology based on strict number correspondences.
Metrology: the science of, or a system of, weights and measures.
A metric meterstick is a rough rule of thumb for comprehending a metric

unit; for example, 5 cm is the side of a matchbox, and 1 km is 
 10 minutes’
walk.

Metering: an equivalent term for a measurement (assignment of numbers to
objects or events); micrometry: measurement under the microscope; hypsometry:
measurement of heights; telemetry: technology that allows remote measurement;
archeometry: the science of exact measuring referring to the remote past.

Hedonimetry: the study of happiness as a measurable economic asset; psy-
chometry: alleged psychic power enabling one to divine facts by handling objects.

Psychometrics: the theory and technique of psychological measurement;
psychrometrics: the determination of physical and thermodynamic properties of
gas-vapor mixtures; biometrics: the identification of humans by their character-
istics or traits; cliometrics: the systematic application of econometric techniques
and other formal or mathematical methods to the study of history.

Metric, as a nonmathematical term, is a standard unit of measure (for example,
font metrics refer to numeric values relating to size and space in the font) or, more
generally, part of a system of parameters; cf. quality metrics in Chap. 29.

Antimetric matrix: a square matrix A with A D �AT ; an antimetric electrical
network is one that exhibits antisymmetrical electrical properties.

Isometropia: equality of refraction in both eyes; hypermetropia is farsighted-
ness.

Isometric particle: a virus which (at the stage of virion capsid) has icosahedral
symmetry. Isometric process: a thermodynamic process at constant volume.

Metrohedry: overlap in 3D of the lattices of twin domains in a crystal.
Multimetric crystallography: to consider (Janner, 1991), in addition to

the Euclidean metric tensor, pseudo-Euclidean tensors (hyperbolic rotations)
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attached to the same basis; cf. pseudo-Euclidean distance in Chap. 7 and
multimetric in Chap. 3.

Metria: a genus of moths of the Noctuidae family.
Metrio: Greek coffee with one teaspoon of sugar (medium sweet). In Anthro-

pology, metriocranic means having a skull that is moderately high compared with
its width, with a breadth-height index 92–98.

Metroid: the name of a series of video games produced by Nintendo and
metroids are a fictional species of parasitic alien creatures from those games.

Examples of companies with a meter-related name are: Metron, Metric Inc.,
MetaMetrics Inc., Metric Engineering, Panametric, Prometric, Unmetric, World
Wide Metric. Metric is also a Canadian New Wave rock band.

• Metric length measures

kilometer (km) D 1000 meters D 103 m;
meter (m) D 10 decimeters D 100 m;
decimeter (dm) D 10 centimeters D 10�1 m;
centimeter (cm) D 10 millimeters D 10�2 m;
millimeter (mm) D 1000micrometers D 10�3 m;
micrometer (or non-SI micron; �m) D 1000 nanometers D 10�6 m;
nanometer (or non-SI 10 angstroms Å; nm) D 1000 picometers D 10�9;
picometer (pm) D 1000 femtometers D 10�12 m;
femtometer (or non-SI fermi; fm) D 1000 attometers D 10�15 m.

The numbers 103t (t D �8; : : : ;�1; 1; : : : ; 8) are given by metric prefixes:
yocto-(y), zepto-(z), atto-(a), femto-(f), pico-(p), nano-(n), micro-(�), milli-(m),
kilo-(k), mega-(M), giga-(G), tera-(T), peta-(P), exa-(E), zetta-(Z), yotta-(Y),
respectively, while 10t (t D �2;�1; 1; 2) are given by centi-(c), deci-(d), deca-
(da), hecto-(h).

But for plankton’s size femto-, pico-, nano-, micro-, meso-, macro-, mega-
mean < 0:2�; 0:2–2�; 2–20�; 20–200�; 0:2–20mm; 20–200mm; > 200mm.

In computers, a bit (binary digit) is the basic unit of information, a byte (or
octet) is 8 bits, and 103t bytes for t D 1; : : : ; 8 are kilo-(KB), mega-(MB), giga-
(GB), . . . , yottabyte (YB), respectively. Sometimes (because of 210 D 1024 

103) the binary terms kibi-(KiB), mebi-(MiB), gibibyte (GiB), etc., are used for
210t bytes.

• Imperial length measures
The Imperial length measures (as slightly adjusted by a treaty in 1959) are:
(land) league D 3 international miles;
(international) mile D 5280 feet D 1609:344m;
(US survey) mile D 5280 US feet 
 1609:347m;
data (or tactical) mile D 6000 feet D 1828:8 m and radar mile D 12:204 �s

(time it takes a radar pulse to travel one data mile forth and back);
(international) yard D 0:9144 m D 3 feet D 1

2
fathom;

(international) foot D 0:3048m D 12 inches;
(international) inch D 2:54 cm D 12 lines;
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(a unit of measure of height of equipment) rack unit D 7
4

inch;
(a unit of measure in advertising space) agate line 
 1

14
inch;

(a unit of computer mouse movement) mickey D 1
200

inch;
mil (British thou) D 1

1000
inch; mil is also an angular measure �

3200

 0:001

radian.
In addition, Surveyor’s Chain measures are: furlong D 10 chains D 1

8
mile;

chain D 100 links D 66 feet; rope D 20 feet; rod (or pole) D 16:5 feet; link
D 7:92 inches. Mile, furlong and fathom come from the slightly shorter Greco-
Roman milos (milliare), stadion and orguia, mentioned in the New Testament.

For measuring cloth, old measures are used: bolt D 40 yards; goad D 3
2

yard;
ell D 5

4
yard D 45 inches; quarter D 1

4
yard; finger D 1

8
yard; nail D 1

16
yard.

Other old English units of length: barleycorn D 1
3

inch; digit D 3
4

inches and
palm, hand, shaftment, span, cubit D 3; 4; 6; 9; 18 inches, respectively.

• Cubit
The cubit, originally the length of the forearm from the elbow to the tip of

the middle finger, was the ordinary unit of length in the ancient Near East which
varied among cultures and with time. It is the oldest recorded measure of length.

The cubit was used, in the temples of Ancient Egypt from at least 2700 BC, as
follows: 1 ordinary Egyptian cubit D 6 palms D 24 digits D 45 cm (18 inches),
and 1 royal Egyptian cubit D 7 palms D 28 digits 
 52:6 cm. Relevant Sumerian
measures were: 1 ku D 30 shusi D 25 uban D 50 cm, and 1 kus D 36 shusi.

Biblical measures of length are the cubit and its multiples by 4; 1
2
, 1
6
, 1
24

called
fathom, span, palm, digit, respectively. But the length of this cubit is unknown;
it is estimated now as 
 44:5 cm (as Roman cubitus) for the common cubit, used
in commerce, and 51–56 cm for the sacred one, used for building.

The Talmudic cubit is 48–57.6 cm. The pyramid cubit (25:025 inches 

63:567 cm), derived in Newton’s Biblical studies, is supposed to be the basic
one in the dimensions of the Great Pyramid and far-reaching numeric relations
on them.

Thom, 1955, claim that the megalithic yard, 82:966 cm, was the basic unit
used for stone circles in Britain and Brittany c. 3500 BC. Butler–Knight, 2006,
derived this unit as 1=.360 � 3662/-th of 40;075 km (the Earth’s equatorial
circumference), linking it to the putative Megalithic 366-degree circle and
Minoan 366-day year. Such a “366 geometry” is a part of the pseudoscientific
metrology

• Nautical length units
The main nautical length units (also used in aerial navigation) are:
sea league D 3 sea (nautical) miles;
nautical mile D 1852 m (originally defined as 1 min of arc of latitude);
geographical mile 
 1855:32 m (the average distance on the Earth’s surface,

represented by 1 min of arc along the Earth’s equator);
(international) short cable length D 1

10
nautical mile D 185:2 m 
 101

fathoms;
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(US customary) cable length D 120 fathoms D 720 feet D 219:456 m;
fathom D 6 feet D 1:8288 m.

• Preferred design sizes
Objects are often manufactured in a series of sizes of increasing magnitude. In

Industrial Design, preferred numbers are standard guidelines for choosing such
product sizes within given constraints of functionality, usability, compatibility,
safety or cost. Preferred design sizes are such lengths, diameters and distances.

Four basic Renard’s series of preferred numbers divide the interval from 10

to 100 into 5, 10, 20, or 40 steps, with the factor between two consecutive
numbers being constant (before rounding): the 5-th, 10-th, 20-th, or 40-th root
of 10. Since the International Metric System (SI) is decimally-oriented, the
International Organization for Standardization (ISO) adopted Renard’s series as
the main preferred numbers for use in setting metric sizes. But, for example, the
ratio between adjacent terms (i.e., notes) in the Western musical scale is 12-th
root of 2.

In the widely used ISO paper size system, the height-to-width ratio of all
pages is the Lichtenberg ratio, i.e.,

p
2. The system consists of formats An, Bn

and (used for envelopes) Cn with 0 � n � 10, having widths 2� 1
4� n

2 , 2� n
2 and

2� 1
8� n

2 , respectively. The above measures are in m; so, the area of An is 2�n

m2. They are rounded and expressed usually in mm; for example, format A4 is
210 � 297 and format B7 (used also for EU and US passports) is 88 � 125.

• Typographical length units

PostScript point D 1
72

inch D 100 gutenbergs D 0:3527777778mm;
TeX point (or printer’s point) D 1

72:27
inch D 0:3514598035mm;

ATA point (or Anglo-Saxon point) D 1
72:272

inch D 0:3514598mm;
point (Didot, European) D 0:37593985mm, cicero D 12 points Didot;
pica (Postscript, TeX or ATA) D 12 points in the corresponding system;
twip D 1

20
of a point in the corresponding system.

In display systems, twip is 1
1440

inch, and himetric is 0:01 mm.
• Astronomical system of units

The astronomical system of units (or, formally, IAU (1976) System of
Astronomical Constants) is a system of measurement developed for use in
astronomy by the IAU (International Astronomical Union).

It is based on units of length (AU), mass (Mˇ), and time (day). The speed of
light in IAU is defined as c0 D 299;792;458 m/s.

The astronomical unit of time is the day D D 24 � 602 D 86;400 s. 365:25
days make up one Julian year.

The astronomical unit of mass is the mass of the Sun: Mˇ D 1:98892 �
1030 kg.

The astronomical unit of length (AU or ua) is c0tA D 149;597;870;691˙ 3 m

 mean Earth–Sun distance; here tA is the transit time of light across 1 AU.

Among derived units are light-year c0D � 365:25 D 0:94607304725808 �
1016 m and parsec 648;000

�
AU 
 206;264:81 AU 
 3:085677581� 1016 m.
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• Length units in Astronomy
The Hubble distance (Chap. 26) or Hubble length is DH D c

H0

 1:31� 1026

m 
 4:237 Gpc 
 13:82 Gly (used to measure distances d > 1
2

Mpc in terms of

redshift z: d D zDH if z � 1, and d D .zC1/2�1
.zC1/2C1DH , otherwise).

gigaparsec (Gpc) D 103 megaparsec (Mpc) D 106 kiloparsec (kpc) D 109

parsecs;
hubble (or light-gigayear, light-Ga, Gly) D 103 million light-years (Mly);
siriometer D 106 AU 
 15:813 ly (about twice the Earth-Sirius distance);
parsec (pc) D 648;000

�

 206;265 AU 
 3:262 light-years D 3:086 � 1016 m;

light-year (ly) 
 9:461 � 1015 m 
 � � 107 light-seconds 
 0:307 parsec;
spat (used formerly) D 1012 m D 103 gigameters 
 6:685 AU;
astronomical unit (AU) 
 1:496 � 1011 m 
 499 light-seconds;
light-second 
 2:998 � 108 m (the Earth-Moon distance is 
 1:28 light-
seconds);
radii of Moon, Earth, Jupiter and Sun: 1737; 6371; 69;911 and 695;510 km;
picoparsec 
 30:86 km; cf. other funny units such as sheppey 1:4 km (closest
distance at which sheep remain picturesque), beard-second 5 nm (distance
that a beard grows in a second), microcentury 
 52:5 min (lecture’s length),
nanocentury 
 � sec.

• Natural length units
Natural units are units of measurement based only on physical constants, for

example, the speed c of light, gravitational constant G, reduced Planck constant
„, Boltzmann constant kB, Coulomb’s constant ke, proton’s elementary charge e,
fine-structure constant ˛ D e2ke„c 
 1

137
and masses me;mp of electron and proton.

Planck length (smallest measurable length) is lP D
q

„G
c3


 1:6162 �
10�35 m. (The Stoney length, used formerly, is

p
˛lP.) lP is the reduced

Compton wavelength 	C.m/ D mP
m lP, and also half of the Schwarzschild

radius rs.m/ D 2Gmc�2 (Chap. 24) for m D mP (Planck mass) D
q

„c
G 


2:18 � 10�8 kg 
 22 mg.
The remaining base Planck units are Planck time tp D lP

c 
 5:39 � 10�44 s,

Planck temperature TP D mPc2

kB

 1:42 � 1032 K, and Planck charge qP D

q
„c
ke

D ep
˛


 1:88 � 10�18 C. The Planck area AP is l2P, Planck energy EP is

mPc2 
 1:22�1028 eV 
 500 kWh, and Planck density �P is mPl�3P 
 5:16�1096
kg/m3. Only black holes exceed �P; some theories (for example, Landau poles)
allow to exceed TP.

The Planck units come by a normalization of the geometrized units for the
expressing SI units second, kilogram, kelvin and coulomb as c; G

c2
; GkB

c4
andp

Gke

c2
m, respectively.

The length unit of Quantum Chromodynamics (or strong interactions) is
	C.mp/ 
 2:103 � 10�16 m. The majority of lengths, used in experiments on



27.1 Length Scales 621

nuclear fundamental forces, are integer multiples of 	C.mp/ D 2�	C.mp/ 

1:32 fm.

X unit 
 1:002� 10�13 m 
 0:1 pm measures wavelengths of X- and gamma
rays.

The atomic unit of length is the Bohr radius (or bohr) ˛0 
 5:292� 10�11 m

 53 pm D 0:53Å, the most probable distance between the proton and electron
in a hydrogen atom. It is ˛�1	C.me/ D ˛�2re, where re 
 2:818 � 10�15 m is
the Thomson scattering length (Chap. 24), i.e., the classical electron radius.

In the units of Particle Physics, 1=rmeV D 10�9/GeV is „c
eV D EP

eV lP 
 1:97 �
10�7 m.

• Length scales in Physics
In Physics, a length scale (or distance scale) is a distance range determined

with the precision of a few orders of magnitude, within which given phenomena
are consistently described by a theory. Roughly, the scales< 10�15, 10�15�10�6,
10�6 � 106 and > 106 m are called subatomic, atomic to cellular (microscopic),
human (macroscopic) and astronomical, respectively.

Bacteria (and human ovums) are roughly on the geometrical mean (10�4 m)
of Nature’s hierarchy of sizes. Dawkins, 2006, used term middle world for our
realm between two counterintuitive extreme levels of existence: the microscopic
world of quarks/atoms and the Universe at the galactic/universal level. The limit
scales correspond to the Planck length lP and Hubble distance 
 4:6� 1061 lP.

In terms of their constituents, Chemistry (molecules, atoms), Nuclear (say,
proton, electron, photon), Hadronic (exited states) and Standard Model (quarks
and leptons) are applicable at scales � 10�10, � 10�14, � 10�15 and � 10�18 m.

At the meso- (or nanoscopic) scale, 10�9�10�7 m, materials and phenomena
can be described continuously and statistically, and average macroscopic proper-
ties (say, temperature and entropy) are relevant. At the atomic scale, � 10�10 m
D 1Å, the atoms should be seen as separated. The electroweak scale, � 10�18 m
(100–1000 GeV, in terms of energy) will be probed by the LHC (Large Hadron
Collider). The Planck scale (Quantum Gravity), � 10�35 m (� 1019 GeV) is not
yet accessible.

Belenchia et al., 2015, gave upper bound 10�29 � 10�22 m of nonlocality
scale for Quantum Gravity induced nonlocality via opto-mechanical quantum
oscillators.

Both, uncertainty principle from Quantum Mechanics and gravitational col-
lapse (black hole formation) from classical General Relativity, indicate some
minimum length of order the Planck length lP where the notion of distance loses
operational meaning. Also, doubly special relativity adds minimum length and
maximum energy scales to observer-independent maximum velocity c.

At short distances, classical geometry is replaced by “quantum geometry”
described by 2D conformal field theory (CFD). As two points are getting closer
together, the vacuum fluctuations of the gravitational field make the distance
between them fluctuate randomly, and its mean value tends to a limit, of the
order of lP. So, no two events in space-time can ever occur closer together.
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In String Theory, space-time geometry is not fundamental and, perhaps, it
only emerges at larger distance scales. The Maldacena duality is the conjectured
equivalence between an M-theory defined on a (“large, relativistic”) space, and
a (quantum, without gravity) CFD defined on its (lower dimensional) conformal
boundary.

The Big Bang paradigm supposes a minimal length scale and a smooth
distribution (homogeneous and isotropic) at a large scale. For Vilenkin et al.,
2011, the main theories admitting “before the Big Bang” (cyclical universe,
eternal inflation, multiverse, cosmic egg) still require a beginning. For Hartle–
Hawkings, 1983, time emerged continuously from space after the Universe was
at the age tP.

• Glashow’s snake
Uroboros, the snake that bites in its own tail, is an ancient symbol representing

the fundamental in different cultures: Universe, eternal life, integration of the
opposite, self-creation, etc. Glashow’s snake is a sketch of the cosmic uroboros
by Glashow, 1982, arraying four fundamental forces and the distance scales over
which they dominate (62 orders of magnitude from the Planck scale � 10�35 m
to the cosmological scale � 1026 m) in clock-like form around the serpent. The
dominating forces are:

1. gravity: in the macrocosmos from cosmic to planetary distances;
2. electromagnetism: from mountains to atoms (say, within Œ10�10; 2 � 105� m);
3. weak and strong forces: in the microcosmos inside the atom (say,< 10�12 m).

No objects are known within Œ10�14; 10�10� m (the largest nucleus and
smallest atom). As distances decrease and energies increase, the last three forces
become equivalent around the length 10�28 m. Then gravity is included (super-
unification happens) linking the largest and smallest: the snake swallows its tail.

Also, a symmetry between small and large distances, called T-duality, claims:
two superstring theories are T-dual if one compactified on a space of large volume
is equivalent to the other compactified on a space of small volume.

Cosmic inflation (expansion by a factor of at least 1078 in volume, to the size
of a grain of sand, from 10�36 to 
 10�32 second after the Big Bang) may have
created the large scale of the Universe out of quantum-scale fluctuations. Strong
and weak forces describe both atomic nuclei and energy generation in stars. Cf.
range of fundamental forces in Chap. 24.

In Conformal Cyclic Cosmology (Penrose, 2010), the Universe is a sequence
of aeons (space-times with FLRW metrics gi), where the future time-like
singularity of each aeon is the Big Bang singularity of the next. In an eaon’s
beginning and end, distance and time do not exist; only conformal (preserving
angles) geometry holds. Any eaon is attached to the next one by a conformal
rescaling giC1 D �2gi.
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27.2 Orders of Magnitude for Length

In this section we present a selection of such orders of length, expressed in meters.

1:616252.81/� 10�35: Planck length;
10�34: length of a putative string in M-theory which supposes that all forces
and elementary particles arise by vibration of such strings (but there is no even
agreement that there are smallest fundamental objects);
1:01�10�25: Schwarzschild radius ( 2Gm

c2
: the value below which mass m collapses

into a black hole) of an average (68 kg) human;
10�24 D 1 yoctometer: effective cross-section radius of 1 MeV neutrinos is
2 � 10�23;
10�22: a certain quantum roughness starts to show up, while the space appears
completely smooth at the scale of 10�14;
10�21 D 1 zeptometer: preons, hypothetical components of quarks/leptons;
10�18 D 1 attometer: size of up quark and down quarks; sizes of strange, charm
and bottom quarks are 4 � 10�19, 10�19 and 3 � 10�20;
10�15 D 1 femtometer (or fermi);
1:75�10�15 and 1:5�10�14: diameter of the smallest (H, hydrogene) and largest
(U, uranium-234) nucleus;
1:68 � 10�15: diameter of proton, range of the weak nuclear force;
10�12 D 1 picometer: distance between atomic nuclei in a white dwarf star;
10�11: wavelength of the hardest (shortest) X-rays and longest gamma rays;
0:62Å and 5:2Å: diameter of the smallest (helium) and largest (caesium) atom;
10�10 D 1Å (angstrom): diameter of a typical atom;
0:74Å and 1000 Å: diameter of the smallest (H2) and largest (a SiO2) molecule;
1:54Å: length of a typical covalent bond (C-C);
3:4Å: distance between base pairs in a DNA molecule;
10�9 D 1 nanometer: diameter of typical molecule;
10�8: wavelength of softest X-rays and most extreme ultraviolet;
1:1 � 10�8: diameter of prion (smallest self-replicating biological entity);
in 2012;
9�10�8: human immunodeficiency virus, HIV; in general, capsid sizes of known
viruses range from 1:7 � 10�8 (Porsine circovirus) to 1:5 � 10�6 (pithovirus
sibericum);
10�7: size of chromosomes and largest particle fitting through a surgical mask;
2 � 10�7: limit of resolution of the light microscope;
3.8–7:6� 10�7: wavelength of visible (to humans) light;
10�6 D 1 micrometer (or micron);
10�6 � 10�5: diameter of a typical bacterium; known (nondormant) bacteria
range from 2–3 � 10�7 (Mycoplasma genitalium) to 7:5 � 10�4 (Thiomargarita
Namibiensis);
8:5 � 10�6: size of Ostreococcus, the smallest free-living eukaryotic unicellular
organism, while the length of a nerve cell of the Colossal Squid can reach 12 m;
10�5: typical size of (a fog, mist, or cloud) water droplet;
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10�5, 1:5 � 10�5, and 2 � 10�5: widths of cotton, silk, and wool fibers;
2 � 10�4: approximately, the lower limit for the human eye to discern an object;
5 � 10�4: diameter of a human ovum, grain of salt;
10�3 D 1 millimeter;
5 � 10�3: length of average red ant; in general, insects range from 1:39 � 10�4
(Dicopomorpha echmepterygis, the smallest animal) to 5:67�10�1 (Phobaeticus
chani); the smallest flying insects are on the order of 10�3 in length;
7:7 � 10�3; 5 � 10�2 and 9:2 � 10�2: length of the smallest ones: vertebrate
(frog Paedophryne amauensis), warm-blooded vertebrate (bee hummingbird
Mellisuga helenae) and primate (lemur Microcebus berthae);
8:9 � 10�3: Schwarzschild radius of the Earth;
10�2 D 1 centimeter;
5:8 � 10�2: length of uncoiled sperm of the fruit fly Drosophila bifurca (it is 20
fly’s bodylengths and the longest sperm cell of any known organism);
10�1 D 1 decimeter: wavelength of the lowest microwave and highest UHF
radio frequency, 3 GHz;
1 meter: wavelength of the lowest UHF and highest VHF radio frequency, 300
MHz;
1:5: average ground level of the Maldives above sea level;
2.77–3.44: wavelength of the broadcast radio FM band, 108–87 MHz;
5:5 and 
 3: height of the tallest animal (giraffe) and extinct primate Gigantop-
ithecus;
10 D 1 decameter: wavelength of the lowest VHF and highest shortwave radio
frequency, 30 MHz;
20; 33; 37 and 55: lengths of the longest animals (tapeworm Diphyllobothrium
Klebanovski, blue whale, lion’s mane jellyfish and bootlace worm Lineus
longissimus);
99:6: height of the world’s tallest flowering plant, a tasmanian Eucalyptus
Centurion (after 100m, the distribution of the products of photosynthesis become
impossible);
100 D 1 hectometer: wavelength of the lowest HF (high radio frequency) and
highest MF (medium radio frequency), 3 MHz;
115:5: height of the world’s tallest living tree, a californian sequoia Hyperion;
139; 324; 541; 830; 1007 and 8:5: heights of the Great Pyramid of Giza, Eiffel
Tower in Paris, One World Trade Center in New York, Burj Khalifa skyscraper
in Dubai, Kingdom Tower, planned in Jeddah for 2019, and 11;000 years-old
Tower of Jericho;
187–555: wavelength of the broadcast radio AM band, 1600–540 kHz;
340: distance which sound travels in air in 1 s;
103 D 1 km;
2:954 � 103: Schwarzschild radius of the Sun;
104 D 1 miriameter (used formerly): scandinavian mile (Norwegian/Swedish
mil);
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8848 and 10;911: the highest (Mount Everest) and deepest (Mariana Trench)
points on the Earth’s surface;
5�104 D 50 km: the maximal distance at which the light of a match can be seen
(at least 10 photons arrive on the retina during 0:1 s);
1:11 � 105 D 111 km: one degree of latitude on the Earth;
1:5 � 104 � 1:5 � 107: wavelengths of sound audible to humans (20 Hz to 20
kHz);
1:37�105 and 1:9�106: length of the world’s longest tunnel, Delaware Aqueduct,
New York, and of longest street, Jounge Street, Ontario;
2 � 105: wavelength of a typical tsunami;
106 D 1 megameter, thickness of Earth’s atmosphere;
2:22 � 106: diameter of Typhoon Tip (northwest Pacific Ocean, 1979), the most
intense tropical cyclone on record;
2:37�106: diameter of Pluto at 39:54AU from the Sun; the smallest dwarf planet
is Ceres (the largest asteroid in the Asteroid Belt) of diameter 9:42 � 105 and at
2:77 AU;
3:47 � 106: diameter of the Moon;
9:3 � 106 and 2:1 � 107: length of Trans-Siberian Railway and China’s Great
Wall;
1:28� 107 and 4:01� 107: Earth’s equatorial diameter and length of the equator;
4:5 � 107: distance from which Earth’s good-looking photograph, The Blue
Marbre, was taken in 1972 by the Apollo 17 mission. Other famous Earth’s
images are Earthrise (1968, by the Apollo 8), Pale Blue Dot (0:12 pixel against
the space’s vastness; 1990, by Voyager 1) and one from Saturn’s neighborhood
(2013, by NASA’s Cassini).
1:4 � 108: mean diameter of Jupiter;
1:67 � 108: diameter of OGLE-TR-122b, the smallest known star;

 3 � 108 (299;792:458 km): distance traveled by light in 1 s;
3:84 � 108: Moon’s orbital distance from the Earth;
4:002 � 108: the farthest distance a human has ever been from Earth (Appolo 13
mission, 1970, passed over the far side of the Moon);
109 D 1 gigameter;
1:39 � 109: Sun’s diameter and orbital distance of a planet with 3:3-h “year”;
6:37 � 109: distance at which Earth’s gravity becomes 1

1;000;000
of that on its

surface;
5:83 � 1010: orbital distance of Mercury from the Sun;
1:496 � 1011 (1 astronomical unit, AU): mean Earth-Sun distance;

 2:8 AU (near the middle of the Asteroid Belt): Sun’s water frost line (the
distance where it is cold enough, 
 �123 ıC, for water to condense into ice),
separating terrestrial and jovian planets; it is the radius of the inner Solar System;
5:7�1011: length of the longest observed comet tail (Hyakutake, 1996); the Great
Comet of 1997 (Hale–Bopp) has biggest known nucleus (> 60 km);
1012 D 1 terameter (formerly, spat);
15:8 AU: diameter of the largest known star, red supergiant UY Scuti;
30:1 AU: radius of the outer Solar System (orbital distance of Neptune);
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50 AU: distance from the Sun to the Kuiper cliff, the abrupt outer boundary of
the Kuiper Belt (the region of trans-Neptunian objects around Sun).
936 AU: aphelion of Sedna, the farthest known Solar System object (its orbital
period is 
 11;400 years); it and 2012 VP113 (having the farthest known—80; 5

AU—perihelion in the Solar System) are only known objects within the Oort
Cloud;
1015 D 1 petameter;
50,000–200,000 AU: distance from the Sun to the boundaries of the Oort Cloud;
52;000 AU D 0:82 ly: the only known close flyby of Solar System by a star
(Scholz’s binary of dwarfs passed the Oort Cloud about 70;000 years ago);
1:3 parsec 
 4 � 1016 
 4:24 ly: distance to Proxima Centauri, the nearest star;

 6:15 � 1017: radius of humanity’s radio bubble, caused by high-power TV
broadcasts leaking through the atmosphere into outer space;
1018 D 1 exameter;
1:57 � 1018 
 50:9 pc, 
 250 pc, 46 pc: distances to supernova 1987A, to
rapidly rotating neutron star Geminga (remains of a supernova 0:3Ma ago which
created the Local Bubble), to IK Pegasi B (nearest known supernova candidate).
A supernova within 10–20 pc would be a catastrophic event for the Earth’s life;
2:59�1020 
 8:4 kpc 
 27;400 ly: distance from the Sun to the geometric center
of our Milky Way galaxy (in Sagittarius A�, “our” supermassive black hole);
12:9 kpc and 52:8 kpc: distances to the closest (Canis Major Dwarf) and the
largest (Large Magellanic Cloud) of 26 satellite galaxies of the Milky Way;
9:46�1020 
 30:66 kpc 
 105 ly: diameter of the Milky Way. The largest known
galaxy, C 1101, at the center of the cluster Abell 2029, is 
 6 Mly across;
1021 D 1 zettameter;
2:23 � 1022 D 725 kpc D 2:54 Mly: distance to Andromeda (M31), the
closest (and approaching at 100–140 km/s) large galaxy; also, it is the farthest
permanently visible to the naked eye object;
5:7 � 1023 D 59 Mly: distance to Virgo, the nearest (and approaching) major
cluster;
1024 D 1 yottameter;
2 � 1024 D 60 Mpc D 110Mly: diameter of the Local (or Virgo) supercluster;
1:2 Gly: maximal size of structure compatible with the cosmological principle
(that distribution of matter is homogeneous and isotropic on a large enough
scale);
1:3 Gly, 5:6 Gly and 10 Gly: diameters of the Canes Venatici Supervoid (largest
known), Giant GRB Ring (largest known regular formation) and Hercules-
Corona Borealis Great Wall of GRB (largest known superstructure);
7:5 Gly: the gamma ray burst GRB 080319B, farthest visible, 
 30 s in 2008, to
the naked eye object (GRB 980425, at 
 40 Mpc, is closest known);
13:14 Gly: the gamma ray burst GRB 090429B (farthest event, ever observed);
13:4 Gly (z D 11:1): distance to the farthest known object, galaxy GN-z11;
1:3 � 1026 D 13:82 Gly D 4:24 Gpc: Hubble radius of the Universe measured
as the light travel distance to the source of CMB radiation;
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4:4�1026 D 47Gly D 14:4Gpc: particle horizon (present radius of the Universe
measured as a comoving distance); it is larger than the Hubble radius, since the
Universe is expanding). It is 
 2% larger than the radius of the visible universe
including only signals emitted later than 
 380;000 years after the Big Bang;

The size of whole Universe can be now much larger than the size of the
observable one, even infinite, if its curvature is 0. If the Universe is finite but
unbounded or if it is nonsimply connected, then it can be smaller than the observable
one.

Projecting into the future: the scale of the Universe will be 1031 in 1014 years
(last red dwarf stars die) and 1037 in 1020 years (stars have left galaxies). If protons
decay, their half-life is � 1035 years; their estimated number in the Universe is 1077;

The Universe, in the current Heat Death scenario, achieves beyond 101000 years
such a low-energy state that quantum events become major macroscopic phenom-
ena, and space-time loses its meaning again, as below the Planck time/length;

The hypothesis of parallel universes estimates that one can find another identical
copy of our Universe within the distance 1010

118
m.



Chapter 28
Distances in Applied Social Sciences

In this chapter we present selected distances used in real-world applications of
Human Sciences. In this and the next chapter, the expression of distances ranges
from numeric (say, in m) to ordinal (as a degree assigned according to some rule)
and nominal.

Depending on the context, the distances are either practical ones, used in daily
life and work outside of science, or uncountable ones, used figuratively, say, as
metaphors for remoteness (being apart, being unknown, coldness of manner, etc.).

28.1 Distances in Perception and Psychology

• Distance ceptor
A distance ceptor is a nerve mechanism of one of the organs of special sense

whereby the subject is brought into relation with his distant environment.
• Oliva et al. perception distance

Let fs1; : : : ; sng be the set of stimuli, and let qij be the conditional probability
that a subject will perceive a stimulus sj, when the stimulus si was shown; so,
qij � 0, and

Pn
jD1 qij D 1. Let qi be the probability of presenting the stimulus si.

The Oliva et al. perception distance ([OSLM04]) between stimuli si and sj is

1

qi C qj

nX

kD1

ˇ
ˇ
ˇ
ˇ
qik

qi
� qjk

qj

ˇ
ˇ
ˇ
ˇ :

• Representational dissimilarity matrix
Representational dissimilarity matrix (or RDM) is a square matrix indexed

horizontally and vertically by the stimuli (or experimental conditions) and
containing a dissimilarity index in each cell, which compares the two brain-
activity patterns associated with stimuli labeling the row and column.
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If the same activity pattern estimates are used for the vertical and horizontal
dimensions, the RDM is symmetric about a diagonal of zeros. If independent
pattern estimates are used for the vertical and horizontal dimensions, the RDM
contains entries comparing independent pattern estimates for identical stimuli
(reflecting measurement noise) along its diagonal, and two alternative dissimilar-
ity estimates for each stimulus pair in symmetric off-diagonal positions.

• Visual space
Visual space refers to a stable perception of the environment provided

by vision, while haptic space (or tactile space) and auditory space refer to
such internal representation provided by the senses of pressure perception and
audition. The geometry of these spaces and the eventual mappings between them
are unknown. But Lewin et al., 2012, found that sensitivity to touch is heritable,
and linked to hearing. The main observed kinds of distortion of vision and haptic
spaces versus physical space follow; the first three were observed for auditory
space also.

– Distance-alleys: lines with corresponding points perceived as equidistant, are,
actually, some hyperbolic curves. Usually, the parallel-alleys are lying within
the distance-alleys and, for visual space, their difference is small at > 1:5 m.

– Oblique effects: performance of certain tasks is worse when the orientation of
stimuli is oblique rather than horizontal or vertical.

– Equidistant circles: the egocentric distance is direction-dependent; the points
perceived as equidistant from the subject lie on egg-like curves, not on circles.

These effects and size-distance invariance hypothesis should be incorpo-
rated in a good model of visual space. In a visual space the distance d and
direction are defined from the self, i.e., as the egocentric distance. There is
evidence that visual space is almost affine and, if it admits a metric d, then d is a
projective metric, i.e., d.x; y/C d.y; z/ D d.x; z/ for any perceptually collinear
points x; y; z.

The main models for visual space are a Riemannian space of constant
negative curvature (cf. Riemannian color space in Chap. 21), a general Rie-
mannian/Finsler space, or an affinely connected (so, not metric, in general) space
([CKK03]).

An affine connection is a linear map sending two vector fields into a third one.
The expansion of perceived depth on near and its contraction at far distances
hints that the mapping between visual and physical space is not affine.

Amedi et al., 2002, observed the convergence of visual and tactile shape
processing in the human lateral occipital complex. The vOICe technology (OIC
for “Oh I see!”) explores cross-modal binding for inducing visual sensations
through sound (mental imagery and artificial synesthesia). Some blind people
“see” by echolocation. The cane extends peri-hand space of blind users and, in
general, extrapersonal or far space can remap as peripersonal or near space when
using tools.

Weber’s illusion: two tactile points are perceived as further apart on body parts
with higher tactile sensitivity,
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• Length-related illusions
The most common optical illusions distort size or length. For example, in the

Müller–Lyer illusion, one of two lines of equal length appear shorter because
of the way the arrows on their ends are oriented. Pigeons and parrots also are
susceptible to it. Segall et al., 1963, found that the mean fractional misperception
varies cross-culturally from 1:4% to 20:3% with maximum for Europeans. Also,
urban residents and younger subjects are much more susceptible to this illusion.

In the Luckiech–Sander illusion (1922), the diagonal bisecting the larger, left-
hand parallelogram appears to be longer than the diagonal bisecting the smaller,
right-hand parallelogram, but is in fact of the same length.

The perspective created in Ponzo illusion (1911) increases the perceived
distance and so, compliant with Emmert’s size-distance law, perceived size
increases.

The Moon illusion (mentioned in clay tablets at Nineveh in the seventh century
BC) is that the Moon, despite the constancy of its visual angle (
 0:52ı), at the
horizon may appear to be about twice the zenith Moon. This illusion (and similar
Sun illusion) could be cognitive: the zenith moon is perceived as approaching.
(Plug, 1989, claim that the distance to the sky, assumed unconsciously, is about
10–40 m cross-culturally and independent of the consciously perceived distance.)
The Ebbenhouse illusion: the diameter of the circle, surrounded by smaller
circles, appears to be larger than one of the same circle nearby, surrounded by
larger circles.

In vista paradox (Walker–Rupich–Powell, 1989), a large distant object viewed
through a window appears to both shrink in size and recede in distance as the
observer approaches; a similar framing effect works in the coffee cup illusion
(Senders, 1966). In the Pulfrich depth illusion (1922), lateral motion of an object
is interpreted as having a depth component.

An isometric illusion (or ambiguous figure) is a shape that can be built of
same-length (i.e., isometric) lines, while relative direction between its compo-
nents are not clearly indicated. The Necker Cube is an example.

The Charpentier size-weight illusion (1891): the larger of two gras-
pable/liftable objects of equal mass is misperceived to be less heavy than the
smaller.

• Size-distance invariance hypothesis
The SDIH (size-distance invariance hypothesis) by Gilinsky, 1951, is that

S0

D0
D C S

D holds, where S;D are the physical and S0;D0 are perceived size and
distance of visual stimulus, while C is an observer constant. A simplified formula
is S0

D0
D 2 tan ˛

2
, where ˛ is the angular size of the stimulus.

A version of SDIH is the Emmert’s size-distance law: S0 D CD0. This
law accounts for size constancy: object’s size is perceived to remain constant
despite changes in the retinal image (more distant objects appear smaller because
of perspective). The Müller–Lyer and Ponzo illusions are examples of size
constancy.

The Moon and Ebbenhouse illusions are called size-distance paradoxes since
they unbalance SDIH. They are misperceptions of visual angle and examples of
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distance constancy: distance is perceived constant despite changes in the retinal
image.

If an observer’s head translates smoothly through a distance K as he views
a stationary target point at pivot distance Dp, then the point will appear to
move through a displacement W 0 when it is perceived to be at a distance
D0. The apparent distance/pivot distance hypothesis (Gogel, 1982): it holds
D0

Dp
C W0

K D 1.
The size-distance centration is the overestimation of the size of objects

located near the focus of attention and underestimation of it at the periphery.
Hubbard and Baiard, 1988, gave to subjects name and size S of a familiar

object and asked imaged distances dF; dO; dV . Here the object mentally looks to
be of the indicated size at the first-sight distance dF. The object become, while
mentally walking (zooming), too big to be seen fully with zoom-in at the overflow
distance dO, and too small to be identified with zoom-out at the vanishing point
distance dV . Consistently with SDIH, dF was linearly related to S. For dO and
dV , the relation were the power functions with exponents about 0:9 and 0:7. The
time needed to imagine dO increased slower than linearly with the scan distance
dO � dF.

Konkle and Oliva, 2011, found that the real-world objects have a consistent
visual size at which they are drawn, imagined, and preferentially viewed.
This size is proportional to the logarithm of the object’s assumed size, and is
characterized by the ratio of the object and the frame of space around it. This
size is also related to the first-sight distance dF and to the typical distance of
viewing and interaction. A car at a typical viewing distance of 9:15 m subtends
a visual angle of 30ı, whereas a raisin held at an arm’s length subtends 1ı. Cf.
the optimal eye-to-eye distance and, in Chap. 29, the TV viewing distance in the
vision distances.

Similarly, Palmer et al., 1981, found that in goodness judgments of pho-
tographs of objects, the 3

4
perspective (or 2:5 view, pseudo-3D), in which the

front, side, and top surfaces are visually present, were usually ranked highest.
Cf. the axonometric projection in the representation of distance in Painting.

• Egocentric distance
The egocentric distance is the perceived absolute distance from the self

(observer or listener) to an object or a stimulus; cf. subjective distance. Usually,
such visual distance underestimates the actual physical distance to far objects,
and overestimates it for near objects. Such distortion decreases in a lateral
direction.

In Visual Perception, the action space of a subject is 1–30 m; the smaller and
larger spaces are called the personal space and vista space, respectively.

The exocentric distance is the perceived relative distance between objects.
• Distance cues

The distance cues are cues used to estimate the egocentric distance.
For a listener at a fixed location, the main auditory distance cues include:

intensity, direct-to-reverberant energy ratio (in the presence of sound reflecting
surfaces), spectrum and binaural differences; cf. acoustics distances in Chap. 21.
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For an observer, the main visual distance cues include:

– relative size, relative brightness, light and shade;
– height in the visual field (in the case of flat surfaces lying below the level of

the eye, the more distant parts appear higher);
– interposition (when one object partially occludes another from view);
– binocular disparities, convergence (depending on the angle of the optical axes

of the eyes), accommodation (the state of focus of the eyes);
– aerial perspective (distant objects become bluer and paler), distance hazing

(distant objects become decreased in contrast, more fuzzy);
– motion perspective (stationary objects appear to a moving observer to glide

past).

Examples of the techniques which use the above distance cues to create an optical
illusion for the viewer, are:

– distance fog: a 3D computer graphics technique such that objects farther from
the camera are progressively more blurred (obscured by haze). It is used, for
example, to disguise the too-short draw distance, i.e., the maximal distance
in a 3D scene that is still drawn by the rendering engine;

– forced perspective: a technique to make objects appear either far away, or
nearer depending on their positions relative to the camera and to each other.

