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In 1906, Maurice Fréchet submitted his outstanding thesis Sur Quelques Points du
Calcul Fonctionnel introducing (within a systematic study of functional operations)
the notion of metric space (E-espace, E from écart, i.e., gap).

Also, in 1914, Felix Hausdorff published his famous Grundziige der Mengen-
lehre where the theory of topological and metric spaces (metrische Rdume) was
created.

Let this encyclopedia be our homage to the memory of these great mathemati-
cians and their lives of dignity through the hard times of the first half of the twentieth
century.

ol iy

Maurice Fréchet (1878-1973) Felix Hausdorff (1868-1942)






Preface

In 2016, one decade after the publication of our Dictionary of Distances, the number
of WWW entries offered by Google on the topics “distance” and “distance metric”
has grown from 300 million (about 4 % of all entries) and 12 million to 1.35 billion
(about 5.4 % of all entries) and 114 million.

This fourth edition is characterized by updated and rewritten sections on some
items suggested by experts and readers, as well as a general streamlining of content
and the addition of essential new topics.

Though the structure remains unchanged, the new edition also explores recent
advances in the use of distances and metrics for, e.g., generalized distances,
probability theory, graph theory, coding theory, data analysis.

New topics in the purely mathematical sections include, e.g., the Vitanyi
multiset-metric, algebraic point-conic distance, triangular ratio metric, Rossi—
Hamming metric, Taneja distance, spectral semimetric between graphs,
channel metrization, and Maryland bridge distance, which are addressed in
Chaps. 3, 4, 6, 10, 14, 15, 16, and 17, respectively.

The multidisciplinary sections have also been supplemented with new
topics, including dynamic time wrapping distance, memory distances, allometry,
atmospheric depth, elliptic orbit distance, VLBI distance measurements, the
astronomical system of units, and walkability distances, which can be found in
Chaps. 21, 22, 23, 24, 25, 26, 27, and 28, respectively.

We‘d like to take this opportunity to once again thank the team at Springer for
their very efficient and friendly assistance.

Paris, France Michel Marie Deza

Moscow, Russia Elena Deza
May 2016
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Preface to the Third Edition

Since the publication of the second edition in 2012, several people have again given
us their valued feedback and have thus contributed to the publication of this third
edition. We are thankful to them for their input.

In the latest edition, new items from very active research areas in the use
of distances and metrics such as geometry, graph theory, probability theory, and
analysis have been added. We have kept the structure but have revised many topics,
simplifying, shortening, and updating them, especially in Chaps. 23-25 and 27-29.

Among the new topics included are, for example, polyhedral metric spaces,
nearness matrix problems, distances between belief assignments, distance-related
animal settings, diamond-cutting distances, natural units of length, Heidegger’s de-
severance distance, and brain distances in Chaps. 9, 12, 14, 23, 24, 27, 28, and 29,
respectively.

We would also like to thank the team at Springer for their very efficient and
friendly assistance.

ix






Preface to the Second Edition

The preparation of the second edition of Encyclopedia of Distances has pre-
sented a welcome opportunity to improve the first edition published in 2009 by
updating and streamlining many sections and by adding new items (especially in
Chaps. 1, 15, 18, 23, 25, 27-29), increasing the book’s size by about 70 pages. This
new edition preserves, except for Chaps. 18, 23, 25, and 28, the structure of the first
edition.

The first large conference with a scope matching that of this encyclopedia is
MDA 2012, the International Conference “Mathematics of Distances and Applica-
tions,” held in July 2012 in Varna, Bulgaria (cf. [DPM12]).
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Preface to the First Edition

Encyclopedia of Distances is the result of rewriting and extending our Dictionary
of Distances, published in 2006 (and put online at http://www.sciencedirect.com/
science/book/9780444520876) by Elsevier. About a third of the definitions are new,
and majority of the remaining ones are upgraded.

We were motivated by the growing intensity of research on metric spaces and,
especially, in distance design for applications. Even if we do not address the
practical questions arising during the selection of a “good” distance function, just a
sheer listing of the main available distances should be useful for the distance design
community.

This encyclopedia is the first one treating fully the general notion of distance.
This broad scope is useful per se, but it also limited our options for referencing. We
give an original reference for many definitions but only when it was not too difficult
to do so. On the other hand, citing somebody who well developed the notion but
was not the original author may induce problems. However, with our data (usually,
author name(s) and year), a reader can easily search sources using the Internet.

We found many cases when authors developed very similar distances in different
contexts and, clearly, were unaware of it. Such connections are indicated by a simple
“cf.” in both definitions, without going into priority issues explicitly.

Concerning the style, we tried to make it a mixture of resource and coffee-table
book, with maximal independence of its parts and many cross-references.

Xiii
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Preface to Dictionary of Distances, 2006

The concept of distance is a basic one in the whole human experience. In everyday
life, it usually means some degree of closeness of two physical objects or ideas, i.e.,
length, time interval, gap, rank difference, coolness, or remoteness, while the term
metric is often used as a standard for a measurement.

But here we consider, except for the last two chapters, the mathematical meaning
of those terms which is an abstraction of measurement. The mathematical notions
of distance metric (i.e., a function d(x,y) from X x X to the set of real numbers
satisfying to d(x,y) > 0 with equality only for x = y, d(x,y) = d(y,x), and
d(x,y) < d(x,z) + d(z,y)) and of metric space (X,d) were originated a century
ago by M. Fréchet (1906) and F. Hausdorff (1914) as a special case of an infinite
topological space. The triangle inequality above appears already in Euclid. The
infinite metric spaces are usually seen as a generalization of the metric |x — y| on
the real numbers. Their main classes are the measurable spaces (add measure) and
Banach spaces (add norm and completeness).

However, starting from K. Menger (who, in 1928, introduced metric spaces in
geometry) and L.M. Blumenthal (1953), an explosion of interest in both finite and
infinite metric spaces occurred. Another trend is that many mathematical theories,
in the process of their generalization, settled on the level of metric space. It is
an ongoing process, for example, for Riemannian geometry, real analysis, and
approximation theory.

Distance metrics and distances have become now an essential tool in many
areas of mathematics and its applications including geometry, probability, statis-
tics, coding/graph theory, clustering, data analysis, pattern recognition, networks,
engineering, computer graphics/vision, astronomy, cosmology, molecular biology,
and many other areas of science. Devising the most suitable distance metrics and
similarities, in order to quantify the proximity between objects, has become a
standard task for many researchers. Especially intense ongoing search for such
distances occurs, for example, in computational biology, image analysis, speech
recognition, and information retrieval.

Often the same distance metric appears independently in several different areas,
for example, the edit distance between words, the evolutionary distance in biology,

XV



XVi Preface to Dictionary of Distances, 2006

the Levenshtein metric in coding theory, and the Hamming+Gap or shuffle-
Hamming distance.

This body of knowledge has become too big and disparate to operate within.
The number of worldwide web entries offered by Google on the topics “distance,”
“metric space,” and “distance metric” is about 216, 3, and 9 million, respectively, not
to mention all the printed information outside the web, or the vast “invisible web”
of searchable databases. About 15,000 books on Amazon.com contain “distance” in
their titles. However, this huge information on distances is too scattered: the works
evaluating distance from some list usually treat very specific areas and are hardly
accessible for nonexperts.

Therefore many researchers, including us, keep and cherish a collection of
distances for use in their areas of science. In view of the growing general need
for an accessible interdisciplinary source for a vast multitude of researchers, we
have expanded our private collection into this dictionary. Some additional material
was reworked from various encyclopedias, especially Encyclopedia of Mathematics
([EM98]), MathWorld ([Weis99]), PlanetMath ([PM]), and Wikipedia ([WFE]).
However, the majority of distances are extracted directly from specialist literature.

Besides distances themselves, we collected here many distance-related notions
(especially in Chap. 1) and paradigms, enabling people from applications to get
those (arcane for nonspecialists) research tools, in ready-to-use fashion. This and the
appearance of some distances in different contexts can be a source of new research.

In the time when overspecialization and terminology fences isolate researchers,
this dictionary tries to be “centripetal” and “ecumenical,” providing some access
and altitude of vision but without taking the route of scientific vulgarization. This
attempted balance defined the structure and style of the dictionary.

This reference book is a specialized encyclopedic dictionary organized by subject
area. It is divided into 29 chapters grouped into 7 parts of about the same length.
The titles of the parts are purposely approximative: they just allow a reader to figure
out her/his area of interest and competence. For example, Parts II, III, IV, and V
require some culture in, respectively, pure and applied mathematics. Part VII can be
read by a layman.

The chapters are thematic lists, by areas of mathematics or applications, which
can be read independently. When necessary, a chapter or a section starts with a short
introduction: a field trip with the main concepts. Besides these introductions, the
main properties and uses of distances are given, within items, only exceptionally. We
also tried, when it was easy, to trace distances to their originator(s), but the proposed
extensive bibliography has a less general ambition: just to provide convenient
sources for a quick search.

Each chapter consists of items ordered in a way that hints of connections between
them. All item titles and (with majuscules only for proper nouns) selected key terms
can be traced in the large subject index; they are boldfaced unless the meaning is
clear from the context. So, the definitions are easy to locate, by subject, in chapters
and/or, by alphabetic order, in the subject index.
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The introductions and definitions are reader-friendly and maximally independent
each from another; still they are interconnected, in the 3D HTML manner, by
hyperlink-like boldfaced references to similar definitions.

Many nice curiosities appear in this “Who Is Who” of distances. Examples of
such sundry terms are ubiquitous Euclidean distance (“‘as-the-crow-flies”), flower-
shop metric (shortest way between two points, visiting a “flower-shop” point first),
knight-move metric on a chessboard, Gordian distance of knots, Earth mover’s
distance, biotope distance, Procrustes distance, lift metric, post office metric,
Internet hop metric, WWW hyperlink quasi-metric, Moscow metric, and dogkeeper
distance.

Besides abstract distances, the distances having physical meaning appear also
(especially in Part VI); they range from 1.6 x 10> m (Planck length) to 8.8 x 10?° m
(the estimated size of the observable Universe, about 5.4 x 10°' Planck lengths).

The number of distance metrics is infinite, and therefore our dictionary cannot
enumerate all of them. But we were inspired by several successful thematic
dictionaries on other infinite lists, for example, on numbers, integer sequences,
inequalities, and random processes, and by atlases of functions, groups, fullerenes,
etc. On the other hand, the large scope often forced us to switch to the mode of
laconic tutorial.

The target audience consists of all researchers working on some measuring
schemes and, to a certain degree, students and a part of the general public interested
in science.

We tried to address all scientific uses of the notion of distance. But some
distances did not made it to this dictionary due to space limitations (being too
specific and/or complex) or our oversight. In general, the size/interdisciplinarity cut-
off, i.e., decision where to stop, was our main headache. We would be grateful to
the readers who will send us their favorite distances missed here.
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Mathematics of Distances



Chapter 1
General Definitions

1.1 Basic Definitions

Distance

A distance space (X, d) is a set X (carrier) equipped with a distance d.

A function d : X x X — R is called a distance (or dissimilarity) on X if, for
all x,y € X, it holds:

1. d(x,y) > 0 (nonnegativity);
2. d(x,y) = d(y, x) (symmetry);
3. d(x,x) = 0 (reflexivity).

In Topology, a distance with d(x,y) = O implying x = y is called a
symmetric.

For any distance d, the function D defined for x # y by Dy (x,y) = d(x,y)+c,
where ¢ = max, ex(d(x,y) — d(x,z) — d(y,z)), and D(x,x) = 0, is a metric.
Also, Dy(x,y) = d(x,y) is a metric for sufficiently small ¢ > 0.

The function D3(x,y) = inf)_,; d(z;, zi+1), where the infimum is taken over

all sequences x = zp,...,Z,+1 = ), is the path semimetric of the complete
weighted graph on X, where, for any x, y € X, the weight of edge xy is d(x, y).
Similarity

Let X be a set. A function s : X x X — R is called a similarity on X if s is
nonnegative, symmetric and the inequality

s(x,y) < s(x.x)

holds for all x, y € X, with equality if and only if x = y.
The main transforms used to obtain a distance (dissimilarity) d from a
similarity s bounded by 1 from above are: d = 1 —s5,d = %, d = +1-—s5,

d = /2(1 —s?),d = arccoss, d = —Ins (cf. Chap.4).

© Springer-Verlag Berlin Heidelberg 2016 3
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1 General Definitions

Semimetric
Let X be a set. A functiond : X x X — R is called a semimetric on X if d is
nonnegative, symmetric, reflexive (d(x,x) = 0 for x € X) and it holds

d(x,y) <d(x,z) +d(z,y)

for all x,y, z € X (triangle inequality or, sometimes, triangular inequality).

In Topology, it is called a pseudo-metric (or, rarely, semidistance, gauge),
while the term semimetric is sometimes used for a symmetric (a distance d(x, y)
with d(x,y) = 0 only if x = y); cf. symmetrizable space in Chap. 2.

For a semimetric d, the triangle inequality is equivalent, for each fixed n > 4
and all x,y,z1,...,z,—2 € X, to the following n-gon inequality

d(x,y) <d(x,z1) + d(z1,22) + -+ + d(z4—2, ).

Equivalent rectangle inequality is |d(x,y) — d(z1, 22)| < d(x,z1) + +d(y, 22)-

For a semimetric d on X, define an equivalence relation, called metric
identification, by x ~ y if d(x,y) = 0; equivalent points are equidistant
from all other points. Let [x] denote the equivalence class containing x; then
D([x], [y]) = d(x,y) is a metric on the set {[x] : x € X} of equivalence classes.
Metric

Let X be a set. A function d : X x X — R is called a metric on X if, for all
x,y,z € X, it holds:

d(x,y) = 0 (nonnegativity);

d(x,y) = 0 if and only if x = y (identity of indiscernibles);
d(x,y) = d(y, x) (symmetry);

d(x,y) <d(x,z) + d(z,y) (triangle inequality).

b

In fact, the above condition 1. follows from above 2., 3. and 4.

If 2. is dropped, then d is called (Bukatin, 2002) relaxed semimetric. If 2. is
weakened to “d(x, x) = d(x,y) = d(y,y) implies x = y”, then d is called relaxed
metric. A partial metric is a partial semimetric, which is a relaxed metric.

If above 2. is weakened to “d(x,y) = 0 implies x = y”, then d is called
(Amini-Harandi, 2012) metric-like function. Any partial metric is metric-like.
Metric space

A metric space (X, d) is a set X equipped with a metric d.

It is called a metric frame (or metric scheme, integral) if d is integer-valued.

A pointed metric space (or rooted metric space) (X, d, xo) is a metric space
(X, d) with a selected base point xp € X.

Extended metric

An extended metric is a generalization of the notion of metric: the value co
is allowed for a metric d.

Quasi-distance

Let X be a set. A functiond : X x X — R is called a quasi-distance on X if d
is nonnegative, and d(x, x) = 0 holds for all x € X. It is also called a premetric
or prametric in Topology and a divergence in Probability.
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If a quasi-distance d satisfies the strong triangle inequality d(x,y) <
d(x,z) + d(y, z), then (Lindenbaum, 1926) it is symmetric and so, a semimetric.
A quasi-semimetric d is a semimetric if and only if (Weiss, 2012) it satisfies the
full triangle inequality |d(x, z) — d(z,y)| < d(x,2) < d(x,z) + d(z,Y).

The distance/metric notions are usually named as weakenings or modifica-
tions of the fundamental notion of metric, using various prefixes and modifiers.
But, perhaps, extended (i.e., the value oo is allowed) semimetric and quasi-
semimetric should be (as suggested in Lawvere, 2002) used as the basic terms,
since, together with their short mappings, they are best behaved of the metric
space categories.

Quasi-semimetric

A function d : X x X — R is called a quasi-semimetric (or hemimetric,
ostensible metric) on X if d(x,x) = 0, d(x,y) > 0 and the oriented triangle
inequality

d(x,y) <d(x,z) +d(z,y)

holds for all x, y,z € X. The set X can be partially ordered by the specialization
order: x < yif and only if d(x,y) = 0.

A weak quasi-metric is a quasi-semimetric d on X with weak symmetry, i.e.,
for all x,y € X the equality d(x,y) = 0 implies d(y,x) = 0.

An Albert quasi-metric is a quasi-semimetric d on X with weak definiteness,
i.e., for all x, y € X the equality d(x,y) = d(y,x) = 0 implies x = y.

Both, weak and Albert, quasi-metric, is a usual quasi-metric.

Any pre-order (X, <) (satisfying for all x,y,z € X, x < x and if x < y and
y < zthen x < z) can be viewed as a pre-order extended quasi-semimetric
(X, d) by defining d(x,y) = 0 if x < y and d(x,y) = oo, otherwise.

A weightable quasi-semimetric is a quasi-semimetric d on X with relaxed
symmetry, i.e., for all x,y,z € X

d(x,y) +d(y.2) + d(z,x) = d(x,2) + d(z.y) + d(y. %),

holds or, equivalently, there exists a weight function w(x) € R on X with
d(x,y) —d(y,x) = w(y) — w(x) forall x,y € X (i.e., d(x,y) + %(w(x) —w(y))
is a semimetric). If d is a weightable quasi-semimetric, then d(x,y) + w(x) is a
partial semimetric (moreover, a partial metric if d is an Albert quasi-metric).
Partial metric

Let X be a set. A nonnegative symmetric functionp : X x X — R is called a
partial metric ([Matt92]) if, for all x, y, z € X, it holds:

1. p(x,x) < p(x,y), i.e., every self-distance (or extent) p(x, x) is small,
2. x =yif p(x,x) = p(x,y) = p(y,y) = 0 (Ty separation axiom);
3. p(x,y) < p(x,2) + p(z,y) — p(z, 2) (sharp triangle inequality).

The 1-st above condition means that p is a forward resemblance, cf. Chap. 3.
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If the 2-nd above condition is dropped, the function p is called a partial
semimetric. The nonnegative function p is a partial semimetric if and only if
p(x,y) — p(x, x) is a weightable quasi-semimetric with w(x) = p(x, x).

If the 1-st above condition is also dropped, the function p is called (Heckmann,
1999) a weak partial semimetric. The nonnegative function p is a weak partial
semimetric if and only if 2p(x, y) — p(x,x) — p(y,y) is a semimetric.

Sometimes, the term partial metric is used when a metric d(x, y) is defined
only on a subset of the set of all pairs x, y of points.

Protometric

A function p : X x X — R is called a protometric if, for all (equivalently, for

all different) x, y, z € X, the sharp triangle inequality holds:

p(x,y) < px,2) +p(z.y) — Pz, 2).

For finite X, the matrix ((p(x,y))) is (Burkard et al., 1996) weak Monge array.

A strong protometric is a protometric p with p(x,x) = 0 for all x € X. Such
a protometric is exactly a quasi-semimetric, but with the condition p(x,y) > 0
(for any x, y € X) being relaxed to p(x,y) + p(y,x) > 0.

A partial semimetric is a symmetric protometric (i.e., p(x,y) = p(y,x)
with p(x,y) > p(x,x) > 0 for all x,y € X.) An example of a nonpositive
symmetric protometric is given by p(x,y) = —(x.y)y, = %(d(x, y) —d(x,x0) —
d(y,y0)), where (X,d) is a metric space with a fixed base point xp € X; see
Gromov product similarity (x.y),, and, in Chap.4, Farris transform metric
C— (x.y)x-

A O-protometric is a protometric p for which all sharp triangle inequalities
(equivalently, all inequalities p(x,y) + p(y,x) > p(x,x) + p(y,y) implied by
them) hold as equalities. For any u € X, denote by A/, A!/ the 0-protometrics p
with p(x,y) = 1,=4, 1,=,, respectively. The protometrics on X form a flat convex
cone in which the 0-protometrics form the largest linear space. For finite X, a
basis of this space is given by all but one A/, A" (since >, A! = > A!) and, for
the flat subcone of all symmetric 0-protometrics on X, by all A/ + A’

A weighted protometric on X is a protometric with a point-weight function
w : X — R. The mappings p(x,y) = %(d(x, y) + w(x) + w(y)) and
dx,y) = 2p(x,y) — p(x,x) — p(y,y), w(x) = p(x,x) establish a bijection
between the weighted strong protometrics (d, w) and the protometrics p on X,
as well as between the weighted semimetrics and the symmetric protometrics.
For example, a weighted semimetric (d, w) with w(x) = —d(x, xo) corresponds
to a protometric —(x.y)y,. For finite |X|, the above mappings amount to the
representation

2p=d+ Zp(u, u)(Al + AV).

u€X

Quasi-metric
A function d : X x X — R is called a quasi-metric (or asymmetric metric,
directed metric) on X if d(x,y) > 0 holds for all x,y € X with equality if and
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only if x = y, and for all x, y, z € X the oriented triangle inequality
d(x,y) <d(x,z) +d(z.y)

holds. A quasi-metric space (X, d) is a set X equipped with a quasi-metric d.
For any quasi-metric d, the functions max{d(x, y), d(y, x)} (called sometimes
bi-distance), min{d(x, y), d(y,x)}, %(d”(x, y) + d"(y,x))ll’ with given p > 1 are
metric generating; cf. Chap.4.
A non-Archimedean quasi-metric d is a quasi-distance on X which, for all
x,¥,z € X, satisfies the following strengthened oriented triangle inequality:

d(x,y) < max{d(x,z),d(z,y)}.

Directed-metric
Let X be a set. A functiond : X x X — R is called (Jegede, 2005) a directed-
metric on X if, for all x, y, z € X, it holds d(x, y) = —d(y, x) and

ld(x, y)| < |d(x.2)| + |d(z.y)].

Cf. displacement in Chap. 24 and rigid motion of metric space.
Coarse-path metric

Let X be a set. A metric d on X is called a coarse-path metric if, for a
fixed C > 0 and for every pair of points x,y € X, there exists a sequence
X = Xo,X1,...,X =y for which d(x;—;,x;) < Cfori=1,...,t and it holds

d(x,y) > d(xg,x1) + d(x1,x2) + -+ + d(x—1,x) — C.

Near-metric
Let X be a set. A distance d on X is called a near-metric (or C-near-metric)
if d(x,y) > 0 for x # y and the C-relaxed triangle inequality

d(x,y) < C(d(x,2) + d(z,y))

holds for all x, y, z € X and some constant C > 1.

If d(x,y) > 0 for x # y and the C-asymmetric triangle inequality d(x,y) <
d(x,z) + Cd(z,y) holds, d is a %-near—metric.

A C-inframetric is a C-near-metric, while a C-near-metric is a 2C-
inframetric.

Some recent papers use the term quasi-triangle inequality for the above
inequality and so, quasi-metric for the notion of near-metric.

The power transform (Chap. 4) (d(x, y))* of any near-metric is a near-metric
for any ¢ > 0. Also, any near-metric d admits a bi-Lipschitz mapping on
(D(x,y))“ for some semimetric D on the same set and a positive number «.
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A near-metric d on X is called a Holder near-metric if the inequality

|d(xs y) - d(-xv Z)l S ﬂda (yv Z)(d(xs y) + d(-xv Z))l_a

holds for some > 0,0 < « < 1 and all x, y, z € X. Cf. Holder mapping.
A distance d on set X is said (Greenhoe, 2015) to satisfy (C, p) power triangle
inequality if, for given positive C, p and any x, y, z € X, it holds

1 1 1
d(x,y) < 2C|§d”(x, z) + Ed”(z, y)|’l’.

f-quasi-metric

Let f(r,7) : Rxp x R>g — Ryx¢ be a function with lim( 0, f(t,1') =
f(0,0) = 0.

Let X be a set. A function d : X x X — R is called (Arutyunov et al., 2016)
a f-quasi-metric on X if d(x,y) > 0 holds for all x,y € X with equality if and
only if x = y, and for all x, y, z € X holds the f-triangle inequality

d(x,y) < f(d(x,z).d(z,y)).

The f-quasi-metric space (X, d) with symmetric d and f(¢,7) = max(z, 1)
is exactly the Fréchet V-space (1906); cf. the partially ordered distance in
Sect. 3.4.

The case f(z,1') = t + ¢ of a f-quasi-metric corresponds to a quasi-metric.
Given ¢, ¢’ > 1, the f-quasi-metric with f(z, /') = gt + ¢'t is called (g, ¢')-quasi-
metric.

The inequality d(x,y) < F(d(x,z),d(y,z)) implies d(x,y) < f(d(x,2),d(z,y))
for the function f(z,¢) = F(¢, F(0,¢)).

Weak ultrametric

A weak ultrametric (or C-inframetric, C-pseudo-distance) d is a distance

on X such that d(x,y) > 0 for x # y and the C-inframetric inequality

d(x,y) < Cmax{d(x,z),d(z,y)}

holds for all x, y, z € X and some constant C > 1.

The term pseudo-distance is also used, in some applications, for any of
a pseudo-metric, a quasi-distance, a near-metric, a distance which can be
infinite, a distance with an error, etc. Another unsettled term is weak metric:
it is used for both a near-metric and a quasi-semimetric.
Ultrametric

An ultrametric (or non-Archimedean metric) is (Krasner, 1944) a metric d
on X which satisfies, for all x, y, z € X, the following strengthened version of the
triangle inequality (Hausdorff, 1934), called the ultrametric inequality:

d(x,y) < max{d(x,z),d(z,y)}
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An ultrametric space is also called an isosceles space since at least two of d(x, y),
d(z,y), d(x, z) are equal. An ultrametric on a set V has at most | V| values.

A metric d is an ultrametric if and only if its power transform (see Chap.4)
d” is a metric for any real positive number «. Any ultrametric satisfies the
four-point inequality. A metric d is an ultrametric if and only if it is a Farris
transform metric (Chap. 4) of a four-point inequality metric.
Robinsonian distance

A distance d on X is called a Robinsonian distance (or monotone distance)
if there exists a total order < on X compatible with it, i.e., for x,y,w,z € X,

x <y <w <z implies d(y,w) < d(x,z),
or, equivalently, for x, y, z € X, it holds
x <y < z implies d(x,y) < max{d(x,z),d(z,y)}.

Any ultrametric is a Robinsonian distance.
Four-point inequality metric

A metric d on X is a four-point inequality metric (or additive metric) if it
satisfies the following strengthened version of the triangle inequality called the
four-point inequality (Buneman, 1974): for all x,y,z,u € X

d(xs y) + d(Zs Lt) =< max{d(x, Z) + d(yv l/t), d(x, Lt) + d(y, Z)}

holds. Equivalently, among the three sums d(x,y) + d(z,u), d(x,z) + d(y,u),
d(x,u) + d(y, z) the two largest sums are equal.

A metric satisfies the four-point inequality if and only if it is a tree-like
metric.

Any metric, satisfying the four-point inequality, is a Ptolemaic metric and an
Li-metric. Cf. L,-metric in Chap. 5.

A bush metric is a metric for which all four-point inequalities are equalities,
ie., d(x,y) +d(u,z) = d(x,u) + d(y, z) holds for any u, x,y,z € X.
Relaxed four-point inequality metric

A metric d on X satisfies the relaxed four-point inequality if, for all
X,¥,z,u € X, among the three sums

d(x,y) +d(z,u),d(x,z) + d(y,u),d(x,u) + d(y,z)

at least two (not necessarily the two largest) are equal. A metric satisfies this
inequality if and only if it is a relaxed tree-like metric.
Ptolemaic metric

A Ptolemaic metric d is a metric on X which satisfies the Ptolemaic
inequality

d(x,y)d(u,z) < d(x,u)d(y,z) + d(x,2)d(y, u)
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for all x,y,u,z € X. A classical result, attributed to Ptolemy, says that this
inequality holds in the Euclidean plane, with equality if and only if the points
X, ¥, u, z lie on a circle in that order.

A Ptolemaic space is a normed vector space (V, ||.||) such that its norm metric
||x — y|| is a Ptolemaic metric. A normed vector space is a Ptolemaic space if
and only if it is an inner product space (Chap.5); so, a Minkowskian metric
(Chap. 6) is Euclidean if and only if it is Ptolemaic.

For any metric d, the metric J/d is Ptolemaic ([FoSc06])).

S-hyperbolic metric

Given a number § > 0, a metric d on a set X is called §-hyperbolic if it
satisfies the following Gromov §-hyperbolic inequality (another weakening of
the four-point inequality): for all x, y, z, u € X, it holds that

d(x,y) + d(z,u) <28 + max{d(x,z) + d(y, u),d(x,u) + d(y,z)}.

A metric space (X, d) is §-hyperbolic if and only if for all xo, x, y, z € X it holds

(xY)x = min{(x‘z)xov (Y-Z)xo} -4,

where (x.y),, = %(d(xo,x) + d(x0,y) — d(x,y)) is the Gromov product of the

points x and y of X with respect to the base point xy € X.

A metric space (X, d) is 0-hyperbolic exactly when d satisfies the four-point
inequality. Every bounded metric space of diameter D is D-hyperbolic. The n-
dimensional hyperbolic space is In 3-hyperbolic.

Every §-hyperbolic metric space is isometrically embeddable into a geodesic
metric space (Bonk and Schramm, 2000).

Gromov product similarity

Given a metric space (X, d) with a fixed point xy € X, the Gromov product
similarity (or Gromov product, covariance, overlap function) (.)y, is a similarity
on X defined by

() = 5 (05 %0) + . ) — dx. ).

The triangle inequality for d implies (x.y)y, = (x.2)y, + .2)x, — (2-2)x
(covariance triangle inequality), i.e., sharp triangle inequality for protomet-
ric —(x.y)y,-

If (X,d) is a tree, then (x.y)y, = d(xo,[x,y]). If (X,d) is a measure
semimetric space, i.e., d(x,y) = u(xAy) for a Borel measure p on X, then
(x.y)g = u(xNy).If d is a distance of negative type, i.e., d(x,y) = d=(x,y) for
a subset X of a Euclidean space E”, then (x.y)o is the usual inner product on E".

Cf. Farris transform metric d,, (x,y) = C — (x.y),, in Chap. 4.
Cross-difference

Given a metric space (X, d) and quadruple (x, y, z, w) of its points, the cross-
difference is the real number cd defined by

cd(x,y,z,w) =d(x,y) +d(z,w) —d(x,z) — d(y, w).
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In terms of the Gromov product similarity, for all x,y, z, w,p € X, it holds

1
Ecd(x, ¥, W) = —(xy)p — (2w)p, + (x.2)p + (.w)p;

in particular, it becomes (x.y), if y = w = p.
If x # zand y # w, the cross-ratio is the positive number defined by

d(x,y)d(z,w)

erlleyzw.d) = 9o aom”

e 2k-gonal distance
A 2k-gonal distance d is a distance on X which satisfies, for all distinct
elements xi, .. .,x, € X, the 2k-gonal inequality

Z bib,-d(xl-,xj) < 0

1<i<j<n

forallb € Z" with Y ' by = 0and Y I, |b;| = 2k.
* Distance of negative type
A distance of negative type d is a distance on X which is 2k-gonal for any
k > 1, i.e., satisfies the negative type inequality

Z bib,-d(xl-,xj) < 0

1<i<j<n

for all b € Z" with Z?:l b; = 0, and for all distinct elements x1, ..., x, € X.
A distance can be of negative type without being a semimetric. Cayley proved
that a metric d is an L,-metric if and only if 4 is a distance of negative type.
* (2k + 1)-gonal distance
A (2k + 1)-gonal distance d is a distance on X which satisfies, for all distinct
elements xi, ..., x, € X, the (2k 4+ 1)-gonal inequality

Z bibjd(x[,xj) <0

1<i<j<n

forallb e Z" with ) ;_ by = land > ., |bi| = 2k + 1.
The (2k 4 1)-gonal inequality with k = 1 is the usual triangle inequality. The
(2k 4 1)-gonal inequality implies the 2k-gonal inequality.
¢ Hypermetric
A hypermetric d is a distance on X which is (2k + 1)-gonal for any k > 1,
i.e., satisfies the hypermetric inequality (Deza, 1960)

Z bibjd(x[,xj) <0

1<i<j<n

for all b € Z" with Z?:l b; = 1, and for all distinct elements x1, ..., x, € X.
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Any hypermetric is a semimetric, a distance of negative type and, moreover,
it can be isometrically embedded into some n-sphere S" with squared Euclidean
distance. Any Li-metric (cf. L,-metric in Chap.5) is a hypermetric.

P-metric

A P-metric d is a metric on X with values in [0, 1] which satisfies the

correlation triangle inequality

d(xs y) = d(-xv Z) + d(Z, y) - d(-xv Z)d(Zs y)

The equivalent inequality 1—d(x,y) > (1—d(x, z))(1—d(z,y)) expresses that the
probability, say, to reach x from y via z is either equal to (1 —d(x, z))(1 —d(z,y))
(independence of reaching z from x and y from z), or greater than it (positive
correlation). A metric is a P-metric if and only if it is a Schoenberg transform
metric (Chap. 4).

1.2 Main Distance-Related Notions

Metric ball

Given a metric space (X, d), the metric ball (or closed metric ball) with center
xo € X and radius > 0 is defined by B(xo.7) = {x € X : d(xo.x) < r},
and the open metric ball with center xo € X and radius r > 0 is defined by
B(xg,r) = {x € X : d(x0,x) < r}. The closed ball is a subset of the closure of the
open ball; it is a proper subset for, say, the discrete metric on X.

The metric sphere with center xo € X and radius » > 0 is defined by
S(xo,7) = {x € X : d(xg,x) = r}.

For the norm metric on an n-dimensional normed vector space (V, ||.||), the
metric ball B' = {x € V : ||x|| < 1} is called the unit ball, and the set §"~' =
{x € V : ||x|| = 1} is called the unit sphere. In a two-dimensional vector space, a
metric ball (closed or open) is called a metric disk (closed or open, respectively).
Metric hull

Given a metric space (X, d), let M be a bounded subset of X.

The metric hull H(M) of M is the intersection of all metric balls containing
M.

The set of surface points S(M) of M is the set of all x € H(M) such that x lies
on the sphere of one of the metric balls containing M.

Distance-invariant metric space

A metric space (X, d) is distance-invariant if all metric balls B(x,, 7) = {x €
X : d(xp,x) < r} of the same radius have the same number of elements.

Then the growth rate of a metric space (X, d) is the function f(n) =
|B(x, n)|.
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(X,d) is a metric space of polynomial growth if there are some positive
constants k, C such that f(n) < Cn* for all n > 0. Cf. graph of polynomial
growth, including the group case, in Chap. 15.

For a  metrically discrete metric space (X,d) (ie., with a =
inf, yex o2y d(x,y) > 0), its growth rate was defined also (Gordon-Linial-
Rabinovich, 1998) by

log [B(x, ar)|

XEX.r>2 logr

e Abhlfors g-regular metric space
A metric space (X, d) endowed with a Borel measure pu is called Ahlfors ¢-
regular if there exists a constant C > 1 such that for every ball in (X, d) with
radius r < diam(X, d) it holds

C ' < w(B(xo, r)) < Cr.

If such an (X,d) is locally compact, then the Hausdorff g-measure can
be taken as u and ¢q is the Hausdorff dimension. For two disjoint continua
(nonempty connected compact metric subspaces) C;, C; of such space (X, d),
let I' be the set of rectifiable curves connecting C; to Cs. The g-modulus between
Cy and G, is M,(Cy, Cy) = inf{ [, p? : inf,er fy o> 1}, where p: X — R is
any density function on X; cf. the modulus metric in Chap. 6.

The relative distance between Cy and Cs is §(C1, Cy) = "Hd(pLL P €CLPEC)
(X, d) is a g-Loewner space if there are increasing functions f, g : [0, 00) —
[0,00) such that for all Ci,C, it holds f(6(Ci,Cr)) < M,(Ci,C) <
8(8(C1, ¢y)).

¢ Connected metric space

A metric space (X, d) is called connected if it cannot be partitioned into two
nonempty open sets. Cf. connected space in Chap. 2.

The maximal connected subspaces of a metric space are called its connected
components. A totally disconnected metric space is a space in which all
connected subsets are @ and one-point sets.

A path-connected metric space is a connected metric space such that any
two its points can be joined by an arc (cf. metric curve).

¢ Cantor connected metric space

A metric space (X, d) is called Cantor (or pre-) connected if, for any two its
points x, y and any € > 0, there exists an e-chain joining them, i.e., a sequence of
points x = zy, 21, .. ,2n—1,2n = y such that d(zx, zx+1) < € forevery 0 < k < n.
A metric space (X, d) is Cantor connected if and only if it cannot be partitioned
into two remote parts A and B, i.e., such that inf{d(x,y) : x € A,y € B} > 0.

The maximal Cantor connected subspaces of a metric space are called its
Cantor connected components. A totally Cantor disconnected metric is the
metric of a metric space in which all Cantor connected components are one-point
sets.
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Indivisible metric space

A metric space (X,d) is called indivisible if it cannot be partitioned into
two parts, neither of which contains an isometric copy of (X, d). Any indivisible
metric space with |X| > 2 is infinite, bounded and totally Cantor disconnected
(Delhomme-Laflamme—Pouzet—Sauer, 2007).

A metric space (X, d) is called an oscillation stable metric space (Nguyen
Van Thé, 2006) if, given any € > 0 and any partition of X into finitely many
pieces, the e-neighborhood of one of the pieces includes an isometric copy of
(X,d).

Closed subset of metric space

Given a subset M of a metric space (X, d), a point x € X is called a limit (or
accumulation) point of M if any open metric ball B(x,r) = {y € X : d(x,y) < r}
contains a point X' € M with x’ # x. The boundary (M) of M is the set of all its
limit points. The closure of M, denoted by cl(M), is M U (M), and M is called
closed subset, if M = cl(M), and dense subset, if X = cl(M).

Every point of M which is not its limit point, is called an isolated point. The
interior int(M) of M is the set of all its isolated points, and the exterior ext(M)
of M is int(X\M). A subset M is called nowhere dense if int(cl(M)) = @.

A subset M is called topologically discrete (cf. metrically discrete metric
space) if int(M) = M and dense-in-itself if int(M) = @. A dense-in-itself
subset is called perfect (cf. perfect metric space) if it is closed. The subsets
Irr (irrational numbers) and QQ (rational numbers) of R are dense, dense-in-itself
but not perfect. The set Q N [0, 1] is dense-in-itself but not dense in R.

Open subset of metric space

A subset M of a metric space (X, d) is called open if, given any point x € M,
the open metric ball B(x,r) = {y € X : d(x,y) < r} is contained in M for some
number » > 0. The family of open subsets of a metric space forms a natural
topology on it. A closed subset is the complement of an open subset.

An open subset is called clopen, if it is closed, and a domain if it is connected.

A door space is a metric (in general, topological) space in which every subset
is either open or closed.

Metric topology

A metric topology is a fopology induced by a metric; cf. equivalent metrics.
More exactly, the metric topology on a metric space (X, d) is the set of all open
sets of X, i.e., arbitrary unions of (finitely or infinitely many) open metric balls
Bx,r)={eX:dx,y)<r},xeX,reR,r>0.

A topological space which can arise in this way from a metric space is called
a metrizable space (Chap.2). Metrization theorems are theorems which give
sufficient conditions for a topological space to be metrizable.

On the other hand, the adjective metric in several important mathematical
terms indicates connection to a measure, rather than distance, for example, metric
Number Theory, metric Theory of Functions, metric transitivity.

Equivalent metrics

Two metrics d; and d; on a set X are called equivalent if they define the same

topology on X, i.e., if, for every point xy € X, every open metric ball with center
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at xo defined with respect to dj, contains an open metric ball with the same center
but defined with respect to d,, and conversely.

Two metrics d; and d, are equivalent if and only if, for every ¢ > 0 and
every x € X, there exists § > 0 such that d;(x,y) < § implies d»(x,y) < € and,
conversely, da(x,y) < § implies d; (x,y) < €.

All metrics on a finite set are equivalent; they generate the discrete topology.

e Metric betweenness

The metric betweenness of a metric space (X, d) is (Menger, 1928) the set of
all ordered triples (x, y, z) such that x, y, z are (not necessarily distinct) points of
X for which the triangle equality d(x,y) 4+ d(y,z) = d(x, z) holds.

* Monometric

A ternary relation R on a set X is called a betweenness relation if (x,y,z) € R
if and only if (z,y,x) € R and (x,y,2), (x,z,y) € Rif and only if y = z.

Given a such relation R, a monometric is (Perez-Fernandez et al., 2016) a
function d : X x X — Rs¢ with d(x,y) = 0 if and only if x = y and (x,y,2)
implying d(x,y) < d(x, z). Clearly, any metric is a monometric.

Cf. a distance-rationalizable voting rule in Sect. 11.2.

* Closed metric interval

Given two different points x, y € X of a metric space (X, d), the closed metric
interval between them (or line induced by) them is the set of the points z, for
which the triangle equality (or metric betweenness (x, z, y)) holds:

I(x,y) ={z€ X :d(x,y) =d(x,z) +d(z,5)}.

Cf. inner product space (Chap. 5) and cutpoint additive metric (Chap. 15).
Let Ext(x,y) = {z : y € I(x,2) \ {x,2}}. A CC-line CC(x,y) is I(x,y) U
Ext(x,y) U Ext(y,x). Chen—Chvital, 2008, conjectured that every metric space
on n,n > 2, points, either has at least n distinct CC-lines or consists of a unique
CC-line.
e Underlying graph of a metric space
The underlying graph (or neighborhood graph) of a metric space (X, d) is a
graph with the vertex-set X and xy being an edge if I(x,y) = {x,y}, i.e., there is
no third point z € X, for which d(x,y) = d(x,z) + d(z,y).
¢ Distance monotone metric space
A metric space (X, d) is called distance monotone if for any its closed metric
interval /(x, y) and u € X\ I(x, y), there exists z € I(x, xy) with d(u, z) > d(x,y).
¢ Maetric triangle
Three distinct points x,y,z € X of a metric space (X,d) form a metric
triangle if the closed metric intervals /(x, y), I(y, z) and I(z, x) intersect only
in the common endpoints.
¢ Maetric space having collinearity
A metric space (X, d) has collinearity if for any € > 0 each of its infinite
subsets contains distinct e-collinear (i.e., with d(x,y) + d(y,z) — d(x,2) < €)
points x, y, z.
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¢ Modular metric space
A metric space (X,d) is called modular if, for any three different points
x,y,z € X, there exists a point u € I(x,y) N I(y,z) N I(z,x). This should not be
confused with modular distance in Chap. 10 and modulus metric in Chap. 6.
¢ Median metric space
A metric space (X, d) is called a median metric space if, for any three points
x,y,z € X, there exists a unique pointu € I(x, y)NI(y, z)NI(z, x), or, equivalently,

() + d(y,) + d(z ) = 5((5) +d0.2) +d(z. ).

The point u is called median for {x,y, z}, since it minimises the sum of distances
to them. Any median metric space is an L;-metric; cf. L,-metric in Chap.5 and
median graph in Chap. 15.

A metric space (X, d) is called an antimedian metric space if, for any three
points x, y, z € X, there exists a unique point # € X maximizing d(x, u)+d(y, u)+
d(z, u).

e Metric quadrangle

Four different points x,y,z,u € X of a metric space (X,d) form a metric
quadrangle if x,z € I(y,u) and y,u € I(x,z); then d(x,y) = d(z,u) and
d(x,u) = d(y,z).

A metric space (X, d) is called weakly spherical if any three different points
x,y,z € X with y € I(x, z), form a metric quadrangle with some point u# € X.

* Metric curve

A metric curve (or, simply, curve) y in a metric space (X, d) is a continuous
mapping y : I — X from an interval / of R into X. A curve is called an arc (or
path, simple curve) if it is injective. A curve y : [a,b] — X is called a Jordan
curve (or simple closed curve) if it does not cross itself, and y(a) = y(b).

The length of a curve y : [a, b] — X is the number /(y) defined by

I(y) =sup{ > d(y().y(ti1)) in€Noa=ty <ty <= <t, =b}.

1<i<n

A rectifiable curve is a curve with a finite length. A metric space (X, d), where
every two points can be joined by a rectifiable curve, is called a quasi-convex
metric space (or, specifically, C-quasi-convex metric space) if there exists a
constant C > 1 such that every pair x,y € X can be joined by a rectifiable curve
of length at most Cd(x, y). If C = 1, then this length is equal to d(x, y), i.e., (X, d)
is a geodesic metric space (Chap. 6).

In a quasi-convex metric space (X,d), the infimum of the lengths of all
rectifiable curves, connecting x, y € X is called the internal metric.

The metric d on X is called the intrinsic metric (and then (X, d) is called a
length space) if it coincides with the internal metric of (X, d).

If, moreover, any pair x, y of points can be joined by a curve of length d(x, y),
the metric d is called strictly intrinsic, and the length space (X, d) is a geodesic
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metric space. Hopf—Rinow, 1931, showed that any complete locally compact
length space is geodesic and proper. The punctured plane (R?\ {0}, ||x — y||»)
is locally compact and path-connected but not geodesic: the distance between
(—1,0) and (1, 0) is 2 but there is no geodesic realizing this distance.

The metric derivative of a metric curve y : [a, b] — X at a limit point # is

o A0+ 5).7(0)
im ————,
5—0 ||
if it exists. It is the rate of change, with respect to ¢, of the length of the curve at
almost every point, i.e., a generalization of the notion of speed to metric spaces.
* Geodesic

Given a metric space (X, d), a geodesic is a locally shortest metric curve, i.c.,
it is a locally isometric embedding of R into X; cf. Chap. 6.

A subset S of X is called a geodesic segment (or metric segment, shortest
path, minimizing geodesic) between two distinct points x and y in X, if there exists
a segment (closed interval) [a,b] on the real line R and an isometric embedding
y i [a,b] — X, such that y[a, b] = S, y(a) = x and y(b) = y.

A metric straight line is a geodesic which is minimal between any two of its
points; it is an isometric embedding of the whole of R into X. A metric ray and
metric great circle are isometric embeddings of, respectively, the half-line R
and a circle S'(0, r) into X.

A geodesic metric space (Chap. 6) is a metric space in which any two points
are joined by a geodesic segment. If, moreover, the geodesic is unique, the space
is called rotally geodesic (or uniquely geodesic).

A geodesic metric space (X,d) is called geodesically complete if every
geodesic is a subarc of a metric straight line. If (X,d) is complete, then it
is geodesically complete. The punctured plane (R? \ {0}, ||x — y||») is not
geodesically complete: any geodesic going to 0 is not a subarc of a metric straight
line.

¢ Length spectrum

Given a metric space (X, d), a closed geodesic is amap y : S' — X which is
locally minimizing around every point of S'.

If (X, d) is a compact length space, its length spectrum is the collection of
lengths of closed geodesics. Each length is counted with multiplicity equal to the
number of distinct free homotopy classes that contain a closed geodesic of such
length. The minimal length spectrum is the set of lengths of closed geodesics
which are the shortest in their free homotopy class. Cf. the distance list.

* Systole of metric space

Given a compact metric space (X,d), its systole sys(X,d) is the length of
the shortest noncontractible loop in X; such a loop is a closed geodesic. So,
sys(X,d) = 0 exactly if (X,d) is simply connected. Cf. connected space in

Chap. 2.
If (X, d) is a graph with path metric, then its systole is referred to as the girth.
52
If (X, d) is a closed surface, then its systolic ratio is the ratio SR = %.
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Some tight upper bounds of SR for every metric on a surface are: % ="

(Hermite constant in 2D) for 2-torus (Loewner, 1949), Z for the real préjective

plane (Pu, 1952) and Jlg for the Klein bottle (Bavard, 1986). Tight asymptotic

b 4 log2 g log2 g

ounds for a surface S of large genus g are 5 e = SR(S) < =T (Katz et al.,
2007).

Shankar-Sormani radii

Given a geodesic metric space (X, d), Shankar and Sormani, 2009, defined
its unique injectivity radius Uirad(X) as the supremum over all » > 0 such
that any two points at distance at most r are joined by a unique geodesic, and its
minimal radius Mrad(X) as inf,ex d(p, MinCut(p)).

Here the minimal cut locus of p MinCut( p) is the set of points ¢ € X for which
there is a geodesic y running from p to ¢ such that y extends past g but is not
minimizing from p to any point past g. If (X, d) is a Riemannian space, then the
distance function from p is a smooth function except at p itself and the cut locus.
Cf. medial axis and skeleton in Chap.21.

It holds Uirad(X) < Mrad(X) with equality if (X, d) is a Riemannian space
in which case it is the injectivity radius. It holds Uirad(X) = oo for a flat disk
but Mrad(X) < oo if (X, d) is compact and at least one geodesic is extendible.
Geodesic convexity

Given a geodesic metric space (X,d) and a subset M C X, the set M is
called geodesically convex (or convex) if, for any two points of M, there exists a
geodesic segment connecting them which lies entirely in M the space is strongly
convex if such a segment is unique and no other geodesic connecting those points
lies entirely in M. The space is called locally convex if such a segment exists for
any two sufficiently close points in M.

For a given pointx € M, the radius of convexity is ., = sup{r > 0: B(x,r) C
M}, where the metric ball B(x, r) is convex. The point x is called the center
of mass of points y,...,yx € M if it minimizes the function Y, d(x, y;)* (cf.
Fréchet mean); such point is unique if d(y;,y;) < reforall 1 <i<j<k.

The injectivity radius of the set M is the supremum over all » > 0 such that
any two points in M at distance < r are joined by unique geodesic segment which
lies in M. The Hawaiian Earring is a compact complete metric space consisting
of a set of circles of radius % for each i € N all joined at a common point; its
injectivity radius is 0. It is path-connected but not simply connected.

The set M C X is called a totally convex metric subspace of (X, d) if, for
any two points of M, any geodesic segment connecting them lies entirely in M.
Busemann convexity

A geodesic metric space (X, d) is called Busemann convex (or Busemann
space, nonpositively curved in the sense of Busemann) if, for any three points
x,y,z € X and midpoints m(x, z) and m(y, z) (i.e., d(x, m(x,z)) = d(m(x,z),2) =
%d(x, z) and d(y, m(y, z)) = d(m(y,z),z) = %d(y, 7)), there holds

d(m(x,z),m(y,z)) < %d(x,y).
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The flat Euclidean strip {(x,y) € R* : 0 < x < 1} is Gromov hyperbolic
metric space (Chap. 6) but not Busemann convex one. In a complete Busemann
convex metric space any two points are joined by a unique geodesic segment.

A locally geodesic metric space (X, d) is called Busemann locally convex if
the above inequality holds locally. Any locally CAT(0) metric space is Busemann
locally convex.

* Menger convexity

A metric space (X, d) is called Menger convex if, for any different points
x,y € X, there exists a third point z € X for which d(x,y) = d(x,z) + d(z,y),
i.e., |I(x,y)| > 2 holds for the closed metric interval I(x,y) = {z € X : (x,y) =
d(x,z) + d(z,y)}. It is called strictly Menger convex if such a z is unique for all
x,y € X.

Geodesic convexity implies Menger convexity. The converse holds for com-
plete metric spaces.

A subset M C X is called (Menger, 1928) a d-convex set (or interval-convex
set) if I(x,y) C M for any different points x,y € M. A functionf : M —
R defined on a d-convex set M C X is a d-convex function if for any z €
Ix,y)C M

d(y,z) d(x,?)
deeyy Ot ey

@) = f).

A subset M C X is a gated set if for every x € X there exists a unique x' € M,
the gate, such that d(x,y) = d(x,x’) + d(¥',y) for y € M. Any such set is d-
convex.
* Midpoint convexity
A metric space (X,d) is called midpoint convex (or having midpoints,
admitting a midpoint map) if, for any different points x,y € X, there exists a
third point m(x, y) € X for which d(x, m(x,y)) = d(m(x,y),y) = %d(x, ¥). Such
a point m(x,y) is called a midpoint and the map m : X x X — X is called a
midpoint map (cf. midset); this map is unique if m(x, y) is unique for all x,y € X.
For example, the geometric mean /xy is the midpoint map for the metric
space (R-o, d(x,y) = |logx — logy|).
A complete metric space is geodesic if and only if it is midpoint convex.
A metric space (X, d) is said to have approximate midpoints if, for any points
x,y € X and any € > 0, there exists an e-midpoint, i.e., a point z € X such that
d(x,z) < %d(x, y) + € >d(z,y).
¢ Ball convexity
A midpoint convex metric space (X, d) is called ball convex if

d(m(x,y),z) < max{d(x,z),d(y,2)}

for all x, y, z € X and any midpoint map m(x, y).
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Ball convexity implies that all metric balls are totally convex and, in the case
of a geodesic metric space, vice versa. Ball convexity implies also the uniqueness
of a midpoint map (geodesics in the case of complete metric space).

The metric space (R?, d(x,y) = Ziil v/ |xi — yi]) is not ball convex.
Distance convexity

A midpoint convex metric space (X, d) is called distance convex if

dn(x.).2) = 50 +d(r.2)

A geodesic metric space is distance convex if and only if the restriction of the
distance function d(x, -), x € X, to every geodesic segment is a convex function.

Distance convexity implies ball convexity and, in the case of Busemann
convex metric space, vice versa.

Metric convexity

A metric space (X, d) is called metrically convex if, for any different points
x,y € X and any A € (0, 1), there exists a third point z = z(x, y, A) € X for which
d(x,y) = d(x,z) +d(z,y) and d(x, z) = Ad(x,y).

The space is called strictly metrically convex if such a point z(x,y, A) is
unique for all x,y € X and any A € (0, 1).

A metric space (X, d) is called strongly metrically convex if, for any different
points x,y € X and any A1, A, € (0, 1), there exists a third point z = z(x,y,A) €
X for which d(z(x, y, A1), z(x, y, A2)) = |A1 — A2|d(x, ).

Metric convexity implies Menger convexity, and every Menger convex
complete metric space is strongly metrically convex.

A metric space (X, d) is called nearly convex (Mandelkern, 1983) if, for any
different points x, y € X andany A, i > O such thatd(x,y) < A+ pu, there exists a
third point z € X for which d(x,z) < A andd(z,y) < u,i.e.,z € B(x,A)NB(y, ).
Metric convexity implies near convexity.

Takahashi convexity

A metric space (X, d) is called Takahashi convex if, for any different points
x,y € X and any A € (0, 1), there exists a third point z = z(x,y, A) € X such that
d(z(x,y,A),u) < Ad(x,u) + (1 — A)d(y, u) for all u € X. Any convex subset of a
normed space is a Takahashi convex metric space with z(x, y, ) = Ax+ (1 —1)y.

A set M C X is Takahashi convex if z(x,y,A) € M for all x,y € X and any
A € [0, 1]. In a Takahashi convex metric space, all metric balls, open metric balls,
and arbitrary intersections of Takahashi convex subsets are all Takahashi convex.
Hyperconvexity

A metric space (X, d) is called hyperconvex (Aronszajn—Panitchpakdi, 1956)
if it is metrically convex and its metric balls have the infinite Helly property, i.e.,
any family of mutually intersecting closed balls in X has nonempty intersection.
A metric space (X, d) is hyperconvex if and only if it is an injective metric space.

The spaces I, I and I3 are hyperconvex but /5° is not.

Distance matrix

Given a finite metric space (X = {xi,---,X,},d), its distance matrix is the

symmetric n x n matrix ((dj;)), where dj = d(x;,x;) forany 1 <i,j < n.
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The probability that a symmetric n x n matrix, whose diagonal elements are
zeros and all other elements are uniformly random real numbers, is a distance
matrix is (Mascioni, 2005) %, % for n = 3, 4, respectively.

¢ Magnitude of a finite metric space

Let (X = {xi1,...,x,},d) be a finite metric space, such that there exists a
vector w = {wi, ..., w,} with (7% ))w = (1,..., 1T

Then the magnitude of (X, d) is (Leinster—Meckes, 2016) the sum Y ;_, w;.
In fact, the definition of Euler characteristic of a category was generalized to
enriched categories, renamed magnitude, then re-specialized to metric spaces.

¢ Distance product of matrices

Given n x n matrices A = ((a;;)) and B = ((bj)), their distance (or min-plus)
product is the n x n matrix C = ((c;;)) with ¢;; = minj_, (ax + by).

It is the usual matrix multiplication in the tropical semiring (RU{oo}, min, +)
(Chap. 18). If A is the matrix of weights of an edge-weighted complete graph K,
then its direct power A" is the (shortest path) distance matrix of this graph.

* Distance list

Given a metric space (X, d), its distance set and distance list are the set and
the multiset (i.e., multiplicities are counted) and of all pairwise distances.

Two subsets A, B C X are said to be homometric sets if they have the same
distance list. Cf. homometric structures in Chap. 24.

A finite metric space is called tie-breaking if all pairwise distances are distinct.

¢ Degree of distance near-equality

Given a finite metric space (X, d) with [X| = n > 3, let f = min |22 — |

d(ab)
(degree of distance near-equality) and f/ = min | % —1|, where the minimum

is over different 2-subsets {x,y}, {a, b} of X and, respectively, over different
x,y.b € X. [OpPil4] proved f < 2%" and f' < 2, while f > 2% and f' > L
for some (X, d).
* Semimetric cone

The semimetric cone MET, is the polyhedral cone in R®) of all distance
matrices of semimetrics on the set V,, = {l,...,n}. Vershik, 2004, considers
MET, i.e., the weakly closed convex cone of infinite distance matrices of
semimetrics on N.

The cone of n-point weightable quasi-semimetrics is a projection along an
extreme ray of the semimetric cone Met,, 1 (Grishukhin—Deza—Deza, 2011).

The metric fan is a canonical decomposition MF, of MET, into subcones
whose faces belong to the fan, and the intersection of any two of them is their
common boundary. Two semimetrics d,d’ € MET, lie in the same cone of the
metric fan if the subdivisions 8,4, 6, of the polyhedron §(n, 2) = convi{e; + ¢; :
1 <i < j < n} C R" are equal. Here a subpolytope P of §(n,2) is a cell of the
subdivision Jy if there exists y € R" satisfying y; +y; = d;; if ¢; +¢; is a vertex of
P, and y; +y; > djj, otherwise. The complex of bounded faces of the polyhedron
dual to §, is the tight span of the semimetric d.
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¢ Cayley—Menger matrix
Given a finite metric space (X = {xi,--- , X}, d), its Cayley—Menger matrix
is the symmetric (n 4+ 1) x (n + 1) matrix

CM(X, d) = (eng),

where D = ((d*(x;,x;))) and e is the n-vector all components of which are 1.
The determinant of CM (X, d) is called the Cayley-Menger determinant. If
(X,d) is a metric subspace of the Euclidean space E""!, then CM(X,d) is
(=1)"2"1((n—1)!)? times the squared (n— 1)-dimensional volume of the convex
hull of X in R"™!,
¢ Gram matrix
Given elements vy, ..., v of a Euclidean space, their Gram matrix is the
symmetric k x k matrix VV', where V = ((vy)), of pairwise inner products of
Ulyeuo, Ukt

G(v1,....v) = (((vi, v)))).

It holds G(v1.....v) = 1((d2(vo,v;) + dz(vo, ) — dz(vi,v)))), i.e., the
inner product (-, -} is the Gromov product similarity of the squared Euclidean
distance d2. A k x k matrix ((d2(v;, v;))) is called Euclidean distance matrix (or
EDM). 1t defines a distance of negative type on {1,...,k}; all such matrices
form the (nonpolyhedral) closed convex cone of all such distances.

The determinant of a Gram matrix is called the Gram determinant; it is equal
to the square of the k-dimensional volume of the parallelotope constructed on
Ul,...0Uf.

A symmetric k X k real matrix M is said to be positive-semidefinite (PSD) if
xMx" > 0 for any nonzero x € R and positive-definite (PD) if xMx" > 0. A
matrix is PSD if and only if it is a Gram matrix; it is PD if and only the vectors
V1, ...,V are linearly independent. In Statistics, the covariance matrices and
correlation matrices are exactly PSD and PD ones, respectively.

* Midset

Given a metric space (X, d) and distinct y, z € X, the midset (or bisector) of
points y and z is the set M = {x € X : d(x,y) = d(x, z)} of midpoints x.

A metric space is said to have the n-point midset property if, for every pair of
its points, the midset has exactly n points. The one-point midset property means
uniqueness of the midpoint map. Cf. midpoint convexity.

» Distance k-sector

Given a metric space (X, d) and disjoint subsets Y,Z C X, the bisector of Y
and Z is the set M = {x € X : inf,ey d(x,y) = inf,ez d(x,2)}.

The distance k-sector of Y and Z is the sequence M, ..., My—; of subsets of
X such that M;, for any 1 < i < k — 1, is the bisector of sets M;—; and M;y1,
where Y = My and Z = M. Asano—Matousek—Tokuyama, 2006, considered the
distance k-sector on the Euclidean plane (]Rz, l»); for compact sets Y and Z, the
sets My, ..., My_ are curves partitioning the plane into k parts.
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Metric basis

Given a metric space (X,d) and a subset M C X, for any point x € X, its
metric M-representation is the set {(m,d(x,m)) : m € M} of its metric M-
coordinates (m, d(x, m)). The set M is called (Blumenthal, 1953) a metric basis
(or resolving set, locating set, set of uniqueness, set of landmarks) if distinct
points x € X have distinct M-representations. A vertex-subset M of a connected
graph is (Okamoto et al., 2009) a local metric basis if adjacent vertices have
distinct M-representations.

The resolving number of a finite (X, d) is (Chartrand—Poisson—Zhang, 2000)
minimum k such that any k-subset of X is a metric basis.

The vertices of a non degenerate simplex form a metric basis of E", but /-
and /o-metrics on R”, n > 1, have no finite metric basis.

The distance similarity is (Saenpholphat—Zhang, 2003) an equivalence
relation on X defined by x ~ y if d(z,x) = d(z,y) for any z € X \ {x,y}. Any
metric basis contains all or all but one elements from each equivalence class.

1.3 Metric Numerical Invariants

Resolving dimension

Given a metric space (X, d), its resolving dimension (or location number
(Slater, 1975), metric dimension (Harary—Melter, 1976)) is the minimum car-
dinality of its metric basis. The upper resolving dimension of (X, d) is the
maximum cardinality of its metric basis not containing another metric basis
as a proper subset. Adjacency dimension of (X, d) is the metric dimension of
(X, min(2, d)).

A metric independence number of (X, d) is (Currie-Oellermann, 2001) the
maximum cardinality / of a collection of pairs of points of X, such that for any
two, (say, (x,y) and (¥, y)) of them there is no point z € X with d(z, x) # d(z,y)
and d(z,x') # d(z,¥'). A function f : X — [0, 1] is a resolving function of (X, d)
if ZZGX:d(XYZ#d(y.Z)f(z) > 1 for any distinct x,y € X. The fractional resolving
dimension of (X,d) is F = min)_ .y g(x), where the minimum is taken over
resolving functions f such that any function f’ with f”, f is not resolving.

The partition dimension of (X,d) is (Chartrand—Salevi-Zhang, 1998) the
minimum cardinality P of its resolving partition, i.e., a partition X = Uj<;<S;
such that no two points have, for 1 < i < k, the same minimal distances to the
set S;.

Related locating a robber game on a graph G = (V,E) was considered
in 2012 by Seager and by Carraher et al.: cop win on G if every sequence
r = ry,...,1, of robber’s steps (r; € V and dpan(7i, rig-1) < 1) is uniquely
identified by a sequence d(ry, ¢1), ..., d(r,, ¢,) of cop’s distance queries for some
Cly...,cp €V.
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¢ Metric dimension
For a metric space (X, d) and a number € > 0, let C, be the minimal size of
an e-net of (X, d), i.e., a subset M C X with U,epB(x, €) = X. The number

InC
dim(X, d) = Tim ——¢
e—0 —1Ine

(if it exists) is called the metric dimension (or Minkowski-Bouligand dimen-
sion, box-counting dimension) of X. If the limit above does not exist, then the
following notions of dimension are considered:

1. dim(X,d) = li_mé_)o% called the lower Minkowski dimension (or lower

dimension, lower box dimension, Pontryagin—Snirelman dimension);
2. dim(X,d) = limg Tlﬁ; called the Kolmogorov-Tikhomirov dimension
(or upper dimension, entropy dimension, upper box dimension).

See below examples of other, less prominent, notions of metric dimension.

1. The (equilateral) metric dimension of a metric space is the maximum cardi-
nality of its equidistant subset, i.e., such that any two of its distinct points
are at the same distance. For a normed space, this dimension is equal to the
maximum number of translates of its unit ball that touch pairwise.

2. For any ¢ > 1, the (normed space) metric dimension dim.(X) of a finite metric
space (X, d) is the least dimension of a real normed space (V, ||.||) such that
there is an embedding f : X — V with %d(x, y) < |Ifx) —fO|| < d(x,y).

3. The (Euclidean) metric dimension of a finite metric space (X, d) is the least
dimension n of a Euclidean space E" such that (X,f(d)) is its metric sub-
space, where the minimum is taken over all continuous monotone increasing
functions f(r) of t > 0.

4. The dimensionality of a metric space is %, where j and o2 are the mean and
variance of its histogram of distance values; this notion is used in Information
Retrieval for proximity searching.

The term dimensionality is also used for the minimal dimension, if it is
finite, of Euclidean space in which a given metric space embeds isometrically.

* Hausdorff dimension
Given a metric space (X.d) and p,gq > 0, let H] = inf Yo (diam(A)))P,
where the infimum is taken over all countable coverings {A;} with diameter of A;
less than g. The Hausdorff g-measure of X is the metric outer measure defined
by

HP = lim H.
q—)O !

The Hausdorff dimension (or fractal dimension) of (X, d) is defined by

dimpas(X,d) = inf{p > 0 : HP(X) = 0}.
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Any countable metric space has dimpg,,; = 0, dimg,,s(E") = n, and any
X C E" with Int X # @ has dimp,,s = dim. For any totally bounded (X, d), it
holds

dimy, < dimpg,s < dim < dim < dim.

¢ Rough dimension
Given a metric space (X,d), its rough n-volume Vol,X is ﬁg_ﬂ)e”ﬂx(e),
where € > 0 and fx(¢) = max|Y| for Y € X with d(a,b) > eifa € Y,b €
Y\ {a}; Bx(e) = oo is permitted. The rough dimension is defined ([BBIO1]) by

dimyougn(X, d) = sup{n : Vol,X = oo} or, equivalently, = inf{n : Vo[, X = 0}.

The space (X, d) can be not locally compact. It holds dimpaus < dimough.
¢ Packing dimension

Given a metric space (X,d) and p,q > 0, let P} = sup > (diam(B)))?,
where the supremum is taken over all countable packings (by disjoint balls) {B;}
with the diameter of B; less than g.

The packing g-pre-measure is Py = lim,_. Pl. The packing g-measure is
the metric outer measure which is the infimum of packing g-pre-measures of
countable coverings of X. The packing dimension of (X, d) is defined by

dimpack(Xy d) = lnf{p >0: PP(X) = O}

* Topological dimension
For any compact metric space (X, d) its topological dimension (or Lebesgue
covering dimension) is defined by

dimy,, (X, d) = i(ril/f{dimHam (Xx,d")},

where d’ is any metric on X equivalent to d. So, it holds dimg, < dimpgg,. A
fractal (Chap. 18) is a metric space for which this inequality is strict.

This dimension does not exceed also the Assouad—Nagata dimension of
(X,d).

In general, the topological dimension of a topological space X is the smallest
integer n such that, for any finite open covering of X, there exists a finite open
refinement of it with no point of X belonging to more than n + 1 elements.

The geometric dimension is (Kleiner, 1999; [BBIO1]) sup dim,, (Y, d) over
compact Y C X.

* Doubling dimension

The doubling dimension (dimg,,,(X,d)) of a metric space (X,d) is the
smallest integer n (or oo if such an n does not exist) such that every metric ball
(or, say, a set of finite diameter) can be covered by a family of at most 2" metric
balls (respectively, sets) of half the diameter.
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If (X, d) has finite doubling dimension, then d is called a doubling metric and
the smallest integer m such that every metric ball can be covered by a family of
at most m metric balls of half the diameter is called doubling constant.
Assouad-Nagata dimension

The Assouad-Nagata dimension dimay (X, d) of a metric space (X, d) is the
smallest integer n (or oo if such an n does not exist) for which there exists a
constant C > 0 such that, for all s > 0, there exists a covering of X by its subsets
of diameter < Cs with every subset of X of diameter < s meeting < n + 1
elements of covering. It holds (LeDonne—Rajala, 2014) dimay < dimgoup; but
dimyy = 1, while dimg,,,; = 00, holds (Lang—Schlichenmaier, 2014) for some
real trees (X, d).

Replacing “for all s > 0” in the above definition by “for s > 0 sufficiently
large” or by “for s > 0 sufficiently small”, gives the microscopic mi-dimayn(X, d)
and macroscopic ma-diman(X,d) Assouad—Nagata dimensions, respectively.
Then (Brodskiy et al., 2006) mi-dimay (X, d) = diman(X, min{d, 1}) and

ma-diman(X,d) = dimay(X, max{d, 1}) (here max{d(x,y), 1} means O for
x=1y).

The Assouad-Nagata dimension is preserved (Lang—Schlichenmaier, 2004)
under quasi-symmetric mapping but, in general, not under quasi-isometry.
Vol’berg—Konyagin dimension

The VoI’berg—Konyagin dimension of a metric space (X, d) is the smallest
constant C > 1 (or oo if such a C does not exist) for which X carries a doubling
measure, i.e., a Borel measure p such that, for all x € X and r > 0, it holds that

1(B(x,2r)) < Cu(B(x,1)).

A metric space (X, d) carries a doubling measure if and only if d is a doubling
metric, and any complete doubling metric carries a doubling measure.

The Karger—Ruhl constant of a metric space (X, d) is the smallest ¢ > 1 (or
oo if such a ¢ does not exist) such that for all x € X and r > 0 it holds

|B(x,2r)| < c|B(x,7)|.

If c is finite, then the doubling dimension of (X, d) is at most 4c.
Hyperbolic dimension

A metric space (X, d) is called an (R, N)-large-scale doubling if there exists a
number R > 0 and integer N > 0 such that every ball of radius r > R in (X, d)
can be covered by N balls of radius 5.

The hyperbolic dimension iypdim(X, d) of a metric space (X,d) (Buyalo-
Schroeder, 2004) is the smallest integer n such that for every r > 0 there are
R > 0, an integer N > 0 and a covering of X with the following properties:

1. Every ball of radius r meets at most n 4 1 elements of the covering;
2. The covering is an (R, N)-large-scale doubling, and any finite union of its
elements is an (R, N)-large-scale doubling for some R’ > 0.
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The hyperbolic dimension is 0 if (X, d) is a large-scale doubling, and it is n if
(X, d) is n-dimensional hyperbolic space.
Also, hypdim(X,d) < asdim(X,d) since the asymptotic dimension
asdim(X, d) corresponds to the case N = 1 in the definition of hypdim(X, d).
The hyperbolic dimension is preserved under a quasi-isometry.
¢ Asymptotic dimension
The asymptotic dimension asdim(X, d) of a metric space (X, d) (Gromov,
1993) is the smallest integer n such that, for every r > 0, there exists a constant
D = D(r) and a covering of X by its subsets of diameter at most D such that
every ball of radius » meets at most n + 1 elements of the covering.
The asymptotic dimension is preserved under a quasi-isometry.
*  Width dimension
Let (X, d) be a compact metric space. For a given number € > 0, the width
dimension Widim. (X, d) of (X, d) is (Gromov, 1999) the minimum integer n such
that there exists an n-dimensional polyhedron P and a continuous map f : X — P
(called an e-embedding) with diam(f~'(y)) < € forall y € P.
The width dimension is a macroscopic dimension at the scale > € of (X, d),
because its limit for € — 0 is the topological dimension of (X, d).
* Godsil-McKay dimension
We say that a metric space (X, d) has Godsil-McKay dimension n > 0 if
there exists an element xo € X and two positive constants ¢ and C such that the
inequality ck” < |{x € X : d(x,x0) < k}| < Ck" holds for every integer k > 0.
This notion was introduced in [GoMc80] for the path metric of a countable
locally finite graph. They proved that, if the group Z" acts faithfully and with a
finite number of orbits on the vertices of the graph, then this dimension is .
* Metric outer measure
A o-algebra over X is any nonempty collection X of subsets of X, including X
itself, that is closed under complementation and countable unions of its members.
Given a o-algebra ¥ over X, a measure on (X, X) is a function u : ¥ —
[0, oo] with the following properties:

L ju(@) = 0;
2. For any sequence {A;} of pairwise disjoint subsets of X, u(3~; A;)) = Y, u(A;)
(countable o-additivity).

The triple (X, X, u) is called a measure space. f M C A € ¥ and u(A) = 0
implies M € X, then (X, X, u) is called a complete measure space. A measure
@ with u(X) = 1is called a probability measure.

If X is a topological space (see Chap. 2), then the o-algebra over X, consisting
of all open and closed sets of X, is called the Borel o-algebra of X, (X, X) is
called a Borel space, and a measure on X is called a Borel measure. So, any
metric space (X, d) admits a Borel measure coming from its metric topology,
where the open set is an arbitrary union of open metric d-balls.

An outer measure on X is a function v : P(X) — [0, co] (where P(X) is the
set of all subsets of X) with the following properties:

1. v(@) = 0;
2. For any subsets A, B C X, A C B implies v(A) < v(B) (monotonicity);
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3. For any sequence {A;} of subsets of X, v(}_;A;) < > ,v(A;) (countable
subadditivity).

A subset M C X is called v-measurable if v(A) = v(A U M) + v(A \ M) for
any A C X. The set ¥’ of all v-measurable sets forms a o-algebra over X, and
(X, ¥, v) is a complete measure space.

A metric outer measure is an outer measure v defined on the subsets of a
given metric space (X, d) such that v(A U B) = v(A) 4+ v(B) for every pair of
nonempty subsets A, B C X with positive set-set distance inf,c4 pep d(a, b). An
example is Hausdorff g-measure; cf. Hausdorff dimension.

Length of metric space

The Fremlin length of a metric space (X,d) is its Hausdorff 1-measure
H'(X).

The Hejcman length Ing(M) of a subset M C X of a metric space (X, d) is
sup{lng(M’) : M’ C M,|M’| < oo}. Here Ing(@) = 0 and, for a finite subset
M CX, lng(M/) = min Z:’l:l d(x;—1, x;) over all sequences xo, . . . , X, such that
{x;:i=0,1,...,n} =

The Schechtman length of a finite metric space (X, d) is inf \/>_7_, a? over

i=1"%
all sequences aj,...,a, of positive numbers such that there exists a sequence
Xo, ..., X, of partitions of X with following properties:

1. Xo ={X}and X,, = {{x} : x € X};

2. X;refines X;—; fori=1,...,n;

3. Fori=1,...,nand B,C C A € X;— with B, C € X, there exists a one-to-
one map f from B onto C such that d(x,f(x)) < a; forall x € B.

Volume of finite metric space

Given a metric space (X, d) with |X| = k < oo, its volume (Feige, 2000) is the
maximal (k — 1)-dimensional volume of the simplex with vertices { f(x) : x € X}
over all metric mappingsf : (X,d) — (R¥™!, ;). The volume coincides with the
metric for k = 2. It is monotonically increasing and continuous in the metric d.
Rank of metric space

The Minkowski rank of a metric space (X, d) is the maximal dimension of
a normed vector space (V, ||.||) such that there is an isometry (V. ||.||) = (X, d).

The Euclidean rank of a metric space (X, d) is the maximal dimension of a
flat in it, that is of a Euclidean space [E” such that there is an isometric embedding
E" — (X, d).

The quasi-Euclidean rank of a metric space (X, d) is the maximal dimen-
sion of a quasi-flat in it, i.e., of an Euclidean space E" admitting a quasi-
isometry E” — (X, d). Every Gromov hyperbolic metric space has this rank 1.
Roundness of metric space

The roundness of a metric space (X, d) is the supremum of all g such that

d(x1,x2)? + d(y1, y2)? < d(xr, y0)? + dxr, y2)? + d(xo, y1)? + d(x2, y2)7

for any four points x1, x2, y1,y2 € X.
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Every metric space has roundness > 1; it is < 2 if the space has approximate
midpoints. The roundness of L,-spaceispif 1 <p < 2.

The generalized roundness of a metric space (X,d) is (Enflo, 1969) the
supremum of all g such that, for any 2k > 4 points x;,y; € X with 1 <i <k,

Z d?(x;, x5) + d(yi,yj) < Z d?(x;, y;).

1<i<j<k 1<ij<k

Lennard—Tonge—Weston, 1997, have shown that the generalized roundness is the
supremum of g such that d is of g-negative type, i.e., d? is of negative type.

Every CAT(0) space (Chap.6) has roundness 2, but some of them have
generalized roundness 0 (Lafont—Prassidis, 2006).

¢ Type of metric space

The Enflo type of a metric space (X, d) is p if there exists a constant 1 <
C < oo such that, for every n € N and every function f : {—1,1}" — X,
Zee{—l,l}” dp(f(é),f(—é)) is at most

(0 Z;:l Zee{—l,l}" dp(f(el, ey éj_l, Gj, Ej+1, . ,Gn),f(él, cees €, —Gj,
€jit+15---5€n

A Banach space (V, ||.||) of Enflo type p has Rademacher type p, i.e., for every
X1,...,X, € V, it holds

n n
YD el = gl
Jj=1

eef{—1.1y  j=1

Given a metric space (X,d), a symmetric Markov chain on X is a Markov
chain {Z;}72, on a state space {xi,...,x,} C X with a symmetrical transition
m x m matrix ((a;)), suchthat P(Z;4 = x; : Z; = x;) = ajand P(Zp = x;) = %
for all integers 1 < i,j < mand ! > 0. A metric space (X, d) has Markov type
p (Ball, 1992) if sup; M,(X,T) < oo where M,(X,T) is the smallest constant
C > 0 such that the inequality

Ed’(Zr, Zo) < TCPEd’(Z1, Zo)

holds for every symmetric Markov chain {Z;}72, on X holds, in terms of expected
value (mean) E[X] = > xp(x) of the discrete random variable X.
A metric space of Markov type p has Enflo type p.
* Strength of metric space
Given a finite metric space (X, d) with s different nonzero values of d; =
d(i,j), its strength is the largest number ¢ such that, for any integers p,g > 0
with p 4+ g < t, there is a polynomial f,,(s) of degree at most min{p, ¢} such that
(@)d) = (@)
* Rendez-vous number
Given a metric space (X,d), its rendez-vous number (or Gross number,
magic number) is a positive real number 7(X,d) (if it exists) defined by the
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property that for each integer n and all (not necessarily distinct) x;,...,x, € X
there exists a point x € X such that

rX,d) = % Z d(x;, x).
i=1

If the number (X, d) exists, then it is said that (X, d) has the average distance
property. Every compact connected metric space has this property. The unit ball
{x € V1 ||x|]| < 1} of a Banach space (V, ||.||) has the rendez-vous number 1.
Wiener-like distance indices

Given a finite subset M of a metric space (X, d) and a parameter ¢, the Wiener
polynomial of M (as defined by Hosoya, 1988, for the graphic metric dpa) is

1 :
WM =5 Y ¢

X YEM: xF#y

It is a generating function for the distance distribution (Chap. 16) of M, i.e., the
coefficient of ¢' in W(M; q) is the number |[{{x,y} € M x M : d(x,y) = i}|.

In the main case when M is the vertex-set V of a connected graph G = (V, E)
and d is the path metric of G, the number W(M; 1) = % Zx’ye w d(x,y) is called
the Wiener index of G. This notion is originated (Wiener, 1947) and applied,
together with its many analogs, in Chemistry; cf. chemical distance in Chap. 24.

The hyper-Wiener index is Zx’yeM(d(x, y) + d(x,v)?). The reverse-Wiener
index is % Zwe 1y (D—d(x,y)), where D is the diameter of M. The complementary
reciprocal Wiener index is %ZX’},EM(I + D — d(x,y))"!. The Harary index is
> eyem(d(x, ¥))~!. The Szeged index and the vertex Pl index are Y, ni(e)ny(e)
and ), (nc(e) +ny(e)), where e = (xy) and ny(e)=|{z € V : d(x,z) < d(y,2)}|.

Two studied edge-Wiener indices of G are the Wiener index of its line graph
and Z(xy),(x’y’)eE max{d(x, X/), d(-xv y/)v d(ys X/), d(ys y/)}

The Gutman—Schultz index, degree distance (Dobrynin—Kochetova, 1994),
reciprocal degree distance and terminal Wiener index are:

3 rndy). Y d@y) o+ ). Z XTI S deny),

X, yEM X, yEM xye{zeM:r,=1}

where r; is the degree of the vertex z € M. The eccentric distance sum (Gupta
et al, 2002) is ) oy (max{d(x,y) : x € M}d,), where dy is ) ), d(x,).
The Balaban index is % Z(yz)eE(‘/dde ~1, where ¢ is the number of
primitive cycles. The multiplicative Wiener index is (Das—Gutman, 2016)
l_[x,yEM,x;ﬁy d(x’ y)

Given a partition P = {Vi,..., Vi} of the vertex-set V, set fp(x) = i for
x € V;. The colored distance (Dankelman et al., 2001) and the partition distance
(KlavZzar, 2016) of G are 3 )45,y d(x,¥) and 3. e ) d(x, y), respectively.
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Above indices are called (corresponding) Kirchhoff indices if d the resistance
metric (Chap. 15) of G.

The average distance of M is the number m ZMEM d(x,y). In
xyeM d(x,y) and
are called, respectively, the transmission and global

general, for a quasi-metric space (X,d), the numbers >
m Zx,yeM,x;éy d(x;))
efficiency of M.

* Distance polynomial

Given an ordered finite subset M of a metric space (X, d), let D be the distance
matrix of M. The distance polynomial of M is the characteristic polynomial of
D, i.e., the determinant det(D — AI).

Usually, D is the distance matrix of the path metric of a graph. Sometimes,
the distance polynomial is defined as det(Al — D) or (—1)"det(D — AI).

The roots of the distance polynomial constitute the distance spectrum (or
D-spectrum of D-eigenvalues) of M. Let pmax and pmin be the largest and the
smallest roots; then pmax and pmax — Pmin are called (distance spectral) radius
and spread of M. The distance degree of x € M is ) ., d(x,y). The distance
energy of M is the sum of the absolute values of its D-eigenvalues. It is 2ppmax
if (as, for example, for the path metric of a tree) exactly one D-eigenvalue is
positive.

* s-energy

Given a finite subset M of a metric space (X,d) and a number s > 0, the

s-energy and O-energy of M are, respectively, the numbers

1 1
2 Iy M 2 log Gy = log [T dey.

X YEM xF#y X, YEM xF#y X, YEM xF#y

The (unnormalized) s-moment of M is the number ZX’},E u @ (x,y).

The discrete Riesz s-energy is the s-energy for Euclidean distance d. In
general, let 4 be a finite Borel probability measure on (X, d). Then U} (x) =

ﬁf}y;x is the (abstract) s-potential at a point x € X. The Newton gravitational
potential is the case (X, d) = (R3, |x —y|), s = 1, for the mass distribution /.

The s-energy of pis Ey = [ Uy (x)u(dx) = [ [ “(Z(X;f;)(fly), and the s-capacity
of (X,d) is (inf, E5')~". Cf. the metric capacity.

* Fréchet mean

Given a metric space (X,d) and a number s > 0, the Fréchet function is
F;(x) = E[d°(x,y)]. For a finite subset M of X, this expected value is the mean
Fi(x) = ZyeM w(y)d®(x,y), where w(y) is a weight function on M.

The points, minimizing F;(x) and F5(x), are called the Fréchet median (or
weighted geometric median) and Fréchet mean (or Karcher mean), respectively.

If (X,d) = (R",||x — y||2) and the weights are equal, these points are called
the geometric median (or Fermat—Weber point, 1-median) and the centroid (or
geometric center, barycenter), respectively.

The k-median and k-mean of M are the k-sets C minimizing, respectively, the

sums Y o) mincec d(y,¢) = 3 ) d(y,C)and 3 d*(y, C).
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Let (X, d) be the metric space (R., | f(x) —f(y)|), where f : Ry —> Risa
given injective and continuous function. Then the Fréchet mean of M C R. is

the f-mean (or Kolmogorov mean, quasi-arithmetic mean) f ! (%) Itis the

arithmetic, geometric, harmonic, and power mean if f = x, log(x), )—1(, andf = x7
(for a given p # 0), respectively. The cases p — +o00,p — —oo correspond
to maximum and minimum, while p = 2, = 1, —- 0, — —1 correspond to the
quadratic, arithmetic, geometric and harmonic mean.

Given a completely monotonic (i.e., (—1)f®) > 0 for any k) function f € C*,
the f-potential energy of a finite subset M of (X, d) is Zx’ye Mty S (d*(x,y)). The
set M is called (Cohn—Kumar, 2007) universally optimal if it minimizes, among
sets M’ C X with |M’| = |M]|, the f-potential energy for any such f. Among
universally optimal subsets of (S"!, ||x — y||2), there are the vertex-sets of a
polygon, simplex, cross-polytope, icosahedron, 600-cell, Eg root system.
Distance-weighted mean

In Statistics, the distance-weighted mean between given data points
X1, ...,%p 1s defined (Dodonov—Dodonova, 2011) by

D l<i<n Wiki n—1
1<i< A .
El=izn T ih owy =

leisn Wi Zlgjsn |xi—xj|.

The case w; = 1 for all i corresponds to the arithmetic mean.
Inverse distance weighting

In Numerical Analysis, multivariate (or spatial) interpolation is interpolation
on functions of more than one variable. Inverse distance weighting is a method
(Shepard, 1968) for multivariate interpolation. Let xi,...,x, be interpolating
points (i.e., samples u; = u(x;) are known), x be an interpolated (unknown) point
and d(x, x;) be a given distance. A general form of interpolated value u(x) is

Zl<i<n Wi(x)ui 1
ux) = ———, withw;(x) = ——,

Zlgign Wi(-x) (d(x, xi))p
where p > 0 (usually p = 2) is a fixed power parameter.
Transfinite diameter

The n-th diameter D,(M) and the n-th Chebyshev constant C,(M) of a set

M C X in a metric space (X, d) are defined (Fekete, 1923, for the complex plane
C) as

1 . - 1
D,(M) = sup Hd(x,-,xj)"<"—l) and C,(M) = inf sup l_[d(x,xj)n.
X1y Xn €M . /. ’ YEX 1 xn €M i—1 ’
i#j J=
The number log D, (M) (the supremum of the average distance) is called the
n-extent of M. The numbers D,(M), C,(M) come from the geometric mean
averaging; they also come as the limit case s — 0 of the s-moment ) i d (i, xj)*
averaging.
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The transfinite diameter (or oco-th diameter) and the oco-th Chebyshev
constant Coo (M) of M are defined as

Doo(M) = lim D, (M) and Coo(M) = lim C,(M);
n—00 n—00

these limits existing since {D, (M)} and {C,(M)} are nonincreasing sequences of
nonnegative real numbers. Define Do (9) = 0.
The transfinite diameter of a compact subset of C is its conformal radius at
infinity (cf. Chap. 6); for a segment in C, it is % of its length.
* Metric diameter
The metric diameter (or diameter, width) diam(M) of a set M C X in a
metric space (X, d) is defined by

sup d(x,y).

x,yEM

The diameter graph of M has, as vertices, all points x € M with d(x,y) =
diam(M) for some y € M; it has, as edges, all pairs of its vertices at distance
diam(M) in (X, d). (X, d) is called a diametrical metric space if any x € X has
the antipode, i.e., a unique X' € X such that the closed metric interval /(x, x’) is
X.

The furthest neighbor digraph of M is a directed graph on M, where xy is an
arc (called a furthest neighbor pair) whenever y is at maximal distance from x.

In a metric space endowed with a measure, one says that the isodiametric
inequality holds if the metric balls maximize the measure among all sets with
given diameter. It holds for the volume in Euclidean space but not, for example,
for the Heisenberg metric on the Heisenberg group (Chap. 10).

The k-ameter (Grove-Markvorsen, 1992) is supgcy: x|=x i > ek d(x,Y),
and the k-diameter (Chung-Delorme-Sole, 1999) is supgcy. |xj=x infryek: x£y
d(x,y).

Given a property P C X x X of a pair (K, K') of subsets of a finite metric
space (X, d), the conditional diameter (called P-diameter in Balbuena et al.,
1996) is maxx k’)ep min(xyy)erK/ d(x, y). It is diam(X, d) if P = {(K, K/) S
X xX : |K| = |K'| = 1}. When (X, d) models an interconnection network,
the P-diameter corresponds to the maximum delay of the messages interchanged
between any pair of clusters of nodes, K and K’, satisfying a given property P of
interest.

¢ Metric spread

A subset M of a metric space (X, d) is called Delone set (or separated e-net,
(A, a)-Delone ser) if it is bounded (with a finite diameter A = sup, ¢, d(x, y))
and metrically discrete (with a separation a = infy yep vy d(x,y) > 0).

The metric spread (or distance ratio, normalized diameter) of M is the
ratio 4.
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The aspect ratio (or axial ratio) of a shape is the ratio of its longer and shorter
dimensions, say, the length and diameter of a rod, major and minor axes of a torus
or width and height of a rectangle (image, display, pixel, etc.).

For a mesh M with separation a and covering radius (or mesh norm) ¢ =
SUP,ex infyep d(x, y), the mesh ratio is %

In Physics, the aspect ratio is the ratio of height-to-length scale characteristics.
Cf. the wing’s aspect ratio among aircraft distances in Chap. 29.

Dynamic range DNR is the ratio between the largest and smallest possible
values of a quantity, such as in sound or light signals; cf. SNR distance in
Chap. 21.

Eccentricity

Given a bounded metric space (X, d), the eccentricity (or Koenig number) of
a pointx € X is the number e(x) = maxyex d(x,y).

The numbers D = max,ex e(x) and » = min,ey e(x) are called the diameter
and the radius of (X,d), respectively. The point z € X is called central if
e(z) = r, peripheral if e(z) = D, and pseudo-peripheral if for each point x with
d(z,x) = e(z) it holds that e(z) = e(x). For finite |X|, the average eccentricity is
‘71‘ > ex €(x), and the contour of (X, d) is the set of points x € X such that no
neighbor (closest point) of x has an eccentricity greater than x.

The eccentric digraph (Buckley, 2001) of (X, d) has, as vertices, all points
x € X and, as arcs, all ordered pairs (x,y) of points with d(x,y) = e(y).
The eccentric graph (Akyiama—Ando—Avis, 1976) of (X, d) has, as vertices, all
points x € X and, as edges, all pairs (x, y) of points at distance min{e(x), e(y)}.

The super-eccentric graph (Igbalunnisa—Janairaman—Srinivasan, 1989) of
(X, d) has, as vertices, all points x € X and, as edges, all pairs (x,y) of points
at distance no less than the radius of (X, d). The radial graph (Kathiresan—
Marimuthu, 2009) of (X, d) has, as vertices, all points x € X and, as edges,
all pairs (x, y) of points at distance equal to the radius of (X, d).

The sets {x € X : e(x) < e(zr) foranyz € X}, {x € X : e(x) >
e(z) forany z € X} and {x € X : }_ cyd(x,y) < ) cxd(z,y) forany z € X}
are called, respectively, the metric center (or eccentricity center, center), metric
antimedian (or periphery) and the metric median (or distance center) of (X, d).
Radii of metric space

Given a bounded metric space (X,d) and a set M C X of diameter D,
its metric radius (or radius) Mr, covering radius (or directed Hausdorff
distance from X to M) Cr and remoteness (or Chebyshev radius) Re are the
numbers infyey sup,ey d(x,y), sup,ey infyem d(x,y) and infrex supey, d(x, y),
respectively. It holds that % < Re < Mr < D with Mr = % in any injective
metric space. Somemimes, 2 is called the radius.

For m > 0, a minimax distance design of size m is an m-subset of X having
smallest covering radius. This radius is called the m-point mesh norm of (X, d).

The packing radius Pr of M is the number sup{r : inf, yep (o, d(x,y) > 2r}.
For m > 0, a maximum distance design of size m is an m-subset of X having
largest packing radius. This radius is the m-point best packing distance on (X, d).
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e-net

Given a metric space (X,d), a subset M C X, and a number € > 0, the €-
neighborhood of M is the set M€ = U,eyB(x, €).

The set M is called an e-net (or €-covering, €-approximation) of (X, d) if
M¢ = X, i.e., the covering radius of M is at most €.

Let C. denote the e-covering number, i.e., the smallest size of an €-net in
(X,d). The number lg, C. is called (Kolmogorov—Tikhomirov, 1959) the metric
entropy (or €-entropy) of (X,d). It holds P. < C. < Pg, where P, denote
the e-packing number of (X,d), i.e., sup{|M| : M C X,B(x,€) N B(y,€) =
@ for any x,y € M,x # y}. The number 1g, P, is called the metric capacity (or
€-capacity) of (X, d).

Steiner ratio

Given a metric space (X, d) and a finite subset V C X, let G = (V, E) be the
complete weighted graph on V with edge-weights d(x, y) forall x,y € V.

Given a tree T, its weight is the sum d(T) of its edge-weights. A spanning tree
of V is a subset of |V| — 1 edges forming a tree on V. Let MSpTy be a minimum
spanning tree of V, i.e., a spanning tree with the minimal weight d(MSpTv).

A Steiner tree of V is a tree on Y, V C Y C X, connecting vertices
from V; elements of ¥ \ V are called Steiner points. Let StMTy be a minimum
Steiner tree of V, i.e., a Steiner tree with the minimal weight d(StMTy) =
infycx:ycy d(MSpTy). This weight is called the Steiner diversity of V; cf.
diversity in Chap. 3. It is the Steiner distance of set V (Chap. 15) if (X,d) is
graphic metric space.

The Steiner ratio St(X, d) of the metric space (X, d) is defined by

. d(StMTy)
vex d(MSpTy)

Cf. arc routing problems in Chap. 15.
Chromatic numbers of metric space

Given a metric space (X,d) and a set D of positive real numbers, the D-
chromatic number of (X, d) is the standard chromatic number of its D-distance
graph, i.e., the graph (X, E) with the vertex-set X and the edge-set E = {xy :
d(x,y) € D} (Chap.15). Usually, (X,d) is an ,-space and D = {1} (Benda-
Perles chromatic number) or D = [1 — ¢, 1 + €].

For a metric space (X, d), the polychromatic number is the minimum number
of colors needed to color all the points x € X so that, for each color class C;, there
is a distance d; such that no two points of C; are at distance d;.

For a metric space (X, d), the packing chromatic number is the minimum
number of colors needed to color all the points x € X so that, for each color class
C;, no two distinct points of C; are at distance at most i.

For any integer r > 0, the t-distance chromatic number of a metric space
(X, d) is the minimum number of colors needed to color all the points x € X so
that any two points whose distance is < ¢ have distinct colors. Cf. k-distance
chromatic number in Chap. 15.
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For any integer ¢ > 0, the 7-th Babai number of a metric space (X, d) is the
minimum number of colors needed to color all the points in X so that, for any set
D of positive distances with |D| < ¢, any two points x,y € X with d(x,y) € D
have distinct colors.

Congruence order of metric space

A metric space (X, d) has congruence order n if every finite metric space
which is not isometrically embeddable in (X, d) has a subspace with at most
n points which is not isometrically embeddable in (X, d). For example, the
congruence order of [} is n + 3 (Menger, 1928); it is 4 for the path metric of
a tree.

1.4 Main Mappings of Metric Spaces

Distance function

In Topology, the term distance function is often used for distance. But, in
general, a distance function (or ray function) is a continuous function on a
metric space (X, d) (usually, on a Euclidean space E") f : X — Rx( which is
homogeneous, i.c., f(tx) = tf (x) forall t > 0 and all x € X.

Such function f is called positive if f(x) > 0 for all x # 0, symmetric if
fx) = f(—x), convexif f(tx + (1 —1)y) < tf(x) + (1 —1)f(y) forany 0 < < 1
and x # y, and strictly convex if this inequality is strict.

If X = E", the set Sy = {x € R" : f(x) < 1} is star body, i.e., x € Sy implies
[0,x] C Sf. Any star body S corresponds to a unique distance function g(x) =
infies >0 %, and § = §,. The star body is bounded if f is positive, symmetric
about the origin if f is symmetric, convex if f is convex, and strictly convex (i.e.,
the boundary dB does not contain a segment) if f is strictly convex.

For a quadratic distance function of the form fy = xAxT, where A is a real
matrix and x € R”, the matrix A is positive-definite (i.e., the Gram matrix
VVT = (({vi,v;))) of n linearly independent vectors v; = (vj1, ..., ;) if and
only if f4 is symmetric and strictly convex function. The homogeneous minimum
of fy is

min(/4) xe%\f{o}fA (x) xElLI{EO} ot i
where L = {d_x;v; : x; € Z} is a lattice, i.e., a discrete subgroup of R” spanning
it. The Hermite constant y,, a central notion in Geometry of Numbers, is the
supremum, over all positive-definite (n X n)-matrices, of min(f;) det(A)%. It is
known only for 2 < n < 8 and n = 24; cf. systole of metric space.

Convex distance function
Given a compact convex region B C R" containing the origin O in its interior,
the convex distance function (or Minkowski distance function, Minkowski
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seminorm, gauge) is the function ||P||p whose value at a point P € R” is the
distance ratio g—g, where Q € B is the furthest from O point on the ray OP.
Then dp(x,y) = ||x — y||p is the quasi-metric on R" defined, for x # y, by

inf{oa >0:y—x € aB},

and B = {x € R" : dp(0,x) < 1} with equality only for x € 0B.

The function ||P||p is called a polyhedral distance function if B is a n-
polytope, simplicial distance function if it is a n-simplex, and so on.

If B is centrally-symmetric with respect to the origin, then dp is a
Minkowskian metric (Chap.6) whose unit ball is B. This is the /;-metric if
B is the n-cross-polytope and the /-metric if B is the n-cube.

* Funk distance

Let B be an nonempty open convex subset of R”. For any x,y € B, denote by
R(x,y) the ray from x through y. The Funk distance (Funk, 1929) on B is the
quasi-semimetric defined, for any x,y € B, as 0 if the boundary d(B) and R(x, y)
are disjoint, and, otherwise, i.e., if R(x,y) N 0B = {z}, by

In .
Iy —zll2

The Hilbert projective metric in Chap. 6 is a symmetrization of this distance.
e Metric projection

Given a metric space (X, d) and a subset M C X, an element uy € M is called
an element of best approximation (or nearest point) to a given element x € X
if d(x, up) = inf,ep d(x, u), i.e., if d(x, up) is the point-set distance d(x, M).

A metric projection (or operator of best approximation, nearest point map)
is a multivalued mapping associating to each element x € X the set of elements
of best approximation from the set M (cf. distance map).

A Chebysheyv set in a metric space (X,d) is a subset M C X containing a
unique element of best approximation for every x € X.

A subset M C X is called a semi-Chebyshev set if the number of such
elements is at most one, and a proximinal set if this number is at least one.

While the Chebyshev radius (or remoteness; cf. radii of metric space)
of the set M is infyex sup,ey d(x,y), a Chebyshev center of M is an element
Xo € X realizing this infimum. Sometimes (say, for a finite graphic metric
space), ﬁ infrex Y e d(x,y) and ﬁ SUP,ex D_yen d(x. y) are called proximity
and remoteness of M.

¢ Distance map

Given a metric space (X,d) and a subset M C X, the distance map is a
function fiy : X — Rxo, where fis(x) = inf,epm d(x, 1) is the point-set distance
d(x, M) (cf. metric projection).
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If the boundary B(M) of the set M is defined, then the signed distance
function gy is defined by gy (x) = —inf,epu) d(x, u) for x € M, and gy (x) =
infyepar) d(x, u), otherwise. If M is a (closed orientable) n-manifold (Chap. 2),
then g, is the solution of the eikonal equation |Vg| = 1 for its gradient V.

If X = R” and, for every x € X, there is unique element u(x) with d(x, M) =
d(x,u(x)) (i.e., M is a Chebyshev set), then ||x—u(x)|| is called a vector distance
function.

Distance maps are used in Robot Motion (M being the set of obstacle points)
and, especially, in Image Processing (M being the set of all or only boundary
pixels of the image). For X = RZ, the graph {(x,fy(x)) : x € X} of d(x, M) is
called the Voronoi surface of M.

Isometry

Given metric spaces (X,dx) and (Y,dy), a function f : X — Y is
called an isometric embedding of X into Y if it is injective and the equality
dy(f(x),f(y)) = dx(x,y) holds for all x,y € X.

An isometry (or congruence mapping) is a bijective isometric embedding.
Two metric spaces are called isometric (or isometrically isomorphic) if there
exists an isometry between them.

A property of metric spaces which is invariant with respect to isometries (com-
pleteness, boundedness, etc.) is called a metric property (or metric invariant).

A path isometry (or arcwise isometry) is a mapping from X into Y (not
necessarily bijective) preserving lengths of curves.

Rigid motion of metric space

A rigid motion (or, simply, motion) of a metric space (X, d) is an isometry
of (X, d) onto itself.

For a motion f, the displacement function d;(x) is d(x,f(x)). The motion
f is called semisimple if infiex dr(x) = d(xo,f(x0)) for some xo € X, and
parabolic, otherwise. A semisimple motion is called elliptic if infiex df(x) = 0,
and axial (or hyperbolic), otherwise. A motion is called a Clifford translation if
the displacement function dy(x) is a constant for all x € X.

Symmetric metric space

A metric space (X, d) is called symmetric if, for any point p € X, there exists
a symmetry relative to that point, i.e., a motion f,, of this metric space such that
fp(fp(x)) = x for all x € X, and p is an isolated fixed point of f,.

Homogeneous metric space

A metric space is called homogeneous (or point-homogeneous) if, for any two
points of it, there exists a motion mapping one of the points to the other.

In general, a homogeneous space is a set together with a given transitive group
of symmetries. Moss, 1992, defined similar distance-homogeneous distanced
graph.

A metric space is called ultrahomogeneous space (or highly transitive) if any
isometry between two of its finite subspaces extends to the whole space.

A metric space (X, d) is called (Griinbaum—Kelly) a metrically homogeneous
metric space if {d(x,z) :z€ X} = {d(y,z) : z € X} forany x,y € X.



1.4 Main Mappings of Metric Spaces 39

* Flat space

A flat space is any metric space with local isometry to some E”, i.e., each
point has a neighborhood isometric to an open set in E". A space is locally
Euclidean if every point has a neighborhood homeomorphic to an open subset
in E”.

» Dilation of metric space

Given a metric space (X, d), its dilation (or r-dilation) is a mapping f : X —

X with d(f(x),f(y)) = rd(x,y) for some r > 0 and any x € X.
* Wobbling of metric space

Given a metric space (X, d), its wobbling (or r-wobbling) is a mapping f :

X — X with d(x,f(x)) < r for some r > 0 and any x € X.
* Paradoxical metric space

Given a metric space (X, d) and an equivalence relation on the subsets of X,
the space (X, d) is called paradoxical if X can be decomposed into two disjoint
sets My, M, so that My, M, and X are pairwise equivalent.

Deuber, Simonovitz and Sés, 1995, introduced this idea for wobbling equiva-
lent subsets M|, M, C X, i.e., there is a bijective r-wobbling f : M, — M,. For
example, (R?, ) is paradoxical for wobbling but not for isometry equivalence.

* Metric cone

A pointed metric space (X, d, xo) is called a metric cone, if it is isometric to
(AX,d, xp) for all A > 0. A metric cone structure on (X, d, x¢) is a (pointwise)
continuous family f; ( € R.) of dilations of X, leaving the point xy invariant,
such that d(f;(x),f;(y)) = td(x,y) for all x, y and f; of; = fi,;. A Banach space has
such a structure for the dilations f;(x) = tx (t € R~). The Euclidean cone over a
metric space (cf. cone over metric space in Chap. 9) is another example.

The tangent metric cone over a metric space (X, d) at a point x is (for all
dilations tX = (X, td)) the closure of U,.otX, i.e., of lim;— o X taken in the
pointed Gromov—Hausdorff topology (cf. Gromov—Hausdorff metric).

The asymptotic metric cone over (X,d) is its tangent metric cone ‘“at
infinity”, i.e., N otX = lim,—,( tX. Cf. boundary of metric space in Chap. 6.

The term metric cone was also used by Bronshtein, 1998, for a convex cone
C equipped with a complete metric compatible with its operations of addition
(continuous on C x C) and multiplication (continuous on C x R>). by all A > 0.

* Metric fibration

Given a complete metric space (X, d), two subsets M and M, of X are called
equidistant if for each x € M| there exists y € M, with d(x, y) being equal to the
Hausdorff metric between the sets M| and M,. A metric fibration of (X, d) is
a partition F of X into isometric mutually equidistant closed sets.

The quotient metric space X/F inherits a natural metric for which the
distance map is a submetry.

¢ Homeomorphic metric spaces

Two metric spaces (X, dx) and (Y, dy) are called homeomorphic (or fopolog-
ically isomorphic) if there exists a homeomorphism from X to Y, i.e., a bijective
function f : X — Y such that f and f~! are continuous (the preimage of every
open set in Y is open in X).




1 General Definitions

Two metric spaces (X, dx) and (Y,dy) are called uniformly isomorphic if
there exists a bijective function f : X — Y such that f and f~' are uniformly
continuous. A function g is uniformly continuous if, for any € > 0, there
exists § > O such that, for any x,y € X, the inequality dx(x,y) < § implies
that dy(g(x),f(y)) < €; a continuous function is uniformly continuous if X is
compact.

Mobius mapping
Given distinct points x, y, z, w of a metric space (X, d), their cross-ratio is

d(x, y)d(z, w)

cr((x,y,z,w),d) = d(x,z)d(y, w)

Given metric spaces (X, dy) and (Y, dy), a homeomorphism f : X — Y is
called a Mébius mapping if, for every distinct points x, y, z, w € X, it holds

cr((x, y,z,w) dx) = cr((f(0).f(¥).f(2).f (W), dy).

A homeomorphism f : X — Y is called a quasi-Mobius mapping (Viisila,
1984) if there exists a homeomorphism 7 : [0, c0) — [0, co) such that, for every
quadruple x, y, z, w of distinct points of X, it holds

CV((f(x),f(y),f(Z),f(W)), dY) =< t(cr((x, Vs 2, W)v dX))

A metric space (X, d) is called metrically dense (or p-dense for given p > 1,
Aseev-Trotsenko, 1987) if for any x,y € X, there exists a sequence {z;,i € Z}
with z; > x as i — —o0, z; = y as i — oo, and log cr((x, z;, zi+1,¥), d) < log
forall i € Z. The space (X, d) is u-dense if and only if (Tukia-Viisild, 1980), for
any x,y € X, there exists z € X with %}’ <d(x,7) < %4”

Quasi-symmetric mapping

Given metric spaces (X,dx) and (Y,dy), a homeomorphism f : X — Y
is called a quasi-symmetric mapping (Tukia—Viisdld, 1980) if there is a
homeomorphism 7 : [0,00) — [0, 00) such that, for every triple (x,y,z) of
distinct points of X,

dr(f(.£0)) __dy(.y)
ar(f.f@) = dyrd)’

Quasi-symmetric mappings are quasi-Mdbius, and quasi-Mobius mappings
between bounded metric spaces are quasi-symmetric. In the case f : R" — R”,
quasi-symmetric mappings are exactly the same as quasi-conformal mappings.
Conformal metric mapping

Given metric spaces (X, dy) and (Y, dy) which are domains in R”, a home-
omorphism f : X — Y is called a conformal metric mapping if, for any

nonisolated point x € X, the limit lim,_, %w exists, is finite and positive.
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A homeomorphism f : X — Y is called a quasi-conformal mapping (or,
specifically, C-quasi-conformal mapping) if there exists a constant C such that

lim sup max{dy(f(x),f(y)) : dx(x,y) < r} -c
r—~0 " min{dy(f(x),f(y)) : dx(x,y) = r} ~

for each x € X. The smallest such constant C is called the conformal dilation.
The conformal dimension of a metric space (X,d) (Pansu, 1989) is the
infimum of the Hausdorff dimension over all quasi-conformal mappings of
(X, d) into some metric space. For the middle-third Cantor set on [0, 1], it is O
but, for any of its quasi-conformal images, it is positive.
* Holder mapping
Let ¢, @ > 0 be constants. Given metric spaces (X, dx) and (¥, dy), a function
f + X — Y is called the Holder mapping (or «-Hélder mapping if the constant
« should be mentioned) if for all x,y € X

dy(f(x).f () = c(dx(x,y)*.

A 1-Holder mapping is a Lipschitz mapping; 0-Holder mapping means that
the metric dy is bounded.
¢ Lipschitz mapping
Let ¢ be a positive constant. Given metric spaces (X,dy) and (Y,dy), a
function f : X — Y is called a Lipschitz (or Lipschitz continuous, c-Lipschitz
if the constant ¢ should be mentioned) mapping if for all x, y € X it holds

dy(f(x).f () = cdx(x.y).

A c-Lipschitz mapping is called a metric mapping if ¢ = 1, and is called a
contraction if ¢ < 1.
* Bi-Lipschitz mapping
Given metric spaces (X, dx), (Y, dy) and a constant ¢ > 1, a functionf : X —
Y is called a bi-Lipschitz mapping (or c-bi-Lipschitz mapping, c-embedding) if
there exists a number » > 0 such that for any x, y € X it holds

rdx (x,y) < dy(f(x).f(y)) =< crdx(x, y).

Every bi-Lipschitz mapping is a quasi-symmetric mapping.

The smallest ¢ for which f is a c-bi-Lipschitz mapping is called the distortion
of f. Bourgain, 1985, proved that every k-point metric space c-embeds into a
Euclidean space with distortion O(Ink). Gromov’s distortion for curves is the
maximum ratio of arc length to chord length.

Two metrics d; and d> on X are called bi-Lipschitz equivalent metrics if
there are positive constants ¢ and C such that cd; (x,y) < d»(x,y) < Cd;(x,y) for
all x,y € X, i.e., the identity mapping is a bi-Lipschitz mapping from (X, d,) into
(X, d»). Bi-Lipschitz equivalent metrics are equivalent, i.e., generate the same
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topology but, for example, equivalent L;-metric and L,-metric (cf. L,-metric in
Chap. 5) on R are not bi-Lipschitz equivalent.

A bi-Lipschitz mapping f : X — Y is a c-isomorphism f : X — f(X).
c-isomorphism of metric spaces

Given two metric spaces (X, dx) and (Y, dy), the Lipschitz norm ||.||;, on the
set of all injective mappings f : X — Y is defined by

Al = sup U@SOD
P ey dx(ny)

Two metric spaces X and Y are called c-isomorphic if there exists an injective
mapping f : X — Y such that || f]|zip|| £ || < ¢
Metric Ramsey number

For a given class M of metric spaces (usually, [,-spaces), an integer n > 1,
and a real number ¢ > 1, the metric Ramsey number (or c-metric Ramsey
number) R (c, n) is the largest integer m such that every n-point metric space
has a subspace of cardinality m that c-embeds into a member of M (see
[BLMNOS]).

The Ramsey number R, is the minimal number of vertices of a complete graph
such that any edge-coloring with n colors produces a monochromatic triangle.
The following metric analog of R, was considered in [Masc04]: the least number
of points a finite metric space must contain in order to contain an equilateral
triangle, i.e., to have equilateral metric dimension greater than two.

Uniform metric mapping

Given metric spaces (X,dx) and (Y, dy), a function f : X — Y is called a
uniform metric mapping if there are two nondecreasing functions g; and g,
from Rx to itself with lim, . gi(r) = oo for i = 1, 2, such that the inequality

g1ldx(x.y)) = dy(f(x).f () = g2(dx(x.y))

holds for all x, y € X. A bi-Lipschitz mapping is a uniform metric mapping with
linear functions g, g».
Metric compression

Given metric spaces (X, dx) (unbounded) and (Y, dy), a functionf : X — Y
is a large scale Lipschitz mapping if, for some ¢ > 0,D > 0 and all x,y € X,

dY(f(-x)sf(Y)) =< CdX(-xv y) + D.

The compression of such a mapping f is oy (r) = infyy (xy)=r dy (f(x),f ().
The metric compression of (X, dx) in (Y, dy) is defined by

log max{ps(r), 1}

logr b

o0

R(X,Y) = supilim, _,
f

where the supremum is over all large scale Lipschitz mappings f.
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In the main interesting case—when (Y, dy) is a Hilbert space and (X, dx) is a
(finitely generated discrete) group with word metric—R(X, Y) = 0 if there is no
(Guentner—Kaminker, 2004) uniform metric mapping (X, dx) — (Y, dy), and
R(X,Y) = 1 for free groups, even if there is no quasi-isometry. Arzhantzeva—
Guba-Sapir, 2006, found groups with % <RX,Y) < %.

¢ Quasi-isometry

Given metric spaces (X,dx) and (Y, dy), a function f : X — Y is called a
quasi-isometry (or (C, ¢)-quasi-isometry) if it holds

Cldx(x,y) — ¢ < dy(f(0).f () = Cdx(x.y) +c,

for some C > 1,¢ > 0, and ¥ = U,exBy, (f(x), c), i.e., for every point y € Y,
C

there exists x € X such that dy(y,f(x)) < 5. Quasi-isometry is an equivalence
relation on metric spaces; it is a bi-Lipschitz equivalence up to small distances.
Quasi-isometry means that metric spaces contain bi-Lipschitz equivalent Delone
sets.

A quasi-isometry with C = 1 is called a coarse isometry (or rough isometry,
almost isometry). Cf. quasi-Euclidean rank of a metric space.

¢ Coarse embedding

Given metric spaces (X,dx) and (Y, dy), a function f : X — Y is called
a coarse embedding if there exist nondecreasing functions p;, p; : [0,00) —
[0, 00) with p1(dx(x,x)) < dy(f(x),f(x)) < pa(dx(x,x')) if x,x € X and
lim,—o0 p1(f) = +00.

Metrics dj,d, on X are called coarsely equivalent metrics if there exist
nondecreasing functions f,g : [0,00) — [0,00) such that d| < f(d2),d» <
g(dy).

¢ Metrically regular mapping

Let (X,dx) and (Y, dy) be metric spaces, and let F' be a set-valued mapping
from X to Y, having inverse F~', i.e., with x € F~!(y) if and only if y € F(x).

The mapping F is said to be metrically regular at X for y (Dontchev—Lewis—
Rockafeller, 2002) if there exists ¢ > 0 such that it holds

dX(xv F_l(y)) = CdY(yv F(X))

for all (x,y) close to (X,y). Here d(z,A) = inf,eq d(z, a) and d(z, §) = +o0.
* Contraction
Given metric spaces (X,dy) and (Y, dy), a function f : X — Y is called a
contraction if the inequality

dy(f(x).f(y)) = cdx(x,y)

holds for all x, y € X and some real numberc, 0 < ¢ < 1.

Every contraction is a contractive mapping, and it is uniformly continuous.
Banach fixed point theorem (or contraction principle): every contraction from a
complete metric space into itself has a unique fixed point.
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¢ Contractive mapping
Given metric spaces (X, dy) and (Y, dy), a function f : X — Y is called a
contractive (or strictly short, distance-decreasing) mapping if

dy(f(0).f(y)) < dx(x.y)

holds for all differentx,y € X. A functionf : X — Y is called a noncontractive
mapping (or dominating mapping) if for all x,y € X it holds

dy(f(x).f(y)) = dx(x.y).

Every noncontractive bijection from a totally bounded metric space onto
itself is an isometry.
e Short mapping
Given metric spaces (X,dx) and (Y, dy), a function f : X — Y is called
a short (or /-Lipschitz, nonexpansive, distance-noninreasing, metric) mapping
(or semicontraction) if for all x, y € X it holds

dy(f(x).f(y) = dx(x.y).

A submetry is a short mapping such that the image of any metric ball is a
metric ball of the same radius.

The set of short mappings f : X — Y for bounded metric spaces (X, dx) and
(Y, dy) is a metric space under the uniform metric sup{dy(f(x), g(x)) : x € X}.

Two subsets A and B of a metric space (X,d) are called (Gowers, 2000)
similar if there exist short mappings f : A — X, g : B — X and a small
€ > 0 such that every point of A is within € of some point of B, every point of
B is within € of some point of A, and |d(x, g(f(x))) — d(y,f(g(y)))| < € for any
x€A,y€B.

* Category of metric spaces

A category ¥ consists of a class Ob(¥) of objects and a class Mor(¥) of

morphisms (or arrows) satisfying the following conditions:

1. To each ordered pair of objects A, B is associated a set W(A, B) of morphisms,
and each morphism belongs to only one set W (A, B);

2. The composition f - g of two morphismsf : A — B, g : C — D is defined if
B = C in which case it belongs to W(A, D), and it is associative;

3. Each set W(A, A) contains, as an identity, a morphism idy such thatf-idy = f
and idy - g = g for any morphismsf : X - Aandg: A — Y.

The category of metric spaces, denoted by Met (see [Isbe64]), is a category
which has metric spaces as objects and short mappings as morphisms. A unique
injective envelope exists in this category for every one of its objects; it can be
identified with its tight span. In Met, the monomorphisms are injective short
mappings, and isomorphisms are isometries. Met is a subcategory of the category
which has metric spaces as objects and Lipschitz mappings as morphisms.
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Cf. metric 1-space on the objects of a category in Chap. 3.
* Injective metric space
A metric space (X, d) is called injective if, for every isometric embedding
f X — X of (X,d) into another metric space (X’,d’), there exists a short
mapping /' from X’ into X with f’ - f = idx, i.e., X is a retract of X'.
Equivalently, X is an absolute retract, i.e., a retract of every metric space into
which it embeds isometrically. A metric space (X, d) is injective if and only if
it is hyperconvex. Examples of such metric spaces are [3-space, I -space, any
real tree and the tight span of a metric space.
e Injective envelope
The injective envelope (introduced first in [Isbe64] as injective hull) is a
generalization of Cauchy completion. Given a metric space (X,d), it can be
embedded isometrically into an injective metric space (X d) given any such
isometric embedding f : X — X, there exists a unique smallest injective subspace
(X, d) of ()2 , El) containing f(X) which is called the injective envelope of X. It is
isometrically identified with the tight span of (X, d).
A metric space coincides with its injective envelope if and only if it is
injective.
* Tight extension
An extension (X', d’) of a metric space (X, d) is called a tight extension if, for
every semimetric d” on X’ satisfying the conditions d” (x{, x,) = d(x;,x,) for all
x1,% € X, and d”(y1,y2) < d'(y1,y2) for any y1,y> € X', one has d"(y1,y2) =
d/(yl,yg) for all y;,y, € X
The tight span is the universal tight extension of X, i.e., it contains, up to
isometries, every tight extension of X, and it has no proper tight extension itself.
* Tight span
Given a metric space (X, d) of finite diameter, consider the set RX = {f : X —
R}. The tight span T(X, d) of (X, d) is defined as the set T(X,d) = {f € RX :
f(x) = sup,ex(d(x,y) — f(y)) forall x € X}, endowed with the metric induced
on T(X, d) by the sup norm || f|| = sup,ex | f(X)].
The set X can be identified with the set {h, € T(X,d) : h(y) = d(y,x)} or,
equivalently, with the set T°(X,d) = {f € T(X.d) : 0 € f(X)}. The injective
envelope (X, d) of X is isometrically identified with the tight span T(X, d) by

X - T(X,d), ¥ — hs € T(X,d) : hx(y) = d(f(¥).%).

The tight span T(X,d) of a finite metric space is the metric space
(T(X),D(f,g) = max|f(x) — g(x)|), where T(X) is the set of functions
f + X — R such that for any x,y € X, f(x) + f(y) > d(x,y) and, for each
x € X, there exists y € X with f(x) + f(y) = d(x,y). The mapping of any x into
the function f;(y) = d(x,y) gives an isometric embedding of (X, d) into T(X, d).
For example, if X = {x1,x,}, then T(X, d) is the interval of length d(x1, x,).
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The tight span of a metric space (X, d) of finite diameter can be considered as
a polytopal complex of bounded faces of the polyhedron

WeRL tyi+y >dxi,x) for 1 <i<j<n}

if, for example, X = {xi, ..., x,,}. The dimension of this complex is called (Dress,
1984) the combinatorial dimension of (X, d).
* Real tree

A metric space (X, d) is called (Tits, 1977) a real tree (or R-tree) if, for all
x,y € X, there exists a unique arc from x to y, and this arc is a geodesic segment.
So, an R-tree is a (uniquely) arcwise connected metric space in which each arc
is isometric to a subarc of R. R-tree is not related to a metric tree in Chap. 17.

A metric space (X,d) is a real tree if and only if it is path-connected and
Gromov 0-hyperbolic (i.e., satisfies the four-point inequality). The plane R?
with the Paris metric or lift metric (Chap. 19) are examples of an R-tree.

Real trees are exactly tree-like metric spaces which are geodesic; they are
injective metric spaces among tree-like spaces. Tree-like metric spaces are by
definition metric subspaces of real trees.

If (X, d) is a finite metric space, then the tight span 7' (X, d) is a real tree and
can be viewed as an edge-weighted graph-theoretical tree.

A metric space is a complete real tree if and only if it is hyperconvex and any
two points are joined by a metric segment.

A geodesic metric space (X, d) is called (Drutu—Sapir, 2005) tree-graded with
respect to a collection P of connected proper subsets with [P N P'| < 1 for
any distinct P, P’ € P, if every its simple loop composed of three geodesics is
contained in one P € P. R-trees are tree-graded with respect to the empty set.

1.5 General Distances

* Discrete metric
Given a set X, the discrete metric (or trivial metric, sorting distance,
drastic distance, Dirac distance, overlap) is a metric on X, defined by d(x, y) =
1 for all distinct x,y € X and d(x, x) = 0. Cf. the much more general notion of a
(metrically or topologically) discrete metric space.
* Indiscrete semimetric
Given a set X, the indiscrete semimetric d is a semimetric on X defined by
d(x,y) =0forall x,y € X.
¢ Equidistant metric
Given a set X and a positive real number 7, the equidistant metric d is a metric
on X defined by d(x,y) = ¢ for all distinct x,y € X (and d(x,x) = 0).
¢ (1,2) — B-metric
Given a set X, the (1,2) — B-metric d is a metric on X such that, for any
x € X, the number of points y € X with d(x,y) = 1 is at most B, and all other
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distances are equal to 2. The (1, 2) — B-metric is the truncated metric of a graph
with maximal vertex degree B.
* Permutation metric
Given a finite set X, a metric d on it is called a permutation metric (or linear
arrangement metric) if there exists a bijection w : X — {1, ..., |X]|} such that

dx,y) = |o(x) — o)

holds for all x,y € X. Even—Naor—Rao—Schieber, 2000, defined a more general
spreading metric, i.e., any metric d on {1,...,n} such that ZyeM dix,y) >

MIMIED) forany 1 < x <nand M C {1,...,n} \ {x} with |M| > 2.
* Induced metric
Given a metric space (X,d) and a subset X’ C X, an induced metric (or
submetric) is the restriction d’ of d to X’. A metric space (X', d’) is called a
metric subspace of (X, d), and (X, d) is called a metric extension of (X', d").
* Katétov mapping
Given a metric space (X, d), the mapping f : X — R is a Katétov mapping if

lf() —fO)] = d(x.y) = f(x) + 1)

for any x,y € X, i.e., setting d(x, z) = f(x) defines a one-point metric extension
(X U{z},d) of (X,d).

The set E(X) of Katétov mappings on X is a complete metric space with
metric D(f, g) = sup,ey | f(x) — g(x)]; (X, d) embeds isometrically in it via the
Kuratowski mapping x — d(x, .), with unique extension of each isometry of X to
one of E(X).

* Dominating metric

Given metrics d and d; on a set X, d; dominates d if d;(x,y) > d(x, y) for all

x,y € X. Cf. noncontractive mapping (or dominating mapping).
* Barbilian semimetric

Given sets X and P, the function f : P x X — R, is called an influence (of P

over X) if for any x,y € X the ratio g,,(p) = % (P9) has a maximum when p € P.

= f(py)
The Barbilian semimetric is defined on thepsiat X by

maxpep &y (P)

In —
minyep gvy(p)

for any x,y € X. Barbilian, 1959, proved that the above function is well defined
(moreover, minyep gxy(p) = m) and is a semimetric. Also, it is a metric
if the influence f is effective, i.e., there is no pair x,y € X such that g, (p) is
constant for all p € P. Cf. a special case Barbilian metric in Chap. 6.
* Metric transform
A metric transform is a distance obtained as a function of a given metric (cf.
Chap. 4).
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e Complete metric

Given a metric space (X,d), a sequence {x,}, x, € X, is said to have
convergence to x* € X if lim,— o0 d(x,,x*) = 0, i.e., for any € > 0, there exists
no € N such that d(x,,x*) < € for any n > ny. Any sequence converges to at
most one limit in X; it is not so, in general, if d is a semimetric.

A sequence {x,},, x, € X, is called a Cauchy sequence if, for any € > 0, there
exists ng € N such that d(x,, x,,) < € for any m,n > ny.

A metric space (X,d) is called a complete metric space if every Cauchy
sequence in it converges. In this case the metric d is called a complete metric.
An example of an incomplete metric space is (N, d(m, n) = %).

¢ Cauchy completion

Given a metric space (X, d), its Cauchy completion is a metric space (X*, d*)
on the set X* of all equivalence classes of Cauchy sequences, where the sequence
{x,}n is called equivalent to {y,}, if lim,—co d(x,,y,) = 0. The metric d* is
defined by

d*(x*,y*) = Jim d(x, yn),

for any x*, y* € X*, where {z,}, is any element in the equivalence class z*.

The Cauchy completion (X*, d*) is a unique, up to isometry, complete metric
space, into which the metric space (X, d) embeds as a dense metric subspace.

The Cauchy completion of the metric space (Q, |x — y|) of rational numbers
is the real line (R, |x — y|). A Banach space is the Cauchy completion of a
normed vector space (V, ||.]|) with the norm metric ||x — y||. A Hilbert space
corresponds to the case an inner product norm ||x|| = +/(x, x).

¢ Perfect metric space

A complete metric space (X, d) is called perfect if every pointx € X is a limit
point,i.e., |B(x,r) = {y € X : d(x,y) < r}| > 1 holds for any r > 0.

A topological space is a Cantor space (i.e., homeomorphic to the Cantor set
with the natural metric |x — y|) if and only if it is nonempty, perfect, totally
disconnected, compact and metrizable. The totally disconnected countable
metric space (Q, |x—y|) of rational numbers also consists only of limit points but
it is not complete and not locally compact.

Every proper metric ball of radius r in a metric space has diameter at most
2r. Given a number 0 < ¢ < 1, a metric space is called a c-uniformly perfect
metric space if this diameter is at least 2cr. Cf. the radii of metric space.

e Metrically discrete metric space

A metric space (X,d) is called metrically (or uniformly) discrete if there
exists a number r > O such that B(x,r) = {y € X : d(x,y) < r} = {x} for every
x €X.

(X, d) is a topologically discrete metric space (or a discrete metric space) if
the underlying topological space is discrete, i.e., each point x € X is an isolated
point: there exists a number r(x) > 0 such that B(x, r(x)) = {x}. For X = {% :
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n=1,2,3,...}, the metric space (X, |x — y|) is topologically but not metrically
discrete. Cf. translation discrete metric in Chap. 10.

Alternatively, a metric space (X, d) is called discrete if any of the following
holds:

1. (Burdyuk—Burdyuk 1991) it has a proper isolated subset, i.e., M C X with
inf{d(x,y) : x € M,y ¢ M} > 0 (any such space admits a unique
decomposition into continuous, i.e., nondiscrete, components);

2. (Lebedeva—Sergienko—Soltan, 1984) for any distinct points x,y € X, there
exists a point z of the closed metric interval /(x, y) with I(x, z) = {x, z};

3. astronger property holds: for any two distinct points x, y € X, every sequence
of points 71,22, ... withz; € I(x,y) but zx41 € I(x, zx) \ {zx} fork = 1,2, ...
is a finite sequence.

¢ Locally finite metric space
Let (X, d) be a metrically discrete metric space. Then it is called locally
finite if for every x € X and every r > 0, the ball |B(x, r)| is finite.
If, moreover, |B(x,r)| < C(r) for some number C(r) depending only on r,
then (X, d) is said to have bounded geometry.
* Bounded metric space
A metric (moreover, a distance) d on a set X is called bounded if there exists
a constant C > 0 such that d(x,y) < C for any x,y € X.
For example, given a metric d on X, the metric D on X, defined by D(x,y) =
Trgils. is bounded with C = 1.
A metric space (X, d) with a bounded metric d is called a bounded metric
space.
¢ Totally bounded metric space
A metric space (X, d) is called totally bounded if, for every € > 0, there exists
a finite e-net, i.e., a finite subset M C X with the point-set distance d(x, M) < ¢
for any x € X (cf. totally bounded space in Chap. 2).
Every totally bounded metric space is bounded and separable. A metric
space is totally bounded if and only if its Cauchy completion is compact.
* Separable metric space
A metric space (X,d) is called separable if it contains a countable dense
subset M, i.e., a subset with which all its elements can be approached: X is the
closure cl(M) (M together with all its limit points).
A metric space is separable if and only if it is second-countable (cf. Chap. 2).
¢ Compact metric space
A compact metric space (or metric compactum) is a metric space in
which every sequence has a Cauchy subsequence, and those subsequences are
convergent. A metric space is compact if and only if it is totally bounded and
complete.
Every bounded and closed subset of a Euclidean space is compact. Every finite
metric space is compact. Every compact metric space is second-countable.
A continuum is a nonempty connected metric compactum.




1 General Definitions

Proper metric space

A metric space is called proper (or finitely compact, having the Heine—Borel
property) if every its closed metric ball is compact. Any such space is complete.
UC metric space

A metric space is called a UC metric space (or Azsuji space) if any continuous
function from it into an arbitrary metric space is uniformly continuous.

Every such space is complete. Every metric compactum is a UC metric
space.
Metric measure space

A metric measure space (or mm-space, metric triple) is a triple (X, d, ),
where (X, d) is a Polish (i.e., complete separable; cf. Chap. 2) metric space and
(X, X, n) is a probability measure space (ju(X) = 1) with X being a Borel o-
algebra of all open and closed sets of the metric topology (Chap. 2) induced by
the metric d on X. Cf. metric outer measure.
Norm metric

Given a normed vector space (V, ||.]|), the norm metric on V is defined by

Ilx =yl

The metric space (V,||x — y||) is called a Banach space if it is complete.
Examples of norm metrics are [,- and L,-metrics, in particular, the Euclidean
metric.

Any metric space (X, d) admits an isometric embedding into a Banach space
B such that its convex hull is dense in B (cf. Monge—Kantorovich metric in
Chap. 14); (X, d) is a linearly rigid metric space if such an embedding is unique
up to isometry. A metric space isometrically embeds into the unit sphere of a
Banach space if and only if its diameter is at most 2.

Path metric

Given a connected graph G = (V, E), its path metric (or graphic metric) dpan
is a metric on V defined as the length (i.e., the number of edges) of a shortest path
connecting two given vertices x and y from V (cf. Chap. 15).

Editing metric

Given a finite set X and a finite set O of (unary) editing operations on X, the
editing metric on X is the path metric of the graph with the vertex-set X and xy
being an edge if y can be obtained from x by one of the operations from O.
Gallery metric

A chamber system is a set X (its elements are called chambers) equipped with
n equivalence relations ~;, 1 < i < n. A gallery is a sequence of chambers
X1, ..., X%y such that x; ~; x;y for every i and some j depending on i.

The gallery metric is an extended metric on X which is the length of the
shortest gallery connecting x and y € X (and is equal to oo if there is no
connecting gallery). The gallery metric is the (extended) path metric of the graph
with the vertex-set X and xy being an edge if x ~; y for some 1 <i < n.
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* Maetric on incidence structure
An incidence structure (P, L,I) consists of 3 sets: points P, lines L and flags
I C Px L, where apointp € P is said to be incident with aline / € Lif (p,l) € I.
If, moreover, for any pair of distinct points, there is at most one line incident
with both of them, then the collinearity graph is a graph whose vertices are the
points with two vertices being adjacent if they determine a line.
The metric on incidence structure is the path metric of this graph.
* Riemannian metric
Given a connected n-dimensional smooth manifold M" (cf. Chaps. 2 and 7), its
Riemannian metric is a collection of positive-definite symmetric bilinear forms
((gi7)) on the tangent spaces of M" which varies smoothly from point to point.

The length of a curve y on M" is expressed as fy \ /Zu gijdx;dx;, and the

intrinsic metric on M", also called the Riemannian distance, is the infimum of
lengths of curves connecting any two given points x,y € M". Cf. Chap. 7.
* Linearly additive metric
A linearly additive (or additive on lines) metric is a continuous metric d on
R" which, for any points x, y, z lying in that order on a common line, satisfies

d(x,2) =d(x,y) +d(y,2).

Hilbert’s 4-th problem asked in 1900 to classify such metrics; it is solved only
for dimension n = 2 ([Amba76]). Cf. projective metric in Chap. 6.
Every norm metric on R” is linearly additive. Every linearly additive metric
on R? is a hypermetric.
¢ Hamming metric
The Hamming metric dy (called sometimes Dalal distance in Semantics) is
a metric on R” defined (Hamming, 1950) by

{i:1<i<n,x #y}.

On binary vectors x,y € {0, 1}" the Hamming metric and the /;-metric (cf. L,-
metric in Chap. 5) coincide; they are equal to |[I(x) AI(y)| = [[(x)\I)|+ [I(¥)\
I(x)|,where I(z) = {1 <t<n:z = 1}.
In fact, max{|/(x) \ I(y)|, [I(y) \ I(x)|} is also a metric.
* Lee metric
Given m,n € N, m > 2, the Lee metric d;.. is a metric on Z) =
{0,1,...,m— 1}" defined (Lee, 1958) by

Z min{|x; — y;|, m — |x; — yi[}.

1<i<n

The metric space (Z),, di..) is a discrete analog of the elliptic space.
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The Lee metric coincides with the Hamming metric dy if m = 2 or m =
3. The metric spaces (Z}, dy..) and Z%”, dy) are isometric. Lee and Hamming
metrics are applied for phase and orthogonal modulation, respectively.

Cf. absolute summation distance and generalized Lee metric in Chap. 16.
Enomoto-Katona metric

Given a finite set X and an integer k, 2k < |X|, the Enomoto—Katona metric
(2001) is the distance between unordered pairs (X;, X») and (Y7, ¥>) of disjoint
k-subsets of X defined by

min{|X; \ V1| + X2 \ 12|, [Xi \ V2| + | X2\ 11}

Cf. Earth Mover’s distance, transportation distance in Chaps. 21 and 14.
Symmetric difference metric

Given a measure space (2, A, 1), the symmetric difference (or measure)
semimetric on the set A, = {A € A: u(A) < oo} is defined by

oda(A.B) = L(ALB),

where AAB = (A U B)\(A N B) is the symmetric difference of Aand B € A,,.

The value da (A, B) = 0 if and only if u(AAB) = 0, i.e., A and B are equal
almost everywhere. Identifying two sets A,B € A, if £®(AAB) = 0, we obtain
the symmetric difference metric (or Fréchet-Nikodym—Aronszyan distance,
measure metric).

If w is the cardinality measure, i.e., L(A) = |A|, then da(A,B) = |[AAB| =
|A\ B| + |B\ A|. In this case |[AAB| = 0 if and only if A = B.

The metrics dmax(A,B) = max(J]A \ B|,|B \ A|) and 1 — % (its
normalised version) are special cases of Zelinka distance and Bunke—Shearer
metric in Chap. 15. For each p > 1, the p-difference metric (Noradam—Nyblom,
2014)is d,(A,B) = (JA\ B’ + |B \A|”)zl7; $0,d; = da and limy,_so dp = diax-

The Johnson distance between k-sets A and B is ‘A—éB‘ =k—|ANB|.

The symmetric difference metric between ordered g-partitions A =
(Ay,...,Ay) and B = (By,...,B,) is > i, |A;AB;|. Cf. metrics between
partitions in Chap. 10.

Steinhaus distance

Given a measure space (L2, A, 1), the Steinhaus distance dy; is a semimetric

onthe set A, = {A € A: (A) < oo} defined as 0 if u(A) = w(B) = 0, and by

WAAB) 1 (AN B)
WAUB)  wAUB)

if u(AUB) > 0. It becomes a metric on the set of equivalence classes of elements
from A,; here A, B € A, are called equivalent if f(AAB) = 0.
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The biotope (or Tanimoto) distance ‘Qﬁg“ is the special case of Steinhaus

distance obtained for the cardinality measure (A) = |A| for finite sets.
Cf. also the generalized biotope transform metric in Chap. 4.
¢ Fréchet metric
Let (X, d) be a metric space. Consider a set F of all continuous mappings
fiA—=>X,g:B—X,...,where A, B, ... are subsets of R”, homeomorphic to
[0, 1]" for a fixed dimension n € N.
The Fréchet semimetric dr is a semimetric on F defined by

inf Sup d(f(x), g(o(x))),

where the infimum is taken over all orientation preserving homeomorphisms o :
A — B. It becomes the Fréchet metric on the set of equivalence classes f* =
{g : dr(g.f) = 0}. Cf. the Fréchet surface metric in Chap. 8.
* Hausdorff metric
Given a metric space (X, d), the Hausdorff metric (or two-sided Hausdorff
distance) is a metric on the family F of nonempty compact subsets of X defined
by

dHaus = maX{ddHaus (A, B) ’ ddHuus (B, A) } s

where dgpaus (A, B) = max,es minyep d(x,y) is the directed Hausdorff distance
(or one-sided Hausdorff distance) from A to B. The metric space (F, dyas) 18
called hyperspace of metric space (X, d); cf. hyperspace in Chap. 2.

In other words, dy.,s(A, B) is the minimal number € (called also the Blaschke
distance) such that a closed e-neighborhood of A contains B and a closed e-
neighborhood of B contains A. Then dp,,;(A, B) is equal to

sup |d(x,A) — d(x, B)|,

xeX

where d(x,A) = minyes d(x, y) is the point-set distance.

If the above definition is extended for noncompact closed subsets A and B of
X, then dyqus(A, B) can be infinite, i.e., it becomes an extended metric.

For not necessarily closed subsets A and B of X, the Hausdorff semimetric
between them is defined as the Hausdorff metric between their closures. If X is
finite, dgy,.s 1S a metric on the class of all subsets of X.

* L,-Hausdorff distance

Given a finite metric space (X,d), the L,-Hausdorff distance ([Badd92])

between two subsets A and B of X is defined by

O ld(x.A) - d(x. B)P)7,

x€X
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where d(x,A) is the point-set distance. The usual Hausdorff metric corre-
sponds to the case p = oco.
Generalized G-Hausdorff metric

Given a group (G, -, ¢) acting on a metric space (X, d), the generalized G-
Hausdorff metric between two closed bounded subsets A and B of X is

min dHaux(gl (A), gZ(B))’
81.82€G

where dpg,s s the Hausdorff metric. If d(g(x), g(y)) = d(x,y) forany g € G
(i.e., if the metric d is left-invariant with respect of G), then above metric is equal
to Minge draus(A, g(B)).
Gromov-Hausdorff metric

The Gromov-Hausdorff metric is a metric on the set of all isometry classes
of compact metric spaces defined by

indeaus(f(X)v g(Y))

for any two classes X* and Y* with the representatives X and Y, respectively,
where dy,, 1s the Hausdorff metric, and the minimum is taken over all metric
spaces M and all isometric embeddings f : X — M, g : Y — M. The
corresponding metric space is called the Gromov—Hausdorff space.

The Hausdorff-Lipschitz distance between isometry classes of compact
metric spaces X and Y is defined by

inf{dou(X, X1) + dr(X1, Y1) + deu(Y, Y1)},

where dgy is the Gromov—Hausdorff metric, dy, is the Lipschitz metric, and the
minimum is taken over all (isometry classes of compact) metric spaces X, Y.
Kadets distance

The gap (or opening) between two closed subspaces X and Y of a Banach
space (V, ||.||) is defined by

gap(X,Y) = max{6(X,Y),8(Y,X)},

where §(X,Y) = sup{infyey |[x — y|| : x € X, ||x|]| = 1} (cf. gap distance in
Chap. 12 and gap metric in Chap. 18).

The Kadets distance between two Banach spaces V and W is a semimetric
defined (Kadets, 1975) by

inf gap(By(v), Byw)),
Zfg

where the infimum is taken over all Banach spaces Z and all linear isometric
embeddings f : V — Z and g : W — Z; here Byyy and By are the closed unit
balls of Banach spaces f(V) and g(W), respectively.
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The nonlinear analog of the Kadets distance is the following Gromov-
Hausdorff distance between Banach spaces U and W:

ZI?fg dHaus (f(EV) s g(EW))s

where the infimum is taken over all metric spaces Z and all isometric embeddings
f:V—Zand g: W — Z; here dy,, is the Hausdorff metric.

The Kadets path distance between Banach spaces V and W is defined
(Ostrovskii, 2000) as the infimum of the lengths (with respect to the Kadets
distance) of all curves joining V and W (and is equal to oo if there is no such
curve).

* Banach-Mazur distance
The Banach-Mazur distance dp), between two Banach spaces V and W is

Ininf |17+ [|77']]

where the infimum is taken over all isomorphisms 7 : V — W.

It can also be written as Ind(V, W), where the number d(V, W) is the smallest
positive d > 1 such that By, C T(By) C dBy, for some linear invertible
transformation 7 : V — W. Here Er‘l/ = {x € V: ||xlly £ 1} and
By, = {x € W;||x|lw < 1} are the unit balls of the normed spaces (V, ||.||v)
and (W, ||.||w), respectively.

One has dpy(V,W) = 0 if and only if V and W are isometric, and dgy
becomes a metric on the set X" of all equivalence classes of n-dimensional
normed spaces, where V. ~ W if they are isometric. The pair (X", dpy) is a
compact metric space which is called the Banach-Mazur compactum.

The modified Banach—Mazur distance (Glushkin, 1963, and Khrabrov,
2001) is

inf{||T||x—y : |detT| = 1} - inf{||T||y—x : |detT| = 1}.
The weak Banach-Mazur distance (Tomczak—Jaegermann, 1984) is
max{yy(idx), yx(idy)},

where id is the identity map and, for an operator U : X — Y, ¥,(U) denotes
inf > ||Wk|| - ||Vk||. Here the infimum is taken over all representations U =
> WiV for Wy : X — Z and V; : Z — Y. This distance never exceeds the
corresponding Banach—-Mazur distance.
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e Lipschitz distance
Given o > 0 and two metric spaces (X, dx), (Y, dy), the a-Holder norm ||.||goi
on the set of all injective functions f : X — Y is defined by

Al = sup DU @SO)
01 X, YEX xF#y dX(X, y)a .

The Lipschitz norm ||.||1;p is the case a = 1 of ||.||zor.
The Lipschitz distance between metric spaces (X, dx) and (Y, dy) is defined
by

. -1
lnH]}fo”Lip S ips

where the infimum is taken over all bijective functions f : X — Y. Equivalently,
it is the infimum of numbers In a such that there exists a bijective bi-Lipschitz
mapping between (X, dx) and (Y, dy) with constants exp(—a), exp(a).
It becomes a metric (Lipschitz metric) on the set of all isometry classes of
compact metric spaces. Cf. Hausdorff-Lipschitz distance.
This distance is an analog to the Banach—-Mazur distance and, in the case of
finite-dimensional real Banach spaces, coincides with it.
It also coincides with the Hilbert projective metric on nonnegative projective
spaces, obtained by starting with R” ; and identifying any point x with cx, ¢ > 0.
* Lipschitz distance between measures
Given a compact metric space (X, d), the Lipschitz seminorm ||.||1;, on the set
of all functions f : X — R is defined by || f||zjp = SUp, yex xy %_}f)(”l
The Lipschitz distance between measures ;. and v on X is defined by

sup /fd(u —v).

1A lLip=<1

It is the transportation distance (Chap. 14) if u, v are probability measures.

Let a such measure m,(.) be attached to any x € X; for distinct x, y the coarse

Ricci curvature along (xy) is defined (Ollivier, 2009) as k' (x,y) = 1 — W‘;ny’;"”)
Ollivier’s curvature generalizes the Ricci curvature in Riemannian space (cf.
Chap. 7).

e Barycentric metric space

Given a metric space (X, d), let (B(X), ||t — v||7v) be the metric space, where

B(X) is the set of all regular Borel probability measures on X with bounded
support, and || — v||zy is the variational distance [, [p(11) — p(v)|dA (cf.
Chap. 14). Here p(u) and p(v) are the density functions of measures p and v,
respectively, with respect to the o-finite measure "Tﬂ
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A metric space (X, d) is barycentric if there exists a constant § > 0 and a
surjection f : B(X) — X such that for any measures p,v € B(X) it holds the
inequality

d(f(p).f(v)) = Bdiam(supp(p + v))|[1 — vll7v.

Any Banach space (X,d = ||x — y||) is a barycentric metric space with the
smallest 8 being 1 and the map f (i) being the usual center of mass fX xdp(x).

Any Hadamard (i.e., a complete CAT(0) space, cf. Chap. 6, is barycentric
with the smallest 8 being 1 and the map f () being the unique minimizer of the
function g(y) = [y d*(x,y)dp(x) on X.

* Point-set distance

Given a metric space (X, d), the point-set distance d(x, A) between a point

x € X and a subset A of X is defined as

infd (x. y)-

For any x,y € X and for any nonempty subset A of X, we have the following
version of the triangle inequality: d(x, A) < d(x,y) +d(y,A) (cf. distance map).
For a given point-measure p(x) on X and a penalty function p, an optimal
quantizer is a set B C X such that [ p(d(x, B))dj(x) is as small as possible.
* Set-set distance
Given a metric space (X, d), the set-set distance between two subsets A and
B of X is defined by

ds(A. B) = xeixnyfeB d(x.3)-

This distance can be 0 even for disjoint sets, for example, for the intervals
(1,2), (2,3) on R. The sets A and B are positively separated if dss(A, B) > 0. A
constructive appartness space is a generalization of this relation on subsets of
X.

The spanning distance between A and B is sup,c4 yep d(x, y).

In Data Analysis, (cf. Chap. 17) the set-set and spanning distances between
clusters are called the single and complete linkage, respectively.

¢ Matching distance

Given a metric space (X,d), the matching distance (or multiset-multiset

distance) between two multisets A and B in X is defined by

12f max d(x, ¢ (x)),

where ¢ runs over all bijections between A and B, as multisets.




1 General Definitions

The matching distance is not related to the perfect matching distance in
Chap. 15 and to the nonlinear elastic matching distance in Chap.21. But the
bottleneck distance in Chap. 21 is a special case of it.

Metrics between multisets

A multiset (or bag) drawn from a set S is a mapping m : § — Zxo, where
m(x) represents the “multiplicity” of x € S. The dimensionality, cardinality and
height of multiset m is |S|, |m| = ) g m(x) and max,cg m(x), respectively.

Multisets are good models for multi-attribute objects such as, say, all symbols
in a string, all words in a document, etc.

A multiset m is finite if S and all m(x) are finite; the complement of a finite
multiset m is the multiset m : S — Zxo, where mi(x) = maxyes m(y) — m(x).
Given two multisets m; and m,, denote by m; U my, m; N my, my\m, and m; Am,
the multisets on S defined , for any x € S, by m; U my(x) = max{m(x), my(x)},
my N my(x) = min{m (x), ma(x)}, mi\ma(x) = max{0,m(x) — ma(x)} and
miAmy(x) = |mi(x) — myp(x)|, respectively. Also, m; < my denotes that
my(x) < my(x) forallx € S.

The measure w(m) of a multiset m is a linear combination w(m) =
Y res A(x)m(x) with A(x) > 0. In particular, |m]| is the counting measure.

For any measure u(m) € Ry, Miyamoto, 1990, and Petrovsky, 2003,
proposed several semimetrics between multisets m; and m; including
di(mi,mp) = pu(mAmy) and dr(my,mp) = % (with dr(0,0) = 0
by definition). Cf. symmetric difference metric and Steinhaus distance.

Among examples of other metrics between multisets are matching distance,
metric space of roots in Chap. 12, y-metric in Chap. 15 and, in Chap. 11, bag
distance max{|m;\my|, |mz\m|} and g-gram similarity.

See also Vitanyi multiset metric in Chap. 3.

Metrics between fuzzy sets

A fuzzy subset of a set S is a mapping u : § — [0, 1], where u(x) represents
the “degree of membership” of x € S. It is an ordinary (crisp) if all u(x) are 0
or 1. Fuzzy sets are good models for gray scale images (cf. gray scale images
distances in Chap. 21), random objects and objects with nonsharp boundaries.

Bhutani—Rosenfeld, 2003, introduced the following two metrics between two
fuzzy subsets p and v of a finite set S. The diff-dissimilarity is a metric (a fuzzy
generalization of Hamming metric), defined by

d(p.v) = )| —v ().

X€ES

The perm-dissimilarity is a semimetric defined by

min{d(p. p(v))},

where the minimum is taken over all permutations p of S.
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The Chaudhuri-Rosenfeld metric (1996) between two fuzzy sets p and v
with crisp points (i.e., the sets {x € §: u(x) = 1} and {x € § : v(x) = 1} are
nonempty) is an extended metric, defined the Hausdorff metric dy,,; by

1
/ 2tdyaus({x € S - u(x) > t},{x € S: v(x) > t})dr.
0

A fuzzy number is a fuzzy subset u of the real line R, such that the level set (or
t-cut) A, (t) = {x € R: u(x) > 1} is convex for every ¢ € [0, 1]. The sendograph
of a fuzzy set w is the set send(i) = {(x,1) € S x [0,1] : u(x) > 0, w(x) > t}.
The sendograph metric (Kloeden, 1980) between two fuzzy numbers i, v with
crisp points and compact sendographs is the Hausdorff metric

max{ sup d(a, send(v)), sup d(b, send(w))},

a=(x,t)Esend (1) b=(x',t")Esend(v)

where d(a, b) = d((x,1), (X', 7)) is a box metric (Chap.4) max{|x — x|, [t — 7|}
The Klement-Puri—-Ralesku metric (1988) between fuzzy numbers p, v is

1
/ dHauS (A;L (t) ) Av (t))dt,
0

where dpas(A,(2), A, (¢)) is the Hausdorff metric

max{ sup inf |x—y|, sup inf |x—y|}.
x€A, (1) YEAWD) x€A, (1) YA ()

Several other Hausdorff-like metrics on some families of fuzzy sets were
proposed by Boxer in 1997, Fan in 1998 and Brass in 2002; Brass also argued
the nonexistence of a “good” such metric.

If g is a quasi-metric on [0,1] and S is a finite set, then Q(u,v) =
sup,es q(1(x), v(x)) is a quasi-metric on fuzzy subsets of S.

Cf. fuzzy Hamming distance in Chap. 11 and, in Chap. 23, fuzzy set distance
and fuzzy polynucleotide metric. Cf. fuzzy metric spaces in Chap. 3 for fuzzy-
valued generalizations of metrics and, for example, [Bloc99] for a survey.

¢ Maetrics between intuitionistic fuzzy sets

An intuitionistic fuzzy subset of a set S is (Atanassov, 1999) an ordered pair
of mappings p, v :— [0, 1] with 0 < u(x) 4+ v(x) < 1 for all x € S, representing
the “degree of membership” and the “degree of nonmembership” of x € S,
respectively. It is an ordinary fuzzy subset if p1(x) + v(x) = 1 forallx € S.

Given two intuitionistic fuzzy subsets (1 (x), v(x)) and (1 (x), v’(x)) of a finite
set S = {x1,...,x,}, their Atanassov distances (1999) are:

5 D20 — @]+ [v(s) — v/(x)) (Hamming distance)
i=1
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and, in general, for any given numbers p > 1 and 0 < ¢ < 1, the distance

. 1
O (1= () — ' ()Y + q(v(x) — v' ()7
i=1
Their Grzegorzewski distances (2004) are:

> max{|p(x) — ' (). [v (i) = v'()[} (Hamming distance);

i=1

Z max{(u(x;) — 1 (x;))2, (v(x;) — v/ (x;))?} (Euclidean distance).

i=1

The normalized versions (dividing the above sums by n) were also proposed.

Szmidt—Kacprzyk, 1997, proposed a modification of the above, adding 7 (x) —
7’ (x), where 7 (x) is the third mapping 1 — u(x) — v(x).

An interval-valued fuzzy subset of a set S is a mapping p :— [I], where [I] is
the set of closed intervals [a—,a™] C [0, 1]. Let u(x) = [~ (x), ut (x)], where
0 < u~(x) < ut(x) < 1 and an interval-valued fuzzy subset is an ordered pair
of mappings ;= and p*. This notion is close to the above intuitionistic one;
so, above distance can easily be adapted. For example, Y " max{|u~ (x;) —
W), et () — w'F(x;)|} is a Hamming distance between interval-valued
fuzzy subsets (=, u+) and (u'=, u'*).