– lead room: space left in the direction the subject is facing or moving.

• Subjective distance
The subjective distance (or cognitive distance) is a mental representation

of actual distance molded by an individual’s social, cultural and general life
experiences; cf. egocentric distance. Cognitive distance errors occur either
because information about two points is not coded/stored in the same branch
of memory, or because of errors in retrieval of this information.

For example, the length of a route with many turns and landmarks is usually
overestimated. In general, the filled or divided space (distance or area) appears
greater than the empty or undivided one. Also, affective signals of threat and
disgust increase and decrease, respectively, perceived proximity.

Human mental maps, used to find out distance and direction, rely mainly,
instead of geometric realities, on real landscape understanding, via webs of
landmarks.

Ellard, 2009, suggests that this loss of natural navigation skills, coupled with
the unique ability to imagine themselves in another location, may have given
modern humans the freedom to create a reality of their own.

• Geographic distance biases
Sources of distance knowledge are either symbolic (maps, road signs, verbal

directions) or directly perceived ones during locomotion: environmental features
(visually-perceived turns, landmarks, intersections, etc.), travel time/effort.

They relate mainly to the perception and cognition of environmental dis-
tances, i.e., those that cannot be perceived in entirety from a single point of view
but can still be apprehended through direct travel experience.
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Examples of geographic distance biases (subjective distance judgments)
are:

– observers are quicker to respond to locations preceded by locations that were
either close in distance or were in the same region;

– distances are overestimated when they are near to a reference point; for
example, intercity distances from coastal cities are exaggerated;

– subjective distances are often asymmetrical as the perspective varies with the
reference object: a small village is considered to be close to a big city while
the big city is likely to be seen as far away from it;

– traveled routes segmented by features are subjectively longer than unseg-
mented routes; moreover, longer segments are relatively underestimated;

– increasing the number of pathway features encountered and recalled by
subjects leads to increased distance estimates;

– structural features (such as turns and opaque barriers) breaking a pathway into
separate vistas strongly increase subjective distance (suggesting that distance
knowledge may result from a process of summing vista distances) (turns are
often memorized as straight lines or right angles);

– Chicago-Rome illusion: belief that some European cities are located far to
the south of their actual location; in fact, Chicago and Rome are at the same
latitude (42ı), as are Philadelphia and Madrid (40ı), etc.;

– Miami-Lima illusion: belief that US east coast cities are located to the east of
the west coast cities of South America; in fact, Miami is 3ı west of Lima.

Such illusions could be perceptually based mental representations that have
been distorted through normalization and/or conceptual nonspatial plausible
reasoning.

Thorndyke and Hayes-Roth, 1982, compared distance judgments of people
with navigation- and map-derived spatial knowledge. Navigation-derived route
distance estimates were more accurate than Euclidean judgments, and this
difference diminished with increased exploration. The reverse was true for map
subjects, and no improvement was observed in the map learning.

Turner–Turner, 1997, made a similar experiment in a plane virtual building.
Route distances were much underestimated but exploration-derived Euclidean
judgments were good; repeated exposure did not help. The authors suggest that
exploration of virtual environments is similar to navigation in the real world
but with a restricted field of view, as in tunnels, caves or wearing a helmet,
watching TV.

Krishna et al., 2008, compared spatial judgments of self-focused (“Western”)
and relationship-focused (“Eastern”) people. The former ones were more likely
to misjudge distance (when multiple features should be considered), to pay
attention to only focal aspects of stimuli and ignore the context and background
information.

• Psychogeography
Psychogeography is (Debord, 1955) the study of the precise laws and specific

effects of the geographical environment, consciously organized or not, on the
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emotions and behavior of individuals. An example of related notions is a desire
path (or social trail), i.e., a path developed by erosion caused by animal or human
footfall, usually the shortest or easiest route between an origin and destination.

Also, the psychoanalytic study of spatial representation within the uncon-
scious construction of the social and physical world is called Psychogeography.
In general, Depth Psychology refer to unconscious-accounting approaches to
therapy and research.

• Psychological Size and Distance Scale
The CID (Comfortable Interpersonal Distance) scale by Duke and Nowicky,

1972, consists of a center point 0 and eight equal lines emanating from it.
Subjects are asked to imagine themselves on the point 0 and to respond to
descriptions of imaginary persons by placing a mark at the point on a line at
which they would like the imagined person to stop, that is, the point at which
they would no longer feel comfortable. CID is then measured in mm from 0.

The GIPSDS (Psychological Size and Distance Scale) by Grashma and
Ichiyama, 1986, is a 22-item rating scale assessing interpersonal status and
affect. Subjects draw circles, representing the drawer and other significant
persons, so that the radii of the circles and the distances between them indicate
the thoughts and feelings about their relationship. These distances and radii,
measured in mm, represent the psychological distance and status, respectively.
Cf. related questionnaire on http://www.surveymonkey.com/s.aspx?sm=Nd8c_
2fazsxMZfK9ryhvzPlw_3d_3d

• Visual Analogue Scales
In Psychophysics and Medicine, a Visual Analogue Scale (or VAS) is a self-

report device used to measure the magnitude of internal states such as pain and
mood (depression, anxiety, sadness, anger, fatigue, etc.) which range across a
continuum and cannot be measured directly. Usually, VAS is a horizontal (or
vertical, for Chinese subjects) 10 cm line anchored by word descriptors at each
end.

The VAS score is the distance, measured in mm, from the left hand (or lower)
end of the line to the point marked by the subject. The VAS tries to produce ratio
data, i.e., ordered data with a constant scale and a natural zero.

Amongst scales used for pain-rating, the VAS is more sensitive than the
simpler verbal scale (six descriptive or activity tolerance levels), the Wong–Baker
facial scale (six grimaces) and the numerical scale (levels 0; 1; 2; : : : ; 10). Also,
it is simpler and less intrusive than questionnaires for measuring internal states.

• Psychological distance
CLT (construal level theory) (Liberman–Trope, 2003, defines psychological

distance from an event or object as a common meaning of spatial (“where”),
temporal (“when”), social (“who”) and hypotheticality (“whether”) distance
from it.

Expanding spatial, temporal, social and hypotheticality horizons in human
evolution, history and child development is enabled by our capacity for mental
construals, i.e., abstract mental representations. Any event or object can be
represented at lower-level (concrete, contextualized, secondary) or higher-level
(abstract, more schematic, primary) construal.

http://www.surveymonkey.com/s.aspx?sm=Nd8c_2fazsxMZfK9ryhvzPlw_3d_3d
http://www.surveymonkey.com/s.aspx?sm=Nd8c_2fazsxMZfK9ryhvzPlw_3d_3d
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More abstract construals lead to think of more distant (spatially, temporally,
socially, hypothetically) objects and vice versa; cf., say, temporal distance.

CLT implied that the four dimensions are functionally similar. For example,
increase of distance in only one dimension leads to greater moral concern. Zhang
and Wang, 2008, observed that stimulating people to consider spatial distance
influences their judgments along three other dimensions, but the reverse is not
true.

It is consistent with a claim by Boroditsky, 2000, that the human cognitive
system is structured around only concepts emerging directly out of experience,
and that other concepts are then built in a metaphorical way. Williams and Bargh,
2008, also claim that psychological distance is a derivative of spatial distance.
Spatial concepts such as “near/far” are present at 3 to 4 months of age since the
relevant information is readily available to the senses, whereas abstract concepts
related to internal states are more difficult to understand. Also, spatial relations
between oneself, one’s caretakers and potential predators have primary adaptive
significance.

• Temporal distance
Temporal distance is a type of psychological distance altering individuals’

construals of future or past events (Trope–Liberman, 2003). Immediate events
trigger concrete construals, which are characterized by an emphasis on details.

People construe events at greater temporal distance in terms of their abstract,
central, goal-related features and pro-arguments, while nearer events are treated
situation-specifically at a lower level of counter-arguments. Examples are:
greater moral concern over a distant future event, more likely forgiveness by
a victim of an earlier transgression, more intense affective consumer’s reaction
when a positive outcome is just missed. Also, temporal distance relates to our
conceptions of the self. Actor perspective dominates the simulation of a near-
future event; it switches to a third-person depiction when the event is located in
the distant future.

Spronken et al., 2016, found that in mind-wandering, future-oriented thoughts
are more positive compared to past-oriented thoughts. Also, thoughts about the
distant past and future are more positive than thoughts about the near past and
future, and the frequency of positive thoughts increases with temporal distance.

• Time-distance relation (in Psychology)
People often talk about time using spatial linguistic metaphors (a long

vacation, a short concert) but much less talk about space in terms of time. This
bidirectional but asymmetric relation suggests that spatial representations are
primary, and are later co-opted for other uses such as time.

Casasanto and Boroditsky, 2008, showed that people, in tasks not involving
any linguistic stimuli or responses, are unable to ignore irrelevant spatial
information when making judgments about duration, but not the converse. So,
the metaphorical space-time relationship observed in language also exists in
our more basic representations of distance and duration. Mentally representing
time as a linear spatial path may enable us to conceptualize abstract (as moving
a meeting forward, pushing a deadline back) and impossible (as time-travel)
temporal events.
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In Psychology, the Kappa effect is that among two journeys of the same
duration, one covering more distance appears to take longer, and the Tau effect is
that among two equidistant journeys, one taking more time to complete appears
to have covered more distance. Jones–Huang, 1982, see them as effects of
imputed velocity (subjects impute uniform motion to discontinuous displays) on
judgments of both time and space, rather than direct effect of time (distance) on
distance (time) judgment.

Fleet–Hallet–Jepson, 1985, found spatiotemporal inseparability in early visual
processing by retinal cells. Maruya–Sato, 2002, reported a new illusion (the
time difference of two motion stimuli is converted in the illusory spatial offset)
indicating interchangeability of space and time in early visual processing.
Simner–Mayo–Spiller, 2009, tested ten individuals with time-space synaesthesia.

The differences appear at the level of higher processing because of dif-
ferent representations: space is represented in retinotopic maps within the
visual system, while time is processed in the cerebellum, basal ganglia and
cortical structures. Evidence from lesion and human functional brain imag-
ing/interference studies point towards the posterior parietal cortex as the main site
where spatial and temporal information converge and interact with each other. Cf.
also spatial-temporal reasoning.

In human-computer interaction, Fitts’ law claims that the average time taken
to position a mouse cursor over an on-screen target is a C b log2.1C D

W /, where
D is the distance to the center of the target, W is the width (along the axis of
motion) of the target and a; b represent the start/stop time and device’s speed.

People in the West construct diagonal mental timelines (running from bottom
left to the top right); those with damaged right side of their brain have trouble
imagining past, i.e., timeline’s left side.

Núñez, 2012, found that our spatial representation of time is not innate but
learned. The Aymara of the Andes place the past in front and the future behind.
The Pormpuraaw of Australia place the past in the east and the future in the west.
Some Mandarin speaker have the past above and future below.

For the Yupno of Papua New Guinea, past and future are arranged as a
nonlinear 3D bent shape: the past downhill and the future uphill of the local
river. Inside of their homes, Yupno point towards the door when talking about
the past, and away from the door to indicate future. Yupno also have a native
counting system and number concepts but they ignore the number-line concept.
They place numbers on the line but only in a categorical manner, ignoring line’s
extension.

• Symbolic distance effect
In Psychology, (symbolic) distance effect is the phenomenon that the brain

compares two abstract concepts, represented as a continuous space, with higher
accuracy and faster reaction time if they differ more on the relevant dimension.
For example, the performance of subjects when comparing a pair of positive
numbers .x; y/ decreases for smaller jx � yj (behavioral numerical distance
effect).

The related magnitude effect is that performance decreases for larger
minfx; yg. For example, it is more difficult to measure a longer distance (say,
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100 m) to the nearest mm than a short distance (say, 1 cm). Those effects
correspond to Weber law. They are valid also for congenitally blind people; they
learn spatial relations via tactile input (interpreting, say, numerical distance by
placing pegs in a peg board).

A current explanation is that there exists a mental line of numbers (MNL)
which is oriented from left to right (as 2; 3; 4) and nonlinear (more mental space
for smaller numbers). So, close numbers are easier to confuse since they are
represented on the MNL at adjacent and not always precise locations. Possible
MNL’s, explaining such confusion, are linear-scalar (the psychological distance
d.a; a C1/ between adjacent values is constant but the amount of noise increases
as ka) or logarithmic (amount of noise is constant but d.a; a C 1/ decreases
logarithmically).

Related SNARC (spatial-numerical association of response codes) effect is that
smaller (or larger) numbers are responded to more easily with responses toward
a left (or, respectively, right) location. Also, smaller numbers promote a left-
oriented gaze-direction whereas the opposite is true for higher numbers. Similar
spatial-musical association SMARC and a mental line of pitches were observed.
The same (from left to right) mental number line ability was found in three-day-
old chicks.

In general, human cognition is often body-based, i.e., conceptual thinking
relies on simulations of perceptual symbols. There is now increasing evi-
dence that abstract concepts are also grounded in sensory-motor representations
through metaphors. For example, power/status mapped to verticality, physical
force to size, social proximity to temperature, and social distance to spatial
distance.

• Law of proximity
Gestalt Psychology is a theory of mind and brain of the Berlin School, in

which the brain is holistic, parallel and self-organizing. Perceptual organization
is composed of grouping and segregation. The visual grouping of discrete
elements is determined by proximity, similarity, common fate, good continuation,
closure (Wertheimer, 1923), and, more recently, common region, connectedness
or synchrony.

In particular, the law of proximity is that spatial or temporal proximity of
elements may induce the mind to perceive a collective or totality.

• Emotional distance
The emotional distance is the degree of emotional detachment (toward a

person, group or events), aloofness, indifference by personal withdrawal, reserve.
The Bogardus Social Distance Scale (cf. social distance) measures the

distance between two groups by averaged emotional distance of their members.
Spatial empathy is the awareness that an individual has to the proximity,

activities, and comfort of people surrounding him.
The propinquity effect is the tendency for people to get emotionally involved

with those who have higher propinquity (physical/psychological proximity) with
them, i.e., whom they encounter often. Walmsley, 1978, proposed that emotional
involvement decreases as d� 1

2 with increasing subjective distance d.
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• Psychical distance
Psychical (or psychic) distance is a term having no commonly accepted

definition. In several dictionaries, it is a synonym for the emotional distance.
This term was introduced in [Bull12] to define what was called later the aesthetic
distance (cf. the antinomy of distance) as a degree of the emotional involvement
that a person, interacting with an aesthetic artifact or event, feels towards it.

In Marketing, the psychic distance mean the level of attraction or detachment
to a particular country resulting from the degree of uncertainty felt about it.

• Distancing
Distancing (from the verb to distance, i.e., to move away from or to leave

behind) is any behavior or attitude causing to be or appearing to be at a distance.
Uncountable noon distantness (or farness) is the state or quality of being

distant, remote, far-off, way in the distance. Archaic meaning: distant parts or
regions.

Distancy, farawayness, distaunce are rare/obsolete synonyms for distance,
while indistancy is either nearness, or lack (or want) of distance (or separation).

Self-distance is the ability to critically reflect on yourself and your relations
from an external perspective; not to confound with mathematical notions of self-
distance in Chaps. 1 and 17.

Outdistancing means to outrun, especially in a long-distance race, or, in
general, to surpass by a wide margin, especially through superior skill or
endurance.

In Martial Arts, distancing is the selection of an appropriate combat range,
i.e., distance from the adversary. For other examples of spatial distancing; cf.
distances between people and, in Chap. 29, safe distancing from a risk factor.

Social distancing during pandemic refers to focused measures to increase the
physical distance between individuals, or activity restrictions, such as increasing
distance between student desks, canceling sports activities, and closing schools.

In Mediation (a form of alternative dispute resolution), distancing is the
impartial and nonemotive attitude of the mediator versus the disputants and
outcome.

In Psychoanalysis, distancing is the tendency to put persons and events at a
distance. It concerns both the patient and the psychoanalyst.

In Developmental Psychology, distancing (Werner–Kaplan, 1964, for deaf-
blind patients) is the process of establishing the individuality of a subject as
an essential phase (prior to symbolic cognition and linguistic communication)
in learning to treat symbols and referential language. For Sigel (1970, for
preschool children), distancing is the process of the development of cognitive
representation: cognitive demands by the teacher or the parent help to generate a
child’s representational competence. Distancing from role identities is the first
step of 7-th (individualistic) of nine stages of ego development in Loevinger,
1976.

In the books by Kantor, distancing refers to APD (Avoidant Personality
Disorder): fear of intimacy and commitment in confirmed bachelors, “femmes
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fatales”, etc. Associational distancing refers to individual’s dissociation with
those in the group inconsistent with his desired social identity.

The distancing language is phrasing used by a person to avoid thinking about
the subject or content of his own statement (for example, referring to death).

Distancing by scare quotes is placing quotation marks around an item (single
word or phrase) to indicate that the item does not signify its literal or conventional
meaning. The purpose could be to distance the writer from the quoted content, to
alert the reader that the item is used in an unusual way, or to represent the writer’s
concise paraphrasing. Neutral distancing convey a neutral writer’s attitude,
while distancing him from an item’s terminology, in order to call attention to
a neologism, jargon, a slang usage, etc; sometimes italics are used for it.

Cf. technology-related distancing, antinomy of distance, distanciation.

28.2 Distances in Economics and Human Geography

• Technology distances
The technological distance between two firms is a distance (usually, �2- or

cosine distance) between their patent portfolios, i.e., vectors of the number of
patents granted in (usually, 36) technological subcategories. Other measures are
based on the number of patent citations, co-authorship networks, etc.

Granstrand’s cognitive distance between two firms is the Steinhaus distance
�.A4B/
�.A[B/ D 1� �.A\B/

�.A[B/ between their technological profiles (sets of ideas) A and B
seen as subsets of a measure space .�;A; �/.

Olsson, 2000, defined the metric space .I; d/ of all ideas (as in human
thinking), I 
 R

nC, with some intellectual distance d. The closed, bounded,
connected knowledge set At 
 I extends with time t. New elements are, normally,
convex combinations of previous ones: innovations within gradual technological
progress. Exceptionally, breakthroughs (Kuhn’s paradigm shifts) occur.

The similar notion of thought space (of ideas/knowledge and relationships
among them in thinking) was used by Sumi et al., 1997, for computer-aided
thinking with text; they proposed a system of mapping text-objects into metric
spaces.

Introduced by Patel, 1965, the economic distance between two countries is
the time (in years) for a lagging country to catch up to the same per capita income
level as the present one of an advanced country. Nazarczuk, 2015, adapted
this notion as the regional economic distance and defined the relative regional
distance as the mean number of years necessary to achieve the reference area
GDP per capita, taking into consideration the growth rate of the reference area.

Introduced by Fukuchi–Satoh, 1999, the technology distance between coun-
tries is the time (in years) when a lagging country realizes a similar technological
structure as the advanced one has now. The basic assumption of the Convergence
Hypothesis is that this distance between two countries is smaller than the
economic one.
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• Production Economics distances
In quantitative Economics, a technology is modeled as a set of pairs .x; y/,

where x 2 R
mC is an input vector, y 2 R

mC is an output vector, and x can produce
y. Such a set T should satisfy standard economical regularity conditions.

The directional distance function of input/output x; y toward a (projected
and evaluated) direction .�dx; dy/ 2 R

m� �R
mC is (Chambers–Chung–Färe, 1996)

supfk � 0 W ..x � kdx/; .y C kdy// 2 Tg:

For dx D x; dy D y, it is a scaled version of the Shephard input distance
function (Shephard, 1953 and 1970) supfk � 0 W .x; y

k / 2 Tg.
The frontier fs.x/ is the maximum feasible output of a given input x in a given

system (or year) s. The distance to frontier (Färe–Crosskopf–Lovell, 1994) of a
production point .x; y/, where y D gs.x//, is gs.x/

fs.x/
.

The Malmquist index measuring the change in TFP (total factor productivity)

between periods s; s0 (or comparing to another unit in the same period) is g0

s.x/
fs.x/

.
The distance to frontier is the inverse of TFP in a given industry (or of GDP
per worker in a given country) relative to the existing maximum (the frontier,
usually, US). In general, the term distance-to-target is used for the deviation in
percentage of the actual value from the planned one.

Consider a production set T 
 R
n1 � R

n2 (input, output). The measure of
the technical efficiency, given by Briec–Lemaire, 1999, is the point-set distance
infy2we.T/ jjx � yjj (in a given norm jj:jj on R

n1Cn2) from x 2 T to the weakly
efficient set we.T/. It is the set of minimal elements of the poset .T;�/ where
the partial order � (t1 � t2 if and only if t2 � t1 2 K) is induced by the cone
K D int.Rn1

>0 � R
n2
>0/C f0g.

• Distance to default
A call option is a financial contract in which the buyer gets, for a fee, the right

to buy an agreed quantity of some commodity or financial instrument from the
seller at a certain time (the expiration date) for a certain price (the strike price).

Let us see a firm’s equity E as a call option on the firm’s assets A, with the
total liabilities (debt) L being the strike price, i.e., E D max.0;A�L/ with A < L
meaning the firm’s default. Applying Black–Sholes, 1973, and Merton, 1974,
option pricing formulas, the distance to default t periods ahead is defined by

D2Dt D ln At
D C t.�A � 1

2

2A/


A
p

t
;

where �A is the rate of growth of A and 
A is its volatility (standard deviation of
yearly logarithmic returns). A Morningstar’s credit score is cs D 7

2
.D2DCSS/C

8BRCCC �max.D2D; SS;BR/, where SS;BR and CC are the solvency, business
risk and cash flow cushion scores. The resulting credit rating AAA;AA;A;BBB
etc., corresponds to cs within Œ16; 23/; Œ23; 61/; Œ61; 96/, etc.
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• Action distance
The action distance is the distance between the set of information generated

by the Active Business Intelligence system and the set of actions appropriate to a
specific business situation. Action distance is the measure of the effort required
to understand information and to effect action based on that information. It could
be the physical distance between information displayed and action controlled.

• Effective trade distance
There is large border effect of political boundaries on the volume of trade

and on relative prices. The border introduces costs related to tariffs, market
regulations, differences in product packages and languages.

Engel–Rogers, 1996, showed that the dispersion of prices within a country is
orders of magnitude smaller than across countries, and estimated that the US-
Canadian border was equivalent to a distance of 120;000 km. McCallum, 1995,
found that inter-provincial trade within Canada was, on average, 22 times larger
that the trade of any province with any State from US. Cf. impact of distance on
trade.

Borraz et al., 2012, showed that the “online border” in E-commerce is
equivalent to the average distance from the online warehouse to the offline stores.

[HeMa02] defined the effective trade distance between countries x and y with
populations x1; : : : ; xm and y1; : : : ; yn of their main agglomerations as

.
X

1�i�m

xi
P

1�t�m xt

X

1�j�n

yj
P

1�t�n yt
dr

ij/
1
r ;

where dij is the bilateral distance (in km) of the corresponding agglomerations
xi; yi, and r measures the sensitivity of trade flows to dij.

As an internal distance of a country, measuring the average distance
between producers and consumers, [HeMa02] proposed 0:67

p
area
�

.
• Impact of distance on trade

Bilateral trade decreases with distance; this effect slightly increased over the
last century. Webb, 2007, claims that an average distance of trade in 1962 of 4790
km changed only to 4938 km in 2000.

The relationship between shipments and distance, found in Hillberry–
Hummels, 2008, is highly nonlinear: at the beginning, there is a sharp reduction
in value with distance; but, once a distance-threshold is achieved the negative
effect vanishes.

An example of used measures is the average distance traveled by heavy trucks
between actual origins and destinations in their deliveries of commodities.

Frankel–Rose, 2000, estimated impact of certain distance variables on trade,
for example, C340%;C200%;C80%;C0:8%;-0:2%;-1:1% for common cur-
rency, common language, common border, economic size (1% GDP increase),
physical size (1% increase), physical distance (1% increase), respectively.

Using the gravity models with 16 CAGE (cultural, administrative, geo-
graphic, economic) distances between countries, Ghemawat, 2004, developed
CAGE Distance Framework for managers considering international strategies.
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His distances are cultural (different languages, ethnicities, religions, social
norms), administrative (absence of shared monetary or political association,
institutional weakness), geographic (physical remoteness, different climates,
lack of common border or waterway access, weak transportation or communi-
cation links) and economic (difference in consumer incomes, cost and quality of
natural, financial, human resources).

Most affected industries are: meat, cereals, tobacco (by linguistic ties), gold,
electricity, textile (by preferential trading agreements), electricity, gas, live
animals (by physical remoteness). The wealth difference decreases trade in
metals, fertilisers, meat, but increases trade in coffee, tea, animal oils, office
machines.

• Long-distance trade routes
Examples of such early historic routes are the Amber Road (from northern

Africa to the Baltic Sea), Via Maris (from Egypt to modern day Iran, Iraq, Turkey,
Syria), the route from the Varangians to the Greeks (from Scandinavia across
Kievan Rus’ to the Byzantine Empire), the Incense Road (from Mediterranean
ports across the Levant and Egypt through Arabia to India), Roman-Indian routes,
Trans-Saharan trade, Grand Trunk Road (from Calcutta to Peshawar) and the
Ancient Tea Route (from Yunnan to India via Burma, to Tibet and to central
China).

The Silk Road was, from the second century BC, a network of trade routes
connecting East, South, and Western Asia with the Mediterranean world,
North/Northeast Africa and Europe. Extending 6500 km, it enabled traders
to transport goods, slaves and luxuries such as silk, other fine fabrics, perfumes,
spices, medicines, jewels, as well as the spreading of knowledge, ideas, cultures,
plants, animals and diseases. But the Silk Road became unsafe and collapsed in
the tenth century after the fall of the Tang Dynasty of China, the destruction of
the Khazar Khaganate and, later, the Turkic invasions of Persia and the Middle
East.

During fifth to tenth centuries, the Radhanites (medieval Jewish merchants)
dominated trade between the Christian and Islamic worlds, covering much of
Europe, North Africa, Middle East, Central Asia and parts of India and China.
They carried commodities combining small bulk and high demand (spices,
perfumes, jewelry, silk). The Maritime Republics (mercantile Italian city-states,
especially Genoa, Venice, Pisa, Amalfi) dominated long-distance trade during
tenth to thirteenth centuries. The spice trade from Asia to Europe became,
via new sea routes, a Portuguese monopoly (fifteenth to seventeenth centuries)
replaced by the Dutch, and soon after the English and the French. During
thirteenth to seventeenth centuries, the Hanseatic League v(an alliance of trading
cities and their guilds) dominated trade along the coast of Northern Europe.

• Relational proximity
Economic Geography considers to nongeographical types of proximity (orga-

nizational, institutional, cognitive, etc.). In particular, relational proximity (or
trust-based interaction between actors) is an inclusive concept of the benefits
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derived from spatially localized sets of economic activities. It generates relational
capital through the dynamic exchange of locally produced knowledge.

The five dimensions of relational proximity are proximity: of contact (direct-
ness), through time (continuity, stability), in diversity (multiplicity, scope), in
mutual respect and involvement (parity), of purpose (commonality).

Individuals are close to each other in a relational sense when they share the
same interaction structure, make transactions or realize exchanges. They are
cognitively close if they share the same conventions and have common values
and representations (including knowledge and technological capabilities).

Bouba-Olga and Grossetti, 2007, divide socio-economic proximity into rela-
tional one (role of social networks) and mediation proximity (role of newspapers,
directories, Internet, agencies, etc.). Tranos and Nijkamp, 2013: physical distance
and relational proximities have a significant impact on Internet’s infrastructure.

• Migration distance (in Economics)
The migration distance, in Economic Geography, is the distance between the

geographical centers of the municipalities of origin and destination.
Ravenstein’s 2-nd and 3-rd laws of migration (1880) are that the majority of

migrants move a short distance, while those move longer distances tend to choose
big-city destinations. About 80% of migrants move within their own country.

Migration tends to be an act of aspiration; it generally improves migrant’s
wealth and lifestyle. Existential migrants refer to voluntary noneconomic expa-
triates with “existential wanderlust”. Madison, 2006, defines them as seeking
greater possibilities for self-actualising, exploring foreign cultures in order to
assess own identity, and ultimately grappling with issues of home/belonging in
the world generally.

• Commuting distance
The commuting distance is the distance (or travel time) separating work and

residence when they are located in separated places (say, municipalities).
The acceptable commute distance, in Real Estate, is the distance that can be

covered in an acceptable travel time and increases with better connectivity.
• Consumer access distance

Consumer access distance is a distance measure between the consumer’s
residence and the nearest provider where he can get specific goods or services
(say, a store, market or a health service). For example, food miles refers to
the distance food is transported from the time of its production until it reaches
consumers.

Measures of geographic access and spatial behavior include distance measures
(map’s distance, road travel distance, perceived travel time, etc.), distance
decay (decreased access with increasing distance) effects, transportation avail-
ability and activity space (the area of 
 2

3
of the consumer’s routine activities).

For example, by US Medicare standards, consumers in urban, suburban, rural
areas should have a pharmacy within 2; 5; 15 miles, respectively. The patients
residing outside of a 15-miles radius of their hospital are called distant patients.
Food grown within 100 miles of its point of purchase or consumption is local
food.
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Similar studies for retailers revealed that the negative effect of distance on
store choice behavior was (for all categories of retailers) much larger when this
behavior was measured as “frequency” than when it was measured as “budget
share”.

• Distance decay (in Spatial Interaction)
In general, distance decay or the distance effect (Chap. 29) is the attenuation

of a pattern or process with distance. In Spatial Interaction, distance decay is the
mathematical representation of the inverse ratio between the quantity of obtained
substance and the distance from its source.

This decay measures the effect of distance on accessibility and number of
interactions between locations. For example, it can reflect a reduction in demand
due to the increasing travel cost. The quality of streets and shops, height of
buildings and price of land decrease as distance from the center of a city
increases.

The bid-rent distance decay induces, via the cost of overcoming distance, a
class-based spatial arrangement around a city: with increasing distance (and so
decreasing rent) commercial, industrial, residential and agricultural areas follow.

In location planning for a service facility (fire station, retail store, transporta-
tion terminal, etc.), the main concerns are coverage standard (the maximum
distance, or travel time, a user is willing to overcome to utilize it) and distance
decay (demand for service decays with distance).

An example of related size effect: doubling the size of a city leads usually to a
15% decrease of resource use (energy, roadway amount, etc.) per capita, a rise of

 15% in socio-economic well-being (income, wealth, the number of colleges,
etc.), but also in crime, disease and average walking speed. Bettencourt et al.,
2007, observed that “social currencies” (information, innovation, wealth) typi-
cally scale superlinearly with city size, while basic needs (water and household
energy consumption) scale linearly and transportation/distribution infrastructures
scale sublinearly.

Distance decay is related to friction of distance which posits that in Geogra-
phy, the absolute distance (say, in km) requires some amount of effort, money,
time and/or energy to overcome. The corresponding cost is called relative
distance; it describes the amount of social, cultural, or economic connectivity
between two places.

• Gravity models
The general gravity model for social interaction is given by the gravity

equation

Fij D a
MiMj

Db
ij

;

where Fij is the “flow” (or “gravitational attraction”, interaction, mass-distance
function) from location i to location j (alternatively, between those locations), Dij

is the “distance” between i and j, Mi and Mj are the relevant economic “masses”
of i and j, and a; b are parameters. Cf. Newton’s law of universal gravitation
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in Chap. 24, where b D 2. The first instances were formulated by Reilly (1929),
Stewart (1948), Isard (1956) and Tinbergen (1962).

If Fij is a monetary flow (say, export values), then M is GDP (gross domestic
product), and Dij is the distance (usually the great circle distance between the
centers of countries i and j). For trade, the true distances are different and selected
by economic considerations. But the distance is a proxy for transportation
cost, the time elapsed during shipment, cultural distance, and the costs of
synchronization, communication, transaction. The distance effect on trade is
measured by the parameter b; it is 0:94 in Head, 2003, and 0:6 in Leamer–
Levinsohn, 1994.

If Fij is a people (travel or migration) or message flow, then M is the population
size, and Dij is the travel or communication cost (distance, time, money).

If Fij is the force of attraction from location i to location j (say, for a consumer,
or for a criminal), then, usually b D 2. Reilly’s law of retail gravitation is
that, given a choice between two cities of sizes Mi;Mj and at distances Di;Dj,
a consumer tends to travel further to reach the larger city with the equilibrium
point defined by

Mi

D2
i

D Mj

D2
j

:

• Nearness principle
The nearness principle (or Zipf’s least effort principle, in Psychology) is the

following basic geographical heuristic: given a choice, a person will select the
route requiring the least expenditure of effort, i.e., path of least resistance.

This principle is used, for example, in transportation planning and locating of
serial criminals: they tend to commit their crimes fairly close to where they live.

The first law of geography (Tobler, 1970) is: “Everything is related to
everything else, but near things are more related than distant things”.

• Distances in Criminology
Geographic profiling (or geoforensic analysis) aims to identify the spatial

behavior (target selection and likely offender’s heaven, i.e., the residence or
workplace) of a serial criminal as it relates to the spatial distribution of linked
crime sites.

The offender’s buffer zone is an area surrounding the offender’s heaven, from
which little or no criminal activity will be observed; usually, such a zone occurs
for premeditated personal offenses. The primary streets and network arterials that
lead into the buffer zone tend to intersect near the estimated offender’s heaven.
A 1 km buffer zone was found for the UK serial rapists. Most personal offenses
occur within about 2 km from the offender’s heaven, while property thefts occur
further away.

Given n crime sites .xi; yi/; 1 � i � n (where xi and yi are the latitude and
longitude of the i-th site), the Newton–Swoope Model predicts the offender’s
heaven to be within the circle around the point .

P
i xi
n ;

P
i yi
n / with the search
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radius being

s
max jxi1 � xi2 j � max jyi1 � yi2 j

�.n � 1/2
;

where the maxima are over .i1; i2/, 1 � i1 < i2 � n. The Ganter–Gregory Circle
Model predicts the offender’s heaven to be within a circle around the first offense
crime site with diameter the maximum distance between crime sites.

The centrographic models estimate the offender’s heaven as a center, i.e.,
a point from which a given function of travel distances to all crime sites is
minimized; the distances are the Euclidean distance, the Manhattan distance, the
wheel distance (i.e., the actual travel path), perceived travel time, etc. Many of
these models are the reverse of Location Theory models aiming to maximize
the placement of distribution facilities in order to minimize travel costs. These
models (Voronoi polygons, etc.) are based on the nearness principle (least effort
principle).

The journey-to-crime decay function is a graphical distance curve used to
represent how the number of offenses committed by an offender decreases as the
distance from his/her residence increases. Such functions are variations of the
center of gravity functions; cf. gravity models.

For detection of criminal, terrorist and other hidden networks, there are
many data-mining techniques which extract latent associations (distances and
near-metrics between people) from graphs of their co-occurrence in relevant
documents, events, etc. In, say, drug cartel networks, better to remove betweeners
(not well-connected bridges between groups, as paid police) instead of hubs
(kingpins).

Electronic tagging consist of a device attached to a criminal or vehicle,
allowing their whereabouts to be monitored using GPS. An ankle monitor (or
tether) is a such tracking device that individuals under house arrest or parole
are often required to wear. The range of a tether (or inclusion zone, 10–50 m)
depends usually on the gravity of the crime; it is set by the offender’s probation
officer.

• Drop distance
In judicial hanging, the drop distance is the distance the executed is allowed

to fall. In order to reduce the prisoner’s physical suffering (to about a third
of a second), this distance is pre-determined, depending on his/her weight, by
special drop tables. For example, the (US state) Delaware protocol prescribes, in
pounds/feet, about 252; 183 and 152 cm for at most 55; 77 and at least 100 kg.
Unrelated hanging distance is the minimum (horizontal) distance needed for
hanging a hammock.

In Biosystems Engineering, a ventilation jet drop distance is defined as the
horizontal distance from an air inlet to the point where the jet reaches the
occupational zone. In Aviation, an airlift drop distance (or drop height) is the
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vertical distance between the aircraft and the drop zone over which the airdrop is
executed.

• Distance telecommunication
Distance telecommunication is the transmission of signals over a distance

for the purpose of communication. In modern times, this process almost always
involves the use of electromagnetic waves by transmitters and receivers.

Nonelectronic visual signals were sent by fires, beacons, smoke signals, then
by mail, pigeon post, hydraulic semaphores, heliographs and, from the fifteenth
century, by maritime flags, semaphore lines and signal lamps.

Audio signals were sent by drums, horns (cf. long-distance drumming in
Chap. 21) and, from nineteenth century, by telegraph, telephone, and radio.

Advanced electrical/electronic signals are sent by television, videophone,
fiber optical telecommunications, computer networking, analog cellular mobile
phones, SMTP email, Internet and satellite phones.

• Distance supervision
Distance supervision refers to the use of interactive distance technology

(landline and cell phones, Email, chat, text messages to cell phone and instant
messages, video teleconferencing, Web pages) for live (say, work, training,
psychological umbrella, mental health worker, administrative) supervision.

Such supervision requires tolerance for ambiguity when interacting in an
environment that is devoid of nonverbal information.

• Distance education
Distance education is the process of providing instruction when students

and instructors are separated by physical distance, and technology is used to
bridge the gap. Distance learning and distance (or online) degrees are the desired
outcomes. A semi-distance program is one combining online and residential
courses.

The transactional distance (Moore, 1993) is a perceived degree of separation
during interaction between students and teachers, and within each group. This
distance decreases with dialog (a purposeful positive interaction meant to
improve the understanding of the student), with larger autonomy of the learner,
and with lesser predetermined structure of the instructional program.

Vygotsky’s zone of proximal development is the distance between the actual
developmental level as determined by independent problem solving and the level
of potential development as determined through problem solving under adult
guidance, or in collaboration with more capable peers.

• Distance selling
Distance selling, as opposed to face-to-face selling in shops, covers goods

or services sold without face-to-face contact between supplier and consumer but
through distance communication means: press adverts with order forms, catalog
sales, telephone, tele-shopping, e-commerce (via Internet), m-commerce (via
mobile phone). Examples of the relevant legislation are Consumer Protection
(Distance Selling) Directive 97/7/EC and Regulations 2000 in EU.

The main provisions are: clear prior information before the purchase, its
confirmation in a durable medium, delivery within 30 days, “cooling-off” period
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of seven working days during which the consumer can cancel the contract without
any reason and penalty. Exemptions are: Distance marketing (financial services
sold at distance), business-to-business contracts and some purchases (say, of land,
or at an auction, or from vending machines).

• Approximative human-scale distances
An arm’s length is a distance (about 0.7 m, i.e., within personal distance)

sufficient to exclude intimacy, i.e., discouraging familiarity or conflict; its analogs
are: Italian braccio, Turkish pik, and Old Russian sazhen.

The reach distance is the difference between the maximum reach and arm’s
length. The striking (or handshaking) distance is a short, easily reachable
distance.

The whiffing (or spitting, poking) distance is a very close distance.
A stone’s throw is a distance of about 25 fathoms (46 m).
The hailing (or shouting, calling) distance is the distance within which the

human voice can be heard. Far cry: distance estimated in audibility’s terms.
The Goldilocks distance is the “just right” one; cf. the Kasting distance in

Sect. 25.3.
The walking distance is the context-depending distance normally reachable

by walking. In Japan, its standard unit is 80 m, i.e., one minute walking time.
Some the UK high schools define 2 and 3 miles as the statutory walking distance
for children younger and older than 11 years.

Pace out means to measure distance by pacing (walking with even steps).
• Walkability distances

Walkability is (Abley, 2005) the extent to which the environment is friendly to
the presence of people living, shopping, visiting, or spending time in an area.

Walk Score is a walkability index based on the Euclidean distance to amenities
such as businesses, schools, parks, and other common destinations within 20min-
utes’ walk (1 mile D 5280 feet 
 1:609 km) of a given starting point. The algo-
rithm awards points based on the distance to the closest amenity in each category.

The number of points declines from maximum to 0 as the distance runs from
0:4 km (5 minutes’ walk) to 1:6 km. Each category is weighted equally and the
points are summed and normalized to yield a score from 0 to 100.

Walk Score also measures pedestrian friendliness by analyzing population
density, block length and intersection density. Scores 0 to 49 mean that almost
all or most daily errands require a car, and scores 90 to 100 signify a “walker’s
paradis”.

Walkability is a central principle of New Urbanism. In particular, the (urban-
to-rural) transect is (Duany, 2000) a series of zones that transition from the
natural landscape to the dense urban core: T1 (natural), T2 (rural), T3 (suburban),
T4 (general urban), T5 (urban center), T6 (downtown).

Block length and building height for T3 � T6 are, respectively: 700–800, 600,
500, � 400 feet and 1–2, 2–3, 2–4, � 4 floors. Each zone is self-similar in that it
contains a similar transition from the edge to the center of the neighborhood.

A walking radius is a typical urban walking distance from a given starting
point to transit or before driving. It was estimated as 400 m for the US, and
larger for Europe. For the US the blog Walk Appeal defines the following urban
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walking radii: W6 (2 miles on a highway), W5 (0:75 mile on a main street, in
T5), W4 (0:25 mile on a neighborhood street, in T4), W3 (0:1 mile on a suburban
street, in T3), W2 (250 feet on a subdivision street), W1 (100 feet in parking lot),
W0 (unwalkable).

• Optimal eye-to-eye distance
The optimal eye-to-eye distance between two persons was measured for

some types of interaction. For example, such an optimal viewing distance
between a baby and its mother’s face, with respect to the immature motor
and visual systems of the newborn, is 20–30 cm. During the first weeks of life
the accommodation system does not yet function and the lens of the newborn
is locked at the focal distance of about 19 cm. At ages 8–14 months, babies
are judging distances well; they fear a distance with mother (separation anxiety
stage) and strangers. Also, left-sided cradling/holding preference have been
found in humans and great apes.