Polynomial metric space

Let (X, d) be a metric space with a finite diameter D and a finite normalized
measure jtx. Let the Hilbert space L, (X, d) of complex-valued functions decom-
pose into a countable (when X is infinite) or a finite (with D + 1 members when X
is finite) direct sum of mutually orthogonal subspaces L,(X,d) = Vo dV D ....

Then (X,d) is a polynomial metric space if there exists an ordering of
the spaces Vy, Vi,... such that, fori = 0,1,..., there exist zonal spherical
functions, i.e., real polynomials Q;(¢) of degree i such that

0w =~ 3 vy, 0)

1 j=1

for all x,y € X, where r; is the dimension of V;, {v;(x) : 1 < j < r}is
an orthonormal basis of V;, and #(d) is a continuous decreasing real function
such that #(0) = 1 and #(D) = —1. The zonal spherical functions constitute an
orthogonal system of polynomials with respect to some weight w(?).

The finite polynomial metric spaces are also called (P and Q)-polynomial
association schemes; cf. distance-regular graph in Chap. 15. The infinite
polynomial metric spaces are the compact connected two-point homogeneous
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spaces. Wang, 1952, classified them as the Euclidean unit spheres, the real,
complex, quaternionic projective spaces or the Cayley projective line and plane.
¢ Universal metric space

A metric space (U, d) is called universal for a collection M of metric spaces
if any metric space (M, dyy) from M is isometrically embeddable in (U, d), i.e.,
there exists a mapping f : M — U which satisfies dy/(x,y) = d(f(x).f(y)) for
any x,y € M. Some examples follow.

Every separable metric space (X, d) isometrically embeds (Fréchet, 1909) in
(a nonseparable) Banach space [. In fact, d(x,y) = sup; |d(x,a;) — d(y, a;)|,
where (ay,...,a; ...) is a dense countable subset of X.

Every metric space isometrically embeds (Kuratowski, 1935) in the Banach
space L (X) of bounded functions f : X — R with the norm sup,y | f(x)].

The Urysohn space is a homogeneous complete separable space which is
the universal metric space for all separable metric spaces. The Hilbert cube
(Chap. 4) is the universal space for the class of metric spaces with a countable
base.

The graphic metric space of the random graph (Rado, 1964; the vertex-
set consists of all prime numbers p = 1( mod 4) with pg being an edge if p
is a quadratic residue modulo g) is the universal metric space for any finite or
countable metric space with distances 0, 1 and 2 only. It is a discrete analog of
the Urysohn space.

There exists a metric d on R, inducing the usual (interval) topology, such that
(R, d) is a universal metric space for all finite metric spaces (Holsztynski, 1978).
The Banach space [ is a universal metric space for all metric spaces (X, d) with
|X| < n+ 2 (Wolfe, 1967). The Euclidean space [E” is a universal metric space
for all ultrametric spaces (X, d) with |[X| < n+ 1; the space of all finite functions
f(@® : Rso — R equipped with the metric d(f,g) = sup{r : f(r) # g()}is a
universal metric space for all ultrametric spaces (Lemin—-Lemin, 1996).

The universality can be defined also for mappings, other than isometric
embeddings, of metric spaces, say, a bi-Lipschitz embedding, etc. For example,
any compact metric space is a continuous image of the Cantor set with the
natural metric |x — y| inherited from R, and any complete separable metric space
is a continuous image of the space of irrational numbers.

¢ Constructive metric space

A constructive metric space is a pair (X, d), where X is a set of constructive
objects (say, words over an alphabet), and d is an algorithm converting any pair
of elements of X into a constructive real number d(x, y) such that d is a metric on
X.

¢ Computable metric space

Let {x,},en be a sequence of elements from a given Polish (i.e., complete
separable) metric space (X, d) such that the set {x, : n € N} is dense in (X, d).
Let N (m,n, k) be the Cantor tuple function of a triple (n,m,k) € N3, and let
{qi}ren be a fixed total standard numbering of the set QQ of rational numbers.
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The triple (X, d, {x,}nen) is called an effective (or semicomputable) metric
space ([HemmO2]) if the set {N(n,m, k) : d(xn,Xx,) < qi} is recursively
enumerable, i.e., there is an algorithm that enumerates the members of this set. If,
moreover, the set {N (n,m, k) : d(s,, Sm) > qi} is recursively enumerable, then
this triple is called (Lacombe, 1951) computable metric space, (or recursive
metric space). In other words, the map d o (g x ¢) : N> — R is a computable
(double) sequence of real numbers, i.e., is recursive over R.



Chapter 2
Topological Spaces

A topological space (X, 7) is a set X with a topology 7, i.e., a collection of subsets
of X with the following properties:

1. Xer,0er;
2. IfA,Bet,thenANBe 1;
3. For any collection {A,},, if all A, € 7, then U A, € t.

The sets in t are called open sets, and their complements are called closed sets.
A base of the topology t is a collection of open sets such that every open set is a
union of sets in the base. The coarsest topology has two open sets, the empty set
and X, and is called the trivial topology (or indiscrete topology). The finest topology
contains all subsets as open sets, and is called the discrete topology.

In a metric space (X,d) define the open ball as the set B(x,r) = {y € X :
d(x,y) < r}, where x € X (the center of the ball), and r € R,r > 0 (the radius
of the ball). A subset of X which is the union of (finitely or infinitely many) open
balls, is called an open set. Equivalently, a subset U of X is called open if, given any
point x € U, there exists a real number € > 0 such that, for any point y € X with
dx,y) <e,yeU.

Any metric space is a topological space, the topology (metric topology, fopology
induced by the metric d) being the set of all open sets. The metric topology is always
Ty (see below a list of topological spaces). A topological space which can arise in
this way from a metric space, is called a metrizable space.

A quasi-pseudo-metric topology is a topology on X induced similarly by a quasi-
semimetric d on X, using the set of open d-balls B(x, r) as the base. In particular,
quasi-metric topology and pseudo-metric topology are the terms used for the case of,
respectively, quasi-metric and semimetric d. In general, those topologies are not 7.

Given a topological space (X, t), a neighborhood of a point x € X is a set
containing an open set which in turn contains x. The closure of a subset of a
topological space is the smallest closed set which contains it. An open cover of
X is a collection £ of open sets, the union of which is X its subcover is a cover K
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such that every member of X is a member of L; its refinement is a cover K, where
every member of C is a subset of some member of L. A collection of subsets of X is
called locally finite if every point of X has a neighborhood which meets only finitely
many of these subsets.

A subset A C X is called dense if X = cl(A), i.e., it consists of A and its limit
points; cf. closed subset of metric space in Chap. 1. The density of a topological
space is the least cardinality of its dense subset. A local base of a pointx € X is a
collection U of neighborhoods of x such that every neighborhood of x contains some
member of U.

A function from one topological space to another is called continuous if the
preimage of every open set is open. Roughly, given x € X, all points close to x
map to points close to f(x). A function f from one metric space (X, dx) to another
metric space (Y, dy) is continuous at the point ¢ € X if, for any positive real number
€, there exists a positive real number § such that all x € X satisfying dx(x,c) < 8§
will also satisfy dy(f(x),f(c)) < €; the function is continuous on an interval 7 if it
is continuous at any point of /.

The following classes of topological spaces (up to 7,) include any metric space.

* Ty-space
A Ty-space (or Kolmogorov space) is a topological space in which every
two distinct points are fopologically distinguishable, i.e., have different neigh-
borhoods.
* T)-space
A T)-space (or accessible space) is a topological space in which every two
distinct points are separated, i.e., each does not belong to other’s closure. T-
spaces are always T.
* T,-space
A T,-space (or Hausdorff space) is a topological space in which every two
distinct points are separated by neighborhoods, i.e., have disjoint neighborhoods.
T,-spaces are always T.
A space is T, if and only if it is both T and pre-regular, i.e., any two
topologically distinguishable points are separated by neighborhoods.
* Regular space
A regular space is a topological space in which every neighborhood of a
point contains a closed neighborhood of the same point. A T3-space (or Vietoris
space, regular Hausdorff space) is a topological space which is 7} and regular.
Bing, Nagata, Smirnov showed in 1950-1951 that a topological space is
metrizable if and only if it is regular, 7 and has a countably locally finite base.
A completely regular space (or Tychonoff space) is a Hausdorff space
(X, ) in which any closed set A and any x & A are functionally separated, i.e.,
there is a continuous function f : X — [0, 1] such that f(A) = 0 and f(B) = 1.
¢ Normal space
A normal space is a topological space in which, for any two disjoint closed
sets A and B, there exist two disjoint open sets U and V such that A C U, and
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B C V. A Ty4-space (or Tietze space, normal Hausdorff space) is a topological
space which is 7} and normal. Any metric space is a perfectly normal T,-space.

A completely (or hereditarily) normal space is a topological space in
which any two separated (i.e., disjoint from the other’s closure) sets have
disjoint neighborhoods. A Ts-space (or completely normal Hausdorff space) is a
topological space which is completely normal and 7. Ts-spaces are always Ty.

A monotonically normal space is a completely normal space in which any
two separated subsets A and B are strongly separated, i.e., there exist open sets
UandV withA C U,B C Vand CI(U) N CI(V) = 0.

A perfectly normal space is a topological space (X, ) in which any two
disjoint closed subsets of X are functionally separated. A Ts-space (or perfectly
normal Hausdorff space) is a topological space which is T} and perfectly normal.
Ts-spaces are always T.

Moore space

A Moore space is a regular space with a development.

A development is a sequence {U,}, of open covers such that, for every x € X
and every open set A containing x, there exists n such that St(x,U,) = U{U €
U, :x e U} CA,ie., {St(x,Uy,)}, is a neighborhood base at x.

Polish space

A separable space is a topological space which has a countable dense subset.

A Polish space is a separable space which can be equipped with a complete
metric. A Lusin space is a topological space such that some weaker topology
makes it into a Polish space; every Polish space is Lusin. A Souslin space is a
continuous image of a Polish space; every Lusin space is Suslin.

Lindel6f space

A Lindelof space is a topological space in which every open cover has a
countable subcover.
First-countable space

A topological space is called first-countable if every point has a countable
local base. Every metric space is first-countable.
Second-countable space

A topological space is called second-countable if its topology has a countable
base. Such space is quasi-metrizable and, if and only if it is a 73-space,
metrizable.

Second-countable spaces are first-countable, separable and Lindelof. The
properties second-countable, separable and Lindelof are equivalent for metric
spaces.

The Euclidean space E” with its usual topology is second-countable.

Baire space

A Baire space is a topological space in which every intersection of countably
many dense open sets is dense. Every complete metric space is a Baire space.
Every locally compact T>-space (hence, every n-manifold) is a Baire space.
Alexandrov space

An Alexandrov space is a topological space in which every intersection of
arbitrarily many open sets is open.
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A topological space is called a P-space if every Gs-set (i.e., the intersection
of countably many open sets) is open.

A topological space (X, t) is called a Q-space if every subset A C X is a
Gs-set.

Connected space

A topological space (X, ) is called connected if it is not the union of a pair
of disjoint nonempty open sets. In this case the set X is called a connected set.

A connected topological space (X, t) is called unicoherent if the intersection
A N B is connected for any closed connected sets A, BwithA U B = X.

A topological space (X, t) is called locally connected if every point x € X
has a local base consisting of connected sets.

A topological space (X, 7) is called path-connected (or 0-connected) if for
every points x,y € X there is a path y from x to y, i.e., a continuous function
y:[0,1] = X withy(x) =0,y(y) = 1.

A topological space (X, t) is called simply connected (or 1-connected) if
it consists of one piece, and has no circle-shaped “holes” or “handles” or,
equivalently, if every continuous curve of X is contractible, i.e., can be reduced
to one of its points by a continuous deformation.

A topological space (X, t) is called hyperconnected (or irreducible) if X
cannot be written as the union of two proper closed sets.

Sober space

A topological space (X, t) is called sober if every hyperconnected closed
subset of X is the closure of exactly one point of X. Any sober space is a Ty-
space.

Any T,-space is a sober T}-space but some sober 7j-spaces are not 7.
Paracompact space

A topological space is called paracompact if every open cover of it has an
open locally finite refinement. Every metrizable space is paracompact.

Totally bounded space

A topological space (X, 7) is called totally bounded (or pre-compact) if it can
be covered by finitely many subsets of any fixed cardinality.

A metric space (X,d) is a totally bounded metric space if, for every real
number r > 0, there exist finitely many open balls of radius r, whose union is
equal to X.

Compact space

A topological space (X, 7) is called compact if every open cover of X has a
finite subcover.

Compact spaces are always Lindelof, totally bounded, and paracompact. A
metric space is compact if and only if it is complete and totally bounded. A
subset of a Euclidean space E" is compact if and only if it is closed and bounded.

There exist a number of topological properties which are equivalent to
compactness in metric spaces, but are nonequivalent in general topological
spaces. Thus, a metric space is compact if and only if it is a sequentially compact
space (every sequence has a convergent subsequence), or a countably compact
space (every countable open cover has a finite subcover), or a pseudo-compact
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space (every real-valued continuous function on the space is bounded), or a
weakly countably compact space (i.e., every infinite subset has an accumulation
point).

Sometimes, a compact connected 7>-space is called continuum; cf. contin-
uum in Chap. 1.

Locally compact space

A topological space is called locally compact if every point has a local base
consisting of compact neighborhoods. The Euclidean spaces E" and the spaces
Qp of p-adic numbers are locally compact.

A topological space (X, ) is called a k-space if, for any compact set ¥ C X
and A C X, the set A is closed whenever A N Y is closed. The k-spaces are
precisely quotient images of locally compact spaces.

Locally convex space

A topological vector space is a real (complex) vector space V which is a T;-
space with continuous vector addition and scalar multiplication. It is a uniform
space (cf. Chap. 3).

A locally convex space is a topological vector space whose topology has a
base, where each member is a convex balanced absorbent set. A subset A of V is
called convex if, for all x,y € A and all ¢ € [0, 1], the point tx + (1 — 7))y € A, i.e.,
every point on the line segment connecting x and y belongs to A. A subset A is
balanced if it contains the line segment between x and —x for every x € A; A is
absorbent if, for every x € V, there exist # > 0 such that tx € A.

The locally convex spaces are precisely vector spaces with topology induced
by a family {||.||¢} of seminorms such that x = 0 if ||x||, = O for every .

Any metric space (V,||x — y||) on a real (complex) vector space V with a
norm metric ||x — y|| is a locally convex space; each point of V has a local base
consisting of convex sets. Every L, with 0 < p < 1 is an example of a vector
space which is not locally convex.
n-manifold

Broadly, a manifold is a topological space locally homeomorphic to a
topological vector space over the reals.

But usually, a topological manifold is a second-countable 7,-space that
is locally homeomorphic to Euclidean space. An n-manifold is a topological
manifold such that every point has a neighborhood homeomorphic to E”.
Fréchet space

A Fréchet space is a locally convex space (V,t) which is complete as a
uniform space and whose topology is defined using a countable set of seminorms
-Als -5 s - - -5 8., @ subset U C V is open in (V, 1) if, for every u € U,
there existe > 0and N > lwith{v e V: |lu—v||; <eif i <N} C U.

A Fréchet space is precisely a locally convex F-space (cf. Chap.5). Its
topology can be induced by a translation invariant metric (Chap.5) and it is
a complete and metrizable space with respect to this topology. But this topology
may be induced by many such metrics. Every Banach space is a Fréchet space.
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¢ Countably-normed space
A countably-normed space is a locally convex space (V, t) whose topology
is defined using a countable set of compatible norms ||.||1, ..., ||-||s, - - - - [t means
that, if a sequence {x,}, of elements of V that is fundamental in the norms |[|.||;
and |.||; converges to zero in one of these norms, then it also converges in the
other. A countably-normed space is a metrizable space, and its metric can be
defined by

il ||x_y||n
=20 1+ |k =yl

e Metrizable space

A topological space (7, t) is called metrizable if it is homeomorphic to a
metric space, i.e., X admits a metric d such that the set of open d-balls {B(x, r) :
r > 0} forms a neighborhood base at each point x € X. If, moreover, (X, d) is
a complete metric space for one of such metrics d, then (X, d) is a completely
metrizable (or topologically complete) space.

Metrizable spaces are always paracompact 7,-spaces (hence, normal and
completely regular), and first-countable.

A topological space is called locally metrizable if every point in it has a
metrizable neighborhood.

A topological space (X, ) is called submetrizable if there exists a metrizable
topology t’ on X which is coarser than t.

A topological space (X, ) is called proto-metrizable if it is paracompact and
has an orthobase, i.e., a base B such that, for B C B, either NB’ is open, or B’
is a local base at the unique point in NB’. Tt is not related to the protometric in
Chap. 1.

Some examples of other direct generalizations of metrizable spaces follow.

A sequential space is a quotient image of a metrizable space.

Morita’s M-space is a topological space (X, t) from which there exists a
continuous map f onto a metrizable topological space (Y, t’) such that f is closed
and f~!(y) is countably compact for each y € Y.

Ceder’s M;-space is a topological space (X, t) having a o-closure-preserving
base (metrizable spaces have o-locally finite bases).

Okuyama’s o-space is a topological space (X, 7) having a o-locally finite net,
i.e., a collection U/ of subsets of X such that, given of a point x € U with U open,
there exists U’ € U with x € U’ C U (a base is a net consisting of open sets).
Every compact subset of a o-space is metrizable.

Michael’s cosmic space is a topological space (X, t) having a countable net
(equivalently, a Lindelof o-space). It is exactly a continuous image of a separable
metric space. A T,-space is called analytic if it is a continuous image of a
complete separable metric space; it is called a Lusin space if, moreover, the
image is one-to-one.
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Quasi-metrizable space

A topological space (X, t) is called a quasi-metrizable space if X admits
a quasi-metric d such that the set of open d-balls {B(x,r) : r > 0} forms a
neighborhood base at each point x € X.

A more general y-space is a topological space admitting a y-metric d (i.e.,
a function d : X x X — Ry¢ with d(x,z,) — 0 whenever d(x,y,) — 0 and
d(Yu, 7n) — 0) such that the set of open forward d-balls {B(x, r) : r > 0} forms a
neighborhood base at each point x € X.

The Sorgenfrey line is the topological space (R, t) defined by the base
{la,b) : a,b € R,a < b}. It is not metrizable but it is a first-countable
separable and paracompact Ts-space; neither it is second-countable, nor locally
compact or locally connected. However, the Sorgenfrey line is quasi-metrizable
by the Sorgenfrey quasi-metric (cf. Chap. 12) defined as y —x if y > x, and 1,
otherwise.

Symmetrizable space

A topological space (X, 7) is called symmetrizable (and 7 is called the
distance topology) if there is a symmetric d on X (i.e., a distance d : X x X —
Rs( with d(x,y) = 0 implying x = y) such that a subset U C X is open if and
only if, for each x € U, there exists € > 0 with B(x,e) ={yeX : d(x,y) <
eyCU.

In other words, a subset H C X is closed if and only if d(x, H) = inf,{d(x, ) :
y € H} > 0 for each x € X\U. A symmetrizable space is metrizable if and only
if it is a Morita’s M-space.

In Topology, the term semimetrizable space refers to a topological space
(X, 7) admitting a symmetric d such that, for each x € X, the family {B(x, €) :
€ > 0} of balls forms a (not necessarily open) neighborhood base at x. In other
words, a point x is in the closure of a set H if and only if d(x, H) = 0.

A topological space is semimetrizable if and only if it is symmetrizable and
first-countable. Also, a symmetrizable space is semimetrizable if and only if it
is a Fréchet—Urysohn space (or E-space), i.e., for any subset A and for any point
x of its closure, there is a sequence in A converging to x.

Hyperspace

A hyperspace of a topological space (X, 1) is a topological space on the
set CL(X) of all nonempty closed (or, moreover, compact) subsets of X. The
topology of a hyperspace of X is called a hypertopology. Examples of such a
hit-and-miss topology are the Vietoris topology, and the Fell topology. Examples
of such a weak hyperspace topology are the Hausdorff metric topology, and the
Wijsman topology.

Discrete topological space

A topological space (X, t) is discrete if t is the discrete topology (the finest
topology on X), i.e., containing all subsets of X as open sets. Equivalently, it does
not contain any limit point, i.e., it consists only of isolated points.

Indiscrete topological space

A topological space (X, t) is indiscrete if t is the indiscrete topology (the

coarsest topology on X), i.e., having only two open sets, ¥ and X.
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It can be considered as the semimetric space (X,d) with the indiscrete
semimetric: d(x,y) = 0 for any x,y € X.
Extended topology

Consider a set X and a map ¢l : P(X) — P(X), where P(X) is the set of all
subsets of X. The set cl(A) (for A C X), its dual set int(A) = X\cl(X\A) and the
map N : X — P(X) with N(x) = {A C X : x € int(A)} are called the closure,
interior and neighborhood map, respectively.

So, x € cl(A) is equivalent to X\A € P(X)\N(x). A subset A C X is closed if
A = cl(A) and open if A = int(A). Consider the following possible properties of
cl; they are meant to hold for all A, B € P(X).

1. cl(@) = 9;

2. A C Bimplies cl(A) C cl(B) (isotony);

3. A C cl(A)(enlarging);

4. cl(A U B) = cl(A) U cl(B) (linearity, and, in fact, 4 implies 2);
5. cl(cl(A)) = cl(A) (idempotency).

The pair (X, cl) satisfying 1 is called an extended topology if 2 holds, a Brissaud
space (Brissaud, 1974) if 3 holds, a neighborhood space (Hammer, 1964) if 2
and 3 hold, a Smyth space (Smyth, 1995) if 4 holds, a pre-topology (Cech,
1966) if 3 and 4 hold, and a closure space (Soltan, 1984) if 2, 3 and 5 hold.

(X, cl) is the usual topology, in closure terms, if 1, 3, 4 and 5 hold.



Chapter 3
Generalizations of Metric Spaces

Some immediate generalizations of the notion of metric, for example, quasi-
metric, near-metric, extended metric, were defined in Chap. 1. Here we give some
generalizations in the direction of Topology, Probability, Algebra, etc.

3.1 m-Tuple Generalizations of Metrics

In the definition of a metric, for every two points there is a unique associated
number. Here we group some generalizations of metrics in which several points
or several numbers are considered instead.

m-hemimetric
Let X be a nonempty set. A function d : X"t! — Ry is called a
m-hemimetric (Deza—Rosenberg, 2000) if it have the following properties:

1. d is totally symmetric, i.e., satisfies d(xi, ..., Xpt1) = d(xxq1), - .., Xx(nt1))
for all x1,...,x,4+1 € X and for any permutation 7w of {1,...,m + 1};
2.d(x1, ..., xpmy1) = 0if xy, ..., x4 are not pairwise distinct;
3. forall xy, ..., x,+2 € X, d satisfies the m-simplex inequality
m+1

dxi, ..., Xpmg1) < Zd(xl, e Xim Xig L e e Xm2)-

i=1

Cf. unrelated hemimetric (i.e., a quasi-semimetric) in Chap. 1.

If in above 3. d(xi,...,xn+1) is replaced by sd(xi,...,x,+) for some
5,0 < s <1, then d is called (m, s)-super-metric ([DeDu03]). (m, 1)- and (1, 5)-
super-metrics are exactly m-hemimetric and %-near—semimetric; cf. near-metric
in Chap. 1. ‘
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If above 3. is dropped, d is called m-dissimilarity. 1-dissimilarity and 1-
hemimetric are exactly a distance and a semimetric.
* 2-metric
An m-hemimetric with m = 2 satisfies 2-simplex (or tetrahedron) inequality

d(x1,x2,x3) < d(x4,x2,x3) + d(x1, x4, x3) + d(x1, X2, Xs).

A 2-metric (Gihler, 1963 and 1966) is a 2-hemimetric d in which, for any
distinct points xy, x,, there is a point x3 with d(x;,x,,x3) > 0. The area of the
triangle spanned by x1, x5, x3 on R? or S? is a 2-metric.

A D-space (Dhage, 1992) is an 2-hemimetric space (X,d) in which the
condition “d(xj,xp,x3) = 0 if two of xj,x;,x3 are equal” is replaced by
“d(x1,x2,x3) = 0if and only if x; = x, = x3.” Mustafa and Sims, 2003, showed
that D-spaces are not suitable for topological constructions. In 2006, they defined
instead a function, let us call it MS — 2-metric, D : X° — R which satisfies

. D(x1,x2,x3) = 0if x; = xp = x3;

. D(x1,x1,x2) > 0 whenever x; # x;;

. D(x1,x2,x3) > D(x1,x1,Xx2) whenever x3 # x3;

. D is a totally symmetric function of its three variables, and

. D(x1,x2,x3) < D(x1,x4,x4) + D(x4,x2,x3) forall xi, xp, x3,x4 € X.

0N W=

The perimeter of the triangle spanned by xi,x;,x3; on R? is a MS — 2-
metric. If d is a metric, then %(d(xl,xz) 4+ d(x3,x3) 4+ d(x1,x3)) and
max(d(xy, x2), d(x2,x3),d(x1,x3)) are MS — 2-metrics. If D is a MS — 2-metric,
then D(xy,x2,x2) + D(x1,x1,x2) is a metric. If (X,D) is a MS — 2-metric
space, the open D-ball with center xy and radius r is Bp(xo,r) = {x;€X :
D(xg, x1,x1) <r}.
¢ Multidistance

Given a set X, a function D : U,-1 X" — R is called a multidistance

(Martin—Major, 2009) if, for all m and all x1, ..., x,,y € X, it satisfies:

1. D(xl,...,xm) = OifXI == X,
2. D(x1,...,%m) = D(xz(1), . .., Xz(m)) for any permutation 7w of {1, ..., m};
3. D(xt,y ...y Xm) < 3 D(xi,y).

Clearly, the restriction of a multidistance on X? is a semimetric.

A multidistance D is called regular, if all D(xy,...,x,) < D(xi,...,Xm,y)
hold, and stable, if all D(xy,...,x,) = D(xy,...,Xy,x;) hold. Given a metric
space (X, d), the Fermat multidistance is min,ecx Z:”:l d(x;, x); it is regular, but
not stable.

The regular multidistances on X form a convex cone.

*  Multimetric

In Mao, 2006, a multimetric space is the union of some metric spaces
(Xi,d;),i € J. In the case X; = X,i € J, the multimetric is defined as the
sequence-valued map d(x,y) = (d;),i € J, from X x X to Rlﬂ).
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Cf. bimetric theory of gravity in Chap.24 and (in the item meter-related
terms) multimetric crystallography in Chap. 27.

Also, Jornsten, 2007, consider clustering (Chap. 17) under several distance
metrics simultaneously. In Rintanen, 2004, a linear multimetric is defined as d =
wid] + - -+ + wyd,, where d; are metrics and w; € [0, 1] are weights.

Diversity

Given a set X, a function f from its finite subsets to R is called (Bryant—

Tupper, 2012) diversity on X if f(A) = 0 for all A C X with |[A| < 1 and

F(AUB) +f(BUC) > f(AU C) forall A, B, C C X with B # 0.

The induced diversity metric d(x, y) is f ({x, y}).

For any diversity f(A) with induced metric space (X, d), it holds fyim(A) <
fA) < f5(4) < (JAl = Dfsiam(A), where the diameter diversity fy,.(A) is
max,yes d(x,y) = diam(A) and the Steiner diversity f5(A) is the minimum
weight of a Steiner tree connecting elements of A.

[i-diversity is defined by f,,1(A) = max|a; —b;| :a,b€A for all finite
ACR™

Any diversity is a Vitanyi multiset metric, restricted to subsets. But much of
Bryant-Tupper’s theory of diversities does not extend on multisets.

Vitanyi multiset metric

Given two multisets m and n?/, define n = mm’ if n is the multiset consisting of
the elements of the multisets m and »/, that is, if x occurs once in m and once in
m’, then it occurs twice in n. A function d on the set of nonempty finite multisets
is (Vitanyi, 2011) a multiset metric if

1. d(m) = 0 if all elements of m are equal and d(m) > 0 otherwise.
2. d(X) is invariant under all permutations of m.
3. d(mm') < d(mm") + d(m"m’) (multiset triangle inequality).

The usual metric between two elements results if the multiset m has two elements
in 1. and 2. and the multisets m, m’, m” have one element each in 3.

An example is the set of all nonempty finite multisets m of integers with
d(m) = max{x : x € m} —min{x : x € m}. Cohen—Vitanyi, 2012, defined
another multiset metric, generalising normalised web distance (Chap. 22).

3.2 Indefinite Metrics

Indefinite metric

An indefinite metric (or G-metric) on a real (complex) vector space V is
a bilinear (in the complex case, sesquilinear) form G on V, i.e., a function G :
VxV — R (C), such that, for any x, y, z € V and for any scalars «, 8, we have the
following properties: G(ax + By, z) = aG(x, z) + BG(y, 2), and G(x, ay + Bz) =
@G(x,y)+BG(x,z), where @ = a + bi = a—bi denotes the complex conjugation.




3 Generalizations of Metric Spaces

If a positive-definite form G is symmetric, then it is an inner product on V,
and one can use it to canonically introduce a norm and the corresponding norm
metric on V. In the case of a general form G, there is neither a norm, nor a
metric canonically related to G, and the term indefinite metric only recalls the
close relation of such forms with certain metrics in vector spaces (cf. Chaps. 7
and 26).

The pair (V,G) is called a space with an indefinite metric. A finite-
dimensional space with an indefinite metric is called a bilinear metric space.
A Hilbert space H, endowed with a continuous G-metric, is called a Hilbert
space with an indefinite metric. The most important example of such space is a
J-space; cf. J-metric.

A subspace L in a space (V,G) with an indefinite metric is called a
positive subspace, negative subspace, or neutral subspace, depending on whether
G(x,x) > 0,G(x,x) <0,0r G(x,x) = 0forall x € L.

Hermitian G-metric

A Hermitian G-metric is an indefinite metric G on a complex vector space

V such that, for all x,y € V, we have the equality

G (x.y) = Gl (y.x),

where @ = a + bi = a — bi denotes the complex conjugation.
Regular G-metric

A regular G-metric is a continuous indefinite metric G on a Hilbert space
H over C, generated by an invertible Hermitian operator T by the formula

G(x,y) = (T(x),y),

where (, ) is the inner product on H.

A Hermitian operator on a Hilbert space H is a linear operator T on H defined
on a domain D(T) of H such that (T(x),y) = (x,T(y)) for any x,y € D(T).
A bounded Hermitian operator is either defined on the whole of H, or can be
so extended by continuity, and then 7 = T*. On a finite-dimensional space a
Hermitian operator can be described by a Hermitian matrix ((a;)) = ((@;)).
J-metric

A J-metric is a continuous indefinite metric G on a Hilbert space H over C
defined by a certain Hermitian involution J on H by the formula

Gx,y) = {(J(x). ).

where (-, -) is the inner product on H.

An involution is a mapping H onto H whose square is the identity mapping.
The involution J may be represented as / = P4 — P_, where P4 and P_ are
orthogonal projections in H, and P4 4+ P_ = H. The rank of indefiniteness of the
J-metric is defined as min{dim P4, dim P_}.
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The space (H, G) is called a J-space. A J-space with finite rank of indefinite-
ness is called a Pontryagin space.

3.3 Topological Generalizations

¢ Metametric space

A metametric space (Viisild, 2003) is a pair (X, d), where X is a set, and d is
a nonnegative symmetric function d : X x X — R such that d(x, y) = 0 implies
x =y and triangle inequality d(x,y) < d(x,z) 4+ d(z,y) holds for all x,y,z € X.

A metametric space is metrizable: the metametric d defines the same topology
as the metric d’ defined by d'(x,x) = 0 and d'(x,y) = d(x,y) if x # y. A
metametric d induces a Hausdorff topology with the usual definition of a ball
B(xp,r) = {x € X : d(x0,x) < r}. Any partial metric (Chap. 1) is a metametric.

* Resemblance

Let X be a set. A function d : X x X — R is called (Batagelj-Bren, 1993) a
resemblance on X if d is symmetric and if, for all x, y € X, either d(x, x) < d(x,y)
(in which case d is called a forward resemblance), or d(x, x) > d(x, y) (in which
case d is called a backward resemblance).

Every resemblance d induces a strict partial order < on the set of all
unordered pairs of elements of X by defining {x,y} < {u,v} if and only if
d(x,y) <d(u,v).

* w-distance

Given a metric space (X,d), a w-distance on X (Kada—Suzuki-Takahashi,
1996) is a nonnegative function p : X x X — R which satisfies the following
conditions:

1. p(x,2) <p(x,y) +p@.z) forallx,y,z € X;

2. for any x € X, the function p(x,.) : X — R is lower semicontinuous, i.e., if a
sequence {y,}, in X convergestoy € X, then p(x,y) < lim,_,  p(x,¥,);

3. for any € > 0, there exists § > 0 such that p(z,x) < § and p(z,y) < § imply
d(x,y) <e,foreachx,y,z € X.

e t-distance space

A t-distance space is a pair (X, f), where X is a topological space and f is an
Aamri-Moutawakil’s t-distance on X, i.e., a nonnegative functionf : X xX — R
such that, for any x € X and any neighborhood U of x, there exists € > 0 with
{yeX f(x,y)<e}CU.

Any distance space (X, d) is a t-distance space for the topology 7 defined as
follows: A € 1 if, for any x € X, there exists € > 0 with {y € X : f(x,y) < €} C
A. However, there exist nonmetrizable z-distance spaces. A t-distance f(x,y)
need be neither symmetric, nor vanishing for x = y; for example, s a
7-distance on X = R with usual topology.
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¢ Proximity space
A proximity space (Efremovich, 1936) is a set X with a binary relation é on
the power set P(X) of all of its subsets which satisfies the following conditions:

1. AéB if and only if BSA (symmetry);
2. A§(B U C) if and only if ASB or ASC (additivity);
3. ASA if and only if A # @ (reflexivity).

The relation § defines a proximity (or proximity structure) on X. If A§B fails, the
sets A and B are called remote sets.

Every metric space (X,d) is a proximity space: define ASB if and only if
d(A, B) = infxeA,yEB d(x, y) =0.

Every proximity on X induces a (completely regular) topology on X by
defining the closure operator cl : P(X) — P(X) on the set of all subsets of X
ascl(A) = {x € X : {x}6A}.

e Uniform space

A uniform space is a topological space (with additional structure) providing
a generalization of metric space, based on set-set distance.

A uniform space (Weil, 1937) is a set X with an uniformity (or uniform
structure) U, i.e., a nonempty collection of subsets of X x X, called enfourages,
with the following properties:

. Every subset of X x X which contains a set of I/ belongs to U/;

. Every finite intersection of sets of ¢/ belongs to U

. Every set V € U contains the diagonal, i.e., the set {(x,x) : x € X} C X x X;
. If V belongs to U, then the set {(y, x) : (x,y) € V} belongs to U;

. If V belongs to U, then there exists V' € U such that (x,z) € V whenever

(x,y),(.2) eV,

Every metric space (X,d) is a uniform space. An entourage in (X,d) is a
subset of X x X which contains the set V. = {(x,y) € X x X : d(x,y) < €}
for some positive real number €. Other basic example of uniform space are
topological groups.

Every uniform space (X, ) generates a topology consisting of all sets A C X
such that, for any x € A, there is aset V e U with {y : (x,y) € V} C A.

Every uniformity induces a proximity o where Ao B if and only if A x B has
nonempty intersection with any entourage.

A topological space admits a uniform structure inducing its topology if only
if the topology is completely regular (Chap. 2) and, also, if only if it is a gauge
space, i.e., the topology is defined by a >-filter of semimetrics.

* Nearness space

A nearness space (Herrich, 1974) is a set X with a nearness structure, i.e., a
nonempty collection U/ of families of subsets of X, called near families, with the
following properties:

[ I SO N R

1. Each family refining a near family is near;
2. Every family with nonempty intersection is near;
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3. Visnearif {c/(A) : A € V}is near, where cl(A) is {x € X : {{x},A} € U};
4. @ is near, while the set of all subsets of X is not;
5. If{AUB: A € F1,B € F3} is near family, then so is | or F>.

The uniform spaces are precisely paracompact nearness spaces.
e Approach space

An approach space is a topological space providing a generalization of metric
space, based on point-set distance.

An approach space (Lowen, 1989) is a pair (X, D), where X is a set and D is
a point-set distance, i.e., a function X x P(X) — [0, oo] (where P(X) is the set
of all subsets of X) satisfying, for all x € X and all A, B € P(X), the following
conditions:

- D(x,{x}) = 0;

. D(x,{0}) = o003

. D(x,A U B) = min{D(x,A), D(x, B)};

. D(x,A) < D(x,A°) + € for any € € [0, 0o], where A = {x : D(x,A) < €} is
the “e-ball” with center x.

RSO O R

Every metric space (X, d) (moreover, any extended quasi-semimetric space) is an
approach space with D(x, A) being the usual point-set distance minye4 d(x, y).

Given a locally compact separable metric space (X, d) and the family F of
its nonempty closed subsets, the Baddeley—Molchanov distance function gives
a tool for another generalization. It is a function D : X x F — R which is lower
semicontinuous with respect to its first argument, measurable with respect to the
second, and satisfies the following two conditions: F = {x € X : D(x, F) < 0}
for F € F, and D(x,F;) > D(x,F;) for x € X, whenever Fi,F, € F and
F, CF,.

The additional conditions D(x, {y}) = D(y, {x}), and D(x, F) < D(x, {y}) +
D(y, F) for all x,y € X and every F € F, provide analogs of symmetry and the
triangle inequality. The case D(x, F) = d(x, F) corresponds to the usual point-set
distance for the metric space (X, d); the case D(x, F) = d(x, F) for x € X\F and
D(x,F) = —d(x, X\F) for x € X corresponds to the signed distance function in
Chap. 1.

¢ Metric bornology

Given a topological space X, a bornology of X is any family A of proper

subsets A of X such that the following conditions hold:

1. UpesA = X,
2. Ais an ideal, i.e., contains all subsets and finite unions of its members.
The family A is a metric bornology ([Beer99]) if, moreover
3. A contains a countable base;
4. For any A € A there exists A’ € A such that the closure of A coincides with
the interior of A’.

The metric bornology is called trivial if A is the set P(X) of all subsets of X; such
a metric bornology corresponds to the family of bounded sets of some bounded
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metric. For any noncompact metrizable topological space X, there exists an
unbounded metric compatible with this topology. A nontrivial metric bornology
on such a space X corresponds to the family of bounded subsets with respect
to some such unbounded metric. A noncompact metrizable topological space X
admits uncountably many nontrivial metric bornologies.

3.4 Beyond Numbers

¢ Maetric 1-space

A category ¥ consists (Eilenberg and MacLane, 1945) of a set Ob(¥)
of objects, a set Mor(V) of morphisms (or arrows)) and a set-valued map
associating a set W(x, y) of arrows to each ordered pair of objects x, y, so that
each arrow belongs to only one set W(x, y). An element of W(x, y) is also denoted
byf:x—y.

Moreover, the compositionf-g € W(x, z) of two arrowsf : x — y,g 1y — zis
defined, and it is associative. Finally, each set W (x, x) contains an identity arrow
id, such thatf -id, = f and id, - g = g forany arrowsf : y > xand g : x — z.
Cf. category of metric spaces in Chap. 1.

Weiss defined in [Weis12] a metric 1-space as a category W together with a
weight-function w : W(x,y) — Rs¢ U {oo} on arrows, which satisfies

1. w(id,) = 0 holds for each object x € Ob(W) (reflexivity).
2. |w(g) —w()| < wlg-f) < w(g) + w(f) holds for any objects x,y, z and
arrows f : x — y, g . y — z (full triangle inequality).

Any set X produces an indiscrete category Iy, in which Ob(Ix) = X and
|Ix(x,y)| = 1 forall x,y € X. Any metric space (X, d) produces a metric 1-space
on Iy by defining w(f) = d(x,y), and it is unique metric 1-space on Ix. But,
in general, the function w on arrows can be seen as a multivalued function on
Ob x Ob.

[Weis12] also outlined a metric m-space as a kind of an m-hemimetric on an
m-category consisting of i-dimensional cells, 0 < i < m (objects, arrows, ...)
and a associative-like composition rule for the cells with matching boundaries.

e V-continuity space

Let (V, A, V) be a complete (having AS := A,esx and VS = V,¢s for all
S C V) lattice with bottom element 0. For a,b € V, a is said to be well above b,
denoted by b < a, if given any S € V such that AS < b, there exists s € S with
s <a.

A value quantale is a pair (V, +), where V is a complete lattice and + is an
associative and commutative operation o such that for alla,b € Vand S C V,

1. a4+ AS = A(a+9),
2.a+0=a,

3. a=A{be Va=<b}
4. 0<anb if 0<a,b.



3.4 Beyond Numbers 79

A V-continuity space is (Flagg—Koperman, 1997) a triple (X, d, V), where V
is a value quantale, X is a set, and d : X X X — V is a function satisfying

d(x,x) =0 and d(x,z) <d(x,y) +d(,2).

Any extended quasi-semimetric space is a V-continuity space, where V is the
value quantale [0, oo], seen as a complete lattice, with ordinary addition.

Weiss, 2013, showed that taken with continuous functions, the categories of
all V-continuity spaces and of all topological spaces are equivalent. In particular,
every topological space (X, t) is “metrizable” in the sense that there exists a V-
continuity space (X, d, V) such that t is the topology generated by open balls
{y e X :< e}

¢ Probabilistic metric space

A notion of probabilistic metric space is a generalization of the notion
of metric space (see, for example, [ScSk83]) in two ways: distances become
probability distributions, and the sum in the triangle inequality becomes a
triangle operation.

Formally, let A be the set of all probability distribution functions, whose
support lies in [0, 00]. For any a € [0, o0] define step functions €, € A by
€,(x) = 1ifx > aorx = o0, and €,(x) = 0, otherwise. The functions in A
are ordered by defining F < G to mean F(x) < G(x) for all x > 0; the minimal
element is €.

A commutative and associative operation t on A is called a triangle function
if ©(F,e9) = F forany F € A and 7(E, F) < ©(G,H) whenever E < G, F < H.
The semigroup (A, t) generalizes the group (R, +).

A probabilistic metric space is a triple (X, D, t), where X is a set, D is a
function X x X — A, and t is a triangle function, such that for any p, g, r € X

1. D(p,q) = €¢ if and only if p = g;
2. D(p.q) = D(g.p);
3. D(p.1) = (D(p.9). D(q.7)).

For any metric space (X, d) and any triangle function z, such that 7(e,, €,) >
€q4p forall a, b > 0, the triple (X, D = €4(xy), T) is a probabilistic metric space.

For any x > 0, the value D(p, g) at x can be interpreted as “the probability that
the distance between p and ¢ is less than x”; this was approach of Menger, who
proposed in 1942 the original version, statistical metric space, of this notion.

A probabilistic metric space is called a Wald space if the triangle function is
a convolution, i.e., of the form ©,(E, F) = fR E(x—1)dF(v).

A probabilistic metric space is called a generalized Menger space if the
triangle function has form 7,(E,F) = sup,,,—, T(E(u), F(v)) for a t-norm T,
i.e., such a commutative and associative operation on [0, 1] that T(a, 1) = a,
7(0,0) = 0and T(c,d) > T(a, b) whenever ¢ > a,d > b.

¢ Fuzzy metric spaces

A fuzzy subset of a set S is a mapping i : § — [0, 1], where u(x) represents

the “degree of membership” of x € §.
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A continuous t-norm is a binary commutative and associative continuous
operation T on [0, 1], such that T(a,1) = a and T(c,d) > T(a,b) whenever
c>a,d>b.

A KM fuzzy metric space (Kramosil-Michalek, 1975) is a pair (X, (i, 7)),
where X is a nonempty set and a fuzzy metric (1, T) is a pair comprising a
continuous t-norm 7 and a fuzzy set u : X2 x Rs>o — [0, 1], such that, for
Xx,y,z € X and s,t > 0, the following conditions hold:

. p(x,y,0) =0;

. p(x,y,t) =1lifand only if x =y, > 0;

(e y, 1) = oy, x,0);

. T(lu’(-xv Y, t)v I/L(y, 2, S)) E I’L(x, z,t + S),

5. the function p(x,y,-) : R>g — [0, 1] is left continuous.

AW N =

A KM fuzzy metric space is called also a fuzzy Menger space since by defining
D/(p,q) = pn(p,q,t) one gets a generalized Menger space. The following
modification of the above notion, using a stronger form of metric fuzziness, it
a generalized Menger space with D;(p, g) positive and continuous on R for all
p:q

A GV fuzzy metric space (George—Veeramani, 1994) is a pair (X, (u, 7)),
where X is a nonempty set, and a fuzzy metric (j,T) is a pair comprising a
continuous t-norm 7" and a fuzzy set u : X2 xRog — [0, 1], such that for x, y, z €
Xands,t >0

. (v, 1) > 0;

. u(x,y,¢t) = 1if and only if x = y;

px,y, 1) = pn(y,x,1);

Ty, 1), m(y,2,8)) < ju(x,z.t + 5);

. the function u(x,y,-) : R.o — [0, 1] is continuous.

O T N

An example of a GV fuzzy metric space comes from any metric space (X, d)
by defining T(a,b) = b —ab and p(x.y,1) = d(x . Conversely, any GV
fuzzy metric space (and also any KM fuzzy metric space) generates a metrizable
topology. Most GV fuzzy metrics are strong, i.e., T(u(x,y, 1), u(y,z,1) <
1 (x, z, ) holds.

A fuzzy number is a fuzzy set u : R — [0, 1] which is normal ({x € R :
nx) = 1} # 0), convex (pu(tx + (1 — £)y) = min{u(x), u(y)} for every x,y €
R and ¢ € [0, 1]) and upper semicontinuous (at each point xo, the values p(x)
for x near x( are either close to ft(xp) or less than p(xp)). Denote the set of all
fuzzy numbers which are nonnegative, i.e., ju(x) = 0 for all x < 0, by G. The
additive and multiplicative identities of fuzzy numbers are denoted by 0 and I,
respectively. The level set [i]; = {x : p(x) > t} of a fuzzy number u is a closed
interval.

Given a nonempty set X and a mapping d : X> — G, let the mappings
L,R : [0,1]> — [0,1] be symmetric and nondecreasing in both arguments
and satisfy L(0,0) = 0, R(1,1) = 1. For all x,y € X and ¢t € (0,1], let
[d(x, )] = [A:(x, ), pi(x, y)].
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A KS fuzzy metric space (Kaleva—Seikkala, 1984) is a quadruple (X, d, L, R)
with fuzzy metric d, if for all x,y,z € X

1. d(x,y) = 0 if and only if x = y;

2. d(x,y) = d(y,x);

3. d(x,y)(s + 1) > L(d(x,2)(s),d(z,y)(¢)) whenever s < A1(x,2), f < A1(z,y),
and s +1 < A1(x,y);

4. d(x,y)(s + 1) < R(d(x,2)(s5),d(z,y)(t)) whenever s > A1(x,2), 1 = A1(z,y),
and s + 1 > A1(x,y).

The following functions are some frequently used choices for L and R:
max{a + b — 1,0}, ab, min{a, b}, max{a, b},a + b — ab, min{a + b, 1}.

Several other notions of fuzzy metric space were proposed, including
those by Erceg, 1979, Deng, 1982, and Voxman, 1998, Xu-Li, 2001, Tran—
Duckstein, 2002, Chakraborty—Chakraborty, 2006. Cf. also metrics between
fuzzy sets, fuzzy Hamming distance, gray-scale image distances and fuzzy
polynucleotide metric in Chaps. 1, 11, 21 and 23, respectively.

¢ Interval-valued metric space

Let I(R>() denote the set of closed intervals of R>g.

An interval-valued metric space (Coppola—Pacelli, 2006) is a pair
((X, <), A), where (X, <) is a partially ordered set and A is an interval-valued
mapping A : X x X — I(Rx>o), such that for every x,y,z € X

. Alx,x) * [0, 1] = A(x, x);

. Alx,y) = A@y, x);

CAXY) = Az, 2) 2 A, 2) + Az Y)s

A Y) = Alxy) A x) + A, y);

x<x andy <y imply A(x,y) € A(X,y');

. A(x,y) = 0 if and only if x = y and x, y are atoms (minimal elements of

X, =2)).

Here the following interval arithmetic rules hold: [u, v] < [/, v'] if and only if
u<u,

[, 0] + [, V] =[u+u, v + V'], [u,v]—[u, V] = [u —u’,v —v'],

[, v] * [/, V'] = [min{uu uv’, v/, vv/} max{uu uv’, vu', vv’}] and

Bt = [min{%, &, & Ly max{%, &, 5, 23] when 0 ¢ i, '],

The addition and multiplication operations are commutative, associative and
subdistributive: itholds X x (Y +Z) C (X x Y + X x Z).

Cf. metric between intervals in Chap. 10.

The usual metric spaces coincide with above spaces in which all x € X are
atoms.

* Direction distance

Given a normed real vector space (V, ||.||), for any x € V'\ {0}, denote by [x]

the direction (ray) {Ax : A > 0} and by x the point —~~. An oriented angle is an

Tl
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ordered pair ([x], [y]) of directions. The direction distance from x to y is defined
(Busch—Ruch, 1992) as the family of distances ||axo — Byo|| with «, B € R.,.

The mixing distance is defined as the restriction of the direction distance to
pairs of directions in the cone {Av : v € V, A > 0}. In fact, authors introduced
these distances on some special normed spaces used in Quantum Mechanics.
Generalized metric

Let X be a set. Let (V,+,<) be an ordered semigroup (not necessarily
commutative) with a least element 6 and with x < y,x; < y; implying
x+x1 <y+yi.Let (V,+) be also endowed with an order-preserving involution
x* (i.e., (x*)* = x), which is operation-reversing, i.e., (x + y)* = y* + x*.

A function d : X x X — G is called (Li-Wang—Pouzet, 1987) a generalized
metric over (V, 4+, <) if the following conditions hold:

1. d(x,y) = 6 ifand only if x = y;
2.d(x,y) <d(x,2) +d(z,y) forall x,y € X;
3. d*(x,y) = d(y, x).

Cone metric
Let C be a proper cone in a real Banach space W, i.e., C is closed, C # 0, the
interior of C is not equal to {6} (where @ is the zero vector in W) and

1. ifx,y € Cand a,b € Ry, then ax 4 by € C;
2. ifx € Cand —x € C, then x = 0.

Define a partial ordering (W, <) on W by letting x < yif y —x € C. The
following variation of generalized metric and partially ordered distance was
defined in Huang—Zhang, 2007, and, partially, in Rzepecki, 1980. Given a set X,
a cone metric is a mapping d : X x X — (W, <) such that

1. 8 < d(x,y) with equality if and only if x = y;
2. d(x,y) =d(y,x) forall x,y € X;
3. d(x,y) <d(x,z) +d(z,y) forall x,y € X;

The pair (X, d) is called a cone metric space.
W-distance on building

Let X be a set, and let (W, -, 1) be a group. A W-distance on X is a W-valued
map o : X X X — W having the following properties:

1. o(x,y) = lif and only if x = y;
2. 0(y,x) = (o(x,y)"".
A natural W-distance on W is o'(x,y) = x~!y.
A Coxeter group is a group (W, -, 1) generated by the elements

{wis oo s (wiw)™ = 1,1 <i,j < n}.

Here M = ((my)) is a Coxeter matrix, i.e., an arbitrary symmetric n X n matrix
with m; = 1, and the other values are positive integers or co. The length I(x) of
x € W is the smallest number of generators wy, ..., w, needed to represent x.
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Let X be a set, let (W, -, 1) be a Coxeter group and let o (x, y) be a W-distance
on X. The pair (X, o) is called (Tits, 1981) a building over (W, -, 1) if it holds

1. the relation ~; defined by x ~; y if o(x,y) = 1 or w;, is an equivalence
relation;

2. given x € X and an equivalence class C of ~;, there exists a unique y € C
such that o (x, y) is shortest (i.e., of smallest length), and o (x,y') = o (x, y)w;

forany y' € C,y" # y.

The gallery distance on building d is a usual metric on X defined by
I(d(x,y)). The distance d is the path metric in the graph with the vertex-set
X and xy being an edge if o (x,y) = w; for some 1 < i < n. The gallery distance
on building is a special case of a gallery metric (of chamber system X).

¢ Boolean metric space

A Boolean algebra (or Boolean lattice) is a distributive lattice (B,V, N)
admitting a least element O and greatest element 1 such that every x € B has
a complement X withxvx = landx AX = 0.

Let X be a set, and let (B, Vv, A) be a Boolean algebra. The pair (X, d) is called
(Blumenthal, 1953) a Boolean metric space over B if the functiond : XxX — B
has the following properties:

1. d(x,y) = 0if and only if x = y;
2.d(x,y) <d(x,z) vd(z,y) forall x,y,z € X.

¢ Space over algebra

A space over algebra is a metric space with a differential-geometric structure,
whose points can be provided with coordinates from some algebra (usually, an
associative algebra with identity).

A module over an algebra is a generalization of a vector space over a field,
and its definition can be obtained from the definition of a vector space by
replacing the field by an associative algebra with identity. An affine space over
an algebra is a similar generalization of an affine space over a field. In affine
spaces over algebras one can specify a Hermitian metric, while in the case of
commutative algebras even a quadratic metric can be given. To do this one defines
in a unital module a scalar product (x,y), in the first case with the property
(x,y) = J({y,x)), where J is an involution of the algebra, and in the second case
with the property (y, x) = (x, y).

The n-dimensional projective space over an algebra is defined as the variety
of one-dimensional submodules of an (n + 1)-dimensional unital module over
this algebra. The introduction of a scalar product (x, y) in a unital module makes
it possible to define a Hermitian metric in a projective space constructed by
means of this module or, in the case of a commutative algebra, quadratic elliptic
and hyperbolic metrics. The metric invariant of the points of these spaces is
the cross-ratio W = (x,x)™'{x,y)(y,y)""(y,x). If W is a real number, then
w = arccos /W is called the distance between x and y in the space over
algebra.
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¢ Partially ordered distance

Let X be a set. Let (G, <) be a partially ordered set with a least element gg.
A partially ordered distance is a function d : X x X — G such that, for any
x,y € X,d(x,y) = go if and only if x = y.

A generalized ultrametric (Priess-Crampe and Ribenboim, 1993) is a sym-
metric (i.e., d(x,y) = d(y, x)) partially ordered distance, such that d(z,x) < g
and d(z,y) < gimply d(x,y) < g forany x,y,z € X and g € G.

Suppose that G = G\{go} # @ and, for any g, g» € G, there exists g; € G’
such that g3 < g; and g3 < g». Consider the following possible properties:

1. For any g; € G, there exists go € G’ such that, for any x,y € X, from
d(x,y) < g it follows that d(y, x) < g1;

2. For any g, € G, there exist g5, g3 € G’ such that, for any x,y,z € X, from
d(x,y) < g, and d(y,z) < g; it follows that d(x, z) < g1;

3. For any g; € G, there exists g» € G’ such that, for any x,y,z € X, from
d(x,y) < g, and d(y,z) < g it follows that d(y, x) < gi;

4. G’ has no first element;

5. d(x,y) = d(y,x) forany x,y € X;

6. For any g; € G, there exists g € G’ such that, for any x,y,z € X, from
d(x,y) <* g and d(y,z) <* g, it follows that d(x,z) <* g; here p <* ¢
means that either p < ¢, or p is not comparable to g;

7. The order relation < is a total ordering of G.

In terms of above properties, d is called: the Appert partially ordered
distance if 1 and 2 hold; the Golmez partially ordered distance of first type if
4, 5, and 6 hold; the Golmez partially ordered distance of second type if 3, 4,
and 5 hold; the Kurepa-Fréchet distance if 3, 4, 5, and 7 hold.

The case G = Ry of the Kurepa—Fréchet distance corresponds to the Fréchet
V-space; cf. the f-quasi-metric in Sect. 1.1. The general case was considered in
Kurepa, 1934, and rediscovered in Fréchet, 1946.

* Distance from measurement

Distance from measurement is an analog of distance on domains in Com-
puter Science; it was developed in [Mart00].

A po (partially ordered set) (D, <) is called dcpo (directed-complete po) if
every directed subset S C D (i.e., S # @ and any pair x,y € S is bounded: there
is z € S with x, y < z) has a supremum US, i.e., the least of such upper bounds z.

For x,y € D, y is an approximation of x if, for all directed subsets S C D,
x < US implies y < s for some s € S. A dcpo (D, X) is continuous if for all
x € D the set of all approximations of x is directed and x is its supremum. A
domain is a continuous dcpo (D, <) such that for all x,y € D there is z € D with
z X x,y. A Scott domain is a domain with least element, in which any bounded
pair has a supremum.

A subset U of a dcpo (D, <) is Alexandrov open if, forany x € U and y € D,
x X yimplies y € Ui, it is Scott open if also, for any directed subset S C D,
LS € Uimplies SNU # @. The set of Scott open sets form the Scott topology; it is
a To-space (Chap. 2) with generalized metrization by a partial metric (Chap. 1).
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A measurement is a mapping i : D — R between dcpo (D, <) and dcpo
(R, =), where R is ordered as x <X y if y < x, such that

1. x < yimplies pu(x) = p(y);

2. w(uS) = u({u(s) : s € S}) for every directed subset S C D;

3. For all x € D with u(x) = 0 and all sequences (x,),n — o0, of
approximations of x with lim, o0 f4(x,) = p(x), one has LI(US2  {x,}) = x.

Given a measurement u, the distance from measurement is a mapping d :
D x D — R5 given by

d(x,y) = inf{u(z) : z approximates x, y} = inf{u(z) : z < x,y}.

One has d(x,x) =< u(x). The function d(x, y) is a metric on the set {x € D :
w(x) = 0} if p satisfies the following measurement triangle inequality: for all
bounded pairs x, y € D, there is an element 7 < x, y such that ;£ (z) < p(x)+u ().

Waszkiewicz, 2001, found topological connections between topologies com-
ing from a distance from measurement and from a partial metric defined in
Chap. 1.




Chapter 4
Metric Transforms

There are many ways to obtain new distances (metrics) from given distances
(metrics). Metric transforms give new distances as a functions of given metrics (or
given distances) on the same set X. A metric so obtained is called a transform
metric. We give some important examples of transform metrics in Sect. 4.1.

Given a metric space (X,d), one can construct a new metric on an extension
of X; similarly, given a collection of metrics on sets Xi, ..., X,, one can obtain a
new metric on an extension of Xj, ..., X,,. Examples of such operations are given in
Sect. 4.2. There are many distances on other structures connected with X, say, on the
set of all subsets of X. The main distances of this kind are considered in Sect. 4.3.

4.1 Metrics on the Same Set

* Metric transform

A metric transform is a distance on a set X, obtained as a function of given
metrics (or given distances) on X.

In particular, given a continuous monotone increasing function f(x) of x > 0
with f(0) = 0, called the scale, and a distance space (X, d), one obtains another
distance space (X, dy), called a scale metric transform of X, defining dr(x,y) =
f(d(x,y)). For every finite distance space (X, d), there exists a scale f, such that
(X, dr) is a metric subspace of a Euclidean space R".

If (X,d) is a metric space and f is a continuous differentiable strictly
increasing scale with f(0) = 0 and nonincreasing f’, then (X, dy) is a metric
space (cf. functional transform metric).

The metric d is an ultrametric if and only if f(d) is a metric for every
nondecreasing function f : R>o — Rxo.

e Transform metric

A transform metric is a metric on a set X which is a metric transform, i.e.,

is obtained as a function of a given metric (or given metrics) on X. In particular,
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transform metrics can be obtained from a given metric d (or given metrics d; and
d,) on X by any of the following operations (here ¢ > 0):

. td(x,y) (t-scaled metric, or dilated metric, similar metric);
. min{z, d(x,y)} (-truncated metric);

. max{t,d(x,y)} for x # y (t-uniformly discrete metric);

. d(x,y) + t for x # y (t-translated metric);

AN B W~

kd(x.y) : : : .
© THdGY) (this metric has diameter less than k);
L dP(x,y) = 20 yhere p is an fixed element of X (biotope

d(x,p)+d(y,p)+d(xy)’
transform metric, or p-smoothing distance on X \ {p});

7. max{d;(x,y),d»(x,y)};
8. ad(x,y) + Bda(x,y), where o, B > O (cf. semimetric cone in Chap. 1).

Generalized biotope transform metric
For a given metric d on a set X and a closed set M C X, the generalized
biotope transform metric @ on X is defined by

2d(x,y)
d(-xv y) + infzeM(d(X, Z) + d(y, Z)) ’

d"(x.y) =

In fact, @ (x, y) and its 1-truncation min{1, @ (x, y)} are both metrics.

The biotope transform metric is @"(x,y) with [M| = 1. The Steinhaus
distance from Chap. 1 is the case d(x,y) = u(xAy) with p # @ and the biotope
distance from Chap. 23 is its subcase d(x,y) = u(xAy) = |[xAy|.
Metric-preserving function

A function f : R>g — Rs¢ with f71(0) = {0} is a metric-preserving
function if, for each metric space (X, d), the metric transform

df(x, y) = f(d(xs y))

is a metric on X; cf. [Cora99]. In this case df is called a functional transform
metric. For example, ad (¢ > 0), d“(0 < o < 1), In(1 + d), arcsinh d,
arccosh (1 + d), and %{ are functional transform metrics.

The superposition, sum and maximum of two metric-preserving functions are
metric-preserving. If f is subadditive, i.e. f(x + y) < f(x) +f(y) forall x,y > 0,
and nondecreasing, then it is metric-preserving. But, for example, the function
flx) = ;%, for x > 0, and f(0) = 0, is decreasing and metric-preserving. If f is
metric-preserving, then it is subadditive.

If f is concave, i.e., f(F2) > {2 for all x,y > 0, then it is metric-
preserving. In particular, a twice differentiable function f : R>9 — Rx>¢ such
that f(0) = 0, f/(x) > 0 for all x > 0, and f”/(x) < 0 for all x > 0, is metric-
preserving.

The function f is strongly metric-preserving function if d and f(d(x,y))
are equivalent metrics on X, for each metric space (X, d). A metric-preserving

function is strongly metric-preserving if and only if it is continuous at 0.
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e Metric aggregating function
A functionf : R2 ) — R with f(a,b) = 0if and only if a = b = 0, is said
to be metric (respectively, quasi-metric) aggregating function if the function
dr : X x X — Ry is a metric for every pair of metric spaces (respectively, a
quasi-metric for every pair of quasi-metric spaces) (X1, d;) and (X3, d»), where
X = X; x X5 and, for all (x, z), (y,w) € X, it holds

df((xs Z)s (yv W)) = f(dl ()C, Z), dZ(ys W))

Borsik—Dobos, 1981, proved that a function f is metric aggregating if and only
if, forall a, b, c,da’,b’,¢’ > Owith |a—b| < c <a+band |d—b| < <d +V,
it holds

|f(a,a) —f(b.O)] < fle.c') < f(a.d) +f(b.D).

Cf. spin triangle inequality in Chap. 15.

Major—Valero, 2008, proved that a function f is quasi-metric agregating if and
only if it holds f(a,a’) < f(b,c") + f(c,b’) for all a,b,c,a’,b’, ¢’ > 0 such that
a <b+candd < b + (; so, any quasi-metric agregating function is metric
agregating.

e Metric generating function

A symmetric function f : R2 ) — R with f(a,b) = 0 if and only if a =

b = 0, is said to be metric generating if the function defined by

df('xv y) :f(d(-xv y)s d(yvx))

for all x,y € X is a metric on X for every quasi-metric space (X, d).
Martin—Major—Valero, 2013, proved that a function f is metric generating if
and only if it holds f(a,a’) < f(b,c’) + f(c,¥’) for all a,b,c,d’, b, ¢’ such that
a<b+4+cb<a+b,c<c +aandd <b +,b'<d +b, <c+d.
* Power transform metric
Let 0 < a < 1. Given a metric space (X,d), the power (or «-snowflake)
transform metric is a functional transform metric on X defined by

(d(x,y))”.

The distance d(x,y) = (3_] |xi — yi|”)% with 0 < p = o < 1 is not a metric
on R”, but its power transform (d(x, y)*) is a metric.

For a given metric d on X and any o > 1, the function d“ is, in general, only a
distance on X. It is a metric, for any positive «, if and only if d is an ultrametric.

A metric d is a doubling metric if and only if (Assouad, 1983) the power
transform metric d* admits a bi-Lipschitz embedding in some Euclidean space
for every 0 < o < 1 (cf. Chap. 1 for definitions).
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Quadrance

A distance which is a squared distance d” is called a quadrance.

Rational trigonometry is the proposal (Wildberger, 2007) to use as its
fundamental units, quadrance and spread (square of sine of angle), instead of
distance and angle.

It makes some problems easier to computers: solvable with only addition,
subtraction, multiplication, and division, while avoiding square roots, sine, and
cosine functions. Also, such trigonometry can be done over any field.
Schoenberg transform metric

Let A > 0. Given a metric space (X, d), the Schoenberg transform metric is
a functional transform metric on X defined by

| — g G,

The Schoenberg transform metrics are exactly P-metrics (cf. Chap. 1).
Pullback metric

Given two metric spaces (X, dx), (Y, dy) and an injective mapping g : X — Y,
the pullback metric (of (Y, dy) by g) on X is defined by

dy(g(x), g(y))-

If (X,dx) = (Y, dy), then the pullback metric is called a g-transform metric.
Internal metric

Given a metric space (X, d) in which every pair of points x, y is joined by a
rectifiable curve, the internal metric (or inner metric, induced intrinsic metric,
interior metric) D is a transform metric on X, obtained from d as the infimum
of the lengths of all rectifiable curves connecting two given points x and y € X.

The metric d is called an intrinsic metric (or length metric if it coincides
with its internal metric. Cf. Chap. 6 and metric curve in Chap. 1.
Farris transform metric

Given a metric space (X,d) and a point z € X, the Farris transform is a
metric transform D, on X\{z} defined by D,(x,x) = 0 and, for different x,y €

X\{z}, by
Dz(xvy) =C— (X.y)z,

where C is a positive constant, and (x.y), = %(d(x, z) +d(y,z) — d(x,y)) is the
Gromov product (cf. Chap. 1). It is a metric if C > maXx,ex\{; d(x, z); in fact,
there exists a number Cy € (Max, yex\{z}.xsy(X.Y):. MaXyex\ ¢z} d(x, 2)] such that
it is a metric if and only if C > Cj. The Farris transform is an ultrametric if
and only if d satisfies the four-point inequality. In Phylogenetics, where it was
applied first, the term Farris transform is used for the function d(x, y) — d(x, z) —

d(y,z).
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Involution transform metric
Given a metric space (X,d) and a point z € X, the involution transform
metric is a metric transform d; on X\{z} defined by

d(x,y)

(e)) = e a0

It is a metric for any z € X, if and only if d is a Ptolemaic metric ([FoSc06]).

4.2 Metrics on Set Extensions

Extension distances

If d is a metric on V,, = {1,...,n}, and @ € R, > 0, then the following
extension distances (see, for example, [DeLa97]) are used.
The gate extension distance gat = gat? is ametricon V41 = {1,...,n+1}

defined by the following conditions:

1. gat(l,n+1) = a;
2. gati,n+ 1) =a+d(1,i)if2 <i<mn;
3. gat(i,j) =d(i,j)if l <i<j<n.

The distance gatg is called the gate O-extension or, simply, 0-extension of d.
If o« > maxa<;<, d(1, i), then the antipodal extension distance ant = antff is
a distance on V4 defined by the following conditions:

L.ant(lL,n+1) =
2. ant(i,n+ 1) =a—d(1,i)if2<i<n;
3. ant(i,j) =d(i,j)ifl <i<j<n.

If @ > max<;j<nd(i,j), then the full antipodal extension distance Ant =
Antg is a distance on V,, = {1,...,2n} defined by the following conditions:

1. Ant(i,n+i) =aifl <i<m;

2. Ant(i,n+j) =a —d@,j)ifl <i#j<n;
3. Ant(i,j) = d(i,))if 1 <i#j<m

4, Ant(n+i,n+j) =d(i,j)ifl <i#j<n.

It is obtained by applying the antipodal extension operation iteratively n times,
starting from d.

The spherical extension distance sph = sph¢ is a metric on V,.4| defined by
the following conditions:

1. sph(i,n+1) =aifl <i<mn
2. sph(i,j) =d(@,j)ifl <i<j<n.
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1-sum distance

Let d; be a distance on a set X, let d, be a distance on a set X,, and suppose
that X; N X, = {xo}. The 1-sum distance of d; and d, is the distance d on X; UX,
defined by the following conditions:

di(x,y), if  x,yeX,
d(x.y) = da(x,), if  xyeX,
d(x,xp) + d(x0,y), if xe€X;,yeX,.

In Graph Theory, the 1-sum distance is a path metric, corresponding to the
clique 1-sum operation for graphs.
Disjoint union metric

Given a family (X;, d,), t € T, of metric spaces, the disjoint union metric is
an extended metric on the set | J, X, x {r} defined by

d((-xv tl)v (ys tZ)) = dl‘(xs y)

fort; = tp, and d((x, 1), (v, 12)) = o0, otherwise.
Metric bouquet

Given a family (X;,d;), t € T, of metric spaces with marked points x;, the
metric bouquet is obtained from their disjoint union by gluing all points x,
together.
Product metric

Given finite or countable number n of metric spaces (X;,d;), (X2,d>), ...,
(Xu, dy), the product metric is a metric on the Cartesian product X; X X3 X -+ - X
X, = {x = (x,x2,...,%) : x1 € Xq,...,x, € X} defined as a function of
di,...,d,. The simplest finite product metrics are defined by

1 (2, d G yi))7, 1< p < 003
2. maxi<j<n di(x;, yi);

no 1 _ditxiyi)
3. Y =1 ¥ TR

The last metric is bounded and can be extended to the product of countably many
metric spaces.

IfX,=---=X,=R,andd| =--- =d, = d, where d(x,y) = |x — y| is the
natural metric on R, all product metrics above induce the Euclidean topology
on the n-dimensional space R". They do not coincide with the Euclidean metric
on R", but they are equivalent to it. In particular, the set R" with the Euclidean
metric can be considered as the Cartesian product R x - -- x R of n copies of the
real line (R, d) with the product metric defined by /Y _i—, d*(xi, y;).

Box metric

Let (X, d) be a metric space and [ the unit interval of R. The box metric is the

product metric ¢’ on the Cartesian product X x I defined by

d'((x1,11), (x2,12)) = max(d(x1, x2), |11 — 12]).
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Cf. unrelated bounded box metric in Chap. 18.
¢ Fréchet product metric
Let (X, d) be a metric space with a bounded metric d. Let X*° = X x --- x
Xooo={x=(q,...,x0,...) :x1 € X1,...,%, € X,,...} be the countable
Cartesian product space of X.
The Fréchet product metric is a product metric on X*° defined by

o0
> And (. yn).
n=1
where Y °2 | A, is any convergent series of positive terms. Usually, A, = Zl—n is
used.
A metric (sometimes called the Fréchet metric) on the set of all sequences
{xn}, of real (complex) numbers, defined by

- xn — ynl
I
1+|xn_yn|

n=1

where Y ° | A, is any convergent series of positive terms, is a Fréchet product
metric of countably many copies of R (C). Usually, A, = % orA, = % are used.
* Hilbert cube metric
The Hilbert cube I is the Cartesian product of countable many copies of the
interval [0, 1], equipped with the metric

o0
> 2 =il
i=1

(cf. Fréchet infinite metric product). It also can be identified up to homeo-
morphisms with the compact metric space formed by all sequences {x,}, of real

1 s e [}
numbers such that 0 < x, < -, where the metric is defined as 2o (o = yn)2.

The Cartesian products [0, 1]* and {0, 1}*, where t is an arbitrary cardinal
number, are called a Tikhonov cube and Cantor cube, respectively.

¢ Hamming cube

Given integers n > 1 and ¢ > 2, the Hamming space H(n, q) is the set of
all n-tuples over an alphabet of size g (say, the Cartesian product of n copies of
the set {0, 1,...,q — 1}), equipped with the Hamming metric (cf. Chap. 1), i.e.,
the distance between two n-tuples is the number of coordinates where they differ.
The Hamming cube is the Hamming space H(n, 2).

The infinite Hamming cube H(co) is the set of all infinite strings over the
alphabet {0, 1} containing only finitely many 1’s, equipped with the Hamming
metric.

The half-cube %H (n) is the set of all n-tuples over {0, 1}, containing even
number of 1’s, with two of them being adjacent if they differ exactly in two
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coordinates. For an integer k, 1 < k < n, the Johnson graph J(n, k) is the set of
all n-tuples over {0, 1}, containing k 1’s, with the same notion of adjacence.

The Fibonacci cube F(n) is the set of all n-tuples over {0, 1} that contain
no two consecutive 1’s, equipped with the Hamming metric; it is a partial
cube (Chap. 15), i.e., an isometric subgraph of H(n,2). The Lucas cube L(n)
is obtained from F'(n) by removing n-tuples that start and end with 1.

* Cameron-Tarzi cube

Given integers n > 1 and g > 2, the normalized Hamming space H,(q) is the
set of all n-tuples over an alphabet of size ¢, equipped with the Hamming metric
divided by n. Clearly, there are isometric embeddings

Hy(q) — Hx(q) — Hi(q) — Hs(q) — ...

Let H(g) denote the Cauchy completion (Chap. 1) of the union (denote it by
H,(q)) of all metric spaces H,(g) with n > 1. This metric space was introduced
in [CaTa08]. Call H(2) the Cameron-Tarzi cube.

It is shown in [CaTa08] that H,,(2) is the word metric space (Chap.20) of
the countable Nim group, i.e., the elementary Abelian 2-group of all natural
numbers under bitwise addition modulo 2 of the number expressions in base 2.
The Cameron-Tarzi cube is also the word metric space of an Abelian group.

* Rubik cube

There is a bijection between legal positions of the Rubik 3 x 3 x 3 cube and
elements of the subgroup G of the group Symug (of all permutations of 6(9 —
1) movable facets) generated by the 6 face rotations. The number of possible
positions attainable by the cube is |G| ~ 43 x 10'3,

The maximum number of face turns needed to solve any instance of the Rubik
cube is the diameter (maximal word metric), 20, of the Cayley graph of G.

¢ Warped product metric

Let (X, dx) and (Y, dy) be two complete length spaces (cf. Chap. 6), and let
f : X — R be a positive continuous function. Given a curve y : [a,b] - X x Y,
consider its projections y; : [a,b] — X and y, : [a,b] — Y to X and Y, and
define the length of y by the formula fab \/Iyilz(t) + 211 () |y, 2 (Dt

The warped product metric is a metric on X x Y, defined as the infimum

of lengths of all rectifiable curves connecting two given points in X X Y (see
[BBIO1]).

4.3 Metrics on Other Sets

Given a metric space (X, d), one can construct several distances between some
subsets of X. The main such distances are: the point-set distance d(x,A) =
inf,es d(x,y) between a point x € X and a subset A C X, the set-set distance
infyes yep d(x,y) between two subsets A and B of X, and the Hausdorff metric
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between compact subsets of X which are considered in Chap. 1. In this section we
list some other distances of this kind.