• Language style matching
During conversation, texting, emailing, and other forms of interactive com-

munication, people unconsciously mimic their partners’ language use patterns.
The LSM (language style matching) score of a dyad .1; 2/ of persons, with

respect to a function word type k; 1 � k � 9, is LSMi D 2
min .l1k;l2k/

l1kCl2k
, where lik

(i D 1; 2) is the percentage of person i’s words of type k. Each dyad’s total LSM
is the mean of its LSMi across the nine types of function words: auxiliary verbs
(say, am, will, have), articles, common adverbs (say, hardly, often), personal
pronouns, indefinite pronouns, prepositions, negations, conjunctions (say, and,
but) and quantifiers.

LSM is high within the first 15–30 s of any interaction and is generally
unconscious. Women use conjunctions at much higher rates.

LSM predicts successful hostage negotiations (Taylor–Thomas, 2008), task
group cohesiveness (Gonzales–Hancock–Pennebaker, 2010), and the formation
and persistence of romantic relationships (Ireland et al., 2011).

However (Manson et al., 2013), the probability of diad’s cooperation in a
post-conversation one-shot prisoner’s dilemma, is positively related, instead of
LSM, to the convergence of their speech rates (mean syllable duration).

• Distances between people
In [Hall69], four interpersonal bodily distances were introduced: the intimate

distance for lovers, childrens, pets (from touching to 46 cm), the personal-casual
distance for conversations among friends (46–120 cm), the social-consultative
distance for conversations among acquaintances (1.2–3.7 m), and the public-
audience distance for public speaking (over 3.7 m). To each of those proxemics
distances, there corresponds an intimacy/confidence degree and appropriated
sound level.

The distance which is appropriate for a given social situation depends on
culture, gender and personal preference. For example, under Islamic law,
proximity (being in the same room or secluded place) between a man and a
woman is permitted only in the presence of their mahram (a spouse or anybody
from the same sex or a pre-puberty person from the opposite sex). For an average
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westerner, personal space is about 70 cm in front, 40 cm behind and 60 cm on
either side.

In interaction between strangers, the interpersonal distance between women
is smaller than between a woman and a man. The bonding hormone oxytocin
discourages partnered (but not a single) men from getting close to a female
stranger; they, if were given oxytocin, stayed 10–15 cm farther from the attractive
woman.

An example of other cues of nonverbal communication is given by angles of
vision which individuals maintain while talking. The people angular distance
in a posture is the spatial orientation, measured in degrees, of an individual’s
shoulders relative to those of another; the position of a speaker’s upper body in
relation to a listener’s (for example, facing or angled away). Speaker uses 45ı
open position in order to make listener feel comfortable and direct body point
in order to exert pressure. In general, to approach men directly from the front
or women from behind is rude. Also, this distance reveals how one feels about
people nearby: the upper body unwittingly angles away from disliked persons
and during disagreement.

Eye-contact decreases with spatial proximity. Persons stand closer to those
whose eyes are shut. The Steinzor effect is the finding that members of leaderless
discussion groups seated in circles, are most apt to address remarks to or to get
responses from persons seated opposite or nearly opposite them, while in the
presence of a strong leader, it happens with persons seated alongside or nearly
alongside.

Distancing behavior of people can be measured, for example, by the stop
distance (when the subject stops an approach since she/he begins to feel
uncomfortable), or by the quotient of approach, i.e., the percentage of moves
made that reduce the interpersonal distance to all moves made.

Humans and monkeys with amygdala lesions have much smaller than average
preferred interpersonal distance. Peripersonal, i.e., within reach of any limb of
an individual, space is located dorsally in the parietal lobe whereas extrapersonal
(outside his reach) space is located ventrally in the temporal lobe.

• Death of Distance
Death of Distance is the title of the influential book [Cair01] arguing that

the telecommunication revolution (the Internet, mobile telephones, digital TV,
etc.) initiated the “death of distance” implying fundamental changes: three-
shift work, lower taxes, prominence of English, outsourcing, new ways of
government control and citizens communication, but also management-at-a-
distance and concentration of elites within the “latte belt”. Physical distance
(and so, Economic Geography) do not matter; we all live in a “global village”.
Friedman, 2005, announced: “The world is flat”. Gates, 2006, claimed: “With
the Internet having connected the world together, someone’s opportunity is not
determined by geography”. The proportion of long-distance relationships in
foreign relations increased.

Similarly (see [Ferg03]), steam-powered ships and the telegraph (as railroads
previously and cars later) led, via falling transportation/communication costs, to
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the “annihilation of distance” in the nineteenth and twentieth centuries. Heine
wrote in 1843: “Space is killed by the railways, and we are left with time alone”.

Further in the past, archaeological evidence points out the appearance, 
 0:14

Ma ago, long-distance (up to 300 km) trade, and, 
 0:04Ma ago, the innovation
of projectile weapons and traps which allowed humans to kill large game (and
other humans) from a safe distance.

But already Orwell, 1944, dismissed as “shallowly optimistic” the the phrases
“airplane and radio have abolished distance” and “all parts of the world are
now interdependent”. Heidegger wrote in 1950: “All distances in time and space
are shrinking. . . The peak of this abolition of every possibility of remoteness
is reached by television. . . ” but “The frank abolition of all distances brings no
nearness”. Edgerton, 2006, claims that new technologies foster self-sufficiency
and isolation instead.

Modern technology eclipsed distance only in that the time to reach a desti-
nation has (usually) shrunk. Distances still matter for, say, a company’s strategy
on the emerging markets (cf. impact of distance on trade) and for political
legitimacy. “Tyranny of distance” still affects small island states in the Pacific.

Partridge et al., 2007, report that proximity to higher-tiered urban centers
(with their higher-order services, urban amenities, higher-paying jobs, lower-cost
products) increasingly favors local job growth. Increased access to services and
knowledge exchange requires more face-to-face interaction and so, an increase
in the role of distance. Economic and innovation activity are highly localized
spatially and tend to agglomerate more. Also, the social influence of individuals,
measured by the frequency of memorable interactions, is heavily determined by
distance. Goldenberg–Levy, 2009, show that the IT (Information Technology)
revolution which occurred in the 1990s, increased local social interactions (as
email, Facebook communication, baby name diffusion) to a greater degree than
long-distance ones.

In military affairs, Boulding, 1965, and Bandow, 2004, argued that twentieth
century technology reduced the value of proximity for the projection of military
power because of “a very substantial diminution in the cost of transportation of
armed forces” and “an enormous increase in the range of the deadly projectile”.
It was used as partial justification for the withdrawal of US forces from overseas
bases in 2004. But Webb, 2007, counter-argues that any easing of transport
is countered by increased strain put upon its modes since both sides will take
advantage of the falling costs to send more supplies. Also, the greatest movement
of logistics continues to be conducted by sea, with little improvement in speed
since 1900.

• Technology-related distancing
The Moral Distancing Hypothesis postulates that technology increases the

propensity for unethical conduct by creating a moral distance between an act
and the moral responsibility for it.

Print technologies divided people into separate communication systems
and distanced them from face-to-face response, sound and touch. TV involved
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audile-tactile senses and made distance less inhibiting, but it exacerbated cogni-
tive distancing: story and image are biased against space/place and time/memory.

This distancing has not diminished with computers but interactivity has
increased. In terms of Hunter: technology only re-articulates communication
distance, because it also must be regarded as the space between understanding
and not. The collapsing of spatial barriers diminishes economic but not social
and cognitive distance.

The Psychological Distancing Model in [Well86] relates the immediacy
of communication to the number of information channels: sensory modalities
decrease progressively as one moves from face-to-face to telephone, videophone,
and e-mail. Skype communication is rated higher than phone since it creates a
sense of co-presence. People phone with bad news but text with good news.

Online settings tend to filter out social and relational cues. The lack of instant
feedback (since e-mail communication is asynchronous) and low bandwidth limit
visual/aural cues. For example, moral and cognitive effects of distancing in online
education are not known at present. Also, the shift from face-to-face to online
communication can diminish social skills, lead to smaller and more fragmented
networks and so, increase feeling of isolation and alienation. But it can be only a
bias, based on traditional spatiotemporal assumptions that farness translates into
an increase in mediation and results in blurring of the communication.

Virtual distance is the perceived distance between individuals when their
primary way of communication is not face-to-face. The main markers of virtual
distance are physical, operational and affinity distances.

Mejias, 2005, define epistemological distance and ontological distance
between things as the difference, respectively, in degree of knowledge
justification and in ability of subjects to act upon things. He argue that we
should strive towards ontological nearness, using modern information and
communication technologies to manipulate temporal/spatial and epistemological
distances to attain this goal.

Mejias, 2007, see some new advantages in “uniform distancelessness”,
deplored by Heidegger. Networked proximity (nearness mediated through new
technology) provides shift from physical proximity to informational availability
as the main measure of social relevance. It facilitates new kinds of spatially
unbound community, and these emerging forms of sociality could be no less
meaningful than the older ones. Networked sociality reconfigures distance rather
than eliminates it.

28.3 Distances in Sociology and Language

• Sociometric distance
The sociometric distance refers to some measurable degree of mutual or

social perception, acceptance, and understanding. Hypothetically, greater socio-
metric distance is associated with more inaccuracy in evaluating a relationship.
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• Social distance
In Sociology, the social distance is the extent to which individuals or groups

are removed or excluded from participating in one another’s lives; a degree
of understanding and intimacy which characterize personal and social relations
generally. This notion was originated by Simmel in 1903; in his view, the social
forms are the stable outcomes of distances interposed between subject and object.

For example (Mulgan, 1991), the centers of global cities are socially closer to
each other than to their own peripheries. In general, the notion of social distance
is conceptualized in affective, normative or interactive way, i.e., in terms of
sympathy the members of a group feel for another group, norms to define in-
and outsider, or the frequency/intensity of interactions between two groups.

The Social Distance Scale by Bogardus, 1947, offers the following response
items: would marry, would have as a guest in my household, would have as
next door neighbor, would have in neighborhood, would keep in the same town,
would keep out of my town, would exile, would kill; cf. emotional distance. The
responses for each (say, ethnic/racial) group are averaged across all respondents
which yields (say, racial) distance quotient ranging from 1:00 to 8:00.

Dodd and Nehnevasja, 1954, attached distances of 10t m, 0 � t � 7, to
eight levels of the Bogardus scale. Many studies on conflicts in ex-Yugoslavia
consider ethnic distance defined via some modified Bogardus scale, i.e., in terms
of acceptance of a particular relation with an abstract person from the other
group. Caselli and Coleman, 2012, defined ethnic distance as the cost to be born
by a member of one group to successfully pass himself as a member of the other
group.

An example of relevant models: Akerlof ([Aker97]) defines an agent x as a
pair .x1; x2/ of numbers, where x1 represents the initial, i.e., inherited, social
position, and the position expected to be acquired, x2. The agent x chooses the
value x2 so as to maximize

f .x1/C
X

y¤x

e

.h C jx1 � y1j/.g C jx2 � y1j/ ;

where e, h, g are parameters, f .x1/ represents the intrinsic value of x, and jx1�y1j,
jx2�y1j are the inherited and acquired social distances of x from any agent y (with
the social position y1) of the given society.

Hoffman, Cabe and Smith, 1996, define social distance as the degree of
reciprocity that subjects believe exists within a social interaction.

• Rummel sociocultural distances
[Rumm76] defined the main sociocultural distances between two persons as

follows.

– Personal distance: one at which people begin to encroach on each other’s
territory of personal space.

– Psychological distance: perceived difference in motivation, temperaments,
abilities, moods, and states (subsuming intellectual distance).
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– Interests-distance: perceived difference in wants, means, and goals (includ-
ing ideological distance on socio-political programs).

– Affine distance: degree of sympathy, liking or affection between the two.
– Social attributes distance: differences in income, education, race, sex, etc.
– Status-distance: differences in wealth, power, and prestige (including power

distance).
– Class-distance: degree to which one person is in general authoritatively

superordinate to the other.
– Cultural distance: differences in meanings, values and norms reflected in

differences in philosophy-religion, science, ethics, law, language, and fine arts.

• Cultural distance
The cultural distance between countries x D .x1; : : : ; x5/ and y D

.y1; : : : ; y5/ (usually, US) is derived (in [KoSi88]) as the following composite
index

5X

iD1

.xi � yi/
2

5Vi
;

where Vi is the variance of the index i, and the five indices represent
([Hofs80]):

1. Power distance (preferences for equality);
2. Uncertainty avoidance (risk aversion);
3. Individualism versus collectivism;
4. Masculinity versus femininity (gender specialization);
5. Confucian dynamism (long-term versus short-term orientation).

The above power distance measures the extent to which the less powerful
members of institutions and organizations within a country expect and accept that
power is distributed unequally, i.e., how much a culture has respect for authority.
For example, Latin Europe and Japan fall in the middle range.

But for Shenkar–Luo–Yeheskel, 2008, above distance is merely a measure of
how much a country strayed from the core culture of the multinational enterprise.
They propose instead (especially, as a regional construct) the cultural friction
linking goal incongruity and the nature of cultural interaction.

In order to explain multinational enterprise behavior, Kostova, 1999, intro-
duced the institutional distance between its home and host countries as the
difference in their regulative, cognitive, and normative institutions. Habib–
Zurawicki, 2002, consider effects of the corruption distance, i.e., such difference
in corruption levels.

Wirsing, 1973, defined social distance as a “symbolic gap” between rulers
and ruled designed to set apart the political elite from the public. It consists of
reinforced and validated ideologies (a formal constitution, a historical myth, etc.).
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Davis, 1999, theorized social movements (in Latin America) in terms of their
shared distance from the state: geographically, institutionally, socially (class
position and income level) and culturally.

The Inglehart–Welzel cultural map of the world represent countries as
points on R

2, in which the two dimensions (traditional/secular-rational and
survival/self-expression) explain > 70% of cross-national variance in 10 indi-
cators.

• Trust radius
People’s trust radius is the width of the cooperation circle (people among

whom a certain trust level exists), while trust level is the intensity with which
people trust other people. The relation between them is weak. Individual-
ism/collectivism is associated with a broader/narrower trust radius. A given level
of trust can be broad/narrow if trust is mostly out-group/in-group connoted.

Delhey–Newton–Welzel, 2011, distinguish in-group trust (trust in your fam-
ily, your neighborhood, people you know personally) from out-group trust
(people you meet for the first time, people of another religion, of another
nationality). Respondents were asked whether “most people can be trusted” or
“you need to be very careful in dealing with people.” Then this generalized trust
was regressed on out-group and in-group trust via the degree of in-group/out-
group connotation of the term most people. If this term is more in-group
connoted, trust radius is narrow, and it is broad otherwise. Quantification of trust
radius occurs by estimating linear regression models, separately for all countries
in the sample, employing level of trust in most people as the dependent variable
and scaled measures of in-group and out-group trust levels as the independent
variables.

The trust radius is calculated as (rescaled to fit a Œ0; 1� scale) the difference of
the estimated coefficients for out-group and in-group trust. Swiss residents got
the widest trust radius (followed by Italy, Slovenia, Sweden, Australia), while
Thai residents rank lowest (with Morocco, Burkina Faso, and China).

An unrelated term, the margin of error, is usually defined as the radius (or
half the width) of a confidence interval for a particular statistic or observational
error. Confidence level is usually 90%, 99% or, typically, 95%.

• Political distance
A finite metric space .X D fx1; : : : ; xng; d/ can be seen as a political

space with the points and distance seen as positions (policy proposals) and
some ideological distance, respectively. Usually, .X; d/ is a subspace of
.Œ0; 1�m; jjx � yjj2/.

Let fv1; : : : ; vng be the vote shares of all candidates fc1; : : : ; cng of an election
or, say, allocated seat shares of all competing parties; so,

Pn
iD1 vi D 1. The index

of political diversity (Ortuño-Ortin and Weber, 2008) is
P

1�i<j�n vivjd.xi; xj/.
The mean minimum political distance, cf. http://wiki.electorama.com/wiki,

is (the case m D 1 of)
Pn

iD1 vi minj2E d.xi; y/, where E D f1 � i � n W
ci is electedg. Cf. distance-rationalizable voting rule in Chap. 11.

http://wiki.electorama.com/wiki
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• Surname distance model
A surname distance model was used in [COR05] in order to estimate the

preference transmission from parents to children by comparing, for 47 provinces
of mainland Spain, the 47 � 47 distance matrices for surname distance with
those of consumption distance and cultural distance.

The distances were l1-distances
P

i jxi � yij between the frequency vectors
.xi/, .yi/ of provinces x, y, where zi is, for the province z, either the frequency
of the i-th surname (surname distance), or the budget share of the i-th product
(consumption distance), or the population rate for the i-th cultural issue, say,
rate of weddings, newspaper readership, etc. (cultural distance), respectively.

Other (matrices of) distances considered there are:

– geographical distance (in km, between the capitals of two provinces);
– income distance jm.x/� m.y/j, where m.z/ is mean income in the province z;
– climatic distance

P
1�i�12 jxi � yij, where zi is the average temperature in the

province z during the i-th month;
– migration distance

P
1�i�47 jxi � yij, where zi is the percentage of people

(living in the province z) born in the province i.

Strong vertical preference transmission, i.e., correlation between surname and
consumption distances, was detected only for food items.

• Distance as a metaphor
Lakoff and Núñez, 2000, claim that mathematics emerged via conceptual

metaphors grounded in the human body, its motion through space and time, and
in human sense perceptions: change is motion, arithmetic is motion along a path,
etc.

For them, the mathematical idea of distance comes from the activity of
measuring, and the corresponding technique consists of rational numbers and
metric spaces. The idea of proximity/connection comes from connecting and
corresponds to topological space. The idea of subtraction mathematizes the
ordinary idea of distance.

• Metaphoric distance
A metaphoric distance is any notion in which a degree of similarity between

two difficult-to-compare things is expressed using spatial notion of distance as
an implicit bidirectional and understandable metaphor. Some examples are:

Internet and Web bring people closer: proximity in subjective space is at-
handiness;

professional distance: teacher-student, therapist-patient, manager-employee;
financial distance: degree of separation in couple’s money/property arrange-

ments;
competitive distance (incomparability) between two airline product offerings;
metaphoric distance that a creative thinker takes from the problem, i.e., degree

of intuitivity, required to evolve/reshape concepts into new ideas.
The distance-similarity metaphor (Montello et al., 2003) is a design

principle, where relatedness in nonspatial data is projected onto distance, so
that semantically similar documents are placed closer to one another in an
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information space. It is the inverse of the Tobler’s first law of geography; cf.
nearness principle. This metaphor is used in Data Mining, Pattern Recognition
and Spatialization.

Comparing the linguistic metaphor proximity!similarity with its mental
counterpart, Casasanto (2008), found that stimuli (pairs of words or pictures)
presented closer together on the computer screen were rated more similar in
conceptual judgments of abstract entities or unseen object properties but, less
similar in perceptual judgments of visual appearance of faces and objects.

• Spatial cognition
Spatial cognition concerns the knowledge about spatial properties of objects

and events: location, size, distance, direction, separation/connection, shape,
pattern, and movement. For instance, it consider navigation (locomotion and
way-finding) and orientation during it: recognition of landmarks and path
integration (an internal measuring/computing process of integrating information
about movement).

Spatial cognition addresses also our (spatial) understanding of the World Wide
Web and computer-simulated virtual reality.

Men surpass women on tests of spatial relations, mental rotation and targeting,
while women have better fine motor skills and spatial memory for immobile
objects and their location. Such selection should come from a division of labor in
Pleistocene groups: hunting of mobile prey for men and gathering of immobile
plant foods for women. Women’s brains are 10–15 % smaller than men’s, but
their frontal lobe (decision-making, problem-solving), limbic cortex (emotion
regulation) and hippocampus (spatial memory) are proportionally larger, while
the parietal cortex (spatial perception) and amygdala (emotional memory) are
smaller. Men’s brains contain stronger front-to-rear connections (suggesting
greater synergy between perception and action) while those of women are better
connected from left to right (facilitating emotional processing and the ability to
infer others’ intentions).

One of the cultural universals (traits common to all human cultures) is that
men on average travel greater distances over their lifetime. They are less likely
than women to migrate within the country of their birth but more likely to
emigrate.

• Size representation
Konkle and Oliva, 2012, found that object representations is differentiated

along the ventral temporal cortex by their real-world size. Both big and small
objects activated most of temporal cortex but fMRI (cf. brain distances) voxels
with a big- or small-object preference were consistently found along its medial
or, respectively, lateral parts. These parts overlapped with the regions known to
be active when identifying spaces to interact with (say, streets, elevators, cars,
chairs) or, respectively, processing information on tools, ones we usually pick up.

Different-sized objects have different action demands and typical interaction
distances. Big/small preferences are object-based rather than retinotopic or
conceptual. They may derive from systematic biases, say, eccentricity biases
and size-dependent biases in the perceptual input and in functional requirements
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for action. For example, over the viewing experience, in the lifetime or over
evolutionary time, the smaller objects tend to be rounder, while larger objects
tend to extend more peripherally on the retina. Cf. the size-distance invariance
hypothesis and, in Chap. 29, neurons with spatial firing properties.

• Spatialization
Spatialization (Lefebvre, 1991) refer to the spatial forms that social activities

and material things, phenomena or processes take on. It includes cognitive maps,
cartography, everyday practice and imagination of possible spatial worlds.

One of the debated definitions of consciousness: it is a notion of self in space
and an ability to make decisions based on previous experience and the current
situation. Self-awareness permits to evaluate the distance that separates one from
his objectives and to adjust his behavior in order to approach those aims.

We usually give the upper face or upper torso as egocenter (spatial seat of
self).

The term spatialization is also used for information display of nonspatial data.
• Spatial reasoning

Spatial reasoning is the domain of spatial knowledge representation: spatial
relations between spatial entities and reasoning based on these entities and
relations.

As a modality of human thought, spatial reasoning is a process of forming
ideas through the spatial relationships between objects (as in Geometry), while
verbal reasoning is the process of forming ideas by assembling symbols into
meaningful sequences (as in Language, Algebra, Programming). Spatial intelli-
gence is the ability to comprehend 2D and 3D images and shapes.

Luria, 1973, called the ability to derive the abstract concepts from spatially
organized heteromodal information, the quasi-spatial synthesis.

Spatial-temporal reasoning (or spatial ability) is the capacity to visualize
spatial patterns, to manipulate them mentally over a time-ordered sequence
of spatial transformations and to draw conclusions about them from limited
information.

Specifically, spatial visualization ability is the ability to manipulate mentally
2D and 3D figures. Spatial skills is the ability to locate objects in a 3D-world
using sight or touch. Spatial acuity is the ability to discriminate two closely-
separated points or shapes (say, two similar polygons with different numbers of
sides).

Visual thinking (or visual/spatial learning, picture thinking) is the common
(about 60% of the general population) phenomenon of thinking through visual
processing. Spatial-temporal reasoning is prominent among visual thinkers, as
well as among kinesthetic learners (who learn through body mapping and
physical patterning) and logical thinkers (mathematical/systems thinking) who
think in patterns and relationships and may work without this being pictorially.

In Computer Science, spatial-temporal reasoning aims at describing, using
abstract relation algebras, the common-sense background knowledge on which
human perspective of physical reality is based. It provides rather inexpensive
reasoning about entities located in space and time.
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• Spatial language
Spatial language consists of natural-language spatial relations used to indi-

cate where things are, and so to identify or refer to them. It usually expresses
imprecise and context-dependent information about space.

Among spatial relations there are topological (such as on, to, in, inside, at),
path-related (such as across, through, along, around), distance-related and more
complex ones (such as right/left, between, opposite, back of, south of, surround).

A distance relation is a spatial relation which specifies how far the object is
away from the reference object: near, far, close, etc.

The distance concept of proximity (Pribbenow, 1992) is the area around
the RO (reference object) in which it can be used for localization of the LO
(local object), so that there is visual access from RO and noninterruption of the
spatial region between objects, while LO is less directly related to a different
object. Such proximity can differ with physical distance as, for example, in
“The Morning Star is to the left of the church”. The area around RO, in which
a particular relation is accepted as a valid description of the distance between
objects, is called the acceptance area.

Pribbenow, 1991, proposed five distance distinctions: inclusion (acceptance
area restricted to projection of RO), contact/adjacency (immediate neighborhood
of RO), proximity, geodistance (surroundings of RO) and remoteness (the
complement of the proximal region around RO).

For Jackendorff–Landau, 1992, there are 3 degrees of distance distinctions
in English: interior of RO (in, inside), exterior but in contact (on, against),
proximate (near), plus corresponding negatives, such as outside, off of, far from.

A spatial reference system is mainly egocentric, or relative (such as right,
back) for the languages spoken in industrialized societies, while the languages
spoken in small scale societies rely rather on an allocentric, or absolute set of
coordinates.

Language affects our sense of space and time. Guugu Yimithirr in Australia
do not have words for relative space, like left and right, but they unusually well
keep track where they are, using their terms for north, south, east and west.

Semantics of spatial language is considered, say, in Linguistics, Cognitive
Psychology, Anatomy, Robotics, Artificial Intelligence, Computer Vision and
Geographic Information Systems. An example of far-reaching applications is
Grove’s clean space, a neuro-linguistic psychotherapy based on the spatial
metaphors produced by (or extracted from) the client on his present and desired
“space” (state).

• Language distance from English
Such measures are based either on a typology (comparing formal similarities

between languages), or language trees, or performance (mutual intelligibility and
learnability of languages). For example, Rutheford, 1983, defined distance from
English as the number of differences from English in the following three-way
typological classification: subject/verb/object order, topic-prominence/subject-
prominence and pragmatic word-order/grammatical word-order. It gives dis-
tances 1; 2; 3 for Spanish, Arabic/Mandarin, Japanese/Korean.
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Borland, 1983, compared several languages of immigrants by their acquisition
of four areas of English syntax: copula, predicate complementation, negation
and articles. The resulting ranking was English, Spanish, Russian, Arabic,
Vietnamese.

Elder–Davies, 1998, used ranking based on the following three main types
of languages: isolating, analytic or root (as Chinese, Vietnamese), inflect-
ing, synthetic or fusional (as Arabic, Latin, Greek), agglutinating (as Turkish,
Japanese). It gave ranks 1; 2; 4; 5 for Romance, Slavic, Vietnamese/Khmer,
Japanese/Korean, respectively, and 3 for Chinese, Arabic, Indonesian, Malay.

The language distance index (Chiswick–Miller, 1998) is the inverse
of the language score of the average speaking proficiency, after 24 weeks
of instruction, of English speakers learning this language. This score was
measured at regular intervals by increments of 0:25; it ranges from 1

(hardest to learn) to 3 (easiest to learn). The score was, for example,
1:00; 1:25; 1:50; 1:75; 2:00; 2:25; 2:50; 2:75; 3:00 for Japanese, Cantonese,
Mandarin, Hindi, Hebrew, Russian, French, Dutch, Afrikaans.

In addition to the above distances, based on syntax, and linguistic distance,
based on pronunciation, see the lexical semantic distances in Chap. 22.

Cf. clarity similarity in Chap. 14, distances between rhythms in Chap. 21,
Lasker distance in Chap. 23 and surname distance model in Chap. 28.

Translations of the English noun distance, for example, into French, Italian,
German, Swedish, Spanish, Interlingua, Esperanto are: distance, distanza, dis-
tanz, distans, distancia, distantia, distanco.

The word distance has Nr. 625 in the list (Wiktionary:Frequency
lists/PG/2006/04) of the common English words in the books found on
Project Gutenberg. It has Nrs. 835, 1035, 2404 in contemporary poetry, fiction,
TV/movie and overall Nrs. 1513 (written), 1546 (spoken). It comes from Latin
distantia (distance, farness, difference) and distans, present participle of distare:
di (apart) + stare (to stand).

The longest English word (noncoined and nontechnical) is antidisestablish-
mentarianism (28 letters). Examples of funny distance-related words in Urban
Dictionary (Web-based dictionary of slang in English) are: distading (start and
give up on many goals in quick succession), distarnated (having no friends
and being hated by everyone), distanitus (illness one suffer from spotting a
person which looks really good from across the room but is a butterface at 5
feet distance), disstance (space provided when someone is dissing, i.e., show
disrespect for, someone else).

• Editex distance
The main phonetic encoding algorithms are (based on English language

pronunciation) Soundex, Phonix and Phonex, converting words into one-letter
three-digit codes. The letter is the first one in the word and the three digits
are derived using an assignment of numbers to other word letters. Soundex and
Phonex assign:
0 to a, e, h, i, o, u, w, y; 1 to b, p, f, v; 2 to c, g, j, k, q, s, x, z; 3 to d, t;

4 to l; 5 to m, n; 6 to r.
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Phonix assigns the same numbers, except for 7 (instead of 1) to f and v, and 8
(instead of 2) to s, x, z.

The Editex distance (Zobel–Dart, 1996) between two words x and y is a
cost-based editing metric (i.e., the minimal cost of transforming x into y by
substitution, deletion and insertion of letters). For substitutions, the costs are 0 if
two letters are the same, 1 if they are in the same letter group, and 2, otherwise.

The syllabic alignment distance (Gong–Chan, 2006) between two words x and
y is another cost-based editing metric. It is based on Phonix, the identification
of syllable starting characters and seven edit operations.

• Phone distances
A phone is a sound segment having distinct acoustic properties, and is the

basic sound unit. A phoneme is a minimal distinctive feature/unit in the language
(a set of phones which are perceived as equivalent to each other in a given
language).

The number of phonemes (consonants) range, among about 7102 languages
spoken now, from 11 (6) in Rotokas to 112 (77) in Taa (languages spoken by
about 4000 people in Papua New Guinea and Botswana, respectively).

The main classes of the phone distances (between two phones x and y) are:

– Spectrogram-based distances which are physical-acoustic distortion measures
between the sound spectrograms of x and y;

– Feature-based phone distances which are usually the Manhattan distanceP
i jxi � yij between vectors .xi/ and .yi/ representing phones x and y with

respect to a given inventory of phonetic features (for example, nasality,
stricture, palatalization, rounding, syllabicity).

The Laver consonant distance refers to the improbability of confusing 22

consonants among 
 50 phonemes of English, developed by Laver, 1994,
from subjective auditory impressions. (Chen–Wang–Jia–Dang, 2013, considered
similar perception distance between two types of Chinese initials.) The smallest
distance, 15%, is between phonemes Œ p� and Œk�, the largest one, 95%, is, for
example, between Œ p� and Œz�. Laver also proposed a quasi-distance based on
the likelihood that one consonant will be misheard as another by an automatic
speech-recognition system.

Each vowel can be represented by a pair .F1;F2/ of resonant frequencies
of the vocal tract (first and second formants). For example, Œu�, Œa�, Œi� are
represented by .350; 800/, .850; 1150/, .350; 1700/ in mels (Chap. 21). The
International Phonetic Alphabet identifies seven levels of height (F1) and five
levels of backness (F2).

Chang et al., 2013, produced English language map of the brain; they found
the set of neurons in the sensorimotor cortex which controls muscles (in the
tongue, lips, jaw, larynx) and fires in unique combination for each sound.

• Phonetic word distance
The phonetic word (or pronunciation, Levenstein phonological) distance

between two words x and y seen as strings of phones is the Levenstein
metric with costs (Chap. 11): the minimal cost of transforming x into y by
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substitution, deletion and insertion of phones. Given a phone distance r.u; v/
on the International Phonetic Alphabet with the additional phone 0 (silence), the
cost of substitution of phone u by v is r.u; v/, while r.u; 0/ is the cost of insertion
or deletion of u.

Levenstein orthographic distance (or LPD) is the same measure, but
operating on letters instead of phonemes. Words with larger mean LPD to (but
smaller mean frequency of) its 20 closest neighbors are easier to recognize.

The average adult has a vocabulary of about 40,000–50,000 words.
• Linguistic distance

The linguistic distance between two languages is a term loosely used
to describe their difference. The mutual intelligibility of the two languages
depends on the degree of their lexical, phonetical, morphological, and syntactical
similarity.

The lexical similarity is the percentage of common (similar in form and
meaning) words in their standardized wordlists. English was evaluated to have
a lexical similarity of 60%, 27%, 24% with German, French and Russian,
respectively. Cf. language distance index, language distance effect, Swadesh
similarity.

Specifically, the linguistic (dialectal) distance between language varieties X
and Y is the mean, for a fixed sample S of notions, phonetic word distance
between cognate (i.e., having the same meaning) words sX and sY , representing
the same notion s 2 S in X and Y, respectively.

One example of a dialect continuum (as ring species in Biology) is Dutch-
German: their mutual intelligibility is small but a chain of dialects connects them.

• Swadesh similarity
The Swadesh word list of a language (Swadesh, 1940–1950) is a list of

vocabulary with (usually, 100) basic words which are acquired by the native
speakers in early childhood and supposed to change very slowly over time. The
Swadesh similarity between two languages is the percentage of cognate (having
similar meaning and sound) words in their Swadesh lists. Glottochronology is
a method of assessing the temporal divergence of two languages based on this
similarity.

The first 12 items of the original final Swadesh list: I, you, we, this, that, who?,
what?, all, many, one, two. Cf. the first 12 most frequently used English words:
the, of, and, a, to, in, is, you, that, it, he, was in all printed material and I, the,
and, to, a, of, that, in, it, my, is, you across both spoken and written texts.

Acerbi et al., 2013: the frequency of emotional words declined in English-
language books over twentieth century, but the use of fear-related words
increased from 1980. The half-life of a word is the number of years after which
it has a 50% probability of having been replaced by a new noncognate word;
rougly, it is within 750–20,000 years, say, 9000, 3200, 1900. stab, bird, we.

Pagel et al., 2013, suggest existence of a proto-Eurasian mother tongue.
For example, they list 15;000 years old words cognate in at least 4 Eurasiatic
language families: thou, I, not, that, we, to give, who, this, what, man/male, ye,
old, mother, to hear, hand, fire, to pull, black, to flow, bark, ashes, to spit, worm.
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• Language distance effect
In Foreign Language Learning, Corder, 1981, conjectured the existence of the

following language distance effect: where the mother tongue (L1) is structurally
similar to the target language, the learner will pass more rapidly along the
developmental continuum (or some parts of it) than where it differs; moreover,
all previous learned languages have a facilitating effect.

Ringbom, 1987, added: the influence of the L1 is stronger at early stages of
learning, at lower levels of proficiency and in more communicative tasks. But
such correlation could be indirect. For example, the written form of modern
Chinese does not vary among the regions of China, but the spoken languages
differ sharply, while spoken German and Yiddish are close but have different
alphabets.

• Long-distance dependence (in Language)
In Language, long-distance dependence (or syntactic binding) is a con-

struction, including wh-questions (such as “Who do you think he likes”),
topicalizations (such as “Mary, he likes”), easy-adjectives (such as “Mary is easy
to talk to”), relative clauses (such as “I saw the woman who I think he likes”)—
which permits an element in one position (filler) to fulfill the grammatical role
associated with another nonadjacent position (gap). The filler-gap distance, in
terms of the number of intervening clauses or words between them in a sentence,
can be arbitrary large. Cf. long range dependence in Chap. 18.

An anaphora is a subsequent reference to an entity already introduced in
discourse. In order to be interpreted, anaphora must get its content from an
antecedent in the sentence which in English is usually syntactically local as
in “Mary excused herself ”. A long-distance anaphora is an anaphora with
antecedent outside of its local domain, as in “The players told us stories about
each other”. Its resolution (finding what it refers to) is a hard problem of machine
translation.

The anaphoric distance is (Ariel, 1990) the number of words between an
anaphora and its antecedent. The referential distance (or textual distance) is
(Givón, 1983) the amount of clauses between them. In general, each text can be
represented as a tree in which discourse units (normally, clauses) are vertices and
rhetorical relations (sequence, joint, cause, elaboration, etc.) are edges.

The rhetorical distance between two discourse units is (Fox, 1987) the
minimal number of “sequence”-edges on a path between them.

28.4 Distances in Philosophy, Religion and Art

• Zeno’s distance dichotomy paradox
This paradox by the pre-Socratic Greek philosopher Zeno of Elea claims that

it is impossible to cover any distance, because half the distance must be traversed
first, then half the remaining distance, then again half of what remains, and so
on.
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The paradoxical conclusion is that travel over any finite distance can neither
be completed nor begun, and so all motion must be an illusion.

But, in fact, dividing a finite distance into an infinite series of small distances
and then adding the all together gives back the finite distance one started with.

• Space (in Philosophy)
The present Newton–Einstein notion of space was preceded by Democritus’

(c. 460–370 BC) Void (the infinite container of objects), Plato’s (c. 424–348 BC)
Khora (an interval between being and nonbeing in which Forms materialize) and
Aristotle’s (380–322 BC) Cosmos (a finite system of relations between objects).
Cf. Minkowski metric (Chap. 26) for the origin of the space-time concept.

Like the Hindu doctrines of Vedanta, Spinoza (1632–77) saw our Universe as a
mode under two (among an infinity of) attributes, Thought and Extension, of God
(unique absolutely infinite, eternal, self-caused substance, without personality
and consciousness). These parallel (but without causal interaction) attributes
define how substance can be understood: to be composed of thoughts and
physically extended in space, i.e., to have breadth and depth. So, the Universe
is deterministic.

For Newton (1642–1727) space was absolute: it existed permanently and
independently of whether there is any matter in it. It is a framework of creation,
stage setting within which physical phenomena occur. For Leibniz’s (1646–1716)
space was a collection of relations between objects, given by their distance and
direction from one to another, i.e., an idealized abstraction from the relations
between individual entities or their possible locations which must therefore be
discrete.

For Kant (1724–1804) space is not substance or relation, but a part of
an unavoidable systematic framework used by the humans to organize their
experiences. Disagreement continues between philosophers over whether space
is an entity, a relationship between entities, or part of a conceptual framework.

In biocentric cosmology (Lanza, 2007), build on quantum physics, space is
a form of our animal understanding and does not have an observer-independent
reality, while time is the process by which we perceive changes in the Universe.
Also, space-time could be not fundamental, but emerging from a deeper quantum
reality.

Free space refers to a perfect vacuum, devoid of all particles; it is excluded by
the uncertainty principle. The quantum vacuum is devoid of atoms but contains
subatomic short-lived particles—photons, gravitons, etc.

A parameter space is the set of values of parameters in a mathematical model.
In Mathematics and Physics, the phase space (Gibbs, 1901) is a space in which

all possible states of the system are represented as unique points; cf. Chap. 18.
• Kristeva nonmetric space

Kristeva, 1980, considered the basic psychoanalytic distinction (by Freud)
between pre-Oedipal and Oedipal aspects of personality development. Nar-
cissistic identification and maternal dependency, anarchic component drives,
polymorphic erotogenicism, and primary processes characterize the pre-Oedipal.
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Paternal competition and identification, specific drives, phallic erotogenicism,
and secondary processes characterize Oedipal aspects.

Kristeva describes the pre-Oedipal feminine phase by an enveloping, amor-
phous, “nonmetric” space (Plato’s khora) that both nourishes and threatens; it
also defines and limits self-identity. She characterizes the Oedipal male phase
by a metric space (Aristotle’s topos); the self and the self-to-space are more
precise and well defined in topos. Kristeva insists also on the fact that the
semiotic process is rooted in feminine libidinal, pre-Oedipal energy which needs
channeling for social cohesion.

Deleuze–Guattari, 1980, divide multiplicities (networks, manifolds, spaces)
into striated (metric, hierarchical, centered, numerical) and smooth (“nonmetric,
rhizomic, those that occupy space without counting it and can be explored only
by legwork”).

The above French post-structuralists use the metaphor of nonmetric in line
with a systematic (but generating controversy) use of topological terms by the
psychoanalyst Lacan. In particular, he sought the space J (of Jouissance, i.e.,
sexual relations) as a metric space and used metaphorically the Heine–Borel
theorem (that closed and bounded subspaces of Euclidean spaces are their only
compact subspaces).

Back to Mathematics, when a notion, theorem or algorithm is extended from
metric to general distance space, the latter is called nonmetric space.

• Emerson distance between persons
We call the Emerson distance between persons the separation between

“gods”, which was required by an American poet and philosopher Ralph Waldo
Emerson (1803–82) in his Essay 16 Manners: “Let the incommunicable objects
of nature and the metaphysical isolation of man teach us independence. . . We
should meet each morning, as from foreign countries, and spending the day
together, should depart at night, as into foreign countries. In all things I would
have the island of a man inviolate. Let us sit apart as the gods, talking from peak
to peak all round Olympus. . . Lovers should guard their strangeness. . . Every
natural function can be dignified by deliberation and privacy.” At the end of his
1836 book Nature, Emerson also wrote: “Every spirit builds itself a house; and
beyond its house, a world; and beyond its world, a heaven. . . Build, therefore,
your own world.”

Similar dignified separation is mentioned in quotes from the Russian philoso-
pher Mikhail Bakhtin (1895–1975): “The feeling of respect creates a distance,
both in relation to the other person, and in relation to one’s own self”, and the
Bohemian-Austrian poet Rainer Maria Rilke (1875–1926): “Once the realization
is accepted that even between the closest human beings infinite distances
continue, a wonderful living side by side can grow, if they succeed in loving the
distance between them which makes it possible for each to see the other whole
against the sky.”
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• Nietzsche’s Ariadne distance
The German philosopher Friedrich Wilhelm Nietzsche (1844–1900), treated

distance in a sensual/erotic way. In “On the Genealogy of Morals” (1887) he
wrote:

“The pathos of nobility and distance. . . the fundamental total feeling on the
part of a higher ruling nature in relation to a lower nature, to a ‘beneath’ – that is
the origin of the opposition between ‘good’ and ‘bad.”’

His Zarathustra favors fernstenliebe (love of the farthest) over Christian love
of the neighbor. Moreover, fernstenliebe is to love neither objects, nor ends—but
rather, distance/endlessness itself, which makes all distances recur and perpetuate
themselves.

The courtly troubadours of the twelfth century valued eroticization of the
unattainable object, while for German romanticism (for example, Novalis,
Schopenhauer, Wagner) there can be no satisfaction in erotic relations, or in life
itself, as long as distance remains. In Wagner’s opera, Tristan laments: “Blessed
nearness, tedious distance.”

Kuzma, 2013, claims that Nietzsche, by the early 1880s, “rehabilitated erotic
distance”, in response to its denigration and the consummatory idealism and
passive nihilism of the German romantic tradition. This rehabilitation of courtly
love culminated in the concept of an absolute separation and eternal recurrence.

According to Kuzma, Ariadne in ‘Thus Spoke Zarathustra (1883–1885) is not
only the symbol of the human soul and life, but Nietzsche’s privileged name for
absolute, infinite spatially and eternal distance itself, for an eternity conceived in
the absence of every end, any possible object to attain and every Other to love. To
desire Ariadne, is to desire the incessant prolongation of longing in the absence
of all fulfilment. Zarathustra does not seek rest, consummation, and release,
but affirms a sort of metaphysical coitus reservatus, the eternal prolongation of
boundless and unresolved desire, implying “voluptuousness of the future” and
“love of fate”.

The eternal recurrence requires spatial or temporal infinity. Nietzsche, in his
posthumous notes, posits finite matter and infinite cyclical time.

• Heidegger’s de-severance distance
The German philosopher Martin Heidegger (1889–1976), sought space in

terms of limit and event of placing, not merely a location. He wrote: “space is
something that has been spaced, or made room for, and that which is let into its
bounds”.

His main notion, Dasein (Being there), means Being-in-the-world, as opposed
to the Cartesian abstract agent, a subject, or the objective world alone. Dasein is
revealed by projection into, and engagement with, a personal world, one’s envi-
ronment. It is ontically (in factual existence) closest to itself, yet ontologically
farthest.

For Heidegger, Dasein dwells spatially in the world, but in the equipmental
space (functional places, defined by Dasein-centered totalities of involvements)
rather than in physical, Cartesian space, and this spatiality is characterized by
de-severance, where “de-severing amounts to making the farness vanish—that
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is, making the remoteness of something disappear, bringing it close”. Not only
reducing physical distance, de-severance is the reach of Dasein’s skilled practical
activity.

An entity is nearby if it is readily available for some such activity, and far
away if it is not. Nearness comes into being when the thing is examined. We reach
it through things; it is nearness that makes the thingness of the thing appear. Cf.
Heidegger’s Topology (MIT Press, 2007) by Malpas. The following quotes (of
1924, 1954, 1966, 1971) illustrate Heidegger’s de-severance distance:

“Man, as existing transcendence abounding in and surpassing toward pos-
sibilities, is a creature of distance. Only through the primordial distances he
establishes toward all being in his transcendence does a true nearness to things
flourish in him.”

“Longing is the agony of the nearness of the distant.”
“Then thinking would be coming-into-the-nearness-of distance.”
“What is this uniformity in which everything is neither far nor near – is,

as it were, without distance? Everything gets lumped together into uniform
distancelessness.”

Cf. the technology-related distancing and death of distance in Sect. 28.2.
French philosopher/writer Maurice Blanchot (1907–2003) considered Niet-

zsche, Heidegger and Lévinas via their metaphorics of distance. For example, he
wrote:

“A distance is synonymous with extreme non-coincidence.”
“Far and near are dimensions of what escapes presence as well as absence

under attraction of [impersonal] ‘it’. It draws away, draws close, the same ghostly
affirmation, the same premises of non-presence.”

“To the proximity of the most distant, to the pressure of what is lightest, . . .
to the contact of that which is never arrives, it is by friendship that I can respond,
. . . the response of passivity to the non-presence of unknown [stranger]”.

• Lévinas distance to Other
We call the Lévinas distance to Other a primary distance between the

individuals in their face-to-face encounter, which the French philosopher and
Talmudic scholar Emmanuel Lévinas (1906–95) discusses in his book Totality
and Infinity, 1961.

Lévinas considers the precognitive relation with the Other: the Other, appear-
ing as the Face, gives itself priority, its first demand even before I react to, love or
kill it, is: “thou shalt not kill me”. This Face is not an object but pure expression
affecting me before I start meditating on it and passively resisting the desire that
is my freedom. In this asymmetrical relationship—being silently summoned by
the exposed Face of the Other (“widow, orphan, or stranger”) and responding by
responsibility for the Other without knowing that he will reciprocate—Lévinas
(in line of Misnagdim Judaism ethics) finds the meaning of being human and
concerned about justice. For him, this ethical duty is prior to pursuit of knowledge
and ontology of nature.

According to him, before covering the distance separating the existent (the
lone subject) from the Other, one must first go from anonymous existence to
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the existent, from “there is” (swarming of points) to the Being (lucidity of
consciousness localized here-below). Lévinas’ ethics spans the distance between
the foundational chaos of “there is” and the objective or intersubjective world.
Ethics marks the primary situation of the face-to-face, whereas morality comes
later as a set of rules emerging in the social situation if there are more than two
people face-to-face. And, for Lévinas, the scriptural/traditional God is the Infinite
Other.

• Distant suffering
Normally, physical distance is inversely related to charitable inclinations. But

the traditional morality of “universal” proximity (geographic, age, familial, etc.)
and pity not works in contemporary life. Most important actions happen on
distance and the mediation (capacity of the media to involve us emotionally and
culturally) address our concern for the “other”. Cf. death/kilometer in Chap. 25.

The nonuniversal quality of humanity should be constructed. So, mass media,
NGO’s, aid agencies, live blogs, and celebrity advocacy use imagery in order to
encourage audiences to acknowledge, care and act for far away vulnerable others.

For Chouliaraki, 2006, the current mediation replaced earlier claims to our
“common humanity” by artful stories that promise to make us better people.
As suffering becomes a spectacle of sublime artistic expression, the inactive
spectator can merely gaze in disbelief. Arising voyeuristic altruism is motivated
by self-empowerment: to realize our own humanity while keeping the humanity
of the sufferer outside the remit of our judgement and imagination, i.e., keep-
ing moral distance. Chouliaraki calls it narcissistic self-distance or improper
distance.

Silverstone’s (2002) proper distance in mediation refers to the degree of
proximity required in our mediated interrelationships if we are to create a sense
of the other sufficient not just for reciprocity but for a duty of care, obligation
and understanding. It should be neither too close to the particularities or the
emotionalities of specific instances of suffering, nor too far to get a sense of
common humanity as well as intrinsic difference. Cf. Lévinas distance and
antinomy of distance.

Silverstone and Chouliaraki call to represent sufferers as active, autonomous
and empowered individuals. They advocate agonistic solidarity, treating the
vulnerable other as other with her/his own humanity. It requires “an intellec-
tual and aesthetic openness towards divergent cultural experiences, a search
for contrasts rather than uniformity” (Hannerz, 1990). For Arendt, 1978, the
imagination enables us to create the distance which is necessary for an impartial
judgment,

But for Dayan, 2007, a climactic Lévinasian encounter with Other is not
dualistic: there are many others awaiting my response at any given moment. So,
proper distance should define the point from which one is capable of equitably
hearing their respective claims, and it involves the reintroduction of actual
distance.
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• Moral distance
The moral distance is a measure of moral indifference or empathy toward a

person, group of people, or events. Abelson, 2005, refers to moral distance as the
emotional closeness between agent and beneficiary.

But Aguiar, Brañas-Garza and Miller, 2008, define it as the degree of moral
obligation that the agent has towards the recipient. So, for them the social
distance is only a case of moral distance in which anonymity plays a crucial,
negative role.

The ethical distance is a distance between an act and its ethical consequences,
or between the moral agent and the state of affairs which has occurred.

The (moral) distancing is a separation in time or space that reduces the
empathy that a person may have for the suffering of others, i.e., that increases
moral distance. In particular, distantiation is a tendency to distance oneself
(physically or socially, by segregation or congregation) from those that one does
not esteem. Cf. distanciation. On the other hand, the good distancing (Sartre,
1943, and Ricoeur, 1995) means the process of deciding how long a given ethical
link should be.

• Simone Weil distance
We call Simone Weil distance a kind of moral God-cross radius of the

Universe which the French philosopher, Christian mystic, social activist and self-
hatred Jewess, Simone Weil (1909–43) introduced in “The Distance”, one of the
philosophico-theological essays comprising her Waiting for God (Putnam, New
York, 1951).

She connects God’s love to the distance; so, his absence can be interpreted
as a presence: “every separation is a link” (Plato’s metaxu). She wrote: “God
did not create anything except love itself, and the means to love. . . Because
no other could do it, he himself went the greatest possible distance, the infinite
distance. This distance between God and God, this supreme tearing apart, this
agony beyond all others, this marvel of love, is the crucifixion.”

In her peculiar Christian theodicy, “evil is the form which God’s mercy takes
in this world”, and the crucifixion of Christ (the greatest love/distance) was
necessary “in order that we should realize the distance between ourselves and
God . . . for we do not realize distance except in the downward direction”. Weil’s
God-cross (or creator-creature) distance recalls the old question: can we equate
distance from God with proximity to Evil? Her main drive, purity, consisted of
maximizing moral distance to Evil, embodied for her by “the social, Rome and
Israel”.

Cf. Irenaeus (second century) God-humans epistemic distance, which must
be far enough that belief in God remains a free choice. In Irenaean teodicy,
God created both, evil/suffering and free will, allowing us moral choices and
development.

Cf. Pascal’s (1669) God-man-nothing distances in Pensées, note 72: “. . . what
is man in Nature? A nothing in relation to infinity, all in relation to nothing,
a central point between nothing and all and infinitely far from understanding
either”.
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Cf. Montaigne’s (1580) nothing-smallest and smallest-largest distances in
Essais, III:11 On the lame: “Yet the distance is greater from nothing to the
minutest thing in the world than it is from the minutest thing to the biggest.”

Cf. Tipler’s (2007) Big Bang–Omega Point time/distance with Initial and
Final singularities seen as God-Father and God-Son. Tipler’s Omega point
(technological singularity) is a variation of prior use of the term (Teilhard de
Chardin, 1950) as the supreme point of complexity and consciousness: the Logos,
or Christ.

Calvin’s (1537) Eucharistic theology (doctrine on the meaning of bread and
vine that Christ offered to his disciples during the last supper before his arrest)
also relies on spatial distance as a metaphor that best conveys the separation of
the world from Christ and of the earthly, human from the heavenly, divine.

Weil’s approach reminds that of the Lurian (about 1570) kabbalistic notions:
tzimtzum (God’s concealment, withdrawal of a part, creation by self-delimitation)
and shattering of the vessels (evil as impure vitality of husks, produced when-
ever the force of separation loses its distancing function and giving man the
opportunity to choose between good and evil). The purpose is to bridge the
distance between Infiniteness of God (or Good) and the diversity of existence,
without falling into the facility of dualism (as manicheanism and gnosticism).
It is done by postulating intermediate levels of being (and purity) during
emanation (unfolding) within the divine and allowing humans to participate in
the redemption of the Creation.

So, a possible individual response to the Creator is purification and ascent, i.e.,
the spiritual movement through the levels of emanation in which the coverings
of impurity, that create distance from God, are removed progressively.

Besides, the song “From a Distance”, written by Julie Gold in 1985 , is about
how God is watching us and how, despite the distance (physical and emotional)
distorting perceptions, there is still a little peace and love in this world.

• Golgotha distance
The exact locations of the Praetorium, where Pilate judged Jesus, and

Golgotha, where he was crucified, as well as of the path that Jesus walked, are
not known. At present, the Via Dolorosa (600m from the Antonia Fortress west
to the Church of the Holy Sepulchre) in the Old City of Jerusalem, held to be this
path.

The first century Jerusalem was about 500m east to west and 1200m north to
south. Herod’s palace (including Praetorium) was about 600 m from Golgotha
and 400 m from the Temple. The Golgotha distance (total distance from
Gethsemane, where Jesus was arrested, to the Crucifixion) was about 1500m.

Another New Testament’s distance is mentioned in Apocalypse: “And the
angel thrust in his sickle into the earth, and gathered the vine of the earth, and cast
it into the great winepress of the wrath of God. And the winepress was trodden
without the city [Jerusalem], and blood came out of the winepress, even unto the
horse bridles, by the space of 1600 furlongs [200 miles]” (Revelation 14:19–20).
It can hint to the whole length of the land of Israel, computable as 1600 studia.
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• Distance to Heaven
Below are given examples of distances and lengths which old traditions related

(sometimes as a metaphor) to such notions as God and Heaven.
In the Hebrew text Shi’ur Qomah (The Measure of the Body), the height of

the Holy Blessed One is 236 � 107 parasangs, i.e., 14 � 1010 (divine) spans. In
the Biblical verse “Who has measured the waters in the hollow of his hand and
marked off the heaven with a span” (Isaiah 40:12), the size of the Universe is one
such span.

The age/radius of the Universe is 13:82 billion ly. Sefer HaTemunah (by
Nehunia ben Hakane, first century) and Otzar HaChaim (by Yitzchok deMin
Acco, thirteenth century) deduced that the world was created in thought 42;000
divine years, i.e., 42;000 � 365;250 
 15:3 billion human years, ago. It counts,
using the 42-letter name of the God at the start of Genesis, that now we are in
the 6-th of the 7 cosmic sh’mitah cycles, each one being 7000 divine years long.
Tohu va-bohu (formless and empty) followed and 6000 years ago the creation of
the world in deed is posited.

In the Talmud (Pesahim, 94), the Holy Spirit points out to “impious Neb-
uchadnezzar” (planning “to ascend above the heights of the clouds like the Most
High”): “The distance from earth to heaven is 500 year’s journey alone, the
thickness of the heaven again 500 years. . . ”. This heaven is the firmament plate,
and the journey is by walking. Seven other heavens, each 500 years thick, follow
and the feet of the holy Creatures are equal to the whole. . . Their ankles, wings,
necks, heads and horns are each consecutively equal to the whole.” Finally, “upon
them is the Throne of Glory which is equal to the whole”. The resulting journey
of 4;096;000 years amounts, at the rate of 80 miles (
 129 km) per day, to

2600 AU, i.e., 
 1

100
of the actual distance to Proxima Centauri, the nearest

other star. Also, in Talmud, the width of Jacob’s Ladder (bridge to Heaven that
Jacob dreams about, described in the Book of Genesis) is computed as 8000
parasangs.

On the other hand, Baraita de Massechet Gehinom affirms in Section VII.2
that Hell consists of 7 cubic regions of side 300 year’s journey each; so, 6300
years altogether. According to the Christian Bible (Chap. 21 of the Book of
Revelation), New Heavenly Jerusalem (a city that is or will be the dwelling place
of the Saints) is a cube of side 12;000 furlongs (
 2225 km), or a similar pyramid
or spheroid.

Islamic tradition (Dawood, Book 40, Nr. 470) also attributes a journey of
71–500 years (by horse, camel or foot) between each samaa’a (the ceiling
containing one of the seven luminaries: Moon, Mercury, Venus, Sun, Mars,
Jupiter, Saturn). Besides 7 heavens (as in Judaism and Hinduism), Shia Islam and
Sufism have 7 depths of esoteric meanings of Quran, with only God knowing the
4-th meaning.

The Vedic text (Pancavimsab Brahmana, c. 2000 BC) states that the distance
to Heaven is 1000 Earth diameters and the Sun (the middle one among seven
luminaries) is halfway at 500 diameters. A similar ratio 500–600 was expected
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till the first scientific measurement of 1AU (mean Earth-Sun distance) by Cassini
and Richter, 1672. The actual ratio is 
 11;728.

The sacred Hindu number 108 (=62 C 62 C 62 D Q
1�i�3 ii), connected to the

Golden Ratio as the interior angle 108ı of a regular pentagon, is traced to the
following Vedic values: 108 Sun’s diameters for the Earth-Sun distance and 108
Moon’s diameters for the Earth-Moon distance. The actual values are (slightly
increasing) 
 107:6 and 
 110:6; they could be computed during an eclipse,
since the angular size of the Moon and Sun, viewed from the Earth, is almost
identical.

Also, the ratio between the Sun and Earth diameters is 
 108:6, but it is
unlikely that Vedic sages knew this. In Ayurveda, the devotee’s distance to his
“inner sun” (God within) consists of 108 steps; it corresponds to 108 beads of
mala (rosary): by saying beads, the devotee does a symbolic journey from his
body to Heaven.

In Bhagavata, the total diameter of the Universe is about 6:4 billion km.
• Swedenborg heaven distances

The Swedish scientist and visionary Emanuel Swedenborg (1688–1772), in
Section 22 (Nos. 191–199, Space in Heaven) of his main work Heaven and Hell
(1952, first edition in Latin, London, 1758), posits: “distances and so, space,
depend completely on interior state of angels”. A move in heaven is just a
change of such a state, the length of a way corresponds to the will of a walker,
approaching reflects similarity of states. In the spiritual realm and afterlife, for
him, “instead of distances and space, there exist only states and their changes”.

• Safir distance
According to Islamic law, a traveler may shorten the prayers, combine them,

and be permitted to break the fast of Ramadan if the travel (safir) exceeds some
minimum distance. Hanafi, the largest Sunni school of jurisprudence, define such
safir distance as 3 days of continuous journey (in the great part of the day and at
a moderate speed) or 15 farsakh (ancient unit of length, called also parasang).

Three other main schools define it as 2 days of such journey or as 16 farsakh,
computed differently. This distance is usually approximated as 80 or 83 km and
applied for travel by camel, car, plane or ship. Another strong opinion, by Ibn
Taymiyya, claims that safir is not merely a distance but also a state of mind, an
exposure to the wilderness; so, any distance customarily considered traveling is
safir.

• Sabbath distance
The Sabbath distance (or rabbinical mile) is a range distance: 2000

Talmudic cubits (960–11,152m, cf. cubit in Chap. 27) which an observant Jew
should not exceed in a public thoroughfare from any given private place on the
Sabbath day. It is about the distance covered by an average man in 18min.

Other Israelite/Talmudic length units are: a day’s march, parsa, stadium
(40, 4, 2

15
of the rabbinical mile, respectively), and span, hasit, palm, thumb,

middle finger, little finger ( 1
2
, 1
3
, 1
6
, 1
24

, 1
30

, 1
36

of the Talmudic cubit, respectively).
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• Bible code distance
Witztum, Rips and Rosenberg, 1994, claimed to have discovered a meaningful

subtext of the Book of Genesis, formed by uniformly spaced letters. The text
was seen as written on a cylinder on which it spirals down in one long line.
Many reactions followed, including criticism by McKay, Bar-Natan, Bar-Hillel
and Kalai, 1999, in the same journal Statistical Science.

The following Bible code distance dt between two letters, that are t positions
apart in the text, was used. Let h be the circumference of the cylinder, and
let q and r be the quotient and reminder, respectively, when t is divided by h,
i.e., t D qh C r with 0 � r � h � 1. Then dt D p

q2 C r2 if 2q � h,
and dt D p

.q C 1/2 C .r � h/2, otherwise. It is, approximatively, the shortest
distance between those letters along the cylinder surface; cf. cylindrical distance
(Chap. 20).

• Distance numbers
On Maya monuments usually only one anchor event is dated absolutely, in

the linear Mesoamerican Long Count calendar by the number of days passed
since the mythical creation on August 11, 3114 BC of the fourth world, which
completed a Great Period of 13 b’ak’tuns (
 5125 years) on December 21, 2012.

The other events were dated by adding to or subtracting from the anchor date
some distance numbers, i.e., periods from the cyclical 52-year Calendar Round.

• Antinomy of distance
The antinomy of distance, as introduced in [Bull12] for aesthetic experiences

by the beholder and artist, is that both should find the right amount of emotional
distance (neither too involved, nor too detached), in order to create or appreciate
art. The fine line between objectivity and subjectivity can be crossed easily, and
the amount of distance can fluctuate in time.

The aesthetic distance is a degree of emotional involvement of the individual,
who undergoes experiences and objective reality of the art, in a work of art.
It refers to the gap between the individual’s conscious reality and the fictional
reality presented in a work of art. It means also the frame of reference that an
artist creates, by the use of technical devices in and around the work of art, to
differentiate it psychologically from reality; cf. distanciation.

Some examples are: the perspective of a member of the audience in relation to
the performance, the psychological/emotional distance between the text and the
reader, the actor-character distance in the Stanislavsky system of acting.

Antinomy between inspiration and technique (embracement and estrange-
ment) in performance theory is called the Ion hook since Ion of Ephesus (a reciter
of rhapsodic poetry, in a Platon’s dialog) employed a double-consciousness,
being ecstatic and rational. The acting models of Stanislavsky and Brecht are,
respectively, incarnating the role truthfully and standing artfully distanced from
it. Cf. role distance.

[Morg76] defines pastoral ecstasy as the experience of role-distancing, or the
authentic self’s supra-role suspension, i.e., the capacity of an individual to stand
outside or above himself for purposes of critical reflection. Morgan concludes:
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“The authentic self is an ontological possibility, the social self is an operational
inevitability, and awareness of both selves and the creative coordination of both
is the gift of ecstasy”. Cf. Lévinas distance to Other.

The historical distance, in terms of [Tail04], is the position the historian
adopts vis-à-vis his objects—whether far-removed, up-close, or somewhere in
between; it is the fantasy through which the living mind of the historian,
encountering the inert and unrecoverable, positions itself to make the material
look alive. The antinomy of distance appears because historians engage the past
not just intellectually but morally/emotionally. The formal properties of historical
accounts are influenced by the affective, ideological and cognitive commitments
of their authors.

A variation of the antinomy of distance appears in critical thinking: the need
to put some emotional and epistemic (intellectual) distance between oneself and
ideas, in order to better evaluate their validity and avoid illusion of explanatory
depth (to fail see the trees for the forest). A related problem is how much
distance people must put between themselves and their pasts in order to remain
psychologically viable; Freud showed that often there is no such distance with
childhoods.

• Role distance
In Sociology, Goffman, 1961, using a dramaturgical metaphor, defined role

distance (or role distancing) as actions which effectively convey some disdainful
detachment of the (real life) performer from a role he is performing. An
example of social role distancing is when a teacher explains to students that his
disciplinary actions are due only to his role as a teacher.

Goffman observed that children are able to merge doing and being, i.e.,
embracement of the performer’s role, only from 3–4 years. Starting from about
5, their role distance (distinguishing being from doing) appears and expands,
especially, at age 8, 11 and adult years.

Besides role embracement and role distance, one can play a role cynically in
order to manage the outcomes of the situation (impression management). The
most likely cause of role distancing is role conflict, i.e., the pressure exerted from
another role to act inconsistently from the expectations of the first role.

A frame is a type of role (participant, observer, authority, critic, artist, etc.)
given to a person in relation to a given event. The frame distance, introduced
by Heathcote, 1980, in teaching drama, refer to a specific (implied by the
frame) responsibility, interest, attitude and behavior of a person/student in this
event/drama.

• Distanciation
In scenic art and literature, distanciation (Althusser, 1968, on Brecht’s

alienation effect) consists of methods to disturb purposely (in order to challenge
basic codes and conventions of spectator/reader) the narrative contract with
him, i.e., implicit clauses defining logic behavior in a story. The purpose is
to differentiate art psychologically from reality, i.e., to create some aesthetic
distance.
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For Bakhtin, the mandate to “be outside” that which you create is a matter
of subject-subject (as opposed to subject-object) relations. For Shklovsky the
distancing of an object sharpens our perception and stimulates senses, thereby
arousing us to artistic (as opposed to dull everyday) experience.

One of the distanciation devices is breaking of the fourth wall, when the
actor/author addresses the spectators/readers directly through an imaginary
screen separating them. The fourth wall is the conventional boundary between the
fiction and the audience. It is a part of the suspension of disbelief between them:
the audience tacitly agrees to provisionally suspend their judgment in exchange
for the promise of entertainment. Cf. distancing and distantiation.

• Narrative distance
The author creates a persona of narrator, who tell the story, usually, from

the point of view of first- or third-person. Narrative distance is (Genette, 1980)
the distance between the narrator and the story’s characters, setting, events and
objects.

The closest possible distance—the narrator reports on the thoughts and feeling
(even unconscious ones) of the characters, while the farthest distance—reporting
only actions and situations. The author can vary this distance; say, the third-
person omniscient narrator can zoom in and out of character’s perspectives.

• Ironic distance
Rhetorical writer or speaker does not allow audience to maintain an objective

or fixed distance from the story. He intrude to distance himself from characters
in a story or from his own remarks. Ironic distance refers to the narrative irony:
distance of knowledge between author/narrator/character/reader.

As a literary device, irony implies a distance between what is said and what
is meant. Irony is also the art of juxtaposing incongruous parts; so, an ironic
distance also mean the closeness between two things that never meet.

• Epistemic distance
Epistemic (or intellectual) distance from something refers to the degree of

difficulty involved in knowing it. For example, conditional rhetorical construc-
tions are used in discourse, in order to indicate this distance. Mejias (2005)
epistemological distance between things is the difference in degree of knowledge
justification.

• Representation of distance in Painting
In Western Visual Arts, the distance is the part of a picture representing objects

which are the farthest away, such as a landscape; it is the illusion of 3D depth on
a flat picture plane. The middle distance is the central part of a scene between the
foreground and the background (implied horizon).

Perspective projection draws distant objects as smaller to provide additional
realism by matching the decrease of their visual angle; cf. Chap, 6. A vanishing
point (or point of distance) is a point at which parallel lines receding from
an observer seem to converge. (For a meteor shower, the radiant is the point
in the sky, from which meteors appear to originate.) Linear perspective is a
drawing with 1–3 vanishing points; usually, they are placed on the horizon and
equipartition it.
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In a curvilinear perspective, there are � 4 vanishing points; usually, they are
mapped into and equipartition a distance circle. 0-point perspective occurs if the
vanishing points are placed outside the painting, or if the scene (say, a mountain
range) does not contain any parallel lines. Such perspective can still create a sense
of depth (3D distance) as in a photograph of a mountain range.

In a parallel projection, all sets of parallel lines in 3D object are mapped to
parallel lines in 2D drawing. This corresponds to a perspective projection with an
infinite focal length (the distance from the image plane to the projection point).

Axonometric projection is parallel projection which is orthographic (i.e., the
projection rays are perpendicular to the projection plane) and such that the object
is rotated along one or more of its axes relative to this plane. The main case of
it, used in Engineering Drawing, is isometric projection in which the angles
between three projection axes are the same, or 2�

3
.

In Chinese Painting, the high-distance, deep-distance or level-distance views
correspond to picture planes dominated, respectively, by vertical, horizontal ele-
ments or their combination. Instead of the perspective projection of a “subject”,
assuming a fixed position by a viewer, Chinese classic hand scrolls (up to 10
m in length) used axonometric projection. It permitted them to move along a
continuous/seamless visual scenario and to view elements from different angles.
It was less faithful to appearance and allowed them to present only three (instead
of five) of six surfaces of a normal interior. But in Chinese Painting, the focus is
rather on symbolic and expressionist representation.

• Scale in art
In drawing, the scale refers to the proportion or ratio that defines the size

relationships. It is used to create the illusion of correct size relationships between
objects and figures. The relative scale is a method used to create and determine
the spatial position of a figure or object in the 3D picture plane: objects that are
more distant to the viewer are drawn smaller in size. In this way, the relative size
of an object/figure creates the illusion of space on a flat 2D picture.

In an architectural composition, the scale is the two-term relationship of the
parts to the whole which is harmonized with a third term—the observer. For
example, besides the proportions of a door and their relation to those of a wall,
an observer measures them against his own dimensions.

The scale of an outdoor sculpture, when it is one element in a larger complex
such as the facade of a building, must be considered in relation to the scale of
its surroundings. In flower arrangement (floral decoration), the scale indicates
relationships: the sizes of plant materials must be suitably related to the size of
the container and to each other.

The hierarchical scale in art is the manipulation of size and space in a picture
to emphasize the importance of a specific object. Manipulating the scales was
the theme of Measure for Measure, an art/science exhibition at the Los Angeles
Art Association in 2010. Examples of the interplay of the small and the large in
literature are Swift’s Gulliver’s Travels and Carrol’s Through the Looking Glass.
In the cinema, the spectator can easily be deceived about the size of objects, since
scale constantly changes from shot to shot.
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In Advertising and Packaging, the size changes the meaning or value of an
object. The idea that “bigger is better” is validated by the sales of sport utility
vehicles, super-sized soft drinks and bulk food at Wal-Mart.

In reverse, the principle “small is beautiful” is often used to champion small,
appropriate objects and technologies that are believed to empower people more.
For example, small-sized models sell the benefits of diet programs and fitness
regimes designed to scale back people’s proportions. Examples of Japanese
miniaturization culture are bonsai and many small/thin portable devices.

• Distances in Interior Design
In Interior Design, the scale refer to how an item relates to the size of the room

or the owner, and the proportion refer to the shape of an item and how it relates to
other objects in the room. The vertical, horizontal, diagonal and curved lines give
a room a feeling of formalness, casualness, transition and sensuality, respectively.
Other required space relationships are balance (equal weight between objects on
either side of a room) and rhythm (repetition of patterns, color, or line).

Workplane is the height at which an activity takes place; it is about 90,
75–90 and 75 cm for a kitchen, bath and a dining room or desk. In a kitchen, the
perimeter of the work triangle formed by sink, cooking surface and refrigerator
ideally should be 3.5–7.5 m. In a living room, the triangle of focal points to
emphasize is formed usually at the door or fireplace, TV, big window, sofa.
Other examples of recommended distances are: 35–45 cm between the sofa (or
chairs) and coffee table, 60 cm between dining chairs and at least 90 cm for traffic
lanes.

Used in lighting calculations, the room cavity ratio (or RCR) is 5hP
2A , where

h;P;A are the ceiling height, perimeter and area of the room. So, RCR D 5h.lCw/
lw

for a rectangular room of length l and width w.
• Spatialism

Spatialism (or Spazialismo) is an art movement founded by Lucio Fontana
in Milan in 1947, intended to synthesize space, color, sound, movement and
time into a new “art for the Space Age”. Instead of the illusory virtual space of
traditional easel (i.e., of a size and on a material suitable for framing) painting,
he proposed to unite art and science to project color and form into real space
by the use of up-to-date techniques, say, TV and neon lighting. His Spatial
Concept series consisted of holes or slashes, by a razor blade, on the surface
of monochrome paintings.

• Spatial music
Spatial music refers to music and sound art (especially, electroacoustic), in

which the location and movement of sound sources, in physical or virtual space,
is a primary compositional parameter and a central feature for the listener.

Space music is gentle, harmonious sound that facilitates the experience of
contemplative spaciousness. Engaging the imagination and generating serenity,
it is particularly associated with ambient, New Age, and electronic music.
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• Distance-named cultural products
Far Near Distance is the name of the program of the House of World Cultures

in Berlin which presents contemporary positions of Iranian artists. Examples of
similar use of distance terms in modern popular culture follow.

“Some near distance” and “Zero/Distance” are the titles of art exhibitions
of Mark Lewis (Bilbao, 2003) and Jim Shrosbree (Des Moines, Iowa, 2007).
“A Near Distance” is a paper collage by Perle Fine (New York, 1961); “Quiet
Distance” is a fine art print by Ed Mell. “Distance” is a Windows/Mac/Linux
survival racing game; “Dream Drop Distance” is a video game for Nintendo.

“Distance” is a Japanese film directed by Hirokazu Koreeda (2001) and an
album of Utada Hikaru (her famous ballad is called “Final Distance”). It is also
a song by Christina Perry, the stage name of a musician Greg Sanders and the
name of the rock/funk band led by Bernard Edwards. “The Distance” is a US
film directed by Benjamin Busch (2000), an album by the band “Silver Bullet”
and a song by the band “Cake”. “Near Distance” is a musical composition by
Chen Yi (New York, 1988) and lyrics by the quartet “Puressence”.

“Distance to Fault”, “Distance from Shelter”, “Long Distance Calling” are
the rock bands. Among popular albums are “The Tyranny of Distance”, “The
Great Cold Distance”, “Close the Distance”, “The Distance to Here”, “Love
and Distance”, “Long Distance Voyager” and “The Crawling Distance”, “This
Magnificent Distance” by the bands “Washington, D.C.”, “Katatonia”, “Go
Radio”, “Live”, “The Helio Sequence”, “The Moody Blues” and Robert Pollard,
Chris Robinson.

The terms near distance and far distance are also used in Ophthalmology and
for settings in some sensor devices.

• Distance-related quotes

– “Respect the gods and the devils but keep them at a distance.” (Confucius)
– “Sight not what’s near through aiming at what’s far.” (Euripides)
– “It is when suffering seems near to them that men have pity.” (Aristotle)
– “Distance in space or time weakened all feelings and all sorts of guilty

conscience.” “Distance is a great promoter of admiration.” (Denis Diderot)
– “Our main business is not to see what lies dimly at a distance, but to do what

lies clearly at hand.” (Thomas Carlyle)
– “We can only see a short distance ahead, but we can see plenty there that needs

to be done.” (Alan Turing)
– “The foolish man seeks happiness in the distance; the wise grows it under his

feet.”(Julius Robert Oppenheimer)
– “The very least you can do in your life is to figure out what you hope for. And

the most you can do is live inside that hope. Not admire it from a distance but
live right in it, under its roof.” (Barbara Kingsolver)

– “Better is a nearby neighbor, than a far off brother.” (Proverbs 27:10, Bible)
– “These [patriarchs] all died in faith without receiving the things promised

[Canaan, Messiah, Gospel], but they saw them and welcomed them from
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a distance, admitting that they were strangers and pilgrims on the earth.”
(Hebrews 11:13, Bible)

– “By what road”, I asked a little boy, sitting at a cross-road, “do we go to the
town?”—“This one”, he replied, “is short but long and that one is long but
short”. I proceeded along the “short but long road”. When I approached the
town, I discovered that it was hedged in by gardens and orchards. Turning back
I said to him, “My son, did you not tell me that this road was short?”—“And”,
he replied, “Did I not also tell you: “But long”?” (Erubin 53b, Talmud)

– “The Prophet Muhammad was heard saying: “The smallest reward for the
people of paradise is an abode where there are 80;000 servants and 72 wives,
over which stands a dome decorated with pearls, aquamarine, and ruby,
as wide as the distance from Al-Jabiyyah [a Damascus suburb] to Sana’a
[Yemen].” (Hadith 2687, Islamic Tradition)

– “The closer the look one takes at the world, the greater distance from which it
looks back.” (Karl Kraus)

– “Telescopes and microscopes are designed to get us closer to the object of our
studies. That’s all well and good. But it’s as well to remember that insight can
also come from taking a step back.” (New Scientist, March 31, 2012)

– “Where the telescope ends, the microscope begins. Which of the two has the
grander view?” (Victor Hugo)

– “Nature uses only the longest threads to weave her patterns.” (Richard
Feynman)

– “We’re about eight Einsteins away from getting any kind of handle on the
universe.” (Martin Amis)

– “It is true that when we travel we are in search of distance. But distance is not
to be found. It melts away. And escape has never led anywhere . . . What are
we worth when motionless, is the question.” (Antoine de Saint-Exupéry)

– “If you want to build a ship, don’t drum up people to collect wood and don’t
assign them tasks and work, but rather teach them to long for the endless
immensity of the sea.” (Antoine de Saint-Exupéry)

– “Ships at a distance have every man’s wish on board.” (Zora Neale Hurston)
– “If you’ve never stared off in the distance, then your life is a shame.” (Adam

Duritz)
– “Every once in a while, people need to be in the presence of things that are

really far away.” (Ian Frazier)
– “Only those who will risk going too far can possibly find out how far one can

go.” (Thomas Stearns Eliot)
– “Distance is to love like wind is to fire . . . it extinguishes the small and kindles

the great.” (source unknown)
– “I could never take a chance of losing love to find romance

In the mysterious distance between a man and a woman.” (Performed by
U2)

– “In true love the smallest distance is too great, and the greatest distance can
be bridged.” (Hans Nouwens)
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– “Love is like a landscape which doth stand
Smooth at a distance, rough at hand.” (Robert Hegge)

– “Life is like a landscape. You live in the midst of it but can describe it only
from the vantage point of distance.” (Charles Lindbergh)

– “Distance between two people is only as one allows it to be.” (source
unknown)

– “It is only the mountains which never meet.” (french proverb)
– “Nothing makes Earth seem so spacious as to have friends at a distance; they

make the latitudes and longitudes.” (Henri David Thoreau)
– “Distance can endear friendship, and absence sweeteneth it.” (James Howell)
– “The word is distance within non-distance, that is, the width of a gap that every

letter stresses while bridging it. What is said is always said in relation to what
will never be expressed. At these limits we recognize ourselves.” (Edmond
Jabès)

– “The poet’s other readers are the ancient poets, who look upon the freshly writ-
ten pages from an incorruptible distance. Their poetic forms are permanent,
and it is difficult to create new forms which can approach them.” (Salvatore
Quasimodo)

– “Sad things are beautiful only from a distance . . . From a distance of 130 years
i’m going to distance myself until the world is beautiful. . . ” (Tao Lin)

– “Dying away into the distance, prose turns into poetry, speech into vocalise,
language into music.” (Berthold Hoeckner)

– “Everything becomes romantic and poetic, if one removes it to a distance
. . . Distant philosophy sounds like poetry – for each call into the distance
becomes a vowel . . . Everything becomes poetry – poem from afar.” (Novalis)

– “The appropriated way to determine whether a painting is melodious is to look
at it from a distance so as to be unable to comprehend its subject or its lines.”
(Charles Baudelaire)

– “There is no object so large . . . that at great distance from the eye it does not
appear smaller than a smaller object near.” (Leonardo da Vinci)

– “Distance lends enchantment to the view,
And robes the mountain in its azure hue.” (Thomas Campbell)

– “There are charms made only for distant admiration.”
“Distance has the same effect on the mind as on the eye.” (Samuel Johnson)

– “Age, like distance, lends a double charm.” (Oliver Wendell Holmes)
– “Distance not only gives nostalgia, but perspective, and maybe objectivity.”

(Robert Morgan)
– “It is the just distance between partners who confront one another, too closely

in cases of conflict and too distantly in those of ignorance, hate and scorn, that
sums up rather well, I believe, the two aspects of the act of judging. On the
one hand, to decide, to put an end to uncertainty, to separate the parties; on
the other, to make each party recognize the share the other has in the same
society.” (Paul Ricoeur)

– “Authority doesn’t work without prestige, or prestige without distance.”
(Charles de Gaulle)
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– “The human voice can never reach the distance that is covered by the still
small voice of conscience.” (Mohandas Gandhi)

– “A smile is the shortest distance between two people.” (Victor Borge)
– “The shortest distance between two points is under construction.” (Leo

Aikman)
– “A straight line may be the shortest distance between two points, but it is by

no means the most interesting.” (Third Doctor from BBC TV series Doctor
Who)

– “In politics a straight line is the shortest distance to disaster.” (John P. Roche)
– “Fret not where the road will take you. Instead concentrate on the first step.

That is the hardest part and that is what you are responsible for. Once you take
that step let everything do what it naturally does and the rest will follow. Do
not go with the flow. Be the flow.” (Shams Tabrisi)

– “The distance is nothing; only the first step that is difficult.” (Marie du
Deffand)

– “A perfect run has nothing to do with distance. It’s when your stride feels
comfortable.” (Sean Astin)

– “Fill the unforgiving minute with sixty seconds worth of distance run.”
(Rudyard Kipling)

– “The distance between dreams and reality is called Discipline.” (Albert
Wright)

– “The distance between who you are and who you might be is closing.” (Jan
Chipchase)

– “Everywhere is within walking distance if you have the time.” (Steven Wright)
– “Time is the longest distance between two places.” (Tennessee Williams)
– “There is an immeasurable distance between late and too late.” (Og Mandino)
– “They couldn’t hit an elephant at this distance.” (last words of John Sedgwick,

seconds before he was mortally wounded)
– “The distance that the dead have gone does not at first appear;

Their coming back seems possible for many an ardent year.” (Emily
Dickinson)

– “A vast similitude interlocks all . . . All distances of place however wide,
All distances of time, all inanimate forms, all souls . . . ” (Walt Whitman)



Chapter 29
Other Distances

In this chapter we group together distances and distance paradigms which do not fit
in the previous chapters, being either too practical (as in equipment), or too general,
or simply hard to classify.

29.1 Distances in Medicine, Anthropometry and Sport

• Distances in Medicine
Some examples from this vast family of physical distances follow.
In Dentistry, the interocclusal distance: the distance between the occluding

surfaces of the maxillary and mandibular teeth when the mandible is in a
physiologic rest position. The interarch and interridge distances: the vertical
distances between the maxillary and mandibular arches, or, respectively, ridges.

The intercanine distance: the distance between the distal surfaces of the
maxillary canines on the curve (the circumference of six maxillary anterior teeth).

The interincisor distance: the distance between the upper and lower incisors.
The interproximal distance: the spacing distance between adjacent teeth;

mesial drift is the movement of the teeth slowly toward the front of the mouth
with the decrease of the interproximal distance by wear.

The biologic width: the distance between the deepest point of the gingival
sulcus and the alveolar bone crest. The crown-to-root-ratio: the ratio of the length
of the part of a tooth that appears above the alveolar bone versus what lies
below it.

The interbrow distance: the distance between the eyebrows.
The interaural (or biauricular) distance: the distance between the ears.
Lumbar spinal canal (LSC) is the tunnel that the spinal cord and nerves pass

through. The LSC diameter is the longest horizontal distance between any two
points on the lumbar edge; normally, it is 15–27 mm.
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The rectosacral distance: the shortest distance from the rectum to the sacrum
(triangular bone at the base of the spine, inserted between the two hip bones)
between the 3-rd and 5-th sacral vertebra. It is at most 10 mm in adults.