¢ Line-line distance
The line-line distance (or vertical distance between lines) is the set-set
distance in R? between two skew lines, i.e., two straight lines that do not lie
in a plane.
It is the length of the segment of their common perpendicular whose endpoints
lie on the lines. For /| and [, with equations /;: x = p+qt,t € R,and l,: x = r+st,
t € R, the distance is given by

|(r —p,q xs)]|
llg x s||2

where x is the cross product on R3, (,) is the inner product on R3, and ||.||,
is the Euclidean norm. For x = (g1, ¢2,93), s = (s1,52,53), one has g X s =
(q253 — 9352, @351 — 153, 4152 — q251).
* Point-line distance
The point-line distance is the point-set distance between a point and a line.
In R?, the distance between a point P = (x1,y;) and a line I: ax + by + ¢ = 0
(in Cartesian coordinates) is the perpendicular distance given by

lax; + by; + c|
Nz

In R?, the directed distance between a point P and a line [ is given by

ax; + by; + ¢
+Ja2+ 2

where the denominator is given the sign of b. It is negative if P is below the line.
In R3, the distance between a point P and a line [: x = p + gt, t € R (in vector
formulation) is given by

llg x (0 — P)|2
llqll2

’

where x is the cross product on R3, and ||.||» is the Euclidean norm.
¢ Point-plane distance
The point-plane distance is the point-set distance in R® between a point
P = (x1,y1,z1) and a plane «: ax + by + ¢z + d = 0 given by

|ax; + by, + cz1 + d|

Va2 + b2+ 2
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Algebraic point-conic distance

The algebraic distance of a point y to the curve given by the quadratic
equation x” Ax (such as a conic in homogeneous coordinates) is defined as y” Ay.
Prime number distance

The prime number distance is the point-set distance in (N, |z —m|) between
anumber n € N and the set of prime numbers P C N. It is the absolute difference
between n and the nearest prime number.
Distance up to nearest integer

The distance up to nearest integer is the point-set distance in (R, |x — y|)
between a number x € R and the set of integers Z C R, i.e., min,ez |x — n|.
Busemann metric of sets

Given a metric space (X, d), the Busemann metric of sets (see [Buse55]) is a
metric on the set of all nonempty closed subsets of X defined by

sup |d(x,A) — d(x, B)|e" 9P,

xeX

where p € X is fixed, and d(x, A) = minye, d(x, ) is the point-set distance.
Instead of the weighting factor e=?®¥ one can take any distance transform
function which decreases fast enough (cf. L,-Hausdorff distance in Chap. 1, and
the list of variations of the Hausdorff metric in Chap. 21).
Quotient semimetric
Given an extended metric space (X, d) (i.e., a possibly infinite metric) and
an equivalence relation ~ on X, the quotient semimetric is a semimetric on the
set X = X/ ~ of equivalence classes defined, for any X,y € X, by

m

d(%.5) = inf ; d(xi, i),

where the infimum is taken over all sequences xi, y1, X2, Y25y Xy Ym with x| €
X, Ym €, and_y; ~xiyrfori=1,2,...,m :1. One has d(x,y) < d(x,y) for all
x,y € X, and d is the biggest semimetric on X with this property.




Chapter 5
Metrics on Normed Structures

In this chapter we consider a special class of metrics defined on some normed
structures, as the norm of the difference between two given elements. This structure
can be a group (with a group norm), a vector space (with a vector norm or, simply,
a norm), a vector lattice (with a Riesz norm), a field (with a valuation), etc.

Any norm is subadditive, i.e., triangle inequality ||x + y|| < ||x|| + ||y|| holds.
A norm is submultiplicative if multiplicative triangle inequality ||xy|| < ||x]||||||
holds.

¢ Group norm metric
A group norm metric is a metric on a group (G, +, 0) defined by

[lx + (= =[x =yll.

where ||.|| is a group norm on G, i.e., a function ||.|| : G — R such that, for all
X,y € G, we have the following properties:

1. ||x|| = O, with ||x|]| = 0 if and only if x = 0;
2. ||xfl = II = xlls
3. |lx+ || = |Ix[| + |lyl| (triangle inequality).

Any group norm metric d is right-invariant, i.e., d(x,y) = d(x + z,y + 2)
for any x, y, z € G. Conversely, any right-invariant (as well as any left-invariant,
and, in particular, any bi-invariant) metric d on G is a group norm metric, since
one can define a group norm on G by ||x|| = d(x, 0).

e F-norm metric

A vector space (or linear space) over a field I is a set V equipped with
operations of vector addition + : V x V — V and scalar multiplication - :
F x V — V such that (V, +,0) forms an Abelian group (where 0 € V is the
zero vector), and, for all vectors x,y € V and any scalars a,b € F, we have
the following properties: 1 - x = x (where 1 is the multiplicative unit of F),
(ab)y - x=a-(b-x),(a+b)-x=a-x+b-x,anda-(x+y)=a-x+a-y.
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A vector space over the field R of real numbers is called a real vector space. A
vector space over the field C of complex numbers is called complex vector space.
A F-norm metric is a metric on a real (complex) vector space V defined by

|lx = yllF.

where ||.||F is an F-norm on V, i.e., a function ||.||r : V — R such that, for all
x,y € V and for any scalar a with |a| = 1, we have the following properties:

1. ||x||F = O, with ||x||r = 0 if and only if x = 0;
2. |lax||r < [|x[|Fif |a] < 1

3. lim,¢ ||ax||F = 0;

4. ||x + yl|r < |x||F + ||[y||F (triangle inequality).

An F-norm is called p-homogeneous if ||ax||r = |a|’||x||F for any scalar a.

Any F-norm metric d is a translation invariant metric, i.e., d(x,y) = d(x +
z,y + z) forall x,y,z € V. Conversely, if d is a translation invariant metric on V,
then ||x||r = d(x,0) is an F-norm on V.

F*-metric

An F*-metric is an F-norm metric |[x — y||r on a real (complex) vector
space V such that the operations of scalar multiplication and vector addition are
continuous with respect to ||.||r. Thus ||.||r is a function ||.||r : V — R such that,
for all x,y,x, € V and for all scalars a, a,, we have the following properties:

. ||x||F = 0, with ||x||r = 0 if and only if x = 0;
. |lax||F = ||x||F for all a with |a| = 1;

N+ yllE = x| + [yl

. |lanx||F — 0 if @, — 0;

. |lax,||F — 0if x, — 0O;

. lawxs||lF = 0ifa, — 0,x, — 0.

AN AW

The metric space (V,||x — y||r) with an F*-metric is called a nF*-space.
Equivalently, an F*-space is a metric space (V, d) with a translation invariant
metric d such that the operation of scalar multiplication and vector addition are
continuous with respect to this metric.

A complete F*-space is called an F-space. A locally convex F-space is
known as a Fréchet space (Chap. 2) in Functional Analysis.

A modular space is an F*-space (V,||.||r) in which the F-norm ||.||r is
defined by

. X
IIx|lF = inf{A > 0: p <X) <),

and p is a metrizing modular on V, i.e., a function p : V — [0, oo] such that, for
all x,y, x, € V and for all scalars a, a,, we have the following properties:

1. p(x) = 0 if and only if x = 0;

2. p(ax) = p(x) implies |a| = 1;
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3. plax + by) < p(x) + p(y) implies a,b > 0,a+ b = 1;
4. p(apx) > 0if a, — 0 and p(x) < o0;

5. p(ax,) — 0if p(x,) — O (metrizing property);

6. For any x € V, there exists k > 0 such that p(kx) < oco.

* Norm metric
A norm metric is a metric on a real (complex) vector space V defined by

Ilx =¥l

where ||.|| is a norm on V, i.e., a function ||.|| : V — R such that, forall x,y € V
and for any scalar a, we have the following properties:

1. ||x|| = 0, with ||x|| = 0 if and only if x = 0;
2. ||ax|| = lalllx]l;
3. 0 + ¥l < ||l + [Iyl| (triangle inequality).
Therefore, a norm ||.|| is a 1-homogeneous F-norm. The vector space (V, ||.||) is
called a normed vector space or, simply, normed space.

Any metric space can be embedded isometrically in some normed vector space
as a closed linearly independent subset. Every finite-dimensional normed space

is complete, and all norms on it are equivalent.
In general, the norm ||.|| is equivalent (Maligranda, 2008) to the norm

1
Xl lup = (e [l -l P 4 e = [lx]] - ul[) 7,

introduced, for any u € V and p > 1, by Odell and Schlumprecht, 1998.
The norm-angular distance between x and y is defined (Clarkson, 1936) by

d Y
d(x,y) = [l — =l
(Xl {1yl

The following sharpening of the triangle inequality (Maligranda, 2003) holds:
T O e [ (1
mind||x||, [[y||} max{]|[x[[, [|y[[}
(2 —d(x, —y)) ming||x|[, [[y[[} < [x]| + [Iyl| = []x + yl|
< (2 —d(x, —y)) max{]|x][, [|y[[}-

Dragomir, 2004, call | fab fodx| < fab |f(x)|dx continuous triangle
inequality.
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* Reverse triangle inequality
The triangle inequality ||x 4+ y|| < ||x|| 4+ ||y|| in a normed space (V. ||.||) is
equivalent to the following inequality, for any xi,...,x, € V withn > 2:

n n
1> "l =) Il
i=1 i=1

If in the normed space (V, ||.||), for some C > 1 one has

n n
ClY xll =Y I,
i=1 i=1

then this inequality is called the reverse triangle inequality.

This term is used, sometimes, also for the inverse triangle inequality (cf.
kinematic metric in Chap.26) and for the eventual inequality Cd(x,z) >
d(x,y) + d(y, z) with C > 1 in a metric space (X, d).

The triangle inequality ||x + y|| < [|x]| + ||y||, for any x,y € V, in a normed
space (V, |].]]) is, for any number g > 1, equivalent (Belbachir, Mirzavaziri and
Moslenian, 2005) to the following inequality:

e+ yl17 < 297 (11 + [I119).

The parallelogram inequality ||x + y||* < 2(||x||* + ||y||?) is the case ¢ = 2 of
above.
Given a number ¢, 0 < ¢ < 1, the norm is called g-subadditive if ||x + y||? <
[|x[|7 + ||y]|? holds for x,y € V.
* Seminorm semimetric
A seminorm semimetric on a real (complex) vector space V is defined by

Ilx =yl

where ||.|| is a seminorm (or pseudo-norm) on V, i.e., a function ||.|| : V — R
such that, for all x, y € V and for any scalar a, we have the following properties:

L. [|x]| = 0, with [[0]| = O;
2. |lax|| = |alllxl|;
3. 0+ ¥l < ||l + [|yl| (triangle inequality).

The vector space (V, ||.||) is called a seminormed vector space. Many normed
vector spaces, in particular, Banach spaces, are defined as the quotient space by
the subspace of elements of seminorm zero.

A quasi-normed space is a vector space V, on which a quasi-norm is given.
A quasi-norm on V is a nonnegative function ||.|| : V — R which satisfies the
same axioms as a norm, except for the triangle inequality which is replaced by
the weaker requirement: there exists a constant C > 0 such that, for all x,y € V,
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the following C-triangle inequality (cf. near-metric in Chap. 1) holds:

lx + Il = Clxl] + 1yID)

An example of a quasi-normed space, that is not normed, is the Lebesgue space
L,(2) with 0 < p < 1 in which a quasi-norm is defined by

1A = ( [Q WPV f € L(<).

¢ Banach space

A Banach space (or B-space) is a complete metric space (V,||x — y||) on

a vector space V with a norm metric ||x — y||. Equivalently, it is the complete
normed space (V,||.|]). In this case, the norm ||.|| on V is called the Banach
norm. Some examples of Banach spaces are:

1.

l;-spaces, lgo-spaces, l1<p<oo,neN;

2. The space C of convergent numerical sequences with the norm ||x|| =

10.
11.

sup,, |xx|;

The space Cy of numerical sequences which converge to zero with the norm
||| = max, |x,[;

The space C’[; B> 1 < p < o0, of continuous functions on [a, b] with the

Lynorm ||f|l, = () | (@)Pdi)?:

The space Cg of continuous functions on a compactum K with the norm
|/l = maxiex | f(D)];

The space (C.5)" of functions on [a, b] with continuous derivatives up to
and including the order n with the norm || f||, = >_j_, maxa</<s | P (D)
The space C"[I""] of all functions defined in an m-dimensional cube that are
continuously differentiable up to and including the order n with the norm of
uniform boundedness in all derivatives of order at most n;

The space Mj, 4 of bounded measurable functions on [a, b] with the norm

[[fIl =ess sup |f()|= inf sup [f(D)[:
b (e)=0

ast< &me)=V1rela.b)\e

The space A(A) of functions analytic in the open unit disk A = {z €
C : |z] < 1} and continuous in the closed disk A with the norm ||f|| =
max,cx |f(2)]:

The Lebesgue spaces L,(£2), 1 < p < oo;

The Sobolev spaces WEP(Q), @ € R*, 1 < p < oo, of functions f on £
such that f and its derivatives, up to some order k, have a finite L,-norm,

. x :
with the norm || flx,, = 3i—o I1/71;
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12. The Bohr space AP of almost periodic functions with the norm

1Al =" sup [f(D)I.

—o00<t<+00

A finite-dimensional real Banach space is called a Minkowskian space. A
norm metric of a Minkowskian space is called a Minkowskian metric (Chap. 6).
In particular, any /,-metric is a Minkowskian metric.

All n-dimensional Banach spaces are pairwise isomorphic; the set of such
spaces becomes compact if one introduces the Banach-Mazur distance by
dpy(V, W) = Ininfz ||T|| - ||T~!||, where the infimum is taken over all operators
which realize an isomorphism 7 : V — W.

* [,-metric
The /,-metric d;,, 1 < p < 00, is a norm metric on R" (or on C"), defined by

||x—y||1,,

where the /,-norm ||.||, is defined by
- 1
llxll, = O xl?)7.
i=1

For p = oo, we obtain |[x||oc = limy—oeo &/ Y iy [x;[P = maxj<i<, |xi|. The
metric space (R", dj,) is abbreviated as I, and is called [ -space.

The /,-metric, 1 < p < oo, on the set of all sequences x = {x,}2, of real
(complex) numbers, for which the sum Y2, |x;|? (for p = oo, the sum Y = |x:|)
is finite, is

i 1
Qi —yil)r.
i=1

For p = oo, we obtain max;>; |x; — y;|. This metric space is abbreviated as lp°°
and is called /[°-space.

Most important are /1-, l>- and lo-metrics. Among /,-metrics, only /;- and
lo-metrics are crystalline metrics, i.e., metrics having polygonal unit balls. On
R all /,-metrics coincide with the natural metric (Chap. 12) [x — y|.

The L-norm ||(x1,x2)|l» = /37 +x3 on R? is also called Pythagorean

addition of the numbers x; and x;. Under this commutative operation, R form
a semigroup, and R> form a monoid (semigroup with identity, 0).
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Euclidean metric
The Euclidean metric (or Pythagorean distance, as-the-crow-flies dis-
tance, beeline distance) dr is the metric on R” defined by

lIx=yll2 = V1 —y1)2 + - + (60— y)%

It is the ordinary /;-metric on R". The metric space (R", dg) is abbreviated as E”
and is called Euclidean space “Euclidean space” stands for the case n = 3, as
opposed, for n = 2, to Euclidean plane and, for n = 1, Euclidean (or real) line.

In fact, E" is an inner product space (and even a Hilbert space), i.e.,
de(x,y) = |lx =yl = V{x—y,x—y), where (x,y) is the inner product on
R" which is given in the Cartesian coordinate system by (x,y) = > '_, x;y;. In
a standard coordinate system one has (x,y) = >, ; ifxiyjs where g;; = (e, ),
and the metric tensor ((g;)) (cf. Chap.7) is a positive-definite symmetric n x n
matrix.

In general, a Euclidean space is defined as a space, the properties of which are
described by the axioms of Euclidean Geometry.

Norm transform metric

A norm transform metric is a metric d(x,y) on a vector space (V,||.||),
which is a function of ||x|| and [[y|. Usually, V = R" and, moreover, E* =
R ]-]12)-

Some examples are (p,q)-relative metric, M-relative metric and, from
Chap. 19, the British Rail metric ||x|| + ||y|| for x # y, (and equal to O,
otherwise), the radar screen metric min{1, ||x — y||} and max{1, ||x — y||} for
x # y. Cf. t-truncated and 7-uniformly discrete metrics in Chap. 4.

(p, g)-relative distance

Let (V,||.]|) # 9, {0} be a Ptolemaic space, i.e., the norm metric ||x — y|| is a
Ptolemaic metric (Chap. 1). Let p, g > 0.

The (p, g)-relative distance on (V, ||.||) is defined, for x or y # 0, by

[lx =l
4q
G + Iyl

Pp.q(x,y) +

(and equal to 0, otherwise). In the case of p = o0, it has the form

|l — vl
(max{]|x[]. [Iy[|})?"

This distance is a metric (Hasto, 2002) if and only if 0 < ¢ < 1, p > max{1 —

2—q
q, T}'

(p,1)-, (o0, 1)- and the original (1, 1)-relative metric on E" are called p-
relative (or Klamkin-Meir metric), relative metric and Schattschneider
metric.
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e M-relative distance
Let (V,||.]l) # @,{0} be a Ptolemaic space, i.e., ||x — y|| is a Ptolemaic
metric. Let M : [0, c0) — (0, co) be a symmetric function.
The M-relative distance on (V, ||.||) is defined by

gy — Il
’ M([|x[]. 1yI1)
So, it is the (p, g)-relative distance if M(x,y) = (& + y*)? for p,q > 0.

Call a function f : [0,00) — (0, 00) moderately increasing (MI) if f(x) is
increasing but @ is decreasing for x > 0. Histo, 2002, showed that

(1) If M = f(x)f(y), then py(x,y) is a metric if and only if f is MI and convex;
(ii) If both, M(x,-) and M(-, x), are MI for each fixed x > 0, then py(x,y) is a
metric if and only if it is a metric on R; it holds for any Ptolemeaic metric.

¢ Unitary metric
The unitary (or complex Euclidean) metric is the /;-metric on C" defined by

x=ylla = VIxi = yi + -+ o, — vl

For n = 1, it is the complex modulus metric [x — y| = {/(x — y)(x — y) on the

Wessel-Argand plane (Chap. 12).
* L,-metric
An L,-metric dy,, 1 < p < oo, is a norm metric on L,(2, A, 1) defined by

1/ =&l

for any f,g € L,(2, A, ) . The metric space (L,(£2, A, ), dy,) is called the
L,-space (or Lebesgue space).

Here 2 is a set, and A is n o-algebra of subsets of 2, i.e., a collection of
subsets of 2 satisfying the following properties:

1. Q e A4
2. IfA € A, then Q\A € A,
3. IfA = U?ilAi with A; € A, then A € A.

A function u : A — Ry is called a measure on A if it is additive, i.e.,
w(Ui=14;) = Y .o, iw(Ay) for all pairwise disjoint sets A; € A, and satisfies
w(9) = 0. A measure space is a triple (22, A, ).

Given a function f : 2 — R(C), its L,-norm is defined by

1

11l = ( /Q If(w)l"u(dw))p |
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Let L,(2, A, u) = L,(2) denote the set of all functions f : & — R (C)
such that || f|[, < oo. Strictly speaking, L,(2, A, 1) consists of equivalence
classes of functions, where two functions are equivalent if they are equal
almost everywhere, i.e., the set on which they differ has measure zero. The set
Lo (2, A, ) is the set of equivalence classes of measurable functions f : Q@ —
R (C) whose absolute values are bounded almost everywhere.

The most classical example of an L,-metric is dy, on the set L,(£2, A, p),
where €2 is the open interval (0, 1), A is the Borel o-algebra on (0, 1), and u is
the Lebesgue measure. This metric space is abbreviated by L, (0, 1) and is called
L,(0, 1)-space.

In the same way, one can define the L,-metric on the set Cj, ) of all real
(complex) continuous functions on [a, b]: 1, (f, 8) = ( /. Ib |f(x)—g(x) |de)%. For
p = 00, dr(f, g = max,<,<p |f(x) — g(x)|. This metric space is abbreviated
by Cy, , and is called C}, -space.

If Q = N, A = 2% s the collection of all subsets of 2, and j is the cardinality
measure (i.e., L(A) = |A| if A is a finite subset of €2, and (A) = oo, otherwise),
then the metric space (L,(£2,2%,|.|), dp,) coincides with the space [7°.

If Q = V, is a set of cardinality n, A = 2V and W is the cardinality measure,
then the metric space (L,(V,, 2", |.]), d,) coincides with the space /.

* Dual metrics

The [,-metric and the [,-metric, 1 < p,g < oo, are called dual if
I/p+1/q=1.

In general, when dealing with a normed vector space (V,||.||v), one is
interested in the continuous linear functionals from V into the base field (R or
C). These functionals form a Banach space (V', ||.||y/), called the continuous
dual of V. The norm ||.||y» on V' is defined by [|T||y» = supy, <i [T()].

The continuous dual for the metric space [ (1;°) is [ (17°, respectively). The
continuous dual of [} (I{°) is I (IS, respectively). The continuous duals of the
Banach spaces C (consisting of all convergent sequences, with /,-metric) and
Cy (consisting of the sequences converging to zero, with /..-metric) are both
naturally identified with {°.

e Inner product space

An inner product space (or pre-Hilbert space) is a metric space (V, ||x —y||)
on a real (complex) vector space V with an inner product (x,y) such that the
norm metric ||x—y|| is constructed using the inner product norm ||x|| = /{x, x).

An inner product (,) on a real (complex) vector space V is a symmetric
bilinear (in the complex case, sesquilinear) form on V, i.e., a function (,) :
V x V — R (C) such that, for all x,y,z € V and for all scalars «, 8, we have
the following properties:

1. (x,x) > 0, with (x,x) = 0 if and only if x = 0;
2. {x,y) = (y, x), where the bar denotes complex conjugation,;
3. (ax + By, z) = alx.2) + B(y.2).
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For a complex vector space, an inner product is called also a Hermitian inner
product, and the corresponding metric space is called a Hermitian inner product
space.

A norm ||.|| in a normed space (V,||.||) is generated by an inner product if
and only if, for all x,y € V, we have: ||x + y||? + ||x — y||* = 2(||x|1* + ||y]|?)-
In an inner product space, the triangle equality (Chap. 1) ||x — y|| = ||x|| +

|[y1], for x,y # 0, holds if and only if i = ﬁ, ie,x—ye€xy.
* Hilbert space

A Hilbert space is an inner product space which, as a metric space, is
complete. More precisely, a Hilbert space is a complete metric space (H, ||x—y||)
on a real (complex) vector space H with an inner product {, ) such that the norm
metric ||x — y|| is constructed using the inner product norm ||x|| = +/{x, x). Any
Hilbert space is a Banach space.

An example of a Hilbert space is the set of all sequences x = {x,}, of
real (complex) numbers such that Y 0, |x;|> converges, with the Hilbert metric
defined by

O -
i=1

Other examples of Hilbert spaces are any L,-space, and any finite-dimensional
inner product space. In particular, any Euclidean space is a Hilbert space.

A direct product of two Hilbert spaces is called a Liouville space (or line
space, extended Hilbert space).

Given an infinite cardinal number t and a set A of the cardinality t, let R,,
a € A, be the copies of R. Let H(A) = {{x,} € [[,ecqaRa: >, x2 < o0o}; then
H(A) with the metric defined for {x,}, {y,} € H(A) as

O~y

a€A

is called the generalized Hilbert space of weight t.
* Erdos space

The Erdos space (or rational Hilbert space) is the metric subspace of I,
consisting of all vectors in /; with only rational coordinates. It has topological
dimension 1 and is not complete. Erdos space is homeomorphic to its countable
infinite power, and every nonempty open subset of it is homeomorphic to whole
space.

The complete Erdos space (or irrational Hilbert space) is the complete
metric subspace of I, consisting of all vectors in /, the coordinates of which
are all irrational.
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Riesz norm metric
A Riesz space (or vector lattice) is a partially ordered vector space (Vg;, <) in
which the following conditions hold:

1. The vector space structure and the partial order structure are compatible, i.e.,
from x < y it follows that x + z < y + z, and fromx > 0,a € R,a > 0 it
follows that ax > 0;

2. For any two elements x,y € Vg;, there exist the join x V y € Vg; and meet
x Ay € Vg; (cf. Chap. 10).

The Riesz norm metric is a norm metric on V; defined by

[lx = yllri,

where ||.||r; is a Riesz norm on Vpg;, i.e., a norm such that, for any x,y € Vg;, the
inequality |x| < [y|, where |x| = (—x) V (x), implies ||x||z; < ||y||ri-

The space (Vi ||.||r) is called a normed Riesz space. In the case of
completeness, it is called a Banach lattice.
Banach—-Mazur compactum

The Banach-Mazur distance dg) between two n-dimensional normed

spaces (V,||.||lv) and (W, ||.||w) is defined by
mninf] 7] |77"]]

where the infimum is taken over all isomorphisms 7 : V — W. It is a metric
on the set X" of all equivalence classes of n-dimensional normed spaces, where
V ~ W if and only if they are isometric. Then the pair (X", dpy) is a compact
metric space which is called the Banach—-Mazur compactum.
Quotient metric

Given a normed space (V, ||.||v) with a norm ||.||y and a closed subspace W
of V,let (V/W,||.||v/w) be the normed space of cosets x+ W = {x+w:w € W},
x € V, with the quotient norm ||x + W||y;w = infyew ||x + wl|v.

The quotient metric is a norm metric on V /W defined by

1+ W) =+ Wlvw.

Tensor norm metric

Given normed spaces (V,||.||v) and (W, ||.||w), a norm ||.||g on the tensor
product V @ W is called tensor norm (or cross norm) if ||x ® y||e = ||1x||v||y||w
for all decomposable tensors x ® y.

The tensor product metric is a norm metric on V ® W defined by

llz = 1lle-
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Foranyz e VQ W,z = Zj X ®y,x; € V,y; € W, the projective norm (or
m-norm) of z is defined by |[z|l,- = inf Y-, [|x]|v|[y;l|w, where the infimum is
taken over all representations of z as a sum of decomposable vectors. It is the
largest tensor normon V @ W.
* Valuation metric
A valuation metric is a metric on a field [F defined by

Ilx =yl

where ||.|| is a valuation on F, i.e., a function ||.|| : F — R such that, for all
x,y € F, we have the following properties:

1. ||x|| = O, with ||x|| = 0 if and only if x = 0;

2. lxyll = {Ix[ Iyl
3. |lx+ || = |Ix[| + |lyl| (triangle inequality).

If ||x+y|| < max{||x||, ||y||},the valuation ||.|| is called non-Archimedean.In this
case, the valuation metric is an ultrametric. The simplest valuation is the zrivial
valuation ||.||»: ||0]]» = 0, and ||x||,- = 1 for x € F\{0}. It is non-Archimedean.

There are different definitions of valuation in Mathematics. Thus, the function
v : F — R U {oo} is called a valuation if v(x) > 0, v(0) = oo, v(xy) =
v(x) + v(y), and v(x + y) > min{v(x), v(y)} for all x,y € F. The valuation ||.||
can be obtained from the function v by the formula ||x|| = "™ for some fixed
0 < o < 1 (cf. p-adic metric in Chap. 12).

The Kiirschdk valuation |.|g,s is a function |.|g,s : F — R such that |x|gs > 0,
|x|grs = 0 if and only if x = 0, |xy|ks = |Xl&es|V|&rs, and |x + Y]y <
C max{|x|kss, |y|kisy for all x,y € F and for some positive constant C, called
the constant of valuation. If C < 2, one obtains the ordinary valuation ||.|| which
is non-Archimedean if C < 1. In general, any |.|g;s is equivalent to some ||.||,
ie., |.I%,, = .|| for some p > 0.

Finally, given an ordered group (G,-, e, <) equipped with zero, the Krull
valuation is a function |.| : F — G such that |x| = 0 if and only if x = 0,
|xy| = |x||y|, and |x + y| < max{|x|, |y|} for any x,y € F. It is a generalization
of the definition of non-Archimedean valuation ||.|| (cf. generalized metric in
Chap. 3).

* Power series metric
Let F be an arbitrary algebraic field, and let F(x~') be the field of power series

of the formw = a_, X" + -+ oy + a;x ' + ..., € F.Given ! > 1, a non-
Archimedean valuation ||.|| on F{x~!) is defined by
moif w#0,
ol = § 0w 7
0, if w=0.

The power series metric is the valuation metric ||w — v|| on F(x™').




Part I1
Geometry and Distances



Chapter 6
Distances in Geometry

Geometry arose as the field of knowledge dealing with spatial relationships. It was
one of the two fields of pre-modern Mathematics, the other being the study of
numbers.

Earliest known evidence of abstract representation—ochre rocks marked with
cross hatches and lines to create a consistent complex geometric motif, dated
about 75,000 BC—were found in Blombos Cave, South Africa. In modern times,
geometric concepts have been generalized to a high level of abstraction and
complexity.

6.1 Geodesic Geometry

In Mathematics, the notion of “geodesic” is a generalization of the notion of
“straight line” to curved spaces. This term is taken from Geodesy, the science of
measuring the size and shape of the Earth.

Given a metric space (X, d), a metric curve y is a continuous function y : [ —
X, where [ is an interval (i.e., nonempty connected subset) of R. If y is r times
continuously differentiable, it is called a regular curve of class C"; if r = oo, y is
called a smooth curve.

In general, a curve may cross itself. A curve is called a simple curve (or arc, path)
if it does not cross itself, i.e., if it is injective. A curve y : [a,b] — X is called a
Jordan curve (or simple closed curve) if it does not cross itself, and y(a) = y(b).

The length (which may be equal to co) I(y) of a curve y : [a,b] — X is
defined by sup Y ', d(y(ti—1), y(t;)), where the supremum is taken over all finite
decompositionsa =ty <t <...<t, =b,neN,of [a,b].

A curve with finite length is called rectifiable. For each regular curve y : [a, b] —
X define the natural parameter s of y by s = s(f) = I(y|[a,7), where I(y|[..q) is the
length of the part of y corresponding to the interval [a, #]. A curve with this natural
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parametrization y = y(s) is called of unit speed, (or parametrized by arc length,
normalized); in this parametrization, for any t,,#, € I, one has I(y |y, 1)) = |2 — t1],
and [(y) = |b—a|.

The length of any curve y : [a,b] — X is at least the distance between its
endpoints: I(y) > d(y(a), y(b)). The curve y, for which I(y) = d(y(a), y(D)), is
called the geodesic segment (or shortest path) from x = y(a) toy = y(b), and
denoted by [x, y].

Thus, a geodesic segment is a shortest join of its endpoints; it is an isometric
embedding of [a, b] in X. In general, geodesic segments need not exist, unless the
segment consists of one point only. A geodesic segment joining two points need not
be unique.

A geodesic (Chap. 1) is a curve which extends indefinitely in both directions and
behaves locally like a segment, i.e., is everywhere locally a distance minimizer.

More exactly, a curve y : R — X, given in the natural parametrization, is called
a geodesic if, for any t € R, there exists a neighborhood U of t such that, for any
ti,t € U, we have d(y(t1),y(t2)) = |t1 — t2|. Thus, any geodesic is a locally
isometric embedding of the whole of R in X.

A geodesic is called a metric straight line if the equality d(y (¢1), y(2)) = |t1 —
tp| holds for all 71,7, € R. Such a geodesic is an isometric embedding of the whole
real line R in X. A geodesic is called a metric great circle if it is an isometric
embedding of a circle S' (0, ) in X. In general, geodesics need not exist.

¢ Geodesic metric space

A metric space (X, d) is called geodesic if any two points in X can be joined
by a geodesic segment, i.e., for any two points x,y € X, there is an isometry
from the segment [0, d(x, y)] into X. Examples of geodesic spaces are complete
Riemannian spaces, Banach spaces, metric graphs from Chap. 15 and (Ivanov—
Nikolaeva—Tuzhilin, 2015) Gromov—Hausdorff space.

A metric space (X,d) is called a locally geodesic metric space if any two
sufficiently close points in X can be joined by a geodesic segment; it is called D-
geodesic if any two points at distance < D can be joined by a geodesic segment.

* Geodesic distance

The geodesic distance (or shortest path distance) is the length of a geodesic

segment (i.e., a shortest path) between two points.
* Intrinsic metric

Given a metric space (X,d) in which every two points are joined by a
rectifiable curve, the internal metric (Chap.4) D on X is defined as the infimum
of the lengths of all rectifiable curves, connecting two given points x,y € X.

The metric d on X is called the intrinsic metric (or length metric) if it
coincides with its internal metric D. A metric space with the intrinsic metric
is called a length space (or path metric space, inner metric space, intrinsic
space).

If, moreover, any pair x, y of points can be joined by a curve of length d(x, y),
the intrinsic metric d is called strictly intrinsic, and the length space (X, d) is a
geodesic metric space (or shortest path metric space).
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A complete metric space (X,d) is a length space if and only if it is having
approximate midpoints, i.e., for any points x,y € X and for any € > 0, there
exists a third point z € X with d(x, 2),d(y,z) < %d(x, y) + €. A complete metric
space (X, d) is a geodesic metric space if and only if it is having midpoints.

Any complete locally compact length space is a proper geodesic metric space.

* G-space

A G-space (or space of geodesics) is a metric space (X, d) with the geometry
characterized by the fact that extensions of geodesics, defined as locally shortest
lines, are unique. Such geometry is a generalization of Hilbert Geometry (see
[Buse55)).

More exactly, a G-space (X, d) is defined by the following conditions:

. Itis proper (or finitely compact), i.e., all metric balls are compact;
. It is Menger-convex, i.e., for any different x, y € X, there exists a third point
z€ X,z # x,y, such that d(x, z) + d(z,y) = d(x,y);

3. It is locally extendable, i.e., for any a € X, there exists r > 0 such that, for
any distinct points x, y in the ball B(a, r), there exists z distinct from x and y
such that d(x,y) + d(y,z) = d(x, 2);

4. Tt is uniquely extendable, i.e., if in 3 above two points z; and z, were found,

so that d(y, z;) = d(y, z2), then z; = z,.

N =

The existence of geodesic segments is ensured by finite compactness and
Menger-convexity: any two points of a finitely compact Menger-convex set X
can be joined by a geodesic segment in X. The existence of geodesics is ensured
by the axiom of local prolongation: if a finitely compact Menger-convex set X
is locally extendable, then there exists a geodesic containing a given segment.
Finally, the uniqueness of prolongation ensures the assumption of Differential
Geometry that a line element determines a geodesic uniquely.

All Riemannian and Finsler spaces are G-spaces. A 1D G-space is a metric
straight line or metric great circle. Any 2D G-space is a topological manifold
(Chap. 2).

Every G-space is a chord metric space, i.e., a metric space with a set
distinguished geodesic segments such that any two points are joined by a unique
such segment (see [BuPh87]).

» Desarguesian space

A Desarguesian space is a G-space (X, d) in which the role of geodesics is
played by ordinary straight lines. Thus, X may be topologically mapped into a
projective space RP" so that each geodesic of X is mapped into a straight line of
RP".

Any X mapped into RP" must either cover all of RP" and, in such a case,
the geodesics of X are all metric great circles of the same length, or X may be
considered as an open convex subset of an affine space A”.

A space (X,d) of geodesics is a Desarguesian space if and only if the
following conditions hold:
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1. The geodesic passing through two different points is unique;
2. For dimension n = 2, both the direct and the converse Desargues theorems
are valid and, for dimension n > 2, any three points in X lie in one plane.

Among Riemannian spaces, the only Desarguesian spaces are Euclidean, hyper-
bolic, and elliptic spaces. An example of the non-Riemannian Desarguesian
space is the Minkowskian space which can be regarded as the prototype of all
non-Riemannian spaces, including Finsler spaces.

* G-space of elliptic type

A G-space of elliptic type is a G-space in which the geodesic through two
points is unique, and all geodesics are the metric great circles of the same length.

Every G-space such that there is unique geodesic through each given pair of
points is either a G-space of elliptic type, or a straight G-space.

e Straight G-space

A straight G-space is a G-space in which extension of a geodesic is possible
globally, so that any segment of the geodesic remains a shortest path. In other
words, for any two points x,y € X, there is a unique geodesic segment joining x
to y, and a unique metric straight line containing x and y.

Any geodesic in a straight G-space is a metric straight line, and is uniquely
determined by any two of its points. Any such 2D space is homeomorphic to the
plane.

All simply connected Riemannian spaces of nonpositive curvature (including
Euclidean and hyperbolic spaces), Hilbert geometries, and Teichmiiller spaces of
compact Riemann surfaces of genus g > 1 (when metrized by the Teichmiiller
metric) are straight G-spaces.

¢ Gromov hyperbolic metric space

A metric space (X, d) is called Gromov hyperbolic if it is geodesic and -
hyperbolic for some § > 0.

An important class of such spaces are the hyperbolic groups, i.e., finitely
generated groups whose word metric is Gromov hyperbolic. A metric space is a
real tree exactly when it is 0-hyperbolic.

Every bounded metric space X is (diam(X,d))-hyperbolic. A normed vector
space is Gromov hyperbolic if and only it has dimension 1. Any complete simply
connected Riemannian space of sectional curvature k < —a> < 0is %-
hyperbolic. Every CAT(x) space with x < 0 is Gromov hyperbolic.

e CAT(x) space

Let (X, d) be a metric space. Let M? be a simply connected 2D Riemannian
manifold (Chap. 7) of constant curvature k, i.e., the 2-sphere S,% with k > 0, the
Euclidean plane E? with k = 0, or the hyperbolic plane H> with k < 0. Let Dy
denote the diameter of M2, i.e., D, = JLE ifk >0,and D, = oo ifk < 0.

A triangle T in X consists of three points in X together with three geodesic
segments joining them pairwise; the segments are called the sides of the triangle.
For a triangle T C X, a comparison triangle for T in M? is a triangle 7" C M?
together with a map fr which sends each side of T isometrically onto a side of
T'. A triangle T is said (Gromov, 1987) to satisfy the CAT (k) inequality (for
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Cartan, Alexandrov and Toponogov) if, for every x,y € T, we have

d(x,y) = dyp (fr (). fr(y)).

where fr is the map associated to a comparison triangle for T in M?. So, the
geodesic triangle T is at least as “thin” as its comparison triangle in M?.

The metric space (X, d) is a CAT(x) space if it is D,-geodesic (i.e., any two
points at distance < D, can be joined by a geodesic segment), and all triangles T
with perimeter < 2D, satisfy the CAT(k) inequality.

Every CAT (k) space is a CAT(x3) space if k; < k,. Every real tree is a
CAT(—o0) space, i.e., is a CAT (k) space for all k € R.

A locally CAT(x) space (called metric space with curvature < « in
Alexandrov, 1951) is a metric space (X, d) in which every point p € X has a
neighborhood U such that any two points x,y € U are connected by a geodesic
segment, and the CAT(«) inequality holds for any x,y,z € U. A Riemannian
manifold is locally CAT (k) if and only if its sectional curvature is at most k.

A metric space with curvature > « is (Alexandrov, 1951) a metric space
(X,d) in which every p € X has a neighborhood U such that any x,y € U are
connected by a geodesic segment, and the reverse CAT(k ) inequality

d(x,y) = dyp (fr (%), fr(y))

holds for any x, y, z € U, where fr is the map associated to a comparison triangle
for T 'in M. It is a generalized Riemannian space (Chap. 7).

Above two definitions differ only by the sign of d(x,y) — dyp(fr(x),fr(y)).
In the case k = 0, the above spaces are called nonpositively curved and
nonnegatively curved metric spaces, respectively. For complete metric spaces,
they differ also (Bruhat-Tits, 1972) by the sign (< 0 or > 0, respectively) of

F(xv Y, Z) = 4d2(Zs m(xv y)) - (dz(Zs X) + dz(zv y) - dz(xs )’))s

where x,y,z are any three points and m(x,y) is the midpoint of the metric
interval /(x, y). A complete CAT(0) space is called Hadamard space.

The inequality F(x,y,z) < O for all x,y,z € X, characterizing Hadamard
spaces, is called semiparallelogram inequality, because the usual vector paral-
lelogram law ||u — v||® + ||u + v||> = 2||u||* + 2||v||?, characterizing norms
induced by inner products, is equivalent to the equality F(x,y,z) = 0. A normed
space is an Hadamard space if and only if it is a Hilbert space.

Every two points in an Hadamard space are connected by a unique geodesic
(and hence unique shortest path), while in a general CAT(0) space, they are
connected by a unique geodesic segment, and the distance is a convex function.

Foertsch—Lytchack—Schroeder, 2007, proved that a metric space is CAT(0) if
and only if it is Busemann convex and Ptolemaic; cf. Chap. 1. Euclidean spaces,
hyperbolic spaces, and trees are CAT(0) spaces.
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e §-bolic metric space
Given a number § > 0, a metric space (X, d) is called §-bolic (Kasparov—
Skandalis, 1994, simplified by Bucher—Karlsson, 2002) if for any x, y,z € X and
some function m : X x X — X, it holds

2d(z, m(x,y)) < v2d2(z,x) + 2d%(z.y) — d®(x. y) + 28.

A §-hyperbolic space with approximate §-midpoints (Chap. 1) is %-bolic.

Every CAT(0)-space is §-bolic for any § > 0; for complete spaces the converse
holds as well. An /,-metric space of dimension > 1 is §-bolic for any § > 0 only
ifp=2.

* Boundary of metric space

There are many notions of the boundary dX of a metric space (X, d). We
give below some of the most general among them. Usually, if (X, d) is locally
compact, X U dX is its compactification.

1. Ideal boundary (or boundary at co). Given a geodesic metric space (X, d),
let y! and y? be two metric rays, i.e., geodesics with isometry of Rx( into
X. These rays are called equivalent if the Hausdorff distance between them
(associated with the metric d) is finite, i.e., if sup,..o d(y'(¢), y(t)) < oo.

The ideal boundary of (X, d) is the set dooX of equivalence classes Yoo Of
all metric rays. Cf. asymptotic metric cone (Chap. 1).

If (X, d) is a complete CAT(0) space, then the Tits metric (or asymptotic
angle of divergence) on 30X is defined by 2 arcsin (£) forall ., y2, € 000X,
where p = limi—oe0 +d(y' (7). Y2(#)). The set 30X equipped with the Tits
metric is called the Tits boundary of X.

If (X,d,xp) is a pointed complete CAT(—1) space, then the Bourdon
metric (or visual distance) on d,,X is defined, for any distinct x,y € 0ooX,
by =™, where (x.y) denotes the Gromov product (x.y),,.

The visual sphere of (X, d) at a point xy € X is the set of equivalence
classes of all metric rays emanating from xy.

2. Gromov boundary. Given a pointed metric space (X, d, xy) (i.e., one with
a selected base point xp € X), the Gromov boundary of it (as generalized
by Buckley and Kokkendorff, 2005, from the case of the Gromov hyperbolic
space) is the set dgX of equivalence classes of Gromov sequences.

A sequence x = {x,}, in X is a Gromov sequence if the Gromov product
(xi.xj)x, — oo as i,j — oo. Two Gromov sequences x and y are equivalent
if there is a finite chain of Gromov sequences X, 0 < k < K, such that
x=x"y =", and lim;; o0 inf(x~! ) = oo for 0 <k < ¥.

In a proper geodesic Gromov hyperbolic space (X, d), the visual sphere
does not depends on the base point xp and is naturally isomorphic to its
Gromov boundary dgX which can be identified with 050 X.

3. g-boundary. Denote by X, the metric completion of (X, d) and, viewing X as
a subset of X, denote by X, the difference X,\X. Let (X, [, xo) be a pointed
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unbounded length space, i.e., its metric coincides with the internal metric /
of (X,d). Given a measurable function g : R>9 — R, the g-boundary of
(X, d, xp) (as generalized by Buckley—Kokkendorff, 2005, from spherical and
Floyd boundaries) is 0,X = 0X,\0X;, where o (x,y) = inf fy 8(2)dl(z) for all
x,y € X (here the infimum is taken over all metric segments y = [x, y]).

4. Hotchkiss boundary. Given a pointed proper Busemann convex metric
space (X,d,xo), the Hotchkiss boundary of it is the set dy(X,xy) of
isometries f : R>o — X with f(0) = xo. The boundaries ;)X and 9 X are
homeomorphic for distinct xo, x; € X. In a Gromov hyperbolic space, 9, X is
homeomorphic to the Gromov boundary dgX.

5. Metric boundary. Given a pointed metric space (X, d, xo) and an unbounded
subset S of R>¢, aray y : S — X is called a weakly geodesic ray if, for every
x € X and every € > 0, there is an integer N such that |d(y(7), y(0)) — 1] < €,
and |d(y(f),x) —d(y(s),x) — (t—s)| < e forall s,¢t € T with s, > N.

Let G(X,d) be the commutative unital C*-algebra with the norm ||.]|cc,
generated by the (bounded, continuous) functions which vanish at infinity, the
constant functions, and the functions of the form g,(x) = d(x, x9) — d(x,y);
cf. Rieffel metric space in Chap. 7 for definitions.

The Rieffel’s metric boundary dgX of (X, d) is the difference X’ \X, where

X" is the metric compactification of (X, d), i.e., the maximum ideal space (the
set of pure states) of this C*-algebra.

For a proper metric space (X,d) (Chap.1) with a countable base, the
boundary dgX consists of the limits lim,— . f(y (7)) for every weakly geodesic
ray y and every function f from the above C*-algebra (Rieffel, 2002).

* Projectively flat metric space
A metric space, in which geodesics are defined, is called projectively flat if
it locally admits a geodesic mapping (or projective mapping), i.e., a mapping
preserving geodesics into an Euclidean space. Cf. Euclidean rank of metric
space in Chap. 1; similar terms are: affinely flat, conformally flat, etc.
A Riemannian space is projectively flat if and only if it has constant (sectional)
curvature. Cf. flat metric in Chap. 8.

6.2 Projective Geometry

Projective Geometry is a branch of Geometry dealing with the properties and
invariants of geometric figures under projection. Affine Geometry, Metric Geometry
and Euclidean Geometry are subsets of Projective Geometry of increasing com-
plexity. The main invariants of Projective, Affine, Metric, Euclidean Geometry are,
respectively, cross-ratio, parallelism (and relative distances), angles (and relative
distances), absolute distances.
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An n-dimensional projective space FP" is the space of one-dimensional vector
subspaces of a given (n + 1)-dimensional vector space V over a field F. The basic
construction is to form the set of equivalence classes of nonzero vectors in V
under the relation of scalar proportionality. This idea goes back to mathematical
descriptions of perspective.

The use of a basis of V allows the introduction of homogeneous coordinates of
a point in FP" which are usually written as (x; : xp © ... I X, ! X,41)—a vector
of length n + 1, other than (0 : 0 : 0 : ... : 0). Two sets of coordinates that are
proportional denote the same point of the projective space. Any point of projective
space which can be represented as (x; : x : ... : x, : 0) is called a point at
infinity. The part of a projective space FP" not “at infinity” , i.e., the set of points
of the projective space which can be represented as (x; : xp : ... : x, : 1), is an
n-dimensional affine space A".

The notation RP" denotes the real projective space of dimension 7, i.e., the space
of 1D vector subspaces of R"*!. The notation CP" denotes the complex projective
space of dimension n. The projective space RP" carries a natural structure of a
compact smooth n-manifold. It can be viewed as the space of lines through the
zero element 0 of R™t! (i.e., as a ray space). It can be viewed also as the set R”,
considered as an affine space, together with its points at infinity. Also it can be seen
as the set of points of an n-sphere in R"*! with identified diametrically-opposite

points.
The projective points, projective straight lines, projective planes, ..., projective
hyperplanes of FP" are one-, two-, three-, ..., n-dimensional subspaces of V,

respectively. Any two projective straight lines in a projective plane have one and
only one common point. A projective transformation (or collineation, projectivity)
is a bijection of a projective space onto itself, preserving collinearity (the property
of points to be on one line) in both directions. Any projective transformation is a
composition of a pair of perspective projections. Projective transformations do not
preserve sizes or angles but do preserve type (that is, points remain points, and lines
remain lines), incidence (that is, whether a point lies on a line), and cross-ratio
(Chap. 1).

Here, given four collinear points x,y,z,¢ € FP", their cross-ratio (x,y, z,17) is
%, where % denotes the ratio ?8:?8 for some affine bijection f from the
straight line /., through the points x and y onto [F.

Given four projective straight lines [/, [, ], containing points x,y,z,t,
respectively, and passing through a given point, their cross-ratio (I, /,,[;,[;) is

sin(ly,l;) sin(ly,l;) .. . .
m, coincides with (x,y, z,t). The cross-ratio (x,y, z, ) of four complex
x=2)—=1)

numbers X, y, z,t is =01 " It is real if and only if the four numbers are either
collinear or concyclic.

¢ Projective metric
Given a convex subset D of a projective space RP”", the projective metric
d is a metric on D such that shortest paths with respect to this metric are parts
of or entire projective straight lines. It is assumed that the following conditions
hold:
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1. D does not belong to a hyperplane;

2. For any three noncollinear points x,y,z € D, the triangle inequality holds in
the strict sense: d(x,y) < d(x,z) + d(z,);

3. If x,y are different points in D, then the intersection of the straight line
through x and y with D is either all of /; ,, and forms a metric great circle, or
is obtained from /., by discarding some segment (which can be reduced to a
point), and forms a metric straight line.

The metric space (D, d) is called a projective metric space. The problem
of determining all projective metrics on R” (called linearly additive metrics in
Chap. 1) is the 4-th problem of Hilbert; it has been solved only for n = 2. In fact,
given a smooth measure on the space of hyperplanes in RP", define the distance
between any two points x,y € RP" as one-half the measure of all hyperplanes
intersecting the line segment joining x and y. The obtained metric is projective; it
is the Busemann’s construction of projective metrics. [Amba76] proved that all
projective metrics on R? can be obtained by this construction.

In a projective metric space there cannot simultaneously be both types of
straight lines: they are either all metric straight lines, or they are all metric great
circles of the same length (Hamel’s theorem). Spaces of the first kind are called
open. They coincide with subspaces of an affine space; the geometry of open
projective metric spaces is a Hilbert Geometry. Hyperbolic Geometry is a Hilbert
Geometry in which there exist reflections at all straight lines.

Thus, the set D has Hyperbolic Geometry if and only if it is the interior
of an ellipsoid. The geometry of open projective metric spaces whose subsets
coincide with all of affine space, is a Minkowski Geometry. Euclidean Geometry
is a Hilbert Geometry and a Minkowski Geometry, simultaneously. Spaces of
the second kind are called closed; they coincide with the whole of RP". Elliptic
Geometry is the geometry of a projective metric space of the second kind.

* Strip projective metric

The strip projective metric ([BuKe53]) is a projective metric on the strip

St ={x € R?: —m/2 < x, < /2} defined by

\/(xl —y1)% + (x2 — y2)? + | tanx, — tan ys|.

The Euclidean metric \/ (x1 —¥1)? + (x2 — y2)? is not a projective metric on Sz.
» Half-plane projective metric
The half-plane projective metric ([BuKe53]) is a projective metric on
R2Z = {x € R? : x, > 0} defined by

1
)’2‘

N e 'i -
X

* Hilbert projective metric
Given a set H, the Hilbert projective metric / is a complete projective
metric on H. It means that H contains, together with two arbitrary distinct
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points x and y, also the points z and ¢ for which h(x,z) + h(z,y) = h(x,y),
h(x,y) + h(y,t) = h(x,t), and that H is homeomorphic to a convex set in an
n-dimensional affine space A”, the geodesics in H being mapped to straight lines
of A"

The metric space (H,h) is called the Hilbert projective space, and the
geometry of a Hilbert projective space is called Hilbert Geometry.

Formally, let D be a nonempty convex open set in A” with the boundary 0D
not containing two proper coplanar but noncollinear segments (ordinarily the
boundary of D is a strictly convex closed curve, and D is its interior). Letx,y € D
be located on a straight line which intersects dD at z and ¢, z is on the side of
v, and ¢ is on the side of x. Then the Hilbert projective metric z on D is the
symmetrization of the Funk distance (Chap. 1):

X—2Z

1 —t 1
h(x,y) = 3 (ln +1n x_) = Eln(x, v,2,1),

y—z y—1t

where (x, y, z, t) is the cross-ratio of x, y, z, 1.

The metric space (D, h) is a straight G-space. If D is an ellipsoid, then 4 is
the hyperbolic metric, and defines Hyperbolic Geometry on D. On the unit disk
A = {z € C : |z] < 1} the metric h coincides with the Cayley—Klein—-Hilbert
metric. If n = 1, the metric 2 makes D isometric to the Euclidean line.

If D contains coplanar but noncollinear segments, a projective metric on D
can be given by h(x,y) + d(x,y), where d is any Minkowskian metric.

* Minkowskian metric

The Minkowskian metric (or Minkowski—-Holder distance) is the norm
metric of a finite-dimensional real Banach space.

Formally, let R” be an n-dimensional real vector space, let K be a symmetric
convex body in R", i.e., an open neighborhood of the origin which is bounded,
convex, and symmetric (x € K if and only if —x € K). Then the Minkowski
distance function ||x|[x : R” — [0, 00), defined as inf{a > 0 : £ € 9K} (cf.
Chap. 1), is a norm on R", and the Minkowskian metric mg on R” is defined by

mg(x,y) = [|x — y||k.

The metric space (R, m) is called Minkowskian space; its geometry is Minkowski
Geometry. It can be seen as an affine space A" with a metric m in which the
unit ball is the body K. For a strictly convex symmetric body the Minkowskian
metric is a projective metric, and (R", m) is a G-straight space. A Minkowski
Geometry is Euclidean if and only if its unit sphere is an ellipsoid.

The Minkowskian metric m is proportional to the Euclidean metric dg on
every given line [, i.e., m(x,y) = ¢(I)dg(x,y). Thus, the Minkowskian metric
can be considered as a metric which is defined in the whole affine space A" and

ac

has the property that the affine ratio 7 of any three collinear points a, b, c¢ (cf.

Sect. 6.3) is equal to their distance ratio %
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Given a convex body C in a Minkowskian space with unit ball K, the
Minkowskian thickness and Minkowskian diameter of C are (Averkov, 2003):

sup{e > 0: K C C—C} and inf{a >0:C— C C aK}.

e (-distance
Given a convex body C C E", the C-distance (or relative distance; Lassak,
1991) is a distance on E” defined, for any x,y € E”", by

dE(xv y)
de(x,y) =2—————,
clx.y) de(x',y)

where x'y is the longest chord of C parallel to the segment xy. C-distance is not
related to C-metric in Chap. 10 and to rotating C-metric in Chap. 26.
The unit ball of the normed space with the norm ||x|| = d¢(x, 0) is %(C —-0).
For every r € [—1, 1], it holds d¢(x,y) = d,c+(1_,)(_c)(x, y).
* Busemann metric
The Busemann metric ([Buse55]) is a metric on the real n-dimensional
projective space RP" defined by

n+1 X Vi n+1 - Vi
. 1 1 1 1
min _— =, _— 4+ =
{; el T ; EIRRE
forany x = (x1 @ ... @ X41),y = O1 ¢ ... Yut1) € RP", where ||x|| =

PRALETE
¢ Flag metric
Given an n-dimensional projective space IFP", the flag metric d is a metric on
FP" defined by a flag, i.e., an absolute consisting of a collection of m-planes «,y,,
m=0,...,n—1, with o;_; belonging to «; for alli € {1,...,n— 1}. The metric
space (FP", d) is abbreviated by F" and is called a flag space.
If one chooses an affine coordinate system (x;); in a space F”, so that the
vectors of the lines passing through the (n —m — 1)-plane «,,—,,—; are defined by
the condition x; = ...x, = 0, then the flag metric d(x, y) between the points

x=(x1,...,x,) andy = (y1,...,Yy,) is defined by
dx,y) = |xi = yil, if xi # y1, dxy) = [x2 = y2|, if x1 = yr.x0 # ¥, ...
e ,d(x,y) = |Xk —yk|, ifxl = Viseoos Xk—1 = Yi—1,Xk 7é Vis oo
¢ Projective determination of a metric
The projective determination of a metric is an introduction, in subsets of

a projective space, of a metric such that these subsets become isomorphic to a
Euclidean, hyperbolic, or elliptic space.
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To obtain a Euclidean determination of a metric in RP", one should distin-
guish in this space an (n— 1)-dimensional hyperplane 7, called the hyperplane at
infinity, and define E” as the subset of the projective space obtained by removing
from it this hyperplane 7. In terms of homogeneous coordinates, 7 consists of
all points (x; : ... : x, : 0), and E" consists of all points (xj : ... : x, : X,+1) With
Xn+1 7 0. Hence, it can be written as E" = {x e RP" : x = (x1 : ... : x, : 1)}
The Euclidean metric dg on E” is defined by

Vv (x—y,x—y),

where, forany x = (x; : ... 1 x, 0 1),y = (y1 : ... :y, : 1) € E*, one has
(. y) = 2o X

To obtain a hyperbolic determination of a metric in RP", a set D of interior
points of a real oval hypersurface Q2 of order two in RP" is considered. The
hyperbolic metric dj,, on D is defined by

r
E' ln(x,y, Z, t)lv

where z and ¢ are the points of intersection of the straight line I, , through the
points x and y with 2, (x, y, z, ?) is the cross-ratio of the points x, y, z,#, and r > 0
is a fixed constant. If, forany x = (x; : ... : X41),y= (V1 ¢ ... Yut1) € RP",
the scalar product (x,y) = —x1y; + 27:21 x;y; is defined, the hyperbolic metric
onthe set D = {x € RP" : (x,x) < 0} can be written, for a fixed constant r > 0,
as

|(x. )]
NEERE

where arccosh denotes the nonnegative values of the inverse hyperbolic cosine.

To obtain an elliptic determination of a metric in RP", one should consider,
forany x = (x; : ... X41),y = (V1 ¢ ... I Yut1) € RP", the inner product
(x,y) = Z:‘: 11 x;y;. The elliptic metric d.; on RP" is defined now by

rarccosh

F arccos ————
X

where r > 0 is a fixed constant, and arccos is the inverse cosine in [0, 7].

In all the considered cases, some hypersurfaces of the second-order remain
invariant under given motions, i.e., projective transformations preserving a given
metric. These hypersurfaces are called absolutes. In the case of a Euclidean
determination of a metric, the absolute is an imaginary (n — 2)-dimensional oval
surface of order two, in fact, the degenerate absolute xf +--- +x2n =0,x,41 =0.
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In the case of a hyperbolic determination of a metric, the absolute is a real
(n — 1)-dimensional oval hypersurface of order two, in the simplest case, the
absolute —x7 + x3 + -+ + x>, | = 0. In the case of an elliptic determination of
a metric, the absolute is an imaginary (n — 1)-dimensional oval hypersurface of
order two, in fact, the absolute x7 + -+ + x2, | = 0.

6.3 Affine Geometry

An n-dimensional affine space over a field F is a set A" (the elements of which
are called points of the affine space) to which corresponds an n-dimensional vector
space V over I (called the space associated to A") such that, for any a € A", A =
a+V = {a+ v : v e V} In the other words, if a = (aj,...,a,) and b =
(by,...,b,) € A", then the vector a_l)) = (by—ay,...,b,—a,) belongsto V.

In an affine space, one can add a vector to a point to get another point, and
subtract points to get vectors, but one cannot add points, since there is no origin.

Given points a, b, ¢, d € A" such that ¢ # d, and the vectors ab and cd are collinear,

the scalar A, defined by ab = )tc?i, is called the affine ratio of ab and cd, and is
denoted by ‘S—Z

An affine transformation (or affinity) is a bijection of A" onto itself which
preserves collinearity and ratios of distances In this sense, affine indicates a
special class of projective transformations that do not move any objects from the
affine space to the plane at infinity or conversely. Any affine transformation is a
composition of rotations, translations, dilations, and shears. The set of all affine
transformations of A” forms a group Aff(A"), called the general affine group of A”.
Each element f € Aff(A) can be given by a formula f(a) = b, b; = 27:1 pijaj + cj,
where ((p;)) is an invertible matrix.

The subgroup of Aff(A"), consisting of affine transformations with det((p;)) =
1, is called the equi-affine group of A". An equi-affine space is an affine space with
the equi-affine group of transformations. The fundamental invariants of an equi-
affine space are volumes of parallelepipeds. In an equi-affine plane A%, any two
vectors vy, v; have an invariant |v; X v,| (the modulus of their cross product)—the
surface area of the parallelogram constructed on v; and v,.

Given a nonrectilinear curve y = y(?), its affine parameter (or equi-affine arc
length) is an invariant s = ft; ly" x y"|'/3dt. The invariant k = ‘% X ‘57’3’ is
called the equi-affine curvature of y. Passing to the general affine group, two more
invariants of the curve are considered: the affine arc length o = [ k'/2ds, and the
affine curvature k = # %.

For A", n > 2, the affine parameter (or equi-affine arc length) of acurve y = y(f)
is defined by s = ftf) (/7" ..., y™)| 70 dr, where the invariant (v, . .. , vy)
is the (oriented) volume spanned by the vectors vy, ..., v, which is equal to the
determinant of the n x n matrix whose i-th column is the vector v;.
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Affine distance

Given an affine plane A%, a line element (a, 1,) of A consists of a point a € A?
together with a straight line /, C A? passing through a.

The affine distance is a distance on the set of all line elements of A? defined
by

2,

where, for a given line elements (a,l,) and (b, 1), f is the surface area of the
triangle abc if ¢ is the point of intersection of the straight lines /, and [,. The
affine distance between (a, [,) and (b, [) can be interpreted as the affine length
of the arc ab of a parabola such that /, and [, are tangent to the parabola at a and
b, respectively.
Affine pseudo-distance

Let A% be an equi-affine plane, and let y = y(s) be a curve in A defined as a
function of the affine parameter s. The affine pseudo-distance dp; for A% is

— dy
d a ,b = b e
Pagy (@, b) ab x ds'

i.e., it is equal to the surface area of the parallelogram constructed on the vectors
ab and ‘%, where b is an arbitrary point in A2, a is a point on y, and ‘% is the
tangent vector to the curve y at the point a.

Similarly, the affine pseudo-distance for an equi-affine space A3 is defined as

dy &
‘(—EV y

ab, —, —~
ds’ ds?

)

’

where y = y(s) is a curve in A3, defined as a function of the affine parameter s,

. . 2 . .
beAi aisa point of y, and the vectors %, i—;’ are obtained at the point a.

—> n—1 .
For A", n > 3, we have dp,y(a,b) = |(ab, ‘%, e, [(IM—,IV)L For an arbitrary

— ’
parametrization y = (), one obtains dpugs(a,b) = [(ab,y’, ...,y D)||(¥,
Ly
Affine metric

The affine metric is a metric on a nondevelopable surface r = r(u;, uz) in an
equi-affine space A%, given by its metric tensor ((g;)):

ajj

817 Yder((ag)['7*°

where a; = (017, 021, 9;7), i,j € {1,2}.
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6.4 Non-Euclidean Geometry

The term non-Euclidean Geometry describes both Hyperbolic Geometry (or
Lobachevsky-Bolyai-Gauss Geometry) and Elliptic Geometry which are contrasted
with Euclidean Geometry (or Parabolic Geometry). The essential difference
between Euclidean and non-Euclidean Geometry is the nature of parallel lines.
In Euclidean Geometry, if we start with a line / and a point a, which is not on /, then
there is only one line through a that is parallel to /. In Hyperbolic Geometry there
are infinitely many lines through a parallel to [. In Elliptic Geometry, parallel lines
do not exist. The Spherical Geometry is also “non-Euclidean”, but it fails the axiom
that any two points determine exactly one line.

¢ Spherical metric
Let $*(0,r) = {x € R : Y 7F 2 = 42} be the sphere in R"+! with the
center 0 and the radius r > 0.
The spherical metric (or great circle metric) is a metric on $"(0, r) defined
by

n+1
X
dgpn = rarccos (l iz X0 ) ,
2
where arccos is the inverse cosine in [0, r]. It is the length of the great circle

arc, passing through x and y. In terms of the standard inner product (x,y) =
[ERY]]
) ()
The metric space (S"(0, r), dy,p) is called n-dimensional spherical space. It

is a space of curvature 1/72, and r is the radius of curvature. It is a model of n-
dimensional Spherical Geometry. The great circles of the sphere are its geodesics
and all geodesics are closed and of the same length. See, for example, [Blum70].
 Elliptic metric
Let RP" be the real n-dimensional projective space. The elliptic metric d,; is
a metric on RP" defined by

1 . . .
Z::' | Xiy; on R"*1 the spherical metric can be written as r arccos

| (x, )]
7 arccos ————,
(x.x) (. »)
where, forany x = (x; : ... i xy41)andy = (y1 : ... : yu+1) € RP", one has

(x,y) = Z?:ll x;yi, r > 0 is a constant and arccos is the inverse cosine in [0, 7].

The metric space (RP",d,y) is called n-dimensional elliptic space. 1t is a
model of n-dimensional Elliptic Geometry. It is the space of curvature 1/7%, and
r is the radius of curvature. As r — oo, the metric formulas of Elliptic Geometry
yield formulas of Euclidean Geometry (or become meaningless).

If RP" is viewed as the set E"(0, r), obtained from the sphere S*(0,r) =
{x e R Y2 = 21 in R*H! with center 0 and radius r by identifying
diametrically-opp051te points, then the elliptic metric on E”(0, r) can be written
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as dgpn (x,y) if dgpp(x,y) < 57, and as wr—dgpu(x,y) if dgn(x, y) > Fr, where dgy,
is the spherical metric on 5" (0, r). Thus, no two points of E£"(0, r) have distance
exceeding 7. The elliptic space (E?(0,7), d.y) is called the Poincaré sphere.

If RP" is viewed as the set E" of lines through the zero element 0 in R"*!,
then the elliptic metric on E” is defined as the angle between the corresponding
subspaces.

An n-dimensional elliptic space is a Riemannian space of constant positive
curvature. It is the only such space which is topologically equivalent to a
projective space. See, for example, [Blum70] and [Buse55].

¢ Hermitian elliptic metric

Let CP" be the n-dimensional complex projective space. The Hermitian

elliptic metric le (see, for example, [Buse55]) is a metric on CP" defined by

[(x. )]
V) vy

where, forany x = (x; : ... i xy,41)andy = (y1 ¢ ... : yu+1) € CP", one has
(x,y) = Z?:ll Xyi» r > 0 is a constant and arccos is the inverse cosine in [0, 7].

The metric space (CP", d")) is called n-dimensional Hermitian elliptic space
(cf. Fubini-Study metric in Chap. 7).

 Elliptic plane metric

The elliptic plane metric is the elliptic metric on the elliptic plane RP?.

If RP? is viewed as the Poincaré sphere (i.e., a sphere in R* with identified
diametrically-opposite points) of diameter 1 tangent to the extended complex
plane C = C U {ooc} at the point z = 0, then, under the stereographic projection
from the “north pole” (0,0, 1), C with identified points z and —% is a model of
the elliptic plane.

rarccos

The elliptic plane metric d,;; on it is defined by its line element ds* = %
¢ Pseudo-elliptic distance
The pseudo-elliptic distance (or elliptic pseudo-distance) dp,y is defined, on
the extended complex plane C = C U {oo} with identified points z and —%, by
Z—u
1+7zu

In fact, dp.(z, u) = tand,;(z, u), where d, is the elliptic plane metric.
e Hyperbolic metric
Let RP" be the n-dimensional real projective space. Let, for any x = (x; :
L Xnt1), Y = 1 ... D Yag1) € RP their scalar product (x,y) be —x1y; +

n+1
Zi=2 XiYi-
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The hyperbolic metric dj, is a metric on the set H” = {x € RP" : (x,x) < 0}
defined, for a fixed constant r > 0, by

|(x, )]
Vi) vy

where arccosh denotes the nonnegative values of the inverse hyperbolic cosine.

In this construction, the points of H" can be viewed as the one-spaces of the
pseudo-Euclidean space R™" inside the cone C = {x € R™! : (x,x) = 0}.

The metric space (H", dyy,) is called n-dimensional hyperbolic space. It is a
model of n-dimensional Hyperbolic Geometry. It is the space of curvature —1/72,
and r is the radius of curvature. Replacement of r by ir transforms all metric
formulas of Hyperbolic Geometry into the corresponding formulas of Elliptic
Geometry. As r — 00, both systems yield formulas of Euclidean Geometry (or
become meaningless).

If H" is viewed as the set {x € R" : > x» < K}, where K > 1 is any fixed
constant, the hyperbolic metric can be written as

rlnl—}— VI=yx,y)

2 Ty

(K_Z(}Z:_‘gg (1:}%2:1 ) ,and r > 0 is a number with tanh lr =7
If H" is viewed as a submanifold of the (n+1)-dimensional pseudo-Euclidean
space R™! with the scalar product (x,y) = —x;y; + 27:21 x;y; (in fact, as the
top sheet {x € R™! : (x,x) = —1,x; > 0} of the two-sheeted hyperboloid
of revolution), then the hyperbolic metric on H" is induced from the pseudo-
Riemannian metric on R™! (cf. Lorentz metric in Chap. 26).

An n-dimensional hyperbolic space is a Riemannian space of constant
negative curvature. It is the only such space which is complete and topologically
equivalent to an Euclidean space. (See, for example, [Blum70, Buse55].)

¢ Hermitian hyperbolic metric

Let CP" be the n-dimensional complex projective space. Let, for any x =

1 2o i Xe1),y = 1 1 ... 2 yut1) € CP, their scalar product (x,y) be
- n+1 —
—X1y1 + Zi=2 XiYi-

The Hermitian hyperbolic metric thyp (see, for example, [Buse55]) is a
metric on the set CH" = {x € CP" : (x,x) < 0} defined, for a fixed constant
r > 0, by

rarccosh

1

where y(x,y) =

[(x. )]
V) vy

where arccosh denotes the nonnegative values of the inverse hyperbolic cosine.
The metric space (CH", d}f{vp) is called n-dimensional Hermitian hyperbolic
space.

arccosh




128 6 Distances in Geometry

Poincaré metric

The Poincaré metric dp is the hyperbolic metric for the Poincaré disk model
of Hyperbolic Geometry. In this model the unit disk A = {z € C : |z| < 1} is
called the hyperbolic plane, every point of A is called a hyperbolic point, circular
arcs (and diameters) in A which are orthogonal to the absolute Q@ = {z € C :
|z| = 1} are called hyperbolic straight lines. Every point of 2 is called an ideal
point.

The angular measurements in this model are the same as in Hyperbolic
Geometry, i.e., it iS a conformal model. There is a one-to-one correspondence
between segments and acute angles. The Poincaré metric on A is defined by its
line element

42— |dz]> _ def +dg .
11z (-2 -3

The distance dp between two points z and u of A can be written as

1 |1 —zul+|z—ul |z — u|
—In————"—— = arctanh

2 |l—zul—|z—ul 1—zul’

In terms of cross-ratio, it is equal to

1 1 (=) —u)
~In(z,u,z*,u*) = = In ————— =,
e = N )

where z* and u* are the points of intersection of the hyperbolic straight line
passing through z and u with 2, z* on the side of u, and u* on the side of z.

The multiplicative distance function on the segments zu of A is defined
(Hartshorne, 2003) by u(zu) = (z,u,z*,u*)™"; it allows the definition of
trigonometric functions in the absence of continuity.

In the conformal Poincaré half-plane model of Hyperbolic Geometry the
hyperbolic plane is the upper half-plane H> = {z € C : z5 > 0}, and the
hyperbolic lines are semicircles and half-lines which are orthogonal to the real
axis. The absolute (i.e., the set of ideal points) is the real axis together with the
point at infinity.

The line element of the Poincaré metric on H? is given by

_ldz)*  dg} +d3

ds* = =
(32)? 3

The distance between two points z, u can be written as

— 1 1@ =) —
lz—ul _ ) = 51 S U))

L |z—ul+|z—u| N
2 —wu*—2)’

—1In — = arctanh —
2 |z—ul—|z—u] |z —u
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where z* is the ideal point of the half-line emanating from z and passing through
u, and u™* is the ideal point of the half-line emanating from « and passing through
zZ.

In general, the hyperbolic metric in any domain D C C with at least three
boundary points is defined as the preimage of the Poincaré metric in A under a
conformal mapping f : D — A. Its line element has the form

I () 2ldz]?
ds* = ————_.
P T U-rop?

The distance between two points z and « in D can be written as

L@@+ @) —fw)]
2 1 =f@F @] = ) —f @)

¢ Pseudo-hyperbolic distance
The pseudo-hyperbolic distance (or Gleason distance, iyperbolic pseudo-
distance) dpyy, is a metric on the unit disk A = {z € C : |z| < 1}, defined
by

—Uu

1—7zu

In fact, dppy,(z, u) = tanh dp(z, u), where dp is the Poincaré metric on A.
¢ Cayley—Klein-Hilbert metric

The Cayley—Klein—Hilbert metric dcgy is the hyperbolic metric for the
Klein model (or projective disk model, for Hyperbolic Geometry. In this model
the hyperbolic plane is realized as the unit disk A = {z € C : |z| < 1}, and
the hyperbolic straight lines are realized as the chords of A. Every point of the
absolute Q@ = {z € C : |z] = 1} is called an ideal point. This model is not
conformal: the angular measurements are distorted. The Cayley—Klein—Hilbert
metric on A is given by its metric tensor ((g;)), i,j = 1,2:

’2(1 —Z%) 7211Z2 "2(1 - Z%)

Bll=——5—55,820= —5—55, 82 = —5—5>
(1-22-2)? (1—23—23)? (1-22-2)?

where r is any positive constant. The distance between points z and u in A is

1 —ziur — 22u2
9
\/1—zf—z%\/1—u%—u%

where arccosh denotes the nonnegative values of the inverse hyperbolic cosine.

rarccosh
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Weierstrass metric
Given a real n-dimensional inner product space (R",(,)), n > 2, the
Weierstrass metric dy is a metric on R” defined by

arccosh(v/1 + (x.x)v/1 + (y.y) — (x.y)).

where arccosh denotes the nonnegative values of the inverse hyperbolic cosine.

Here, (x, /1 + (x,x)) € R" @ R are the Weierstrass coordinates of x € R",
and the metric space (R”, dw) can be seen as the Weierstrass model of Hyperbolic
Geometry.

The Cayley—Klein-Hilbert metric d ,y) = arccosh——=t=)

yiey cxn(x.) V= 1=0)
the open ball B* = {x € R" : (x,x) < 1} can be obtained from dy by
dexu(x,y) = dw(u(x), u(y)), where u : R" — B" is the Weierstrass mapping:

X

w) = =y
Harnack metric

Given a domain D C R", n > 2, the Harnack metric is a metric on D defined
by

on

sup | log@L
f JAL))

where the supremum is taken over all positive functions which are harmonic on
D.
Quasi-hyperbolic metric

Given a domain D C R", n > 2, the quasi-hyperbolic metric on D is defined

by
inf/@,
ver y,O(Z)

where the infimum is taken over the set I' of all rectifiable curves connecting x
and y in D, p(z) = inf,egp ||z — ul|2 is the distance between z and the boundary
oD of D, and ||.|| is the Euclidean norm on R".

This metric is Gromov hyperbolic if the domain D is uniform, i.e., there
exist constants C, C’ such that each pair of points x,y € D can be joined by
a rectifiable curve y = y(x,y) € D of length /(y) at most C|x — y|, and
min{l(y(x,z2)),l(y(z,y))} < C'd(z,dD) holds for all z € y. Also, the quasi-
hyperbolic metric is the inner metric (Chap. 4) of the distance ratio metric.

For n = 2, one can define the hyperbeolic metric on D by

, 21f'2)|
) ok
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where f : D — A is any conformal mapping of D onto the unit disk A = {z €
C : |z| < 1}. For n > 3, it is defined only for the half-hyperplane H" and for
the open unit ball B" as the infimum over all y € T of the integrals /. 14l and
Y Zn
f 2|dz|
Y=zl
¢ Apollonian metric

Let D C R”", be a domain such that its complement is not contained in a
hyperplane or a sphere. The Apollonian metric (or Barbilian metric, [Barb35])
on D is defined (denoting the boundary of D by dD) by the cross-ratio as

lla —x||2[|6 — ylI2
sup In .
aveap  |la—=yl2l|b— x|

This metric is Gromov hyperbolic.
¢ Half-Apollonian metric
Given a domain D C R”, the half-Apollonian metric 7, (Histo and Lindén,
2004) on D is defined (denoting the boundary of D by dD) by

lla —ylla

In
lla —x||2

sup
a€dD

This metric is Gromov hyperbolic only if the domain is R"\{x}.
¢ Gehring metric ~
Given a domain D C R", the Gehring metric jp (Gehring, 1982) is a metric

on D, defined by
1 ||x—y||z) ( le—yllz))
—In( {14+ ———— 1+———)),
2 (( p(x) ()

where p(x) = inf,eyp ||x — u||2 is the distance between x and the boundary of D.
This metric is Gromov hyperbolic.
¢ Distance ratio metric
Given a domain D C R", the distance ratio metric (or jp-metric) is
(Gehring—Palka, 1976, and Vuorinen, 1985) a metric on D defined by

|lx —yll2 )
min{p(x), p(y)}
where p(x) = inf,eyp ||x — u||2 is the distance between x and the boundary of D.
This metric is Gromov hyperbolic only if the domain is R"\ {x}.
¢ Triangular ratio metric

Given a domain D C R”", the triangular ratio metric on D is defined
(denoting the boundary of D by dD) by

sup [lx — yll2
ceop ([Ix = zll2 + [y — 2l
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¢ Visual angle metric
Given a domain D C R”, the visual angle metric on D is defined (denoting
the boundary of D by dD) by Klein et al., 2014, as

sup Z(x,z,Y).
z€0D

* Dovgoshev-Hariri—Vuorinen metric
Given a metric space (X, d) and an open set D in it with nonempty boundary
dD, Dovgoshev—Hariri—Vuorinen, 2015, showed that

d ’
m(1+ cd(x,y)
Vd(x,0D)d(y, D)
is a metric for every ¢ > 2 with 2 being the best possible constant.
* Ferrand metric

Given a domain D C R", the Ferrand metric op (Ferrand, 1987) is a metric
on D defined by

- lla — bl
inf sup |dz|,
vel' Jy apeon ||z —all2llz — D2

where the infimum is taken over the set I' of all rectifiable curves connecting x
and y in D, 9D is the boundary of D, and ||.|| is the Euclidean norm on R”.
This metric is the inner metric (Chap. 4) of the Mobius metric.
* Modbius metric
Given a domain D C R", the Mobius (or absolute ratio, §p-) metric;
Siettenranta, 1999) is a metric on D defined by

_ b—
sup In (1 n lla —x||2]| )’||2)'
a,bedD [la —b|l2]|x — yll2

This metric is Gromov hyperbolic.
¢ Modulus metric

Let D C R", be a domain. The conformal modulus of a family I" of locally
rectifiable curves in D is M(I") = inf, fR,, p"dm, where m is the n-dimensional
Lebesgue measure, and p is any Borel-measurable function with f y pds > 1 and
p > 0 foreach y € I'. Cf. general modulus in extremal metric, Chap. 8.

Let A(E, F; D) denote the family of all closed nonconstant curves in D joining
E and F. The modulus metric pp (Gél, 1960) is a metric on D, defined by

iCnfM(A(ny, oD; D)),
Xy
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where Cy, is a compact connected set such that for some y : [0, 1] — D, it holds

Cy = 7([0,1]) and y(0) = x, y(1) = y.
The Ferrand second metric A}, (Ferrand, 1997) is a metric on D, defined by

1—n

( dnt M(A(Cy., Cy: D))) :

where C; (z = x,y) is a compact connected set such that, for some y;, : [0, 1] —
D, itholds C, = y([0,1)),z € |y,| and y,(rf) — dD ast — 1.
Above two metrics are Gromov hyperbolic if D is the open ball B" = {x €
R" : (x,x) < 1} or a simply connected domain in R
* Conformal radius
Let D C C, be a simply connected domain and let z € D, z # oo.
The conformal (or harmonic) radius is defined by

rad(z, D) = (f'(2) ™",

where f : D — A is the uniformizing map, i.e., the unique conformal mapping
onto the unit disk with f(z) = 0 € A andf’(z) > 0.

The Euclidean distance between z and the boundary dD of D (i.e., the radius
of the largest disk inscribed in D) lies in the segment [%j”D), rad(z, D)].

If D is compact, define rad(oo, D) as lim,— o ~@, wheref : (C\A) — (C\D)
is the unique conformal mapping with f(co) = oo and positive above limit. This
radius is the transfinite diameter from Chap. 1.

» Parabolic distance
The parabolic distance is a metric on R"!, considered as R” x R defined by

VO —y)2 o =) F =1V m e N,

forany x = (x1,.... % ),y = V1, ..., ¥, ty) € R" xR,
The space R” x R can be interpreted as multidimensional space-time.
Usually, the value m = 2 is applied. There exist some variants of the parabolic
distance, for example, the parabolic distance
sup{|x; — y1|. [x2 — y2|"/*}
on R? (cf. also Rickman’s rug metric in Chap. 19), or the half-space parabolic
distance on R} = {x € R*: x; > 0} defined by

[x1 —y1] + |x2 — y2|
+ Vx3 —y3l.
X+ X A =yl




Chapter 7
Riemannian and Hermitian Metrics

Riemannian Geometry is a multidimensional generalization of the intrinsic geom-
etry of 2D surfaces in the Euclidean space E*. It studies real smooth manifolds
equipped with Riemannian metrics, i.e., collections of positive-definite symmetric
bilinear forms ((g;)) on their tangent spaces which vary smoothly from point to
point. The geometry of such (Riemannian) manifolds is based on the line element
ds? = Zizi gijdx;dx;. This gives, in particular, local notions of angle, length of curve,
and volume.

From these notions some other global quantities can be derived, by integrating
local contributions. Thus, the value ds is interpreted as the length of the vector
(dxy, ...,dx,), and it is called the infinitesimal distance. The arc length of a curve

y is expressed by fy o ; 8ijdxidxj, and then the intrinsic metric on a Riemannian

manifold is defined as the infimum of lengths of curves joining two given points of
the manifold.

Therefore, a Riemannian metric is not an ordinary metric, but it induces an
ordinary metric, in fact, the intrinsic metric, called Riemannian distance, on any
connected Riemannian manifold. A Riemannian metric is an infinitesimal form of
the corresponding Riemannian distance.

As particular special cases of Riemannian Geometry, there occur Euclidean
Geometry as well as the two standard types, Elliptic Geometry and Hyperbolic
Geometry, of non-Euclidean Geometry. If the bilinear forms ((g;;)) are nonde-
generate but indefinite, one obtains pseudo-Riemannian Geometry. In the case of
dimension four (and signature (1, 3)) it is the main object of the General Theory of
Relativity.

If ds = F(xi,...,x,,dxy,...,dx,), where F is a real positive-definite convex
function which cannot be given as the square root of a symmetric bilinear form (as
in the Riemannian case), one obtains the Finsler Geometry generalizing Riemannian
Geometry.

Hermitian Geometry studies complex manifolds equipped with Hermitian met-
rics, i.e., collections of positive-definite symmetric sesquilinear forms (or %-linear
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forms) since they are linear in one argument and antilinear in the other) on their
tangent spaces, which vary smoothly from point to point. It is a complex analog of
Riemannian Geometry.

A special class of Hermitian metrics form Kihler metrics which have a
closed fundamental form w. A generalization of Hermitian metrics give complex
Finsler metrics which cannot be written as a bilinear symmetric positive-definite
sesqulinear form.

7.1 Riemannian Metrics and Generalizations

A real n-manifold M" with boundary is (cf. Chap.2) a Hausdorff space in which
every point has an open neighborhood homeomorphic to either an open subset of
E", or an open subset of the closed half of E". The set of points which have an
open neighborhood homeomorphic to E” is called the interior (of the manifold); it
is always nonempty.

The complement of the interior is called the boundary (of the manifold); it is an
(n — 1)-dimensional manifold. If it is empty, one obtains a real n-manifold without
boundary. Such manifold is called closed if it is compact, and open, otherwise.

An open set of M" together with a homeomorphism between the open set and
an open set of E" is called a coordinate chart. A collection of charts which cover
M" is an atlas on M". The homeomorphisms of two overlapping charts provide a
transition mapping from a subset of E” to some other subset of E".

If all these mappings are continuously differentiable, then M" is a differentiable
manifold. If they are k times (infinitely often) continuously differentiable, then the
manifold is a C* manifold (respectively, a smooth manifold, or C*® manifold).

An atlas of a manifold is called oriented if the Jacobians of the coordinate
transformations between any two charts are positive at every point. An orientable
manifold is a manifold admitting an oriented atlas.

Manifolds inherit many local properties of the Euclidean space: they are locally
path-connected, locally compact, and locally metrizable. Every smooth Riemannian
manifold embeds isometrically (Nash, 1956) in some finite-dimensional Euclidean
space.

Associated with every point on a differentiable manifold is a rangent space and
its dual, a cotangent space. Formally, let M" be a C* manifold, ¥ > 1, and pa
point of M". Fix a chart ¢ : U — E", where U is an open subset of M" containing
p. Suppose that two curves y! : (=1,1) — M" and y? : (=1,1) — M" with
y'(0) = y2(0) = p are given such that ¢ - y! and ¢ - y? are both differentiable at 0.

Then y! and y? are called tangent at 0 if (¢ - yl)/(0)= (p - )/2)/(0). If the
functions ¢ - y' : (=1,1) — E", i = 1,2, are given by n real-valued component
functions (¢-y")1(t), ..., (¢-y).(t), the condition above means that their Jacobians

(d(«p-y"n(t) d(w-y‘)m))
dr 0 dr

coincide at 0. This is an equivalence relation, and the

equivalence class y’(O) of the curve y is called a tangent vector of M™ at p.
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The tangent space T,(M") of M" at p is defined as the set of all tangent vectors
at p. The function (dg), : T,(M") — E" defined by (d(p),,(y/(O)) = (¢ - ) (0),
is bijective and can be used to transfer the vector space operations from E” over to
T,(M").

All the tangent spaces T,(M"), p € M", when “glued together”, form the tangent
bundle T(M") of M". Any element of T(M") is a pair (p, v), where v € T,(M").

If for an open neighborhood U of p the function ¢ : U — R” is a coordinate
chart, then the preimage V of U in T(M") admits a mapping ¥ : V — R” x R”
defined by ¥ (p,v) = (¢(p),de(p)). It defines the structure of a smooth 2n-
dimensional manifold on T(M"). The cotangent bundle T*(M") of M" is obtained
in similar manner using cotangent spaces T: (M™),p e M".

A vector field on a manifold M" is a section of its tangent bundle 7(M"), i.e., a
smooth function f : M" — T(M") which assigns to every point p € M" a vector
v e T,(M").

A connection (or covariant derivative) is a way of specifying a derivative of a
vector field along another vector field on a manifold.

Formally, the covariant derivative V of a vector u (defined at a point p € M") in
the direction of the vector v (defined at the same point p) is a rule that defines a third
vector at p, called V,u which has the properties of a derivative. A Riemannian metric
uniquely defines a special covariant derivative called the Levi-Civita connection.
It is the torsion-free connection V of the tangent bundle, preserving the given
Riemannian metric.

The Riemann curvature tensor R is the standard way to express the curvature of
Riemannian manifolds. The Riemann curvature tensor can be given in terms of the
Levi-Civita connection V by the following formula:

R, v)w = V,Vyw =V, V,w — V|, yw,

where R(u, v) is a linear transformation of the tangent space of the manifold M";

it is linear in each argument. If u = 3— and v = ai are coordinate vector fields,

then [u, v] = 0, and the formula simplifies to R(u, v)w = V,Vy,w—-V,V,w, ie., the
curvature tensor measures anti-commutativity of the covariant derivative. The 11near
transformation w — R(u, v)w is also called the curvature transformation.

The Ricci curvature tensor (or Ricci curvature) Ric is obtained as the trace of the
full curvature tensor R. It can be thought of as a Laplacian of the Riemannian metric
tensor in the case of Riemannian manifolds. Ricci curvature is a linear operator on
the tangent space at a point. Given an orthonormal basis (e;); in the tangent space
T,(M"), we have

Ric(u) = ZR(u,ei)ei.

The value of Ric(u) does not depend on the choice of an orthonormal basis. Starting
with dimension four, the Ricci curvature does not describe the curvature tensor
completely.
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The Ricci scalar (or scalar curvature) Sc of a Riemannian manifold M" is the
full trace of the curvature tensor; given an orthonormal basis (¢;); at p € M", we
have

Sc = Z(R(eisej)ejvei) = Z(Ric(ei)&i)-

ij i

The sectional curvature K(o) of a Riemannian manifold M" is defined as the
Gauss curvature of an o-section at a point p € M", where a o-section is a locally-
defined piece of surface which has the 2-plane o as a tangent plane at p, obtained
from geodesics which start at p in the directions of the image of o under the
exponential mapping.

* Metric tensor

The metric (or basic, fundamental) tensor is a symmetric tensor of rank 2,
that is used to measure distances and angles in a real n-dimensional differentiable
manifold M". Once a local coordinate system (x;); is chosen, the metric tensor
appears as a real symmetric 7 X n matrix ((g;)).

The assignment of a metric tensor on M" introduces a scalar product (i.e.,
symmetric bilinear, but in general not positive-definite, form) (, ), on the tangent
space T,(M") at any p € M" defined by

(x.y)p = gp(x.y) = > _ gi(p)xiyy.

iy

where x = (x1,...,%4),y = (V1,...,¥n) € Tp(M"). The collection of all these
scalar products is called the metric g with the metric tensor ((g;;)). The length ds
of the vector (dxi, ..., dx,) is expressed by the quadratic differential form

dS2 = Zg;jdxidxj,

i

which is called the line element (or first fundamental form) of the metric g.
The length of a curve y is expressed by the formula fy N ; 8ijdxidx;. In

general it may be real, purely imaginary, or zero (an isotropic curve).

Let p, g and r be the numbers of positive, negative and zero eigenvalues of the
matrix ((g;)) of the metric g; so, p+¢q+r = n. The metric signature (or, simply,
signature) of g is the pair (p, ¢). A nondegenerated metric (i.e., one with r = 0)
is Riemannian or pseudo-Riemannian if its signature is positive-definite (g = 0)
or indefinite (pq > 0), respectively.

The nonmetricity tensor is the covariant derivative of a metric tensor. It is 0
for Riemannian metrics but can be # 0 for pseudo-Riemannian ones.




7.1 Riemannian Metrics and Generalizations 139

* Nondegenerate metric

A nondegenerate metric is a metric g with the metric tensor ((g;;)), for which
the metric discriminant det((g;)) # 0. All Riemannian and pseudo-Riemannian
metrics are nondegenerate.

A degenerate metric is a metric g with det((g;)) = 0 (cf. semi-Riemannian
metric and semi-pseudo-Riemannian metric). A manifold with a degenerate
metric is called an isotropic manifold.

* Diagonal metric

A diagonal metric is a metric g with a metric tensor ((g;;)) which is zero for
i # j. The Euclidean metric is a diagonal metric, as its metric tensor has the form
gi = 1,8 =0fori#j.

* Riemannian metric

Consider a real n-dimensional differentiable manifold M" in which each
tangent space is equipped with an inner product (i.e., a symmetric positive-
definite bilinear form) which varies smoothly from point to point.

A Riemannian metric on M" is a collection of inner products (, ), on the
tangent spaces T,,(M"), one for each p € M".

Every inner product (, ), is completely defined by inner products (e;, ¢;), =
gii(p) of elements ey, . .., e, of a standard basis in E”, i.e., by the real symmetric
and positive-definite n x n matrix ((g;)) = ((g;(p))), called a metric tensor.
In fact, (x,y), = >, ; gij(p)xiyj, where x = (x1,...,x,) andy = (y1,...,ya) €
T,(M"™). The smooth function g completely determines the Riemannian metric.

A Riemannian metric on M" is not an ordinary metric on M". However, for
a connected manifold M", every Riemannian metric on M" induces an ordinary
metric on M”, in fact, the intrinsic metric of M",

For any points p, g € M" the Riemannian distance between them is defined
as

dx,- d.x]'
=, —-dt,
Z 8573 dr

1 1

inf/ (d—”, d—”ﬁdt = inf

Y Jo 7
where the infimum is over all rectifiable curves y : [0, 1] — M", connecting p
and q.

A Riemannian manifold (or Riemannian space) is a real n-dimensional
differentiable manifold M" equipped with a Riemannian metric. The theory of
Riemannian spaces is called Riemannian Geometry. The simplest examples of
Riemannian spaces are Euclidean spaces, hyperbolic spaces, and elliptic spaces.

¢ Conformal metric

A conformal structure on a vector space V is a class of pairwise-homothetic
Euclidean metrics on V. Any Euclidean metric dg on V defines a conformal
structure {Adg : A > 0}.

A conformal structure on a manifold is a field of conformal structures on the
tangent spaces or, equivalently, a class of conformally equivalent Riemannian
metrics. Two Riemannian metrics g and 4 on a smooth manifold M" are called
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conformally equivalent if g = f - h for some positive function f on M", called a
conformal factor.

A conformal metric is a Riemannian metric that represents the conformal
structure. Cf. conformally invariant metric in Chap. 8.

¢ Conformal space

The conformal space (or inversive space) is the Euclidean space E” extended
by an ideal point (at infinity). Under conformal transformations, i.e., continuous
transformations preserving local angles, the ideal point can be taken to be an
ordinary point. Therefore, in a conformal space a sphere is indistinguishable from
a plane: a plane is a sphere passing through the ideal point.

Conformal spaces are considered in Conformal (or angle-preserving, Mobius)
Geometry in which properties of figures are studied that are invariant under
conformal transformations. It is the set of transformations that map spheres into
spheres, i.e., generated by the Euclidean transformations together with inversions

which in coordinate form are conjugate to x; — SR where r is the radius
i

of the inversion. An inversion in a sphere becomes an everywhere well defined
automorphism of period two. Any angle inverts into an equal angle.

The 2D conformal space is the Riemann sphere, on which the conformal
transformations are given by the Mobius transformations z — %, ad—bc # 0.

In general, a conformal mapping between two Riemannian manifolds is a
diffeomorphism between them such that the pulled back metric is conformally
equivalent to the original one. A conformal Euclidean space is a Riemannian
space admitting a conformal mapping onto an Euclidean space.

In the General Theory of Relativity, conformal transformations are considered
on the Minkowski space R'* extended by two ideal points.

¢ Space of constant curvature

A space of constant curvature is a Riemannian space M" for which the
sectional curvature K(o) is constant in all 2D directions o.

A space form is a connected complete space of constant curvature k. Examples
of a flat space form, i.e., with k = 0, are the Euclidean space and flat torus. The
sphere and hyperbolic space are space forms with k > 0 and k < 0, respectively.

¢ Generalized Riemannian space

A generalized Riemannian space is a metric space with the intrinsic metric,
subject to certain restrictions on the curvature. Such spaces include spaces of
bounded curvature, Riemannian spaces, etc. They are defined and investigated
on the basis of their metric alone, without coordinates.

A space of bounded curvature (< k and > k') is defined by the condition: for
any sequence of geodesic triangles T, contracting to a point, we have

— 8T _ . 8T _
k= lime oy = Iz oy =

where a geodesic triangle T = xyz is the triplet of geodesic segments [x, y], [y, z],
[z, x] (the sides of T) connecting in pairs three different points x,y,z, §(T) =
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o + B + y — m is the excess of the geodesic triangle T, and o' (T°) is the area of
a Buclidean triangle T with the sides of the same lengths. The intrinsic metric
on the space of bounded curvature is called a metric of bounded curvature.
Such a space turns out to be Riemannian under two additional conditions:
local compactness of the space (this ensures the condition of local existence of
geodesics), and local extendability of geodesics. If in this case k = K,itis a
Riemannian space of constant curvature k (cf. space of geodesics in Chap. 6).

A space of curvature < k is defined by the condition Eﬁgz’) < k.Insucha

space any point has a neighborhood in which the sum @ + 8 + y of the angles
of a geodesic triangle T does not exceed the sum o« + Bx + yi of the angles of a
triangle T* with sides of the same lengths in a space of constant curvature k. The
intrinsic metric of such space is called a k-concave metric.

(T,
#T,?)) > k. In such

a space any point has a neighborhood in which  + 8 + y > ax + Br + w
for triangles T and T*. The intrinsic metric of such space is called a K-concave
metric.

An Alexandrov metric space is a generalized Riemannian space with upper,
lower or integral curvature bounds. Cf. a CAT(«;) space in Chap. 6.

¢ Complete Riemannian metric

A Riemannian metric g on a manifold M" is called complete if M" forms a
complete metric space with respect to g.

Any Riemannian metric on a compact manifold is complete.

* Ricci-flat metric

A Ricci-flat metric is a Riemannian metric with vanished Ricci curvature
tensor.

A Ricci-flat manifold is a Riemannian manifold equipped with a Ricci-flat
metric. Ricci-flat manifolds represent vacuum solutions to the Einstein field
equation, and are special cases of Kdhler—Einstein manifolds. Important Ricci-
flat manifolds are Calabi—Yau manifolds, and hyper-Kdihler manifolds.

* Osserman metric

An Osserman metric is a Riemannian metric for which the Riemannian
curvature tensor R is Osserman, i.e., the eigenvalues of the Jacobi operator
J®) :y — R(y,x)x are constant on the unit sphere S"~' in E" (they are
independent of the unit vectors x).

¢ G-invariant Riemannian metric

Given a Lie group (G, -, id) of transformations, a Riemannian metric g on a
differentiable manifold M" is called G-invariant, if it does not change under any
x € G. The group (G, -, id) is called the group of motions (or group of isometries)
of the Riemannian space (M", g). Cf. G-invariant metric in Chap. 10.

* Ivanov-Petrova metric

Let R be the Riemannian curvature tensor of a Riemannian manifold M", and
let {x,y} be an orthogonal basis for an oriented 2-plane 7 in the tangent space
T,(M") at a point p of M".

A space of curvature > k is defined by the condition lim
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The Ivanov—Petrova metric is a Riemannian metric on M" for which the
eigenvalues of the antisymmetric curvature operator R(w) = R(x,y) ([IvSt95])
depend only on the point p of a Riemannian manifold M", but not upon the plane
7.

e Zoll metric

A Zoll metric is a Riemannian metric on a smooth manifold M" whose
geodesics are all simple closed curves of an equal length. A 2D sphere S? admits
many such metrics, besides the obvious metrics of constant curvature. In terms
of cylindrical coordinates (z, 0) (z € [—1, 1], € € [0, 2x]), the line element

2
a5 = LTS 1+_f (Z?) 2 + (1 —2°)do’

defines a Zoll metric on S? for any smooth odd function f : [-1,1] — (=1,1)
which vanishes at the endpoints of the interval.
* Berger metric
The Berger metric is a Riemannian metric on the Berger sphere (i.e., the
three-sphere S° squashed in one direction) defined by the line element

ds* = d6? + sin® 0dp? + cos” a(dyr + cos 0dg)?,

where « is a constant, and 6, ¢, ¥ are Euler angles.
¢ Cycloidal metric
The cycloidal metric is a Riemannian metric on the half-plane Ri ={x €
R? : x, > 0} defined by the line element

_ dx% + dx%
ZXQ ’

ds*

It is called cycloidal because its geodesics are cycloid curves. The correspond-
ing distance d(x, y) between two points x,y € Ri is equivalent to the distance

[x1 —y1] + %2 — y2l

VXL A+ X+ 2 =yl

in the sense that d < Cp, and p < Cd for some positive constant C.
¢ Klein metric
The Klein metric is a Riemannian metric on the open unit ball B" = {x €
R" : ||x|]2 < 1} in R" defined by

plx,y) =

VI = AIBIIB = x.3)2)

1= 11x]13
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for any x € B" and y € T,(B"), where ||.|| is the Euclidean norm on R", and {, )
is the ordinary inner product on R".
The Klein metric is the hyperbolic case a = —1 of the general form

V(1 +allx[P)[y]? — afx. y)?
1+ allx|?

’

while a = 0, 1 correspond to the Euclidean and spherical cases.
¢ Carnot-Carathéodory metric

A distribution (or polarization) on a manifold M" is a subbundle of the
tangent bundle 7'(M") of M". Given a distribution H(M"), a vector field in H(M")
is called horizontal. A curve y on M" is called horizontal (or distinguished,
admissible) with respect to H(M") if Y () € Hy,y(M") for any t.

A distribution H(M") is called completely nonintegrable if the Lie brackets
of HM"), i.e., [---,[HM"),H(M")]], span the tangent bundle T(M"), i.e.,
for all p € M" any tangent vector v from 7,(M") can be presented as
a linear combination of vectors of the following types: u, [u,w], [u, [w,1]],
[u, [w, [t,s]]], - - € T,(M"), where all vector fields u, w, ,s, ... are horizontal.

The Carnot-Carathéodory metric (or CC metric, sub-Riemannian met-
ric, control metric) is a metric on a manifold M" with a completely nonintegrable
horizontal distribution H(M") defined as the section g¢ of positive-definite scalar
products on H(M"). The distance d¢(p, q) between any points p,g € M" is
defined as the infimum of the g¢-lengths of the horizontal curves joining p and g.

A sub-Riemannian manifold (or polarized manifold) is a manifold M"
equipped with a Carnot—Carathéodory metric. It is a generalization of a
Riemannian manifold. Roughly, in order to measure distances in a sub-
Riemannian manifold, one is allowed to go only along curves tangent to
horizontal spaces.

* Pseudo-Riemannian metric

Consider a real n-dimensional differentiable manifold M" in which every
tangent space T,(M"), p € M", is equipped with a scalar product which varies
smoothly from point to point and is nondegenerate, but indefinite.

A pseudo-Riemannian metric on M" is a collection of scalar products {, ),
on the tangent spaces T,(M"), p € M", one for each p € M".

Every scalar product (, ), is completely defined by scalar products (e;, ¢;), =
gii(p) of elements ey, . .., e, of a standard basis in E”, i.e., by the real symmetric
indefinite n x n matrix ((g;)) = ((gj(p))), called a metric tensor (cf.
Riemannian metric in which case this tensor is not only nondegenerate but,
moreover, positive-definite).

In fact, (x,y), = >;;8;(p)xiy;, where x = (x1,....x,) and y =
01,....9) € T,(M"). The smooth function g determines the pseudo-
Riemannian metric.
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The length ds of the vector (dx, .. ., dx,) is given by the quadratic differential
form

ds* = Z gijdx;dx;.

i

The length of a curve y : [0, 1] — M" is expressed by the formula

In general it may be real, purely imaginary or zero (an isotropic curve).

A pseudo-Riemannian metric on M" is a metric with a fixed, but indefinite
signature (p,q), p + g = n. A pseudo-Riemannian metric is nondegenerate,
i.e., its metric discriminant det((g;)) # 0. Therefore, it is a nondegenerate
indefinite metric.

A pseudo-Riemannian manifold (or pseudo-Riemannian space) is a real n-
dimensional differentiable manifold M" equipped with a pseudo-Riemannian
metric. The theory of pseudo-Riemannian spaces is called Pseudo-Riemannian
Geometry.

* Pseudo-Euclidean distance

The model space of a pseudo-Riemannian space of signature (p, ¢) is the
pseudo-Euclidean space RP9, p + g = n which is a real n-dimensional vector
space R” equipped with the metric tensor ((g,;,-)) of signature (p, g) defined, for
i#jbygu=-=gp=18+ip+t1=""=8m=—1,8=0.

The line element of the corresponding metric is given by

ds’ = dx} + -+ doy —docy | — - —dx;,.

The pseudo-Euclidean distance of signature (p,g = n— p) on R” is defined

by

P n
dyp(x,y) = D(x,y) = Z(Xi — i)’ - Z (i — ).
i=1 i=p+1

Such a pseudo-Euclidean space can be seen as R? x iR?, where i = +/—1.

The pseudo-Euclidean space with (p,q) = (1,3) is used as flat space-time
model of Special Relativity; cf. Minkowski metric in Chap. 26.

The points correspond to events; the line spanned by x and y is space-like
if D(x,y) > 0 and time-like if D(x,y) < 0. If D(x,y) > 0, then /D(x,y) is
Euclidean distance and if D(x, y) < 0, then /|D(x, y)| is the lifetime of a particle
(from x to y).
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The pseudo-Euclidean distance of signature (p,g = n — p) is the case A =
diag(a;) witha; = 1 for1 <i <panda; = —1forp+ 1 < i < n, of the
weighted Euclidean distance \/ Y 1<j<n @i(x; — y;)* in Chap. 17.

* Blaschke metric

The Blaschke metric on a nondegenerate hypersurface is a pseudo-
Riemannian metric, associated to the affine normal of the immersion ¢ : M" —
Rt where M" is an n-dimensional manifold, and R"*! is considered as an
affine space.

* Semi-Riemannian metric

A semi-Riemannian metric on a real n-dimensional differentiable manifold
M" is a degenerate Riemannian metric, i.e., a collection of positive-semidefinite
scalar products (x,y), = Zizi gii(p)xiy; on the tangent spaces T,(M"), p € M";
the metric discriminant det((g;)) = 0.

A semi-Riemannian manifold (or semi-Riemannian space) is a real n-
dimensional differentiable manifold M" equipped with a semi-Riemannian
metric.

The model space of a semi-Riemannian manifold is the semi-Euclidean space
R}, d > 1 (sometimes denoted also by R?_ ), i.e., a real n-dimensional vector
space R" equipped with a semi-Riemannian metric.

It means that there exists a scalar product of vectors such that, relative to a
suitably chosen basis, the scalar product (x,x) has the form (x,x) = Zf’;f 2,
The number d > 1 is called the defect (or deficiency) of the space.

* Grushin metric

The Grushin metric is a semi-Riemannian metric on R? defined by the line

element

2
dx;
—-

A

dS2 = dx% +

e Agmon distance
The Agmon metric attached to an energy E and a potential V is defined as

ds®> = max{0, V(x) — Eo(h)}dx>,

where dx? is the standard metric on R¢. Then the Agmon distance on R? is the
corresponding Riemannian distance defined, for any x,y € R?, by

1
ilylf{/o Vmax{V(y(s)) — Eo(h), 0} - [y (s)lds : y(0) = x, y(1) = y,y € C'}.

¢ Semi-pseudo-Riemannian metric
A semi-pseudo-Riemannian metric on a real n-dimensional differentiable
manifold M" is a degenerate pseudo-Riemannian metric, i.e., a collection of
degenerate indefinite scalar products (x,y), = Y, ;8ij(p)xiy; on the tangent
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spaces T,(M"), p € M"; the metric discriminant det((g;)) = 0. In fact, a semi-
pseudo-Riemannian metric is a degenerate indefinite metric.

A semi-pseudo-Riemannian manifold (or semi-pseudo-Riemannian space)
is a real n-dimensional differentiable manifold M" equipped with a semi-
pseudo-Riemannian metric. The model space of such manifold is the semi-
pseudo-Euclidean space R}, , , ie., a vector space R" equipped with a

MY e p—]

semi-pseudo-Riemannian metric.

It means that there exist r scalar products (x,y), = ) €;,x;,yi,, where a =
L..r,0=my<my <---<my=n,ig =my—1 +1,...my, ¢, = £1, and —1
occurs [, times among the numbers ¢;,. The product (x, y), is defined for those
vectors for which all coordinates x;,i < m,_ or i > m, + 1 are zero.

The first scalar square of an arbitrary vector x is a degenerate quadratic form

(x,x); = — Zfl=1 xl2 + Z;:;fH sz. The number /; > 0 is called the index, and
the number d = n — m; is called the defect of the space. If [} = --- = [, =

0, we obtain a semi-Euclidean space. The spaces R" and R}, are called quasi-

Euclidean spaces.
The semi-pseudo-non-Euclidean space S}, , is a hyperspherein R

+
with identified antipodal points. It is called semielliptic (or semi-non-Euclidean
space if I, = --- = [, = 0 and a semihyperbolic space if there exist I; # 0.

* Finsler metric

Consider a real n-dimensional differentiable manifold M" in which every
tangent space 7,(M"), p € M", is equipped with a Banach norm ||.|| such that

the Banach norm as a function of position is smooth, and the matrix ((g;)),

13?1 ?

gij = &ij(p,x) = 2 udx; |

is positive-definite for any p € M" and any x € T,(M").
A Finsler metric on M" is a collection of Banach norms ||.|| on the tangent
spaces T,,(M"), one for each p € M". Its line element has the form

ds* = Z gijdx;dx;.

iy

The Finsler metric can be given by fundamental function, i.e., a real positive-
definite convex function F(p,x) of p € M" and x € T,(M") acting at the point p.
F(p, x) is positively homogeneous of degree one in x: F(p, Ax) = AF(p,x) for
every A > 0. Then F(p, x) is the length of the vector x.

The Finsler metric tensor has the form ((g;)) = ((3 azgjgf’() )). The length of
i0Xj

acurve y : [0,1] — M" is given by fol F(p, ‘;—i’)dt. For each fixed p the Finsler
metric tensor is Riemannian in the variables x.
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The Finsler metric is a generalization of the Riemannian metric, where the
general definition of the length ||x|| of a vector x € T,(M") is not necessarily
given in the form of the square root of a symmetric bilinear form as in the
Riemannian case.

A Finsler manifold (or Finsler space) is a real differentiable n-manifold M"
equipped with a Finsler metric. The theory of such spaces is Finsler Geometry.

The difference between a Riemannian space and a Finsler space is that the
former behaves locally like a Euclidean space, and the latter locally like a
Minkowskian space or, analytically, the difference is that to an ellipsoid in the
Riemannian case there corresponds an arbitrary convex surface which has the
origin as the center.

A pseudo-Finsler metric F is defined by weakening the definition of a
Finsler metric): ((g;)) should be nondegenerate and of constant signature (not
necessarily positive-definite) and hence F' could be negative. The pseudo-Finsler
metric is a generalization of the pseudo-Riemannian metric.

¢ (a, B)-metric

Let a(x,y) = /a;;(x)y’y/ be a Riemannian metric and B(x,y) = b;(x)y’' be a

1-form on a n-dimensional manifold M". Let s = g and ¢ (s) is an C*°-positive

function on some symmetric interval (—r,r) with r > g for all (x,y) in the
tangent bundle TM = U,y T (M") of the tangent spaces T,(M"). Then F =
a¢(s) is a Finsler metric (Matsumoto, 1972) called an («, f)-metric. The main
examples of (&, B)-metrics follow.

The Kropina metric is the case ¢(s) = <, i.e., F =

o: m|9

The generalized Kropina metric is the case ¢(s) = s, ie., F = pma!™™.
The Randers metric (1941) is the case ¢ (s) = 1 + s, i.e. F =« + B.

The Matsumoto slope metric is the case ¢ (s) = 1 —,ie,F = ﬁ

The Riemann-type (o, 8)-metric is the case ¢(s) = m, ie., F =
o’ + B2

Park and Lee, 1998, considered the case ¢(s) = 1 + s2,i.e., F = o + %2

¢ Shen metric
Given a vector a € R”, ||a||, < 1, the Shen metric (2003) is a Finsler metric
on the open unit ball B" = {x € R" : ||x||» < 1} in R” defined by

JISIB = QRIBINE = o)) + () (ay)
1= [l I+ {a.x)

for any x € B" and y € T,(B"), where ||.||, is the Euclidean norm on R", and
(,) is the ordinary inner product on R". It is a Randers metric and a projective
metric. Cf. Klein metric and Berwald metric.
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¢ Berwald metric
The Berwald metric (1929) is a Finsler metric Fg, on the open unit ball
B" = {x € R": ||x||]> < 1} in R" defined, for any x € B" and y € T,(B"), by

2
(Vb1 = BT = 50 + (29
(U= 1112 /1913 = (Il BIIYIE — (. ))

)

where ||.||, is the Euclidean norm on R”, and (, ) is the inner product on R". It is
a projective metric and an («, 8)-metric with ¢ (s) = (1+5)%,ie., F = (414(;_/3)2

The Riemannian metrics are special Berwald metrics. Every Berwald metric
is affinely equivalent to a Riemannian metric.

In general, every Finsler metric on a manifold M" induces a spray (second-
order homogeneous ordinary differential equation) y;— a - 2G’ o which deter-
mines the geodesics. A Finsler metric is a Berwald metric if the spray coefficients
G =G (x y) are quadratic in y € T,(M") at any point x € M", i.e., G =
%F]lk Yy

A Finsler metric is a more general Landsberg metric I'j =39, 0 (T} (x)y/y%).
The Landsberg metric is the one for which the Landsberg curvature (the covariant
derivative of the Cartan torsion along a geodesic) is zero.

* Douglas metric

A Douglas metric a Finsler metric for which the spray coefficients G' =

G'(x,y) have the following form:

G' = 3 )iy + Px, y)yi.

Every Finsler metric which is projectively equivalent to a Berwald metric
is a Douglas metric. Every Berwald metric is a Douglas metric. Every known
Douglas metric is (locally) projectively equivalent to a Berwald metric.

* Bryant metric

Let « be an angle with |a| < 7. Let, for any x,y € R", A = |[¥]|3 sin? 20 +

2
(IIy113 cos 2 + [Ix|311yl15 = (x.)?)", B = [Iyl[3 cos 2 + [Ix|3]Iyll5 — (x. ),
C = (x,y) sin2a, D = ||x||3 + 2||x||5 cos 2 + 1. Then we get a Finsler metric

A+ B c\} cC
VA+B  (CY, €
2D D D

On the 2D unit sphere S, it is the Bryant metric (1996).
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¢ m-th root pseudo-Finsler metric
An m-th root pseudo-Finsler metric is (Shimada, 1979) a pseudo-Finsler
metric defined (with a;,_;, symmetric in all its indices) by

F(x,y) = (ai..i, (X)yil"'i'”)é-

For m = 2, it is a pseudo-Riemannian metric. The 3-rd and 4-th root pseudo-
Finsler metrics are called cubic metric and quartic metric, respectively.
* Antonelli-Shimada metric
The Antonelli-Shimada metric (or ecological Finsler metric) is an m-th
root pseudo-Finsler metric defined, via linearly independent 1-forms a’, by

n ) N
Flxy) = (Q_(@)")n.
i=1
The Uchijo metric is defined, for a constant &, by

F(x.y) = () (@)")? +ka'.

i=1

* Berwald—-Moor metric
The Berwald—-Moor metric is an m-th root pseudo-Finsler metric, defined
by

Fxy) =G ...y

More general Asanov metric is defined, via linearly independent 1-forms a’,
by

F(x,y) = (al...a”)%.

The Berwald—Moor metrics with n = 4 and n = 6 are applied in Relativity
Theory and Diffusion Imaging, respectively. The pseudo-Finsler spaces which
are locally isomorphic to the 4-th root Berwald—-Moor metric, are expected to be
more general and productive space-time models than usual pseudo-Riemannian
spaces, which are locally isomorphic to the Minkowski metric.

« Kawaguchi metric

The Kawaguchi metric is a metric on a smooth n-dimensional manifold M",

given by the arc element ds of a regular curve x = x(¢), t € [y, t;] via the formula

dx d*x

ds = F(x, —,...,—)dt,
s (x dt dtk)
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where the metric function F satisfies Zermelo’s conditions: Zle sxOF i =F,

S AT HVIF G = 0,20 = £ = B andr=2,... k.

These conditions ensure that the arc element ds is independent of the
parametrization of the curve x = x(f).

A Kawaguchi manifold (or Kawaguchi space) is a smooth manifold equipped
with a Kawaguchi metric. It is a generalization of a Finsler manifold.

* Lagrange metric

Consider a real n-dimensional manifold M". A set of symmetric nonde-
generated matrices ((g;(p,x))) define a generalized Lagrange metric on M"
if a change of coordinates (p,x) — (g¢,y), such that ¢; = qi(p1,...,pn),
yi = (9;¢;)x; and rank (9;9;) = n, implies g;;(p. x) = (3:9:)(9;4,)8ij(q.y)-

A generalized Lagrange metric is called a Lagrange metric if there exists a
Lagrangian, i.e., a smooth function L( p, x) such that it holds

1 3*L(p,x)
gij(psx)_ E 3x;3xj .
Every Finsler metric is a Lagrange metric with L = F2.
¢ DeWitt supermetric
The DeWitt supermetric (or Wheeler—DeWitt supermetric) G = ((Gju))
calculates distances between metrics on a given manifold, and it is a generaliza-
tion of a Riemannian (or pseudo-Riemannian) metric g = ((g;))-
For example, for a given connected smooth 3-dimensional manifold M?,
consider the space M (M?) of all Riemannian (or pseudo-Riemannian) metrics on
M3 . Identifying points of M (M?) that are related by a diffeomorphism of M?, one
obtains the space Geom(M?) of 3-geometries (of fixed topology), points of which
are the classes of diffeomorphically equivalent metrics. The space Geom(M?)
is called a superspace. It plays an important role in several formulations of
Quantum Gravity.
A supermetric, i.e., a “metric on metrics”, is a metric on M(M?>) (or on
Geom(M?)) which is used for measuring distances between metrics on M> (or
between their equivalence classes). Given g = ((g;)) € M(M?), we obtain

el = [ | 4G 98g,905000).
M‘
where G¥¥ is the inverse of the DeWitt supermetric
G ! ( + A )
ikl = ——F———=&ik&ji T Lil&jk — A&ij8ki)-
2/det((g;)

The value A parametrizes the distance between metrics in M (M?), and may take
any real value except A = %, for which the supermetric is singular.
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¢ Lund-Regge supermetric

The Lund-Regge supermetric (or simplicial supermetric) is an analog of
the DeWitt supermetric, used to measure the distances between simplicial 3-
geometries in a simplicial configuration space.

More exactly, given a closed simplicial 3D manifold M? consisting of several
tetrahedra (i.e., 3-simplices), a simplicial geometry on M? is fixed by an
assignment of values to the squared edge lengths of M>, and a flat Riemannian
Geometry to the interior of each tetrahedron consistent with those values.

The squared edge lengths should be positive and constrained by the triangle
inequalities and their analogs for the tetrahedra, i.e., all squared measures
(Iengths, areas, volumes) must be nonnegative (cf. tetrahedron inequality in
Chap. 3).

The set 7(M?) of all simplicial geometries on M? is called a simplicial
configuration space. The Lund-Regge supermetric ((G,,,,)) on T (M?) is induced
from the DeWitt supermetric on M (M?), using for representations of points in
T (M?) such metrics in M (M?) which are piecewise flat in the tetrahedra.

* Space of Lorentz metrics

Let M" be an n-dimensional compact manifold, and £(M") the set of all
Lorentz metrics (i.e., the pseudo-Riemannian metrics of signature (n — 1, 1))
on M".

Given a Riemannian metric g on M", one can identify the vector space S*(M")
of all symmetric 2-tensors with the vector space of endomorphisms of the tangent
to M" which are symmetric with respect to g. In fact, if & is the endomorphism
associated to a tensor , then the distance on S?(M") is given by

dy(h, 1) = sup \/tr(h, —1,).

xXEM"

The set £(M") taken with the distance d, is an open subset of S*(M") called
the space of Lorentz metrics. Cf. manifold triangulation metric in Chap. 9.

¢ Perelman supermetric proof

The Thurston’s Geometrization Conjecture is that, after two well-known
splittings, any 3D manifold admits, as remaining components, only one of eight
Thurston model geometries. If true, this conjecture implies the validity of the
famous Poincaré Conjecture of 1904, that any 3-manifold, in which every simple
closed curve can be deformed continuously to a point, is homeomorphic to the
3-sphere.

In 2002, Perelman gave a gapless “sketch of an eclectic proof” of Thurston’s
conjecture using a kind of supermetric approach to the space of all Riemannian
metrics on a given smooth 3-manifold. In a Ricci flow the distances decrease in
directions of positive curvature since the metric is time-dependent. Perelman’s
modification of the standard Ricci flow permitted systematic elimination of
arising singularities.
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7.2 Riemannian Metrics in Information Theory

Some special Riemannian metrics are commonly used in Information Theory. A list
of such metrics is given below.

¢ Thermodynamic metrics

Given the space of all extensive (additive in magnitude, mechanically con-
served) thermodynamic variables of a system (energy, entropy, amounts of
materials), a thermodynamic metric is a Riemannian metric on the manifold of
equilibrium states defined as the 2-nd derivative of one extensive quantity, usually
entropy or energy, with respect to the other extensive quantities. This information
geometric approach provides a geometric description of thermodynamic systems
in equilibrium.

The Ruppeiner metric (Ruppeiner, 1979) is defined by the line element
dsy = gfdxdx, where the matrix ((gf)) of the symmetric metric tensor is a
negative Hessian (the matrix of 2-nd order partial derivatives) of the entropy
function S:

gﬁ» = —a[ajS(M, Na).

Here M is the internal energy (which is the mass in black hole applications)
of the system and N¢ refer to other extensive parameters such as charge,
angular momentum, volume, etc. This metric is flat if and only if the statistical
mechanical system is noninteracting, while curvature singularities are a signal of
critical behavior, or, more precisely, of divergent correlation lengths (Chap. 24).

The Weinhold metric (Weinhold, 1975) is defined by gl‘.?’ = 0;0;M (S, N°).

The Ruppeiner and Weinhold metrics are conformally equivalent (cf. confor-
mal metric) via ds* = gRdM'dM/ = g/ dS'dS/, where T is the temperature.

The thermodynamic length in Chap. 24 is a path function that measures the
distance along a path in the state space.

 Fisher information metric

In Statistics, Probability, and Information Geometry, the Fisher information
metric is a Riemannian metric for a statistical differential manifold (see, for
example, [Amar85, Frie98]). Formally, let ps = p(x, €) be a family of densities,
indexed by n parameters 6 = (6,...,6,) which form the parameter manifold
P.

The Fisher information metric g = gy on P is a Riemannian metric, defined
by the Fisher information matrix ((1(8);;)), where

p(x, 0)dx.

1(6); = E |:31np9 ) 31n179:| _ /' dlnp(x,0) dnp(x, )

06, 96, 36; 36;

It is a symmetric bilinear form which gives a classical measure (Rao measure)
for the statistical distinguishability of distribution parameters.
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Putting i(x, 8) = —Inp(x, 8), one obtains an equivalent formula
0%i(x, 0) 0%i(x, 0)
10);=FEg | ———= | = | ———p(x,0)dx.
@ 9[ 96,00, } / 36,6, P

In a coordinate-free language, we get

1(0)(u, v) = Eg [u(Inpg) - v(Inpg)],

where u and v are vectors tangent to the parameter manifold P, and u(Inpg) =
% In pg 4 )i=0 is the derivative of In py along the direction u.

A manifold of densities M is the image of the parameter manifold P under
the mapping 6 — py with certain regularity conditions. A vector u tangent to
this manifold is of the form u = %p9+m|t=0, and the Fisher information metric
g = gp on M, obtained from the metric gg on P, can be written as

u v

* Fisher-Rao metric
Let P, ={peR": Y, pi = 1,p; > 0} be the simplex of strictly positive

probability vectors. An element p € P, is a density of the n-point set {1, ...,n}
with p(i) = p;. An element u of the tangent space 7,(P,) = {u € R" : Y ' u; =
0} at a point p € P, is a function on {1, ..., n} with u(i) = u;.

The Fisher—Rao metric g, on P, is a Riemannian metric defined by

n
Uu;v;

gu,v) = ) —
=1 Pi

for any u, v € T,(P,), i.e., it is the Fisher information metric on P,.

The Fisher—Rao metric is the unique (up to a constant factor) Riemannian
metric on P,, contracting under stochastic maps ([Chen72]).

This metric is isometric, by p — 2(,/p1. - .., 4/Pn), With the standard metric
on an open subset of the sphere of radius two in R”. This identification allows
one to obtain on P, the geodesic distance, called the Rao distance, by

2 arccos(z pl.l/zq;/z).
i

The Fisher—-Rao metric can be extended to the set M,, = {p € R", p; > 0} of all
finite strictly positive measures on the set {1, ...,n}. In this case, the geodesic
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distance on M,, can be written as
203 (Vpi— v
i

for any p, g € M,, (cf. Hellinger metric in Chap. 14).
* Monotone metrics

Let M, be the set of all complex n x n matrices. Let M C M,, be the manifold
of all such positive-definite matrices. Let D C M, D = {p € M : Trp = 1},
be the submanifold of all density matrices. It is the space of faithful states of an
n-level quantum system; cf. distances between quantum states in Chap. 24.

The tangent space of M at p € M is T,(M) = {x € M,, : x = x*}, i.e,
the set of all n x n Hermitian matrices. The tangent space T,(D) at p € D is the
subspace of traceless (i.e., with trace 0) matrices in T,(M).

A Riemannian metric A on M is called monotone metric if the inequality

Aoy ((u), h(u)) < Ay (u, u)

holds for any p € M, any u € T,(M), and any stochastic, i.e., completely
positive trace preserving mapping A.
It was proved in [Petz96] that A is monotone if and only if it can be written as

Ap(u,v) = Tr uJ,(v),
.m. Here L, and R, are the
left and the right multiplication operators, and f : (0,00) — R is an operator
monotone function which is symmetric, i.e., f(t) = tf(t™'), and normalized, i.e.,
f(1) = 1. Then J,(v) = p~'v if v and p are commute, i.e., any monotone metric
is equal to the Fisher information metric on commutative submanifolds.

The Bures metric (or Helstrom metric) is the smallest monotone metric,
%Tr(dpg), obtained for f(f) = % In this case J,(v) = g, pg + gp = 2v.

For any p;, p» € M the geodesic distance defined by the Bures metric, (cf.
Bures distance in Chap. 24) can be written as

where J, is an operator of the form J, =

\/ Tr(p1) + Tr(p2) — 2Tr(y/ /p102+/P1)-
On the submanifold D = {p € M : Trp = 1} of density matrices it has the form

arccos Tr(y/ +/P1P24/P1)-

The right logarithmic derivative metric (or RLD-metric) is the greatest
monotone metric, corresponding to f () = 12_4;’ ie., J,(v) = %(p‘lv +vph.
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The Bogolubov-Kubo-Mori metric (or BKM-metric) is obtained for f(x) =
lnx It can be written as A, (1, v) = 3;3[Tr(p + su) In(p + tv)|s/=0-
* Wigner-Yanase-Dyson metrics
The Wigner-Yanase-Dyson metrics (or WYD-metrics) form a family of

metrics on the manifold M of all complex positive-definite n x n matrices defined
by

2
A .0) = 2T (p 0 (p - 50) 1m0

where f,(x) = —x 7 if # 1, and is Inx, if « = 1. These metrics are
monotone for o e [ 3, 3] For @ = =£1 one obtains the Bogolubov—Kubo-Mori
metric; for « = £3 one obtains the right logarithmic derivative metric.

The Wigner-Yanase metric (or WY-metric) is A°, the smallest metric in the
family. It can be written as A, (i, v) = 4Tr u(\/L_p + \/R_p)z(v).

* Connes metric

Roughly, the Connes metric is a generalization (from the space of all
probability measures of a set X, to the state space of any unital C*-algebra)
of the transportation distance (Chap. 14) defined via Lipschitz seminorm.

Let M" be a smooth n-dimensional manifold. Let A = C®°(M") be the
(commutative) algebra of smooth complex-valued functions on M", represented
as multiplication operators on the Hilbert space H = L?>(M",S) of square
integrable sections of the spinor bundle on M" by (f§)(p) = f(p)&(p) for all
fe€eAandforall§ € H.

Let D be the Dirac operator. Let the commutator [D, f] for f € A be the
Clifford multiplication by the gradient Vf, so that its operator norm ||.|| in H is
given by [[[D. f1I| = sup,epm ||V/1]-

The Connes metric is the intrinsic metric on M", defined by

sup  [f(p) —f(@I.

feallb.fll=t

This definition can also be applied to discrete spaces, and even generalized to C*-
algebras; cf. Rieffel metric space. In particular, for a labeled connected locally
finite graph G = (V, E) with the vertex-set V = {vy,...,v,,...}, the Connes
metric on V is defined, for any v;, v; € V, by sup p f(j=|iarl|<1 |fo: —fi;|, Where
{f = Y fuvi : Y |ful?> < oo} is the set of formal sums f, forming a Hilbert
space, and || [D. f]||is sup; (3= (fu = £))?.
¢ Rieffel metric space

Let V be a normed space (or, more generally, a locally convex topological
vector space, cf. Chap.2), and let V' be its continuous dual space, i.e., the set
of all continuous linear functionals f on V. The weak-* topology on V' is defined
as the weakest (i.e., with the fewest open sets) topology on V’ such that, for every
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x € V,themap F, : V' — R defined by F,(f) = f(x) for all f € V’, remains
continuous.

An order-unit space is a partially ordered real (complex) vector space
(A, <) with a special distinguished element e (order unit) satisfying the following
properties:

1. For any a € A, there exists r € R with a < re;
2. If a € A and a X re for all positive r € R, then a < 0 (Archimedean property).

The main example of an order-unit space is the vector space of all self-adjoint
elements in a unital C*-algebra with the identity element being the order unit.
Here a C*-algebrais a Banach algebra over C equipped with a special involution.
It is called unital if it has a unit (multiplicative identity element); such C*-
algebras are also called, roughly, compact noncommutative topological spaces.
Main example of a unital C*-algebra is the complex algebra of linear operators
on a complex Hilbert space which is topologically closed in the norm topology
of operators, and is closed under the operation of taking adjoints of operators.
The state space of an order-unit space (A, <, e) is the set S(A) = {f € A/, :
[ f]| = 1} of states, i.e., continuous linear functionals f with || f|| = f(e) = 1.
A Rieffel (or compact quantum as in Rieffel, 1999) metric space is a pair
(A, |]-||zip), where (A, <, e) is an order-unit space, and ||.||.; is a [0, +o0c]-valued
seminorm on A (generalizing the Lipschitz seminorm) for which it holds:

1. Fora € A, ||a||rj, = 0 holds if and only if a € Re;
2. the metric dpip(f,8) = SUPyen:|jal|,, <1 /(@) — g(a)| generates on the state
space S(A) its weak-* topology.

So, (S(A),dLip) is a usual metric space. If the order-unit space (A, <,e) is a
C*-algebra, then dy;, is the Connes metric, and if, moreover, the C*-algebra
is noncommutative, (S(A), dr;p) is called a noncommutative metric space.
The term quantum is due to the belief that the Planck-scale geometry of space-
time comes from such C*-algebras; cf. quantum space-time in Chap. 24.
Kuperberg and Weaver, 2010, proposed a new definition of quantum metric
space, in the setting of von Neumann algebras.

7.3 Hermitian Metrics and Generalizations

A vector bundle is a geometrical construct where to every point of a topological
space M we attach a vector space so that all those vector spaces “glued together”
form another topological space E. A continuous mapping = : E — M is called a
projection E on M. For every p € M, the vector space 7! (p) is called a fiber of the
vector bundle.

A real (complex) vector bundle is a vector bundle # : E — M whose fibers
77 (p), p € M, are real (complex) vector spaces.
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In a real vector bundle, for every p € M, the fiber 7! (p) locally looks like the
vector space R”, i.e., there is an open neighborhood U of p, a natural number n, and
a homeomorphism ¢ : U x R" — 7~!(U) such that, for all x € U and v € R", one
has 7 (¢(x,v)) = v, and the mapping v — ¢(x, v) yields an isomorphism between
R" and 77! (x). The set U, together with ¢, is called a local trivialization of the
bundle.

If there exists a “global trivialization”, then a real vector bundle 7 : M xR" — M
is called trivial. Similarly, in a complex vector bundle, for every p € M, the fiber
71 (p) locally looks like the vector space C”. The basic example of such bundle is
the trivial bundle 7 : U x C" — U, where U is an open subset of R¥.

Important special cases of a real vector bundle are the tangent bundle T(M")
and the cotangent bundle T*(M") of a real n-dimensional manifold My = M".
Important special cases of a complex vector bundle are the tangent bundle and the
cotangent bundle of a complex n-dimensional manifold.

Namely, a complex n-dimensional manifold M. is a topological space in which
every point has an open neighborhood homeomorphic to an open set of the n-
dimensional complex vector space C", and there is an atlas of charts such that the
change of coordinates between charts is analytic. The (complex) tangent bundle
Tc(Mg) of a complex manifold Mg is a vector bundle of all (complex) tangent
spaces of Mg at every point p € M¢. It can be obtained as a complexification
Tr(Mg) ® C = T(M") ® C of the corresponding real tangent bundle, and is called
the complexified tangent bundle of M.

The complexified cotangent bundle of M. is obtained similarly as T*(M") ® C.
Any complex n-dimensional manifold M = M" can be regarded as a real 2n-
dimensional manifold equipped with a complex structure on each tangent space.

A complex structure on a real vector space V is the structure of a complex
vector space on V that is compatible with the original real structure. It is completely
determined by the operator of multiplication by the number i, the role of which can
be taken by an arbitrary linear transformation J : V — V, J> = —id, where id is the
identity mapping.

A connection (or covariant derivative) is a way of specifying a derivative of a
vector field along another vector field in a vector bundle. A metric connection is
a linear connection in a vector bundle n : E — M, equipped with a bilinear form
in the fibers, for which parallel displacement along an arbitrary piecewise-smooth
curve in M preserves the form, that is, the scalar product of two vectors remains
constant under parallel displacement.

In the case of a nondegenerate symmetric bilinear form, the metric connection
is called the Euclidean connection. In the case of nondegenerate antisymmetric
bilinear form, the metric connection is called the symplectic connection.

* Bundle metric
A bundle metric is a metric on a vector bundle.
¢ Hermitian metric
A Hermitian metric on a complex vector bundle & : E — M is a collection
of Hermitian inner products (i.e., positive-definite symmetric sesquilinear forms)
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on every fiber E, = 7~ !(p), p € M, that varies smoothly with the point p in M.
Any complex vector bundle has a Hermitian metric.

The basic example of a vector bundle is the trivial bundle = : U x C* — U,
where U is an open set in R, In this case a Hermitian inner product on C", and
hence, a Hermitian metric on the bundle 7z : U x C* — U, is defined by

(u,v) = u Hv,

where H is a positive-definite Hermitian matrix, i.e., a complex n X n matrix such

that H* = H = H,and v Hv > 0 for all v € C"\{0}. In the simplest case, one
has (u,v) =Y ", uv;.

An important special case is a Hermitian metric & on a complex manifold
M", i.e., on the complexified tangent bundle T(M") ® C of M". This is the
Hermitian analog of a Riemannian metric. In this case 4 = g + iw, and its real
part g is a Riemannian metric, while its imaginary part w is a nondegenerate
antisymmetric bilinear form, called a fundamental form. Here g(J(x),J(y)) =
g, y), w(J(x),J(y)) = w(x,y), and w(x,y) = g(x,J(y)), where the operator J
is an operator of complex structure on M"; as a rule, J(x) = ix. Any of the forms
g, w determines % uniquely.

The term Hermitian metric can also refer to the corresponding Riemannian
metric g, which gives M" a Hermitian structure.

On a complex manifold, a Hermitian metric & can be expressed in local
coordinates by a Hermitian symmetric tensor ((h;;)):

h= " hjdz ® d.

i

where ((h;)) is a positive-definite Hermitian matrix. The associated fundamental
form w is then written as w = %ZU hydz; A dz;. A Hermitian manifold (or
Hermitian space) is a complex manifold equipped with a Hermitian metric.

» Kaibhler metric

A Kaéhler metric (or Kéhlerian metric) is a Hermitian metric & = g + iw on
a complex manifold M" whose fundamental form w is closed, i.e., dw = 0 holds.
A Kdhler manifold is a complex manifold equipped with a Kihler metric.

If h is expressed in local coordinates, i.e., h = ZU hiydz; ® dzj, then the
associated fundamental form w can be written as w = é Zizi hydz; A dzj, where
A is the wedge product which is antisymmetric, i.e., dx A dy = —dy A dx (hence,
dx A dx = 0).

In fact, w is a differential 2-form on M", i.e., a tensor of rank 2 that is
antisymmetric under exchange of any pair of indices: w = Ziz,’fijdxi A dv,
where f; is a function on M". The exterior derivative dw of w is defined by
dw = Zi.j X g%dxk A dx; A dxy. If dw = 0, then w is a symplectic (i.e., closed
nondegenerate) differential 2-form. Such differential 2-forms are called Kdhler
forms.
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The metric on a Kiéhler manifold locally satisfies h; = 3223, for some
function K, called the Kdahler potential. The term Kdhler metric can also refer to
the corresponding Riemannian metric g, which gives M" a Kihler structure. Then
a Kihler manifold is defined as a complex manifold which carries a Riemannian
metric and a Kihler form on the underlying real manifold.

* Hessian metric

Given a smooth f on an open subset of a real vector space, the associated

Hessian metric is defined by

f

8x,~8xj '

8ij =

A Hessian metric is also called an affine Kéhler metrig since a Kdhler metric on

a complex manifold has an analogous description as i
aZiaZ:/'

» Calabi-Yau metric

The Calabi-Yau metric is a Kéihler metric which is Ricci-flat.

A Calabi—Yau manifold (or Calabi—Yau space) is a simply connected complex
manifold equipped with a Calabi—Yau metric. It can be considered as a 2n-
dimensional (6D being particularly interesting) smooth manifold with holonomy
group (i.e., the set of linear transformations of tangent vectors arising from
parallel transport along closed loops) in the special unitary group.

» Kihler-Einstein metric

A Kihler-Einstein metric is a Kihler metric on a complex manifold
M" whose Ricci curvature tensor is proportional to the metric tensor. This
proportionality is an analog of the Einstein field equation in the General Theory
of Relativity.

A Kdhler—Einstein manifold (or Einstein manifold) is a complex manifold
equipped with a Kédhler—Einstein metric. In this case the Ricci curvature tensor,
seen as an operator on the tangent space, is just multiplication by a constant.

Such a metric exists on any domain D C C" that is bounded and pseudo-
convex. It can be given by the line element

0%u(z)
Z 0z;07; iz,

where u is a solution to the boundary value problem: det( 33 i ) = ¢? on D, and

u = oo on dD. The Kihler—Einstein metric is a complete metrlc. On the unit disk
A = {z € C:|z] < 1} itis coincides with the Poincaré metric.

Let & be the Einstein metric on a smooth compact manifold M"~" without
boundary, having scalar curvature (n—1)(n—2). A generalized Delaunay metric
on R xM"~! is (Delay, 2010) of the form g = un= (dy?+h), where u = u(y) > 0
PN

is a periodic solution of u” —
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There is one parameter family of constant positive curvature conformal
metrics on R x S"!, referred to as Delaunay metric; cf. Kottler metric in
Chap. 26.

¢ Hodge metric

The Hodge metric is a Kihler metric whose fundamental form w defines an
integral cohomology class or, equivalently, has integral periods.

A Hodge manifold (or Hodge variety) is a complex manifold equipped with
a Hodge metric. A compact complex manifold is a Hodge manifold if and only
if it is isomorphic to a smooth algebraic subvariety of some complex projective
space.

¢ Fubini-Study metric

The Fubini-Study metric (or Cayley—Fubini—Study metric) is a Kéahler
metric on a complex projective space CP" defined by a Hermitian inner product
(,)in C"*! It is given by the line element

Js (x, x){dx, dx) — (x, dx) (X, dx)
- = .

{x, x)?
The Fubini-Study distance between points (x; : ... : x,41) and (y; : ... :
Ynt1) € CP", where x = (x1,...,X,p1) andy = (y,...,ypr1) € CFI\{0}, is
equal to

| {x, y)| '
V(X)) (v, )

The Fubini—Study metric is a Hodge metric. The space CP" endowed with
this metric is called a Hermitian elliptic space (cf. Hermitian elliptic metric).
* Bergman metric
The Bergman metric is a Kéahler metric on a bounded domain D C C"
defined, for the Bergman kernel K(z, u), by the line element

arccos

5 0’InK(z,2)
ds” = IXI: 92107, dz;dz;.
It is a biholomorhically invariant metric on D, and it is complete if D is
homogeneous. For the unit disk A = {z € C : |z] < 1} the Bergman metric
coincides with the Poincaré metric; cf. also Bergman p-metric in Chap. 13.

The set of all analytic functions f # 0 of class L,(D) with respect to
the Lebesgue measure, forms the Hilbert space L, ,(D) C L,(D) with an
orthonormal basis (¢;);. The Bergman kernel is a function in the domain Dx D C

C?, defined by Kp(z,u) = K(z,u) = Y 2, ¢i(2)¢i(u).
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The Skwarczynski distance is defined by

|K(z, u)|

1 3
( VK(z,2)/K(u, u))

* Hyper-Kiihler metric
A hyper-Kihler metric is a Riemannian metric g on a 4n-dimensional
Riemannian manifold which is compatible with a quaternionic structure on the
tangent bundle of the manifold.
Thus, the metric g is Kihlerian with respect to 3 Kéhler structures (I, wy, g),
J,wy, 8), and (K, wg, g), corresponding to the complex structures, as endomor-
phisms of the tangent bundle, which satisfy the quaternionic relationship

P=J]=K*=IK =-JIK = —1.

A hyper-Kdhler manifold is a Riemannian manifold equipped with a hyper-
Kihler metric. manifolds are Ricci-flat. Compact 4D hyper-Kéhler manifolds are
called K3-surfaces; they are studied in Algebraic Geometry.

» Calabi metric

The Calabi metric is a hyper-Kéhler metric on the cotangent bundle
T*(CP"Y) of a complex projective space CP"+!,

For n = 4k + 4, this metric can be given by the line element

dr?
1—r4

ds* = +irz(l—r_4)kz+r2(v12+v§)+%(rz—l)(olza-i-ozza)—}-%(rz—}-l)(Zfa-i-E%a),
where (A, vy, V2,014,020, Z1as 22¢), With o running over k values, are left-
invariant one-forms (i.e., linear real-valued functions) on the coset SU(k +
2)/U(k). Here U(k) is the unitary group consisting of complex k x k unitary
matrices, and SU (k) is the special unitary group of complex kxk unitary matrices
with determinant 1.
For k = 0, the Calabi metric coincides with the Eguchi-Hanson metric.
* Stenzel metric
The Stenzel metric is a hyper-Kéhler metric on the cotangent bundle
T*(S"*1) of a sphere §"*!.
¢ SO(3)-invariant metric
An SO(3)-invariant metric is a 4D 4-dimensional hyper-Kihler metric with
the line element given, in the Bianchi type IX formalism (cf. Bianchi metrics in
Chap. 26) by

ds* = f2(t)d* + a* (o} + b*(t)o3 + c*(1)o3,

where the invariant one-forms o1, 05, 03 of SO(3) are expressed in terms of Euler
angles 0, ¥, ¢ as o1 = %(sin Ydf — sin 0 cos Yde), on = —%(COS Ydo +
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sin 0 sin Y d¢), o3 = %(dw + cos 6d¢), and the normalization has been chosen
so that o; A 0 = %e[jkdak. The coordinate ¢ of the metric can always be chosen

so that f(r) = %abc, using a suitable reparametrization.
¢ Atiyah—Hitchin metric
The Atiyah-Hitchin metric is a complete regular SO(3)-invariant metric
with the line element

1 dk 2
ds® = Za2b2c2 (m) + d*(k)oi + b*(k)o} + c*(k)o?,

where a, b, ¢ are functions of k, ab = —K (k)(E(k) — K(k)), bc = —K(k)(E(k) —

(1 — K¥»)K(k)), ac = —K(k)E(k), and K(k), E(k) are the complete elliptic
integrals, respectively, of the first and second kind, with 0 < k < 1. The
2K(1—k?)

coordinate ¢ is given by the change of variables t = —
constant.
e Taub-NUT metric
The Taub-NUT metric (cf. also Chap.26) is a complete regular SO(3)-
invariant metric with the line element

<K~ UPp to an additive

1r+m

ds® = Zdr 4 (7 =)o} +07) + am? =" 52
r+m

where m is the relevant moduli parameter, and the coordinate r is related to ¢ by
r=m-+ 2m1‘ NUT manifold was discovered in Ehlers, 1957, and rediscovered
in Newman—Tamburino—Unti, 1963; it is closely related to the metric in Taub,
1951.

* Eguchi-Hanson metric

The Eguchi-Hanson metric is a complete regular SO(3)-invariant metric

with the line element

2_d_”2 2 2 _24 2
ds —1_(%)4+72 of +o; + (1 (r) o3 ).

where a is the moduli parameter, and the coordinate r is a+/coth(a?7).
The Eguchi—-Hanson metric coincides with the 4D Calabi metric.
¢ Complex Finsler metric
A complex Finsler metric is an upper semicontinuous function F : T(M") —
R4 on a complex manifold M" with the analytic tangent bundle 7 (M") satisfying
the following conditions:

1. F2is smooth on M, where M" is the complement in 7'(M") of the zero section;
2. F(p,x) > Oforallp € M" and x € M;
3. F(p,Ax) = |A|F(p,x) forallp e M", x € T,(M"), and A € C.
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The function G = F? can be locally expressed in terms of the coordinates

(p1s---sPns X1,-..,%); the Finsler metric tensor of the complex Finsler metric
is given by the matrix((Gy)) = ((%%)), called the Levi matrix. If the
i0Xj

matrix ((Gy)) is positive-definite, the complex Finsler metric F is called strongly
pseudo-convex.
¢ Distance-decreasing semimetric

Let d be a semimetric which can be defined on some class M of complex
manifolds containing the unit disk A = {z € C : |z| < 1}. Itis called distance-
decreasing if, for any analytic mapping f : M| — M, with M, M, € M, the
inequality d(f(p).f(q)) < d(p.q) holds for all p,qg € M,.

The Carathéodory semimetric F¢, Sibony semimetric Fg, Azukawa semi-
metric /4 and Kobayashi semimetric Fx are distance-decreasing with F¢ and
Fx being the smallest and the greatest distance-decreasing semimetrics. They
are generalizations of the Poincaré metric to higher-dimensional domains, since
Fc = Fk is the Poincaré metric on the unit disk A, and Fc = Fx = 0 on C".

It holds Fe(z, u) < Fs(z,u) < Fa(z,u) < Fx(z,u) forallz € D and u € C",
If D is convex, then all these metrics coincide.

¢ Biholomorphically invariant semimetric

A biholomorphism is a bijective holomorphic (complex differentiable in a
neighborhood of every point in its domain) function whose inverse is also
holomorphic.

A semimetric F(z,u) : D x C" — [0,00] on a domain D in C" is called
biholomorphically invariant if F(z, u) = |A|F(z,u) forall A € C,and F(z,u) =
F(f(2).f"(z)u) for any biholomorphismf : D — D'.

Invariant metrics, including the Carathéodory, Kobayashi, Sibony,
Azukawa, Bergman, and Kihler-Einstein metrics, play an important role
in Complex Function Theory, Complex Dynamics and Convex Geometry. The
first four metrics are used mostly because they are distance-decreasing. But
they are almost never Hermitian. On the other hand, the Bergman metric and the
Kihler—Einstein metric are Hermitian (in fact, Kihlerian), but, in general, not
distance-decreasing.

The Wu metric (Cheung and Kim, 1996) is an invariant non-Kéhler Hermitian
metric on a complex manifold M" which factor, for any holomorphic mapping
between two complex manifolds.

* Kobayashi metric

Let D be a domain in C". Let O(A, D) be the set of all analytic mappings
f:A — D,where A = {z € C: |z| < 1} is the unit disk.

The Kobayashi metric (or Kobayashi—-Royden metric) Fx is a complex
Finsler metric defined, for all z € D and u € C", by

Fx(z,u) = inf{a > 0: I € O(A, D), £(0) = z,af (0) = u}.
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Given a complex manifold M", the Kobayashi semimetric Fx is defined by
Fx(p,u) = inf{a > 0:3f € O(A, M"),f(0) :p,af/(O) = u}

forallp € M" and u € T,(M").

Fg(p,u) is a seminorm of the tangent vector u, called the Kobayashi
seminorm. Fi is a metric if M" is taut, i.e., O(A, M") is a normal family (every
sequence has a subsequence which either converge or diverge compactly).

The Kobayashi semimetric is an infinitesimal form of the Kobayashi semidis-
tance (or Kobayashi pseudo-distance, 1967) Kym on M", defined as follows.
Given p,q € M", a chain of disks a from p to q is a collection of points
p=p’p'.....pk = q of M", pairs of points a', b';...;a*, b* of the unit disk
A, and analytic mappings fi, . .. fy from A into M", such that f;(¢) = p/~! and
f;(b%) = p/ for all .

The length /() of a chain « is the sum dp(a', b') + --- + dp(a*, b¥), where
dp is the Poincaré metric. The Kobayashi semimetric Ky» on M" is defined by

Ky (p.q) = infl(e),

where the infimum is taken over all lengths /(o) of chains of disks « from p to g.
Given a complex manifold M", the Kobayashi-Busemann semimetric on
M" is the double dual of the Kobayashi semimetric. It is a metric if M" is taut.
¢ Carathéodory metric
Let D be a domain in C". Let O(D, A) be the set of all analytic mappings
f:D— A, where A = {z € C: |z| < 1} is the unit disk.
The Carathéodory metric F is a complex Finsler metric defined by

Fe(z,u) = sup{|f (Ju| : f € O(D, A)}

foranyz € Dandu € C".
Given a complex manifold M", the Carathéodory semimetric F¢ is defined
by

Fe(p,u) = sup{|f (p)ul : f € OM", A)}

forall p € M" and u € T,(M"). Fc is a metric if M" is taut, i.e., every sequence
in O(A, M") has a subsequence which either converge or diverge compactly.

The Carathéodory semidistance (or Carathéodory pseudo-distance, 1926)
Cy» 1s a semimetric on a complex manifold M", defined by

Cur(p.q) = sup{dp(f(p).f(q)) : f € OM", A)},

where dp is the Poincaré metric.
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In general, the integrated semimetric of the infinitesimal Carathéodory semi-

metric is internal for the Carathéodory semidistance, but does not equal to it.
* Azukawa semimetric

Let D be a domain in C". Let Kp(z) be the set of all logarithmically
plurisubharmonic functions f : D — [0, 1) such that there exist M, r > 0 with
fWw) < M||lu—z||, for all u € B(z,r) C D; here ||.|| is the l-norm on C", and
B(z,r) = {x € C": ||z—x||» < r}. Let gp(z, u) be sup{f(v) : f € Kp(z)}.

The Azukawa semimetric F4 is a complex Finsler metric defined by

B
Fa(z,u) = llmleong(Za z+ Au)

forallz € Dandu € C".

The Azukawa metric is an infinitesimal form of the Azukawa semidistance.

¢ Sibony semimetric

Let D be a domain in C". Let Kp(z) be the set of all logarithmically
plurisubharmonic functions f : D — [0, 1) such that there exist M, r > 0 with
f(u) < M||lu—z||,forallu € B(z,r) = {x € C": ||z—x||» < r} C D.Let C; ()
be the set of all functions of class C? on some open neighborhood of z.

The Sibony semimetric Fs is a complex Finsler semimetric defined by

Fs(z,u) = sup
fEKD(NCE,.(2)

forallze Dandu € C".
The Sibony semimetric is an infinitesimal form of the Sibony semidistance.
* Teichmiiller metric

A Riemann surface R is a one-dimensional complex manifold. Two Riemann
surfaces R; and R, are called conformally equivalent if there exists a bijective
analytic function (i.e., a conformal homeomorphism) from R; into R,. More
precisely, consider a fixed closed Riemann surface Ry of a given genus g > 2.

For a closed Riemann surface R of genus g, one can construct a pair (R, f),
where f : Ry — R is a homeomorphism. Two pairs (R,f) and (R, ;) are called
conformally equivalent if there exists a conformal homeomorphism % : R — R,
such that the mapping (f;)~! - h-f : Ry — Ry is homotopic to the identity.

An abstract Riemann surface R* = (R,f)* is the equivalence class of all
Riemann surfaces, conformally equivalent to R. The set of all equivalence classes
is called the Teichmiiller space T(Ry) of the surface Ry.

For closed surfaces R, of given genus g, the spaces T(Ry) are isometrically
isomorphic, and one can speak of the Teichmiiller space T, of surfaces of genus
8- Ty is a complex manifold. If R is obtained from a compact surface of genus
g = 2 by removing n points, then the complex dimension of T, is 3g — 3 + n.
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The Teichmiiller metric is a metric on T, defined by
L finK(h
2 k)

for any R, R;‘ € T,, where h : R — R, is a quasi-conformal homeomorphism,
homotopic to the identity, and K(h) is the maximal dilation of h. In fact,
there exists a unique extremal mapping, called the Teichmiiller mapping which
minimizes the maximal dilation of all such 4, and the distance between RT and
R;‘ is equal to %ln K, where the constant K is the dilation of the Teichmiiller
mapping.

In terms of the extremal length extg+(y), the distance between R} and R; is

I extpe(y)
—Insup ———,
2y extgr(y)

where the supremum is taken over all simple closed curves on Ry.

The Teichmiiller space Ty, with the Teichmiiller metric on it, is a geodesic
metric space (moreover, a straight G-space) but it is neither Gromov hyper-
bolic, nor a Busemann convex metric space.

The Thurston quasi-metric on the Teichmiiller space T, is defined by

I
3 1rhlf1n [17]]Lip

for any R, R;‘ € T,, where h : R — R, is a quasi-conformal homeomorphism,

homotopic to the identity, and ||.||z;, is the Lipschitz norm on the set of all

injective functions f : X — Y defined by || f{|2ip = sup, yex v, %W.

The moduli space R, of conformal classes of Riemann surfaces of genus g
is obtained by factorization of T, by some countable group of automorphisms
of it, called the modular group. The Zamolodchikov metric, defined (1986) in
terms of exactly marginal operators, is a natural metric on the conformal moduli
spaces.

Liu, Sun and Yau, 2005, showed that all known complete metrics on the
Teichmiiller space and moduli space (including Teichmiiller metric, Bergman
metric, Cheng—Yau—-Mok Kihler-Einstein metric, Carathéodory metric,
McMullen metric) are equivalent since they are quasi-isometric (Chap. 1) to the
Ricci metric and the perturbed Ricci metric introduced by them.