The anogenital distance (or AGD): the length of the perineum, i.e., the region
between the anus and genital area (the anterior base of the penis for a male). For
a male it is 5 cm in average (twice what it is for a female). ARD is a measure of
physical masculinity and, for a male, lower ARD correlates with lower fertility.

The internipple distance: the distance between nipples. “Ideally”, the nipples
and sternal notch form an equilateral triangle with a side of 21 cm, and the nipples
are at the middle of the humeral shoulder-elbow distance. The average areolar
diameter is 38 mm for a mature woman and 25 mm for a male.

The intercornual distance: the distance between uterine horns (2–4 cm).
The C-V distance: clitoris-vagina distance (2.3–3 cm); < 2:5 cm tend to yield
reliable orgasms from intercourse alone, while > 3 cm almost exclude it. The
clitoral index (CI): product of the crosswise (3–4 mm) and lengthwise (4–5 mm)
widths of the external portion of the clitoris; CI is a measure of virilization in
women. Mean vaginal depth (cervix-introitus) is 7–8 cm, increasing to 11–13 cm
during sexual arousal. For a human penis, mean flaccid and erect lengths are 9:16
and 13:2 cm.

A pelvic diameter is any measurement that expresses the diameter of the
birth canal in the female. For example, the diagonal conjugate (13 cm) joins the
posterior surface of the pubis to the tip of the sacral promontory, and the true
(or obstetric, internal) conjugate (11:5 cm) is the anteroposterior diameter of the
pelvic inlet.

In Obstetrics, the fundal height is the size the mother’s uterus (the distance
between the tops of uterus and pubic bone) used to assess fetal growth and
development during pregnancy. The crown-rump length is the length of human
embryos/fetuses (the distance, determined from ultrasound imagery, from the top
of the head to the bottom of the buttocks) used to estimate gestational age.

Metra and uterus are (Greek and Latin) medical terms for the womb.
Metropathy is any disease of the uterus, say, metritis (inflammation), metratonia
(atony), metrofibroma. Metrometer is an instrument measuring the womb’s size.
Metrography (or hysterography) is a radiographic examination of the uterine
cavity filled with a contrasting medium. Cf. meter-related terms in Chap. 27.

In Radiography, the teardrop distance: the distance from the lateral margin
of the pelvic teardrop to the most medial aspect of the femoral head; a
widening of � 1 mm indicates excess hip joint fluid and so inflammation. The
intertrochanteric distance: the distance between femurs. The interpediculate
distance: the distance between the vertebral pedicles. The source-skin distance:
the distance from the focal spot on the target of the X-ray tube to the subject’s
skin.

In Intubation (insertion of a tube into a body canal or hollow organ, to
maintain an opening or passageway), the insertion distance: the distance from
the body aperture at which the tubing is advanced. The French size of a catheter
with external diameter D is �D 
 3D; so, 20 F means D D 6:4 mm.
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In Anesthesia, the thyromental distance (or TMD): the distance from the
upper edge of the thyroid cartilage (laryngeal notch) to the menton (tip of the
chin). The sternomental distance: the distance from the upper border of the
manubrium sterni to the menton. The mandibulo-hyoid distance: mandibular
length from menton to hyoid. When the above distances are less than 6–6.5 cm,
12–12.5 cm and 4 cm, respectively, a difficult intubation is indicated.

The depth of anesthesia is a number expressing the likehood of awareness by
the degree of slowing and irregularity in electroencephalogram (EEG) signals.
Also, at loss of consciousness, high frequency (12–35 Hz) brain waves are
replaced by two (low, < 1 Hz, and alpha, 8–12 Hz) superimposed waves. Even
beyond a flat line EEG, some neuronal spikes come to the cortex from the
hippocampus.

The sedimentation distance (or ESR, erythrocyte sedimentation rate): the
distance red blood cells travel in 1 h in a sample of blood as they settle to the test
tube’s bottom. ESR indicates inflammation and increases in many diseases.

The stroke distance: the distance a column of blood moves during each heart
beat, from the aortic valve to a point on the arch of the aorta.

The distance between the lesion and aortic valve being < 6 mm, is an
important predictor, available before surgical resection of DSS (discrete subaortic
stenosis), or reoperation for recurrent DSS. The aortomesenteric distance
(between aorta and superior mesenteric artery) correlates with the body mass
index.

The aortic diameter: the maximum diameter of the outer contour of the aorta.
It, as well as the cross-sectional diameter of the left ventricle, varies between the
ends of the systole (the time of ventricular contraction) and diastole (the time
between contractions). The smallest and largest cardiac dimensions are LVE (left
ventricle end-) systolic and diastolic diameters; the strain is the ratio between
them.

The dorsoventral interlead distance of an implanted pacemaker or defibril-
lator: the horizontal separation of the right and left ventricular lead tips on the
lateral chest radiograph, divided by the cardiothoracic ratio (ratio of the cardiac
width to the thoracic width on the posteroanterior film).

The distance factor is a crude measure l
d � 1 of arterial tortuosity, where l is

the vessel length and d is the Euclidean distance between its endpoints.
In Nerve Regeneration by transplantation of cultured stem cells, the regen-

eration distance is the distance between the point of insertion of the proximal
stump and the tip of the most distal regenerating axon.

The small-for-size syndrome (SFSS) is acute liver failure resulting from the
transplantation of a too small (usually < 0:8% of recipient weight) graft (donor
liver).

A distant flap is a procedure moving tissue (skin, muscle, bone, or some
combination) from one part of the body, where it is dispensable, to another part.

The length of the alimentary (mouth-to-anus) tract is 
 9 m in a dead and,
due to muscle tone, 5–6 m in a leaving human. Transit takes 30–50 h.
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In Laser Treatments, the extinction length and absorption length of the
vaporizing beam are the distances into the tissue along the ray path over which
90% (or 99%) and 63%, respectively, of its radiant energy is absorbed.

In Ophthalmic Plastic Surgery, the marginal reflex distances MRD1 and
MRD2 are the distances from the center of the pupil (identified by the corneal
reflex created by shining a light on the pupil) to the margin of the upper or lower
eyelid, while the vertical palperbal fissure is the distance between these eyelids.

The main distances used in Ultrasound Biomicroscopy (for glaucoma treat-
ment) are the angle-opening distance (from the corneal endothelium to the
anterior iris) and the trabecular ciliary process distance (from a particular point
on the trabecular mesh-work to the ciliary process).

In Medical Statistics, length bias is a selection bias that can occur when
the lengths of intervals are analyzed by selecting random intervals in space or
time. This process favors longer intervals, thus skewing the data. For example,
screening over-represents less aggressive disease, say, slower-growing tumors.

• Distances in Oncology
In Oncology, the tumor radius is the mean radial distance R from the tumor

origin (or its center of mass) to the tumor-host interface (the tumor/cell colony
border). The cell proliferation along Œ0;R� is 
 0 up to some r0, then increases
only linearly up to some r1, and it happens mainly within Œr1;R�.

The tumor diameter is the greatest vertical diameter of any section; the tumor
growth is the geometric mean of its three perpendicular diameters. The average
diameter is LCWCH

3
where L;W;H are the longest length, width and height.

Tubiana, 1986, claims that for each tumor type a critical tumor diameter and
mass for metastatic spread exists and this threshold may be reached before the
primary tumor is detectable. For breast cancer, metastases were found in 50% of
the women whose primary tumor had a diameter of 3:5 cm, i.e., a mass 
 22 g.

In the tumor, node, metastasis (TNM) classification, describing the stage of
cancer in a patient’s body, the parameter T is the tumor size (direct extent of the
primary tumor) by the categories T-1, T-2, T-3, T-4. In breast cancer, T-1, T-2,
T-3 are < 2; 2–5;> 5 cm and T-4 is a tumor of any size that has broken through
the skin, or is attached to the chest wall. A clinical size is 109–1011 cells.

In Oncological Surgery, the margin distance (or margins of resection) is the
distance between a tumor and the ink-marked edge of tumor bed, i.e., normal-
appearing tissue surrounding tumor that is removed along with it in order to
prevent local recurrence. If the margins, as checked by a pathologist under
microscope, are positive (cancer cells are found in the ink), then more surgery
is needed. The margins are negative (or clear, clean) if no cancer cells are found
“close” to the ink.

The perfusion distance is the shortest distance between the infusion outlet
and the surface of the electrodes during radio-frequency tumor ablation.

In Radiation Oncology, the maximum heart distance MHD is the maximum
distance of the heart contour (as seen in the beam’s eye view of the medial
tangential field) to the medial field edge, and the central lung distance CLD
is the distance from the dorsal field edge to the thoracic wall. An “L-bar”
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armrest, used to position the arm during breast cancer irradiation, decreases these
distances.

A distant cancer (or relapse, metastasis) is a cancer that has spread from
the original (primary) tumor to distant organs or distant lymph nodes. It can
happen by long-distance dispersal (Chap. 23) and by dividing of cancer stem
cell. DDFS (Distant Disease-free Survival) is the time until such an event.

According to Hanahan–Weinberg, 2000, tumor progress via evolution-like
process of genetic changes which can be grouped into six hallmarks. Tumori-
genesis requires a mutation pathway of 4–6 events among them to occur in the
lineage of one cell. Spencer et al., 2006, define tumor heterogeneity as

2

n.n � 1/

X

1�i<j�p

ninjdij;

where n D P
1�i�p ni , p , ni are the numbers of cells in a tumor, of distinct

pathways, of cells with i-th pathway, and dij is the ancestral path distance (cf.
pedigree-based distances in Chap. 23) between i-th and j-th pathways.

Similarly, the distance to flu pandemic is, say, the length of mutation pathway
for a virus strain to become airborne transmissible among humans.

• Distances in Rheumatology
The main such distances (measured in cm to the nearest 0:1 cm) follow.
Occiput wall distance: the distance from the patient’s occiput to the wall

during maximal effort to touch the head to the wall, without raising the chin
above its usually carrying level (when heels and, if possible, the back are against
the wall).

Modified Schober test: the distance between two marked points (a point
over the spinous process of L5 and the point 10 cm above) measured when the
patient is extending his lumbar spine in a neutral position and then when he flexes
forward as far as possible. Normally, the 10 cm distance increases to � 16 cm.

Lateral spinal flexion: the distance from the middle fingertip to the floor in
full lateral flexion without flexing forward or bending the knees or lifting the
heels and attempting to keep the shoulders in the same place.

Chest expansion: the difference between full expiration and full inspiration,
measured at the nipples.

Intermalleolar distance: the distance between the medial malleoli when the
patient (supine, the knees straight and the feet pointing straight up) is asked to
separate the legs as far as possible.

• Distance healing
Distance (or distant, remote) healing is defined (Sicher–Targ, 1998) as a

conscious, dedicated act of mentation attempting to benefit another person’s
physical or emotional well-being at a distance. Cf. action at a distance in
Chap. 24.
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It includes prayer (intercessory, supplicative and nondirected), spiritual/
mental healing and strategies purporting to channel some supra-physical energy
(noncontact therapeutic touch, Reiki healing, external qigong).

Distant healing is part of popular alternative/complementary medicine but it
is highly controversial: some positive results are attributed to a placebo effect.
However, such rejection (as well as for homeopathy) is also a matter of belief.

In Chinese Medicine, the life-energy, qi, flow through 20 meridians connect-
ing about 400 acupuncture points. Many trigger points (hyperirritable muscle
spots) and pressure points in martial arts are related to above points. Many
meridians are located along connective-tissue planes between muscles or muscle
and bone.

In Ayurveda, the life force, prana, flow through > 72;000 nadis connecting
chakras (intensity points); it also lists 13 internal srotas (physical body channels)
and, by the number of orifices, 9 external ones for males and 12 for females. The
main 13 chakras are evenly spaced, using the interpupillary distance as the unit.
The root chakra is at the base of the spine, followed by chakras at the sex, navel,
solarplexis, heart (two), Adam’s apple, chin’s tip, nose’s tip, third eye, just above
the forehead, the crown, one hand length above the head.

Distance medicine technologies are used to transmit/treat patient information,
to submit prescriptions, to create distributive patient care and distributive learn-
ing. Examples of telephonic communication with patients are in: follow-up care,
reminders, interactive systems, screening and access in hospital use.

• Brain distances
fMRI (functional Magnetic Resonance Imaging) measures, using MRI tech-

nology, brain activity by detecting changes associated with blood flow.
dMRI (diffusion MRI) noninvasively produces in vivo images of brain tissues

weighted by their water diffusivity. The image intensities at each position are
attenuated proportionally to the strength of diffusion in the direction of its
gradient. Diffusion in tissues is described by a diffusivity tensor. Tensor data
are displayed, for each voxel, by ellipsoids; their length in any direction is the
diffusion distance molecules cover in a given time in this direction. The diffusion
tensor distance is the length from the center to the surface of the diffusion tensor.

In brain MRI, the distances considered for cortical maps (i.e., outer layer
regions of cerebral hemispheres representing sensory inputs or motor outputs)
are: MRI distance map from the GW (gray/white matter) interface, cortical
distance (say, between activation locations of spatially adjacent stimuli), cortical
thickness (the shortest distance between the GW the boundary and the innermost
surface of pia mater enveloping the brain) and lateralization metrics. In fact,
language, for example, tends to be on the left, attention more on the right side of
the brain.

The cortical thickness of Einstein’s brain is 2:1 mm, while the average one is
2:6 mm; the resulting closer packing of neurons may speed up communication
between them. This brain had a relatively larger (and more intricately folded)
prefrontal cortex and an unusually high glia-to-neuron ratio. Also, the corpus
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callosum is thicker in many areas, indicating greater connectivity between the
two hemispheres.

Stereotaxic coordinates of a point p in the human brain are given by a triple
.xp; yp; zp/ in mm (Talairach–Tournoux, 1988), where the anterior commissure is
the origin .0; 0; 0/. The dimensions x; y; z refer to the left-right (LR), posterior-
anterior (PA) and ventro-dorsal (VD or inferior-superior) orthogonal axes with
positive values for the right hemisphere, anterior part and dorsal part. The

Talairach distance of a point p is its Euclidean distance
q

x2p C y2p C z2p from

the origin.
Among proto-humans, only Neanderthals had a larger (11:6%) brain than

Homo sapiens; we got the brain-size increasing gene 0:037 Ma ago. But over
the last 0:03 Ma our brains have been shrinking, while craniums have been
increasing. Our brain reaches its full size by age 20 and then shrinks (faster for
men) by about 1% per year. Brain accounts for 1

5
of the total (
 100 W) body

energy consumption.
Network models (of human brain in a living person) derived from resting

state fMRI and dMRI are similar and strongly correlate. Siegelmann et al.,
2015, defined the connectivity-distance (or network depth) of a brain area, as
increase in its average connectivity from sensory cortex inputs, derived from
those MRI data. This depth is expected to be a proxy for an increase in number of
sequential synapses, processing time and to correlate with degree of abstractness
of cognitive behaviors.

• Dysmetria
Dysmetria is a symptom of a cerebellar disorder or syndrome, expressed in

a lack of coordination of movement typified by the undershoot (hypometria) or
overshoot (hypermetria) of the intended position with the hand, arm, leg, or eye.

More generally, dysmetria can refer to an inability to judge distance or
scale, which is also one of symptoms of dyscalculia. The distance constancy
(Chap. 28) is poor in schizophrenics; so, their visual perception is lacking in
depth.

Alice in Wonderland syndrome, affecting mainly children, is that objects
appear either much smaller (micropsia) or larger (macropsia) than they are.
Micropsia appear also in Charles Bonnet syndrome, affecting mainly vision-
impaired elderly.

• Space-related phobias
Several space-related phobias have been identified: agoraphobia, astropho-

bia, claustrophobia, cenophobia, and acrophobia, bathophobia, gephyrophobia,
megalophobia which are, respectively, fear of open, celestial, enclosed, empty
spaces, and heights, depths, bridges, large/oversized objects. Autoscopy (or out-
of-body experience) is the hallucination of seeing one’s own body at a distance.

Among neuropsychological spatial disorders are: Balint’s syndrome (inability
to localize objects in space), hemispatial neglect (bias of attention to and
awareness of the side of the hemispheric lesion) and allochiria (left-right
disorientation).
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Topographical disorientation is the inability to orient in the surrounding as
a result of focal brain damage. Such agnosia with respect to self, to landmarks,
to external environment, to new environments is called egocentric, landmark,
heading, anterograde, respectively. Dromosagnosia is the loss of direction while
driving.

In Chap. 28, among applications of spatial language is mentioned Grove’s
clean space: a neuro-linguistic psychotherapy based on the spatial metaphors
produced by the client on his present and desired “space” (state).

• Neurons with spatial firing properties
Known types of neurons with spatial firing properties are listed below; cf.

also spike train distances in Chap. 23.
Many mammals have in several brain areas head direction cells: neurons

which fire only when the animal’s head points in a specific direction.
Place cells are principal neurons in the hippocampus that fire strongly

whenever an animal is in a specific location (the cell’s place field) in an
environment.

Grid cells are neurons in the entorhinal cortex that fire periodically and at
very regular distances as an animal walks. Grid cells measure distance while
place cells indicate location. But only place cells are sensitive (albeit weakly) to
height.

Spatial view cells are neurons in the hippocampus which fire when the animal
views a specific part of an environment. They differ from head direction cells
since they represent not a global orientation, but the direction towards a specific
object. They also differ from place cells, since they are not localized in space.

Border cells are neurons in the entorhinal cortex that fire when a border is
present in the proximal environment.

Mirror cells are neurons that fire both when an animal acts and when it
observes the same action performed by another.

Head direction cells of rats are fully developed before pups open their eyes
and become mobile. Next to mature are place cells followed by grid cells. All
navigational cell types mature before rat adolescence (about 30 days of age).

The smallest processing module of cortical neurons is a minicolumn—a
vertical column (of diameter 28–40 microns) through the cortical layers of the
brain, comprising 80–120 neurons that seem to work as a team. There are about
2 � 108 minicolumns in humans. Smaller minicolumns (as observed in scientists
and in people with autism) mean that there are more processing units within any
given cortical area; it may allow for better signal detection and more focused
attention.

• Vision distances
The interocular distance is the distance between the centers of rotation of the

eyeballs of an individual or between the oculars of optical instruments.
The interpupillary distance (or binocular pupillary distance) is the distance

(50–75 mm) between the centers of the pupils of the two eyes. The monocular
pupillary distance is the distance from the center of the nose to the pupil.
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Stereoacuity is the smallest detectable depth difference that can be seen in
binocular vision.

Involuntary pupil’s diameter dilation of 0:5mm can indicate interest, attention
or sexual stimulation. Straight (homosexual) observers’ pupils increase linearly
as the amount of clothing on opposite (same, respectively) sex models decreases.

The near acuity is the eye’s ability to distinguish an object’s shape and details
at a near distance such as 40 cm; the distance acuity is the ability to do it at a far
distance such as 6 m. The distance vision is a vision for objects that are at least
6 m from the viewer. Optical near devices are designed for magnifying close
objects and print; distance devices are for magnifying things in the distance.

The near distance is the distance between the object and spectacle (eye-
glasses) planes. The vertex distance: the distance between a person’s glasses
(spectacles planes) and their eyes (the corneal). The infinite distance: a distance
of at least 6 m; so called because rays entering the eye from an object at that
distance are practically as parallel as if they came from an infinitely far point.

The default accommodation distance (or resting point of accommodation, RPA
distance) is the distance at which the eyes focus if there is nothing to focus on.

The RPV distance (or resting point of vergence) is the distance at which the
eyes are set to converge (turn inward toward the nose) when there is no close
object to converge on. It averages about 1:15 m when looking straight ahead and
in to about 0:9 m with a 30ı downward gaze angle. Ergonomists recommend
the RPV distance as the eye-screen distance in sustained viewing, in order to
minimize eyestrain.

The least distance of distinct vision (or reference seeing distance) is the
minimum comfortable distance (usually, 25 cm) between the eye and a visible
object. Ideal focus distances for reading and writing are within 37–62 cm from
the eyes.

The Harmon distance (or elbow distance) is the optimal visual distance for
reading and other near work. It is the distance from the elbow on the desk to the
first knuckle (prominence of a joint connecting the finger to the hand).

The ideal TV viewing distance is 1:9 times the screen width, since then this
width occupies a 30ı angle from the viewing position. For multiple-row seating
in the home theater, a viewing angle 26–36ı is recommended.

The Lechner distance is the optimal viewing distance at which the human eye
can best process the details given by High Definition TV resolution. For example,
it is about 1:7 or 2:7 m for a 1080 HD TV with a screen size of 42 or 69 inches.

Lateral masking (or crowding) is impairment of peripheral object identifica-
tion by flankers (nearby objects). Critical spacing (or crowding distance) is the
minimum target-flanker distance that does not produce crowding of a target of
fixed size.

The throw distance is the distance that the projector needs to be from the
screen to project the optimum image. The viewing-distance factor is a ratio of
the width of a projected image to the maximum acceptable viewer’s distance
from it.
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The laser hazard distance is the safe viewing distance for direct exposure to
visible laser beams.

• Gait distances
Gait stride is the distance traveled between successive footfalls of the same

foot. It is the double of the step length (distance traveled while a foot is on the
ground).

Stride width (or walking base) is the side-to-side distance between the line of
the two feet. Normally, it is 3–8 cm for adult but it increases with gait instability.

The Gait Deviation (from normality) Index GDI is (Schwartz–Rosumalski,
2008) the standardized Euclidean distance (Chap. 17) in the 15D gait feature
space between the abnormal state vector of a patient and the closest matching
normal (mean of controls) state vector.

The length of cane, when it is needed, should extend the distance from the
distal wrist crease to the ground, when the person is placing arms at the sides.

The average walking speed is 1–1.5 m/s; above 2 m/s, it is more efficient to
run. Cadence for normal adults is 100–117 steps/min at preferred speed. As the
body moves forward, its center of gravity moves vertically and laterally, with
average displacement 5 cm and 6 cm, in a smooth sinusoidal pattern.

Wearing high heels by women exaggerate some sex specific elements of
female gait: greater pelvic rotation, increased lateral pelvic tilt, shorter strides
and higher cadence. Millipedes have smooth wave-like polypedal gait. Some
millipeds Illacme have 750 legs. No species with larger or odd number of legs
are known.

Most insects have a tripod gait, with front and back legs on one side moving
in sync with the middle leg on the other side. But some dung beetles can gallop.

Humans, birds and (occasionally) apes walk bipedally. Humans, birds, many
lizards and (at their highest speeds) cockroaches run bipedally. But (Alexander,
2004) no animal walks or runs as we do: the trunk erect, almost straight knees
at mid-stance, striking the ground with the heel alone and two-peaked force
pattern in fast walking. Our walking, but not running, is relatively economical
metabolically.

A pedometer is a device, usually portable and electronic or electromechanical,
that counts each step a person takes by detecting the motion of the person’s hands
or hips. Modern activity trackers, such as the Fitbit Tracker, Misfit Wearables and
Razer Nabu, count the number of steps and, using it, distance walked or run.

• Biodistances for nonmetric traits
In Physical Anthropology and Human Osteology (including Forensic Anthro-

pology and Paleoanthropology), the biodistances (or biological distances) are the
measures of relatedness between and within human groups, living or past, based
on human cranial, skeletal or dental variation.

Nonmetric traits are skeletal nonmetric data (binary, nominal or ordinal,
cf. Chap. 17). The main distance statistics used to compare them between
populations x and y are Mahalanobis D2 statistics, i.e., square Mahalanobis
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distance (Chap. 17) and, when the data are incomplete, the mean measure of
divergence:

MMD D 1

n

nX

iD1
..�xi � �yi/

2 � 4
Nxi C Nyi C 1

.2Nxi C 1/.2Nyi C 1/
/:

Here, n is the number of traits used in the comparison, �xi and �yi are the
transformed frequencies in radians of the i-th trait in the groups x; y, and Nxi

and Nyi are the numbers of individuals scored for the i-th trait in the two groups.
The frequencies � are obtained (in radians) from observed trait frequencies

k
n by the Freeman–Tukey arcsine transformation. The MMD can be negative.
The standardized MMD (SMMD) is obtained by dividing MMD by its standard
deviation.

• Body distances in Anthropometry
Besides weight and circumference, the main metric (i.e., linear continuous,

cf. Chap. 17) measurements in Anthropometry are between some body landmark
points or planes. The main vertical distances from a standing surface are:

– stature (to the top of the head);
– C7 level height (to the first palpable vertebra from the hairline down, C7);
– acromial height (to the acromion, i.e., the lateral tip of the shoulder);
– L5 level height (to the first palpable vertebra from the tailbone up, L5);
– knee height (to the patella, i.e., kneecap plane).

The genotype gives 60% of the phenotypic variation of human height (stature).
It was about 1:63 and 1:83m for Neanderthal 0:07Ma ago and Homo erectus 1:8
Ma ago. The height of the average modern man ranges from 1:37 (Mbuti people
of the Democratic Republic of the Congo) to 1:84 m (the Dutch). There is small
(0.15–0.20) correlation between IQ and height within national populations.

Examples of other body distances are:

– sitting height: the distance from the top of the head to the sitting surface;
– popliteal (or stool) height (seated): the distance between the underside of the

foot to the underside of the thigh at the knee;
– hip breadth (seated): the lateral distance at the widest part of the hips;
– biacromial breadth: the distance between the acromions;
– buttock-knee length : the distance from the buttocks to the patella;
– total foot length: the maximum length of the right foot;

In the thigh, there are the longest ones in the human body: bone (femur), muscle
(sartorius) and nerve (sciatic).

• Head and face measurement distances
The main linear dimensions of the cranium in Archeology are: lengths (of

temporal bone, of tympanic plate, glabella-opistocranion), breadths (maximum
cranial, minimum frontal, biauricular, mastoid), heights (of temporal bone,
basion-bregma), thickness of the tympanic plate, and bifrontomolar-temporal
distance.
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Main viscerocranium measurements in Craniofacial Anthropometry are the
head width, i.e., the (horizontal) maximum breadth of the head above the ears,
and the head length (or head depth): the horizontal distance from the nasion (the
top of the nose between the eyes) to the opistocranion (the most prominent point
on the back of the head). The cephalic index of a skull is the percentage of width
to length.

The face length FL: the distance between the trichion (midpoint on the
forehead) and the gnathion (the lowest point of the midline of the lower jaw).
It is divided by nasion and subnasale lines into three (“ideally”, equal) parts. The
upper face height UFH is the distance between brow and upper lip; LFH is the
lower face height.

The intercanthal distance IC and outercanthal distance OC: the distances
between inner or outer canthi (corners of eyes). The face width FW (or
bizygomatic width) is the maximum distance between lateral surfaces of the
cheeks. Let EW be the eye width and NW be the nose width (or interalar
distance).

According to Schmid–Marx–Samal, 2007, among neoclassical canons of face,
proposed by artists, the most related to attractiveness are: IC = NW = EW,
FW = 4� NW and nose length = ear length = forehead height = LFH. Among

aesthetically pleasing facial golden ratios 1Cp
5

2

 1:618 are: mouth width (or

lips-chin distance) to IC (or NW), ear length to NW and the superior facial
index UFH

FW .
According to Lefevre et al., 2013, the ratios FWHRD FW

UFH and FW
LFH correlate

with “maleness” (testosterone in mating context, aggression, status-striving etc.).
On average, men have much larger faces (below the pupils), lips and chins; wider
cheekbones, jaws and nostrils; and longer lower faces, but much lower eyebrows.

In Face Recognition, the sets of (vertical and horizontal) cephalofacial dimen-
sions, i.e., distances between fiducial (standard of reference for measurement)
facial points, are used. For example, the following five independent facial
dimensions are derived in [Fell97] for facial gender recognition: IC, NW, FW
and (vertical ones) eye-to-eyebrow distance EB and distance EM between eye
midpoint and horizontal line of mouth. “Femaleness” relies on large IC, EB and
small NW;FW;EM. In general, a face with larger EB is perceived as baby-like
and less dominant.

Humans have the innate ability to recognize and distinguish (friend from foe)
between faces from a distance. Facial attractiveness is a cultural construct found
in all extant societies, and males strongly prefer neotenous facial features in
females.

Pallett–Link–Lee, 2009, claim that Caucasian females with EM 
 36% of FL
and the interpupillary distance 
 46% of FW, have the both, most attractive
and average, faces. On the other hand, Japanese standards of beautiful eyes
changed with Westernization (comparing Meiji and modern portraits): the mean
ratios to corneal diameter (horizontal white-to-white distance) of eye height and
upper lid-to-eyebrow distance are moved from 0:62 and 2:21 to 0:82 and 1:36.
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Among the symmetry pairs, main contributors to attractiveness are the nose,
mouth and upper tips of the lips. Comparing 3D facial scans with their mirror
images, Djordjevic et al., 2011, found that on average, males and females have
53:5% and 58:5% symmetry of the whole face. Cf. distances from symmetry
in Chap. 21. Alare and pogonio were the most and the least symmetric landmark.

Modifying traditional canons of Facial Plastic Surgery (based on horizontal
and vertical planes in 2D), Young, 2008, asserts that the iris, nasal tip and
lower lip are the most prominent structures within the eye, nose and mouth. All
distances which he proposed as elements of facial beauty are multiples of the
diameter of the iris.

• Gender-related body distance measures
The main gender-specific body configuration features are:
for females, WHR (waist-to-hip ratio), LBR (leg-to-body ratio) and BMI

(body mass index), i.e., the ratio of the weight in kg and squared height in m2;
for males, height, SHR (shoulder-to-hip ratio) and WCR (waist-to-chest

ratio);
androgen equation (three times the shoulder width minus one times the pelvic

width) and HGS (hand grip strength), which are higher for males;
right second-to-fourth digit (index to ring finger) ratio 2D-4D, which is lower

(as well as prenatal testosterone is higher) for males in the same population;
anogenital distance (cf. distances in Medicine), which is larger for males;
person’s center of mass (slightly below the belly button), higher for males.
The angle of lumbar curvature � is the angle between the thoracic back and

buttocks. Its mean value is 43:25ı for men, 47:19ı for women and 45:5ı for
reproductively viable women. This wedging in third-to-last lumbar vertebra shifts
the center of mass of pregnant woman back over hips, reducing hip torque by over
90%. But excessive � (hyperlordosis) also lead to muscular fatigue and lower
back pain; the optimal � is 45:5ı. Men prefer the women for whom the buttocks
protrusion � is close to optimal and attributable to vertebral wedging, not buttock
mass.

The main predictor for developmental instability, increasing with age, is FA
(fluctuating asymmetry), i.e., the degree to which the size of bilateral body parts
deviates from the population mean, aggregated across several traits. Women
(men) prefer the odors, faces and voices of men (women) with lower FA. Old men
(but not women) with lower facial FA have better cognitive ability and reaction
time.

BMI and WHR indicate the percentage of body fat and fat distribution,
respectively; they are used in medicine to assess risk factors. A WHR of 0:7
for women and 0:9 for men correlates with general health and fertility. As a
cue to female body attractiveness for men, the ideal WHR varies from 0:6 in
China to 0:85 in Africa. In general, men tend to prefer BMI 17–20 in women; it
correspond, usually, to women of 18–20 yers old.

In Fan et al., 2005, the main visual cue to male body attractiveness is VHI
(volume-to-height index), i.e., the ratio of the volume in liters and squared height
in m2. Mautz et al., 2013, claim that women prefer taller men with higher SHR
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and FPL (flaccid penis length), but attractiveness increased quickly until FPL
reached 7:6 cm and then began to slow down. Stulp et al., 2013, found that on
average among speed-daters, women choose 25 cm taller men, while men choose
only 7 cm shorter women, resulting in suboptimal (19 cm) pair formation.

In terms of somatotype, women prefer mesomorphs (muscular men) followed
by ectomorphs (lean men) and endomorphs (heavily-set men).

In terms of BWH (bust-waist-hips), the average Playboy centrifold 1955–1968
has (90:8; 58:6; 89:3) cm, close to the ideal hourglass figures (90; 60; 90) cm and
(36; 24; 36) inch. But dietitians advocate waistline 80–85 cm and at most half-
height.

In conversation, women are better at detecting mismatch between meaning
and prosody (intonation and rhythm of speech), but worse at vocabulary’s variety.
Men’s vocal cords are larger and their vocal tracts are longer than women’s; so,
they speak about an octave lower. In English, women use less nonstandard forms
and often use different color terms and descriptive phrases from men. Pirahã
(Amazon’s tribe) men use larger articulatory space and, say, only men use “s”.

Used as obesity indices, WC, ICODWC/height and (proposed by Krakauer–
Krakauer, 2012) ABSIDWC/(BMI

2
3 height

1
2 ) are better predictors of mortality

than BMI.
• Sagittal abdominal diameter

Sagittal abdominal diameter (SAD) is the distance between the back and the
highest point of the abdomen, measured while standing. It is a measure of visceral
obesity. Normally, SAD should be under 25 cm. SAD> 30 cm correlates to
insulin resistance and increased risk of cardiovascular and Alzheimer’s diseases.

A related measurement is SAH, the abdominal height as measured in the
supine position. Inter-recti distance (IRD) is the width of the linea alba (a fibrous
structure that runs down the midline of the abdomen).

• Body distances for clothes
Humans lost body hair around 1 Ma ago and began wearing clothes 


0:17 Ma ago.
The European standard EN 13402 “Size designation of clothes” defined,

in part EN 13402-1, a standard list of 13 body dimensions (measured in cm)
together with a method for measuring each one on a person. These are: body
mass, height, foot length, arm length, inside leg length, and girth for head, neck,
chest, bust, under-bust, waist, hip, hand. Examples of these definitions follow.

Foot length: horizontal distance between perpendiculars in contact with the
end of the most prominent ones, toe and part of the heel, measured with the sub-
ject standing barefoot and the weight of the body equally distributed on both legs.

Arm length: distance from the armscye/shoulder line intersection (acromion),
over the elbow, to the far end of the prominent wrist bone (ulna), with the
subject’s right fist clenched and placed on the hip, and with the arm bent at 90ı.

Inside leg length: distance between the crotch and the soles of the feet,
measured in a straight vertical line with the subject erect, feet slightly apart, and
the weight of the body equally distributed on both feet.
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For clothes where a larger step size is sufficient to select the right product, the
standard also defines a letter code: XXS, XS, S, M, L, XL, XXL, 3XL, 4XL or
5XL. This code represents the bust girth for women and the chest girth for men.

Vanity sizing (or size deflation) is the marketing phenomenon of ready-to-wear
clothing of the same nominal size becoming bigger in physical size over time.

• Distance handling
Distance handling refers to the training of gun dogs (to assist hunters in

finding and retrieving game) or sport dogs (for canine agility courses) where a
dog should be able to work away from the handler.

In agility training, the lateral distance is the distance that the dog maintains
parallel to the handler, and the send distance is the distance that the dog can be
sent straight away from the handler.

• Racing distances
In Racing, length is an informal unit of distance to measure the distance

between competitors; for example, in boat-racing it is the average length of a
boat.

The horse-racing distances and winning margins are measured in terms of
the horses (or lengths, i.e., lengths of a horse, 
 8 feet (2:44 m), ranging from
half the length to the distance, i.e., more than 20 lengths. The length is often
interpreted as a unit of time equal to 1

5
second. Smaller margins are: short-head,

head, or neck. A distance flag is a flag held at a distance pole in a racecourse.
The distances a horse travels without stops (15–25 km) and it travels in a day

(40–50 km) or hour (6 km) were used as Tatar and Persian units of length.
• Triathlon race distances

The Ironman distance (or Ultra distance) started in Hawaii, 1978, is a
3:86 km swim followed by a 180 km bike and a 42:195 km (marathon distance)
run.

The international Olympic distance started in Sydney, 2000, is 1:5 km (metric
mile), 40 km and 10 km of swim, cycle and run, respectively.

Next to it are the Sprint distance 0:75, 20, 5 km, the Long Course (or Half
Ironman) 1:9, 90, 21:1 km and the ITU long distance 3, 80, 20 km.

• Running distances
In Running, usually, sprinting is divided into 100, 200, 400m, middle distance

into 800, 1500, 3000 m and long distance into 5, 10 km.
LSD (long slow distance) is a is a form of aerobic endurance training in

running and cycling, in which distances longer, than those of races, are covered,
but at a slower pace.

Fartlek (or speed play) is an approach to distance-running training involving
variations of pace and aimed at enhancing the psychological aspects of
conditioning.

Race-walking is divided into 10, 20, 50 km, and relay races into
4 � 100; 4 � 200; 4 � 300; 4 � 400 m. Distance medley relay is made up of
1200; 400; 800; 1600m legs.
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Besides track running, runners can compete on a measured course, over an
established road (road running), or over open or rough terrain (cross-country
running).

Roughly, 4 units of running distance are time-equivalent to 1 unit of swimming
distance. Also, one have to walk about twice the distance to burn the same amount
of calories as running it. Running workout times should be multiplied by 3:5
when aiming for a similar training effect from cycling. A multiple of 0.75–1
should be used for an indoor rowing-to-running ratio.

• Distance swimming
Distance swimming is any swimming race > 1:5 km; usually, within

24–59 km.
DPS (distance per swim stroke) is a metric of swimming efficiency used in

training. In Rowing, run is the distance the boat moves after a stroke.
• Distance jumping

The four Olympic jumping events are: long jump (to leap horizontally as far
as possible), triple jump (the same but in a series of three jumps), high jump
(to reach the highest vertical distance over a horizontal bar), and pole vault (the
same but using a long, flexible pole).

The world’s records, as in 2013: 8:95 , 18:29 , 2:45, and 6:14 m, respectively.
• Distance throwing

The four Olympic throwing events are: shot put, discus, hammer, and javelin.
The world’s records, as in 2013: 23:12 , 74:08 , 86:74 m, and 98:48 m,

respectively.
As in 2013, the longest throws of an object without any velocity-aiding feature

are 427:2 m with a boomerang and 406:3 m with a flying ring Aerobie.
Distance casting is the sport of throwing a fishing line with an attached sinker

(usually, on land) as far as possible.
Darts is a sport and a pub game in which darts are thrown at a dartboard

(circular target) fixed to a wall so that the bullseye is 172:72 cm from the floor.
The oche (line behind which the throwing player must stand) is 236:86 cm from
the dartboard.

• Archery target distances
FITA (Federation of International Target Archery, organizing world champi-

onships) target distances are 90; 70; 50; 30 m for men and 70; 60; 50; 30 m for
women, with 36 arrows shot at each distance. Farthest accurate shot is 200 m.

In Archery, brace height (or fistmele) is the distance from the string, when the
bow is strung, to the pivot point of the bow’s grip, i.e., the handle of a bow.

• Bat-and-ball game distances
The best known bat-and-ball games are bowling (cricket) and baseball. In

cricket, the field position of a player is named roughly according to its polar
coordinates: one word (leg, cover, mid-wicket) specifies the angle from the
batsman, and this word is preceded by an adjective describing the distance from
the batsman. The length of a delivery is how far down the pitch (central strip of
the cricket field) towards the batsman the ball bounces.
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This distance is called deep (or long), short and silly distance if it is,
respectively, farther away, closer and very close to the batsman. The distance
further or closer to an extension of an imaginary line along the middle of the
pitch bisecting the stumps, is called wide or fine distance, respectively.

In baseball, a pitch is the act of throwing a baseball toward home plate to start
a play. The standard professional pitching distance, i.e., the distance between the
front (near) side of the pitching rubber, where a pitcher start his delivery, and
home plate is 60 feet 6 inches (
 18:4m). The distance between bases is 90 feet.

• Three-point shot distance
In basketball, the three-point line is an arc at a set radius, called three-point

shot distance, from the basket. A field goal made from beyond this line is worth
three points. In international basketball, this distance is 6:25 m.

Goals in indoor soccer are worth 1; 2 or 3 points depending upon distance.
• Football distances

In association football (or soccer), the average distance covered by a player
in a men’s professional game is 9–10 km. It consists of about 36% jogging, 24%
walking, 20% cruising submaximally, 11% sprinting, 7% moving backwards
and 2% moving in possession of the ball. The ratio of low- to high-intensity
exercise is about 2.2:1 in terms of distance, and 7:1 in terms of time.

In American football, one yard means usual yard (0:9144 m) of the distance
in the direction of one of the two goals. A field is 120 yards long by 53:3 yards
wide. A team possessing the ball should advance at least the distance (10 yards)
in order to get a new set of (4 or 3) downs, i.e., periods from the time the ball is
put into play to the time the play is whistled over by the officials. Yardage is the
amount of yards gained or lost during a play, game, season, or career.

• Golf distances
In golf, carry and run are the distances the ball travels in the air and once it

lands.
The golfer chooses a golf club, grip, and stroke appropriate to the distance.

The drive is the first shot of each hole made from the area of tees (peg markers)
to long distances. The approach is used in long- to mid-distance shots.

The chip and putt are used for short-distance shots around and, respectively,
on or near the green. The maximum distance a typical golfer can hit a ball with
a particular club is the club’s hitting distance.

A typical par (standard score) 3; 4; 5 holes measure 229, 230–430, �431 m.
The greatest recorded drive distance, carry, shot with one hand are 471; 419;
257 m.

Some manufacturers stress the large range of a device in the product name,
say, Ultimate Distance golf balls (or softball bates, spinning reels, etc.).

• Fencing distances
In combative sports and arts, distancing is the appropriate selection of the

distance between oneself and a combatant throughout an encounter.
For example, in fencing, the distance is the space separating two fencers,

while the distance between them is the fencing measure.
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A lunge is a long step forward with the front foot. A backward spring is a
leap backwards, out of distance, from the lunge position.

The following five distances are distinguished: open distance (farther than
advance-lunge distance), advance-lunge distance, lunging distance, thrusting
distance and close quarters (closer than thrusting distance).