¢ Weil-Petersson metric

The Weil-Petersson metric is a Kihler metric on the Teichmiiller space
T, of abstract Riemann surfaces of genus g with n punctures and negative Euler
characteristic. This metric has negative Ricci curvature; it is geodesically convex
(Chap. 1) and not complete.

The Weil-Peterson metric is Gromov hyperbolic if and only if (Brock and
Farb, 2006) the complex dimension 3g — 3 + n of T, is at most two.
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Gibbons—-Manton metric

The Gibbons—Manton metric is a 4n-dimensional hyper-Kéhler metric on
the moduli space of n-monopoles which admits an isometric action of the n-
dimensional torus 7". It is a hyper-Kihler quotient of a flat quaternionic vector
space.

Metrics on determinant lines

Let M" be an n-dimensional compact smooth manifold, and let F be a flat
vector bundle over M". Let H*(M",F) = &' H'(M",F) be the de Rham
cohomology of M" with coefficients in F. Given an n-dimensional vector space
V, the determinant line det V of V is defined as the top exterior power of V, i.e.,
det V. = A"V. Given a finite-dimensional graded vector space V = ®}_,V;, the
determinant line of V is defined as the tensor product det V = ®§‘=0(detV,<)(_l)‘.

Thus, the determinant line detH*(M", F) of the cogomology H*(M", F) can
be written as detH*(M", F) = ®"_,(detH'(M", F))~V".

The Reidemeister metric is a metric on detH®(M", F), defined by a given
smooth triangulation of M", and the classical Reidemeister—Franz torsion.

Let g and g7™") be smooth metrics on the vector bundle F and tangent bundle
T(M"), respectively. These metrics induce a canonical Ly-metric h*°™"-F) on
H*(M", F). The Ray-Singler metric on detH®*(M", F) is defined as the product
of the metric induced on detH®(M",F) by h""M"FP) with the Ray-Singler
analytic torsion. The Milnor metric on detH*®*(M", F) can be defined in a similar
manner using the Milnor analytic torsion. If g¥ is flat, the above two metrics
coincide with the Reidemeister metric. Using a co-Euler structure, one can define
a modified Ray—Singler metric on detH®*(M", F).

The Poincaré-Reidemeister metric is a metric on the cohomological deter-
minant line detH®*(M",F) of a closed connected oriented odd-dimensional
manifold M". It can be constructed using a combination of the Reidemeister
torsion with the Poincaré duality. Equivalently, one can define the Poincaré—
Reidemeister scalar product on detH®(M",F) which completely determines
the Poincaré-Reidemeister metric but contains an additional sign or phase
information.

The Quillen metric is a metric on the inverse of the cohomological determi-
nant line of a compact Hermitian one-dimensional complex manifold. It can be
defined as the product of the L,-metric with the Ray-Singler analytic torsion.
Kihler supermetric

The Kihler supermetric is a generalization of the Kéhler metric for the case
of a supermanifold. A supermanifold is a generalization of the usual manifold
with fermonic as well as bosonic coordinates. The bosonic coordinates are
ordinary numbers, whereas the fermonic coordinates are Grassmann numbers.

Here the term supermetric differs from the one used in this chapter.

Hofer metric

A symplectic manifold (M",w), n = 2k, is a smooth even-dimensional
manifold M" equipped with a symplectic form, i.e, a closed nondegenerate 2-
form, w.



168 7 Riemannian and Hermitian Metrics

A Lagrangian manifold is a k-dimensional smooth submanifold L* of a
symplectic manifold (M", w), n = 2k, such that the form w vanishes identically
on LY, i.e., for any p € L* and any x,y € T,(L¥), one has w(x,y) = 0.

Let L(M", A) be the set of all Lagrangian submanifolds of a closed symplectic
manifold (M",w), diffeomorphic to a given Lagrangian submanifold A. A
smooth family & = {L},, t € [0, 1], of Lagrangian submanifolds L, € L(M", A)
is called an exact path connecting Ly and L, if there exists a smooth mapping
W A x[0,1] = M" such that, for every ¢ € [0, 1], one has V(A x {}) = L,,
and ¥ x w = dH, A dt for some smooth function H : A x [0,1] — R. The
Hofer length I(c) of an exact path « is defined by /(«) = fol {maxyea H(p, 1) —
minyea H(p, t)}dt.

The Hofer metric on the set L(M", A) is defined by

infl(ct)

for any Lo, L; € L(M", A), where the infimum is taken over all exact paths on
L(M", A), that connect Ly and L.

The Hofer metric can be defined similarly on the group Ham(M",w) of
Hamiltonian diffeomorphisms of a closed symplectic manifold (M", w), whose
elements are time-one mappings of Hamiltonian flows ¢!: it is inf, I(a), where
the infimum is taken over all smooth paths & = {¢/}, t € [0, 1], connecting ¢
and ¥.

* Sasakian metric

A Sasakian metric is a metric on a contact manifold, naturally adapted to the
contact structure.

A contact manifold equipped with a Sasakian metric is called a Sasakian
space, and it is an odd-dimensional analog of a Kdhler manifold. The scalar
curvature of a Sasakian metric which is also Einstein metric, is positive.

* Cartan metric

A Killing form (or Cartan—Killing form) on a finite-dimensional Lie algebra

Q over a field I is a symmetric bilinear form

B(x,y) = Tr(ady - ad,),

where Tr denotes the trace of a linear operator, and ad, is the image of x under
the adjoint representation of 2, i.e., the linear operator on the vector space €2
defined by the rule z — [x, z], where [, ] is the Lie bracket.

Letey, ... e, be abasis for the Lie algebra 2, and [e;, ¢j] = ZZ=1 yi’;ek, where

yi’j‘. are corresponding structure constants. Then the Killing form is given by

n
B(xi,x;) = g = Z ViVt
k=1

In Theoretical Physics, the metric tensor ((g;;)) is called a Cartan metric.




Chapter 8
Distances on Surfaces and Knots

8.1 General Surface Metrics

A surface is a real 2D (two-dimensional) manifold M2, i.e., a Hausdorff space,
each point of which has a neighborhood which is homeomorphic to a plane E2, or a
closed half-plane (cf. Chap. 7).

A compact orientable surface is called closed if it has no boundary, and it
is called a surface with boundary, otherwise. There are compact nonorientable
surfaces (closed or with boundary); the simplest such surface is the Mobius strip.
Noncompact surfaces without boundary are called open.

Any closed connected surface is homeomorphic to either a sphere with, say, g
(cylindric) handles, or a sphere with, say, g cross-caps (i.e., caps with a twist like
Mobius strip in them). In both cases the number g is called the genus of the surface.
In the case of handles, the surface is orientable; it is called a torus (doughnut),
double torus, and triple torus for g = 1,2 and 3, respectively. In the case of cross-
caps, the surface is nonorientable; it is called the real projective plane, Klein bottle,
and Dyck’s surface for g = 1,2 and 3, respectively. The genus is the maximal
number of disjoint simple closed curves which can be cut from a surface without
disconnecting it (the Jordan curve theorem for surfaces).

The Euler—Poincaré characteristic of a surface is (the same for all polyhedral
decompositions of a given surface) the number y = v —e + f, where v, e and f are,
respectively, the number of vertices, edges and faces of the decomposition. Then
x = 2 — 2g if the surface is orientable, and y = 2 — g if not. Every surface with
boundary is homeomorphic to a sphere with an appropriate number of (disjoint)
holes (i.e., what remains if an open disk is removed) and handles or cross-caps. If &
is the number of holes, then y = 2 — 2g — h holds if the surface is orientable, and
X =2—g—hifnot.

The connectivity number of a surface is the largest number of closed cuts that can
be made on the surface without separating it into two or more parts. This number is
equal to 3 — y for closed surfaces, and 2 — y for surfaces with boundaries. A surface
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with connectivity number 1, 2 and 3 is called, respectively, simply, doubly and triply
connected. A sphere is simply connected, while a torus is triply connected.

A surface can be considered as a metric space with its own intrinsic metric, or
as a figure in space. A surface in [E3 is called complete if it is a complete metric
space with respect to its intrinsic metric.

Useful shape-aware (preserved by isomorphic deformations of the surface)
distances on the interior of a surface mesh can be defined by isometric embedding
of the surface into a suitable high-dimensional Euclidean space; for example,
diffusion metric (cf. Chap. 15 and histogram diffusion distance from Chap. 21)
and Rustamov et al., 2009.

A surface is called differentiable, regular, or analytic, respectively, if in a
neighborhood of each of its points it can be given by an expression

r=r(u,v) = r(x(u,v),xu,v),xu,v)),

where the position vector r = r(u,v) is a differentiable, regular (i.e., a sufficient
number of times differentiable), or real analytic, respectively, vector function
satisfying the condition r, X r, # 0.

Any regular surface has the intrinsic metric with the line element (or first
Jfundamental form)

ds® = dr* = E(u, v)du? + 2F (u, v)dudv + G(u, v)dv?,
where E(u,v) = (ry,ri), F(u,v) = (r,,ry), G(u,v) = (r,,r,). The length of a

curve defined on the surface by the equations u = u(t), v = v(¢), t € [0,1], is
computed by

1
/ VEU? +2Fv + Gv'2dt,
0

and the distance between any points p,g € M? is defined as the infimum of
the lengths of all curves on M?, connecting p and g. A Riemannian metric is a
generalization of the first fundamental form of a surface.

For surfaces, two kinds of curvature are considered: Gaussian curvature, and
mean curvature. To compute these curvatures at a given point of the surface,
consider the intersection of the surface with a plane, containing a fixed normal
vector, i.e., a vector which is perpendicular to the surface at this point. This
intersection is a plane curve. The curvature k of this plane curve is called the normal
curvature of the surface at the given point. If we vary the plane, the normal curvature
k will change, and there are two extremal values, the maximal curvature k;, and the
minimal curvature k;, called the principal curvatures of the surface. A curvature is
taken to be positive if the curve turns in the same direction as the surface’s chosen
normal, otherwise it is taken to be negative.
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The Gaussian curvature is K = kjk; (it can be given entirely in terms of the first
fundamental form). The mean curvature is H = %(kl + ky).

A minimal surface is a surface with mean curvature zero or, equivalently, a
surface of minimum area subject to constraints on the location of its boundary.

A Riemann surface is a one-dimensional complex manifold, or a 2D real manifold
with a complex structure, i.e., in which the local coordinates in neighborhoods of
points are related by complex analytic functions. It can be thought of as a deformed
version of the complex plane. All Riemann surfaces are orientable. Closed Riemann
surfaces are geometrical models of complex algebraic curves. Every connected
Riemann surface can be turned into a complete 2D Riemannian manifold with
constant curvature —1, 0, or 1. The Riemann surfaces with curvature —1 are called
hyperbolic, and the unit disk A = {z € C : |z| < 1} is the canonical example. The
Riemann surfaces with curvature 0 are called parabolic, and C is a typical example.
The Riemann surfaces with curvature 1 are called elliptic, and the Riemann sphere
C U {00} is a typical example.

* Regular metric
The intrinsic metric of a surface is regular if it can be specified by the line
element

ds’> = Edu® + 2Fdudv + Gdv?,

where the coefficients of the form ds? are regular functions.

Any regular surface, given by an expression » = r(u, v), has a regular metric
with the line element ds?, where E(u,v) = (r,, 1), F(u,v) = (r,, ry), G(u,v) =
(ry, ry).

¢ Analytic metric

The intrinsic metric on a surface is analytic if it can be specified by the line

element

ds* = Edu® + 2Fdudv + Gdv?,

where the coefficients of the form ds? are real analytic functions.

Any analytic surface, given by an expression r = r(u,v), has an analytic
metric with the line element ds®, where E(u,v) = (r,,r.), F(u,v) = (r,, 1),
G(u,v) = (ry, ry).

e Metric of nonpositive curvature

A metric of nonpositive curvature is the intrinsic metric on a saddle-
like surface. A saddle-like surface is a generalization of a surface of negative
curvature: a twice continuously-differentiable surface is a saddle-like surface if
and only if at each point of the surface its Gaussian curvature is nonpositive.

These surfaces can be seen as antipodes of convex surfaces, but they do not
form such a natural class of surfaces as do convex surfaces.

A metric of negative curvature is the intrinsic metric on a surface of negative
curvature, i.e., a surface in |E? that has negative Gaussian curvature at every point.
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A surface of negative curvature locally has a saddle-like structure. The
intrinsic geometry of a surface of constant negative curvature (in particular, of
a pseudo-sphere) locally coincides with the geometry of the Lobachevsky plane.
There exists no surface in E* whose intrinsic geometry coincides completely
with the geometry of the Lobachevsky plane (i.e., a complete regular surface of
constant negative curvature).

¢ Metric of nonnegative curvature

A metric of nonnegative curvature is the intrinsic metric on a convex
surface.

A convex surface is a domain (i.e., a connected open set) on the boundary of
a convex body in E? (in some sense, it is an antipode of a saddle-like surface).

The entire boundary of a convex body is called a complete convex surface.
If the body is finite (bounded), the complete convex surface is called closed.
Otherwise, it is called infinite (an infinite convex surface is homeomorphic to a
plane or to a circular cylinder).

Any convex surface M? in E? is a surface of bounded curvature. The total
Gaussian curvature w(A) = [ [, K(x)do(x) of a set A C M? is always
nonnegative (here o (.) is the area, and K (x) is the Gaussian curvature of M? at a
point x), i.e., a convex surface can be seen as a surface of nonnegative curvature.

The intrinsic metric of a convex surface is a convex metric (not to be confused
with metric convexity from Chap. 1) in the sense of Surface Theory, i.e., it
displays the convexity condition: the sum of the angles of any triangle whose
sides are shortest curves is not less that .

A metric of positive curvature is the intrinsic metric on a surface of positive
curvature, i.e., a surface in IE3 that has positive Gaussian curvature at every point.

e Metric with alternating curvature

A metric with alternating curvature is the intrinsic metric on a surface with

alternating (positive or negative) Gaussian curvature.
* Flat metric

A flat metric is the intrinsic metric on a developable surface, i.e., a surface,
on which the Gaussian curvature is everywhere zero. Cf. flat space in Chap. 1.

In general, a Riemannian metric on a surface is locally Euclidean up to a third
order error (distortion of metric) measured by the Gaussian curvature.

* Metric of bounded curvature

A metric of bounded curvature is the intrinsic metric p on a surface of
bounded curvature.

A surface M? with an intrinsic metric p is called a surface of bounded
curvature if there exists a sequence of Riemannian metrics p, defined on M2,
such that p, — p uniformly for any compact set A C M?, and the sequence
lwal(A) is bounded, where |w|,(A) = [ [, |K(x)|do(x) is the total absolute
curvature of the metric p, (here K(x) is the Gaussian curvature of M? at a point
x, and o (.) is the area).

e A-metric

A A-metric (or metric of type A) is a complete metric on a surface with

curvature bounded from above by a negative constant.
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A A-metric does not have embeddings into E3. It is a generalization of the
result in Hilbert, 1901: no complete regular surface of constant negative curvature
(i.e., a surface whose intrinsic geometry is the geometry of the Lobachevsky
plane) exists in E3.

e (h, A)-metric

A (h, A)-metric is a metric on a surface with a slowly-changing negative
curvature.

A complete (i, A)-metric does not permit a regular isometric embedding in
three-dimensional Euclidean space (cf. A-metric).

* G-distance

A connected set G of points on a surface M? is called a geodesic region if,
for each point x € G, there exists a disk B(x, r) with center at x, such that B =
G N B(x, r) has one of the following forms: B = B(x, r) (x is a regular interior
point of G); Bg is a semidisk of B(x, r) (x is a regular boundary point of G); Bg is
a sector of B(x, r) other than a semidisk (x is an angular point of G); Bg consists
of a finite number of sectors of B(x, r) with no common points except x (a nodal
point of G).

The G-distance between any x and y € G is the greatest lower bound of the
lengths of all rectifiable curves connecting x and y € G and completely contained
in G.

¢ Conformally invariant metric

Let R be a Riemann surface. A local parameter (or local uniformizing
parameter, local uniformizer) is a complex variable z considered as a continuous
function z,, = ¢,,(p) of a point p € R which is defined everywhere in some
neighborhood (parametric neighborhood) V(py) of a point py € R and which
realizes a homeomorphic mapping (parametric mapping) of V( po) onto the disk
(parametric disk) A(py) = {z € C : |z| < r(po)}, where ¢, (po) = O.
Under a parametric mapping, any point function g(p) defined in the parametric
neighborhood V(py), goes into a function of the local parameter z: g(p) =
8(¢,, () = G(2).

A conformally invariant metric is a differential p(z)|dz| on the Riemann
surface R which is invariant with respect to the choice of the local parameter z.
Thus, to each local parameter z (z : U — C) a function p, : z(U) — [0, o0] is
associated such that, for any local parameters z; and z,, we have

dzi(p)
dzz(p)

palea(p)) _
Pz (z1(p))

forany p € Uy N U,.

Every linear differential A(z)dz and every quadratic differential Q(z)dz* induce
conformally invariant metrics |A(z)||dz| and |Q(z)|'/?|dz|, respectively (cf. Q-
metric).
¢ QO-metric
An Q-metric is a conformally invariant metric p(z)|dz| = |Q(z)|"/?|dz| on
a Riemann surface R defined by a quadratic differential Q(z)dz>.
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A quadratic differential Q(z)dz* is a nonlinear differential on a Riemann
surface R which is invariant with respect to the choice of the local parameter
z. Thus, to each local parameter z (z : U — C) a function Q, : z(U) — C is
associated such that, for any local parameters z; and z,, we have

0, (22(p) (le (p)

2
Qzl (Zl(p)) - dzz(p)) for any p € Ul a U2-

* Extremal metric
Let I" be a family of locally rectifiable curves on a Riemann surface R and
let P be a class of conformally invariant metrics p(z)|dz| on R such that p(z)
is square-integrable in the z-plane for every local parameter z, and the following
Lebesgue integrals are not simultaneously equal to 0 or co:

Ay(R) = //pz(z)dxdy and L,(I") = inf /p(z)ldzl.
R yer y
The modulus of the family of curves I is defined by

o ApR)
M= g e

The extremal length of the family of curves T is the reciprocal of M(T").

Let P, be the subclass of P such that, for any p(z)|dz| € Pr and any y € T,
one has fy p(2)|dz| = 1.If P; # @, then M(I") = infyep, Ap(R). Every metric
from Py, is called an admissible metric for the modulus on T. If there exists p*
for which

M(T) = inf A,(R) = Aye (R),

the metric p*|dz]| is called an extremal metric for the modulus on I'. It is a
conformally invariant metric.
¢ Fréchet surface metric

Let (X,d) be a metric space, M? a compact 2D manifold, f a continuous
mapping f : M?> — X, called a parametrized surface, and o : M?> — M?
a homeomorphism of M? onto itself. Two parametrized surfaces f; and f, are
called equivalent if inf; max, ey d(fi(p).f2(0(p))) = 0, where the infimum is
taken over all possible homeomorphisms o. A class f* of parametrized surfaces,
equivalent to f, is called a Fréchet surface. It is a generalization of the notion of
a surface in Euclidean space to the case of an arbitrary metric space (X, d).

The Fréchet surface metric on the set of all Fréchet surfaces is defined by

inf In;% d(fi(p).f2(a(p)))
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for any Fréchet surfaces f;* and £;°, where the infimum is taken over all possible
homeomorphisms ¢. Cf. the Fréchet metric in Chap. 1.
¢ Hempel metric

A handlebody of genus g is the boundary sum of g copies of a solid torus; it is
homeomorphic to the closure of a regular neighborhood of some finite graph in
R, Given a closed orientable 3-manifold M, its Heegaard splitting (of genus g)
is M = A Up B where A, B are genus g handlebodies in M such that M = AU B
and AN B = 0dA = dB = P. Then P is called a (genus g) Heegaard surface
of M. In knot applications, Heegaard splitting of the exterior of a knot K (the
complement of an open solid torus knotted like K) are considered.

Two embedded curves are isotopic if there exists a continuous deformation
of one embedding to another through a path of embeddings. Given a closed
connected orientable surface S of genus at least two, let C(S) = (V, E) denotes
the graph whose vertices are isotopy classes of essential (not bounding disk
on the surface) simple closed curves and whose edges are drawn between
vertices with disjoint representative curves. This graph is connected. For any
subsets of vertices X,Y C V, denote by ds(X,Y) their set-to-set distance
minds(x,y) : x € X,y € Y, where ds(x, y) is the path metric of C(S).

If S is the boundary of a handlebody H, let M(H) denotes the set of vertices
with representatives bounding meridian disks D of H, i.e., such that 0D are
essential simple closed curves in dH. The Hempel distance of a (genus g > 2)
Heegaard splitting M = AUp B is defined (Hempel, 2001) to be dp(M(A), M(B)).

A Heegaard splitting M = A Up B is stabilized, if there are meridian
disks Dy, Dg of A, B respectively such that dD4 and dDp intersects transversely
in a single point. The Reidemeister-Singer distance between two Heegaard
surfaces/splittings is the minimal number of stabilizations (roughly, additions
of a “trivial” handle) and destabilizations (inverse operation) relating them.

8.2 Intrinsic Metrics on Surfaces

In this section we list intrinsic metrics, given by their line elements (which, in fact,
are 2D Riemannian metrics), for some selected surfaces.

¢ Quadric metric

A quadric (or quadratic surface, surface of second-order) is a set of points
in E3, whose coordinates in a Cartesian coordinate system satisfy an alge-
braic equation of degree two. There are 17 classes of such surfaces. Among
them are: ellipsoids, one-sheet and two-sheet hyperboloids, elliptic paraboloids,
hyperbolic paraboloids, elliptic, hyperbolic and parabolic cylinders, and conical
surfaces.

For example, a cylinder can be given by the following parametric equations:

x1(u,v) = acosv, x(u,v) =asinv, x3(u,v) = u.
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The intrinsic metric on it is given by the line element
ds’ = du® + d>dv>.

An elliptic cone (i.e., a cone with elliptical cross-section) has the following
equations:

cosv, xp(u,v) =b

x1(u,v) =a sinv, x3(u,v) = u,

where £ is the height, a is the semimajor axis, and b is the semiminor axis of the
cone. The intrinsic metric on it is given by the line element

h? + a?cos> v + b?sin’ v (a* = b*)(h — u) cos v sin v
2 _ 2
ds® = n du” + 2 n
h — u)?(a® sin® v + b? cos?
| (P v

dudv +

¢ Sphere metric
A sphere is a quadric, given by the Cartesian equation (x; —a)? + (x, —b)* +
(x3 — ¢)*> = r?, where the point (a, b, c) is the center of the sphere, and r > 0
is the radius of the sphere. The sphere of radius r, centered at the origin, can be
given by the following parametric equations:

x1(6,¢) =rsinfcosg, x2(0,¢) = rsinfsing, x3(0,¢) = rcosb,

where the azimuthal angle ¢ € [0, 2r), and the polar angle 6 € [0, r].
The intrinsic metric on it (in fact, the 2D spherical metric) is given by the
line element

ds* = r*d6* + r* sin® Odg>.
A sphere of radius r has constant positive Gaussian curvature equal to r.

* Ellipsoid metric

2 2 2
An ellipsoid is a quadric given by the Cartesian equation Z—‘z + z—% + f—% =1,

or by the following parametric equations:
x1(0,¢) = acos¢sinb, x;(0,¢) = bsingsinb, x3(0,¢) = ccosb,

where the azimuthal angle ¢ € [0, 2r), and the polar angle 6 € [0, r].
The intrinsic metric on it is given by the line element

ds* = (b* cos® ¢ + a? sin® ¢) sin” Odp? + (b* — a®) cos ¢ sin ¢ cos 6 sin OdOdp+
+((a® cos® ¢ + b? sin” ¢) cos® O + ¢? sin” 0)d6>.
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* Spheroid metric
A spheroid is an ellipsoid having two axes of equal length. It is also a rotation
surface, given by the following parametric equations:

x1(u,v) = asinvcosu, x;(u,v) = asinvsinu, x3(u,v) = ccosv,

where 0 <u <2m,and 0 <v < m.
The intrinsic metric on it is given by the line element

1
ds?® = a®sin® vdu* + E(a2 + 2 + (a* — ¢?) cos(2v))dv>.

* Hyperboloid metric
A hyperboloid is a quadric which may be one- or two-sheeted.
The one-sheeted hyperboloid is a surface of revolution obtained by rotating
a hyperbola about the perpendicular bisector to the line between the foci, while
the two-sheeted hyperboloid is a surface of revolution obtained by rotating a
hyperbola about the line joining the foci.
The one-sheeted circular hyperboloid, oriented along the x3 axis, is given by

2 2 2
the Cartesian equation % + z—% - i—; = 1, or by the following parametric equations:

x1(u,v) = av'1+u?cosv, x(u,v) =av 1+ usinv, x3(u,v) = cu,

where v € [0, 277). The intrinsic metric on it is given by the line element

2
ds* = (c2 + ) du® + a®(u® + 1)dv?.

u? +1

* Rotation surface metric
A rotation surface (or surface of revolution) is a surface generated by rotating
a 2D curve about an axis. It is given by the following parametric equations:

x1(u,v) = ¢(v)cosu, x(u,v) = ¢(v)sinu, x3(u,v) = ¥(v).
The intrinsic metric on it is given by the line element
ds* = ¢*di® + (¢ + v >)dv?.
¢ Pseudo-sphere metric
A pseudo-sphere is a half of the rotation surface generated by rotating a

tractrix about its asymptote. It is given by the following parametric equations:

x1(u,v) = sechucosv, x(u,v) = sechusinv, x3(u,v) = u — tanhu,



178 8 Distances on Surfaces and Knots

where # > 0, and 0 < v < 2x. The intrinsic metric on it is given by the line
element

ds® = tanh® udu® + sech’udv’.

The pseudo-sphere has constant negative Gaussian curvature equal to —1, and
in this sense is an analog of the sphere which has constant positive Gaussian
curvature.
* Torus metric
A torus is a surface having genus one. A torus azimuthally symmetric about

the x3 axis is given by the Cartesian equation (¢ — 4/ x% + )c%)2 + x% = a?, or by
the following parametric equations:

x1(u,v) = (c+acosv)cosu, xp(u,v) = (c+acosv)sinu, x3(u,v) = asinv,

where ¢ > a, and u, v € [0, 2x).
The intrinsic metric on it is given by the line element

ds* = (c + acosv)’du® + a*dv>.

For toroidally confined plasma, such as in magnetic confinement fusion, the
coordinates u, v and a correspond to the directions called , respectively, toroidal
(long, as lines of latitude, way around the torus), poloidal (short way around the
torus) and radial. The poloidal distance, used in plasma context, is the distance
in the poloidal direction.

¢ Helical surface metric

A helical surface (or surface of screw motion) is a surface described by a plane
curve y which, while rotating around an axis at a uniform rate, also advances
along that axis at a uniform rate. If y is located in the plane of the axis of rotation
x3 and is defined by the equation x3 = f(u), the position vector of the helical
surface is

r = (ucosv, usinv, f(u) = hv), h = const,
and the intrinsic metric on it is given by the line element
ds* = (1 + ) du® + 2hf dudv + (1 + hY)dv>.

If f = const, one has a helicoid; if h = 0, one has a rotation surface.
¢ C(Catalan surface metric
The Catalan surface is a minimal surface, given by the following equations:

x1(u,v) = u—sinucoshv, x3(u,v) = 1—cosucoshv, x3(u,v) = 4sin (g) sinh (%) .
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The intrinsic metric on it is given by the line element
2 2 (Y 2 2,V 2
ds” = 2cosh 3 (coshv — cos u)du” + 2 cosh (E) (coshv — cosu) dv-.

¢ Monkey saddle metric
The monkey saddle is a surface, given by the Cartesian equation x3 = x; (x] —
3x3), or by the following parametric equations:

x1(u,v) = u, x2(u,v) = v, x3(u,v) =’ — 3uv>.

This is a surface which a monkey can straddle with both legs and his tail. The
intrinsic metric on it is given by the line element

ds? = (1 + (su® — 3v®)2)du* — 2(18uv(u? — v?))dudv + (1 + 36u>v*)dv?).

» Distance-defined surfaces and curves

We give below examples of plane curves and surfaces which are the loci of
points with given value of some function of their Euclidean distances to the given
objects.

A parabola is the locus of all points in R? that are equidistant from the given
point (focus) and given line (directrix) on the plane.

A hyperbola is the locus of all points in R? such that the ratio of their distances
to the given point and line is a constant (eccentricity) greater than 1. It is also the
locus of all points in R? such that the absolute value of the difference of their
distances to the two given foci is constant.

An ellipse is the locus of all points in R? such that the sum of their distances
to the two given points (foci) is constant; cf. elliptic orbit distance in Chap. 25.
A circle is an ellipse in which the two foci are coincident.

A Cassini oval is the locus of all points in R? such that the product of their
distances to two given points is a constant k. If the distance between two points
18 2\/%, then such oval is called a lemniscate of Bernoulli.

A circle of Appolonius is the locus of points in R? such that the ratio of their
distances to the first and second given points is constant.

A Cartesian oval is the locus of points in R2 such that their distances rq, r; to
the foci (—1, 0), (1, 0) are related linearly by ar; +br, = 1. Thecasesa = b,a =
—banda = % (orb = %) correspond to the ellipse, hyperbola and limacon of
Pascal, respectively.

A Cassinian curve is the locus of all points in R? such that the product of their
distances to n given points (poles) is constant. If the poles form a regular n-gon,
then this (algebraic of degree 2n) curve is a sinusoidal spiral given also by polar
equation " = 2 cos(n6), and the case n = 3 corresponds to the Kiepert curve.

Farouki and Moon, 2000, considered many other multipolar generalizations
of above curves. For example, their trifocal ellipse is the locus of all points in
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IR? (seen as the complex plane) such that the sum of their distances to the 3 cube
roots of unity is a constant k. If k = 2+/3, the curve pass through (and is singular
at) the 3 poles.

In R3, a surface, rotationally symmetric about an axis, is a locus defined via
Euclidean distances of its points to the two given poles belonging to this axis. For
example, a spheroid (or ellipsoid of revolution) is a quadric obtained by rotating
an ellipse about one of its principal axes.

It is a sphere, if this ellipse is a circle. If the ellipse is rotated about its major
axis, the result is an elongated (as the rugby ball) spheroid which is the locus of
all points in R? such that the sum of their distances to the two given points is
constant. The rotation about its minor axis results in a flattened spheroid (as the
Earth) which is the locus of all points in R? such that the sum of the distances to
the closest and the farthest points of given circle is constant.

A hyperboloid of revolution of two sheets is a quadric obtained by revolving a
hyperbola about its semimajor (real) axis. Such hyperboloid with axis AB is the
locus of all points in R? such that the absolute value of the difference of their
distances to the points A and B is constant.

Any point in R” is uniquely defined by its Euclidean distances to the vertices
of a nondegenerated n-simplex. If a surface which is not rotationally symmetric
about an axis, is a locus in R? defined via distances of its points to the given
poles, then three noncollinear poles is needed, and the surface is symmetric with
respect to reflection in the plane defined by the three poles.

8.3 Distances on Knots

A knot is a closed, self-nonintersecting curve that is embedded in S3. The trivial
knot (or unknot) O is a closed loop that is not knotted. A knot can be generalized
to a link which is a set of disjoint knots. Every link has its Seifert surface, i.e., a
compact oriented surface with the given link as boundary.

Two knots (links) are called equivalent if one can be smoothly deformed into
another. Formally, a link is defined as a smooth one-dimensional submanifold of
the 3-sphere S%; a knot is a link consisting of one component; two links L; and
L, are called equivalent if there exists an orientation-preserving homeomorphism
f:8% = $3such that f(L,) = L,.

All the information about a knot can be described using a knot diagram. It is
a projection of a knot onto a plane such that no more than two points of the knot
are projected to the same point on the plane, and at each such point it is indicated
which strand is closest to the plane, usually by erasing part of the lower strand. Two
different knot diagrams may both represent the same knot. Much of Knot Theory is
devoted to telling when two knot diagrams represent the same knot.
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An unknotting operation is an operation which changes the overcrossing and the
undercrossing at a double point of a given knot diagram. The unknotting number
of a knot K is the minimum number of unknotting operations needed to deform
a diagram of K into that of the trivial knot, where the minimum is taken over all
diagrams of K. Roughly, the unknotting number is the smallest number of times a
knot K must be passed through itself to untie it.

An f-unknotting operation in a diagram of a knot K is an analog of the unknotting
operation for a §-part of the diagram consisting of two pairs of parallel strands with
one of the pair overcrossing another. Thus, an f-unknotting operation changes the
overcrossing and the undercrossing at each vertex of obtained quadrangle.

* Gordian distance

The Gordian distance is a metric on the set of all knots defined, for given
knots K and K , as the minimum number of unknotting operations needed to
deform a diagram of K into that of K/, where the minimum is taken over all
diagrams of K from which one can obtain diagrams of K'. The unknotting
number of K is equal to the Gordian distance between K and the trivial knot
0.

Let 7K be the knot obtained from K by taking its mirror image, and let —K be
the knot with the reversed orientation. The positive reflection distance Ref. (K)
is the Gordian distance between K and rK. The negative reflection distance
Ref_(K) is the Gordian distance between K and —rK. The inversion distance
Inv(K) is the Gordian distance between K and —K.

The Gordian distance is the case k = 1 of the Cj-distance which is the
minimum number of Ci-moves needed to transform K into K/; Habiro, 1994
and Goussarov, 1995, independently proved that, for k > 1, it is finite if and
only if both knots have the same Vassiliev invariants of order less than k. A Ci-
move is a single crossing change, a C,-move (or delta-move) is a simultaneous
crossing change for 3 arcs forming a triangle. C,- and C;-distances are called
delta distance and clasp-pass distance, respectively.

¢ {-Gordian distance

The ff-Gordian distance (see, for example, [Mura85]) is a metric on the set
of all knots defined, for given knots K and K/, as the minimum number of f-
unknotting operations needed to deform a diagram of K into that of K ', where the
minimum is taken over all diagrams of K from which one can obtain diagrams
of K.

Let rK be the knot obtained from K by taking its mirror image, and let —K
be the knot with the reversed orientation. The positive {{-reflection distance
Ref_ﬁir (K) is the f-Gordian distance between K and rK. The negative f{-reflection
distance Ref* (K) is the fi-Gordian distance between K and —rK. The fi-inversion
distance Inv*(K) is the #-Gordian distance between K and —K.

¢ Knot complement hyperbolic metric
The complement of a knot K (or a link L) is S*\K (or S*\L, respectively).
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A knot (or, in general, a link) is called hyperbolic if its complement supports
a complete Riemannian metric of constant curvature —1. In this case, the metric
is called a knot (or link) complement hyperbolic metric, and it is unique.

A knot is hyperbolic if and only if (Thurston, 1978) it is not a satellite knot
(then it supports a complete locally homogeneous Riemannian metric) and not a
torus knot (does not lie on a trivially embedded torus in S*). The complement of
any nontrivial knot supports a complete nonpositively curved Riemannian metric.




Chapter 9
Distances on Convex Bodies, Cones,
and Simplicial Complexes

9.1 Distances on Convex Bodies

A convex body in the n-dimensional Euclidean space E" is a convex compact
connected subset of E". It is called solid (or proper) if it has nonempty interior.
Let K denote the space of all convex bodies in [E”, and let K, be the subspace of all
proper convex bodies. Given a set X C E", its convex hull conv(X) is the minimal
convex set containing X.

Any metric space (K,d) on K is called a metric space of convex bodies. Such
spaces, in particular the metrization by the Hausdorff metric, or by the symmetric
difference metric, play a basic role in Convex Geometry (see, for example,
[Grub93]).

For C,D € K\{@}, the Minkowski addition and the Minkowski nonnegative
scalar multiplication are defined by C+ D = {x+y : x € C,y € D}, and
aC = {ax : x € C}, a = 0, respectively. The Abelian semigroup (K, +) equipped
with nonnegative scalar multiplication operators can be considered as a convex cone.

The support function he : S"' — R of C € K is defined by hc(u) =
sup{(u,x) : x € C} for any u € §"', where §""! is the (n — 1)-dimensional
unit sphere in E", and (, ) is the inner product in E". The width wc(u) is he(u) +
he(—u) = he—c(u). It is the perpendicular distance between the parallel supporting
hyperplanes perpendicular to given direction. The mean width is the average of
width over all directions in $"~!.

* Area deviation
The area deviation (or template metric) is a metric on the set K, in E? (ie.,
on the set of plane convex disks) defined by

A(CAD),
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where A(.) is the area, and A is the symmetric difference. If C C D, then it is
equal to A(D) — A(C).
* Perimeter deviation
The perimeter deviation is a metric on K, in E? defined by

2p(conv(C U D)) — p(C) — p(D),

where p(.) is the perimeter. In the case C C D, it is equal to p(D) — p(C).
* Mean width metric
The mean width metric is a metric on K, in E? defined by

v2W(conv(C U D)) — W(C) — W(D),

where W(.) is the mean width: W(C) = p(C)/x, and p(.) is the perimeter.
* Florian metric
The Florian metric is a metric on K defined by

|, Ihet@ = hotido@ = lihe = ol

It can be expressed in the form 2S(conv(CU D)) —S(C) —S(D) forn = 2 (cf.
perimeter deviation); it can be expressed also in the form nk,(2W (conv(C U
D)) — W(C) — W(D)) for n > 2 (cf. mean width metric).

Here S(.) is the surface area, k, is the volume of the unit ball B" of B, and
W(.) is the mean width: W(C) = i fs,,,l (he(w) + he(—u))do (u).

¢ McClure-Vitale metric
Given 1 < p < o0, the McClure-Vitale metric is a metric on K, defined by

(/;nl |hc(u) — hD(“)IPdG(u)) r_ e — hpl|,-

¢ Pompeiu-Hausdorff-Blaschke metric
The Pompeiu—-Hausdorff-Blaschke metric is a metric on K defined by

max{sup inf ||x — sup inf ||x — y
{xepyED” y||2sy€ xECH ||2}7
where ||| |2 is the Euclidean norm on [E”.

In terms of support functions and using Minkowski addition, this metric is

sup |he(u)—hp(u)| = ||hc—hp||eo = inf{A > 0: C C D+AB",D C C+AB"},

uesn—!

where B is the unit ball of E". This metric can be defined using any norm on R”
and for the space of bounded closed subsets of any metric space.
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¢ Pompeiu-Eggleston metric
The Pompeiu-Eggleston metric is a metric on K defined by

sup inf ||x — y||» + sup inf ||x — y||>
sup inf b= vz + sup inf bx = ]l

where ||.||, is the Euclidean norm on E”.
In terms of support functions and using Minkowski addition, this metric is

max{0, sup (hc(u) — hp(u))} + max{0, sup (hp(u) —hc(u))} =

uesn—1 uesn—1

=inf{A>0:CCD+AB}+inf{A>0:DC C+AB"},

where B is the unit ball of E". This metric can be defined using any norm on R”
and for the space of bounded closed subsets of any metric space.
* Sobolev distance
The Sobolev distance is a metric on K defined by

||hC - hDHWa

where ||.||,s is the Sobolev 1-norm on the set Gg.—1 of all real continuous functions
on the unit sphere S"~! of E".

The Sobolev 1-norm is defined by || f||,, = (f,f)&v/z, where (, ),, is an inner
product on Ggi—1, given by

Frade= [ G+ Vs o w0 =

n-k, "
where Vi(f, g) = (gradyf, grad,g), {,) is the inner product in E", and grad; is
the gradient on S"~' (see [ArWe92]).

¢ Shephard metric

The Shephard metric is a metric on K, defined by

In(1+2inf{]A >0:CC D+ A(D—-D),DCC+ A(C—O)}).
¢ Nikodym metric

The Nikodym metric (or volume of symmetric difference, Dinghas
distance) is a metric on K, defined by

V(CAD) = /(Lcec — Liep)?dx,

where V(.) is the volume (i.e., the Lebesgue n-dimensional measure), and A is
the symmetric difference. For n = 2, one obtains the area deviation.
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Normalized volume of symmetric difference is a variant of Steinhaus
distance defined by

V(CAD)
V(CUD)’

* Eggleston distance
The Eggleston distance (or symmetric surface area deviation) is a distance
on K, defined by

S(CUD) —S(CND),

where S(.) is the surface area. It is not a metric.
¢ Asplund metric
The Asplund metric is a metric on the space K,/ ~ of affine-equivalence
classes in K, defined by

Ininf{A > 1:37T : E" — E" affine, x € E",C C T(D) C AC + x}

for any equivalence classes C* and D* with the representatives C and D,
respectively.
* Macbeath metric
The Macbeath metric is a metric on the space K,/ ~ of affine-equivalence
classes in K, defined by

Ininf{| detT - P| : 3T, P : E" — E" regular affine, C C T(D),D C P(C)}

for any equivalence classes C* and D* with the representatives C and D,
respectively.
Equivalently, it can be written as In§(C, D) + né(D, C), where §(C,D) =
infr{ Vi,T((CD))); C C T(D)}, and T is a regular affine mapping of E” onto itself.
* Banach-Mazur metric
The Banach-Mazur metric is a metric on the space K,,/ ~ of the
equivalence classes of proper 0-symmetric convex bodies with respect to linear

transformations defined by

Ininf{A > 1:37T : E" — E" linear, C C T(D) C AC}

for any equivalence classes C* and D* with the representatives C and D,
respectively.
It is a special case of the Banach-Mazur distance (Chap. 1).
e Separation distance
The separation distance between two disjoint convex bodies C and D in
E" (in general, between any two disjoint subsets) E") is (Buckley, 1985) their
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Euclidean set-set distance inf{||x — y||> : x € C,y € D}, while sup{||x — y||» :
x € C,y € D} is their spanning distance.
¢ Penetration depth distance
The penetration depth distance between two interpenetrating convex bodies
C and D in E" (in general, between any two interpenetrating subsets of E") is
(Cameron—Culley, 1986) defined as the minimum translation distance that one
body undergoes to make the interiors of C and D disjoint:

min{||t||, : interior(C 4+ t) N D = @}.

Keerthi—Sridharan, 1991, considered ||¢||;- and ||¢||co-analogs of this distance.
Cf. penetration distance in Chap. 23 and penetration depth in Chap. 24.
* Growth distances
Let C,D € K, be two compact convex proper bodies. Fix their seed points
pc € int C and pp € int D; usually, they are the centroids of C and D. The growth
Sfunction g(C, D) is the minimal number A > 0, such that

(pcy + A(C\ipch) N (pp} + A(D\ipp})) # 0.

It is the amount objects must be grown if g(C,D) > 1 (i.e., CN D = @), or
contracted if g(C, D) > 1 (i.e., int C N int D # @) from their internal seed points
until their surfaces just touch. The growth separation distance ds(C, D) and the
growth penetration distance dp(C, D) ([OnGi96]) are defined as

ds(C, D) = max{0, rcp(g(C,D)—1)} and dp(C, D) = max{0, rcp(1—g(C, D))},

where r¢p is the scaling coefficient (usually, the sum of radii of circumscribing
spheres for the sets C\{pc} and D\{pp}).

The one-sided growth distance between disjoint C and D (Leven—Sharir,
1987) is

—1+minA > 0: ({pc} + A{(C\{pc})) N D # B}.

¢ Minkowski difference
The Minkowski difference on the set of all compact subsets, in particular, on
the set of all sculptured objects (or free form objects), of R? is defined by

A—B={x—y:xe€A,yeB}

If we consider object B to be free to move with fixed orientation, the Minkowski
difference is a set containing all the translations that bring B to intersect with
A. The closest point from the Minkowski difference boundary, d(A — B), to the
origin gives the separation distance between A and B.
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If both objects intersect, the origin is inside of their Minkowski difference,
and the obtained distance can be interpreted as a penetration depth distance.
¢ Demyanov distance
Given C € K, and u € $"!, denote, if |[{c € C : (u,c) = hc(u)}| = 1, this
unique point by y(u, C) (exposed point of C in direction u).
The Demyanov difference A © B of two subsets A, B € K,, is the closure of

conv(Uraynrm) iy, A) — y(u, B)}),

where T(C) = {u € §" ' : |{c € C: (u,c) = he(u)}| = 1}.
The Demyanov distance between two subsets A, B € K, is defined by

l[A© B|| = max [[c||2.
cEAOB

It is shown in [BaFa07] that ||A © B|| = sup, ||Sty(A) — Sty (M)]|2, where St,(C)
is a generalized Steiner point and the supremum is over all “sufficiently smooth”
probabilistic measures .
¢ Maximum polygon distance
The maximum polygon distance is a distance between two convex polygons
P=(pi,...,pn) and QO = (q1, ..., qn) defined by

H}E}XHP:'_%'HL ie{l,....,n}, je{l,...,m}.

* Grenander distance
LetP = (p1,...,pn) and Q = (g1, . .., gm) be two disjoint convex polygons,
and let L(p;, g;), L(p1, g) be two intersecting critical support lines for P and Q.
Then the Grenander distance between P and Q is defined by

llpi — qjll2 + 1pi — gmll2 — Z(Pi, p1) — Z(gj. Gm),

where [|.|| is the Euclidean norm, and X (p;, p;) is the sum of the edges lengths
of the polynomial chain p;, ..., p;.

Here P = (p1, ..., py) is a convex polygon with the vertices in standard form,
i.e., the vertices are specified according to Cartesian coordinates in a clockwise
order, and no three consecutive vertices are collinear. A line L is a line of support
of P if the interior of P lies completely to one side of L.

Given two disjoint polygons P and Q, the line L(p;, g;) is a critical support
line if it is a line of support for P at p;, a line of support for Q at g;, and P and
Q lie on opposite sides of L(p;, g;). In general, a chord [a, b] of a convex body
C is called its affine diameter if there is a pair of different hyperplanes each
containing one of the endpoints a, b and supporting C.
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9.2 Distances on Cones

A convex cone C in a real vector space V is a subset C of V such that C + C C C,
AC C Cforany A > 0. A cone C induces a partial order on V by

x Xyifandonlyify—x € C.

The order < respects the vector structure of V, i.e.,if x < yand z X u, then x 4+ z <
y+ u,and if x < y, then Ax < Ay, A € R, A > 0. Elements x,y € V are called
comparable and denoted by x ~ y if there exist positive real numbers « and 8 such
that oy < x < By. Comparability is an equivalence relation; its equivalence classes
(which belong to C or to —C) are called parts (or components, constituents).

Given a convex cone C, asubset S = {x € C : T(x) = 1}, where T : V — R
is a positive linear functional, is called a cross-section of C. A convex cone C is
called almost Archimedean if the closure of its restriction to any 2D subspace is also
a cone.

A convex cone C is called pointed if C U (—C) = {0} and solid if int C # @.

¢ Koszul-Vinberg metric

Given an open pointed convex cone C, let C* be its dual cone.

The Koszul-Vinberg metric on C (Vinberg, 1963, and Koszul, 1965) is an
affine invariant Riemannian metric defined as the Hessian ¢ = dy, where
Ye(x) = —log [« e “Vde for any x € C.

The Hessian of the entropy (Legendre transform of ¥¢(x)) defines a metric
on C*, which ([Barbl4]) is equivalent to the Fisher—-Rao metric (Sect.7.2).
[Barb14] also observed that Fisher—Souriau metric ([Sour70]) generalises
Fisher-Rao metric for Lie group thermodynamics and interpreted it as a
geometric heat capacity.

¢ Invariant distances on symmetric cones

An open convex cone C in an Euclidean space V is said to be homogeneous if
its group of linear automorphisms G = {g € GL(V) : g(C) = C} act transitively
on C. If, moreover, C is pointed and C is self-dual with respect to the given inner
product {, }, then it is called a symmetric cone. Any symmetric cone is a Cartesian
product of such cones of only 5 types: the cones Sym(n, R)™, Her(n, C)* (cf.
Chap. 12), Her(n, H)* of positive-definite Hermitian matrices with real, complex
or quaternion entries, the Lorentz cone (or forward light cone) {(t,xi,...,x,) €
R 2 > x% +- -+ x2} and 27-dimensional exceptional cone of 3 x 3 positive-
definite matrices over the octonions Q. An n X n quaternion matrix A can be seen
as a 2n x 2n complex matrix A’; so, A € Her(n, H)™ means A’ € Her(2n, C)™.

Let V be an Euclidean Jordan algebra, i.e., a finite-dimensional Jordan alge-
bra (commutative algebra satisfying x>(xy) = x(x*y) and having a multiplicative
identity e) equipped with an associative ({xy,z) = (y,xz)) inner product (,).
Then the set of square elements of V is a symmetric cone, and every symmetric
cone arises in this way. Denote P(x)y = 2x(xy) — x%y for any x,y € C.
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For example, for C = PD,(R), the group G is GL(n, R), the inner product is
(X, Y) = Tr(XY), the Jordan product is %(XY + YX), and P(X)Y = XYX, where
the multiplication on the right-hand side is the usual matrix multiplication.

If r is the rank of V, then for any x € V there is a complete set of orthogonal
primitive idempotents cy, ..., ¢, # 0 (i.e., c? = ¢, ¢; indecomposable, c;c; = 0
ifi #j, Y '_, ¢; = e) and real numbers A1, ..., A,, called eigenvalues of x, such
thatx = ) ', dic;. Letx,y € C and A4,..., A, be the eigenvalues of P(x_%)y.
Lim, 2001, defined following three G-invariant distances on any symmetric cone
C:

dg= (Y In®2)7, dr = max In|A;|, dy = In(max A;(min A;)7").
1<i<r I<i<r I<i<r

1<i<r

For above distances, the geometric mean P(x%)(P(x_% y))% is the midpoint
of x and y. The distances dg(x,y), dr(x,y) are the intrinsic metrics of G-
invariant Riemannian and Finsler metrics on C. The Riemannian geodesic curve
a(t) = P(x%)(P(x_%y))’ is one of infinitely many shortest Finsler curves passing
through x and y. The space (C, dg(x,y)) is an Hadamard space (Chap. 6), while
(C,dp(x,y)) is not. The distance dr(x, y) is the Thompson’s part metric on C,
and the distance dy(x, y) is the Hilbert projective semimetric on C which is a
complete metric on the unit sphere on C.
¢ Thompson’s part metric

Given a convex cone C in a real Banach space V, the Thompson’s part metric

on a part K C C\{0} is defined (Thompson, 1963) by

log max{m(x, y), m(y, x)}

for any x,y € K, where m(x,y) = inf{A € R : y < Ax}.

If C is almost Archimedean, then K equipped with this metric is a complete
metric space. If C is finite-dimensional, then one obtains a chord space
(Chap. 6). The positive cone R", = {(x1,...,x,) : x; > Oforl < i < n}
equipped with this metric is isometric to a normed space which can be seen as
being flat. The same holds for the Hilbert projective semimetric on R’} .

If C is a closed solid cone in R”, then int C can be seen as an n-dimensional
manifold M". If for any tangent vector v € T,(M"), p € M", we define a norm
||v||; = infle > 0 : —ap < v =< ap}, then the length of any piecewise

differentiable curve y : [0,1] - M" is l(y) = fol ||)//(t)||;(r)dt, and the distance

between x and y is inf, /(y), where the infimum is taken over all such curves y
with y(0) = x, y(1) = y.
* Hilbert projective semimetric
Given a pointed closed convex cone C in a real Banach space V, the Hilbert
projective semimetric on C\{0} is defined (Bushell, 1973), for x,y € C\{0}, by

h(x,y) = log(m(x, y)m(y, x)),
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where m(x,y) = inf{A € R : y < Ax}; it holds m = sup{r € R: Ay < x}.
This semimetric is finite on the interior of C and h(Ax, A'y) = h(x,y) for A, 1" >
0. So, h(x,y) is a metric on the projectivization of C, i.e., the space of rays of this
cone.

If C is finite-dimensional, and S is a cross-section of C (in particular, S = {x €
C : ||x|| = 1}, where ||.|| is a norm on V), then, for any distinct points x,y € S, it
holds A(x,y) = |In(x,y, z, )|, where z, t are the points of the intersection of the
line I, with the boundary of S, and (x,y, z,?) is the cross-ratio of x,y, z,¢. Cf.
the Hilbert projective metric in Chap. 6.

If C is finite-dimensional and almost Archimedean, then each part of C is a
chord space (Chap. 6) under the Hilbert projective semimetric. On the Lorentz
cone L = {x = (t,x1,...,x,) € R"1 2 > x2 4+ ... 4 x2}, this semimetric is
isometric to the n-dimensional hyperbolic space. On the hyperbolic subspace
H = {x € L : det(x) = 1}, it holds h(x,y) = 2d(x,y), where d(x,y) is
the Thompson’s part metric which is (on H) the usual hyperbolic distance
arccosh(x, y).

If C is a closed solid cone in R”, then int C can be seen as an n-manifold M"
(Chap. 2). If for any tangent vector v € T,(M"), p € M", we define a seminorm
[|v] |;1 = m(p,v) —m(v, p), then the length of any piecewise differentiable curve
y 1 [0,1] - M"is l(y) = fol ||)//(t)||;1(r)dt, and A(x,y) = inf, I(y), where the
infimum is taken over all such curves y with y(0) = xand y(1) = y.

* Bushell metric

Given a convex cone C in a real Banach space V, the Bushell metric on the
setS = {x € C: Y ', |x] = 1} (in general, on any cross-section of C) is defined
by

1 - m(xs y) : m(yv-x)
1 + m(xs y) N m(ysx)

for any x,y € S, where m(x,y) = inf{A € R : y < Ax}. In fact, it is equal to
tanh(%h(x, y)), where h is the Hilbert projective semimetric.
* k-oriented distance
A simplicial cone C in R" is defined as the intersection of n (open or closed)
half-spaces, each of whose supporting planes contain the origin 0. For any set M
of n points on the unit sphere, there is a unique simplicial cone C that contains
these points. The axes of the cone C can be constructed as the set of the n rays,
where each ray originates at the origin, and contains one of the points from M.
Given a partition {C1, . .., C;} of R" into a set of simplicial cones C1, ..., Cy,
the k-oriented distance is a metric on R” defined by

di(x —y)

forallx,y € R", where, for any x € C;, the value di(x) is the length of the shortest
path from the origin 0 to x traveling only in directions parallel to the axes of C;.
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¢ Cones over metric space
A cone over a metric space (X,d) is the quotient space Con(X,d)=(X x
[0, 1])/(X x {0}) obtained from the product X x R by collapsing the fiber
(subspace X x {0}) to a point (the apex of the cone). Cf. metric cone in Chap. 1.
The Euclidean cone over the metric space (X, d) is the cone Con(X, d) with a
metric d defined, for any (x, 1), (y,s) € Con(X,d), by

V12 4 52 — 2ts cos(min{d(x, y), }).

If (X, d) is a compact metric space with diameter < 2, the Krakus metric is
a metric on Con(X, d) defined, for any (x, 1), (y,s) € Con(X, d), by

min{s, t}d(x,y) + |t — s|.

The cone Con(X, d) with the Krakus metric admits a unique midpoint for each
pair of its points if (X, d) has this property.

If M" is a manifold with a pseudo-Riemannian metric g, one can consider a
metric dr’+r?g (in general, a metric 1dr>+r2g, k # 0) on Con(M") = M"xR..
For example, Con(M") = R" \ {0} if (M", g) is the unit sphere in R".

A spherical cone (or suspension) X (X) over a metric space (X,d) is the
quotient of the product X x [0, a] obtained by identifying all points in the fibers
X x {0} and X x {a}. If (X, d) is a length space (Chap. 6) with diam(X) < =, and
a = m, the suspension metric on X (X) is defined, for any (x, ), (y,s) € X(X),
by

arccos(coscoss + sinzsinscosd(x, y)).

9.3 Distances on Simplicial Complexes

An r-dimensional simplex (or geometrical simplex, hypertetrahedron) is the convex
hull of r + 1 points of E" which do not lie in any (r — 1)-plane. The boundary
of an r-simplex has r + 1 O-faces (polytope vertices), ’(’2;1) 1-faces (polytope
edges), and (fjr'll) i-faces, where (}) is the binomial coefficient. The content (i.e., the
hypervolume) of a simplex can be computed using the Cayley—Menger determinant.
The regular simplex of dimension r is denoted by «,. Simplicial depth of a point
p € E" relative to a set P C E" is the number of simplices S, generated by (n + 1)-
subsets of P and containing p.

Roughly, a geometrical simplicial complex is a space with a triangulation, i.e., a
decomposition of it into closed simplices such that any two simplices either do not
intersect or intersect only along a common face.

An abstract simplicial complex S is a set, whose elements are called vertices, in
which a family of finite nonempty subsets, called simplices, is distinguished, such
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that every nonempty subset of a simplex s is a simplex, called a face of s, and every
one-element subset is a simplex. A simplex is called i-dimensional if it consists
of i 4+ 1 vertices. The dimension of S is the maximal dimension of its simplices.
For every simplicial complex S there exists a triangulation of a polyhedron whose
simplicial complex is S. This geometric simplicial complex, denoted by GS, is called
the geometric realization of S.

* Vietoris—Rips complex
Given a metric space (X, d) and distance §, their Vietoris—Rips complex is
an abstract simplicial complex, the simplexes of which are the finite subsets M
of (X, d) having diameter at most §; the dimension of a simplex defined by M is
M| — 1.
¢ Simplicial metric
Given an abstract simplicial complex S, the points of geometric simplicial
complex GS, realizing S, can be identified with the functions « : S — [0, 1] for
which the set {x € S : a(x) # 0} is a simplex in S, and ) cga(x) = 1. The
number «(x) is called the x-th barycentric coordinate of «.
The simplicial metric on GS (Lefschetz, 1939) is the Euclidean metric on it:

D (k) - B(x)2.

x€S

Tukey, 1939, found another metric on GS, topologically equivalent to a
simplicial one. His polyhedral metric is the intrinsic metric, defined as the
infimum of the lengths of the polygonal lines joining the points & and § such that
each link is within one of the simplices. An example of a polyhedral metric is the
intrinsic metric on the surface of a convex polyhedron in [E3.

* Polyhedral space

A Euclidean polyhedral space is a simplicial complex with a polyhedral
metric. Every simplex is a flat space (a metric space locally isometric to
some [E"; cf. Chap. 1), and the metrics of any two simplices coincide on their
intersection. The metric is the maximal metric not exceeding the metrics of
simplices.

If such a space is an n-manifold (Chap. 2), a point in it is a metric singularity
if it has no neighborhood isometric to an open subset of E".

A polyhedral metric on a simplicial complex in a space of constant (positive
or negative) curvature results in spherical and hyperbolic polyhedral spaces.

The dimension of a polyhedral space is the maximal dimension of simplices
used to glue it. Metric graphs (Chap. 15) are just one-dimensional polyhedral
spaces.

The surface of a convex polyhedron is a 2D polyhedral space. A polyhedral
metric d on a triangulated surface is a circle-packing metric (Thurston, 1985)
if there exists a vertex-weighting w(x) > 0 with d(x,y) = w(x) + w(y) for any
edge xy.
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¢ Manifold edge-distance

A (boundaryless) combinatorial n-manifold is an abstract n-dimensional
simplicial complex M" in which the /ink of each r-simplex is an (n—r—1)-sphere.
The category of such spaces is equivalent to the category of piecewise-linear (PL)
manifolds.

The link of a simplex S is Ci(Stars) — Stars, where Stars is the set of
all simplices in M" having a face S, and Cl(Stars) is the smallest simplicial
subcomplex of M" containing Stars.

The edge-distance between vertices u,v € M" is the minimum number of
edges needed to connect them.

e Manifold triangulation metric

Let M" be a compact PL (piecewise-linear) n-dimensional manifold. A trian-
gulation of M" is a simplicial complex such that its corresponding polyhedron
is PL-homeomorphic to M". Let Ty be the set of all combinatorial types of
triangulations, where two triangulations are equivalent if they are simplicially
isomorphic.

Every such triangulation can be seen as a metric on the smooth manifold M
if one assigns the unit length for any of its 1-dimensional simplices; so, Ty can
be seen as a discrete analog of the space of Riemannian structures, i.e., isometry
classes of Riemannian metrics on M".

A manifold triangulation metric between two triangulations x and y is
(Nabutovsky and Ben-Av, 1993) an editing metric on 7)., i.e., the minimal
number of elementary moves, from a given finite list of operations, needed to
obtain y from x.

For example, the bistellar move consists of replacing a subcomplex of a
given triangulation, which is simplicially isomorphic to a subcomplex of the
boundary of the standard (n + 1)-simplex, by the complementary subcomplex
of the boundary of an (n + 1)-simplex, containing all remaining n-simplices and
their faces. Every triangulation can be obtained from any other one by a finite
sequence of bistellar moves.

¢ Polyhedral chain metric

An r-dimensional polyhedral chain A in E" is a linear expression y ;_, dit],
where, for any i, the value #] is an r-dimensional simplex of E". The boundary
0A of a chain AD is the linear combination of boundaries of the simplices in the
chain. The boundary of an r-dimensional chain is an (r — 1)-dimensional chain.

A polyhedral chain metric is a norm metric ||A — B|| on the set C,([E") of
all r-dimensional polyhedral chains. As a norm ||.|| on C,(E") one can take:

1. The mass of a polyhedral chain, i.e., [A| = Y i—, |d||t}|, where || is the
volume of the cell #/;

2. The flat norm of a polyhedral chain, i.e., |A|” = infp{|A — dD| + |D|}, where
the infimum is taken over all (» 4+ 1)-dimensional polyhedral chains;
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3. The sharp norm of a polyhedral chain, i.e.,

dil|#]||vi
|A|n=inf(2, 1 ldil| ||v|+|ZdTv£|)

where the infimum is taken over all shifts v (here T,¢" is the cell obtained by
shifting ¢ by a vector v of length |v|). A flat chain of finite mass is a sharp
chain. If » = 0, than |A|* = |A|".

The metric space of polyhedral co-chains (i.e., linear functions of polyhedral
chains) can be defined similarly. As a norm of a polyhedral co-chain X one can
take:

1. The co-mass of a polyhedral co-chain, i.e., |X| = supj,=; |X(A)[, where X(A)
is the value of the co-chain X on a chain A;

2. The flat co-norm of a polyhedral co-chain, i.e., |X|" = supjyp=1 [X(A)[;

3. The sharp co-norm of a polyhedral co-chain, i.e., |X|* = supj4 =1 [X(A)].
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Chapter 10
Distances in Algebra

10.1 Group Metrics

A group (G, -, e) is a set G of elements with a binary operation -, called the group
operation, that together satisfy the four fundamental properties of closure (x-y € G
for any x,y € G), associativity (x- (y-z) = (x-y) -z for any x, y, z € G), the identity
property (x - e = e -x = x for any x € G), and the inverse property (for any x € G,
there exists an element x~! € Gsuchthatx-x~! =x7' . x = ¢).

In additive notation, a group (G, 4, 0) is a set G with a binary operation + such
that the following properties hold: x+y € G forany x,y € G, x+(y+z) = (x+y)+z
for any x,y,z7 € G, x +0 = 0 + x = x for any x € G, and, for any x € G, there
exists an element —x € G such that x + (—x) = (—x) + x = 0.

A group (G, -, e) is called finite if the set G is finite. A group (G, -, e) is called
Abelian if it is commutative,i.e.,x -y = y-x forany x,y € G.

Most metrics considered in this section are group norm metrics on a group
(G, -, e), defined by

ey~

(or, sometimes, by ||y~! - x||), where |.|| is a group norm, i.e., a function ||.|| : G —
R such that, for any x, y € G, we have the following properties:

1. ||x|| = O, with ||x|| = 0 if and only if x = e;
2. (Il = [l
3. -yl < x| + ||y]| (triangle inequality).

In additive notation, a group norm metric on a group (G, +,0) is defined by
lx + (=»)I = |lx = yl|, or, sometimes, by [|(=y) + x]|.

The simplest example of a group norm metric is the bi-invariant ultrametric
(sometimes called the Hamming metric) ||x-y~"||x, where ||x||z = 1 for x # e, and
lleflm = 0.
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Bi-invariant metric
A metric (in general, a semimetric) d on a group (G, -, e) is called bi-invariant
if

dx,y) =d(x-z,y-2) =d(z-x,2-y)

for any x,y,z € G (cf. translation invariant metric in Chap.5). Any group
norm metric on an Abelian group is bi-invariant.

A metric (in general, a semimetric) d on a group (G, -, e) is called a right-
invariant metric if d(x, y) = d(x-z,y-z) forany x, y, z € G, i.e., the operation of
right multiplication by an element z is a motion of the metric space (G, d). Any
group norm metric defined by ||x - y~!||, is right-invariant.

A metric (in general, a semimetric) d on a group (G, -, e) is called a left-
invariant metric if d(x,y) = d(z - x,z - y) holds for any x,y,z € G, i.e., the
operation of left multiplication by an element z is a motion of the metric space
(G, d). Any group norm metric defined by ||[y~! - x||, is left-invariant.

Any right-invariant or left-invariant (in particular, bi-invariant) metric d on G
is a group norm metric, since one can define a group norm on G by ||x|| = d(x, 0).
G-invariant metric

Given a metric space (X, d) and an action g(x) of a group G on it, the metric
d is called G-invariant (under this action) if for all x,y € X, g € G it holds

d(g(x),g(y)) = d(x,y).

For every G-invariant metric dx on X and every point x € X, the function

dg(g1, &2) = dx(g1(x), g2(x))

is a left-invariant metric on G. This metric is called orbit metric in [BBIO1],
since it is the restriction of d on the orbit Gx, which can be identified with G.
Positively homogeneous distance

A distance d on an Abelian group (G, +, 0) is called positively homogeneous
if

d(mx, my) = md(x,y)

forall x,y € G and all m € N, where mx is the sum of m terms all equal to x.
Translation discrete metric

A group norm metric (in general, a group norm semimetric) on a group
(G, -, e) is called translation discrete if the translation distances (or translation
numbers)

X"
6(x) = lim u

n—oo n
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of the nontorsion elements x (i.e., such that x" # e for any n € N) of the group
with respect to that metric are bounded away from zero.

If the numbers t(x) are just nonzero, such a group norm metric is called a
translation proper metric.

*  Word metric

Let (G, -, e) be a finitely-generated group with a set A of generators (i.e., A
is finite, and every element of G can be expressed as a product of finitely many
elements A and their inverses). The word length w4, (x) of an element x € G\{e}
is defined by

wi() =inf{r:x=a'...a",a; € A, € {£1}} and w(e) = 0.

The word metric dﬁ, associated with A is a group norm metric on G defined
by

Wiy,

As the word length w?, is a group norm on G, d, is right-invariant. Sometimes
itis defined as w4, (y~!-x), and then it is left-invariant. In fact, d4, is the maximal
metric on G that is right-invariant, and such that the distance from any element
of A or A~! to the identity element e is equal to one.

If A and B are two finite sets of generators of the group (G,-, ¢), then the
identity mapping between the metric spaces (G, dy,) and (G,d%b) is a quasi-
isometry, i.e., the word metric is unique up to quasi-isometry.

The word metric is the path metric of the Cayley graph T" of (G,-, e),
constructed with respect to A. Namely, I' is a graph with the vertex-set G in
which two vertices x and y € G are connected by an edge if and only if y = a“x,
€ ==x1,acA.

¢ Weighted word metric

Let (G, -, ) be a finitely-generated group with a set A of generators. Given a
bounded weight function w : A — (0, 00), the weighted word length w4y, (x) of
an element x € G\{e} is defined by w1, (¢) = 0 and

t
Wi (x) = inf Zw(ai),te N:x=ai...af',a; € A e € {£l}; .

i=1

The weighted word metric &\, associated with A is a group norm metric
on G defined by

wﬁ,w(x-y_l).

As the weighted word length w4y, is a group norm on G, dyyy, is right-invariant.
Sometimes it is defined as w4, (y~! - x), and then it is left-invariant.
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The metric dyy, is the supremum of semimetrics d on G with the property that
d(e,a) < w(a) forany a € A.

The metric diy,, is a coarse-path metric, and every right-invariant coarse path
metric is a weighted word metric up to coarse isometry.

The metric dyy,, is the path metric of the weighted Cayley graph Ty of
(G, -, e) constructed with respect to A. Namely, I'y is a weighted graph with
the vertex-set G in which two vertices x and y € G are connected by an edge with
the weight w(a) if and only if y = a‘x, € = +1,a € A.

* Interval norm metric

An interval norm metric is a group norm metric on a finite group (G, -, ¢)

defined by

[ 3™ s

where ||.||;: s an interval norm on G, i.e., a group norm such that the values of
||-||in: form a set of consecutive integers starting with 0.

To each interval norm ||.||;,; corresponds an ordered partition {By, . .., B,,} of
G with B; = {x € G : ||x||ix = i}; cf. Sharma—Kaushik distance in Chap. 16.
The Hamming and Lee norms are special cases of interval norm. A generalized
Lee norm is an interval norm for which each class has a form B; = {a,a'}.

e C-metric

A C-metric d is a metric on a group (G,-,e) satisfying the following

conditions:

1. The values of d form a set of consecutive integers starting with 0;
2. The cardinality of the sphere B(x,r) = {y € G : d(x,y) = r} is independent
of the particular choice of x € G.

The word metric, the Hamming metric, and the Lee metric are C-metrics. Any
interval norm metric is a C-metric.
¢ Order norm metric

Let (G, -, e) be a finite Abelian group. Let ord(x) be the order of an element
x € G, i.e., the smallest positive integer n such that x* = e. Then the function
[|.llora : G — R defined by ||x||o;a = Inord(x), is a group norm on G, called the
order norm.

The order norm metric is a group norm metric on G, defined by

||x'y_1||ord-

* Tarniduceanu metric
Let o(a) denote the order of the element a of a group. Let C be the class of
finite groups G in which o(ab) < o(a) + o(b) for every a,b € G. Tarnduceanu,
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2015, noted that the function d : G x G — N defined by

d(x,y) = o(xy ") — 1

for all x,y € G is ametric on G if and only if G € C.

He found that C contains all Abelian p-groups, Qs, and A4, but not nonabelian
finite simple groups, alternating groups A(n) with n > 5, and, for n > 4, Sym(n),
quaternion groups Q»-, dihedral groups D,,. C is closed under subgroups, but
not under direct products or extensions. The centralizers of nontrivial elements
of such groups contain only elements of prime power order.

¢ Monomorphism norm metric

Let (G, +, 0) be a group. Let (H, -, ¢) be a group with a group norm ||.||g. Let
f :+ G — H be a monomorphism of groups G and H, i.e., an injective function
such that f(x+y) = f(x)-f(y) for any x, y € G. Then the function ||.| |]; :G—>R
defined by ||x|I"G = ||f(®)||m, 18 a group norm on G, called the monomorphism
norm.

The monomorphism norm metric is a group norm metric on G defined by

[ — ¥l

¢ Product norm metric
Let (G, +, 0) be a group with a group norm ||.||c. Let (H, -, ) be a group with
a group norm ||.||g. Let G x H = {& = (x,y) : x € G,y € H} be the Cartesian
product of G and H, and (x,y) - (z,1) = (x + z,y - 1).
Then the function ||.||gxy : GXH — Rdefined by ||a||oxz = ||, ) ||loxu =
[lxll¢ + |ly||a, is @ group norm on G x H, called the product norm.
The product norm metric is a group norm metric on G x H defined by

-1
llee - B G-

On the Cartesian product G x H of two finite groups with the interval norms

||||&" and ||.||%, an interval norm ||.||%,, can be defined. In fact, ||e||, =

& = [1xll6 + (m + DIIyllz, where m = max.ec ||all§'".
¢ Quotient norm metric

Let (G,-, e) be a group with a group norm ||.||g. Let (N, -, e) be a normal
subgroup of (G,-,e), i.e., xN = Nx for any x € G. Let (G/N,-,eN) be the
quotient group of G, i.e., G/N = {xN : x € G} withxN = {x-a : a € N}, and
xN - yN = xyN. Then the function ||.||g/y : G/N — R defined by |[xN||g/n =
mingep ||xallx, is a group norm on G/N, called the quotient norm.

A quotient norm metric is a group norm metric on G/N defined by

[N - GN) " lo/w = [1xy ™' Nllayw-
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If G = Z with the norm being the absolute value, and N = mZ, m € N, then
the quotient norm on Z/mZ = 7Z,, coincides with the Lee norm.

If a metric d on a group (G, -, e) is right-invariant, then for any normal
subgroup (N, -, e) of (G, -, e) the metric d induces a right-invariant metric (in
fact, the Hausdorff metric) d* on G/N by

* _ . .
d*(xN,yN) = max{gg;};\} min d(a,b), max }1}2}2 d(a,b)}.

¢ Commutation distance

Let (G, -, e) be a finite nonabelian group. Let Z(G) = {c € G : x-¢ =
c¢-x forany x € G} be the center of G.

The commutation graph of G is defined as a graph with the vertex-set G
in which distinct elements x,y € G are connected by an edge whenever they
commute, i.e., x - y = y - x. (Darafsheh, 2009, consider noncommuting graph on
G\ Z(G).)

Any two noncommuting elements x,y € G are connected in this graph by
the path x, ¢, y, where c is any element of Z(G) (for example, e). A path x =
x!',x%,....x* = y in the commutation graph is called an (x — y) N-path if x' ¢
Z(G) forany i € {1,...,k}. In this case the elements x,y € G\Z(G) are called
N-connected.

The commutation distance (see [DeHu98]) d is an extended distance on G
defined by the following conditions:

1. d(x,x) = 0;

2.d(x,y)=1ifx#y,andx-y=y-x;

3. d(x,y) is the minimum length of an (x — y) N-path for any N-connected
elements x and y € G\Z(G);

4. d(x,y) = oo if x,y € G\Z(G) are not connected by any N-path.

Given a group G and a G-conjugacy class X in it, Bates—Bundy—Perkins—
Rowley in 2003, 2004, 2007, 2008 considered commuting graph (X, E) whose
vertex set is X and distinct vertices x, y € X are joined by an edge e € E whenever
they commute.

* Modular distance
Let (Zy, +,0), m > 2, be a finite cyclic group. Let r € N, r > 2. The

modular r-weight w,(x) of an element x € Z, = {0,1,...,m} is defined as
wy(x) = min{w,(x), w,(m — x)}, where w,(x) is the arithmetic r-weight of the
integer x.

The value w,(x) can be obtained as the number of nonzero coefficients in the
generalized nonadjacent form x = e,r" 4+ ...e;r + ey with ¢; € Z, |e;| < r,
le; + ei+1| < r, and |e;| < |eit1] if e;ei+1 < 0. Cf. arithmetic 7-norm metric in
Chap. 12.

The modular distance is a distance on Z,,, defined by

w(x —y).
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The modular distance is a metric for w,(m) = 1, w,(m) = 2, and for several
special cases with w,.(m) = 3 or 4. In particular, it is a metric for m = »" or
m = r"—1;if r = 2, it is a metric also for m = 2" 4 1 (see, for example,
[Ernv85]).

The most popular metric on Z,, is the Lee metric defined by ||x—y||Lc., Where
||x||Lee = min{x, m — x} is the Lee norm of an element x € Z,,.

* G-norm metric

Consider a finite field F,» for a prime p and a natural number n. Given a
compact convex centrally-symmetric body G in R”, define the G-norm of an
element x € Fp by ||x||¢g = inf{ > 0 : x € pZ" + uG}.

The G-norm metric is a group norm metric on . defined by

—1
lx-y~le-

¢ Permutation norm metric
Given a finite metric space (X, d), the permutation norm metric is a group
norm metric on the group (Symy, -, id) of all permutations of X (id is the identity
mapping) defined by

”f g_IHSyWn

where the group norm ||.|| sy, on Symy is given by || f||sym = maxex d(x, f(x)).
e Metric of motions
Let (X, d) be a metric space, and let p € X be a fixed element of X.
The metric of motions (see [Buse55]) is a metric on the group (€2, -, id) of all
motions of (X, d) (id is the identity mapping) defined by

supd(f(x), g(x)) - e”!"Y
x€X

for any f, g € Q (cf. Busemann metric of sets in Chap. 3). If the space (X, d) is
bounded, a similar metric on €2 can be defined as

sup d(f(x), g(x)).

Given a semimetric space (X, d), the semimetric of motions on (€2, -, id) is

d(f(p).8(p)).

¢ General linear group semimetric
Let IF be a locally compact nondiscrete topological field. Let (F",||.||pn),
n > 2, be a normed vector space over F. Let ||.|| be the operator norm associated
with the normed vector space (F",||.||m). Let GL(n,F) be the general linear
group over F. Then the function |.|,, : GL(n,F) — R defined by [g|,, =
sup{|In||g|||.|In||g~"|| |}, is a seminorm on GL(n,TF).
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The general linear group semimetric on the group GL(n, F) is defined by

g - h_ll()p-

It is a right-invariant semimetric which is unique, up to coarse isometry,

since any two norms on " are bi-Lipschitz equivalent.
* Generalized torus semimetric

Let (T,-,e) be a generalized torus, i.e., a topological group which is iso-
morphic to a direct product of n multiplicative groups F} of locally compact
nondiscrete fopological fields F;. Then there is a proper continuous homomor-
phism v : T — R” namely, v(x,...,x;,) = (vi(x1),...,V,(x,)), where
v; : FY — R are proper continuous homomorphisms from the F} to the additive
group R, given by the logarithm of the valuation. Every other proper continuous
homomorphism v' : 7 — R” is of the form v = « - v with @ € GL(n,R). If ||.||
is a norm on R", one obtains the corresponding seminorm ||x||r = ||v(x)|| on T.

The generalized torus semimetric is defined on the group (7, -, ¢) by

by~ Iz = [y DIl = [lv@) — vl

* Stable norm metric

Given a Riemannian manifold (M, g), the stable norm metric is a group
norm metric on its real homology group Hi(M,R) defined by the following
stable norm ||h||s: the infimum of the Riemannian k-volumes of real cycles
representing /.

The Riemannian manifold (R”, g) is within finite Gromov-Hausdorff dis-
tance (cf. Chap. 1) from an n-dimensional normed vector space (R”, ||.||s)-

If (M,g) is a compact connected oriented Riemannian manifold, then the
manifold H, (M, R)/H; (M, R) with metric induced by ||.|, is called the Albanese
torus (or Jacobi torus) of (M, g). This Albanese metric is a flat metric (Chap. 8).

e Heisenberg metric

Let (H,-, e) be the (real) Heisenberg group H", i.e., a group on the set H =
R" x R" x R with the group law i - # = (x,y,1) - (X,y,/) = x+ X,y +
V.t+ 1 + 2% (xly; — x;y), and the identity e = (0,0, 0). Let |.|y;s be the
Heisenberg gauge (Cygan, 1978) on ‘H" defined by |h|geis = (X, ¥, 1) |Heis =
(Z, (2 437 + ) A

The Heisenberg metric (or Koranyi metric, Cygan metric, gauge metric)
dpeis 1s a group norm metric on 7" defined by

|x_1 ° y|Heis-
One can identify the Heisenberg group H"~' = C"™! x R with OHE \ {oo},

where HE is the Hermitian (i.e., complex) hyperbolic n-space, and oo is any point
of its boundary dH[.. So, the usual hyperbolic metric of Hfé“ induces a metric
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on H". The Hamenstédt distance on 0Hf, \ {oo} (Hersonsky—Paulin, 2004) is
1 .
TEdHe”'
Sometimes, the term Cygan metric is reserved for the extension of the

metric dp.;s on whole H, and (Apanasov, 2004) for its generalization (via the
Carnot group F"™! x ImF) on F-hyperbolic spaces Hj over numbers F that
can be complex numbers, or quaternions or, for n = 2, octonions. Also, the
generalization of dg,;; on Carnot groups of Heisenberg type is called the Cygan
metric.

The second natural metric on " is the Carnot—Carathéodory metric (or CC
metric, sub-Riemannian metric; cf. Chap.7) d¢ defined as the length metric
(Chap. 6) using horizontal vector fields on H". This metric is the internal metric
(Chap. 4) corresponding to dpejs.

The metric dp.;; is bi-Lipschitz equivalent with dc but not with any
Riemannian distance and, in particular, not with any Euclidean metric. For both
metrics, the Heisenberg group H" is a fractal since its Hausdorff dimension,
2n + 2, is strictly greater than its topological dimension, 2n + 1.

* Metric between intervals

Let G be the set of all intervals [a, b] of R. The set G forms semigroups (G, +)
and (G, -) under addition I +J = {x + y : x € I,y € J} and under multiplication
I-J={x-y:xelyeJ},respectively.

The metric between intervals is a metric on G, defined by

max{[|, |J]}

forall I,J € G, where, for K = [a, b], one has |K| = |a — b|.
e Metric between games
Consider positional games, i.e., two-player nonrandom games of perfect
information with real-valued outcomes. Play is alternating with a nonterminated
game having move options for both players. Real-world examples include
Chess, Go and Tic-Tac-Toe. Formally, let Fr be the universe of games defined
inductively as follows:

1. Every real number r € R belongs to Fr and is called an atomic game.
2. IfA,B C Fr with 1 < |A]|, |B| < o0, then {A|B} € Fr (nonatomic game).

Write any game G = {A|B} as {G*|GR}, where G* = A and GR = B are the set
of left and right moves of G, respectively.

FRr becomes a commutative semigroup under the following addition opera-
tion:

1. If p and g are atomic games, then p + ¢ is the usual addition in R.

2.p+ign.---lgn.-- -y ={sn +p,.. .18, +p... )

3. If G and H are both nonatomic, then {G*|GR} + {H*|HRY = {I*|IR}, where
I"={g+HG+h:geGCG heHYandI® = {g,+H G+ h,: g, €
GR, h, € HR).
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For any game G € Fp, define the optimal outcomes L(G) and R(G) (if both
players play optimally with Left and Right starting, respectively) as follows:

L(p) = R(p) = p and L(G) = max{R(g) : & € G"}, R(G) = max{L(g,) :
gr € GRY.

The metric between games G and H defined by Ettinger, 2000, is the
following extended metric on Fg:

sup |L(G + X) — L(H + X)| = sup|R(G + X) — R(H + X)|.
X X

¢ Helly semimetric

Consider a game (A, B, H) between players A and B with strategy sets A and
B, respectively. Here H = H(:,-) is the payoff function, i.e., if player A plays
a € A and player B plays b € 3, then A pays H(a,b) to B. A player’s strategy set
is the set of available to him pure strategies, i.e., complete algorithms for playing
the game, indicating the move for every possible situation throughout it.

The Helly semimetric between strategies a; € A and a; € A of A is defined
by

sup |H (a1, b) — H(az, b)|.
beB

* Factorial ring semimetric
Let (A, +, ) be afactorial ring, i.e., an integral domain (nonzero commutative
ring with no nonzero zero divisors), in which every nonzero nonunit element can
be written as a product of (nonunit) irreducible elements, and such factorization
is unique up to permutation.
The factorial ring semimetric is a semimetric on the set A\{0}, defined by

lem(x,y)
n—-———,
ged(x,y)

where Icm(x,y) is the least common multiple, and gcd(x,y) is the greatest
common divisor of elements x,y € A\{0}.
¢ Frankild-Sather—Wagstaff metric

Let G(R) be the set of isomorphism classes, up to a shift, of semidualizing
complexes over a local Noetherian commutative ring R. An R-complex is
a particular sequence of R-module homomorphisms; see [FrSa07]) for exact
definitions.

The Frankild-Sather—Wagstaff metric ([FrSa07]) is a metric on G(R)
defined, for any classes [K], [L] € G(R), as the infimum of the lengths of chains
of pairwise comparable elements starting with [K] and ending with [L].
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10.2 Metrics on Binary Relations

A binary relation R on a set X is a subset of X x X; it is the arc-set of the directed
graph (X, R) with the vertex-set X.

A binary relation R which is symmetric ((x,y) € R implies (y,x) € R), reflexive
(all (x,x) € R), and transitive ((x,y),(y,z) € R imply (x,z) € R) is called
an equivalence relation or a partition (of X into equivalence classes). Any g-ary
sequence x = (X1,...,%,),q > 2 (e,with0 < x;, <g—1forl <i < n),
corresponds to the partition {By,...,B, 1} of V, = {1,...,n}, where B; = {1 <
i <n:x; = j} are the equivalence classes.

A binary relation R which is antisymmetric ((x,y), (y,x) € R imply x = y),
reflexive, and transitive is called a partial order, and the pair (X, R) is called a poset
(partially ordered set). A partial order R on X is denoted also by < with x < y if
and only if (x,y) € R. The order < is called linear if any elements x,y € X are
compatible,i.e.,x <yory < x.

A poset (L, <) is called a lattice if every two elements x,y € L have the join
x V y and the meet x A y. All partitions of X form a lattice Py by refinement; it is a
sublattice of the lattice (by set-inclusion) of all binary relations.

* Kemeny distance
The Kemeny distance between binary relations R; and R, on a set X is the
Hamming metric |R; AR;|. It is twice the minimal number of inversions of pairs
of adjacent elements of X which is necessary to obtain R, from R;.
If Ry, R, are partitions, then the Kemeny distance coincides with the Mirkin—
Tcherny distance, and 1 — % is the Rand index.
If binary relations Ry, R, are linear orders (or permutations) on the set X, then
the Kemeny distance coincides with the Kendall ¢ distance (Chap. 11).
¢ Drapal-Kepka distance
The Drapal-Kepka distance between distinct quasigroups (differing from
groups in that they need not be associative) (X, +) and (X, ) is the Hamming
metric [{(x,y) : x + y # x - y}| between their Cayley tables.
For finite nonisomorphic groups, this distance is (Ivanyos, Le Gall and
Yoshida, 2012) at least 2('?—')2 with equality (Drapal, 2003) for some 3-groups.
« Editing metrics between partitions
Let X be a finite set, | X| = n, and let A, B be nonempty subsets of X. Let
Px be the set of partitions of X, and P, Q € Px. Let Py,..., P, be blocks in the
partition P, i.e., the pairwise disjoint sets such that X = Py U---UP,, g > 1. Let
P v Q and P A Q be the join and meet of P and Q in the lattice Px of partitions
of X.
Consider the following editing operations on partitions (clusterings):

— An augmentation transforms a partition P of A\{B} into a partition of A by
either including the objects of B in a block, or including B as a new block;

— An removal transforms a partition P of A into a partition of A\{B} by deleting
the objects in B from each block that contains them;
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— A division transforms one partition P into another by the simultaneous
removal of B from P; (where B C P;, B # P;), and augmentation of B as
a new block;

— A merging transforms one partition P into another by the simultaneous
removal of B from P; (where B = P;), and augmentation of B to P; (where
J#D;

— A transfer transforms one partition P into another by the simultaneous
removal of B from P; (where B C P;), and augmentation of B to P; (where
J# 0.

Define (see, say, [Day81]), using above operations, the following metrics on

le

1. The minimum number of augmentations and removals of single objects
needed to transform P into Q;

2. The minimum number of divisions, mergings, and transfers of single objects
needed to transform P into Q;

3. The minimum number of divisions, mergings, and transfers needed to trans-
form P into Q;

4. The minimum number of divisions and mergings needed to transform P into
Q; in fact, it is equal to |P| + |Q| — 2|P V Q;

5. 6(P) +0(Q) — 20(P A Q), where 0(P) = Y cp [Pi| (1P| — 1);

. e(P) + e(Q) —2e(P A Q), where e(P) =logyn+ Y pcp II;—"‘ log, 1P,

n

7. 2n— ZP,-GP maxgep |PiN Q| — ZQ]EQ maxp,ep |P; N Q;| (van Dongen, 2000).

@)}

The maximum matching distance (or partition-distance as defined in Gus-
field, 2002) is (Réignier, 1965) the minimum number of elements that must be
moved between the blocks of partition P in order to transform it into Q.

* Rossi-Hamming metric

Given a partition P = (Py,...,P,) of a finite set X, its size is defined as
s(P) = % Di<i< o |Pil(IPi| = 1). We call the Rossi-Hamming metric the metric
between partitions P and Q, defined in Rossi, 2014, as

dru(P.Q) = s(P) + s(Q) — 2s(P A Q).

One has dgry(P,Q) < s(P Vv Q) — s(P A Q), where the right-hand side is
the size-based distance (Rossi, 2011). The inequality is strict only for some
noncomparable P, Q.

10.3 Maetrics on Semilattices

Consider a poset (L, <X). The meet (or infimum) x A y (if it exists) of two elements
x and y is the unique element satisfying x Ay < x,y,and z < x Ayif z < x,y. The
Jjoin (or supremum) x V' y (if it exists) is the unique element such that x,y < x Vv y,




10.3 Metrics on Semilattices 211

and x vy < zif x,y < z. A poset (L, X) is called a lattice if every its elements x, y
have the join x V y and the meet x A y. A poset is a meet (or lower) semilattice if
only the meet-operation is defined. A poset is a join (or upper) semilattice if only
the join-operation is defined.

A lattice L = (L, X,V,A) is called a semimodular lattice if the modularity
relation xMy is symmetric: xMy implies yMx for any x,y € L. Here two elements x
and y are said to constitute a modular pair, in symbols xMy, if xA(yVz) = (XAy)Vz
for any z < x. A lattice L in which every pair of elements is modular, is called a
modular lattice.

Given a lattice L, a function v : L — Ry, satisfying v(x Vy) + v(x A y) <
v(x)+v(y) forallx,y € L, is called a subvaluation on LL. A subvaluation v is isotone
if v(x) < v(y) whenever x < y, and it is positive if v(x) < v(y) whenever x < y,
x # y. A subvaluation v is called a valuation if it is isotone and v(x Vy) + v(x Ay) =
v(x) + v(y) forallx,y € L.

¢ Lattice valuation metric
Let L. = (L, <, V, A) be a lattice, and let v be an isotone subvaluation on L.

y —

The lattice subvaluation semimetric d, on L is defined by

20(x vVy) —v(x) —v(y).

(It can be defined also on some semilattices.) If v is a positive subvaluation on L,
one obtains a metric, called the lattice subvaluation metric. If v is a valuation,
d, is called the valuation semimetric and can be written as

v(xVy) —vx Ay =vx)+v(y) —2v(xAY).

If v is a positive valuation on L, one obtains a metric, called the lattice valuation
metric, and the lattice is called a metric lattice.

An example is the Hamming distance dy(A, B) = |A U B| — |A N B| on the
lattice (P(X), U, N) of all subsets of the set X. Cf. also the Shannon distance
(Chap. 14), which can be seen as a distance on partitions.

If L = N (the set of positive integers), x V y = lem(x,y) (least common
multiple), x Ay = ged(x, y) (greatest common divisor), and the positive valuation
v(x) = Inx, then d,(x,y) = In %.

This metric can be generalized on any factorial ring equipped with a positive
valuation v such that v(x) > 0 with equality only for the multiplicative unit of
the ring, and v(xy) = v(x) 4+ v(y). Cf. factorial ring semimetric.

¢ Finite subgroup metric

Let (G, -, e) be a group. Let L = (L, C,N) be the meet semilattice of all
finite subgroups of the group (G, -, ¢) with the meet X N Y and the valuation
v(X) = In|X|.

The finite subgroup metric is a valuation metric on L defined by

|1X|1Y
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Join semilattice distances

Let L = (L,=,V) be a join semilattice, finite or infinite, such that every
maximal chain in every interval [x, y] is finite. For x < y, the height h(x,y) of y
above x is the least cardinality of a finite maximal (by inclusion) chain of [x, y]
minus 1. Call the join semilattice I semimodular if for all x,y € L, whenever
there exists an element z covered by both x and y, the join x V y covers both x
and y, or, in other words, whenever elements x, y have a common lower bound
z, it holds A(x,x vV y) < h(z,y). Any tree (i.e., all intervals [x, z] are finite, each
pair x, y of uncomparable elements have a least common upper bound x Vv y but
they never have a common lower bound) is semimodular. Consider the following
distances on L:

dpain (x, y) is the path metric of the Hasse diagram of (L, <), i.e., a graph with
vertex-set L and an edge between two elements if they are comparable.

dapan(x,y) is the smallest number of the form h(x,z) + h(y,z), where z is
a common upper bound of x and y, i.e., it is the ancestral path distance; cf.
pedigree-based distances in Chap.23. This and next distance reflect the way
how Roman civil law and medieval canon law, respectively, measured degree of
kinship.

dimax (x, ) is defined by max(h(x,x V y), h(y,x V y)).

It holds dupan(X,y) > dpan(x,y) > dmax(x,y). Foldes, 2013, proved that
dmax (x, y) is a metric if L is semimodular and that d, pan (X, y) is a metric if and
only if I is semimodular, in which case d, pan (%, ) = dpan(x, y).

Gallery distance of flags

Let L be alattice. A chain C in L is a subset of L which is linearly ordered, i.e.,
any two elements of C are compatible. A flag is a chain in L. which is maximal
with respect to inclusion. If L is a semimodular lattice, containing a finite flag,
then L has a unique minimal and a unique maximal element, and any two flags
C, D in L have the same cardinality, n 4+ 1. Then n is the height of the lattice L.

Two flags C, D are called adjacent if either they are equal or D contains
exactly one element not in C. A gallery from C to D of length m is a sequence
of flags C = Cy,Cy,...,C,, = D such that C;_; and C; are adjacent for
i=1,...,m.

A gallery distance of flags (see [Abel91]) is a distance on the set of all flags
of a semimodular lattice I with finite height defined as the minimum of lengths
of galleries from C to D. It can be written as

|ICVvD|—|C|=|CvD|-|DI,

where CV D = {cVv d:c e C,d e D} is the subsemilattice generated by C and
D. This distance is the gallery metric of the chamber system consisting of flags.
Scalar and vectorial metrics

Let L = (L, <, max, min) be a lattice with the join max{x, y}, and the meet
min{x, y} onaset L C [0, co) which has a fixed number a as the greatest element
and is closed under negation, i.e., forany x € L, one hasx = a —x € L.
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The scalar metric d on L is defined, for x # y, by
d(x,y) = max{min{x, y}, min{x, y}}.
The scalar metric d* on L* = L U {x}, * & L, is defined, for x # y, by

d(x,y), if x,yelL,
d*(x,y) = 4 max{x,x}, if y = *,x# *,
max{y,y}, if x = %,y # x*.

Given a norm ||.|| on R", n > 2, the vectorial metric on L" is defined by

[1(d(x1,y1), ..., d Qs ya))lI,

and the vectorial metric on (L*)" is defined by

@ (1. 30), - d™ (oY) -

The vectorial metric on L = {0,1}" with [;-norm on R" is the
Fréchet-Nikodym-Aronszyan distance. The vectorial metric on L} =
{0, ﬁ, e Z—j, 1}"* with [;-norm on R" is the Sgarro m-valued metric. The
vectorial metric on [0, 1]” with /;-norm on R”" is the Sgarro fuzzy metric.

If L is L, or [0,1], and x = (X1,..., X0 X0d1s-vesXntr), Y =
V1s---sVns *,...,%), where * stands in r places, then the vectorial metric
between x and y is the Sgarro metric (see, for example, [CSYO01]).

e Metrics on Riesz space
A Riesz space (or vector lattice) is a partially ordered vector space (Vg;, <) in

which the following conditions hold:

1. The vector space structure and the partial order structure are compatible: x <y
impliesx +z <y+zandx > 0, A € R, A > 0 implies Ax > 0;

2. For any two elements x, y € Vp; there exists the join x V y € Vg, (in particular,
the join and the meet of any finite set of elements from Vg, exist).

The Riesz norm metric is a norm metric on V; defined by

[lx = yllri,

where ||.||r; is a Riesz norm, i.e., a norm on Vg; such that, for any x,y € Vg;, the
inequality |x| < |y|, where |x| = (—x) V (x), implies ||x||z; < ||y||ri-

The space (Vi ||.||r:) is called a normed Riesz space. In the case of
completeness it is called a Banach lattice. All Riesz norms on a Banach lattice
are equivalent.

An element e € V;; = {x € Vg; : x > 0} is called a strong unit of Vp; if for

each x € Vg; there exists A € R such that |x| < Ae. If a Riesz space Vg; has a
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strong unit e, then ||x|| = inf{A € R : |x| < Ae} is a Riesz norm, and one obtains
on Vg; a Riesz norm metric

inf{fA e R: [x —y| < Ae}.

A weak unit of Vg; is an element e of Vk‘; such that e A x| = 0 implies x = 0.
A Riesz space Vy; is called Archimedean if, for any two x,y € V*;, there exists
a natural number n, such that nx < y. The uniform metric on an Archimedean
Riesz space with a weak unit e is defined by

inf{A e R:|x—y|Ae= Ae}.

¢ Machida metric
For a fixed integer k > 2 and the set V;, = {0,1,...,k — 1}, let 0,((") be the

set of all n-ary functions from (V;)" into V; and O, = U;’liIO,((") . Let Pry be
the set of all projections pr! over Vi, where pr(xi,...,x;,...,x,) = x; for any
X1y ..., X, € Vi

A clone over Vi is a subset C of Oy containing Pr; and closed under
(functional) composition. The set L; of all clones over V is a lattice. The Post
lattice L, defined over Boolean functions, is countable but any L; with k > 3 is
not. For n > 1 and a clone C € Ly, let C denote n-slice C N 0,((").

For any two clones Cy, C; € L, Machida, 1998, defined the distance to be O if
C; = C, and (min{n : Ci") £ C;") 1™, otherwise. The lattice L, of clones with
this distance is a compact ultrametric space. Cf. Baire metric in Chap. 11.




Chapter 11
Distances on Strings and Permutations

An alphabet is a finite set A, |A| > 2, elements of which are called characters (or
symbols). A string (or word) is a sequence of characters over a given finite alphabet
A. The set of all finite strings over the alphabet A is denoted by W(.A). Examples
of real world applications, using distances and similarities of string pairs, are
Speech Recognition, Bioinformatics, Information Retrieval, Machine Translation,
Lexicography, Dialectology.

A substring (or factor, chain, block) of the string x = x; ... x, is any contiguous
subsequence xxj+...x, with 1 < i < k < n. A prefix of a string x is any its
substring starting with x;; a suffix is any its substring finishing with x,,. If a string is
a part of a text, then the delimiters (a space, a dot, a comma, etc.) are added to .A.

A vector is any finite sequence consisting of real numbers, i.e., a finite string over
the infinite alphabet R. A frequency vector (or discrete probability distribution) is
any string x . ..x, with all x; > 0 and er'l=l x; = 1. A permutation (or ranking) is
any string x; ... x, with all x; being different numbers from {1,.. ., n}.

An editing operation is an operation on strings, i.e., a symmetric binary relation
on the set of all considered strings. Given a set of editing operations O =
{01, ..., O,}, the corresponding editing metric (or unit cost edit distance) between
strings x and y is the minimum number of editing operations from O needed to
obtain y from x. It is the path metric of a graph with the vertex-set W(A) and xy
being an edge if y can be obtained from x by one of the operations from O.

In some applications, a cost function is assigned to each type of editing operation;
then the editing distance is the minimal total cost of transforming x into y. Given a
set of editing operations O on strings, the corresponding necklace editing metric
between cyclic strings x and y is the minimum number of editing operations from O
needed to obtain y from x, minimized over all rotations of x.

The main editing operations on strings are:

e Character indel, i.e., insertion or deletion of a character;
* Character replacement,
* Character swap, i.e., an interchange of adjacent characters;
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Substring move, i.e., transforming, say, the string x = xj...x, into the string
X1 oo Xi—1Xj oo Xg—1X oo X1 X - K

Substring copy, i.e., transforming, say, x = x;...x, into Xy ...x—1Xj...Xk—1
Xiooo Xy,

Substring uncopy, i.e., the removal of a substring provided that a copy of it
remains in the string.

We list below the main distances on strings. However, some string distances will

appear in Chaps. 15, 21 and 23, where they fit better, with respect to the needed level
of generalization or specification.

11.1 Distances on General Strings

Levenstein metric

The Levenstein metric (or edit distance, Hamming+Gap metric, shuffle-
Hamming distance) is (Levenstein, 1965) an editing metric on W(.A), obtained
for O consisting of only character replacements and indels.

The Levenstein metric between strings x = xj ... x, andy = y; ...y, is

dL(xs y) = min{dH(X*s y*)}v

where x*, y* are strings of length k, k > max{m, n}, over the alphabet A* =
A U {x} so that, after deleting all new characters =, strings x* and y* shrink to x
and y, respectively. Here, the gap is the new symbol *, and x*, y* are shuffles of
strings x and y with strings consisting of only .

The Levenstein similarity is 1 — %

The Damerau-Levenstein metric (Damerau, 1964) is an editing metric on
W(A), obtained for O consisting only of character replacements, indels and
transpositions. In the Levenstein metric, a transposition corresponds to two
editing operations: one insertion and one deletion.

The constrained edit distance (Oomen, 1986) is the Levenstein metric, but
the ranges for the number of replacements, insertions and deletions are specified.
Editing metric with moves

The editing metric with moves is an editing metric on W(A) ([Corm03]),
obtained for O consisting of only substring moves and indels.

Editing compression metric

The editing compression metric is an editing metric on W(A) ([Corm03]),
obtained for O consisting of only indels, copy and uncopy operations.
Swap metric

The swap metric (or interchange distance, Dodson distance) is an editing
metric on W(A), obtained for O consisting only of character swaps, i.e., it is
the minimum number of interchanges of adjacent pairs of symbols, converting x
nto y.
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Indel metric
The indel metric is an editing metric on W(.A), obtained for O consisting of
only indels. It is an analog of the Hamming metric |[XAY| between sets X and
Y. For strings x = x ...x, and y = y; ...y, itis m + n — 2LCS(x, y), where the
similarity LCS(x, y) is the length of the longest common subsequence of x and y.
The factor distance is m + n — 2LCF (x, y), where LCF (x, y) is the length of
the longest common substring (factor) of x and y.

The LCS ratio and the LCF ratio are the similarities rﬁis{(rflil)} and gﬁﬂfx)},

respectively; sometimes, the denominator is max{m, n} or ’”T'H’
Prefix, suffix, and substring distances

Given strings x and y, their prefix distance, suffix distance, and substring
distance are the numbers of symbol occurrences in the strings that do not
belong to their longest common prefix, suffix or substring, respectively. Cf. Jaro—
Winkler similarity, factor distance.

Antidistance

There are (n — 1)! circular permutations, i.e., cyclic orders, of a set X of size
n. The antidistance between circular permutations x and y is the swap metric
between x and the reversal of y.

Also, given complex n x n matrices A and B, the unitary similarity orbit
through B is supycy, ||U*BU||o0, where U € U, is the group of unitary matrices.
Ando, 1996, define anti-distance between A and this orbit as supyey [|[A —
U*BU||co-

Also, given a simple connected graph (V, E), we assign directions to edges
and the weight of each edge (either 1 or —1) depending on the direction of
the traverse. Iravanian, 2012, define anti-distance d(u,v) = —d(v, u) between
vertices as the weighted average length of all simple paths from u to v.

Edit distance with costs

Given a set of editing operations O = {O;,...,O,} and a weight (or cost
Sunction) w; > 0, assigned to each type O; of operation, the edit distance with
costs between strings x and y is the minimal total cost of an editing path between
them, i.e., the minimal sum of weights for a sequence of operations transforming
X into y.

The normalized edit distance between strings x and y (Marzal-Vidal, 1993)
is the minimum, over all editing paths P between them, of %f)), where W(P) and
L(P) are the total cost and the length of the editing path P.

Transduction edit distances

The Levenstein metric with costs between strings x and y is modeled in
[RiYi98] as a memoryless stochastic transduction between x and y.

Each step of transduction generates either a character replacement pair (a, b),
a deletion pair (a, @), an insertion pair (9, b), or the specific termination symbol
t according to a probability function § : E U {t} — [0, 1], where E is the set of all
possible above pairs. Such a transducer induces a probability function on the set
of all sequences of operations.
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The transduction edit distances between strings x and y are ([RiYi98]) Inp
of the following probabilities p:

— for the Viterbi edit distance, the probability of the most likely sequence of
editing operations transforming x into y;
— for the stochastic edit distance, the probability of the string pair (x, y).

This model allows one to learn, in order to reduce error rate, the edit costs for
the Levenstein metric from a corpus of examples (training set of string pairs).
This learning is automatic; it reduces to estimating the parameters of above
transducer.

* Bag distance

The bag distance (or multiset metric, counting filter) is a metric on W(.A)

defined (Navarro, 1997) by

max{|X\Y|, |Y\X|}

for any strings x and y, where X and Y are the bags of symbols (multisets of
characters) in strings x and y, respectively, and, say, | X\ Y| counts the number of
elements in the multiset X\ Y. It is a (computationally) cheap approximation of
the Levenstein metric. Cf. metrics between multisets in Chap. 1.
¢ Marking metric
The marking metric is a metric on W(.A) ([EhHa88]) defined by

In ((diff (x, y) + D(diff (v, x) + 1))

for any strings x = xj...x, and y = yj...y,, where diff (x, y) is the minimal
cardinality |M| of a subset M C {1,...,m} such that any substring of x, not
containing any x; with i € M, is a substring of y.
Another metric defined in [EhHa88], is In, (diff (x, y) + diff (v, x) + 1).
* Transformation distance

The transformation distance is an editing distance with costs on W(.A)
(Varre-Delahaye—Rivals, 1999) obtained for O consisting only of substring copy,
uncopy and substring indels. The distance between strings x and y is the minimal
cost of transformation x into y using these operations, where the cost of each
operation is the length of its description.

For example, the description of the copy requires a binary code specifying the
type of operation, an offset between the substring locations in x and in y, and the
length of the substring. A code for insertion specifies the type of operation, the
length of the substring and the sequence of the substring.

e Li-rearrangement distance

The L;-rearrangement distance (Amir et al., 2007) between strings x =

Xl ...xyandy =y ...y, is defined by

m
minz li — ()],
S
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where 7 : {1,...,m} — {l,...,m} is a permutation transforming x into y; if
there are no such permutations, the distance is equal to co.

The Loo-rearrangement distance (Amir et al., 2007) between x and y is
min, max<;<m |{ — 7(f)| and it is oo if such a permutation does not exist.

Cf. genome rearrangement distances in Chap. 23.
Normalized information distance

The normalized information distance d between two binary strings x and y
is a symmetric function on W({0, 1}) ((LCLMV04]) defined by

max{K (x|y*), K(y|x*)}
max{K(x), K(y)}

Here, for binary strings u and v, u* is a shortest binary program to compute u
on an appropriate (i.e., using a Turing-complete language) universal computer,
the Kolmogorov complexity (or algorithmic entropy) K(u) is the length of u*
(the ultimate compressed version of u), and K(u|v) is the length of the shortest
program to compute « if v is provided as an auxiliary input.

The function d(x, y) is a metric up to small error term: d(x, x) = O((K(x))™"),
and d(x,z) —d(x,y) — d(y,z) = O((max{K(x),K(y),K(z)})™"). Cf. in Chap. 15
the shared information distance H(X|Y) + H(Y|X) between sources X and Y.

The Kolmogorov complexity is uncomputable and depends on the chosen
computer language; so, instead of K(u), were proposed the minimum message
length (shortest overall message) by Wallace, 1968, and the minimum description
length (largest compression of data) by Rissanen, 1978.

The normalized compression distance is a metric on W({0, 1}) (derived by
Cilibrasi and Vitanyi, 2005, from [LCLMV04, BGLVZ98]) defined by

C(xy) —min{C(x), C(y)}
max{C(x), C(y)}

for any binary strings x and y, where C(x), C(y), and C(xy) denote the size
of the compression (by fixed compressor C, such as gzip, bzip2, or PPMZ) of
strings x, y, and their concatenation xy. It is an approximation of the normalized
informatior.l dis.tance. A similar distance is defined by % - %
Lempel-Ziv distance

The Lempel-Ziv distance between two binary strings x and y of length n is

LZ(x|y) LZ(ylx)
LZ(x) * LZ(y)

ax{ I

where LZ(x) = w is the Lempel—Ziv complexity of x, approximating its
Kolmogorov complexity K(x). Here P(x) is the set of nonoverlapping substrings
into which x is parsed sequentially, so that the new substring is not yet contained
in the set of substrings generated so far. For example, such a Lempel-Ziv
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parsing for x = 0011001010100111s 0|01]1{00|10|101]001|11. Now, LZ(x|y) =
[P()\P() L log [P\PO)|

. AnthonyiHammer similarity
The Anthony—Hammer similarity between a binary string x = x; ...x, and
the set Y of binary strings y = y; ...y, is the maximal number m such that, for
every m-subset M C {1,...,n}, the substring of x, containing only x; with i € M,
is a substring of some y € Y containing only y; with i € M.
e Jaro similarity
Given strings x = x1...x, andy = y; . yn, call a character Xx; common with
yif x; = y;, where [i —JI M Let X = xl X , be all the characters
of X Wthh are common with y (1n the same order as they appear in x), and let
y = y1 e yn be the analogic string for y.
The Jaro similarity Jaro(x, y) between strings x and y is defined by

1 (m o 1 <i<min{m ,n):x =y,
_<_+_+|{_ < mintm '} : y,}|),

3\m =n min{m’, n'}

This and following two similarities are used in Record Linkage.
e Jaro—Winkler similarity
The Jaro—Winkler similarity between strings x and y is defined by

max{4, LCP(x,y)}

J ’
aro(x,y) + 0

(1 —Jaro(x,y)),

where Jaro(x, y) is the Jaro similarity, and LCP(x, y) is the length of the longest
common prefix of x and y.
e g-gram similarity
Given an integer g > 1 (usually, g is 2 or 3), the g-gram similarity between
strings x and y is defined by

2q(x,y)
q(x) + q(y)’

where ¢(x), g(y) and g(x, y) are the sizes of multisets of all g-grams (substrings
of length ¢) occurring in x, y and both of them, respectively.

Sometimes, g(x, y) is divided not by the average of ¢(x) and ¢g(y), as above, but
by their minimum, maximum or harmonic mean % Cf. metrics between
multisets in Chap. 1 and, in Chap. 17, Dice similarity, Simpson similarity,
Braun-Blanquet similarity and Anderberg similarity.

The g-gram similarity is an example of token-based similarities, i.c.,
ones defined in terms of fokens (selected substrings or words). Here tokens
are g-grams. A generic dictionary-based metric between strings x and y is
|D(x) AD(y)|, where D(z) denotes the full dictionary of z, i.e., the set of all of its
substrings.
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¢ Prefix-Hamming metric
The prefix-Hamming metric between strings x = x;...x, andy = y; ...y,
is

(max{m, n} — min{m, n}) + |{1 < i < min{m, n} : x; # y;}|.

¢ Weighted Hamming metric
If (A,d) is a metric space, then the weighted Hamming metric between
strings x = xj...x, andy = y; ...y, is defined by

Z d(xi,yi).
i=1

The term weighted Hamming metric (or weighted Hamming distance) is also used
for leism,x,-#y,- w;, where, for any 1 < i < m, w(i) > 0 is its weight.
¢ Fuzzy Hamming distance

If (A,d) is a metric space, the fuzzy Hamming distance between strings
X = Xx|...xpand y = y;...y, is an editing distance with costs on W(A)
obtained for O consisting of only indels, each of fixed cost ¢ > 0, and character
shifts (i.e., moves of 1-character substrings), where the cost of replacement of i
by jis a functionf(|i—j|). This distance is the minimal total cost of transforming x
into y by these operations. Bookstein—Klein—Raita, 2001, introduced this distance
for Information Retrieval and proved that it is a metric if f is a monotonically
increasing concave function on integers vanishing only at 0.

The case f(|i —j|) = C|i — j|, where C > 0 is a constant and |{ — j| is a time
shift, corresponds to the Victor—Purpura spike train distance in Chap. 23.

Ralescu, 2003, introduced, for Image Retrieval, another fuzzy Hamming
distance on R™. The Ralescu distance between two strings x = xj ...x, and
Y = y1...Yn is the fuzzy cardinality of the difference fuzzy set D, (x,y) (where
« is a parameter) with membership function

pi=1—e @@’ | <j<m

The nonfuzzy cardinality of the fuzzy set Dy(x,y) approximating its fuzzy
cardinality is {1 <i<m:pu; > %}|.
* Needleman-Wunsch—Sellers metric
If (A,d) is a metric space, the Needleman—Wunsch—Sellers metric
(or global alignment metric) is an editing distance with costs on W(A)
([NeWu70]), obtained for O consisting of only indels, each of fixed cost g > 0,
and character replacements, where the cost of replacement of i by j is d(i, j). This
metric is the minimal total cost of transforming x into y by these operations. It is

min{d,u(x", y")},
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where x*, y* are strings of length k, k > max{m, n}, over the alphabet A* =
A U {x}, so that, after deleting all new characters *, strings x* and y* shrink to x
and y, respectively. Here d,,; (x*, y*) is the weighted Hamming metric between
x* and y* with weight d(x}, y}') = ¢ (i.e., the editing operation is an indel) if one
of x, y¥ is %, and d(x], y¥) = d(i, ), otherwise.

The Gotoh—Smith—Waterman distance (or string distance with affine gaps)
is a more specialized editing metric with costs (see [Goto82]). It discounts
mismatching parts at the beginning and end of the strings x, y, and introduces
two indel costs: one for starting an affine gap (contiguous block of indels), and
another one (lower) for extending a gap.

* Duncan metric

Consider the set X of all strictly increasing infinite sequences x = {x,}, of
positive integers. Define N(n, x) as the number of elements in x = {x,}, which
are less than n, and §(x) as the density of x, i.e., §(x) = lim, 1\@ Let Y be
the subset of X consisting of all sequences x = {x,}, for which §(x) < oo.

The Duncan metric is a metric on Y defined, for x # y, by

1
T LCPGry) +18(x) =8,

where LCP(x, y) is the length of the longest common prefix of x and y.

e Martin metric
The Martin metric d“ between strings x = x; ... x, andy = y;...y, is

max{m,n}

—m —n a
2 —27"+ Yy |A’lrsupuc(z,x)—k(z,y>|,
=1 N

where z is any string of length ¢, k(z, x) is the Martin kernel of a Markov chain
M = {M;}2,, and the sequence a € {a = {a,}>, : a; > 0,> o, a, < oo} isa
parameter.
* Baire metric
The Baire metric is an ultrametric between strings x and y defined, for x # y,
by

1
1+ LCP(x,y)’

where LCP(x,y) is the length of the longest common prefix of strings (finite or
infinite) x and y. Cf. Baire space in Chap. 2.

Given an infinite cardinal number k and a set A of cardinality k, the Cartesian
product of countably many copies of A endowed with above ultrametric #P(u)
is called the Baire space of weight « and denoted by B(k). In particular, B(R)
(called the Baire O-dimensional space) is homeomorphic to the space Irr of
irrationals with continued fraction metric (Chap. 12).
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Generalized Cantor metric
The generalized Cantor metric (or, sometimes, Baire distance) is an ultra-
metric between infinite strings x and y defined, for x # y, by

Cll +LCP(x.y) ,

where a is a fixed number from the interval (0, 1), and LCP(x, y) is the length of
the longest common prefix of x and y.

This ultrametric space is compact. In the case a = %, this metric was
considered on a remarkable fractal, the Cantor set; cf. Cantor metric in
Chap. 18. Another important case is a = % ~ 0.367879441.

Comyn—Dauchet, 1985, and Kwiatkowska, 1990, introduced some analogs
of generalized Cantor metric for traces, i.e., equivalence classes of strings with
respect to a congruence relation identifying strings x, y that are identical up to
permutation of concurrent actions (xy = yx).

Parikh distance

Given an ordered alphabet A = {ay,...,a;}, the Parikh distance between
words x and y over it is the Manhattan metric Zf;l |xi — yi| between their
Parikh maps (or commutative images) P(x) and P(y), where, for a word w, w;
denotes the number of occurrences of a; in w and P(w) is (wy, ..., wy).
Parentheses string metrics

Let P, be the set of all strings on the alphabet {(, )} generated by a grammar
and having n open and » closed parentheses. A parentheses string metric is an
editing metric on P, corresponding to a given set of editing operations.

For example, the Monjardet metric (Monjardet, 1981) between two strings
x,y € P, is the minimum number of adjacent parentheses interchanges (“()”
to “)(” or “)(” to “()”) needed to obtain y from x. It is the Manhattan metric
between their representations p, and p,, where p, = (p;(1), ..., p;(n)) and p.(i)
is the number of open parentheses written before the i-th closed parentheses of
z€P,.

There is a bijection between parentheses strings and binary trees; cf. the tree
rotation distance in Chap. 15.

Dehornoy-Autord distance

The Dehornoy—Autord distance (2010) between two shortest expressions x
and y of a permutation as a product of transpositions ¢, is the minimal, needed to
get x from y, number of braid relations: t;tjt; = tjt;t; with |i—j| = 1 and t;t; = 1;t;
with |i —j| > 2.

This distance can be extended to the decompositions of any given positive
braid in terms of Artin’s generators. The permutations corresponds to the simple
braids which are the divisors of Garside’s fundamental braid in the braid
monoid.

Schellenkens complexity quasi-metric

The Schellenkens complexity quasi-metric between infinite strings x = (x;)

andy = () (i = 0,1,...) over Rxq with Y22, 27"L < 00 (seen as complexity

Xi
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functions) is defined (Schellenkens, 1995) by

o0

‘ 1 1
Z 27 ' max{0, — — —}.
P Xio i

Graev metrics

Let (X, d) be a metric space. Let X = X UX’ U {e}, where X’ = {x’ : x € X} is
a disjoint copy of X, and e ¢ X U X’. We use the notation (¢’)’ = e and (x')’ = x
for any x € X; also, the letters x, y, x;, y; will denote elements of X. Let (X, D)
be a metric space such that D(x,y) = D(x',y") = d(x,y), D(x,e) = D(x/, e) and
D(x,y') = D(¥',y) forall x,y € X.

Denote by W(X) the set of all words over X and, for each word w € W(X),
denote by /(w) its length. A word w € W(X) is called irreducible if w = e or
W =Xg...X,, Where x; # e and x;y; # x/ for0 < i <n.

For each word w over X, denote by # the unique irreducible word obtained
from w by successively replacing any occurrence of xx’ in w by e and eliminating
e from any occurrence of the form wew,, where w; = w, — @ is excluded.

Denote by F(X) the set of all irreducible words over X and, for u, v € F(X),
define u - v = w/, where w is the concatenation of words u and v. Then F(X)
becomes a group; its identity element is the (nonempty) word e.

For any two words v = xp...x, and u = yg...y, over X of the same length,
let p(v,u) = Y ', D(xi, ;). The Graev metric between two irreducible words
u = u,v € F(X) is defined ([DiGa07]) by

inf{p(u*, v*) : u*, v* € W(X), 1(u*) = I[(v*), u* = u,v* = v}.

Graev proved that this metric is bi-invariant metric on F(X) and that F(X) is a
topological group in the topology induced by it.
String-induced alphabet distance

Let a = (aj,...,an) be a finite string over alphabet X, |X| = n > 2. Let
Ax)={1<i<m:a; =x} # @ forany x € X.

The string-induced distance between symbols x, y € X is the set-set distance
(Chap. 1) defined by

dy(x,y) = min{li—j| :i € A@).j € A()}

A k-radius sequence (Jaromczyk and Lonc, 2004) is a string a over X with
max,yex dq(X,y) < k, i.e., any two symbols (say, large digital images) occur in
some window (say, memory cache) of length k4 1. Minimal length m corresponds
to most efficient pipelining of images when no more than k 4 1 of them can be
placed in main memory in any given time.
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11.2 Distances on Permutations

A permutation (or ranking) is any string x;...x, with all x; being different
numbers from {1,...,n}; a signed permutation is any string x; ...x, with all |x;]|
being different numbers from {1, ...,n}. Denote by (Sym,, -, id) the group of all
permutations of the set {1, ..., n}, where id is the identity mapping.
The restriction, on the set Sym,, of all n-permutation vectors, of any metric on R"
is a metric on Sym,,; the main example is the /,-metric (}_/—, |x; — y,-|P)1l’ ,p>1.
The main editing operations on permutations are:

* Block transposition, i.e., a substring move;

* Character move, i.e., a transposition of a block consisting of only one character;

* Character swap, i.e., interchanging of any two adjacent characters;

* Character exchange, i.e., interchanging of any two characters (in Group Theory,
it is called transposition);

* One-level character exchange, i.e., exchange of characters x; and x;, i < j, such
that, for any k with i < k < j, either min{x;, x;} > x;, or x; > max{x;, x;};

* Block reversal, i.e., transforming, say, the permutation x = xj...x, into the
permutation xi ...Xi—1XjXj—1 . .. Xj+1XjXj+1 ... X, (S0, a swap is a reversal of a
block consisting only of two characters);

» Signed reversal, i.e., a reversal in signed permutation, followed by multiplication
on —1 of all characters of the reversed block.

Below we list the most used editing and other metrics on Sym,,.

¢ Hamming metric on permutations
The Hamming metric on permutations dy is an editing metric on Sym,,,
obtained for O consisting of only character replacements. It is a bi-invariant
metric. Also, n — dy(x,y) is the number of fixed points of xy™!.
¢ Spearman p distance
The Spearman p distance is the Euclidean metric on Sym,,:

> =y

i=1

Its square is a 2-near-metric. Cf. Spearman p rank correlation in Chap. 17.
e Spearman footrule distance
The Spearman footrule distance is the /;-metric on Sym,,:

n
Z|xi_yi|-
i=1

Cf. Spearman footrule similarity in Chap. 17.
Both above Spearman distances are bi-invariant.
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* Kendall r distance

The Kendall ¢ distance (or inversion metric, permutation swap metric,
bubble-sort distance) I is an editing metric on Sym,, obtained for O consisting
only of character swaps.

In terms of Group Theory, I(x,y) is the number of adjacent transpositions
needed to obtain x from y. Also, I(x, y) is the number of relative inversions of x
and y, i.e., pairs (i,j), 1 <i <j < n, with (x; — x;)(y; —y;) < 0. Cf. Kendall t
rank correlation in Chap. 17.

In [BCFS97] the following metrics, associated with I(x, y), were given:

minzesym,l (I(xv Z) + I(Z_l s y_l));

maXZESym,, I(va Zy);

mingesym, 1(zx, zy) = T(x,y), where T is the Cayley metric;

editing metric with O consisting only of one-level character exchanges.

Lo =

* Daniels—-Guilbaud semimetric

The Daniels—Guilbaud semimetric (see [Monj98]) is defined, for any x,y €
Symy,, as the number of triples (i, j, k), 1 < i <j < k < n, such that (x;, x;, x¢) is
not a cyclic shift of (y;, y;, y&). So, it is 0 if and only if x is a cyclic shift of y.

¢ Cayley metric

The Cayley metric (or transposition distance) 7 is an editing metric on
Symy,,, obtained for O consisting only of character exchanges. In terms of Group
Theory, T(x,y) is the minimum number of transpositions needed to obtain x
from y.

The metric T is bi-invariant. Also, n—T'(x, y) is the number of cycles in xy™!,
and, for the Hamming metric on permutations, dy (x, y) — T(x, y) is the number
of cycles with length at least 2 in xy™".

* Ulam metric

The Ulam metric (or permutation editing metric) U is an editing metric
on Sym,, obtained for O consisting only of character moves. It is the half of the
indel metric on Sym,,.

Also, n — U(x,y) = LCS(x,y) = LIS(xy™"), where LCS(x, y) is the length of
the longest common subsequence (not necessarily a substring) of x and y, while
LIS(7) is the length of the longest increasing subsequence of z € Sym,,.

This and the preceding six metrics are right-invariant.

* Reversal metric

The reversal metric is an editing metric on Sym,,, obtained for O consisting

only of block reversals.
* Signed reversal metric

The signed reversal metric (Sankoff, 1989) is an editing metric on the set of
all 2"n! signed permutations of the set {1,.. ., n}, obtained for O consisting only
of signed reversals.

This metric is used in Biology, where a signed permutation represents a single-
chromosome genome, seen as a permutation of genes (along the chromosome)
each having a direction (so, a sign + or —).




11.2 Distances on Permutations 227

Chain metric

The chain metric (or rearrangement metric) is a metric on Sym, ([Page65])
defined, for any x,y € Sym,, as the minimum number, minus 1, of chains
(substrings) y’l, el y; of y, such that x can be parsed (concatenated) into, i.e.,
x = )/1 .. .y;.
Lexicographic metric

The lexicographic metric (Golenko—Ginzburg, 1973) is a metric on Sym,,:

IN(xX) = NI,

where N(x) is the ordinal number of the position (among 1, ..., n!) occupied by
the permutation x in the lexicographic ordering of the set Sym,,.

In the lexicographic ordering of Sym,, x = x;...x, <y = y1...y, if there
exists 1 <i <nmsuchthatx; =x,...,xi—1 = yi—1, butx; <y;.
Fréchet permutation metric

The Fréchet permutation metric is the Fréchet product metric (Chap.4)
on the set Symq, of permutations of positive integers defined by

> s
=1 21 + Ixt - y1|
Distance-rationalizable voting rule

Let e = (my,...,my) be a finite string over alphabet Sym,; it can be seen as
an election in which, for each i, 1 < i < m, the voter v; give the ranking 7; =
(mi(cr), ..., mi(cy)) onthe set C = {ci, ..., c,) of candidates. Let X = Sym!! be
the set of all possible elections with m voters in each.

A voting rule is any map R : X — P(C) assigning to each election e a
set R(e) C C of its R-winners. For example, the winners of plurality rule are
candidates with the largest number of first-place votes. A candidate is a unanimity
winner if all voters rank him first. A candidate c; is a Condorcet winner if for
each ¢; € C\ {c;}, a strict majority of voters prefer ¢; to ¢;. A candidate is a
Dodson winner if the number of swaps of adjacent candidates in the rankings by
voters after which he became a Condorcet winner, is minimal. So, |R(e)| < 1
for elections with unanimity or Condorcet rule, and |R(e)| > 1 for plurality or
Dodson rule.

A consensus class is a pair (Y, W), where Y C X is a set of elections and W is
a voting rule with unique (Y, W)-winner (i.e., |W(e)| = 1) foralle € Y. Let U
and C denote the consensus classes of all elections having the Condorcet winner
and the unanimity winner, respectively.

Given a distance d on X and consensus class (Y, W), the voting rule R is called
(Meskanen—Nurmi, 2008, and Elkind-Faliszewski—Slinko, 2009) (d; (Y, W))-
distance-rationalizable if, for each election e, a candidate ¢; is its R-winner if
and only if he is the (¥, W)-winner in a d-closest election in Y.
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The plurality rule is (dy;U)-rationalizable, where dy/(e, ¢') is the Hamming
distance |{i < i < m : m; # n/}|. The Dodson rule is (d,,:C)-rationalizable,
where dg, (e, €') = Y, _;.,, dsw(mi, 7/) and dj,, on rankings is the swap metric.

Similar framework (minimization of an aggregation function of distances
between a collective opinion and the individual judgements) is used in distance-
based jugement aggregation and in general distance-based semantics for decision
or choice.




Chapter 12
Distances on Numbers, Polynomials,
and Matrices

12.1 Metrics on Numbers

Here we consider the most important metrics on the classical number systems: the
semiring N of natural numbers, the ring Z of integers, and the fields Q, R, C of
rational, real, complex numbers, respectively. We consider also the algebra Q of
quaternions.

e Metrics on natural numbers
There are several well-known metrics on the set N of natural numbers:

1. |n — m|; the restriction of the natural metric (from R) on N;

2. p~%, where « is the highest power of a given prime number p dividing m — n,
for m # n (and equal to O for m = n); the restriction of the p-adic metric
(from Q) on N;

3. In ;CC'ZEZZ;, an example of the lattice valuation metric;

4. w,(n — m), where w,(n) is the arithmetic r-weight of n; the restriction of the
arithmetic 7-norm metric (from Z) on N;

5. Im=ml (cf. M-relative metric in Chap. 5);

6. 1+ m+rn for m # n (and equal to O for m = n); the Sierpinski metric.

Most of these metrics on N can be extended on Z. Moreover, any one of the above
metrics can be used in the case of an arbitrary countable set X. For example, the
Sierpinski metric is defined, in general, on a countable set X = {x, : n € N} by
1+ m+rn for all x,,, x, € X with m # n (and is equal to 0, otherwise).
* Arithmetic 7-norm metric
Let r € N, r > 2. The modified r-ary form of an integer x is a representation

x=e,"+---+er+ e,

where ¢; € Z, and |e;| < rforalli =0,...,n.
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An r-ary form is called minimal if the number of nonzero coefficients is
minimal. The minimal form is not unique, in general. But if the coefficients e;,
0 < i < n— 1, satisfy the conditions |e; + e;+1| < r, and |e;| < |ei+1] if
eiei+1 < 0, then the above form is unique and minimal; it is called the generalized
nonadjacent form.

The arithmetic r-weight w,(x) of an integer x is the number of nonzero
coefficients in a minimal r-ary form of x, in particular, in the generalized
nonadjacent form. The arithmetic r-norm metric on Z (see, for example,
[Ernv85]) is defined by

Wr(x - y)

« Distance between consecutive primes

The distance between consecutive primes (or prime gap, prime difference
function) is the difference g, = p,+1—p, between two successive prime numbers.

It holds g, < pu, lim,—008» = o0 and (Zhang, 2013) lim,,_, g, < 7 X 107,
improved to < 246 (conjecturally, to < 6) by Polymath8, 2014. There is no
lim, -« g, but g, &~ Inp, for the average g,.

Open Polignac’s conjecture: for any k > 1, there are infinitely many n with
gn = 2k; the case k = 1 (i.e., that lim,_, g, = 2 holds) is the twin prime
conjecture.

» Distance Fibonacci numbers

Fibonacci numbers are defined by the recurrence F,, = F,,—1 + F,— forn > 2
with initial terms Fy = 0 and F; = 1. Distance Fibonacci numbers are three
following generalizations of them in the distance sense, considered by Wloch
etal..

Kwasnik—Wloch, 2000: F(k,n) = F(k,n — 1) + F(k,n — k) for n > k and
F(k,n) =n+ 1forn <k

Bednarz et al., 2012: Fd(k,n) = Fd(k,n—k+ 1)+ Fd(k,n—k) forn > k > 1
and Fd(k,n) = 1for0 <n <k.

Wiloch et al., 2013: F,(k,n) = Fy(k,n —2) + Fa(k,n — k) forn > k > 1 and
Fy(k,n) =1for0 <n<k.

¢ p-adic metric

Let p be a prime number. Any nonzero rational number x can be represented as
x = p*7, where ¢ and d are integers not divisible by p, and « is a unique integer.
The p-adic norm of x is defined by |x|, = p~. Moreover, |0|, = 0 is defined.

The p-adic metric is a norm metric on the set Q of rational numbers
defined by

|x—y|1,.

This metric forms the basis for the algebra of p-adic numbers. The Cauchy com-
pletions of the metric spaces (Q, |x—y|,) and (Q, [x—y|) with the natural metric
|x — y| give the fields Q, of p-adic numbers and R of real numbers, respectively.
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The Gaji¢ metric is an ultrametric on the set Q of rational numbers defined,
for x # y (via the integer part |z| of a real number z), by

inf2™" :neZ, |2"xc—e)] = 2" —e)]}

where e is any fixed irrational number. This metric is equivalent to the natural
metric |x — y| on Q.
¢ Continued fraction metric on irrationals
The continued fraction metric on irrationals is a complete metric on the set
Irr of irrational numbers defined, for x # y, by

1

pe
where n is the first index for which the continued fraction expansions of x and
y differ. This metric is equivalent to the natural metric |x — y| on Irr which is
noncomplete and disconnected. Also, the Baire 0-dimensional space B(Ry) (cf.
Baire metric in Chap. 11) is homeomorphic to /rr endowed with this metric.

e Natural metric

The natural metric (or absolute value metric, line metric, the distance

between numbers) is a metric on R defined by

—y| = y—X, %fx—y <0,
x—y, ifx—y>0.
On R all /,-metrics coincide with the natural metric. The metric space (R, [x—y|)
is called the real line (or Euclidean line).

There exist many other metrics on R coming from |x — y| by some metric
transform (Chap. 4). For example: min{1, [x — y|}, lk‘;{‘yl, lx] + |x —y| + |yl
(for x # y) and, for a given 0 < o < 1, the generalized absolute value metric
lx —y|*.

Some authors use |x — y| as the Polish notation (parentheses-free and
computer-friendly) of the distance function in any metric space.

* Zero bias metric
The zero bias metric is a metric on R defined by

I+ [x—yl
if one and only one of x and y is strictly positive, and by
|X - yl s

otherwise, where |x — y| is the natural metric (see, for example, [Gile87]).
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¢ Sorgenfrey quasi-metric
The Sorgenfrey quasi-metric is a quasi-metric d on R defined by

y—x

if y > x, and equal to 1, otherwise. Some similar quasi-metrics on R are:

1. di(x,y) = max{y —x, 0} (in general, max{f(y) — f(x), 0} is a quasi-metric on
aset X if f : X — R is an injective function);

2. dy(x,y) = min{y — x, 1} if y > x, and equal to 1, otherwise;

3. d3(x,y) = y—xif y > x, and equal to a(x — y) (for fixed a > 0), otherwise;

4. dy(x,y) = & — " if y > x, and equal to e — ¢ otherwise.

¢ Real half-line quasi-semimetric
The real half-line quasi-semimetric is defined on the half-line R.( by

max{0, In X}
x

¢ Janous—-Hametner metric
The Janous—-Hametner metric is defined on the half-line R by

|x — |
(x+y"

where t = —1 or 0 <t < 1, and |x — y| is the natural metric.
* Extended real line metric
An extended real line metric is a metric on R U {+00} U {—o0}. The main
example (see, for example, [Cops68]) of such metric is given by

lf () =f I,

where f(x) = 77 forx € R, f(400) = I, and f(—o0) = —1.

Another metric, commonly used on R U {+00} U {—o0}, is defined by
| arctan x — arctan y|,
where —%]T < arctanx < %71 for —oo < x < oo, and arctan(£o0) = :I:%n.
¢ Complex modulus metric
The complex modulus metric on the set C of complex numbers is defined by

|Z_ u|s

where, for any z = z; + 22i € C, the number |z| = v/2Z = /2% + 23 is the com-
plex modulus. The complex argument 9 is defined by z = |z|(cos(6) + isin(f)).
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The metric space (C, |z—ul) is called the complex (or Wessel-Argand) plane.
It is isometric to the Euclidean plane (R?, ||x—y]||»). So, the metrics on R?, given
in Chaps. 19 and 5, can be seen as metrics on C. For example, the British Rail
metric on C is |z| + |u| for z # u. The p-relative (if 1 < p < oco) and relative
metric (if p = 0o) on C are defined for |z| 4 |u| # O respectively, by

|z — ul |z —ul
an .
Yzlp + |ulp max{|z|, [u]}

e Z(n,)-related norm metrics
A Kummer (or cyclotomic) ring Z(n,) is a subring of the ring C (and an
extension of the ring Z), such that each of its elements has the form Z;i_ol an,,

where 7, is a primitive m-th root exp(%) of unity, and all g; are integers.
The complex modulus |z| of z = a + by, € C is defined by

2mi
12? = 2 = & + (N + Nm)ab + b* = a* + 2ab cos(7) + b

Then (a + b)? = ¢* form = 2 (or 1), a* + b* for m = 4, and a* + ab + b? for
m = 6 (or 3), i.e., for the ring Z of usual integers, Z(i) of Gaussian integers and
Z(p) of Eisenstein—Jacobi (or EJ) integers.

The set of units of Z(7,) contain 77’,'”,0 <j<m-—1,form = 5 and
m > 6, units of infinite order appear also, since cos(%) is irrational. For
m = 2,4,6, the set of units is {£1}, {1, i}, {£]1, +p, £p?}, where i = 14
and p = ne¢ = #

The norms |z| = ~/a*> + b? and ||z]|; = |a| + |b| for z = a + bi € C give
rise to the complex modulus and i-Manhattan metrics on C. They coincide
with the Euclidean (/,-) and Manhattan (/;-) metrics, respectively, on R? seen as
the complex plane. The restriction of the i-Manhattan metric on Z(i) is the path

metric of the square grid Z? of R?; cf. grid metric in Chap. 19.
The p-Manhattan metric on C is defined by the norm ||z||,, i.e.,

min{lal+[b]+|e| : z = a+bp+cp’} = minlal+1b], la+bl+|bl, la+b|+lal : z = a+bp}.

The restriction of the p-Manhattan metric on Z(p) is the path metric of the
triangular grid of R? (seen as the hexagonal lattice Ay = {(a,b,c) € Z* :
a+ b+ ¢ = 0}), i.e., the hexagonal metric (Chap. 19).

Let f denote either i or p = # Givenaw € Z(f) \ {0} and 7,7 € Z(f),
we write z = 7 (mod r) if z — 7/ = 87 for some § € Z(f). For the quotient ring
Zx(f) = {z(mod ) : z € Z(f)}, itholds |Z (f)| = || ||}-

Call two congruence classes z (mod ) and 7' (mod 7) adjacent if z — 7 =
f/ (mod r) for some j. The resulting graph on Z, (f) called a Gaussian network
or EJ network if, respectively, f = i or f = p. The path metrics of these networks
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coincide with their norm metrics, defined (Fan—Gao, 2004) for z (mod ) and
7 (mod ), by

min |[u||f : u € z— 7 (mod 7).

These metrics are different from the previously defined ([Hube94a, Hube94b])
distance on Z, (f): ||v||s, where v € z—Z (mod ) is selected by minimizing
the complex modulus. For f = i, this is the Mannheim distance (Chap. 16),
which is not a metric.

¢ Chordal metric
The chordal metric d, is a metric on the set C=C U {oo} defined by

2|z —ul dd,(z.00) 2
= an 7,00) = ————
VIFEE/ T+ I+

for all u, z € C (cf. M-relative metric in Chap. 5).

The metric space (C, d,) is called the extended complex plane. It is homeo-
morphic and conformally equivalent to the Riemann sphere, i.e., the unit sphere
82 = {(x1,x2,x3) € E3 : x} + x} + x3 = 1} (considered as a metric subspace of
%), onto which (C, d +) is one-to-one mapped under stereographic projection.

The plane C can be identified with the plane x3 = 0 such that the and
imaginary axes coincide with the x; and x, axes. Under stereographic projection,
each point z € C corresponds to the point (x1, x2, x3) € S?, where the ray drawn
from the “north pole” (0, 0, 1) to the point z meets the sphere S2; the “north pole”
corresponds to the point at co. The chordal (spherical) metric between two points
p.q € S2 is taken to be the distance between their preimages z, u € C.

The chordal metric is defined equivalently on R" = R" U {oo}:

d,(z,u)

2|lx—yll 2

and d, (x, 00) = —————
U+ BT+ 1013 NIRNITE

The restriction of the metric d, on R" is a Ptolemaic metric; cf. Chap. 1.
Givena > 0, 8 > 0, p > 1, the generalized chordal metric is a metric on C
(in general, on (R", ||.||2) and even on any Prolemaic space (V,||.||)), defined by

dx(xv y) =

|z —ul

Yo+ Bl - Yo+ Blulr

¢ Metrics on quaternions
Quaternions are members of a noncommutative division algebra Q over the
field R, geometrically realizable in R* ([Hami66]). Formally,

Q=1{g=q1+qi+qyj+qik:qg € R},

where the basic units 1,i,j, k € Q satisfy > = j> = k* = —l and ij = —ji = k.
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The guaternion norm is defined by ||g|| = +/qq = \/q% +@3+ @+ 4
where ¢ = q1 — q2i — q3j — qak. The quaternion metric is the norm metric

llg —¢'ll on Q.
The set of all Lipschitz integers and Hurwitz integers are defined, respectively,

by

L={q+ q:i + q3j + qak : g; € Z} and
. . 1
H = {q1 + q2i + q3j + qsk : all qieZorallqi—}-EeZ},

A quaternion ¢ € L is irreducible (ie., ¢ = ¢'q" implies {¢’,¢"} N
{£1, £i, £, £k} # 0) if and only if ||g|| is a prime. Given an irreducible
7 € Landq,q € H, we write ¢ = ¢’ (mod ) if ¢ — ¢ = §n for some § € L.
For the rings L, = {g(modx) : ¢ € L} and H, = {g(modr) : ¢ € H} it
holds |L,| = ||7||? and |H,| = 2||7|]*> — 1.
The quaternion Lipschitz metric on L, is defined (Martinez et al., 2009) by

di(e, f) = min Z lgs] : @ — B = q1 + q2i + q3j + gak (mod 7).

1<s<4

The ring H is additively generated by its subring L and w = %(1 +i4j+k).
The Hurwitz metric on the ring H,; is defined (Guzéltepe, 2013) by

dy(a, ) = min Z lgs| : 00 — B = q1 + q2i + q3j + q4k 4 gsw (mod ).

1<s<5

Cf. the hyper-Kihler and Gibbons—Manton metrics in Sect. 7.3 and the unit
quaternions and joint angle metrics in Sect. 18.3.

12.2 Metrics on Polynomials

A polynomial is a sum of powers in one or more variables multiplied by coefficients.
A polynomial in one variable (or monic polynomial) with constant real (complex)
coefficients is given by P = P(z) = Y j_, @z, ax € R (a; € C). The set P of all
real (complex) polynomials forms a ring (P, +, -, 0). It is also a vector space over
R (over C).

¢ Polynomial norm metric
A polynomial norm metric is a norm metric on the vector space P of all
real (complex) polynomials defined by

P —Qll.
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where ||.|| is a polynomial norm, i.e., a function ||| : P — R such that, for all
P, Q € P and for any scalar k, we have the following properties:

1. ||P|| = 0, with ||P|| = 0 if and only if P = 0;
2. |[kP| = |kI[|P]l;
3. ||P + Ql| < |IP|| + ||Q]| (triangle inequality).

The l,-norm and Ly,-norm of a polynomial P(z) = Y ;_, axz* are defined by

n 21
oo df 1
1211, = (3 lail”)'”? and [IP]ls, = ( /0 PP for 1< p < o0,
k=0

[[Plloo = max |ax| and [|P|[.,, = sup |P(z)| for p = ooc.
0<k<n ‘Z‘=1

The values ||P||; and ||P||co are called the length and height of polynomial P.
* Distance from irreducible polynomials

For any field IF, a polynomial with coefficients in I is said to be irreducible
over I if it cannot be factored into the product of two nonconstant polynomials
with coefficients in F. Given a metric d on the polynomials over F, the
distance (of a given polynomial P(z)) from irreducible polynomials is d;.(P) =
infd(P, Q), where Q(z) is any irreducible polynomial of the same degree over F.

Polynomial conjecture of Turan, 1967, is that there exists a constant C with
d;;(P) < C for every polynomial P over Z, where d(P, Q) is the length ||P — Q||
of P— Q.

Lee—Ruskey—Williams, 2007, conjectured that there exists a constant C with
d;;(P) < C for every polynomial P over the Galois field F,, where d(P, Q) is the
Hamming distance between the (0, 1)-sequences of coefficients of P and Q.

* Bombieri metric

The Bombieri metric (or polynomial bracket metric) is a polynomial norm

metric on the set P of all real (complex) polynomials defined by

[P —0Qly.

where [.],, 0 < p < oo, is the Bombieri p-norm.
For a polynomial P(z) = Y_;_, axZ" it is defined by

Pl = Q@ Plap)r.

k=0

e Metric space of roots
The metric space of roots is (Curgus—Mascioni, 2006) the space (X, d) where
X is the family of all multisets of complex numbers with n elements and the
distance between multisets U = {uy, ..., u,} and V = {vy, ..., v,} is defined by
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the following analog of the Fréchet metric:

min max |u; — V()|
t€Sym, 1<j<n  °

where t is any permutation of {1, ...,n}. Here the set of roots of some monic
complex polynomial of degree n is considered as a multiset with n elements. Cf.
metrics between multisets in Chap. 1.

The function assigning to each polynomial the multiset of its roots is a
homeomorphism between the metric space of all monic complex polynomials
of degree n with the polynomial norm metric /, and the metric space of roots.

12.3 Metrics on Matrices

An m x n matrix A = ((a;;)) over a field I is a table consisting of m rows and n
columns with the entries a;; from . The set of all m x n matrices with real (complex)
entries is denoted by M,,,, or R"™*" (C™"). It forms a group (M, +, O,.,), Wwhere
((ay)) + ((by)) = ((a;j + b)), and the matrix 0,,, = 0. It is also an mn-dimensional
vector space over R (C).

The transpose of a matrix A = ((a;)) € M, is the matrix AT = ((a;1)) € My
A m x n matrix A is called a square matrix if m = n, and a symmetric matrix if
A = A". The conjugate transpose (or adjoint) of a matrix A = ((a;)) € My, is
the matrix A* = ((@;;)) € M,,,». An Hermitian matrix is a complex square matrix A
withA = A*.

The set of all square n x n matrices with real (complex) entries is denoted by
M,. It forms a ring (M,,, +,-,0,), where + and 0, are defined as above, and ((a;)) -
((by) = (Xy=; aiby))- Itis also an n’-dimensional vector space over R (over C).
The trace of a square n x n matrix A = ((a;)) is defined by Tr(A) = >\, a;;.

The identity matrix is 1, = ((¢;)) with ¢; = 1, and ¢;; = 0, i # j. An unitary
matrix U = ((u;)) is a square matrix defined by U™' = U*, where U™ is the
inverse matrix of U, i.e., UU™! = 1,. A matrix A € M, is orthonormal if A*A =
1,. A matrix A € R™" is orthogonal if AT = A™', normal if ATA = AAT and
singular if its determinant is 0.

If for a matrix A € M,, there is a vector x such that Ax = Ax for some scalar
A, then A is called an eigenvalue of A with corresponding eigenvector x. Given a
matrix A € C™", its singular values s;(A) are defined as /A(A*A). A real matrix A
is positive-definite if v Av > 0 for all nonzero real vectors v; it holds if and only if
all eigenvalues of Ay = %(A + AT) are positive. An Hermitian matrix A is positive-
definite if v*Av > 0 for all nonzero complex vectors v; it holds if and only if all
A(A) are positive.

The mixed states of a n-dimensional quantum system are described by their
density matrices, i.e., positive-semidefinite Hermitian n x n matrices of trace 1. The
set of such matrices is convex, and its extremal points describe the pure states. Cf.
monotone metrics in Chap. 7 and distances between quantum states in Chap. 24.
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Matrix norm metric
A matrix norm metric is a norm metric on the set M,, ,, of all real (complex)
m x n matrices defined by

|lA — B,

where ||.|| is a matrix norm, i.e., a function ||.|| : M,,,, — R such that, for all
A,B € M,, ,, and for any scalar k, we have the following properties:

1. ||A|| > 0, with |JA|| = 0 if and only if A = 0,,,.,;
2. ||kA[| = [kl]|A]l5

3. ||A 4+ Bl| < ||A]| + ||B]| (triangle inequality).
4. ||AB|| < ||Al] - ||B|| (submultiplicativity).

All matrix norm metrics on M, , are equivalent. The simplest example of such
metric is the Hamming metric on M, , (in general, on the set M,, ,(IF) of all mxn
matrices with entries from a field IF) defined by ||A — B||y, where [|A||y is the
Hamming norm of A € M,, ., i.e., the number of nonzero entries in A. Example
of a generalized (i.e., not submultiplicative one) matrix norm is the max element
norm [|A = ((a;))||max = max;; |a;|; but /mn||A||max is @ matrix norm.
Natural norm metric

A natural (or operator, induced) norm metric is a matrix norm metric on
the set M,, defined by

||A_B||natv

where ||.||nat 18 @ natural (or operator, induced) norm on M,, induced by the
vector norm ||x|[, x € R" (x € C"), is a matrix norm defined by

[|Ax]||
[|A]lnat = sup = sup ||Ax|| = sup [|Ax||.
o X =1 <1

The natural norm metric can be defined in similar way on the set M,,, of all
m X n real (complex) matrices: given vector norms ||.||g= on R™ and ||.||rs on
R", the natural norm ||A||na of @ matrix A € M,,,,, induced by ||.||r» and ||.||gm,
is a matrix norm defined by |[A|[nat = Sup)jyjp, =1 |[Ax]|rn.
Matrix p-norm metric

A matrix p-norm metric is a natural norm metric on M, defined by

»
| |A - B| |natv

where ||.||%,, is the matrix (or operator) p-norm, i.e., a natural norm, induced by
the vector [,-norm, 1 < p < oc:

n
1
[|Allhae = max ||Ax]|,, where [x]], = (Y [xl")'".
Ixll,=1

X ;
i i=1
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The maximum absolute column and maximum absolute row metric are the
matrix 1-norm and matrix co-norm metric on M,,. For a matrix A = ((a;)) €
M,,, the maximum absolute column and maximum absolute row sum norm are

n n
1
141l = max 2|az;,~| and |A[|% = max 2|az;,~|.
= pm

The spectral norm metric is the matrix 2-norm metric ||A — B||2, on

M,. The matrix 2-norm ||.||,,, induced by the vector l>-norm, is also called the

spectral norm and denoted by ||.||;,. For a symmetric matrix A = ((a;)) € M,,
itis

||A||sp = Smax(A) =V Amax(A*A)s

where A* = ((@j;)), while Syax and Apay are largest singular value and eigenvalue.
* Frobenius norm metric
The Frobenius norm metric is a matrix norm metric on M,, , defined by
1A —Bl|p,
where ||.||- is the Frobenius (or Hilbert—Schmidt) norm. For A = ((a;)), it is

Al = [D lagl> = /Tr(A*A) = o= Y2
ij

1<i<rank(A) 1<i<rank(A)

where A;, s; are the eigenvalues and singular values of A.
This norm is strictly convex, is a differentiable function of its elements a;; and

1
is the only unitarily invariant norm among |[A[l, = 3 2, >0, layl")7.p > 1.
The trace norm metric is a matrix norm metric on M,, , defined by

||A = Bllr,

where ||.||; is the trace norm (or nuclear norm) on My, , defined by

min{m,n}
IAlle = > si(A) = Tr(VA*A).

i=1

¢ Schatten norm metric
Given 1 < p < 00, the Schatten norm metric is a matrix norm metric on
M, , defined by

1A = B[
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where ||.| |[§ch is the Schatten p-norm on M, ,. For a matrix A € M, ,, it is defined
as the p-th root of the sum of the p-th powers of all its singular values:

min{m,n}

Al = ( D2 @y,

i=1

For p = o0, 2 and 1, one obtains the spectral norm metric, Frobenius norm
metric and trace norm metric, respectively.
* (¢, p)-norm metric
Letk € N,k <min{m,n},c e R, ¢c; >¢c;>-->¢;>0,and 1 <p < o0.
The (c, p)-norm metric is a matrix norm metric on M, , defined by

1A~ Bl

where ||.| |’(‘C’p) is the (¢, p)-norm on M, ,. For a matrix A € M,, ,, it is defined by

k
AL, = O as (A7,

i=1

where s1(A) > 52(A) > --- > s;(A) are the first k singular values of A.
If p = 1, it is the c-norm. If, moreover, c; = -+ = ¢ = 1, it is the Ky Fan
k-norm.
¢ Ky Fan k-norm metric
Given k € N, k < min{m, n}, the Ky Fan k-norm metric is a matrix norm
metric on M,, , defined by

1A = Bl

where |[.||% is the Ky Fan k-norm on M, ,. For a matrix A € M, ,, it is defined
as the sum of its first k singular values:

k

Allkr = Y si(A).

i=1

For k = 1 and k = min{m, n}, one obtains the spectral and trace norm metrics.
¢ Cut norm metric
The cut norm metric is a matrix norm metric on M,, , defined by

”A - B”Cuh
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where ||.||cu is the cut norm on M, , defined, for a matrix A = ((a;;)) € My, as:

Cf. in Chap. 15 the rectangle distance on weighted graphs and the cut

semimetric, but the weighted cut metric in Chap. 19 is not related.
e Matrix nearness problems

A norm ||.|| is unitarily invariant on M, if ||B|| = ||UBV/|| for all B € M,
and all unitary matrices U, V. All Schatten p-norms are unitarily invariant.

Given a unitarily invariant norm ||.|| on M, ,, a matrix property P defining
a subspace or compact subset of M,,, (so that d}| |(A, P) below is well defined)
and a matrix A € M, ,, then the distance to P is the point-set distance on M,, ,

d(A) = d) (A, P) = min{||E|| : A + E has property P}.

A matrix nearness problem is ([High89]) to find an explicit formula for
d(A), the P-closest matrix (or matrices) X |[(A) = A + E, satisfying the
above minimum, and efficient algorithms for computing d(A) and X ||(A). The
componentwise nearness problem is to find d'(A) = min{e : |E| < €|A|,A +
E has property P}, where |B| = ((|b;])) and the matrix inequality is interpreted
componentwise.