In Japanese martial arts, maai is the engagement distance, i.e., the exact
position from which one opponent can strike the other, after factoring in the time
it will take to cross their distance, angle and rhythm of attack. In kendo, there
are three maai distances: to-ma (long distance), chika-ma (short distance) and, in
between, itto-ma 
 2 m, from which only one step is needed in order to strike.

• Distance in boxing
The distance is boxing slang for a match that lasts the maximum number

(10 or 12) of scheduled rounds. The longest boxing match (with gloves) was
on April 6–7, 1893, in New Orleans, US: Bowen and Burke fought 110 rounds
for 7:3 h.

• Soaring distances
Soaring is an air sport in which pilots fly unpowered aircraft called gliders

(or sailplanes) using currents of rising air in the atmosphere to remain airborne.
The Silver Distance is a 50 km unassisted straight line flight. The Gold

and Diamond Distance are cross-country flights of 300 km and over 500 km,
respectively.

Possible courses—Straight, Out-and-Return, Triangle and 3 Turnpoints
Distance—correspond to 0; 1; 2 and 3 turnpoints, respectively.

Using open class gliders, the world records in free distance, in absolute
altitude and in gain of height are: 3008:8 km (by Olhmann and Rabeder, 2003),
15;460 m (by Fossett and Enevoldson, 2006) and 12;894 m (by Bikle, 1961).
The distance record with a paraglider is 501:1 km (by Hulliet, 2008).

Eustace jumped in 2014 from a balloon at 41;419 m, setting world records
in exit altitude and total free fall distance. But, since Eustace used a stabilizing
drogue parachute while Baumgartner, 2012, did not, their free fall distance and
vertical speed records are in different categories. A stewardess Vesna Vulović
survived in 1972 a fall of 10 km, when JAT Flight 367 was brought down by
explosives.

• Aviation distance records
Absolute general aviation world records in flight distance without refueling

and in altitude are: 41;467:5 km by Fossett, 2006, and 37;650 m by Fedotov,
1977.

Distance and altitude records for free manned balloons are, respectively:
40;814 km (by Piccard and Jones, 1999) and 41;425 m (by Eustace, 2014).

The general flight altitude record is 112;010 m by Binnie, 2004, on a rocket
plane.

The longest (13;804 km during 16 h 55 min) nonstop scheduled passenger
route in 2015 was Qantas Flight 8 from Dallas to Sydney.

The Sikorsky prize (US $250;000) will be awarded for the first flight of a
human-powered helicopter which will reach an altitude of 3 m, stay airborne for
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at least 1 min remaining within 10m�10m square. In 2012, a craft (32:2 kg) by
a team at the University of Maryland flew 50 s at 61 cm up.

• Amazing greatest distances
Examples of such distances among Guinness world records are the greatest

distances:

– being fired from a cannon (59 m),
– walked unsupported on tightrope (130 m),
– run on a static cycle in 1 min (2:04 km),
– moon-walked (as Michael Jackson) in 1 h (5:125 km),
– covered three-legged (the left leg of one runner strapped to the right leg of

another runner) in 24 h (33 km),
– jumped with a pogo stick (37:18 km),
– walked with a milk bottle balanced on the head (130:3 km),
– covered by a car driven on its side on two wheels (371:06 km),
– hitchhiked with a fridge (1650 km).

Amazing race The 2904 is to drive the 2904 miles from New York City to San
Francisco for $2904 including the vehicle, fuel, food, tolls, repairs and tickets.

• Isometric muscle action
An isometric muscle action refers to exerting muscle strength and tension

without producing an actual movement or a change in muscle length.
Isometric action training is used mainly by weightlifters and bodybuilders.

Examples of such isometric exercises: holding a weight at a certain position in the
range of motion and pushing or pulling against an immovable external resistance.

29.2 Equipment Distances

• Motor vehicle distances
The safe following distance: the reglementary distance from the vehicle

ahead of the driver. For reglementary perception-reaction time of at least 2 s (the
two-second rule), this distance (in m) should be 0:56 � v, where v is the speed
(in km/h). Sometimes the three-second rule is applied. The stricter rules are used
for heavy vehicles (say, at least 50 m) and in tunnels (say, at least 150 m).

The perception-reaction distance (or thinking distance): the distance a
vehicle travels from the moment the driver sees a hazard until he applies the
brakes (corresponding to human perception time plus reaction time). Physiolog-
ically, it takes 1.3–1.5 s, and the brake action begins 0:5 s after application.

The braking distance: the distance a motor vehicle travels from the moment
the brakes are applied until the vehicle completely stops.

The (total) stopping distance: the distance a motor vehicle travels from where
the driver perceives the need to stop to the actual stopping point (corresponding
to the vehicle reaction time plus the vehicle braking capability).
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The crash distance: (or crushable length): the distance between the driver
and the front end of a vehicle in a frontal impact (or, say, between the pilot and
the first part of an airplane to impact the ground).

The skidding distance (or length of the skid mark): the distance a motor
vehicle skidded, i.e., slid on the surface of the road (from the moment of the
accident, when a wheel stops rolling) leaving a rubber mark on the road.

The cab-to-frame (or cab-to-end, CF, CE): the distance from back of a
truck’s cab to the end of its frame.

The distance to empty (or DTE) displays the estimated distance the vehicle
can travel before it runs out of fuel. The warning lamp start blinking at 80 km.

The acceleration-deceleration distance of a vehicle, say, a car or aircraft, is
(Drezner–Drezner–Vesolowsky, 2009) the cruising speed v times the travel time.
For a large origin-destination distances d, it is d C v2

2
. 1a C 1

b /, where a is the
acceleration at the beginning and �b is the deceleration at the end.

• Aircraft distances
The maximum distance the aircraft can fly without refueling is called the

maximum range if it fly with its maximum cargo weight and the ferry range if
it fly with minimum equipment.

For a warplane, the combat range is the maximum distance it can fly when
carrying ordnance, and the combat radius is a the maximum distance it can travel
from its base, accomplish some objective, and return with minimal reserves.

The FAA lowest safe altitude: 1000 feet (305 m) above the highest obstacle
within a horizontal distance of 2000 feet.

A ceiling is the maximum density altitude (height measured in terms of air
density) an aircraft can reach under a set of conditions.

A flight level (FL) is specific barometric pressure, expressed as a nominal
altitude in hundreds of feet, assuming standard sea-level pressure datum of
1013:25 hPa.

The transition altitude is the altitude above sea level at which aircraft change
from the use of altitude to the use of FL’s; in the US and Canada, it is 5500 m).

The gust-gradient distance: the horizontal distance along an aircraft flight
path from the edge of the gust (sudden, brief increase in the speed of the wind)
to the point at which the gust reaches its maximum speed.

The distance-of-turn anticipation: the distance, measured parallel to the
anticipated course and from the earliest position at which the turn will begin,
to the point of route change.

The landing distance available (LDA): the length of runway which is
declared available and suitable for the ground run of an airplane landing. The
landing roll: the distance from the point of touchdown to the point where the
aircraft can be brought to a stop or exit the runway. The actual landing distance
(ALD): the distance used in landing and braking to a complete stop (on a dry
runway) after crossing the runway threshold at 50 feet (15:24 m); it can be
affected by various operational factors. The FAA required landing distance
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(used for dispatch purposes): a factor of 1:67 of ALD for a dry runway and 1:92
for a wet runway.

The takeoff run available (TORA): the runway distance (length of runway)
declared suitable for the ground run of an airplane takeoff. The takeoff distance
available (TODA): TORA plus the length of the clearway, if provided. The
emergency distance (ED or accelerate-stop distance): the runway plus stopway
length (able to support the airplane during an aborted takeoff) declared suitable
for the acceleration and deceleration of an airplane aborting a takeoff.

The arm’s distance: the horizontal distance that an item of equipment is
located from the datum (imaginary vertical plane, from which all horizontal
measurements are taken for balance purposes, with the aircraft in level flight
attitude).

In the parachute deployment process, the parachute opening distance is
the distance the parachute system dropped from pulling to full inflation of the
canopy, while the inflation distance is measured from line stretch (when the
suspension lines are fully extended) to full inflation.

Wing’s aspect ratio (of an aircraft or bird) is the ratio AR D b2

S of the square of
its span to the area of its planform. If the length of the chord (straight line joining
the leading and trailing edges of an airfoil) is constant, then AR is length-to-
breadth aspect ratio; cf. Chap. 1. A better measure of the aerodinamic efficiency
is the wetted aspect ratio b2

Sw
, where Sw is the entire surface area exposed to

airflow.
• Ship distances

Endurance distance: the total distance that a ship or ground vehicle can be
self-propelled at any specified endurance speed.

Distance made good: the distance traveled by the boat after correction for
current, leeway (the sideways movement of the boat away from the wind) and
other errors that may be missed in the original distance measurement.

Log: a device to measure the distance traveled which is further corrected to
a distance made good. Hitherto, sea distances were measured in units of a day’s
sail.

Leg (nautical): the distance traveled by a sailing vessel on a single tack.
Berth: a safety margin to be kept from another vessel or from an obstruction.
Length overall (LOA): the maximum length of a vessels’s hull along the

waterline.
Length between perpendiculars (LPP): the length of a vessel along the water-

line from the main bow perpendicular member to the main stern perpendicular
member.

Freeboard: the height of a ship’s hull above the waterline. Draft (or draught):
the vertical distance between the waterline and the keel (bottom of the hull).

GM-distance (or metacyclic height) of a ship: the distance between its center
of gravity G and the metacenter, i.e., the projection of the center of buoyancy
(the center of gravity of the volume of water which the hull displaces) on the
centerline of the ship as it heels. This distance, 1–2 m, determines ship’s stability.
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Distance line (in Diving): a marker (say, 50 m of thin polypropylene line) of
the shortest route between two points. It is used, as Ariadne’s thread, to navigate
back to the start in conditions of low visibility, water currents or penetration
diving into a space (cave, wreck, ice) without vertical ascent back.

• Distance-to-fault
In Cabling, DTF (distance-to-fault) is a test using time or frequency domain

reflectometers to locate a fault, i.e., discontinuity caused by, say, a damaged
cable, water ingress or improperly installed/mated connectors.

The amount of time a pulse (output by the tester into the cable) takes for the
signal (reflected by a discontinuity) to return can be converted to distance along
the line and provides an approximate location of the reflection point.

Protective distance relays respond to the voltage and current. The impedance
(their ratio) per km being constant, these relays respond to the relay-fault
distance.

• Distances in Forestry
In Forestry, the diameter at breast height (d.b.h.) is a standard measurement

of a standing tree’s diameter taken at 4:5 feet (
 1:37 m) above the ground. The
diameter at ground line (d.g.l.) is the diameter at the estimated cutting height.
The diameter outside bark (d.o.b.) is a measurement in which the thickness of
the bark is included, and d.i.b. is a measurement in which it is excluded.

The crown height is the vertical distance of a tree from ground level to the
lowest live branch of the crown. The merchantable height is the point on a tree
to which it is salable. A log is a length of tree suitable for processing into a wood
product.

Optimum road spacing is the distance between parallel roads that gives the
lowest combined cost of skidding (log dragging) and road construction costs per
unit of log volume. The skid distance is the distance logs are dragged.

A yarder is a piece of equipment used to lift and pull logs by cable from the
felling site to a landing area or to the road’s side. The yarding distance is the
distance from which the yarder takes logs. The average yarding distance is the
total yarding distance for all turns divided by the total number of turns.

A spar tree is a tree used as the highest anchor point in a cable logging setup.
A skyline is a cableway stretched between two spar trees and used as a track for
a log carriage. The distance spanned by a skyline is called its reach.

Understory is the area of a forest which grows at the lowest height level
between the forest floor and the canopy (layer formed by mature tree crowns and
including other organisms). Perhaps, a half of all life on Earth could be found in
canopy. The emergent layer contains a small number of trees which grow above
the canopy.

• Distance in Military
In the Military, the term distance usually has one the following meanings:
the space between adjacent individual ships or boats measured in any direction

between foremasts;
the space between adjacent men, animals, vehicles, or units in a formation

measured from front to rear;
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the space between known reference points or a ground observer and a target,
measured in m (artillery), or in units specified by the observer. This distance
along an imaginary straight line from the spotter is called observer-target
distance.

In amphibious operations, the distant retirement area is the sea area located
to seaward of the landing area, and the distant support area is the area located in
the vicinity of the landing area but at considerable distance seaward of it.

Strategic depth refers to the distances between the front lines and the
combatants’ industrial and population core areas.

In military service, a bad distance of the troop means a temporary intention
to extract itself from war service. This passing was usually heavily punished and
equated with that of desertion (an intention to extract itself durably).

In US military slang, BFE (Big Fucking Empty) is an extremely distant or
isolated deployment or location; used mostly about the disgust at the distance or
remoteness. Also, a klick means a distance of 1 km.

• Interline distance
In Engineering, the interline distance is the minimum distance permitted

between any two buildings within an explosives operating line, in order to protect
buildings from propagation of explosions due to the blast effect.

• Scaled distance
The scaled distance (SD) is the parameter used to measure the level of vibra-

tion from a blast, when effects of the frequency characteristics are discounted.
The minimum safe distance from a blast to a monitoring location is SD�p

W,
where W denotes the maximum per delay (instantaneous) charge weight.

• Standoff distance
The standoff distance is the distance of an object from the source of an

explosion (in Warfare), or from the delivery point of a laser beam (in laser
material processing). Also, in Mechanics and Electronics, it is the distance
separating one part from another; for example, for insulating (cf. clearance
distance), or the distance from a noncontact length gauge to a measured material
surface.

• Buffer distance
In Nuclear Warfare, the horizontal buffer distance is the distance which

should be added to the radius of safety in order to be sure that the specified
degree of risk will not be exceeded. The vertical buffer distance is the distance
which should be added to the fallout safe-height of a burst, in order to determine
a desired height of burst so that militari significant fallout will not occur.

The term buffer distance is also used more generally as, for example, the
buffer distance required between sister stores or from a high-voltage line.

Cf. clearance distance and, in Chap. 25, setback distance.
• Offset distance

In Nuclear Warfare, the offset distance is the distance the desired (or actual)
ground zero is offset from the center of the area (or point) target.
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In Computation, the offset is the distance from the beginning of a string to
the end of the segment on that string. For a vehicle, the offset of a wheel is the
distance from its hub mounting surface to the centerline of the wheel.

The term offset is also used for the displacement vector (Chap. 24) specifying
the position of a point or particle in reference to an origin or to a previous
position.

• Range of ballistic missile
Main ranges of ballistic missiles are short (at most 1000 km), medium

(1000–3500 km), long (3500–5500 km) and intercontinental (at least 5500 km).
Tactical and theatre ballistic missiles have ranges 150–300 and 300–3500 km.

• Proximity fuse
The proximity fuse is a fuse that is designed to detonate an explosive

automatically when close enough to the target.
• Sensor network distances

The stealth distance (or first contact distance): the distance traveled by a
moving object (or intruder) until detection by an active sensor of the network (cf.
contact quasi-distances in Chap. 19); the stealth time is the corresponding time.

The first sink contact distance: the distance traveled by a moving object (or
intruder) until the monitoring entity can be notified via a sensor network.

The miss distance: the distance between the lines of sight representing
estimates from two sensor sites to the target (cf. the line-line distance in
Chap. 4).

The sensor tolerance distance: a range distance within which a localization
error is acceptable to the application (cf. the tolerance distance in Chap. 25).

The actual distances between some pairs of sensors can be estimated by the
time needed for a two-way communication. The positions of sensors in space can
be deduced (cf. Distance Geometry Problem in Chap. 15) from those distances.

• Proximity sensors
Proximity (or distance) sensors are varieties of ultrasonic, laser, photoelectric

and fiber optic sensors designed to measure the distance from itself to a target. For
such laser range-finders, a special distance filter removes measurements which
are shorter than expected, and which are therefore caused by an unmodeled
object. The blanking distance is the minimum range of an ultrasonic proximity
sensor.

The detection distance is the distance from the detecting surface of a sensor
head to the point where a target approaching it is first detected. The maximum
operating distance is its maximum detection distance from a standard modeled
target, disregarding accuracy. The stable detection range is the detectable
distance range in which a standard detected object can be stably detected with
respect to variations in the operating ambient temperature and power supply.

The resolution is the smallest change in distance that a sensor can detect. The
span is the working distance between measurement range endpoints over which
the sensor will reliably measure displacement. The target standoff is the distance
from the face of the sensor to the middle of the span.
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Distance constant of a metereological sensor is the length of fluid flow past
required to cause it to respond to 63:2% (i.e., 1 � 1

e ) of a step change in speed.
• Precise distance measurement

The resolution of a TEM (transmission electronic microscope) is about 0:2 nm
(2 � 10�10 m). This resolution is 1000 times greater than a light microscope
and about 500;000 times greater than that of a human eye which is 576 mega
pixel. However, only nanoparticles can fit in the vision field of an electronic
microscope.

The methods, based on measuring the wavelength of laser light, are used to
measure macroscopic distances nontreatable by an electronic microscope. But
the uncertainty of such methods is at least the wavelength of light, say, 633 nm.

The recent adaptation of Fabry–Perot metrology (measuring the frequency
of light stored between two highly reflective mirrors) to laser light permits the
measuring of relatively long (up to 5 cm) distances with an uncertainty of only
0:01 nm.

The main devices used for low accuracy distance measurement are the rulers,
engineer’s scales, calipers and surveyor’s wheels.

• Laser distance measurement
Lasers measure distances without physical contact. They allow for the most

sensitive and precise length measurements, for extremely fast recording and for
the largest measurement ranges. The main techniques used are as follows.

Triangulation (cf. laterations) is useful for distances from 1 mm to many
km. Pulse measurements, used for large distances, measure the time of flight
of a laser pulse from the device to some target and back. The phase shift
method uses an intensity-modulated laser beam. Frequency modulation methods
involve frequency-modulated laser beams. Interferometers allow for distance
measurements with an accuracy which is far better than the wavelength of the
light used.

The main advantage of laser distance measurement is that laser light has a
very small wavelength, allowing one to send out a much more concentrated probe
beam and thus to achieve a higher transverse spatial resolution.

• Radio distance measurement
DME distance measuring equipment) is an air navigation technology that

measures distances by timing the propagation delay of UHF signals to a
transponder (a receiver-transmitter that will generate a reply signal upon proper
interrogation) and back. DME will be phased out by global satellite-based
systems: GPS (US), GLONASS (Russia), BeiDou (China) and Galileo (EU).

The GPS (Global Positioning System) is a radio navigation system which
permits one to get her/his position on the globe with accuracy of 10m. It consists
of 32 satellites and a monitoring system operated by the US Department of
Defense. The nonmilitary part of GPS can be used by the purchase of an adequate
receiver.

The GPS pseudo-distance (or pseudo-range) is an approximation (since the
receiver clock is not so perfect as the clock of a satellite) of the distance between
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a satellite and a GPS receiver by the travel time of a satellite time signal to a
receiver multiplied by the propagation time of the radio signal.

The receiver uses trilatelation in order to calculate its position (latitude,
longitude, altitude) and speed by solving a system of equations using its pseudo-
distances from 4 to 7 satellites and their positions. Cf. radio distances in
Chap. 25.

• Laterations
Lateration (or ranging) is the determination of the distance from one location

or position to another one. Usually, the term ranging is used for moving objects,
while surveying is used for static terrestrial objects. Active ranging systems
operate with unilateral transmission and passive reflections, such as SONAR
(SOund Navigation And Ranging), RADAR (RAdio Detection) and LIDAR
(Light Detection).

A rangefinder is a device for measuring distance from the observer to a target.
Among applications are surveying, navigation, ballistics and photography.

Triangulation is the process of locating a point P as the third point of a triangle
with one known side (say, ŒA;B� of length l) and two known angles (say, †PAB D
˛ and †PBA D ˇ). In R

2, the perpendicular distance between P (say, a ship) and
ŒA;B� (say, a shore) is l sin˛ sinˇ

sin .˛Cˇ/ : Cf. point-line distance in Chap. 4.
Technically more complicated, trilateration is locating a (possibly, moving)

object P, using only its distances to known locations A1;A2 and A3 (for example,
to stations, beacons or satellites), as the overlap of 2D or 3D spheres, centered on
them and having radii d.P;A1/; d.P;A2/; d.P;A3/, respectively. Using additional
stations, as in GPS, permits double-checking of the measurements. Cf. the metric
basis in Chap. 1.

More accurate generally, multilateration is locating a moving object P, using
only two pairs .A1;A2/, .B1;B2/ of known locations, as the intersection of two
curves defined by the relative distances d.P;A1/ � d.P;A2/ and d.P;B1/ �
d.P;B2/, respectively.

• Transmission distance
The transmission distance is a range distance: for a given signal trans-

mission system (fiber optic cable, wireless, etc.), it is the maximal distance the
system can support within an acceptable path loss level.

For a given network of contact that can transmit an infection (or, say, an
idea with the belief system considered as the immune system), the transmission
distance is the path metric of the graph, in which edges correspond to events
of infection and vertices are infected individuals. Cf. forward quasi-distance in
Chap. 22.

• Delay distance
The delay distance is a general term for the distance resulting from a given

delay. For example, in a meteorological sensor, the delay distance is the length
of a column of air passing a wind vane, such that the vane will respond to 50%
of a sudden angular change in wind direction. When the energy of a neutron
is measured by the delay (say, t) between its creation and detection, the delay
distance is vt � D, where v is its velocity and D is the source-detector distance.
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In evaluations of visuospatial working memory (when the subjects saw a dot,
following a 10-, 20-, or 30-s delay, and then drew it on a blank sheet of paper),
the delay distance is the distance between the stimulus and the drawn dot.

• Master-slave distance
Given a design (say, remote manipulation, surveillance, or data transmission

system) in which one device (the master) fully controls one or more other devices
(the slaves), the master-slave distance is a measure of distance between the
master and slave devices. Cf. also Sect. 18.2.

• Flow distance
In a manufacturing system, a group of machines for processing a set of jobs is

often located in a serial line along a path of a transporter system.
The flow distance from machine i to machine j is the total flow of jobs from i

to j times the physical distance between machines i and j.
• Single row facility layout

The SRFLP (or single row facility layout problem) is the problem of
arranging (finding a permutation of) n departments (disjoint intervals) with
given lengths li on a straight line so as to minimize the total weighted distancePn�1

iD1
Pn

iDjC1 wijdij between all department pairs. Here wij is the average daily
traffic between two departments i and j, and dij is their centroid distance.

Among applications of SRFLP, there are arranging machines in a manufactur-
ing system, rooms on a corridor and books on a shelf.

• Distance hart
In Technical Drawing, the distance hart means the distance from the center

(the heart) of an object, as, for example, the distance hart of the toilet seat to the
wall.

The center-to-center distance (or on-center, O.C.) is the distance between
the centers of two adjacent members (say, columns or pillars). Cf. centroid
linkage, centroid distance in Chaps. 17, 19 and center gear distance.

• Push distance
Precise machining of bearing rings should be preceded by part centering. In

such a centering system, the push distance is the distance the slide must move
towards the part in order to push it from its off-center position to the center of
rotation.

• Engine compression distance
Piston motors convert the compressed air energy to mechanical work through

motion. Engine compression distance (or compression height) is the distance
from the centerline of the wrist pin to the top deck of the piston.

• Shift distance
A penetrometer is a device to test the strength of a material, say, soil. The

penetrometer (usually cone-shaped) is pressed against material and the depth of
the resulting hole is measured. The shift distance (or friction-bearing offset) is
the distance between the cone’s base and the mid-height of the friction sleeve
above it.
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• Throat distance
The swing (size) of a drill/boring press is twice the throat distance, the

distance from the center of the spindle to the column’s edge.
• Collar distance

In Mining, the collar distance is the distance from the top of the powder
column to the collar of the blasthole, usually filled with stemming.

• Quenching distance
Quenching is the rapid cooling of a workpiece; the quenching distance is the

diameter of smallest hole a flame can travel through.
The run-up length is the distance between initiation of a flame and onset of

detonation (supersonic combustion wave). Markstein number is the Markstein
length, measuring the effect of curvature on a flame, divided by the flame
thickness.

• Feeding distance
Carbon steel shrinks during solidification and cooling. In order to avoid

resulting porosity, a riser (a cylindric liquid metal reservoir) provides liquid feed
metal until the end of the solidification process.

A riser is evaluated by its feeding distance which is the maximum distance
over which a riser can supply feed metal to produce a radiographically sound (i.e.,
relatively free of internal porosity) casting. The feeding length is the distance
between the riser and the furthest point in the casting fed by it.

• Etch depth
Laser etching into a metal substrate produces craters. The etch depth is the

central crater depth averaged over the apparent roughness of the metal surface.
• Approach distance

In metal cutting, the approach distance is the linear distance in the direction
of feed between the point of initial cutter contact and the point of full cutter
contact.

• Input and output distances
The input distance din of a machine M is a distance machine is moved by

the input (applied on it) force Fin. The output distance dout is a distance the
output (exerted by it) force Fout results in. The mechanical advantage of M is
Fout
Fin

D din
dout

.
For example, the effort (or resistance) distance and load distance on a lever

are the distances from the fulcrum to the resistance and load, respectively.
• Instrument distances

Examples of such distances follow.
The K-distance: the distance from the outside fiber of a rolled steel beam to

the web toe of the fillet of a rolled shape.
The end distance and edge distance are the distances from a fastener (say,

bolt, screw, rivet, nail) to the end and, respectively, edge of treated material.
The calibration distance: the standard distance used in the process of adjusting

the output or indication on a measuring instrument.
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• Gear distances
Given two meshed gears, the distance between their centers is called the center

distance. Examples of other distances used in basic gear formulas follow.
Pitch diameter: the diameter of the pitch circle (the circle whose radius is

equal to the distance from the center of the gear to the pitch point).
Addendum: the radial distance between the pitch circle and the top of the teeth.
Dedendum: the depth of the tooth space below the pitch line. It should be

greater than the addendum of the mating gear to provide clearance.
Whole depth: the total depth of a tooth space, equal to addendum plus

dedendum.
Working depth: the depth of engagement (i.e., the sum of addendums) of two

gears.
Backlash: the play between mating teeth.

• Threaded fastener distances
Examples of distances applied to nuts, screws and other threaded fasteners,

follow.
Pitch: the nominal distance between two adjacent thread roots or crests.
Ply: a single thickness of steel forming part of a structural joint.
Grip length: the total distance between the underside of the nut to the bearing

face of the bolt head.
Effective nut radius: the radius from the center of the nut to the point where

the contact forces, generated when the nut is turned, can be considered to act.
Effective diameter (or pitch diameter): the diameter of an imaginary cylinder

coaxial with the thread which has equal metal and space widths.
Virtual effective diameter: the effective diameter of a thread, allowing for

errors in pitch and flank angles. Nominal diameter: the external diameter of the
threads.

Major and minor diameters are the diameters of imaginary cylinders parallel
with the crests of the thread (i.e., the distance, crest-to-crest for an external or
root-to-root for an internal thread), or, respectively, just touching the roots of an
external (or the crests of an internal) thread.

Thread height: the distance between thread’s minor and major diameters
measured radially. Thread length: the length of the portion of the fastener with
threads.

• Distance spacer
A distance spacer is a device for holding two objects at a given distance

from each other. Examples of such components are: male-female distance bolt,
distance bush, distance ring, distance plate, distance sleeve, distance finger,
distance gauge.

• Sagging distance
The brazeability of brazing sheet materials is evaluated by their sagging

distance, i.e., the deflection of the free end of the specimen sheet after brazing.
• Haul distance

In Engineering, the haul distance is the average distance material is trans-
ported from where it originates to where it is deposited.
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• Deflection
In Engineering, deflection is the degree, in distance or angle, to which a

structural part is displaced under a load/stress.
In general, it can be a specified amount of deviation, say, the distance an

elastic body or spring moves when subjected to a force, the amount by which
a propagating wave or a projectile’s trajectory is bent, and so on.

• Distances in Structural Engineering
Examples of such distances related to superstructures (mainly, bridges and

buildings) follow; cf. also bar-and-joint framework in Chap. 15.
For a building, its length is the distance between out ends of wall steel lines,

width is the distance from outside of eave strut (piece spanning columns at roof’s
edge) of one sidewall to outside of eave strut of the opposite sidewall, height is
the distance from finished floor level to the top outer point of the eave strut.

A bay refers the space between architectural elements. Bay depth is the
distance from the building’s corridor wall to the outside window. End bay length
is the distance from outside of the outer flange (longitudinal part of a beam)
of endwall columns to centerline of the first interior frame column. Interior bay
length is the distance between the centerlines of two adjacent interior main frame
columns.

Clear height (or head room) is the vertical distance from the floor to the
bottom of the lowest hanging overhead obstruction, allowable for passage.

A beam is a structural element that is capable of withstanding load primarily
by resisting bending; girder is a support beam used in construction. A truss is a
framed or jointed structure designed to act as a beam while each of its members
is primarily subjected to longitudinal stress only. Given a truss or girder, its
effective length is the distance between the points of support, effective depth
is the perpendicular distance between the gravity lines, and economic depth is
the depth, which will give satisfactory results from all standpoints and involving
the least expenditure of money for properly combined first cost, operation,
maintenance and repairs.

Effective span is the distance between supports (centres of bearings) in any
structure. The bearing distance is the length of a beam between its bearing
supports.

For a bridge, its effective span is the center-to-center distance of end pins,
structural height is the maximum vertical distance from the uppermost point
down to the lowest visible point, while the deck height is the maximum vertical
distance from the deck (road bed) down to the ground or water surface.

Clear headway: the vertical distance from the lowest part of the superstructure
to the ground or water surface; it is the measure of height of the tallest vehicle
that could pass through the bridge. Clear waterway: the horizontal distance over
the water, measured perpendicularly to the centrelines of adjacent piers.

• Clearance distance
In Civil Engineering and Safety, a clearance distance (or separation distance,

clearance) is a physical distance or unobstructed space tolerance between the
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loading and structural gauges as, for example, the distance between the lowest
point on the vehicle and the road (ground clearance).

For vehicles going in a tunnel or under a bridge, the clearance is the difference
between the structure gauge (minimum size of tunnel or bridge) and the vehicles’
loading gauge (maximum size). A clearance distance can be prescribed by a code
or a standard between a piece of equipment containing potentially hazardous
material (say, fuel) and other objects (buildings, equipment, etc.) and the public.
Or, say, no vehicle should parked nearer than 15 feet (4:6 m) from a fire hydrant.

In general, clearance refers to the distance to the nearest “obstacle” as defined
in a context. It can be either a tolerance (the limit of an acceptable unplanned
deviation from the nominal or theoretical dimension), or an allowance (planned
deviation). Cf. buffer distance and setback distance in Chap. 25.

• Creepage distance
The creepage distance is the shortest path distance along the surface of an

insulation material between two conductive parts, while the shortest (straight
line) distance between them is clearance distance; cf. the general term above.

• Spark distance
The simplest way of measuring high voltages is by their spark distance (or

maximum spark length). It is the length d of the gap between two electrodes
in a gas, at which given voltage V becomes the breakdown voltage, i.e., starts
a discharge or electric arc (a spark jumps over). Spark distance depends on the
pressure p of gas and many other factors. The Paschen’s law estimate V as a
function of pd.

• Humidifier absorption distance
The absorption distance of a (water centrifugal atomizing) humidifier is the

list of minimum clearance dimensions needed to avoid condensation.
• Spray distance

The spray distance is the distance maintained between the nozzle tip of a
thermal spraying gun and the surface of the workpiece during spraying.

• Protective action distance
The protective action distance is the distance downwind from an incident

(say, a spill involving dangerous goods which are considered toxic by inhalation)
in which persons may become incapacitated.

The screening distance in a forest fire is the downwind distance which should
be examined for possible smoke-sensitive human sites. The spot fire distance is
the maximum distance between a source of firebrands (a group of burning trees)
and a potential spot fire (a fire started by flying sparks or embers from the main
fire). The response distance is the distance to fire traveled by fire companies.

The notion of mean distance between people and any hazardous event
operates also at a large scale: expanding the living area of human species
(say, space colonization) will increase this distance and prevent many human
extinction scenarios.

• Fringe distance
Usually, the fringe distance is the spacing between fringes, for example,

components into which a spectral line splits in the presence of an electric
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or magnetic field (Stark and Zeeman effects, respectively, in Physics) or dark
and light regions in the interference pattern of light beams (cf., in Chap. 24,
Pendellösung fringes in dynamical diffraction distances).

For an interferometer, the fringe distance is the value 	
2 sin˛ , where 	 is the

laser wavelength and ˛ is the beam angle, while the shear distance is the spacing
between two, due to the thickness of the plate, reflections.

In Image Analysis, there is also the fringe distance (Brown, 1994) between
binary images (cf. pixel distance in Chap. 21).

• Ranged weapon
A ranged (or distance) weapon is any weapon that can harm targets at

distances greater than hand-to-hand distance; it can be thrown or used to fire
projectiles at targets. A weapon intended to be used in hand-to-hand combat is
called a melee weapon. But spears, knives, daggers can be used for both throwing
and stabbing.

The maximum effective range of a weapon is the greatest distance fired
and able to produce casualties or damage consistently. The effective weapon
distance is the actual distance (as opposed to maximal range) over which it is
usually deployed. For given game and rifle type, the effective hunting distance
(or killing distance) is the maximal range of a “clean kill.”

• Shooting distance
The shooting distance (or shot distance) is the distance achieved by, say, a

bullet or a golf ball after a shot.
The range of a Taser projectile delivering an incapacitating shock is called the

shocking distance. Longest confirmed sniper kill at 2016 was 2475 m.
For a shooting range, firing distance is the distance between the firing line and

the target line. In shooting incident reconstruction, firing distance (or muzzle-to-
target distance) is the distance from the muzzle of the firearm to the victim’s
clothing.

In photography, the shooting distance is the camera-subject distance.
• Lens distances

A convex lens is converging/magnifying; a concave one is diverging/reducing.
The focal distance (effective focal length): the distance from the optical center

of a lens (or a curved mirror) to the focus (to the image). Its reciprocal measured
in m is called the diopter and is used as a unit of measurement of the (refractive)
power of a lens; roughly, the magnification power of a lens is 1

4
of its diopter.

The lens effective diameter is twice the longest lens radius measured from its
center to the apex of its edge. The back focal length is the distance between the
rear surface of a lens and its image plane; the front focal length is the distance
from the vertex of the first lens to the front focal point.

Depth of field (DoF): the distance in the object plane (in front of and behind
the object) over which the system delivers an acceptably sharp image, i.e., the
region where blurring is tolerated at a particular resolution.

The depth of focus: the range of distance in the image plane (the eyepiece,
camera, or photographic plate) over which the system delivers an acceptably
sharp image.
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The vertex depth (or sagitta) is the depth of the surface curve on a lens mea-
sured over a specific diameter. Given a circle, the apothem is the perpendicular
distance from the midpoint of a chord to the circle’s center; it is the radius minus
the sagitta.

The working distance: the distance from the front end of a lens system to the
object when the instrument is correctly focused; it is used to modify the DoF. For
a flashlight, it is the distance at which the illuminance (maximum light falling on
a surface) would fall to 0:25 lux as, say, a full moon on a clear night.

The register distance (or flange distance): the distance between the flange
(protruding rim) of the lens mount and the plane of the film image.

The conjugate image distance and conjugate object distance: the distances
along the optical axis of a lens from its principal plane to the image and object
plane, respectively. When a converging lens is placed between the object and the
screen, the sum of the inverses of those distances is the inverse focal distance.

A circle of confusion (CoC) is an optical spot caused by a cone of light rays
from a lens not coming to a perfect focus; in photography, it is the largest blur
circle that will still be perceived as a point when viewed at a distance of 25 cm.

The close (or minimum, near) focus distance: the closest distance to which a
lens can approach the subject and still achieve focus.

The hyper-focal distance: the distance from the lens to the nearest point
(hyper-focal point) that is in focus when the lens is focused at infinity; beyond
this point all objects are well defined and clear. It is the nearest distance at which
the far end of the depth of field stretches to infinity (cf. infinite distance).

Eye relief : the distance an optical instrument can be held away from the eye
and still present the full field-of-view. The exit pupil width: the width of the cone
of light that is available to the viewer at the exact eye relief distance.

• Distances in Stereoscopy
A method of 3D imaging is to create a pair of 2D images by a two-camera

system.
The convergence distance is the distance between the baseine of the camera

center to the convergence point where the two lenses should converge for good
stereoscopy. This distance should be 15–30 times the intercamera distance.

The intercamera distance (or baseline length, interocular lens spacing) is the
distance between the two cameras from which the left and right eye images are
rendered.

The picture plane distance is the distance at which the object will appear on
the picture plane (the apparent surface of the image). The window is a masking
border of the screen frame such that objects, which appear at (but not behind
or outside) it, appear to be at the same distance from the viewer as this frame.
In human viewing, the picture plane distance is about 30 times the intercamera
distance.

• Distance-related shots
A film shot is what is recorded between the time the camera starts (the

director’s call for “action”) and the time it stops (the call to “cut”).
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The main distance-related shots (camera setups) are:

– establishing shot: a shot, at the beginning of a sequence which establishes the
location of the action and/or the time of day;

– long shot: a shot taken from at least 50 yards (45:7 m) from the action;
– medium shot: a shot from 5 to 15 yards (4.6–13.7 m), including a small entire

group, which shows group/objects in relation to the surroundings;
– close-up: a shot from a close position, say, the actor from the neck upwards;
– two-shot: a shot that features two persons in the foreground;
– insert: an inserted shot (usually a close up) used to reveal greater detail.

29.3 Miscellany

• Range distances
In Mathematics, range is the set of values of a function or variable; specif-

ically, it means the difference (or interval, area) between a maximum and
minimum.

The range distances are practical distances emphasizing a maximum distance
for effective operation such as vehicle travel without refueling, a bullet range,
visibility, movement limit, home range of an animal, etc. For example, the range
of a risk factor (toxicity, blast, etc.) indicates the minimal safe distancing.

The operating distance (or nominal sensing distance) is the range of a device
(for example, a remote control) which is specified by the manufacturer and used
as a reference. The activation distance is the maximal distance allowed for
activation of a sensor-operated switch.

• Spacing distances
The following examples illustrate this large family of practical distances

emphasizing a minimum distance; cf. minimum distance, nearest-neighbor
distance in Animal Behavior, first-neighbor distance in Chaps. 16, 23, 24,
respectively.

The miles in trail: a specified minimum distance, in nautical miles, required to
be maintained between airplanes. Seat pitch and seat width are airliner distances
between, respectively, two rows of seats and the armrests of a single seat.

The isolation distance: a specified minimum distance required (because of
pollination) to be maintained between variations of the same species of a crop in
order to keep the seed pure (for example, 
 3 m for rice).

The legal distance: a minimum distance required by a judicial rule or
decision, say, a distance a sex offender is required to live away from school.

In a restraining order, stay away means to stay a certain distance (often 300
yards, i.e., 275 m) from the protected person. A general distance restriction:
say, a minimum distance required for passengers traveling on some long distance
trains in India, or a distance from a voting facility where campaigning is
permitted.
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The stop-spacing distance: the interval between bus stops; such mean
distance in US light rail systems ranges from 500 (Philadelphia) to 1742 m (Los
Angeles).

The character spacing: the interval between characters in a given computer
font.

The just noticeable difference (JND): the smallest perceived percent change
in a dimension (for distance/position, etc.). Weber’s law states that JND between
two stimuli is proportional to their magnitude (and the subject’s sensitivity).

• Cutoff distances
Given a range of values (usually, a length, energy, or momentum scale in

Physics), cutoff (or cut-off ) is the maximal or minimal value, as, for example,
Planck units.

A cutoff distance is a cutoff in a length scale. For example, infrared and
ultraviolet cutoff (the maximal and minimal wavelength that the human eye
takes into account) are long-distance and short-distance cutoff, respectively, in
the visible spectrum. Cutoff distances are often used in Molecular Dynamics.

A similar notion of a threshold distance refers to a limit, margin, starting
point distance (usually, minimal) at which some effect happens or stops. Some
examples are the threshold distance of sensory perception, neuronal reaction or,
say, upon which a city or road alters the abundance patterns of the native bird
species.

• Quality metrics
A quality metric (or, simply, metric) is a standard unit of measure or, more

generally, part of a system of parameters, or systems of measurement. This vast
family of measures (or standards of measure) concerns different attributes of
objects. In such a setting, our distances and similarities are rather “similarity
metrics”, i.e., metrics (measures) quantifying the extent of relatedness between
two objects.

Examples include academic metrics, crime statistics, corporate investment
metrics, economic metrics (indicators), education metrics, environmental metrics
(indices), health metrics, market metrics, political metrics, properties of a route
in computer networking, software metrics and vehicle metrics.

For example, the site http://metripedia.wikidot.com/start aims to build an
Encyclopedia of IT (Information Technology) performance metrics. Some exam-
ples of nonequipment quality metrics are detailed below.

Landscape metrics evaluate, for example, greenway patches in a given
landscape by patch density (the number of patches per km2), edge density (the
total length of patch boundaries per hectare), shape index E

4
p

A
(where A is the

total area, and E is the total length of edges), connectivity, diversity, etc.
Morphometrics evaluate the forms (size and shape) related to organisms

(brain, fossils, etc.). For example, the roughness of a fish school is mea-
sured by its fractal dimension 2 ln P�ln 4

ln A where P;A are its perimeter (m) and
surface (m2).

http://metripedia.wikidot.com/start
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Management metrics include: surveys (say, of market share, sales increase,
customer satisfactions), forecasts (say, of revenue, contingent sales, investment),
R&D effectiveness, absenteeism, etc.

Risk metrics are used in Insurance and, in order to evaluate a portfolio, in
Finance.

Importance metrics rank the relative influence such as, for example:

– PageRank of Google ranking web pages;
– ISI (now Thomson Scientific) Impact Factor of a journal measuring, for a

given two-year period, the number of times the average article in this journal
is cited by some article published in the subsequent year;

– Hirsch’s h-index of a scholar: the largest number h such that h of his/her
publications have at least h citations;

– and his/her i10-index: the number of publications with at least 10 citations.

• Heterometric and homeometric
The adjective heterometric means involving or dependent on a change in size,

while homeometric means independent of such change.
Those terms are used mainly in Medicine; for example, heterometric and

homeometric autoregulation refer to intrinsic mechanisms controlling the
strength of ventricular contractions that depend or not, respectively, on the
length of myocardial fibers at the end of diastole; cf. distances in Medicine.

• Distal and proximal
The antipodal notions near (close, nigh) and far (distant, remote) are also

termed proximity and distality.
The adjective distal (or peripheral) is an anatomical term of location (on the

body, the limbs, the jaw, etc.); corresponding adverbs are: distally, distad.
For an appendage (any structure that extends from the main body), proximal

means situated towards the point of attachment, while distal means situated
around the furthest point from this point of attachment. More generally, as
opposed to proximal (or central), distal means: situated away from, farther from
a point of reference (origin, center, point of attachment, trunk). As opposed to
mesial it means: situated or directed away from the midline or mesial plane of
the body.

Proximal and distal demonstratives are words indicating place deixis, i.e., a
spatial location relative to the point of reference. Usually, they are two-way as
this/that, these/those or here/there, i.e., in terms of the dichotomy near/far from
the speaker. But, say, Korean, Japanese, Spanish, and Thai make a three-way
distinction: proximal (near to the speaker), medial (near to the addressee) and
distal (far from both). English had the third form, yonder (at an indicated distance
within sight), still spoken in Southern US. Cf. spatial language in Chap. 28.

A distal stimulus is an real-word object or event, which, by some physical
process, stimulates the body’s sensory organs. Resulting raw pattern of neural
activity is called the proximal stimulus. Perception is the constructing mental
representations of distal stimuli using the information available in proximal
stimuli.
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A proximate cause is an event which is closest to, or immediately responsible
for causing, some observed result. This exists in contrast to a higher-level
ultimate (or distal) cause which is usually thought of as the “real” reason
something occurred.

Tinbergen’s (1960) proximate and ultimate questions about behavior are
“how” an organism structures function? and “why” a species evolved the
structures it has?

• Distance effect
The distance effect is a general term for the change of a pattern or process

with distance. Usually, it is the result of distance decay. For example, a static
field attenuates proportionally to the inverse square of the distance from the
source.

Another example of the distance effect is a periodic variation (instead of
uniform decrease) in a certain direction, when a standing wave occurs in a time-
varying field. It is a wave that remains in a constant position because either the
medium is moving in the opposite direction, or two waves, traveling in opposite
directions, interfere; cf. Pendellösung length in Chap. 24.

The distance effect, together with the size (source magnitude) effect determine
many processes; cf. island distance effect, insecticide distance effect in
Chap. 23 and symbolic distance effect, distance effect on trade in Chap. 28.

• Distance decay
The distance decay is the attenuation of a pattern or process with distance.

Cf. distance decay (in Spatial Interaction) in Chap. 28.
Examples of distance-decay curves: Pareto model ln Iij D a � b ln dij, and the

model ln Iij D a � bdp
ij with p D 1

2
, 1, or 2 (here Iij and dij are the interaction and

distance between points i, j, while a and b are parameters). The Allen curve gives
the exponential drop of frequency of all communication between engineers as the
distance between their offices increases, i.e., face-to-face probability decays.

A mass-distance decay curve is a plot of “mass” decay when the distance
to the center of “gravity” increases. Such curves are used, say, to determine
an offender’s heaven (the point of origin; cf. distances in Criminology) or
the galactic mass within a given radius from its center (using rotation-distance
curves).

• Distance factor
A distance factor is a multiplier of some straight-line distance needed to

account for additional data. For example, 10% increase of aircraft weight implies
20% increase, i.e., a distance factor of 1:2, in needed take-off distance.

• Propagation length
For a pattern or process attenuating with distance, the propagation length is

the distance to decay by a factor of 1
e .

Cf. radiation length and the Beer–Lambert law in Chap. 24.
A scale height is a distance over which a quantity decreases by a factor of e.

• Incremental distance
An incremental distance is a gradually increasing (by a fixed amount) one.
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• Distance curve
A distance curve is a plot (or a graph) of a given parameter against a

corresponding distance. Examples of distance curves, in terms of a process under
consideration, are: time-distance curve (for the travel time of a wave-train,
seismic signals, etc.), height-run distance curve (for the height of tsunami wave
versus wave propagation distance from the impact point), drawdown-distance
curve, melting-distance curve and wear volume-distance curve.

A force-distance curve is, in SPM (scanning probe microscopy), a plot of
the vertical force that the tip of the probe applies to the sample surface, while a
contact-AFM (Atomic Force Microscopy) image is being taken. Also, frequency-
distance and amplitude-distance curves are used in SPM.

The term distance curve is also used for charting growth, for instance, a child’s
height or weight at each birthday. A plot of the rate of growth against age is
called the velocity-distance curve; this term is also used for the speed of aircraft.
Example of a constant rate of growth: in a month, human (hear or body) hair grow
15 and 8:1 mm, while nails (finger and toe) grow 3:5 and 1:6 mm.

• Distance sensitivity
Distance sensitivity is a general term used to indicate the dependence of

something on the associated distance. It could be, say, commuting distance
sensitivity of households, traveling distance sensitivity of tourists, distance
sensitive technology, distance sensitive products/services and so on.

• Characteristic diameters
Let X be an irregularly-shaped 3D object, say, Earth’s spheroid or a particle.

A characteristic diameter (or equivalent diameter) of X is the diameter of a
sphere with the same geometric or physical property of interest. Examples follow.

The authalic diameter and volumetric diameter (equivalent spherical diam-
eter) of X are the diameters of the spheres with the same surface area and volume.
The Heywood diameter is the diameter of a circle with the same projection area.
Cf. the Earth radii in Chap. 25 and the shape parameters in Chap. 21.

The Stokes diameter is the diameter of the sphere with the same gravitational
velocity as X, while the aerodynamic diameter is the diameter of such sphere
of unit density. Cf. the hydrodynamic radius in Chap. 24.

Equivalent electric mobility, diffusion and light scattering diameters of a
particle X are the diameters of the spheres with the same electric mobility,
penetration and intensity of light scattering, respectively, as X.

• Characteristic length
A characteristic length (or scale) is a convenient reference length of a given

configuration, such as the overall length of an aircraft, the maximum diameter or
radius of a body of revolution, or a chord or span of a lifting surface.

In general, it is a length that is representative of the system (or region) of
interest, or the parameter which characterizes a given physical quantity in, say,
Heat Transfer or Fluid Mechanics. For complex shapes, it is defined as the
volume of the body divided by the surface area. For example, for a rocket engine,
it is the ratio of the volume of its combustion chamber to the area of the nozzle’s



29.3 Miscellany 721

throat, representing the average distance that the products of burned fuel must
travel to escape.

• True length
In Engineering Drawing, true length is any distance between points that is

not foreshortened by the view type. In 3D, lines with true length are parallel to
the projection plane, as, for example, the base edges in a top view of a pyramid.

• Path length
In general, a path is a line representing the course of actual, potential or

abstract movement. In Topology, a path is a certain continuous function; cf.
parametrized metric curve in Chap. 1.

In Physics, path length is the total distance an object travels, while dis-
placement is the net distance it travels from a starting point. Cf. displacement,
inelastic mean free path, optical distance and dislocation path length in
Chap. 24. In Chemistry, (cell) path length is the distance that light travels
through a sample in an analytical cell.

In Graph Theory, path length is a discrete notion: the number of vertices in
a sequence of vertices of a graph; cf. path metric in Chap. 1. Cf. Internet IP
metric in Chap. 22 for path length in a computer network. Also, it means the
total number of machine code instructions executed on a section of a program.

• Middle distance
The middle distance is a general term. It can be a precise distance (cf.

running distances), the halfway between the observer and the horizon (cf.
distance to horizon in Chap. 25), implied horizon of a scene (cf. representation
of distance in Painting in Chap. 28), or the place that you can see when you are
not quite focusing on the world around you (Urban Dictionary of slang). Another
example: goals in the middle distance (1 block to 2 miles) are places one might
walk to.

• Long-distance
The term long-distance usually refers to telephone communication (long-

distance call, operator) or to covering large distances by moving (long-distance
trail, running, swimming, riding of motorcycles or horses, etc.) or, more
abstractly: long-distance migration, commuting, supervision, relationship,
etc. For example, a long-distance relationship (LDR) is typically an intimate
relationship that takes place when the partners are separated by a considerable
distance.

For example, a long-distance (or distance) thug has two meanings: 1. a person
that is a coward in real life, but gathers courage from behind the safety of a
computer, phone, or through e-mail; and 2. a hacker, spammer, or scam artist that
takes advantage of the Internet to cause harm to others from a distance.

Cf. long-distance dispersal, animal and plant long-distance communica-
tion, long range order, long range dependence, action at a distance (in
Computing, Physics, along DNA).

DDD (or direct distance dialing) is any switched telecommunication service
(like 1C, 0 C C, etc.) that allows a call originator to place long-distance calls
directly to telephones outside the local service area without an operator.
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The term short-distance is rarely used. Instead, the adjective short range
means limited to (or designed for) short distances, or relating to the near future.
Finally, touching, for two objects, is having (or getting) a zero distance between
them.

• Long-distance intercourse
Long-distance intercourse (coupling at a distance) is found often in Native

American folklore: Coyote, the Trickster, is said to have lengthened his penis to
enable him to have intercourse with a woman on the opposite bank of a lake.

A company Distance Labs has announced the “intimate communication over
a distance”, an interactive installation Mutsugoto which draws, using a custom
computer vision and projection system, lines of light on a body of a person.
Besides light, haptic technology provides a degree of touch communication
between remote users. A company Lovotics created Kissinger, a messaging
device wirelessly sending kisses. Other devices can send hugs, strokes and
squeezes over the internet by making companion devices respond with vibrations
and temperature changes.

In Nature, the acorn barnacle (small sessile crustacean) have the largest penis-
body size ratio (up to 10when extended) of any animal. The squid Onykia ingens
have largest ratio among mobile animals. The male octopus Argonauta use a
modified arm, the hectocotylus, to transfer sperm to the female at a distance; this
tentacle detaches itself from the body and swims—under its own power—to the
female.

Also, many aquatic animals (say, coral, hydra, sea urchin, bony fish) and
amphibians reproduce by external fertilization: eggs and sperm are released
into the water. Similar transfer of sperm at a distance is pollination (by wind
or organisms) in flowering plants. Another example is in vitro fertilization in
humans.

The shortest range intercourse happens in anglerfish. The male, much smaller,
latches onto a female with his sharp teeth, fuses inside her to the blood-vessel
level and degenerates into a pair of testicles. It releases sperm when the female
(with about 6males inside) releases eggs. But female-male pairings of a parasitic
worm Schistosoma mansoni is monogamous: the male’s body forms a channel,
in which it holds the longer and thinner female for their entire adult lives, up
to 30 years. Two worms Diplozoon paradoxum fuse completely for lifetime of
cross-fertilization.

• Go the distance
Go the (full) distance is a general distance idiom meaning to continue to do

something until it is successfully completed.
An unbridgeable distance is a distance (seen as a spatial or metaphoric extent),

impossible to span: a wide unbridgeable river, chasm or, in general, differences.
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Index

Note: For the sake of clarity and convenience, items explained in the book with
bullet points are capitalized, while regular index entries are listed in lower case
letters.

Symbols
.1; 2/� B-metric, 46
.2k C 1/-gonal distance, 11
.2k C 1/-gonal inequality, 11
.3; 4/-metric, 399
.˛; ˇ/-metric, 147
.c; p/-norm metric, 240
.h; 
/-metric, 173
.p; q/-relative distance, 103
0-protometric, 6
1-sum distance, 92
2-metric, 72
2-nd differential metric, 412
2k-gonal distance, 11
2k-gonal inequality, 11
2n-gon metric, 371
3D-chamfer metric, 399
4-metric, 368
6-metric, 376
8-metric, 376
C-distance, 121
C-inframetric, 8
C-metric, 202
D-distance graph, 293
D-distance magic labeling, 291
D-separation in Bayesian network, 427
Dps distance, 444
F-norm metric, 97
F-rotation distance, 303
F-space, 98
F�-metric, 98

F�-space, 98
FST -based distances, 447
G-distance, 173
G-invariant Riemannian metric, 141
G-invariant metric, 200
G-norm metric, 205
G-space, 113
G-space of elliptic type, 114
J-metric, 74
L1-rearrangement distance, 218
L1-rearrangement distance, 219
Lp-Hausdorff distance, 53
Lp-Wasserstein distance, 273
Lp-metric, 104
Lp-metric between densities, 262
Lp-space, 104
M-relative distance, 104
MS � 2-metric, 72
P-metric, 12
Q-metric, 173
Q0-difference, 340
SO.3/-invariant metric, 161
Sym.n;R/C and Her.n;C/C metrics, 242
T0-space, 64
T1-space, 64
T2-space, 64
T3-space, 64
T4-space, 65
T6-space, 65
V-continuity space, 78
W-distance on building, 82
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� -metric, 281
˛-divergence, 268
˛-metric, 368
�2-distance, 269
ı-bolic metric space, 116
ı-hyperbolic metric, 10
�-neighborhood, 35
�-net, 35
�-metric, 69
Z.�m/-related norm metrics, 233
�-metric, 308
�-Manhattan metric, 233
]-Gordian distance, 181
]-inversion distance, 181
� -distance space, 75
ƒ-metric, 172
†-Hausdorff distance, 406
a-wide distance, 281
b-burst metric, 318
c-isomorphism of metric spaces, 42
c-transportation distance, 273
c-uniformly perfect metric space, 48
f -divergence, 267
f -potential energy, 32
f -quasi-metric, 8
f -triangle inequality, 8
g-transform metric, 90
k-ameter, 33
k-cocomparability graph, 291
k-diameter, 33
k-distant chromatic number, 292
k-geodetically connected graph, 288
k-mer distance, 464
k-oriented distance, 191
k-power of a graph, 287
k-radius sequence, 224
k-th minimum distance, 316
lp-distances between trees, 311
lp-metric, 102
m-dissimilarity, 72
m-hemimetric, 71
m-simplex inequality, 71
m-th root pseudo-Finsler metric, 149
n-manifold, 67
nD-neighborhood sequence metric, 378
p-Lee metric, 320
p-adic metric, 230
p-average compound metric, 260
p-difference metric, 52
p-distance, 456
p-smoothing distance, 88
p-th order mean Hausdorff distance, 405
q-Loewner space, 13
q-gram similarity, 220

r-locating-dominating set, 292
s-energy, 31
t-bottleneck distance, 407
t-distance chromatic number, 35
t-irredundant set, 291
t-scaled metric, 88
t-spanner, 296
t-truncated metric, 88
w-distance, 75
3D point cloud distance, 359

A
A-distance, 371
Absolute moment metric, 261
Absolute summation distance, 319
absolute value metric, 231
Acceleration distance, 500
acceleration-deceleration distance, 702
access distance, 435
ACME distance, 322
Acoustic metric, 519
Acoustics distances, 418
ACS-distance, 466
Action at a distance (in Computing), 435
Action at a distance (in Physics), 522
Action at a distance along DNA/RNA, 491
Action distance, 642
activation distance, 716
additive distance, 443
additive metric, 9
Additive stem w-distance, 466
Additively weighted distance, 385
Additively weighted power distance, 385
Administrative cost distance, 431
aesthetic distance, 674
affine diameter, 188
Affine distance, 124
affine Kähler metric, 159
Affine metric, 124
Affine pseudo-distance, 124
Affine space-time distance, 591
Agmon distance, 145
Agmon metric, 145
Ahlfors q-regular metric space, 13
Aichelburg–Sexl metric, 520
Aircraft distances, 702
Airlift distance, 387
Airway distance, 535
Aitchison distance, 270
Albanese metric, 206
Albert quasi-metric, 5
Alcubierre metric, 606
alert distance, 473
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Alexandrov space, 65
Algebraic point-conic distance, 96
Ali–Silvey distance, 271
Alice–Bob distance, 522
Alignment distance, 307
all dead distance, 483
Allometry, 482
Altitude, 560
Amazing greatest distances, 701
Amino p-distance, 463
Amino gamma distance, 464
Amino Poisson correction distance, 464
Analytic metric, 171
anaphoric distance, 664
ancestral path distance, 450
Anderberg similarity, 339
Anderson–Darling distance, 263
Angle distances between subspaces, 244
angle-opening distance, 686
Angular diameter distance, 584
Angular distance, 375
angular semimetric, 341
Animal communication, 477
Animal depth/distance perception, 474
Animal proximity network, 473
anogenital distance, 684
Anthony–Hammer similarity, 220
anti de Sitter metric, 593
Antidistance, 217
antimedian metric space, 16
Antinomy of distance, 674
antipodal extension distance, 91
Antonelli–Shimada metric, 149
apoapsis distance, 561
Apollonian metric, 131
Appert partially ordered distance, 84
Approach distance, 710
Approach space, 77
approximate midpoints, 19
Approximative human-scale distances, 649
Arago distance, 508
Arc routing problems, 296
Archery target distances, 698
Area deviation, 183
area distance, 584
Arithmetic r-norm metric, 229
Arithmetic codes distance, 317
arm’s distance, 703
as-the-crow-flies distance, 103
Asimov distance, 245
aspect ratio, 34
Asplund metric, 186
Assouad–Nagata dimension, 26
astronomical distance, 558

Astronomical system of units, 619
Asymptotic dimension, 27
asymptotic metric cone, 39
Atanassov distances, 59
Atiyah–Hitchin metric, 162
Atmosphere distances, 547
Atmospheric depth, 508
Atmospheric visibility distances, 546
Atomic jump distance, 511
Atomic radius, 524
Attributed tree metrics, 310
Average color distance, 396
average distance property, 30
Average square distance, 446
average yarding distance, 704
Average-clicks Web quasi-distance, 432
Aviation distance records, 700
Azimuth, 561
Azukawa semimetric, 165

B
bad distance, 705
Baddeley–Molchanov distance function, 77
Bag distance, 218
Baire metric, 222
Baire space, 65
Baire space of weight �, 222
Ball convexity, 19
Ballistics distances, 501
Banach space, 101
Banach–Mazur compactum, 107
Banach–Mazur distance, 55
Banach–Mazur metric, 186
Bandwidth of a graph, 295
Bar product distance, 315
Bar-and-joint framework, 293
Barbaresco metrics, 244
Barbilian metric, 131
Barbilian semimetric, 47
Bark spectral distance, 413
Baroni–Urbani–Buser similarity, 333
Barriola–Vilenkin monopole metric, 604
Barry–Hartigan quasi-metric, 458
Bartlett distance, 243
Barycentric metric space, 56
base pair distance, 459
Bat-and-ball game distances, 698
Bayesian distance, 262
Bayesian graph edit distance, 301
beeline distance, 103
Beer–Lambert law, 507
belt distance, 278
Bend radius, 528
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Benjamini–Schramm metric, 298
Berger metric, 142
Bergman p-metric, 250
Bergman metric, 160
Bertotti–Robinson metric, 604
Berwald metric, 148
Berwald–Moör metric, 149
Besicovitch distance, 249
Besicovitch semimetric, 350
Besov metric, 250
Betweenness centrality, 423
Bhattacharya distance 1, 268
Bhattacharya distance 2, 269
Bi-discrepancy semimetric, 265
Bi-invariant metric, 200
bi-Lipschitz equivalent metrics, 41
Bi-Lipschitz mapping, 41
Bianchi metrics, 598
Bible code distance, 674
Biholomorphically invariant semimetric, 163
bimetric theory of gravity, 517
Binary Euclidean distance, 335
Binary relation distance, 303
Binding energy, 517
Binet–Cauchy distance, 245
Biodistances for nonmetric traits, 692
Biotope distance, 468
biotope transform metric, 88
Birnbaum–Orlicz distance, 266
Bjerrum length, 512
Blaschke distance, 53
Blaschke metric, 145
Bloch metric, 250
Block graph, 291
Boat-sail distance, 388
Bochner metric, 250
Body distances for clothes, 696
Body distances in Anthropometry, 693
Body size rules, 479
Bogolubov–Kubo–Mori metric, 155
Bohr metric, 249
Bohr radius, 621
Bombieri metric, 236
Bond distance, 525
Bondi radiating metric, 603
Bonnor beam metric, 602
Bonnor dust metric, 600
Boolean metric space, 83
Borgefors metric, 399
Bottleneck distance, 406
Boundary of metric space, 116
Bounded box metric, 359
Bounded metric space, 49
Bourdon metric, 116

Box metric, 92
Brain distances, 688
braking distance, 701
Braun–Blanquet similarity, 338
Bray–Curtis similarity, 332
breakpoint distance, 461
Bregman divergence, 267
Bregman quasi-distance, 254
British Rail metric, 370
Bryant metric, 148
BTZ metric, 594
Buffer distance, 705
Bundle metric, 157
Bunke–Shearer metric, 300
Burago–Burago–Ivanov metric, 370
Burbea–Rao distance, 267
Bures distance, 521
Bures metric, 154
Bursting distances, 489
Busemann convexity, 18
Busemann metric, 121
Busemann metric of sets, 96
bush metric, 9
Bushell metric, 191

C
c-embedding, 41
C-V distance, 684
Calabi metric, 161
Calabi–Yau metric, 159
Cameron–Tarzi cube, 94
Canberra distance, 332
Cantor connected metric space, 13
Cantor metric, 349
Cantor space, 48
Capillary diffusion distance, 487
Carathéodory metric, 164
Carmeli metric, 608
Carnot–Carathéodory metric, 143
Cartan metric, 168
CAT(�) inequality, 114
CAT(�) space, 114
Catalan surface metric, 178
Category of metric spaces, 44
caterpillar metric, 370
Cauchy completion, 48
Cavalli-Sforza arc distance, 445
Cavalli-Sforza–Edwards chord distance, 445
Cayley metric, 226
Cayley–Klein–Hilbert metric, 129
Cayley–Menger matrix, 22
CC metric, 143
Cellular automata distances, 349
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Center of mass metric, 359
center-to-center distance, 709
central lung distance, 686
Central Park metric, 371
centroid distance, 372
Cepstral distance, 414
Chain metric, 227
Chamfer metric, 379
Chamfering distances, 398
Channel metrization, 324
Characteristic diameters, 720
Characteristic length, 720
charge distance, 463
Chartrand–Kubicki–Schultz distance, 297
Chaudhuri–Murthy–Chaudhuri metric, 399
Chaudhuri–Rosenfeld metric, 59
Chebotarev–Shamis metric, 284
Chebyshev center, 37
Chebyshev metric, 368
Chebyshev radius, 37
Chebyshev set, 37
Chemical distance, 526
Chernoff distance, 271
Chess programming distances, 381
chessboard metric, 376
Chinese checkers metric, 368
chord metric space, 113
chordal distance, 245
Chordal metric, 234
Chromatic numbers of metric space, 35
Chromatographic migration distances, 514
Circle metric, 374
circle-packing metric, 193
circular cut semimetric, 285
circular decomposable semimetric, 285
Circular distance, 375
Circular-railroad quasi-metric, 375
City distance, 387
City-block metric, 367
cladistic distance, 443
Clarity similarity, 271
Clark distance, 335
Clearance distance, 712
Closed metric interval, 15
Closed subset of metric space, 14
CMD-distance, 340
Co-ancestry coefficient, 447
Co-starring distance, 420
Coarse embedding, 43
coarse isometry, 43
Coarse-path metric, 7
coarsely equivalent metrics, 43
coefficient of relatedness, 451
coefficient of relationship, 451

Collaboration distance, 419
Collar distance, 710
Collective motion of organisms, 471
Collision avoidance distance, 371
Color component distance, 396
Color distances, 395
colored distance, 280
combinatorial dimension, 46
common subgraph distance, 300
common supergraph distance, 300
communication distance, 478
Commutation distance, 204
Commuting distance, 644
commuting time metric, 283
Comoving distance, 582
Compact metric space, 49
Compact space, 66
Complete metric, 48
complete metric space, 48
Complete Riemannian metric, 141
Complex Finsler metric, 162
Complex modulus metric, 232
Compoundly weighted distance, 386
Compton wavelength, 506
Computable metric space, 61
conceptual distance, 425
conditional diameter, 33
conduction distance, 490
Cone distance, 391
Cone metric, 82
Cones over metric space, 192
configuration metric, 356
conformal mapping, 140
Conformal metric, 139
Conformal metric mapping, 40
Conformal radius, 133
Conformal space, 140
Conformally invariant metric, 173
Conformally stationary metric, 601
Congruence order of metric space, 36
Connected metric space, 13
Connected space, 66
connectivity-distance, 689
Connes metric, 155
constrained edit distance, 216
Constructive metric space, 61
Consumer access distance, 644
Contact quasi-distances, 374
containment gap distance, 245
Continental shelf distance, 534
Continued fraction metric on irrationals, 231
Continuous dual space, 257
continuum, 49
Contraction, 43
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Contraction distance, 302
Contractive mapping, 44
Convex distance function, 36
convex metric, 172
Convolution metric, 265
Cook distance, 344
correlation distance, 341
Correlation length, 516
correlation triangle inequality, 12
cortical distance, 688
cosh distance, 414
cosine distance, 341
Cosine similarity, 341
cosmic light horizon, 580
Cosmic sound horizon, 581
cosmological distance, 578
Cosmological distance ladder, 586
Countably-normed space, 68
Coupling length, 515
Covariance similarity, 341
covariance triangle inequality, 10
covering radius, 34
Cramér–von Mises distance, 263
crash distance, 702
Creepage distance, 713
critical distance, 418
Critical domain size, 468
critical mating distances, 452
Critical radius, 517
Crnkovic–Drachma distance, 263
cross-bin histogram distance, 400
Cross-difference, 10
cross-ratio, 11
Crossing-free transformation metrics, 304
crossover distance, 555
crossover metric, 308
Crowding distance, 362
crystalline metrics, 102
Cubit, 618
Cultural distance, 655
Cut norm metric, 240
Cut semimetric, 285
Cutoff distances, 717
Cutpoint additive metric, 280
Cycloidal metric, 142
Cygan metric, 206
Cylindrical distance, 391
Czekanowsky similarity, 330
Czekanowsky–Dice distance, 330

D
Daily distance traveled, 470
Damerau–Levenstein metric, 216

Daniels–Guilbaud semimetric, 226
Dayhoff distance, 462
Dayhoff–Eck distance, 462
de Sitter metric, 593
Death of Distance, 651
Death/kilometer, 541
Debye screening distance, 503
Declination, 560
Decoherence length, 517
Decomposable semimetric, 285
Defensible space, 538
Deflection, 712
degenerate metric, 139
degree distance, 30
Degree of distance near-equality, 21
Degree-2 distance, 307
Dehornoy–Autord distance, 223
Delaunay metric, 160
Delay distance, 708
Delone set, 33
delta distance, 181
Demyanov distance, 188
Dephasing length, 515
depth of a gemstone, 531
Depth of field, 714
Desarguesian space, 113
Design distance, 315
detection distance, 473
Detour distance, 280
DeWitt supermetric, 150
Diagonal metric, 139
diameter at breast height, 704
diametrical metric space, 33
Diamond-cutting distances, 531
Dice similarity, 331
Dictionary digraph, 426
dictionary-based metric, 220
diff-dissimilarity, 58
Diffusion length, 511
diffusion tensor distance, 688
digital metric, 376
Digital volume metric, 377
dilated metric, 88
Dilation of metric space, 39
Dimension of a graph, 293
Dinghas distance, 185
Dirac distance, 46
directed Hausdorff distance, 53
Directed-metric, 7
Direction distance, 81
Dirichlet metric, 250
Discrepancy metric, 265
Discrete metric, 46
discrete Fréchet distance, 249
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Discrete topological space, 69
Disjoint union metric, 92
Dislocation distances, 529
Dispersal distance, 468
Dispersion similarity, 339
Displacement, 500
displacement function, 38
dissimilarity, 3
Distal and proximal, 718
Distance, 3
Distance k-sector, 22
distance t-domination number, 291
Distance as a metaphor, 657
distance automaton, 348
Distance between consecutive primes, 230
Distance between edges, 292
distance between landfalls, 555
distance between ports, 535
Distance cartogram, 537
Distance casting, 698
Distance centrality, 424
Distance ceptor, 629
Distance coercion model, 495
distance concept of proximity, 660
distance constancy, 632
Distance constant of operator algebra, 257
Distance constrained labeling, 294
Distance convexity, 20
distance correlation, 340
Distance cues, 632
Distance curve, 720
Distance decay, 719
Distance decay (in Spatial Interaction), 645
Distance decoder, 325
distance degree, 31
distance degree-regular graph, 288
Distance distribution, 317
Distance education, 648
Distance effect, 719
Distance effect in large e-mail networks, 421
distance effect on trade, 646
distance energy, 31
Distance factor, 719
Distance Fibonacci numbers, 230
Distance from irreducible polynomials, 236
Distance from measurement, 84
Distance function, 36
Distance Geometry problem, 296
distance graph, 293
Distance grooming model of language, 496
Distance handling, 697
Distance hart, 709
Distance healing, 687
Distance in a river, 388

Distance in boxing, 700
Distance in Military, 704
Distance inequalities in a triangle, 366
Distance integral graph, 292
Distance jumping, 698
distance labeling scheme, 325
distance language, 417
Distance line, 704
Distance list, 21
Distance made good, 703
Distance magic graph, 290
Distance map, 37
Distance matrix, 20
distance measuring equipment, 707
Distance metric learning, 344
Distance model of altruism, 496
Distance modulus, 583
Distance monotone metric space, 15
Distance numbers, 674
Distance of negative type, 11
distance of travel, 541
distance pheromone, 477
Distance polynomial, 31
distance power, 293
Distance product of matrices, 21
Distance ratio metric, 131
distance relation, 660
Distance running model, 495
Distance sampling, 343
distance scale, 621
Distance selling, 648
Distance sensitivity, 720
distance set, 21
distance similarity, 23
distance space, 3
Distance spacer, 711
distance spectrum, 31
Distance supervision, 648
Distance swimming, 698
Distance telecommunication, 648
Distance throwing, 698
distance to crowding, 343
Distance to death, 494
Distance to default, 641
distance to empty, 702
distance to frontier, 641
Distance to Heaven, 672
Distance to horizon, 535
distance to infeasibility, 242
distance to instability, 356
Distance to normality, 270
distance to regularity, 343
distance to singularity, 242
Distance to uncontrollability, 355
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distance topology, 69
Distance transform, 402
distance unknown, 536
Distance up to nearest integer, 96
distance vision, 691
distance-k edge-coloring, 292
distance-k matching, 292
distance-balanced graph, 288
Distance-based numbering, 538
Distance-decreasing semimetric, 163
Distance-defined surfaces and curves, 179
Distance-hereditary graph, 290
Distance-invariant metric space, 12
Distance-named cultural products, 679
Distance-number of a graph, 293
Distance-perfect graph, 291
Distance-polynomial graph, 290
Distance-rationalizable voting rule, 227
Distance-regular digraph, 289
Distance-regular graph, 288
distance-regularized graph, 288
Distance-related animal settings, 474
Distance-related graph embedding, 294
Distance-related quotes, 679
Distance-related shots, 715
Distance-residual subgraph, 287
distance-similarity metaphor, 657
Distance-to-fault, 704
Distance-to-spot ratio, 512
distance-transitive graph, 288
Distance-two labeling, 294
Distance-vector routing protocol, 430
Distance-weighted mean, 32
Distances between
distances between chords, 416
Distances between graphs of matrices, 244
Distances between people, 650
Distances between quantum states, 521
Distances between rhythms, 416
Distances from symmetry, 404
Distances in Animal Behavior, 472
Distances in Criminology, 646
Distances in Forestry, 704
Distances in Interior Design, 678
Distances in Medicine, 683
Distances in Musicology, 415
Distances in Oceanography, 549
Distances in Oncology, 686
Distances in Rheumatology, 687
Distances in Seismology, 553
Distances in Stereoscopy, 715
Distances in Structural Engineering, 712
Distances on causal sets, 591
Distances on formal languages, 348

Distanciation, 675
Distancing, 639
distancing language, 640
Distancy, 639
distant flap, 685
Distant suffering, 669
distantiation, 670
distantness, 639
distortion, 41
divergence, 260
Diversity, 73
Dodge–Shiode WebX quasi-distance, 432
Dogkeeper distance, 248
Dominating metric, 47
Doubling dimension, 25
doubling metric, 26
Douglas metric, 148
Dovgoshev–Hariri–Vuorinen metric, 132
Drápal–Kepka distance, 209
drastic distance, 46
draw distance, 633
Drift distance, 423
Driveway distances, 539
Drop distance, 647
Droplet radii, 514
DRP-metrics, 431
Dual distance, 315
Dual metrics, 105
Dudley metric, 264
Dugundji–Ugi chemical distance, 526
Duncan metric, 222
DXing, 536
Dynamic time wrapping distance, 408
Dynamical diffraction distances, 529
Dynamical spacing, 566
Dynamical system, 350
Dysmetria, 689
Dyson radius, 569

E
Earth in space, 574
Earth Mover’s distance, 399
Earth radii, 533
Earth similarity index, 572
earthquake distance, 554
eccentric distance sum, 30
Eccentricity, 34
Ecliptic latitude, 560
Ecological distance, 467
economic distance, 640
Eddington–Robertson metric, 596
Edgar–Ludwig metric, 603
edge difference distance, 311
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Edge distance, 301
Edge flipping distance, 302
Edge jump distance, 302
Edge move distance, 302
Edge perimeter distance, 510
Edge rotation distance, 303
Edge shift distance, 303
edge slide distance, 303
edit distance, 216
edit distance function of a property, 301
Edit distance with costs, 217
Editex distance, 661
Editing compression metric, 216
Editing metric, 50
editing metric, 215
Editing metric with moves, 216
Editing metrics between partitions, 209
Effect size, 335
Effective free distance, 316
Effective trade distance, 642
Eggleston distance, 186
Egocentric distance, 632
Eguchi–Hanson de Sitter metric, 604
Eguchi–Hanson metric, 162
Ehrenfeucht–Haussler semimetric, 374
Eigen–McCaskill–Schuster distance, 458
Einstein metric, 593
Einstein radius, 584
Einstein time triangle inequality, 588
Einstein–Straus radius, 580
electrical distance, 536
element of best approximation, 37
Ellenberg similarity, 329
Ellipsoid metric, 176
Elliptic metric, 125
Elliptic orbit distance, 561
Elongation, 562
EM radiation wavelength range, 506
Emerson distance between persons, 666
Emmert’s size-distance law, 631
Emotional distance, 638
End-to-end distance, 527
Endurance distance, 703
Energy distance, 264
Engine compression distance, 709
Engineer semimetric, 263
Enomoto–Katona metric, 52
Entanglement distance, 523
entropy metric, 272
environmental distances, 633
epicentral distance, 554
Epistemic distance, 676
equicut semimetric, 285
Equidistant map, 537

Equidistant metric, 46
equilibrium distance, 525
Equivalent metrics, 14
ER-mitochondria distance, 492
Erdös space, 106
Erdős distinct distances problem, 366
Erdős-type distance problems, 365
Etch depth, 710
ethical distance, 670
Euclidean metric, 103
Euclidean rank of a metric space, 28
Euclidean space, 103
Euler angle metric, 358
even cut semimetric, 285
evolutionary distance, 443
exocentric distance, 632
Exponential distance, 384
exponential divergence, 270
Extended metric, 4
Extended real line metric, 232
Extended topology, 70
Extension distances, 91
Extent of Earth’s biosphere, 556
Extremal metric, 174

F
Főrster distance, 487
Facebook hop distance, 421
Facility layout distances, 372
factor distance, 217
Factorial ring semimetric, 208
Fahrenberg–Legay–Thrane distances, 348
Faith similarity, 338
Falconer distance problem, 366
Fano metric, 323
far field, 504
farawayness, 639
farness, 639
Farris transform metric, 90
feasible distance, 432
Feeding distance, 710
Feldman et al. distance, 446
Fencing distances, 699
Feng–Rao distance, 316
Feng–Wang distance, 463
Feret’s diameters, 403
Fermat metric, 601
Fernández–Valiente metric, 300
Ferrand metric, 132
Fidelity similarity, 268
Filling of metric space, 279
Finite lp-semimetric, 285
Finite nuclear norm metric, 255
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Finite subgroup metric, 211
Finsler metric, 146
firing rate distance, 488
first contact quasi-distance, 374
first law of geography, 646
first sink contact distance, 706
First-countable space, 65
Fisher information metric, 152
Fisher–Rao metric, 153
fixed orientation metric, 371
Flag metric, 121
Flat metric, 172
Flat space, 39
flight initiation distance, 473
Florian metric, 184
Flow distance, 709
Flower-shop metric, 370
FLRW metric, 596
focal distance, 714
Football distances, 699
Forbes–Mozley similarity, 338
force-distance curve, 720
forest-fire distance, 389
formation metric, 360
Fortet–Mourier metric, 273
Forward quasi-distance, 427
four-point inequality, 9
Four-point inequality metric, 9
Fréchet V-space, 8
Fréchet median, 31
Fréchet mean, 31
Fréchet metric, 53
Fréchet permutation metric, 227
Fréchet product metric, 93
Fréchet space, 67
Fréchet surface metric, 174
Fréchet–Nikodym–Aronszyan distance, 52
Fractal, 351
fractal dimension, 24
fractional lp-distance, 333
frame distance, 675
Frankild–Sather–Wagstaff metric, 208
Fraunhofer distance, 504
Free distance, 316
free fall distance, 500
free space metric, 360
Fremlin length, 28
French Metro metric, 369
friction of distance, 645
Fringe distance, 713
Frobenius distance, 245
Frobenius norm metric, 239
frontier metric, 360
Frost line (in Astrophysics), 568

Frost line (in Earth Science), 552
Fubini–Study distance, 160
Fubini–Study metric, 160
full triangle inequality, 5
functional transform metric, 88
fundal height, 684
Funk distance, 37
Fuzzy Hamming distance, 221
Fuzzy metric spaces, 79
Fuzzy polynucleotide metric, 459
Fuzzy set distance, 446

G
Gödel metric, 601
Gabidulin–Simonis metrics, 321
Gait distances, 692
Gajić metric, 231
Galactocentric distance, 569
Galilean distance, 592
Gallery distance of flags, 212
gallery distance on building, 83
Gallery metric, 50
Gap metric, 354
gape distance, 473
gate extension distance, 91
gauge metric, 206
GCSS metric, 598
Gear distances, 711
Gehring metric, 131
Gender-related body distance measures,

695
Gendron–Lemieux–Major distance, 487
genealogical distance, 443
genealogical quasi-distance, 450
General linear group semimetric, 205
Generalized G-Hausdorff metric, 54
generalized absolute value metric, 231
Generalized biotope transform metric, 88
Generalized Cantor metric, 223
generalized chordal metric, 234
generalized Delaunay metric, 159
generalized Fano metric, 324
generalized Hilbert space, 106
generalized Lagrange metric, 150
Generalized Lee metric, 320
generalized Menger space, 79
Generalized metric, 82
Generalized Riemannian space, 140
Generalized torus semimetric, 206
generalized ultrametric, 84
Generational distance, 361
genetic FST -distance, 448
Genetic code distance, 462
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Genome distance, 461
Genome rearrangement distances, 460
Geodesic, 17
geodesic segment, 17
Geodesic convexity, 18
Geodesic distance, 112
geodesic Fréchet distance, 249
Geodesic metric space, 112
geodesic similarity, 278
Geodetic graph, 287
Geographic distance, 431
Geographic distance biases, 633
Gerontologic distance, 493
Gibbons–Manton metric, 167
Glashow’s snake, 622
Gleason distance, 129
Gleason similarity, 329
Global correlation distance, 342
Global distance test, 485
Go the distance, 722
Godsil–McKay dimension, 27
Goldstein et al. distance, 446
Golf distances, 699
Golgotha distance, 671
Golmez partially ordered distance, 84
Goppa designed minimum distance,

316
Gordian distance, 181
Gower similarity 2, 339
Gower–Legendre similarity, 339
GPS navigation distance, 540
GPS pseudo-distance, 707
Graev metrics, 224
Gram matrix, 22
Graph boundary, 280
Graph diameter, 280
Graph edit distance, 301
Graph of polynomial growth, 290
graph-geodetic metric, 280
graphic metric, 278
Grassmann distance, 245
gravimetric height, 542
Gravity models, 645
Gray-scale image distances, 398
Great circle distance, 533
Grenander distance, 188
Grid metric, 376
Grishin distance, 464
Gromov hyperbolic metric space, 114
Gromov product similarity, 10
Gromov–Hausdorff metric, 54
ground distance, 541
Ground sample distance, 536
Group norm metric, 97

Growth distances, 187
Grushin metric, 145
Grzegorzewski distances, 60
gust-gradient distance, 702
GV fuzzy metric space, 80
Gyroradius, 503
GZK-horizon, 582

H
Hölder mapping, 41
Hölder metric, 252
Hölder near-metric, 8
Habitable zone radii, 570
Hadamard space, 115
Half-Apollonian metric, 131
Half-plane projective metric, 119
half-space parabolic distance, 133
Half-value layer, 504
Hamann similarity, 337
Hamming cube, 93
Hamming metric, 51
Hamming metric on permutations, 225
Handwriting spatial gap distances, 407
haptic space, 630
Hard metric, 615
Hardy metric, 250
Harmon distance, 691
Harmonic mean similarity, 268
Harnack metric, 130
Haul distance, 711
Hausdorff dimension, 24
Hausdorff distance up to G, 407
Hausdorff metric, 53
Hausdorff space, 64
Hausdorff–Lipschitz distance, 54
having midpoints, 19
Hawaiian Earring, 18
Head and face measurement distances,

693
Healing length, 515
heavy luggage metric, 372
hedgehog metric, 369
Heidegger’s de-severance distance, 667
Heisenberg metric, 206
Hejcman length, 28
Helical surface metric, 178
Hellinger distance, 336
Hellinger metric, 268
Helly semimetric, 208
hemimetric, 5
Hempel metric, 175
Hermitian G-metric, 74
Hermitian elliptic metric, 126
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Hermitian hyperbolic metric, 127
Hermitian metric, 157
Hessian metric, 159
Heterogeneous distance, 344
Heterometric and homeometric, 718
hexagonal Hausdorff metric, 377
Hexagonal metric, 376
Hilbert cube metric, 93
Hilbert metric, 106
Hilbert projective metric, 119
Hilbert projective semimetric, 190
Hilbert space, 106
Hilbert–Schmidt norm metric, 256
Hilditch–Rutovitz metric, 399
Hill radius, 564
Hirst–St-Onge similarity, 426
Histogram diffusion distance, 398
Histogram intersection quasi-distance,

397
Histogram quadratic distance, 397
historical distance, 675
Hitting time quasi-metric, 283
Hodge metric, 160
Hofer metric, 167
Homeomorphic metric spaces, 39
Homogeneous metric space, 38
Homometric structures, 529
Homotopic Fréchet distance, 400
Hopping distance, 511
Horizontal distance, 541
Hour angle, 560
Hsu–Lyuu–Flandrin–Li distance, 284
Huang ensemble distance, 465
Hubble distance, 580
Hubble radius, 580
Humidifier absorption distance, 713
Hurwitz metric, 235
Hutchinson metric, 273
hybridization metric, 458
Hydraulic diameter, 514
Hydrodynamic radius, 514
hyper-focal distance, 715
Hyper-Kähler metric, 161
Hyperbolic dimension, 26
Hyperbolic Hausdorff distance, 407
Hyperbolic metric, 126
Hyperboloid metric, 177
Hyperconvexity, 20
hypercube metric, 278
Hypermetric, 11
hypermetric inequality, 11
Hyperspace, 69
hyperspace of metric space, 53
hypocentral distance, 554

I
IBD segment length, 447
Identifying code, 325
Image compression Lp-metric, 398
Immunologic distance, 484
Impact distances, 562
Impact of distance on trade, 642
impact parameter, 501
Imperial length measures, 617
Incremental distance, 719
Indefinite metric, 73
Indel distance, 322
Indel metric, 217
Indicator metric, 261
Indiscrete semimetric, 46
Indiscrete topological space, 69
Indivisible metric space, 14
induced diversity metric, 73
Induced metric, 47
Inelastic mean free path, 502
infinitesimal distance, 135
inflation distance, 703
Injective envelope, 45
Injective metric space, 45
injectivity radius, 18
inner metric, 90
Inner product space, 105
Input and output distances, 710
Insecticide distance effect, 483
insertion distance, 684
Instrument distances, 710
Integral metric, 248
inter-distance, 328
interaction depth, 508
Interaction distance, 501
interalar distance, 694
interatomic distance, 524
intercanine distance, 683
intercanthal distance, 694
intercept quasi-distance, 374
intercornual distance, 684
interincisor distance, 683
Interionic distance, 528
interior metric, 90
interkey distance, 416
Interline distance, 705
Intermalleolar distance, 687
Intermicellar distance, 528
Internal metric, 90
International Metric System, 614
Internet AS metric, 431
Internet IP metric, 431
internipple distance, 684
Internodal distance, 479
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interocclusal distance, 683
interpediculate distance, 684
interproximal distance, 683
interpupillary distance, 690
interramet distance, 479
Intersection distance, 331
Interspot distance, 491
Interval distance, 323
Interval distance monotone graph, 288
Interval norm metric, 202
interval-ratio distance, 417
Interval-valued metric space, 81
intra-distance, 328
intragenic distance, 461
Intrinsic metric, 112
Invariant distances on symmetric cones, 189
Inverse distance weighting, 32
inverse triangle inequality, 592
inverse weighted path metric, 279
Inverse-square laws, 503
inversion distance, 181
Inversive distance, 375
Involution transform metric, 91
Ironic distance, 676
ISI distances, 488
Island distance effect, 468
Isolation by distance, 452
isometric embedding, 38
Isometric muscle action, 701
isometric projection, 677
Isometric scaling, 482
Isometric subgraph, 287
Isometry, 38
isoperimetric number, 280
Itakura–Saito quasi-distance, 414
ITT-distance, 460
Ivanov–Petrova metric, 141

J
Jaccard similarity, 330
Janis–Newman–Wincour metric, 596
Janous–Hametner metric, 232
Jaro similarity, 220
Jaro–Winkler similarity, 220
Jeans length, 519
Jeffrey distance, 270
Jensen–Shannon divergence, 270
Jiang–Conrath distance, 425
Jin–Nei gamma distance, 457
Johnson distance, 52
Join semilattice distances, 212
Joint angle metric, 360
journey length, 540

Joyner–Boore distance, 554
Jukes–Cantor nucleotide distance, 456
Jukes–Cantor protein distance, 464
jungle river metric, 369

K
Kähler metric, 158
Kähler supermetric, 167
Kähler–Einstein metric, 159
Kadets distance, 54
Kalmanson semimetric, 285
Kaluza–Klein metric, 608
Kantowski–Sachs metric, 597
Kasner metric, 598
Kasting distance, 571
Katĕtov mapping, 47
Katz similarity, 281
Kaufman semimetric, 246
Kawaguchi metric, 149
Kemeny distance, 209
Kendall � distance, 226
Kendall shape distance, 403
Kerr metric, 595
Kerr–Newman metric, 595
Kerr–Schild metric, 595
Kimura 2-parameter distance, 457
Kimura protein distance, 464
Kinematic distance, 585
Kinematic metric, 592
king-move metric, 376
kinship distance, 445
Klamkin–Meir metric, 103
Klein metric, 142
Klement–Puri–Ralesku metric, 59
KM fuzzy metric space, 80
Knight metric, 380
Knot complement hyperbolic metric, 181
Kobayashi metric, 163
Kobayashi–Busemann semimetric, 164
Kobayashi–Royden metric, 163
Kolmogorov–Smirnov metric, 263
Kolmogorov–Tikhomirov dimension, 24
Korányi metric, 206
Koszul–Vinberg metric, 189
Kottler metric, 594
Koutras–McIntosh metric, 603
Krakus metric, 192
Krasnikov metric, 606
Kristeva nonmetric space, 665
Kropina metric, 147
Kruglov distance, 267
KS fuzzy metric space, 81
Kuiper distance, 263
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Kulczynski similarity 1, 331
Kulczynski similarity 2, 332
Kullback–Leibler distance, 269
Kumar–Johnson distance, 271
Kurepa–Fréchet distance, 84
Ky Fan k-norm metric, 240
Ky Fan metric K, 261
Ky Fan metric K�, 261

L
Lévinas distance to Other, 668
Lévy walks in human mobility, 352
Lagrange metric, 150
Lagrangian radius, 512
Lake paralinear distance, 457
Language distance effect, 664
Language distance from English, 660
Language style matching, 650
Lanzon–Papageorgiou quasi-distance, 355
Larsson–Villani metric, 245
Laser distance measurement, 707
Lasker distance, 452
Laterations, 708
Latitude, 559
Latitudinal distance effect, 545
Latter F-statistics distance, 446
Lattice metric, 376
Lattice valuation metric, 211
Laver consonant distance, 662
Law of proximity, 638
Le Cam distance, 266
Leaf size, 479
Lebesgue covering dimension, 25
Lebesgue space, 104
Lechner distance, 691
Lee metric, 51
left-invariant metric, 200
lekking distance rank, 473
Lempel–Ziv distance, 219
Length constant, 490
length function, 613
length metric, 112
length of a curve, 16
Length of metric space, 28
Length scales in Physics, 621
Length similarities, 425
length space, 112
Length spectrum, 17
Length units in Astronomy, 620
Length variation in 5-HTTLPR, 492
Length-related illusions, 631
Lens distances, 714
Lerman metric, 246

Lesk similarities, 425
Levenstein metric, 216
Levenstein orthographic distance, 663
Levi-Civita metric, 599
Levy–Fréchet metric, 273
Levy–Sibley metric, 264
Lewis metric, 599
Lexicographic metric, 227
Lift metric, 369
light extinction distance, 510
Light travel distance, 584
Lighthouse distance, 535
Lighting distance, 509
Lin similarity, 425
Lindelöf space, 65
line metric, 231
Line-line distance, 95
line-of-sight comoving distance, 582
line-of-sight distance, 536
linear contact quasi-distance, 374
Linearly additive metric, 51
linearly rigid metric space, 50
Linguistic distance, 663
Link distance, 372
linkage metric, 328
Lipschitz distance, 56
Lipschitz distance between measures, 56
Lipschitz mapping, 41
Lipschitz metric, 56
Lissak–Fu distance, 262
local isometry, 39
Locality metric, 434
Localization length, 515
localization metric, 360
locally CAT(�) space, 115
Locally compact space, 67
Locally convex space, 67
Locally finite metric space, 49
locally geodesic metric space, 112
Locating chromatic number, 292
location number, 23
Log-likelihood distance, 343
Log-likelihood ratio quasi-distance, 414
Logarithmic distance, 384
LogDet distance, 458
Long range dependence, 351
Long range order, 516
Long-distance, 721
long-distance anaphora, 664
Long-distance cell communication, 490
Long-distance dependence (in Language), 664
Long-distance dispersal, 469
Long-distance drumming, 417
Long-distance intercourse, 722
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Long-distance neural connection, 489
Long-distance trade routes, 643
longest English word, 661
Longitude, 559
Lorentz distance, 591
Lorentz length contraction, 581
Lorentz metric, 591
Lorentz–Minkowski distance, 591
Lorentzian distance, 334
Lostness metric, 433
Lovász–Szegedy semimetric, 299
Low-energy trajectory, 565
lower Minkowski dimension, 24
Loxodromic distance, 534
LRTJ-metric, 322
LTB metric, 597
Lukaszyk–Karmovski metric, 260
Luminosity distance, 583
Lunar distance, 562
Lund–Regge supermetric, 151

M
M31–M33 bridge, 570
Möbius metric, 132
Möbius mapping, 40
maai, 700
MacAdam metric, 395
Macbeath metric, 186
Machida metric, 214
Macroscale entanglement/superposition, 523
Magnetic length, 516
Magnitude of a finite metric space, 21
Mahalanobis distance, 336
Mahalanobis semimetric, 262
Malécot’s distance model, 454
Manhattan metric, 368
Manifold edge-distance, 194
Manifold triangulation metric, 194
Mannheim distance, 319
Map distance, 461
Map’s distance, 537
margin distance, 686
marginal reflex distances, 686
marital distance, 452
Marking metric, 218
Martin cepstrum distance, 415
Martin distance, 245
Martin metric, 222
Martin’s diameter, 403
Maryland Bridge distance, 331
Maryland Bridge similarity, 331
Master-slave distance, 709
Matching distance, 57

Mating distances, 452
Matrix p-norm metric, 238
Matrix nearness problems, 241
Matrix norm metric, 238
Matsumoto slope metric, 147
Matusita distance, 268
Maximal agreement subtree distance, 310
maximum distance design of size m, 34
maximum heart distance, 686
maximum matching distance, 210
Maximum polygon distance, 188
maximum scaled difference, 337
MBR metric, 369
McClure–Vitale metric, 184
Mean censored Euclidean distance, 335
mean character distance, 334
Mean free path (length), 501
mean measure of divergence, 693
Mean width metric, 184
measure metric, 52
measurement triangle inequality, 85
Mechanic distance, 500
Medial axis and skeleton, 402
Median graph, 287
Median metric space, 16
Meehl distance, 335
Melnikov distance, 351
Memory distances, 434
Menger convexity, 19
Metabolic distance, 485
metallic distance, 525
Metametric space, 75
Metaphoric distance, 657
meter, 614
Meter of water equivalent, 514
Meter, in Poetry and Music, 615
Meter-related terms, 616
Metra, 684
Metric, 4
Metric 1-space, 78
Metric aggregating function, 89
metric antimedian, 34
metric association scheme, 289
Metric ball, 12
Metric basis, 23
Metric between angles, 375
Metric between directions, 375
Metric between games, 207
Metric between intervals, 207
Metric betweenness, 15
Metric bornology, 77
Metric bouquet, 92
metric capacity, 35
metric center, 34
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metric compactum, 49
Metric compression, 42
Metric cone, 39
metric connection, 157
Metric convexity, 20
Metric curve, 16
metric data, 327
metric database, 327
metric derivative, 17
Metric diameter, 33
Metric dimension, 24
metric disk, 12
Metric end, 289
metric entropy, 35
Metric expansion of space, 579
metric extension, 47
metric fan, 21
Metric fibration, 39
metric frame, 4
Metric generating function, 89
Metric graph, 279
metric great circle, 17
Metric hull, 12
metric identification, 4
metric independence number, 23
metric lattice, 211
Metric length measures, 617
metric mapping, 41
Metric measure space, 50
metric median, 34
metric meterstick, 616
Metric of bounded curvature, 172
Metric of motions, 205
Metric of nonnegative curvature, 172
Metric of nonpositive curvature, 171
Metric on incidence structure, 51
Metric outer measure, 27
Metric projection, 37
metric property, 38
Metric quadrangle, 16
metric radius, 34
Metric Ramsey number, 42
metric ray, 17
metric recursion, 325
Metric recursion of a MAP decoding, 325
metric segment, 17
metric signature, 138
metric singularity, 193
Metric space, 4
Metric space having collinearity, 15
Metric space of roots, 236
metric sphere, 12
Metric spread, 33
metric straight line, 17

metric subspace, 47
Metric symmetry, 528
Metric tensor, 138
Metric theory of gravity, 517
Metric topology, 14
Metric transform, 47, 87
metric tree, 327
Metric triangle, 15
Metric with alternating curvature, 172
metric-like function, 4
Metric-preserving function, 88
Metrically almost transitive graph, 289
Metrically discrete metric space, 48
metrically homogeneous metric space, 38
Metrically regular mapping, 43
Metrication, 614
Metrics between fuzzy sets, 58
Metrics between intuitionistic fuzzy sets, 59
Metrics between multisets, 58
Metrics on Riesz space, 213
Metrics on determinant lines, 167
Metrics on natural numbers, 229
Metrics on quaternions, 234
Metrizable space, 68
Metrization theorems, 14
MHC genetic dissimilarity, 444
Middle distance, 721
Midpoint convexity, 19
Midset, 22
Migration distance (in Biogeography), 470
Migration distance (in Biomotility), 486
Migration distance (in Economics), 644
Millibot train metrics, 360
Milnor metric, 167
minimax distance design of size m, 34
Minimum distance, 315
Minimum orbit intersection distance, 562
minimum spanning tree, 297
Minkowski difference, 187
Minkowski distance function, 36
Minkowski metric, 589
Minkowski rank of a metric space, 28
Minkowski–Bouligand dimension, 24
Minkowski–Hölder distance, 120
Minkowskian metric, 120
Mirkin–Tcherny distance, 209
Misner metric, 606
miss distance, 706
mitotic length, 490
mixed fault diameter, 281
Mixmaster metric, 598
Miyata–Miyazawa–Yasanaga distance, 462
Model distance, 340
modified Banach–Mazur distance, 55
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Modified Hausdorff distance, 406
Modified Minkowskian distance, 358
Modular distance, 204
Modular metric space, 16
Modulus metric, 132
Moho distance, 552
Molecular RMS radius, 525
Molecular similarities, 527
Molecular sizes, 525
Moment, 500
Momentum, 500
Monge–Kantorovich metric, 273
Monjardet metric, 223
Monkey saddle metric, 179
Monometric, 15
monomial metric, 459
Monomorphism norm metric, 203
monophonic distance, 280
Monotone metrics, 154
Montanari metric, 399
Moore space, 65
Moral distance, 670
Morisita–Horn similarity, 342
Morning width, 561
Morris–Thorne metric, 605
Moscow metric, 369
motion planning metric, 356
Motor vehicle distances, 701
Motyka similarity, 332
Mountford similarity, 338
Multicut semimetric, 286
Multidistance, 72
Multimetric, 72
multimetric space, 72
Multiplicative distance, 334
multiplicative distance function, 128
multiplicative triangle inequality, 97
Multiplicatively weighted distance, 385
Multiply-sure distance, 284
Myers–Perry metric, 607

N
Narrative distance, 676
Natural length units, 620
Natural metric, 231
Natural norm metric, 238
nautical distance, 534
Nautical length units, 618
near field, 504
Near-metric, 7
Nearest neighbor interchange metric, 308
nearest point, 37
nearest-neighbor distance, 471

Nearness principle, 646
Nearness space, 76
necklace editing metric, 215
Needleman–Wunsch–Sellers metric, 221
negative reflection distance, 181
negative type inequality, 11
Nei minimum genetic distance, 445
Nei standard genetic distance, 445
Nei–Tajima–Tateno distance, 445
Neighborhood sequence metric, 377
Network distances, 387
network metric, 372
Network tomography metrics, 432
Network’s hidden metric, 421
Neurons with spatial firing properties, 690
Neutron scattering length, 502
Neyman �2-distance, 269
Nice metric, 373
Niche overlap similarities, 467
Nietzsche’s Ariadne distance, 667
Nikodym metric, 185
non-Archimedean quasi-metric, 7
noncommutative metric space, 156
noncontractive mapping, 44
Nondegenerate metric, 139
Nonlinear elastic matching distance, 401
Nonlinear Hausdorff metric, 407
nonmetric space, 666
nonmetricity tensor, 138
Norm metric, 50, 99
Norm transform metric, 103
norm-angular distance, 99
Normal space, 64
Normalized lp-distance, 335
normalized compression distance, 219
normalized edit distance, 217
normalized Euclidean distance, 337
Normalized information distance, 219
Normalized web distance, 423
NRT metric, 322
NTV-metric, 459
Nuclear norm metric, 255
Number of DNA differences, 456
Number of protein differences, 463

O
obstacle avoidance metric, 360
Ochiai–Otsuka similarity, 341
octagonal metric, 378
odd cut semimetric, 285
official distance, 540
Offset distance, 705
Oliva et al. perception distance, 629
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Ontogenetic depth, 490
open metric ball, 12
Open subset of metric space, 14
operating distance, 716
Operator norm metric, 254
Opposition distance, 563
optical depth, 507
Optical distance, 510
Optical horizon, 535
optical metrics, 520
Optimal eye-to-eye distance, 650
Optimal realization of metric space, 297
orbit metric, 200
orbital distance, 561
Order norm metric, 202
ordinal distance, 333
Orientation distance, 304
Oriented cut quasi-semimetric, 286
oriented diameter, 281
Oriented multicut quasi-semimetric, 286
oriented triangle inequality, 5
Orlicz metric, 251
Orlicz–Lorentz metric, 251
Orloci distance, 341
Ornstein d-metric, 273
orthodromic distance, 533
orthometric height, 542
oscillation stable metric space, 14
Osserman metric, 141
Osterreicher semimetric, 268
Outdistancing, 639
Overall nondominated vector ratio, 362
Ozsváth–Schücking metric, 595

P
Packing dimension, 25
packing distance, 485
packing radius, 34
PAM distance, 462
Parabolic distance, 133
parachute opening distance, 703
Paracompact space, 66
Paradoxical metric space, 39
Parallax distance, 584
Parameterized curves distance, 400
parent-offspring distance, 452
Parentheses string metrics, 223
Parikh distance, 223
Paris metric, 369
Part metric, 251
Partial cube, 287
Partial Hausdorff quasi-distance, 406
Partial metric, 5

partial semimetric, 6
Partially ordered distance, 84
path difference distance, 311
Path distance width of a graph, 295
path isometry, 38
Path length, 721
Path metric, 50, 278
path metric space, 112
Path quasi-metric in digraphs, 281
path-connected metric space, 13
Path-generated metric, 379
Patrick–Fisher distance, 262
patristic distance, 443
Pattern difference, 340
Pe-security distance, 317
Pearson �2-distance, 269
Pearson � similarity, 339
Pearson correlation similarity, 341
Pearson distance, 341
Pedigree-based distances, 450
Peeper distance, 388
pelvic diameter, 684
Pendellösung length, 530
penetration depth, 507
Penetration depth distance, 187
Penetration distance, 486
Penrose size and shape distances, 334
perception-reaction distance, 701
Perelman supermetric proof, 151
Perfect metric space, 48
Perfect matching distance, 309
perfusion distance, 686
periapsis distance, 561
Perimeter deviation, 184
perimeter distance, 372
Periodic metric, 373
Periodicity p-self-distance, 344
perm-dissimilarity, 58
permutation editing metric, 226
Permutation metric, 47
Permutation norm metric, 205
perpendicular distance, 95
Persistence length, 528
Pharmacological distance, 485
phenetic distance, 443
Phone distances, 662
Phonetic word distance, 662
photometric distance, 504
phylogenetic distance, 443
piano movers distance, 371
pinning distance, 529
pitch distance, 415
Pixel distance, 405
pixel pitch, 405
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Planck length, 620
Plane wave metric, 603
Planetary aspects, 564
Planetary distance ladder, 566
Plant long-distance communication, 479
Plume height, 555
Poincaré metric, 128
Poincaré–Reidemeister metric, 167
Point-line distance, 95
Point-plane distance, 95
Point-set distance, 57
Point-to-point transit, 535
pointed metric space, 4
Polar distance (in Biology), 463
Polar distance (in Geography), 560
Polish space, 65
Political distance, 656
poloidal distance, 178
polygonal distance, 372
Polyhedral space, 193
Polyhedral chain metric, 194
polyhedral distance function, 37
polyhedral metric, 193
polynomial bracket metric, 236
Polynomial metric space, 60
Polynomial norm metric, 235
Pompeiu–Eggleston metric, 185
Pompeiu–Hausdorff–Blaschke metric, 184
Ponce de León metric, 607
Port-to-port distance, 535
port-to-port distance, 535
Pose distance, 359
Poset metric, 320
positive reflection distance, 181
Positively homogeneous distance, 200
Pospichal–Kvasnic̆ka chemical distance, 527
Post Office metric, 370
Potato radius, 567
Power . p; r/-distance, 333
Power distance, 384
Power series metric, 108
Power transform metric, 89
power triangle inequality, 8
pp-wave metric, 602
prametric, 4
Prasad metric, 609
Pratt’s figure of merit, 405
pre-order extended quasi-semimetric, 5
Precise distance measurement, 707
Preferred design sizes, 619
Prefix, suffix, and substring distances, 217
Prefix-Hamming metric, 221
premetric, 4
Prevosti–Ocana–Alonso distance, 444

Primary-satellite distances, 564
prime distance, 376
Prime number distance, 96
principle of locality, 522
Probabilistic metric space, 79
Probability distance, 261
problem of dispersion, 366
Procrustes distance, 402
Product norm metric, 203
Product metric, 92
Production Economics distances, 641
Projective determination of a metric, 121
Projective metric, 118
Projectively flat metric space, 117
Prokhorov metric, 264
Prominence, 543
Propagation length, 719
Proper distance and time, 590
proper distance in mediation, 669
Proper length, 590
Proper metric space, 50
Proper motion distance, 582
proportional transport semimetric, 400
Protective action distance, 713
protein length, 440
Protometric, 6
Prototype distance, 468
proximinal set, 37
proximity, 76
Proximity effects, 510
Proximity fuse, 706
Proximity graph, 297
Proximity sensors, 706
Proximity space, 76
pseudo-distance, 8
Pseudo-elliptic distance, 126
Pseudo-Euclidean distance, 144
pseudo-Finsler metric, 147
Pseudo-hyperbolic distance, 129
pseudo-metric, 4
Pseudo-Riemannian metric, 143
Pseudo-sphere metric, 177
Psychical distance, 639
Psychogeography, 634
Psychological distance, 635
Psychological Size and Distance Scale, 635
Ptolemaic graph, 291
Ptolemaic inequality, 9
Ptolemaic metric, 9
Pullback metric, 90
Pulsar dispersion measure, 585
punctured plane, 17
Push distance, 709
Pythagorean distance, 103
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Q
Quadrance, 90
quadratic distance, 336
quadratic-form distance, 336
Quadric metric, 175
Quality metrics, 717
quantum fidelity similarity, 521
quantum graph, 279
quantum metric, 520
Quantum space-time, 520
Quartet distance, 309
quasi-conformal mapping, 41
quasi-convex metric space, 16
Quasi-distance, 4
quasi-Euclidean rank of a metric space, 28
Quasi-hyperbolic metric, 130
Quasi-isometry, 43
quasi-Möbius mapping, 40
Quasi-metric, 6
Quasi-metrizable space, 69
Quasi-semimetric, 5
Quasi-symmetric mapping, 40
quaternion metric, 235
quefrency-weighted cepstral distance, 414
Quenching distance, 710
Quickest path metric, 372
Quillen metric, 167
Quotient metric, 107
Quotient norm metric, 203
Quotient semimetric, 96

R
Rényi distance, 272
Racing distances, 697
Radar discrimination distance, 374
Radar distance, 585
Radar screen metric, 370
radial metric, 369
Radiation attenuation with distance, 506
Radii of a star system, 570
Radii of metric space, 34
Radio distance measurement, 707
Radio distances, 536
radius of convexity, 18
Radius of gyration, 503
Rainbow distance, 280
Rajski distance, 272
Ralescu distance, 221
Rand similarity, 337
Randall–Sundrum metric, 593
Randers metric, 147
random graph, 61
Range distances, 716

Range of a charged particle, 503
Range of ballistic missile, 706
Range of fundamental forces, 505
Range of molecular forces, 526
Ranged weapon, 714
Rank metric, 321
Rank of metric space, 28
Rao distance, 153
Ray–Singler metric, 167
Rayleigh length, 504
Read length, 491
Real half-line quasi-semimetric, 232
Real tree, 46
reciprocal length, 613
Rectangle distance on weighted graphs, 298
Rectilinear distance with barriers, 371
rectilinear metric, 368
rectosacral distance, 684
recursive metric space, 62
referential distance, 664
Reflection distance, 401
regeneration distance, 685
Regular G-metric, 74
Regular metric, 171
Regular space, 64
Reidemeister metric, 167
Reidemeister–Singer distance, 175
Reissner–Nordström metric, 594
Relational proximity, 643
Relative metrics on R

2, 368
relaxed four-point inequality, 9
Relaxed four-point inequality metric, 9
relaxed metric, 4
relaxed tree-like metric, 281
remoteness, 34
Remotest places on Earth, 544
Rendez-vous number, 29
Repeat distance, 528
Reported distance, 432
Representation of distance in Painting, 676
Representational dissimilarity matrix, 629
Resemblance, 75
Resistance metric, 282
Resistor-average distance, 270
Resnik similarity, 425
Resnikoff color metric, 397
Resolving dimension, 23
Restricted edit distance, 307
Retract subgraph, 287
reuse distance, 434
Reversal metric, 226
Reverse triangle inequality, 100
Reynolds number, 512
Reynolds–Weir–Cockerham distance, 447
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rhetorical distance, 664
Ricci-flat metric, 141
Rickman’s rug metric, 370
Rieffel metric space, 155
Riemann-type .˛; ˇ/-metric, 147
Riemannian color space, 396
Riemannian distance, 139
Riemannian metric, 51, 139
Riesz norm metric, 107
Right ascension, 560
right logarithmic derivative metric, 154
right-angle metric, 368
right-invariant metric, 200
Rigid motion of metric space, 38
River length, 551
RMS log spectral distance, 413
RNA structural distances, 458
Road sight distances, 539
Road travel distance, 540
Roberts similarity, 329
Robinson–Foulds metric, 308
Robinson–Foulds weighted metric, 308
Robinsonian distance, 9
Robot displacement metric, 358
Roche radius, 564
Roger distance, 444
Roger–Tanimoto similarity, 338
Role distance, 675
rollout distance, 541
Rook metric, 380
Rossi–Hamming metric, 210
Rotating C-metric, 607
rotation distance, 357
Rotation surface metric, 177
Rough dimension, 25
Roundness of metric space, 28
routing protocol semimetric, 432
RTT-distance, 431
Rubik cube, 94
Rummel sociocultural distances, 654
Running distances, 697
Ruppeiner metric, 152
rupture distance, 554
Russel–Rao similarity, 338
Ruzicka similarity, 329

S
Sabbath distance, 673
safe distancing, 716
safe following distance, 701
Safir distance, 673
Sagging distance, 711
Sagittal abdominal diameter, 696

Sampling distance, 502
Sangvi �2 distance, 445
Sanitation distances, 538
Santoni–Felici–Vergni proximity, 465
Sasakian metric, 168
Scalar and vectorial metrics, 212
scale factor, 578
scale height, 719
Scale in art, 677
Scale invariance, 351
scale metric transform, 87
scale-free network, 419
Scaled distance, 705
Schatten p-class norm metric, 257
Schatten norm metric, 239
Schattschneider metric, 103
Schechtman length, 28
Schellenkens complexity quasi-metric, 223
Schoenberg transform metric, 90
Schwartz metric, 253
Schwarzschild metric, 594
Schwarzschild radius, 518
search-centric change metrics, 433
Second-countable space, 65
sedimentation distance, 685
seismogenic depth distance, 554
self-distance, 5
Selkow distance, 307
Semantic biomedical distances, 426
Semantic proximity, 426
Semi-pseudo-Riemannian metric, 145
Semi-Riemannian metric, 145
semidistance, 4
Semimetric, 4
Semimetric cone, 21
semimetrizable space, 69
Seminorm semimetric, 100
sendograph metric, 59
Sensor network distances, 706
sensor tolerance distance, 706
Separable metric space, 49
separable space, 65
Separation distance, 186
Separation quasi-distance, 269
Set-set distance, 57
Setback distance, 538
SETI detection ranges, 572
Sexual distance, 422
Sgarro metric, 213
Shankar–Sormani radii, 18
Shannon distance, 272
Shantaram metric, 373
Shape parameters, 403
Shared allele distance, 443
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shared information distance, 272
Sharma–Kaushik metrics, 318
shear distance, 714
Shen metric, 147
Shephard metric, 185
Shift distance, 709
Ship distances, 703
Shooting distance, 714
Short mapping, 44
shortest path distance, 112
Shortest path distance with obstacles, 386
Shriver et al. stepwise distance, 446
shuttle metric, 370
Shy distance, 538
sib distance, 452
Sibony semimetric, 165
Siegel distance, 243
Siegel–Hua metric, 243
Sierpinski metric, 229
signed distance function, 38
Signed reversal metric, 226
similar metric, 88
Similarity, 3
Similarity ratio, 342
Simone Weil distance, 670
Simplicial metric, 193
simplicial supermetric, 151
Simpson similarity, 331
SimRank similarity, 427
sine distance, 522
Single row facility layout, 709
Size function distance, 401
Size representation, 658
Size spectrum, 482
size-distance centration, 632
Size-distance invariance hypothesis, 631
Skew distance, 389
skidding distance, 702
skin depth, 508
skip distance, 536
Skorokhod metric, 266
Skorokhod–Billingsley metric, 266
Skwarczynski distance, 161
slant distance, 541
slip-weakening distance, 553
Slope distance, 541
slope metric, 412
SNCF metric, 370
Snout-vent length, 473
Snowmobile distance, 389
SNR distance, 411
Soaring distances, 700
Sober space, 66
Sobolev distance, 185

Sobolev metric, 252
Social distance, 654
Sociometric distance, 653
Soergel distance, 329
Soft metric, 615
Software metrics, 434
Soil distances, 551
Sokal–Sneath similarities, 337
Solar distances, 568
sonic metric, 519
Sonority distance effect, 417
Sorgenfrey quasi-metric, 232
sorting distance, 46
Sound attenuation with distance, 509
sound extinction distance, 509
source-skin distance, 684
Space (in Philosophy), 665
Space of constant curvature, 140
Space of Lorentz metrics, 151
Space over algebra, 83
Space syntax, 537
Space-related phobias, 689
space-time link distance, 555
Spacing, 361
Spacing distances, 716
spanning distance, 57
Spark distance, 713
Spatial analysis, 343
Spatial cognition, 658
Spatial coherence length, 516
spatial correlation, 516
Spatial dependence, 343
Spatial graph, 295
Spatial language, 660
Spatial music, 678
Spatial reasoning, 659
Spatial scale, 533
Spatial-temporal reasoning, 659
Spatialism, 678
Spatialization, 659
Spearman � distance, 225
Spearman footrule distance, 225
Spearman rank correlation, 342
Special parallels and meridians, 543
spectral distance, 245
Spectral distances, 412
Spectral magnitude-phase distortion, 412
spectral phase distance, 412
Spectral semimetric between graphs, 299
Sphere metric, 176
Sphere of influence graph, 297
spherical extension distance, 91
spherical gap distance, 244
Spherical metric, 125
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Spheroid metric, 177
spike count distance, 488
Spike train distances, 488
Spin network, 279
spin triangle inequality, 279
split semimetric, 285
Splitting-merging distance, 307
Spray distance, 713
spreading metric, 47
squared Euclidean distance, 333
Stable norm metric, 206
standardized Euclidean distance, 337
Standoff distance, 705
Star’s radii, 569
Static isotropic metric, 596
stealth distance, 706
Steiner distance of a set, 296
Steiner ratio, 35
Steinhaus distance, 52
stem Hamming distance, 466
Stenzel metric, 161
Stepanov distance, 249
Stiles color metric, 397
stochastic edit distance, 218
Stop-loss metric of order m, 263
stopping distance, 701
stopping sight distance, 539
Straight G-space, 114
straight line distance, 541
Straight spinning string metric, 600
Strand length, 461
Strand–Nagy distances, 378
Strength of metric space, 29
String-induced alphabet distance, 224
Strip projective metric, 119
stroke distance, 685
Strong distance in digraphs, 281
strong triangle inequality, 5
strongly metric-preserving function, 88
structural Hamming distance, 301
sub-Riemannian metric, 143
Subgraph metric, 298
Subgraph–supergraph distances, 299
Subgraphs distances, 305
Subjective distance, 633
submetric, 47
submetry, 44
Subspace metric, 321
Subtree prune and regraft distance, 309
Subway network core, 422
subway semimetric, 373
sum of minimal distances, 406
Sun-Earth-Moon distances, 563
sup metric, 248

Super-knight metric, 380
supermetric, 150
Surname distance model, 657
suspension metric, 192
Swadesh similarity, 663
Swap metric, 216
Swedenborg heaven distances, 673
swept volume distance, 356
Symbolic distance effect, 637
symmetric, 3
Symmetric �2-distance, 336
Symmetric �2-measure, 336
Symmetric difference metric, 52
Symmetric metric space, 38
symmetric surface area deviation, 186
Symmetrizable space, 69
symmetry distance, 404
Synchcronization distance, 431
Syntenic distance, 461
Systole of metric space, 17
Szulga metric, 265

T
Tărnăuceanu metric, 202
Tajima–Nei distance, 456
Takahashi convexity, 20
Talairach distance, 689
Tamura 3-parameter distance, 457
Tamura–Nei distance, 457
Taneja distance, 271
Tangent distance, 404
tangent metric cone, 39
Tanimoto distance, 330
Taub–NUT de Sitter metric, 604
Taub–NUT metric, 162
taxicab metric, 368
taxonomic distance, 442
TBR-metric, 309
teardrop distance, 684
Technology distances, 640
Technology-related distancing, 652
Teichmüller metric, 165
Telomere length, 492
template metric, 183
Temporal distance, 636
Temporal remoteness, 449
tensegrity structure, 293
Tensor norm metric, 107
Terminal distance, 500
Tethering distance, 435
textual distance, 664
TF-IDF similarity, 341
Thermal diffusion length, 512
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Thermal entrance length, 512
Thermodynamic metrics, 152
Thermodynamic length, 516
thinking distance, 701
Thompson’s part metric, 190
Thomson scattering length, 502
Thorpe similarity, 444
Threaded fastener distances, 711
Three-point shot distance, 699
threshold distance, 717
Throat distance, 710
Thurston quasi-metric, 166
thyromental distance, 685
Tight extension, 45
Tight span, 45
time metric, 372
Time series video distances, 408
Time-distance relation (in Psychology), 636
time-like distance, 591
Titius–Bode law, 566
Tits metric, 116
token-based similarities, 220
Tolerance distance, 537
Tomimatsu–Sato metric, 600
Tomiuk–Loeschcke distance, 445
Topological dimension, 25
topological vector space, 67
Topsøe distance, 271
Toroidal metric, 374
Torus metric, 178
Total distance between trajectories, 353
Totally bounded metric space, 49
Totally bounded space, 66
totally Cantor disconnected metric, 13
totally convex metric subspace, 18
totally disconnected metric space, 13
trace metric, 243
trace norm metric, 239
Trace-class norm metric, 256
train metric, 369
transactional distance, 648
Transduction edit distances, 217
Transfinite diameter, 32
Transform metric, 87
Transformation distance, 218
translated metric, 88
Translation discrete metric, 200
translation distance, 357
translation invariant metric, 98
translation proper metric, 201
Transmission distance, 708
Transportation distance, 273
transposition distance, 226
transverse comoving distance, 582

Traveling salesman tours distances, 304
Tree bisection-reconnection metric, 309
Tree edge rotation distance, 303
Tree edit distance, 306
Tree rotation distance, 310
Tree-length of a graph, 295
Tree-like metric, 281
triangle equality, 15
triangle function, 79
triangle inequality, 4
Triangular ratio metric, 131
Triathlon race distances, 697
Triples distance, 309
trivial metric, 46
tRNA interspecies distance, 462
Trophic distance, 483
True length, 721
Truncated metric, 284
Trust metrics, 433
Trust radius, 656
tunnel distance, 534
Tunneling distance, 524
Turbulence length scales, 513
Turning function distance, 401
Tversky similarity, 338
Twitter friendship distance, 421
two-way distance in digraph, 289
Type of metric space, 29
Typographical length units, 619

U
UC metric space, 50
Uchijo metric, 149
Ulam metric, 226
ultrahomogeneous space, 38
Ultrametric, 8
ultrametric inequality, 8
Underlying graph of a metric space, 15
Unicity distance, 317
Uniform metric, 248
Uniform metric mapping, 42
Uniform space, 76
unit cost edit distance, 306
Unit distance, 613
Unit quaternions metric, 358
Unitary metric, 104
Universal metric space, 61
Urysohn space, 61

V
Vaidya metric, 597
Vajda–Kus semimetric, 268
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Valuation metric, 108
van der Waals contact distance, 525
van Stockum dust metric, 599
Variable exponent space metrics, 253
variation of information, 272
variational distance, 262
Varshamov metric, 319
vector distance function, 38
Vertical distance, 542
Verwer metric, 399
Video quality metrics, 408
Vidyasagar metric, 355
Vietoris–Rips complex, 193
Vinnicombe metric, 355
Virtual community distance, 420
Virtual distance, 653
Visibility shortest path distance, 386
Vision distances, 690
Visual Analogue Scales, 635
Visual angle metric, 132
visual distance, 116
Visual space, 630
Vitanyi multiset metric, 73
Viterbi edit distance, 218
VLBI distance measurements, 586
Vocal deviation, 418
Vol’berg–Konyagin dimension, 26
Volume of finite metric space, 28
Voronoi distance for arcs, 390
Voronoi distance for areas, 391
Voronoi distance for circles, 390
Voronoi distance for line segments, 390
Voronoi distances of order m, 392
Voronoi generation distance, 383
Voronoi polytope, 383
Voyager 1 distance, 573

W
walk distance, 282
walk-regular graph, 288
Walkability distances, 649
Ward linkage, 328
Warped product metric, 94
Warrens inequalities on similarities, 330
Wasserstein metric, 273
Watson–Crick distance, 458
Wave–Edges distance, 329
weak Banach–Mazur distance, 55
weak metric, 8
weak partial semimetric, 6
weak quasi-metric, 5
Weak ultrametric, 8
Weather distance records, 555

Web hyperlink quasi-metric, 432
Web quality control distance function, 433
Web similarity metrics, 432
Weierstrass metric, 130
weightable quasi-semimetric, 5
Weighted cut metric, 380
Weighted Euclidean R

6-distance, 357
Weighted Euclidean distance, 336
Weighted Hamming metric, 221
weighted likelihood ratio distance, 414
Weighted Manhattan distance, 358
weighted Manhattan quasi-metric, 333
Weighted Minkowskian distance, 357
Weighted path metric, 278
weighted tree metric, 281
Weighted word metric, 201
Weil–Petersson metric, 166
Weinhold metric, 152
Weyl distance, 249
Weyl metric, 600
Weyl semimetric, 350
Weyl–Papapetrou metric, 599
Wheeler–DeWitt supermetric, 150
Whole genome composition distance, 465
Width dimension, 27
Wiener-like distance indices, 30
Wigner–Seitz radius, 514
Wigner–Yanase metric, 155
Wigner–Yanase–Dyson metrics, 155
WikiDistance, 420
Wils metric, 603
Wind distances, 548
wire length, 294
Wobbling of metric space, 39
Word metric, 201
word page distance, 433
working distance, 715
workspace metric, 356
Wormhole metric, 605
Wright, 453
Wu–Palmer similarity, 425

X
X-ray absorption length, 531

Y
Yegnanarayana distance, 414
YJHHR metrics, 333
Yule similarities, 339

Z
Zelinka distance, 299
Zelinka tree distance, 300
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Zenith distance, 560
Zeno’s distance dichotomy paradox, 664
Zero bias metric, 231
Zero-gravity radius, 580

Zipoy–Voorhees metric, 600
Zoll metric, 142
Zolotarev semimetric, 265
Zuker distance, 459
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