The most used norms for B = ((b;)) are the Schatten 2- and
oo-norms (cf. Schatten norm metric): the Frobenius norm ||B|lp =

VTt(B*B)=1/ > <i<rank(s) s? and the spectral norm ||B||sy = v/Amax(B*B) =
S (B)

Examples of closest matrices X = X);||(A, P) follow.

Let A € C™" Then A = Ay + Ag, where Ay = %(A + A*) is Hermitian
and Ay = %(A — A*) is skew-Hermitian (i.e., A}, = —An). Let A = UXV™* be a
singular value decomposition (SVD) of A, i.e., U € M,, and V* € M, are unitary,
while ¥ = diag(si, 52, . . ., Smin{m.n}) 15 an m X n diagonal matrix with s; > s, >

© > Sranka) > 0 = --- = 0. Fan and Hoffman, 1955, showed that, for any
unitarily invariant norm, Ay, As, UV* are closest Hermitian (symmetric), skew-
Hermitian (skew-symmetric) and unitary (orthogonal) matrices, respectively.
Such matrix Xr-(A) is a unique minimizer in all three cases.

Let A € R™", Gabriel, 1979, found the closest normal matrix Xr,(A). Higham
found in 1988 a unique closest symmetric positive-semidefinite matrix Xp,(A)
and, in 2001, the closest matrix of this type with unit diagonal (i.e., ab correlation
matrix).

Givena SVD A = UXV* of A, let A; denote UX, V*, where X is a diagonal
matrix diag(si, s2, ..., S, 0,...,0) containing the largest k singular values of A.
Then (Mirsky, 1960) A, achieves minranka+£)<k ||E|| for any unitarily invariant

norm. So, ||A — Al = /W) 2 (Eckart-Young, 1936) and ||A — A||, =
Smax(A — Ay) = sp+1(A). Ay is a unique minimizer Xg.(A) if sg > Sgy1-
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Let A € R™" be nonsingular. Then its distance to singularity d(A, Sing) =

min{||E|| : A + E is singular} is, for both above norms, s,(A) = ! =

s1(A~h
m = sup{8 : 6Bre C ABgn}; here Brn = {x € R" : ||x|| < 1}.

Given a closed convex cone C C R”, call a matrix A € R™" feasible if
{Ax : x € C} = R"; so0, for m = nand C = R", feasibly means nonsingularity.
Renegar, 1995, showed that, for feasible matrix A, its distance to infeasibility
min{||E||nat : A + E is not feasible} is sup{é : §Brn S A(Bgr- N C)}.

Lewis, 2003, generalized this by showing that, given two real normed spaces
X, Y and a surjective convex process (or set valued sublinear mapping) F from X

to Y, i.e., a multifunction for which {(x,y) : y € F(x)} is a closed convex cone, it
holds

min{||E||na : E is any linear map X — Y, F + E is not surjective} = ﬁ
nat
Donchev et al. 2002, extended this, computing distance to irregularity;
cf. metric regularity (Chap. 1). Cf. the above four distances to ill-posedness
with distance to uncontrollability (Chap. 18) and distances from symmetry
(Chap.21).
e Sym(n,R)* and Her(n, C)* metrics
Let Sym(n,R)* and Her(n, C)™ be the cones of n x n symmetric real and
Hermitian complex positive-definite n x n matrices. The Sym(n, R)* metric is
defined, for any A, B € Sym(n,R)™, as

() log?4)?,
i=1

where Ay, ¢, A, are the eigenvalues of the matrix A7!'B (the same as those of

A_%BA_%). It is the Riemannian distance, arising from the Riemannian metric

ds? = Tr((A~'(dA))?). This metric was rediscovered in Forstner—-Moonen, 1999,

and Pennec et al., 2004, via generalized eigenvalue problem: det(AA — B) = 0.
The Her(n, C)™ metric is defined, for any A, B € Her(n, C)*, by

dr(4. B) = || log(A™2BA™) |,
where ||H||r = (3, |h,;,-|2)% is the Frobenius norm of the matrix H = ((hy)). It
is the Riemannian distance arising from the Riemannian metric of nonpositive

curvature, defined locally (at H) by ds = ||H ~YdHH™: || In other words, this
distance is the geodesic distance

inf{L(y) : y is a (differentiable) path from A to B},
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where L(y) = [y 2y’ @)y 2(0)|lpdr and the geodesic [A,B] is
parametrized by y(f) = Az (A_%BA_%)’A% in the sense that dgr(A,y(t)) =
tdr(A, B) for each ¢ € [0, 1]. In particular, the geodesic midpoint y(%) of [A, B]
can be seen as the geometric mean of two positive-definite matrices A and B.
The space (Her(n, C)T,dg)) is an Hadamard (i.e., complete and CAT(0))
space, cf. Chap. 6. But Her(n, C)™ is not complete with respect to matrix norms;
it has a boundary consisting of the singular positive-semidefinite matrices.
Above Sym(n,R)* and Her(n,C)* metrics are the special cases of the
distance dg(x, y) among invariant distances on symmetric cones in Chap.9.
Cf. also, in Chap. 24, the trace distance on all Hermitian of trace 1 positive-
definite n x n matrices and in Chap. 7, the Wigner—Yanase-Dyson metrics on
all complex positive-definite n X n matrices.
The Bartlett distance between two matrices A, B € Her(n, C)™, is defined
(Conradsen et al., 2003, for radar applications) by

In ((det(A + B))z)
4det(A)det(B) )

* Siegel distance
The Siegel half-plane is the set SH,, of n x n matrices Z = X +iY, where X, Y
are symmetric or Hermitian and Y is positive-definite. The Siegel-Hua metric
(Siegel, 1943, and independently, Hua, 1944) on SH, is defined by

ds*> = Tr(Y"'(dZ)Y 1 (dZ)).

It is unique metric preserved by any automorphism of SH,,. The Siegel-Hua
metric on the Siegel disk SD, = {W = (Z —il)(Z + il)™' : Z € SH,} is
defined by

ds? = Te((I — WW*)“ldw (I — W*W) " dw™).

For n=1, the Siegel-Hua metric is the Poincaré metric (cf. Chap.6) on the
Poincaré half-plane SH| and the Poincaré disk SDy, respectively.

LetA, = {Z = iY : Y > 0} be the imaginary axe on the Siegel half-plane. The
Siegel-Hua metric on A, is (cf. [Barb12]) the Riemannian trace metric ds? =
Tr((P' dP)?). The corresponding distances are Sym(n, R)™ metric or Her(n, C)*
metric. The Siegel distance on SH,, \ A, is defined by

" 1+ VA

Bipge(Z1.22) =) log*( )i
i i=1 1=V

Al ..., A, are the eigenvalues of the matrix (Z; — Z,)(Z) — Z>)—1(Z) — Z,)(Z) —
Zz)_l.
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Barbaresco metrics

Let z(k) be a complex temporal (discrete time) stationary signal, i.e., its mean
value is constant and its covariance function E[z(k;)z* (k2)] is only a function of
ki — ka. Such signal can be represented by its covariance n x n matrix R = ((ry)),
where rj = E[z(i), z* (j)] = E[z(n)z* (n—i+)]. Itis a positive-definite Toeplitz
(i.e. diagonal-constant) Hermitian matrix. In radar applications, such matrices
represent the Doppler spectra of the signal. Matrices R admit a parametrization
(complex ARM, i.e., m-th order autoregressive model) by partial autocorrelation
coefficients defined recursively as the complex correlation between the forward
and backward prediction errors of the (m — 1)-th order complex ARM.

Barbaresco ([Barb12]) defined, via this parametrization, a Bergman metric
(Chap. 7) on the bounded domain R + xD,, C C" of above matrices R; here D is
a Poincaré disk. He also defined a related Kihler metric on M x S,, where M
is the set of positive-definite Hermitian matrices and SD,, is the Siegel disk (cf.
Siegel distance). Such matrices represent spatiotemporal stationary signals, i.e.,
in radar applications, the Doppler spectra and spatial directions of the signal.

Ben Jeuris, 2015, extended above metrics on block Toeplitz matrices, i.e.,
those having blocks that are repeated (as elements of a Toeplitz matrix) down
the diagonals of the matrix.

Cf. Ruppeiner metric (Chap. 7) and Martin cepstrum distance (Chap.21).
Distances between graphs of matrices

The graph G(A) of a complex m x n matrix A is the range (i.e., the span of
columns) of the matrix R(A) = ([IAT])”. So, G(A) is a subspace of C"*" of all
vectors v, for which the equation R(A)x = v has a solution.

A distance between graphs of matrices A and B is a distance between the
subspaces G(A) and G(B). It can be an angle distance between subspaces or,
for example, the following distance (cf. also the Kadets distance in Chap. 1 and
the gap metric in Chap. 18).

The spherical gap distance between subspaces A and B is defined by

max{ max dg(x, S(B)), max de(y,S(A))},
XES(A) YES(B)

where S(A), S(B) are the unit spheres of the subspaces A, B, d(z, C) is the point-
set distance infyec d(z, y) and dg(z,y) is the Euclidean distance.
Angle distances between subspaces
Consider the Grassmannian space G(m, n) of all n-dimensional subspaces of
Euclidean space [E™; it is a compact Riemannian manifold of dimension n(m—n).
Given two subspaces A, B € G(m, n), the principal angles % >0 > - >
6, > 0 between them are defined, fork = 1, ..., n, inductively by

cos 0 = maxmaxx’y = (X)Ty*
XEA YyEB

subject to the conditions ||x||, = ||y|]» = 1,x7x' = 0,y"y' = 0,for 1 <i < k—1,
where ||.||, is the Euclidean norm.




12.3  Metrics on Matrices 245

The principal angles can also be defined in terms of orthonormal matrices
Q4 and Qp spanning subspaces A and B, respectively: in fact, n ordered singular
values of the matrix Q4Qp € M, can be expressed as cosines cos 0y, ..., cos 0,.

The Grassmann distance between subspaces A and B of the same dimension
is their geodesic distance defined by

The Martin distance between subspaces A and B is defined by

In the case when the subspaces represent ARMSs (autoregressive models), the
Martin distance can be expressed in terms of the cepstrum of the autocorrelation
functions of the models. Cf. the Martin cepstrum distance in Chap.21.

The Asimov distance between subspaces A and B is defined by 6. The
spectral distance (or chordal 2-norm distance) is defined by 2 sin(‘g—z‘).

The containment gap distance (or projection distance) is sin 6. It is the /-
norm of the difference of the orthogonal projectors onto A and B. Many versions
of this distance are used in Control Theory (cf. gap metric in Chap. 18).

The Frobenius distance and chordal distance between subspaces A and B
are

n
Z sin? 6, respectively.

i=1

2 Z sin®6; and
i=1

It is the Frobenius norm of the difference of above projectors onto A and B.

Similar distances /1 — [['_, cos? 6; and arccos(]['_, cos 6;) are called the
Binet—Cauchy distance and (cf. Chap. 7) Fubini-Study distance, respectively.

* Larsson-Villani metric

Let A and B be two arbitrary orthonormal m x n matrices of full rank, and let
8;; be the angle between the i-th column of A and the j-th column of B.

We call Larsson-Villani metric the distance between A and B (used by
Larsson and Villani, 2000, for multivariate models) the square of which is
defined by

n n
n—E E cos? 0.

i=1 j=1
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The square of usual Euclidean distance between A and Bis 2(1—)_;_, cos 6;).
For n = 1, above two distances are sin 6 and /2(1 — cos ), respectively.
¢ Lerman metric
Given a finite set X and real symmetric |X| x |X| matrices ((d;(x,y))),
((dy(x,y))) with x,y € X, their Lerman semimetric (cf. Kendall t distance
on permutations in Chap. 11) is defined by

-2
X|+1
I{({x,y},{u,v}):(dl(x,y)—dl(u,v))(dz(x,y)—dz(u,v))<0}|<| |2+ ) ,

where ({x, y}, {u, v}) is any pair of unordered pairs of elements x, y, u, v from X.
Similar Kaufman semimetric between ((d; (x, y))) and ((da(x,y))) is

|{({X, y}s {Lt, U}) : (dl ()C, y) - dl (Ms U))(dZ(xv y) - d2(uv U)) < O}|
(e, v}, {u, v}) : (di(x,y) — di(u, v)) (da(x, y) — da(u, v)) # O}




Chapter 13
Distances in Functional Analysis

Functional Analysis is the branch of Mathematics concerned with the study of
spaces of functions. This usage of the word functional goes back to the calculus
of variations which studies functions whose argument is a function. In the modern
view, Functional Analysis is seen as the study of complete normed vector spaces,
i.e., Banach spaces.

For any real number p > 1, an example of a Banach space is given by L,-space
of all Lebesgue-measurable functions whose absolute value’s p-th power has finite
integral.

A Hilbert space is a Banach space in which the norm arises from an inner
product. Also, in Functional Analysis are considered continuous linear operators
defined on Banach and Hilbert spaces.

13.1 Metrics on Function Spaces

Let I C R be an open interval (i.e., a nonempty connected open set) in R. A real
function f : I — R is called real analytic on I if it agrees with its Taylor series in
an open neighborhood Uy, of every pointxy € I: f(x) = Y oo, w
any x € U,,. Let D C C be a domain (i.e., a convex open set) in C.
A complex function f : D — C is called complex analytic (or, simply, analytic)
on D if it agrees with its Taylor series in an open neighborhood of every point
20 € D. A complex function f is analytic on D if and only if it is holomorphic on D,

i.e., if it has a complex derivative f(z0) = lim,,,, ]%g)m) at every point zg € D.

(x — xp)" for
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¢ Integral metric
The integral metric is the Li-metric on the set C,p) of all continuous real
(complex) functions on a given segment [a, b] defined by

b
/ £ — g(0)ldo.

The corresponding metric space is abbreviated by C[la’b]. It is a Banach space.
In general, for any compact topological space X, the integral metric is defined
on the set of all continuous functions f : X — R (C) by fx | f(x) — g(x)|dx.
e Uniform metric
The uniform metric (or sup metric) is the Loo-metric on the set Cp, ) of all
real (complex) continuous functions on a given segment [a, b] defined by

sup | f(x) — g(x).

x€la,b]

The corresponding metric space is abbreviated by C[ffb . It is a Banach space.

A generalization of C[‘fb] is the space of continuous functions C(X), i.e., a
metric space on the set of all continuous (more generally, bounded) functions
f : X — C of a topological space X with the Loo-metric sup,cy | f(x) — g(x)|.

In the case of the metric space C(X,Y) of continuous (more generally,
bounded) functions f : X — Y from one metric compactum (X, dx) to another
(Y,dy), the sup metric between two functions f,g € C(X,Y) is defined by

supex dr (f(x), g(x)).
The metric space C[ffb], as well as the metric space C[la’b], are two of the most

important cases of the metric space C‘[’a L 1 < p < 0o, on the set Cl, ) With the

L,-metric ( fah |f(x) —gx) |/’dx)1l’. The space CI[;J,] is an example of an L,-space.
* Dogkeeper distance
Given a metric space (X, d), the dogkeeper distance is a metric on the set of
all functions f : [0, 1] — X, defined by

inf sup d(f(1),g(0 (1)),
9 tef0,1]

where o : [0, 1] — [0, 1] is a continuous, monotone increasing function such that
0(0) = 0, (1) = 1. This metric is a special case of the Fréchet metric.

For the case, when (X, d) is Euclidean space R”, this metric is the original
(1906) Fréchet distance between parametric curves f,g : [0,1] — R”. This
distance can be seen as the length of the shortest leash that is sufficient for the
man and the dog to walk their paths f and g from start to end. For example, the
Fréchet distance between two concentric circles of radius r| and r; is |r| — r|.
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The discrete Fréchet distance (or coupling distance, Eiter and Mannila,
1994) is an approximation of the Fréchet metric for polygonal curves f and g.
It considers only positions of the leash where its endpoints are located at vertices
of f and g. So, this distance is the minimum, over all order-preserving pairings of
vertices in f and g, of the maximal Euclidean distance between paired vertices.

If the two curves are embedded in a more general metric space (say, a polyhe-
dral terrain or some Euclidean space with obstacles), the distance between two
points on them is most naturally defined as the length of the shortest path. The
resulting geodesic Fréchet distance allows the leash to switch discontinuously.
Bohr metric

Let R be a metric space with a metric p. A continuous function f : R — R
is called almost periodic if, for every € > 0, there exists / = I(¢) > 0 such that
every interval [fy, tp + [(€)] contains at least one number 7 for which p(f(7),f (¢ +
7)) < € for —oo < t < +o00.

The Bohr metric is the norm metric || f — g|| on the set AP of all almost
periodic functions defined by the norm

IIAl="sup [f(D)I.

—00<t<+00

It makes AP a Banach space. Some generalizations of almost periodic functions
were obtained using other norms; cf. Stepanov distance, Weyl distance,
Besicovitch distance and Bochner metric.
Stepanov distance

The Stepanov distance is a distance on the set of all measurable functions
f : R — C with summable p-th power on each bounded integral, defined by

x+I
sop (1 [ 170 - stopar)

The Weyl distance is a distance on the same set defined by

1t 1/p
lim sup (7 / |f(x) — g(x)|”dx) .

[—00 \ R

1/p

Besicovitch distance
The Besicovitch distance is a distance on the set of all measurable functions
f : R — C with summable p-th power on each bounded integral defined by

_ 1 T 1/p
(limT_)ooﬁ /_T [ f(x) —g(x) |"dx) .

The generalized Besicovitch almost periodic functions correspond to this dis-
tance.
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* Bochner metric
Given a measure space (£2,.4, 1), a Banach space (V,||.|lv),and 1 < p <
00, the Bochner space (or Lebesgue—Bochner space) LF (2, V) is the set of all
measurable functions f : € — V such that || f||p@.v) < o0.

Here the Bochner norm ||f||pq.v) is defined by ([, ||f(a))||"’,du(a)))!l’ for
1 <p < 00, and, for p = 00, by esssup,cq || f(@)]|v.
* Bergman p-metric
Given 1 < p < oo, let L,(A) be the L,-space of Lebesgue measurable
functions f on the unit disk A = {z € C : |z < 1} with ||f][, =

1
(fa If@IPu(dz))? < oc.

The Bergman space Lj(A) is the subspace of L,(A) consisting of analytic
functions, and the Bergman p-metric is the L,-metric on LI‘j(A) (cf. Bergman
metric in Chap. 7). Any Bergman space is a Banach space.

* Bloch metric

The Bloch space B on the unit disk A = {z € C : |z| < 1} is the set of all
analytic functions f on A such that || f||p = sup,ca (1 — 1z f (2)] < oo. Using
the complete seminorm ||.||p, a norm on B is defined by

A= 1£O] + [If]l5.

The Bloch metric is the norm metric || f — g|| on B. It makes B a Banach space.

* Besov metric
Given 1 < p < oo, the Besov space B, on the unit disk A = {z €
C : |zl < 1} is the set of all analytic functions f in A such that ||f]|z, =

1
(fA(l - Izlz)plf/(z)lpd/\(z))p < 00, where dA(z) = (16(\;1\?)2 is the Mobius
invariant measure on A. Using the complete seminorm ||.||,, the Besov norm

on B, is defined by

LAl = 1£O)] + [111l5,-

The Besov metric is the norm metric ||/ — g|| on B,,.

It makes B, a Banach space. The set B, is the classical Dirichlet space of
functions analytic on A with square integrable derivative, equipped with the
Dirichlet metric. The Bloch space B can be considered as Boo.

¢ Hardy metric

Given 1 < p < oo, the Hardy space HP(A) is the class of functions, analytic
on the unit disk A = {z € C : |z| < 1}, and satisfying the following growth
condition for the Hardy norm ||.||g»:

2

1
1 2 ) r
1l = sup (— [ If(r8‘9)|”d9) < 0.
0

O<r<l
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The Hardy metric is the norm metric || f — g||ar(a) on H?(A). It makes H” (A)
a Banach space.

In Complex Analysis, the Hardy spaces are analogs of the L,-spaces of
Functional Analysis. Such spaces are applied in Mathematical Analysis itself,
and also in Scattering Theory and Control Theory (cf. Chap. 18).

* Part metric
The part metric is a metric on a domain D of R? defined for any x,y € R?

by
! (f () ) '
n\ —— )
J
where H is the set of all positive harmonic functions on the domain D.
A twice-differentiable real function f : D — R is called harmonic on D if its

sup
feHt

Laplacian Af = % + iﬁ vanishes on D.
X ax;
¢ Orlicz metric
Let M(u) be an even convex function of a real variable which is increasing
for u positive, and lim,—.o ™' M(u) = lim,— 0o u(M(u))~" = 0. In this case the
function p(v) = M (v) does not decrease on [0, 00), p(0) = lim, o p(v) = 0,

and p(v) > 0 when v > 0. Writing M(u) = O‘u‘p(v)dv, and defining N(u) =

foul p~1(v)dv, one obtains a pair (M(«), N(u)) of complementary functions.

Let (M(u),N(u)) be a pair of complementary functions, and let G be a
bounded closed set in R". The Orlicz space Ly;(G) is the set of Lebesgue-
measurable functions f on G satisfying the following growth condition for the
Orlicz norm || f||m:

1 fllat = sup { /G FOg(0)dr - /G N(g()dr < 1} < oo,

The Orlicz metric is the norm metric || f — g||s on L}, (G). It makes L}, (G) a
Banach space ([Orli32]).

When M(u) = u”,1 < p < oo, L};(G) coincides with the space L,(G), and,
up to scalar factor, the L,-norm || f||, coincides with || f||.

The Orlicz norm is equivalent to the Luxemburg norm || f||ar) = inf{A > 0 :
Jo MO f(0)dr < 1} in fact, || fllany < [1f1ln < 211 fllw)-

* Orlicz-Lorentz metric

Let w : (0,00) — (0, 00) be a nonincreasing function. Let M : [0, 00) —
[0, 00) be a nondecreasing and convex function with M(0) = 0. Let G be a
bounded closed set in R".

The Orlicz—Lorentz space L,y (G) is the set of all Lebesgue-measurable
functions f on G satisfying the following growth condition for the Orlicz—Lorentz
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norm || f1|w.m:

fllwm = inf{k >0: /Ooow(x)M (f*k(x))dxf 1} < 00,

where f*(x) = sup{t : u(|f| > 1) > x} is the nonincreasing rearrangement of f.

The Orlicz-Lorentz metric is the norm metric ||f — g||,,.;s on L, (G). It
makes L,, 51 (G) a Banach space.

The Orlicz—Lorentz space is a generalization of the Orlicz space Ly,(G) (cf.
Orlicz metric), and the Lorentz space L, 4,(G), 1 < g < oo, of all Lebesgue-
measurable functions f on G satisfying the following growth condition for the
Lorentz norm:

1

fllg = ( fo W(X)(f*(x))q)q < .

e Héolder metric
Let L*(G) be the set of all bounded continuous functions f defined on a subset
G of R", and satisfying the Holder condition on G. Here, a function f satisfies the
Holder condition at a point y € G with index (or order) a, 0 < @ < 1, and with
coefficient A(y), if | f(x) —f(y)| < A(y)|x — y|* for all x € G sufficiently close to
y.
If A = sup,eg(A(y)) < oo, the Holder condition is called uniform on G, and

A is called the Holder coefficient of G. The quantity |fle = sup, e %,

0 < o < 1, is called the Holder «-seminorm of f, and the Holder norm of f is
defined by

1 f 1|6y = sup lF] + [fle-

The Holder metric is the norm metric || f — g||ze() on L*(G). It makes L*(G)
a Banach space.
* Sobolev metric
The Sobolev space WP is a subset of an L,-space such that f and its
derivatives up to order k have a finite L,-norm. Formally, given a subset G of
R", define

WP = WRP(G) = {f € L,(G) : fV € L,(G),1 <i <k},

where f0 = 9. 8%f, ay 4 -+ + &, = i, and the derivatives are taken in a
weak sense. The Sobolev norm on W*? is defined by

k
1A llep = Y1121

i=0
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In fact, it is enough to take only the first and last in the sequence, i.e., the norm
defined by || f]lx, = ||f]lp + ||f®||, is equivalent to the norm above.

For p = oo, the Sobolev norm is equal to the essential supremum of |f|:
| fllkoo = esssup,eq|f(x)|, i.e., it is the infimum of all numbers @ € R for
which | f(x)| > a on a set of measure zero.

The Sobolev metric is the norm metric || f — g||, on W, It makes W*? a
Banach space.

The Sobolev space W*?2 is denoted by H*. It is a Hilbert space for the inner
product (f. g)i = Y iz (f?.8P)1, = Yy [ 087 u(dw).

¢ Variable exponent space metrics

Let G be a nonempty open subset of R”, and let p : G — [l1,00) be a
measurable bounded function, called a variable exponent. The variable exponent
Lebesgue space Ly)(G) is the set of all measurable functions f : G — R for
which the modular op)(f) = fG | f(x)|P®¥dx is finite. The Luxemburg norm on
this space is defined by

[f1lpy = inf{A > 02 0,y (f/A) = 1}.

The variable exponent Lebesgue space metric is the norm metric || f — g||,()
on L[,(_) (G)

A variable exponent Sobolev space W'*)(G) is a subspace of Ly)(G)
consisting of functions f whose distributional gradient exists almost everywhere
and satisfies the condition |Vf| € L,()(G). The norm

LA hp0 = 1A 10 + 1V 1l0

makes W'7()(G) a Banach space. The variable exponent Sobolev space metric
is the norm metric || f — g||15() on W'*0).
* Schwartz metric

The Schwartz space (or space of rapidly decreasing functions) S(R") is the
class of all Schwartz functions, i.e., infinitely-differentiable functions f : R" — C
that decrease at infinity, as do all their derivatives, faster than any inverse power
of x. More precisely, f is a Schwartz function if we have the following growth
condition:

: Ut (x . x,)
ax{' ... oxy"

| £llap = suRglxﬁ...xf | < oo
X€E

for any nonnegative integer vectors o and 8. The family of seminorms ||.||op
defines a locally convex topology of S(IR") which is metrizable and complete.
The Schwartz metric is a metric on S(R") which can be obtained using this
topology (cf. countably normed space in Chap. 2).

The corresponding metric space on S(R") is a Fréchet space in the sense of
Functional Analysis, i.e., a locally convex F-space.
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* Bregman quasi-distance
Let G C R" be a closed set with the nonempty interior G. Let f be a Bregman
function with zone G.
The Bregman quasi-distance Dy : G x G’ — R is defined by

Dy(x,y) = f(x) =f () = (Vf (). x =),

where Vf = (;=,...35). Dp(x.y) = 0 if and only if x = y. Also Dy(x.y) +
Ds(y,2) —Dy(x,2) = (Vf(z) — Vf(y),x — y) but, in general, Dy does not satisty
the triangle inequality, and is not symmetric.

A real-valued function f whose effective domain contains G is called a
Bregman function with zone G if the following conditions hold:

1. f is continuously differentiable on G

2. f is strictly convex and continuous on G;

3. For all § € R the partial level sets T'(x,8) = {y € G° : Dy(x,y) < 8} are
bounded for all x € G;

4. If {ya}» C G° converges to y*, then Ds(y*, y,) converges to 0;

5. If {x,}, C G and {y,}, C G° are sequences such that {x,}, is bounded,
limy, 00 o = ¥*, and lim, o0 Df (X, y,) = 0, then lim,, 00 X, = ¥*.

When G = R", a sufficient condition for a strictly convex function to be a
Bregman function has the form: limjy|| oo % = 00.

13.2 Metrics on Linear Operators

A linear operator is a function T : V — W between two vector spaces V, W over
a field F, that is compatible with their linear structures, i.e., for any x,y € V and
any scalar k € F, we have the following properties: T(x + y) = T(x) + T(y), and
T(kx) = kT (x).

¢ Operator norm metric
Consider the set of all linear operators from a normed space (V, ||.||v) into a
normed space (W, ||.||w). The operator norm ||T|| of a linear operator T : V —
W is defined as the largest value by which T stretches an element of V, i.e.,

[1T(v)||lw
[IT|| = sup —————= sup [[T(W)|lw = sup [|T(v)||w.
wllv#o  [vllv lIolly=1 lolly<1

A linear operator 7 : V — W from a normed space V into a normed space
W is called bounded if its operator norm is finite. For normed spaces, a linear
operator is bounded if and only if it is continuous.
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The operator norm metric is a norm metric on the set B(V, W) of all
bounded linear operators from V into W, defined by

1T — PIl.

The space (B(V, W), ||.||) is called the space of bounded linear operators. This
metric space is complete if W is. If V. = W is complete, the space B(V, V) is a
Banach algebra, as the operator norm is a submultiplicative norm.

A linear operator 7 : V. — W from a Banach space V into another Banach
space W is called compact if the image of any bounded subset of V is a relatively
compact subset of W. Any compact operator is bounded (and, hence, continuous).
The space (K(V, W), ||.||) on the set K(V, W) of all compact operators from V
into W with the operator norm ||.|| is called the space of compact operators.

* Nuclear norm metric

Let B(V, W) be the space of all bounded linear operators mapping a Banach
space (V. ||.||v) 1nt0 another Banach space (W, ||. ||W) Let the Banach dual of
Vv be denoted by V', and the value of a functional x € V' ata vectorx € V by
(x.x).

A linear operator T € B(V,W) is called a nuclear operator if it can be
represented in the form x - T(x) = Y%, (x,x,)y;, where {x}; and {y,}; are
sequences in V' and W, respectively, such that Y 2, ||x;||V/ [lvi|lw < oo. This
representation is called nuclear, and can be regarded as an expansion of 7 as a
sum of operators of rank 1 (i.e., with one-dimensional range). The nuclear norm
of T is defined as

o0
. ’
T e = inf Y [y il lw-

i=1

where the infimum is taken over all possible nuclear representations of 7.

The nuclear norm metric is the norm metric ||7 — P||,.c on the set N(V, W)
of all nuclear operators mapping V into W. The space (N(V, W), ||.||uc), called
the space of nuclear operators, is a Banach space.

A nuclear space is defined as a locally convex space for which all continuous
linear functions into an arbitrary Banach space are nuclear operators. A nuclear
space is constructed as a projective limit of Hilbert spaces H, with the property
that, for each o € I, one can find 8 € I such that Hg C Hy, and the embedding
operator Hg > x — x € H, is a Hilbert-Schmidt operator. A normed space is
nuclear if and only if it is finite-dimensional.

* Finite nuclear norm metric

Let F(V, W) be the space of all linear operators of finite rank (i.e., with finite-
dimensional range) mapping a Banach space (V, ||.||v) into another Banach space
(W, ||.llw)- A linear operator T € F(V, W) can be represented in the form x >
T(x) =Y, (x x;)y,-, where {x;},- and {y;}; are sequences in V' (Banach dual of
V) and W, respectively, and (x, x/) is the value of a functional x € V at a vector
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x € V. The finite nuclear norm of T is defined as

n
. ’
T e = i€ 3 1151y il e

i=1

where the infimum is taken over all possible finite representations of 7.

The finite nuclear norm metric is the norm metric ||7 — P||4,c on F(V, W).
The space (F(V, W), ||.||fuc) is called the space of operators of finite rank. It is
a dense linear subspace of the space of nuclear operators N(V, W).

* Hilbert-Schmidt norm metric

Consider the set of all linear operators from a Hilbert space (H1, ||.||x,) into a
Hilbert space (Ha, ||-||#,). The Hilbert-Schmidt norm ||T||us of a linear operator
T : HA — H, is defined by

1T |as = O 1T (ea)l[7,)"?

o€l

where (ey)qer is an orthonormal basis in H;. A linear operator T : Hy — H; is
called a Hilbert—Schmidt operator if ||T||%¢ < oo.

The Hilbert—-Schmidt norm metric is the norm metric ||7— P|| s on the set
S(H\, H,) of all Hilbert—Schmidt operators from H, into H,. In Euclidean space
||.||ms is also called Frobenius norm; cf. Frobenius norm metric in Chap. 12.

For Hy = H, = H, the algebra S(H, H) = S(H) with the Hilbert-Schmidt
norm is a Banach algebra. It contains operators of finite rank as a dense subset,
and is contained in the space K (H) of compact operators. An inner product {, ) us
on S(H) is defined by (T, Pyus = Y, c;{T(ex), Pley)), and ||T||us = (T, T>11q/52-
So, S(H) is a Hilbert space (independent of the chosen basis (ey)aer).

* Trace-class norm metric

Given a Hilbert space H, the trace-class norm of a linear operator T : H — H

is

] = D (IT1(ea), €a),

o€l

where |T| is the absolute value of T in the Banach algebra B(H) of all bounded
operators from H into itself, and (e, )y¢; is an orthonormal basis of H.

An operator T : H — H is called a trace-class operator if ||T||;,, < co. Any
such operator is the product of two Hilbert—Schmidt operators.

The trace-class norm metric is the norm metric ||7 — P||;. on the set L(H)
of all trace-class operators from H into itself.

The set L(H) with the norm |[|.||, forms a Banach algebra which is contained
in the algebra K(H) (of all compact operators from H into itself), and contains
the algebra S(H) of all Hilbert—Schmidt operators from H into itself.
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¢ Schatten p-class norm metric
Let 1 < p < oo. Given a separable Hilbert space H, the Schatten p-class norm
of a compact linear operator T : H — H is defined by

1

P
(1§ = (Z |sn|P) :

n

where {s,,}, is the sequence of singular values of T. A compact operator T : H —
H is called a Schatten p-class operator if ||T|[5,, < oc.
The Schatten p-class norm metric is the norm metric ||7 — P|[5,, on the set
S,(H) of all Schatten p-class operators from H onto itself. The set S, (H) with the
norm ||.|[¢, forms a Banach space. Sy (H) is the trace-class of H, and S (H) is the
Hilbert—Schmidt class of H. Cf. Schatten norm metric (in Chap. 12) for which
trace and Frobenius norm metrics are cases p = 1 and p = 2, respectively.
¢ Continuous dual space
For any vector space V over some field, its algebraic dual space is the set of
all linear functionals on V.
Let (V.||.||) be a normed vector space. Let V' be the set of all continuous
linear functionals T from V into the base field (R or C). Let ||.||" be the operator
norm on V' defined by

)| = sup |T(x)].

[lxll=1

The space (V. ||.]|) is a Banach space which is called the continuous dual (or
Banach dual) of (V, ||.|])-

The continuous dual of the metric space ll’ﬁ (lgo) is IZ (I%°, respectively), where
qis defined by 1 +1 = 1. The continuous dual of 1T (I9°) is I, (I, respectively).

» Distance constant of operator algebra

Let A be an subalgebra of B(H), the algebra of all bounded operators on a
Hilbert space H. For any operator T € B(H), let P be a projection, P be its
orthogonal complement and B(T, A) = sup{||P-TP|| : PLAP = (0)}.

Let dist(T, A) = infyeq ||T — A|| be the distance of T to algebra A; cf.
matrix nearness problems in Chap. 12. It holds dist(T, A) > B(T, A).

The algebra A is reflexive if B(T, A) = 0 implies T € A; it is hyperreflexive
if there exists a constant C > 1 such that, for any operator T € B(H), it holds

dist(T, A) < CB(T, A).

The smallest such C is called the distance constant of the algebra A.

In the case of a reflexive algebra of matrices with nonzero entries specified by
a given pattern, the problem of finding the distance constant can be formulated as
a matrix-filling problem: given a partially completed matrix, fill in the remaining
entries so that the operator norm of the resulting complete matrix is minimized.



Chapter 14
Distances in Probability Theory

A probability space is a measurable space ($2, A, P), where A is the set of all
measurable subsets of §2, and P is a measure on A with P(£2) = 1. The set §2
is called a sample space. An element a € A is called an event. P(a) is called the
probability of the event a. The measure P on A is called a probability measure, or
(probability) distribution law, or simply (probability) distribution.

A random variable X is a measurable function from a probability space (£2, A, P)
into a measurable space, called a state space of possible values of the variable; it is
usually taken to be R with the Borel o-algebra, so X : 2 — R. The range X" of the
variable X is called the support of the distribution P; an element x € X is called a
state.

A distribution law can be uniquely described via a cumulative distribution (or
simply, distribution) function CDF, which describes the probability that a random
value X takes on a value at most x: F(x) = P(X <x) = P(w € 2 : X(w) < x).

So, any random variable X gives rise to a probability distribution which assigns
to the interval [a, b] the probability P(a < X < b) = P(w € 2 : a < X(w) < D),
i.e., the probability that the variable X will take a value in the interval [a, b].

A distribution is called discrete if F(x) consists of a sequence of finite jumps at
x;; a distribution is called continuous if F(x) is continuous. We consider (as in the
majority of applications) only discrete or absolutely continuous distributions, i.e.,
the CDF function F : R — R is absolutely continuous. It means that, for every
number € > 0, there is a number § > 0 such that, for any sequence of pairwise
disjoint intervals [xg, y¢], 1 < k < n, the inequality Y, _, ., (vk —xx) < & implies the
inequality 3", [F(%) — F(w)| < €.

A distribution law also can be uniquely defined via a probability density (or
density, probability) function PDF of the underlying random variable. For an
absolutely continuous distribution, the CDF is almost everywhere differentiable, and
the PDF is defined as the derivative p(x) = F (x) of the CDF; so, F(x) = P(X <
x) = [* p(Hdt, and fab p(H)dt = P(a < X < b). In the discrete case, the PDF is is
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le_ <. P(x;), where p(x) = P(X = x) is the probability mass function. But p(x) = 0
for each fixed x in any continuous case.

The random variable X is used to “push-forward” the measure P on §2 to a
measure dF on R. The underlying probability space is a technical device used to
guarantee the existence of random variables and sometimes to construct them.

We usually present the discrete version of probability metrics, but many of
them are defined on any measurable space; see [Bass89, Bass13, Cha08]. For a
probability distance d on random quantities, the conditions P(X = Y) = 1 or
equality of distributions imply (and characterize) d(X, Y) = 0; such distances are
called ([Rach91]) compound or simple distances, respectively. Often, some ground
distance d is given on the state space X" and the presented distance is a lifting of it
to a distance on distributions. A quasi-distance between distributions is also called
divergence or distance statistic.

Below we denote py = p(x) = P(X = x), Fx = F(x) = P(X < x), p(x,y) =
P(X = x,Y = y). We denote by E[X] the expected value (or mean) of the random
variable X: in the discrete case E[X] = ) xp(x), in the continuous case E[X] =
[ xp(x)dx.

The covariance between the random variables X and Y is Cov(X,Y) = E[(X —
E[X])(Y — E[Y])] = E[XY] — E[X]E[Y]. The variance and standard deviation of
X are Var(X) = Cov(X,X) and 0(X) = /Var(X), respectively. The correlation

between X and Y is Corr(X,Y) = fg’;)(f(g, cf. Chap. 17.

14.1 Distances on Random Variables

All distances in this section are defined on the set Z of all random variables with the
same support X’; here X, Y € Z.

e p-average compound metric
Given p > 1, the p-average compound metric (or L,-metric between
variables) is a metric on Z with X C R and E[|Z|’] < oo for all Z € Z defined
by

EX —YPD'7 =( > |x—yPpx.y)'.
(x,y)EXXX

For p = 2 and oo, it is called, respectively, the mean-square distance and
essential supremum distance between variables.
* Lukaszyk-Karmovski metric
The Lukaszyk—Karmovski metric (2001) on Z with X C R is defined by

> k= ylp@p).

(X, y)EXXX
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For continuous random variables, it is defined by fjozo fjozo |x—y|F (x)F(y)dxdy.
This function can be positive for X = Y. Such possibility is excluded, and so, it
will be a distance metric, if and only if it holds

+oo  p+too
[_ [ Ix — 18 — EXD3(y — E[¥])dxdy = [E[X] — E[]].

¢ Absolute moment metric
Given p > 1, the absolute moment metric is a metric on Z with X C R and
E[|Z|P] < oo for all Z € Z defined by

[EIXPD'P — E[Y D).

For p = 1 itis called the engineer metric.
* Indicator metric
The indicator metric is a metric on Z defined by

Ellxgr] = Y, Lapxy)= > py)

(xy)€EX XX (X)) EX XX x#y

(Cf. Hamming metric in Chap. 1.)
¢ Ky Fan metric K
The Ky Fan metric K is a metric K on Z, defined by

inf{le >0:P(|X—Y| >e¢€) <e}.
It is the case d(x,y) = |X — Y| of the probability distance.

* Ky Fan metric K*
The Ky Fan metric K* is a metric on Z defined by

W—YI} =yl
E[————— = D TPy
THIX-Y] e T+l

¢ Probability distance
Given a metric space (X, d), the probability distance on Z is defined by

inf{e > 0:PdX,Y) >¢€) <e¢}.

14.2 Distances on Distribution Laws

All distances in this section are defined on the set P of all distribution laws such
that corresponding random variables have the same range X’; here Py, P, € P.
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* L,-metric between densities
The L,-metric between densities is a metric on P (for a countable X)
defined, for any p > 1, by

O 1@ = p2(0))7

For p = 1, one half of it is called the variational distance (or toral variation
distance, Kolmogorov distance). For p = 2, it is the Patrick—Fisher distance.
The point metric sup, |pi(x) — p2(x)| corresponds to p = co.

The Lissak-Fu distance with parameter « > 0 is defined as ) [pi(x) —
p2(0)[*.

¢ Bayesian distance

The error probability in classification is the following error probability of
the optimal Bayes rule for the classification into two classes with a priori
probabilities ¢, 1 — ¢ and corresponding densities p, p, of the observations:

P, =) min(gpi(x), (1 - $)p2(x)).

The Bayesian distance on P is defined by 1 — P,.
For the classification into m classes with a priori probabilities ¢;, 1 < i < m,
and corresponding densities p; of the observations, the error probability becomes

P,=1-= p(x)max P(Cx).

where P(C;|x) is the a posteriori probability of the class C; given the observation
xand p(x) = Y_I_, $;P(x|C;). The general mean distance between m classes C;
(cf. m-hemimetric in Chap. 3) is defined (Van der Lubbe, 1979) fora > 0, 8 > 1
by

> p®Q_ PCilnPye.

The case « = 1, 8 = 2 corresponds to the Bayesian distance in Devijver, 1974;
the case f = é was considered in Trouborst et al., 1974.
¢ Mahalanobis semimetric
The Mahalanobis semimetric is a semimetric on P (for X C R") defined by

\/ (Ep, [X] — Ep,[XDTAEp, [X] — Ep, [X])

for a given positive-semidefinite matrix A; its square is a Bregman quasi-
distance (Chap. 13). Cf. also the Mahalanobis distance in Chap. 17.
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¢ Engineer semimetric
The engineer semimetric is a semimetric on P (for X C R) defined by

B, [X] — Ep,[X]] = | D x(p1(x) = p2 ().

¢ Stop-loss metric of order m
The stop-loss metric of order m is a metric on P (for X C R) defined by

sup ) S (P1(x) = p2(x)).

!
1€R = m.

¢ Kolmogorov—Smirnov metric
The Kolmogorov—-Smirnov metric (or Kolmogorov metric, uniform metric)
is a metric on P (for X C R) defined (1948) by

sup [P1(X < x) — P>(X <x)|.
x€R

This metric is used, for example, in Biology as a measure of sexual dimorphism.
The Kuiper distance on P is defined by

sup(P1(X < x) — Po2(X < x)) + sup(P.(X < x) — P1(X < x)).

x€R x€R

(Cf. Pompeiu-Eggleston metric in Chap.9.)
The Crnkovic-Drachma distance is defined by

1
B N T =TT e oy =
1
T =) = X = R =)

¢ Cramér-von Mises distance
The Cramér—von Mises distance (1928) is defined on P (for X C R) by

+o00
w’ = / (P1(X < x) — P2(X < x))%dP>(x).

(o]

The Anderson-Darling distance (1954) on P is defined by

T (PI(X < x) — P)(X < x))?
Pz(x).
/—oo (P2(X =x)(1 = P2(X < x))
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In Statistics, above distances of Kolmogorov—Smirnov, Cramér—von Mises,
Anderson—Darling and, below, )(z-distance are the main measures of goodness
of fit between estimated, P,, and theoretical, P, distributions.

They and other distances were generalized (for example by Kiefer, 1955, and
Glick, 1969) on K-sample setting, i.e., some convenient generalized distances
d(Py, ..., Pg) were defined. Cf. m-hemimetric in Chap. 3.

* Energy distance

The energy distance (Széely, 1985) between cumulative density functions

F(X), F(Y) of two independent random vectors X, Y € R" is defined by

d(F(X), F(Y)) = 2E[||(X — Y||] = E[lIX — X"|[] - E[||(Y — Y[[].

where X, X’ are iid (independent and identically distributed), Y, Y’ are iid and ||.||
is the length of a vector. For real-valued random variables this distance is exactly
twice Cramér—von Mises distance. Cf. distance covariance in Chap. 17.
It holds d(F(X), F(Y)) = 0 if and only if X, Y are iid.
* Prokhorov metric
Given a metric space (X, d), the Prokhorov metric on P is defined (1956)
by

inf{e > 0: P (X € B) < P,(X € B) + € and P,(X € B) < P;(X € B°) + ¢},

where B is any Borel subset of X', and B¢ = {x : d(x,y) < €,y € B}.
It is the smallest (over all joint distributions of pairs (X, Y) of random variables
X, Y such that the marginal distributions of X and Y are P; and P», respectively)
probability distance between random variables X and Y.
* Levy-Sibley metric
The Levy-Sibley metric is a metric on P (for X C R only) defined by

infle >0: Pi(X <x—¢€)—€ < P,(X <x) <P(X <x+¢€)+e forany x € R}.

It is a special case of the Prokhorov metric for (X, d) = (R, |[x —y|).
¢ Dudley metric
Given a metric space (X, d), the Dudley metric on P is defined by

sup [E, [£(X)] ~ Er, [f(X)]| = sup| > F@(p1() — pa@))].

XEX

where F' = {f : X — R.||fllc + Lipa(f) = 1}, and Lipa(f) =

L))
Supx,yeX,xaéy d(xy) °
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¢ Szulga metric
Given a metric space (X, d), the Szulga metric (1982) on P is defined by

;‘EJE |(Z If(x)|1’p1(x))1/1’ _ (Z |f(x)|pp2(x))1/1’|,

XEX XEX

where F = {f : X — R, Lips(f) < 1}, and Lipa(f) = sup, yex v, %
¢ Zolotarev semimetric
The Zolotarev semimetric is a semimetric on P, defined (1976) by

sup| Y f@(Pi) = p2(0),

XEX

where F is any set of functions f : X — R (in the continuous case, F is any set
of such bounded continuous functions); cf. Szulga metric, Dudley metric.
* Convolution metric

Let G be a separable locally compact Abelian group, and let C(G) be the set
of all real bounded continuous functions on G vanishing at infinity. Fix a function
g € C(G) such that |g| is integrable with respect to the Haar measure on G, and
{B € G* : g(B) = 0} has empty interior; here G* is the dual group of G, and g is
the Fourier transform of g.

The convolution metric (or smoothing metric) is defined (Yukich, 1985), for
any two finite signed Baire measures P; and P, on G, by

sup| / )Py — dP) ().
x€G JyeG

It can also be seen as the difference Tp, (g) — Tp,(g) of convolution operators on
C(G) where, for any f € C(G), the operator Tpf(x) is nyGf(xy_l)dP(y).
In particular, this metric can be defined on the space of probability measures
on R”, where g is a PDF satisfying above conditions.
* Discrepancy metric
Given a metric space (X, d), the discrepancy metric on P is defined by

sup{|P1(X € B) — P»(X € B)| : Bis any closed ball}.
¢ Bi-discrepancy semimetric
The bi-discrepancy semimetric (evaluating the proximity of distributions P,
P, over different collections A;, A, of measurable sets) is defined by

D(Py, P3) + D(P3, Py),

where D(Py,P;) = sup{inf{P,(C) : B C C € A} — Pi(B) : B € Ay}
(discrepancy).
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Le Cam distance

The Le Cam distance (1974) is a semimetric, evaluating the proximity
of probability distributions Pj, P, (on different spaces &), X>) and defined as
follows:

max{8(P1, P2),8(P2, P1)},
where §(P;,P,) = infg szexz |BP1(X2 = x3) — BP,(Xa = xp)| is the Le

Cam deficiency. Here BP1(X2 = x3) = Y. p1(x1)b(x2]x1), where B is a
probability distribution over X} x &5, and

x1 €EX]

B(X] = xl,Xz = xz) _ B(X] = xl,X2 = xz)
B(Xl = xl) ZXEXz B(Xl = xl,Xz = x)‘

b(xa|x1) =

So, BP,(X, = x3) is a probability distribution over X5, since sze X b(xz|x)) =
1.

Le Cam distance is not a probabilistic distance, since P; and P, are defined
over different spaces; it is a distance between statistical experiments (models).
Skorokhod-Billingsley metric

The Skorokhod-Billingsley metric is a metric on P, defined by

JO) =)
y—x

i?fmax sup |P1(X < x) — Po2(X < f(x))],sup|f(x) — x|, sup |In

xhy

where f : R — R is any strictly increasing continuous function.
Skorokhod metric
The Skorokhod metric is a metric on P defined (1956) by

inf{e > 0 : max{sup |P; (X < x) — P2(X < f(x))|,sup |f(x) —x|} < €},

where f : R — R is a strictly increasing continuous function.
Birnbaum-Orlicz distance
The Birnbaum-Orlicz distance (1931) is a distance on P defined by

suﬂgf(|P1(X <x) — P2(X <)),

where f : R>o — Ry is any nondecreasing continuous function with f(0) = 0,
and f(2f) < Cf(¢) for any ¢ > 0 and some fixed C > 1. It is a near-metric, since
the C-triangle inequality d(P;, P,) < C(d(P1, P3) + d(P3, P»)) holds.
Birnbaum-Orlicz distance is also used, in Functional Analysis, on the
set of all integrable functions on the segment [0, 1], where it is defined by
fol H(|f(x) — g(x)|)dx, where H is a nondecreasing continuous function from
[0, 00) onto [0, 0o) which vanishes at the origin and satisfies the Orlicz condition:

H(t
SUP,- Tr)) < 00
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¢ Kruglov distance
The Kruglov distance (1973) is a distance on P, defined by

/ FIPLX < x) — Pa(X < ),

where f : R>9 — Rx is any even strictly increasing function with f(0) = 0, and
f(s+1) < C(f(s) + f(2)) for any s, > 0 and some fixed C > 1. It is a near-
metric, since the C-triangle inequality d(P,, P;) < C(d(P1, P3) + d(P3, P»))
holds.
* Bregman divergence

Given a differentiable strictly convex function ¢(p) : R* — Rand 8 € (0, 1),
the skew Jensen (or skew Burbea—Rao) divergence on P is (Basseville-Cardoso,
1995)

JP(P1.P2) = B (p1) + (1= P)p(p2) — d(Bp1 + (1= P)pa).

The Burbea—Rao distance (1982) is the case f = % of it, i.e., it is

) (¢(1)1(X)) -ZF ¢ (p2(x)) _¢(171(x) 4-2(1)2()6))) '

X

The Bregman divergence (1967) is a quasi-distance on P defined by

D (@(p1@) — $(p2(x) — (p1(x) — p2(x))' (p2(x))) = lim 1J;ﬂ)(P1,P2).
p—>1 B

The generalised Kullback-Leibler distance ) p;(x)In 2;8 > (pix) —

p2(x)) and Itakura-Saito distance (Chap.21) > i ! g; —In i ! EX; 1 are the cases

$(p) = X, () Inp(x) — ¥, p(x) and ¢(p) = — 3, Inp(x) of the Bregman
divergence. Cf. Bregman quasi-distance in Chap. 13.

Csizér, 1991, proved that the Kullback-Leibler distance is the only Breg-
man divergence which is an f-divergence.

e f-divergence

Given a convex function f(r) : Rso — R with f(1) = 0,f'(1) = 0,f”(1) =
1, the f-divergence (independently, Csizér, 1963, Morimoto, 1963, Ali-Silvey,
1966, Ziv—Zakai, 1973, and Akaike, 1974) on P is defined by

p1(x)
I )f( (x))

The cases f(f) = tInt and f(f) = (t — 1)? correspond to the Kullback-Leibler
distance and to the y?-distance below, respectively. The case f(f) = |t — 1|
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corresponds to the variational distance, and the case f(t) = 4(1 — /1) (as well
as f(t) = 2(t + 1) — 44/1) corresponds to the squared Hellinger metric.
Semimetrics can also be obtained, as the square root of the f-divergence, in the
cases f(1) = (t—1)2/(t+1) (the Vajda-Kus semimetric), (1) = | — 1|/ with
0 < a < 1 (the generalized Matusita distance), and f(r) = (’HH)WI__Z 1(1/;(‘)/“('“)
(the Osterreicher semimetric).
e qa-divergence
Given ¢ € R, the a-divergence (independently, Csizar, 1967, Havrda—
Charvit, 1967, Cressie-Read, 1984, and Amari, 1985) is defined as KL(Py, P;),
KL(P;,P;) fora = 1,0 and fora # 0, 1, it is

1 p1(®)\*
a2 ()

The Amari divergence come from the above by the transformation o = ITJ”
¢ Harmonic mean similarity

The harmonic mean similarity is a similarity on P defined by

P1(x)p2(x)
Z P1(x) + pa(x)

* Fidelity similarity
The fidelity similarity (or Bhattacharya coefficient, Hellinger affinity) on P
is

p(P1,P2) = Y pi®)pa(x).
Cf. more general quantum fidelity similarity in Chap. 24.
¢ Hellinger metric

In terms of the fidelity similarity p, the Hellinger metric (or Matusita
distance, Hellinger—Kakutani metric) on P is defined by

O (WpiG) = Vp2)H)? = V2(1 = p(Pr. Py)).

« Bhattacharya distance 1
In terms of the fidelity similarity p, the Bhattacharya distance 1 (1946) is

(arccos p(Py, P2))?

for P, P, € P. Twice this distance is the Rao distance from Chap. 7. It is used
also in Statistics and Machine Learning, where it is called the Fisher distance.
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The Bhattacharya distance 2 (1943) on P is defined by
—In p(Py, P2).
+ x’-distance
The y?-distance (or Pearson y?-distance) is a quasi-distance on P, defined

by

(p1(x) — p2(x))?
2w

The Neyman y’-distance is a quasi-distance on P, defined by

(p1(x) — p2(x))?
Z p1(x) '

The half of y?-distance is also called Kagan'’s divergence.
The probabilistic symmetric y>-measure is a distance on P, defined by

(p1(x) — Pz(x))2
Z p1(x) + pa(x)

¢ Separation quasi-distance
The separation distance is a quasi-distance on P (for a countable X’) defined

by
(-5
max | 1 — .
x p2(x)
(Not to be confused with separation distance in Chap.9.)
* Kullback-Leibler distance

The Kullback-Leibler distance (or relative entropy, information deviation,
information gain, KL-distance) is a quasi-distance on P, defined (1951) by

_ _ P1(x)
KL(P\,Py) = Ep,[InL] = ;pl(x) In L

_ pi®

0 is the likelihood ratio. Therefore,

where L =

KL(P1,Py) = =) pi(®)In po(x) + ) pi(x) In pi(x) = H(P1, P2) — H(Py),

where H(P)) is the entropy of Py, and H(Py, P,) is the cross-entropy of P, and P;.
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If P, is the product of marginals of P, (say, p2(x,y) = p1(x)p1(y)), the KL-
distance KL(P,, P,) is called the Shannon information quantity and (cf. Shannon
distance) is equal 0 } (. ey x P1(x,y) In plp&()%

The exponential divergence is defined by Y p;(x)(In

* Distance to normality

For a continuous distribution P on R, the differential entropy is defined by

M)Z
pa(x)” °

h(P) = —/ p(x) Inp(x)dx.

—00

It is In(§~/2me) for a normal (or Gaussian) distribution gs,(x) =

— )2 . .
«/217 exp (— (Xzs’j) ) with variance §? and mean j.
ys

The distance to normality (or negentropy) of P is the Kullback-Leibler

distance KL(P, g) = [0 p(x)In (Pg;) x = h(g) — h(P), where ¢ is a normal
distribution with the same variance as P. So, it is nonnegative and equal to O if
and only if P = g almost everywhere. Cf. Shannon distance.

Also, h(u,p) = In(b — a) for an uniform distribution with minimum « and
maximum b > a, i.e., ugp(x) = h —, if x € [a,b], and it is 0, otherwise. It
holds h(u,p,) > h(P) for any distribution P with support contained in [a, b]; so,
h(uap) — h(P) can be called the distance to uniformity. Tononi, 2008, used it in
his model of consciousness.

o Jeffrey distance

The Jeffrey distance (or J-divergence, KL2-distance) is a symmetric version

of the Kullback-Leibler distance defined (1946) on P by

P1(x)
p2(x)’

The Aitchison distance (1986) is defined by /> (In Z;ggi&;)z, where

g(p) =1, p(x))% is the geometric mean of components p(x) of p.
¢ Resistor-average distance
The resistor-average distance is (Johnson—Simanovié, 2000) a symmetric
version of the Kullback-Leibler distance on P which is defined by the
harmonic sum

KL(Py, P;) + KL(P,, P) = Z(( P1(x) —pa(x)) In

1
1 n 1
KL(P1,Py)  KL(P2, Py) '

¢ Jensen—Shannon divergence
Given a number § € [0, 1] and Py, P, € P, let P3 denote SP; + (1 — B)P».
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The skew divergence and the Jensen—Shannon divergence between P; and
P, are defined on P as KL(P;,P3) and BKL(Pi,P3) + (1 — B)KL(P,, P3),
respectively. Here KL is the Kullback-Leibler distance; cf. clarity similarity.

In terms of entropy H(P) = —)_.p(x)In p(x), the Jensen—Shannon diver-
genceis H(BP1+(1—p)Py)—BH(P1)—(1—B)H(P,), i.e., the Jensen divergence
(cf. Bregman divergence).

Let P; = %(Pl + Py),ie., B = % Then the skew divergence and twice the
Jensen—Shannon divergence are called K-divergence and Topsge distance (or
information statistics), respectively. The Topsge distance is a symmetric version
of KL(Py, P,). It is not a metric, but its square root is a metric.

Related symmetric divergencies between P; and P,—Taneja distance (1995)
and Kumar-Johnson distance (2005)—are defined, respectively, by

1) + pa(o) pl(x)+pz(x)) ((p%m—p%(xnz)
1 d —_— = ).
Z( 2 2 momm) Z 2 /e

¢ Clarity similarity
The clarity similarity is a similarity on P, defined by

(KL(P1, P3) + KL(P2, P3)) — (KL(P1, Py) + KL(P2, Py)) =

_ » p2(x) . p1(x)
—;(pmlnm(x)+pz<)1np3(x)),

where KL is the Kullback-Leibler distance, and P; is a fixed probability law.
It was introduced in [CCLO1] with P3 being the probability distribution of
English.
e Ali-Silvey distance
The Ali-Silvey distance is a quasi-distance on P defined by the functional

J(Ep,[g(L)D,
where L = % is the likelihood ratio, f is a nondecreasing function on R, and g
is a continuous convex function on R> (cf. f-divergence).

The case f(x) = x, g(x) = xInx corresponds to the Kullback-Leibler
distance; the case f(x) = —Inx, g(x) = x' corresponds to the Chernoff
distance.

* Chernoff distance
The Chernoff distance (or Rényi cross-entropy) on P is defined (1954) by

max D,(Py, P;),
t€(0,1)

where 0 < ¢t < 1 and D,(P;,P;) = —InY_ (p1(x))'(p2(x))'™" (called the
Chernoff coefficient) which is proportional to the Rényi distance.
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* Rényi distance
Given ¢ € R, the Rényi distance (or order t Rényi entropy, 1961) is a quasi-
distance on P defined as the Kullback-Leibler distance KL(P,, P,) if t = 1,
and, otherwise, by

1 Y
2 (Pz(x)) |
Fort = %, one half of the Rényi distance is the Bhattacharya distance 2. Cf.
f-divergence and Chernoff distance.
* Shannon distance
Given a measure space (§2, A, P), where the set §2 is finite and P is a
probability measure, the entropy (or Shannon information entropy) of a function
f: £2 — X, where X is a finite set, is defined by

H(f) ==Y P(f = x)log,(P(f = x)).

x€X

Here a = 2, e, or 10 and the unit of entropy is called a bit, nat, or dit (digit),
respectively. The function f can be seen as a partition of the measure space.

For any two such partitions f : £2 — X and g : 2 — Y, denote by H(f, g)
the entropy of the partition (f, g) : 2 — X x Y (joint entropy), and by H(f|g)
the conditional entropy (or equivocation). Then the Shannon distance between
f and g is a metric defined by

H(flg) + H(g|f) = 2H(f,g) —H(f) —H(g) = H(f) + H(g) —2I(f; g).

where I(f; g) = H(f) + H(g) — H(f, g) is the Shannon mutual information.

If P is the uniform probability law, then Goppa showed that the Shannon
distance can be obtained as a limiting case of the finite subgroup metric.

In general, the shared information distance (or variation of information,
entropy metric) between random variables (information sources) X and Y is

H(X[Y) + H(Y|X) = HX.Y) - I(X:Y),

where the conditional entropy H(X|Y) is ). cx D ey P(x,y)In p(x]y), and
p(xly) = P(X = x|Y = y) is the conditional probability.

The Rajski distance (or normalized information metric) is defined (Rajski,
1961, for discrete probability distributions X, Y) by

HX|Y) + H(Y|X) 1_ 1(X;Y)
H(X.,Y) - HX,Y)
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Itis equal to 1 if X and Y are independent. Cf. Tanimoto distance in Chap. 17
and the normalized information distance in Chap. 11.
Now, max{H(X), H(Y)} — I(X;Y) is also a metric.
¢ Transportation distance
Given a metric space (X, d), the transportation distance (and/or, according
to Villani, 2009, Monge—Kantorovich—Wasserstein—Rubinstein—Ornstein—
Gini-Dall’Aglio-Mallows-Tanaka distance) is the metric defined by

Wi(Py, Py) = inf Eg[d(X,Y)] = inf/ dX,Y)dS(X,7Y),
S Jx.yexxx

where the infimum is taken over all joint distributions S of pairs (X, Y) of random
variables X, Y such that marginal distributions of X and Y are P; and P;.

For any separable metric space (X, d), this is equivalent to the Lipschitz
distance between measures sup, [ fd(Py — P,), where the supremum is taken
over all functions f with |f(x) — f(y)| < d(x,y) for any x,y € X. Cf. Dudley
metric.

In general, for a Borel function ¢ : X x X — R, the c-transportation
distance 7,.(Pi, Py) is inf Eg[c(X, Y)]. It is the minimal total transportation cost
if ¢(X,Y) is the cost of transporting a unit of mass from the location X to the
location Y. Cf. the Earth Mover’s distance (Chap.21), which is a discrete form
of it.

The L,-Wasserstein distance is W, = (T»)"/? = (inf Es[d?(X, Y)])/?. For
(X,d) = (R, |x—yl), itis also called the L,-metric between distribution functions
(CDF) F; with F; ! (x) = sup,(P;(X < x) < u), and can be written as

1/p 1 1/p
(inf E[X—Y])"" = ( /R |F1(x)—F2(x)|pdx) =( [0 |Frl(x)—F;'(x>|f’dx) .

For p = 1, this metric is called Monge—Kantorovich metric (or Wasser-
stein metric, Fortet-Mourier metric, Hutchinson metric, Kantorovich—
Rubinstein metric). For p = 2, it is the Levy-Fréchet metric (Fréchet, 1957).

 Ornstein d-metric

The Ornstein d-metric is a metric on P (for X = R") defined (1974) by

1 n
~ inf / (Z 1xi¢yi) ds,
" Y \i=1

where the infimum is taken over all joint distributions S of pairs (X,Y) of
random variables X, Y such that marginal distributions of X and Y are P; and
P,, respectively.
* Distances between belief assignments
In Bayesian (or subjective, evidential) interpretation, a probability can be
assigned to any statement, even if no random process is involved, as a way
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to represent its subjective plausibility, or the degree to which it is supported
by the available evidence, or, mainly, degree of belief. Within this approach,
imprecise probability generalizes Probability Theory to deal with scarce, vague,
or conflicting information. The main model is Dempster—Shafer theory, which
allows evidence to be combined.

Given a set X, a (basic) belief assignment is a function m : P(X) — [0, 1]
(where P(X) is the set of all subsets of X) with m(@) = Oand ), Py mA) = 1.
Probability measures are a special case in which m(A) > 0 only for singletons.

For the classic probability P(A), it holds then Bel(A) < P(A) < PI(A), where
the belief function and plausibility function are defined, respectively, by

Bel(4) = ) m(B) and Pl(A) = Y m(B) = 1— Bel(A).

B:BCA B:BNA#D

The original (Dempster, 1967) conflict factor between two belief assignments
my and my was defined as c(mi,my) = )Y ,qp—gmi(A)ma(B). This is
not a distance since c(m,m) > 0. The combination of m; and my,
seen as independent sources of evidence, is defined by m; & my(A) =
=) snc=a M (B)ma(C).

Usually, a distance between m; and m, estimates the difference between
these sources in the form dy = |U(m;) — U(my)|, where U is an uncertainty
measure; see Sarabi-Jamab et al., 2013, for a comparison of their performance.
In particular, this distance is called:

confusion (Hoehle, 1981) if U(m) = >_, m(A) log, Bel(A);
dissonance (Yager, 1983) if U(m) = E(m) = —)_, m(A) log, P1(A);
Yager’s factor (Eager, 1983)if U(m) = 1 — 3", 45 1%
possibility-based (Smets, 1983)if U(m) = —)_, 108, > p.scpm(B);
U-uncertainty (Dubois—Prade, 1985) if U(m) = I(m) = —)_, m(A) log, |A|;
Lamata—Moral’s (1988) if U(m) = log,(3_, m(A)|A]) and U(m) = E(m) +

1(m);

discord (Klir-Ramer, 1990) if U(m) = D(m) = —)_,m(A)log,(1 —

> zm(B) “T;?l) and a variant: U(m) = D(m) + I(m);

strife (Klir-Parviz, 1992) if U(m) = — )", m(A) log,(D_, m(B) ‘A‘QlB [A05]y.

Pal et al.’s (1993) if U(m) = G(m) = —)_, log, m(A) and U(m) = G(m) +

I(m);

total conflict (George—Pal, 1996) if U(m) = Y, m(A) ¥_5(m(B)(1 — f4051)).
Among other distances used are the cosine distance 1 — W’ the Maha-

lanobis distance /(m; — my)TA(m; — my) for some matrices A, and pignistic-

based one (Tessem, 1993) maxa{| > z_;(mi(B) — mz(B)%H.
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Chapter 15
Distances in Graph Theory

A graphis apair G = (V, E), where V is a set, called the set of vertices of the graph
G, and E is a set of unordered pairs of vertices, called the edges of the graph G. A
directed graph (or digraph) is a pair D = (V, E), where V is a set, called the set of
vertices of the digraph D, and E is a set of ordered pairs of vertices, called arcs of
the digraph D.

A graph in which at most one edge may connect any two vertices, is called a
simple graph. If multiple edges are allowed between vertices, the graph is called a
multigraph. A graph, together with a function which assigns a positive weight to
each edge, is called a weighted graph or network.

The graph is called finite (infinite) if the set V of its vertices is finite (infinite,
respectively). The order and size of a finite graph (V,E) are |V| and |E]|,
respectively.

A subgraph of a graph G = (V,E) is a graph G = (V,E)withV C Vand
E CEIfG isa subgraph of G, then G is called a supergraph of G.A subgraph
(V,E)of (V,E)isits induced subgraphif E = {e =uv € E:u,v eV}

A graph G = (V, E) is called connected if, for any u, v € V, there exists a (u—v)
walk, i.e., a sequence of edges uw; = wowy, wiwy, ..., Wy— 1w, = w,—1v from E.
A (u—v) pathis a (u — v) walk with distinct edges. A graph is called m-connected
if there is no set of m — 1 edges whose removal disconnects the graph; a connected
graph is 1-connected. A digraph D = (V, E) is called strongly connected if, for any
u,v € V, the directed (u — v) and (v — u) paths both exist. A maximal connected
subgraph of a graph G is called its connected component.

Vertices connected by an edge are called adjacent. The degree deg(v) of a vertex
v € Vof a graph G = (V, E) is the number of its vertices adjacent to v.

A complete graph is a graph in which each pair of vertices is connected by an
edge. A bipartite graph is a graph in which the set V of vertices is decomposed into
two disjoint subsets so that no two vertices within the same subset are adjacent. A
simple path is a simple connected graph in which two vertices have degree 1, and
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other vertices (if they exist) have degree 2; the length of a path is the number of its
edges.

A cycle is a closed simple path, i.e., a simple connected graph in which every
vertex has degree 2. The circumference of a graph is the length of the longest
cycle in it. A tree is a simple connected graph without cycles. A tree having a path
from which every vertex has distance < 1 or < 2, is called a caterpillar or lobster,
respectively.

Two graphs which contain the same number of vertices connected in the same
way are called isomorphic. Formally, two graphs G = (V(G),E(G)) and H =
(V(H), E(H)) are called isomorphic if there is a bijection f : V(G) — V(H) such
that, for any u, v € V(G), uv € E(G) if and only if f(u)f (v) € E(H).

We will consider mainly simple finite graphs and digraphs; more exactly, the
equivalence classes of such isomorphic graphs.

15.1 Distances on the Vertices of a Graph

» Path metric

The path metric (or graphic metric, shortest path metric) dpan is a metric
on the vertex-set V of a connected graph G = (V, E) defined, for any u, v € V,
as the length of a shortest (u — v) path in G, i.e., a geodesic. Examples follow.

Given an integer n > 1, the line metric on {1, ...,n} in Chap. 1 is the path
metric of the path P, = {1, ..., n}. The path metric of the Cayley graph I" of a
finitely generated group (G, -, e) is called a word metric.

The hypercube metric is the path metric of a hypercube graph H(m,?2)
with the vertex-set V. = {0, 1}", and whose edges are the pairs of vectors
x,y € {0,1}" such that |{i € {1,....n} : x; # yi}| = 1; it is equal to
i € {1,....n} : x; = 1JA{i € {1,...,n} : y; = 1}|. The graphic metric
space associated with a hypercube graph coincides with a Hamming cube, i.e.,
the metric space ({0, 1}, dj,).

The belt distance (Garber—Dolbilin, 2010) is the path metric of a belt graph
B(P) of a polytope P with centrally symmetric facets. The vertices of B(P) are
the facets of P and two vertices are connected by an edge if the corresponding
facets lie in the same belt (the set of all facets of P parallel to a given face of
codimension 2).

The reciprocal path metric is called geodesic similarity.

¢ Weighted path metric

The weighted path metric dypan is a metric on the vertex-set V of a
connected weighted graph G = (V, E) with positive edge-weights (w(e)).ck
defined by

n}pin Z w(e),

e€P

where the minimum is taken over all (u — v) paths P in G.
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Sometimes, w—le) is called the length of the edge e. In the theory of electrical

networks, the edge-length ﬁ is identified with the resistance of the edge e. The
inverse weighted path metric is minp )
* Filling of metric space

Given a finite metric space (X, d), a connected weighted graph G = (V, E; o)
with X C V and edge-weights w(e) > 0 is called (Ivanov—Tuzhilin, 2012) filling
of (X,d) if for all x,y € X, d(x,y) is bounded from above by the weighted path
metric dg(x,y). Ivanov—Tuzhilin showed the existence of filings with minimal
> .cr @(e) and some relations with Steiner problem; (cf. Steiner ratio in Sect.
1.3.

For the case when X is Riemannian manifold, a similar notion was defined by
Gromov (1983), and related to Systolic Geometry (cf. systole of metric space
in Sect. 1.2). Here a minimal filing is any compact manifold of minimal volume,
having boundary X and a distance function that bounds d on X from above.

e Metric graph

A metric (or metrized) graph is a connected graph G = (V, E), where edges
e are identified with line segments [0, /(e)] of length I(e). Let x, be the coordinate
on the segment [0, /(e)] with vertices corresponding to x, = 0, [(e); the ends of
distinct segments are identified if they correspond to the same vertex of G. A
Sfunction f on G is the |E|-tuple of functions f,(x,) on the segments.

A metric graph can be seen as an infinite metric space (X, d), where X is the
set of all points on above segments, and the distance between two points is the
length of the shortest, along the line segments traversed, path connecting them.
Also, it can be seen as one-dimensional Riemannian manifold with singularities.

There is a bijection between the metric graphs, the equivalence classes of
finite connected edge-weighted graphs and the resistive electrical networks: if
an edge e of a metric graph has length I(e), then ﬁ is the weight of e in the
corresponding edge-weighted graph and I(e) is the resistance along e in the
corresponding resistive electric circuit. Cf. the resistance metric.

A quantum graph is a metric graph equipped with a self-adjoint differential
operator (such as a Laplacian) acting on functions on the graph. The Hilbert
space of the graph is @.cxL*([0, w(e)]), where the inner product of functions is
(f’ g) = ZeeE ()W(E)fe>I< (xe)ge(xe)dxe-

* Spin network

A spin network is (Penrose, 1971) a connected graph (V, E) with edge-
weights (w(e)).ce (spins), w(e) € N, such that for any distinct edges e, e;, 3
with a common vertex, it holds spin triangle inequality |w(e;) — w(ez)| <
w(es) < w(ey) + w(ez) and fermion conservation: w(ey) + w(ez) + w(es) is
an even number.

The quantum space-time (Chap. 24) in Loop Quantum Gravity is a network
of loops at Planck scale. Loops are represented by adapted spin networks:
directed graphs whose arcs are labeled by irreducible representations of a
compact Lie group and vertices are labeled by interwinning operators from the
tensor product of labels on incoming arcs to the tensor product of labels on

1
e€P w(e) "
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outgoing arcs. Such networks represent “quantum states” of the gravitational
field on a 3D hypersurface.
* Detour distance

Given a connected graph G = (V, E), the detour distance is (Chartrand and
Zhang, 2004) a metric on the vertex-set V defined, for u # v, as the length of the
longest (1 — v) path in G. So, this distance is 1 or |V| — 1 if and only if uv is a
bridge of G or, respectively, G contains a Hamiltonian (u — v) path.

The monophonic distance is (Santhakumaran and Titus, 2011) a distance (in
general, not a metric) on the V defined, for u # v, as the length of a longest
monophonic (or induced, minimal), i.e., chordless (¢ — v) path in G.

The height of a DAG (acyclic digraph) is the number of vertices in a longest
directed path.

* Rainbow distance

In an edge-colored graph, the rainbow distance is (Chartrand and Zhang,
2005) the length of a shortest rainbow (i.e., containing no color twice) path.

In a vertex-colored graph, the colored distance is (Dankelmann et al., 2001)
the sum of distances between all unordered pairs of vertices having different
colors.

¢ Cutpoint additive metric

Given a graph G = (V, E), Klein—Zhu, 1998, call a metric d on V graph-
geodetic metric if, for u, w, v € V, the triangle equality d(u, w) + d(w,v) =
d(u,v) holds if wis a (u, v)-gatekeeper, i.e., w lies on any path connecting u and
v. Cf. metric interval in Chap. 1. Any gatekeeper is a cutpoint, i.e., removing
it disconnects G and a pivotal point, i.e., it lies on any shortest path between u
and v.

Chebotarev, 2010, call a metric d on the vertices of a multigraph without loops
cutpoint additive if d(u, w) +d(w, v) = d(u, v) holds if and only if w lies on any
path connecting u and v. The resistance metric is cutpoint additive (Gvishiani
and Gurvich, 1992), while the path metric is graph-geodetic only (in the weaker
Klein—Zhu sense). See also Chebotarev—Shamis metric.

¢ Graph boundary

Given a connected graph G = (V,E), a vertex v € V is (Chartrand et al.,
2003) a boundary vertex if there exists a witness, i.e., a vertex u € V such that
d(u,v) > d(u,w) for all neighbors w of v. So, the end-vertices of a longest path
are boundary vertices. The boundary of G is the set of all boundary vertices.

The boundary of a subset M C V is the set IM C E of edges having precisely
one endpoint in M. The isoperimetric number of G is (Buser, 1978) inf %,
where the infimum is taken over all M C V with 2|M| < |V].

¢ Graph diameter

Given a connected graph G = (V, E), its graph diameter is the largest value
of the path metric between vertices of G.

A connected graph is vertex-critical ( edge-critical) if deleting any vertex
(edge) increases its diameter. A graph G of diameter k is goal-minimal if for
every edge uv, the inequality dg—,,(x,y) > k holds if and only if {u, v} = {x, y}.
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The mixed fault diameter D, ;) (G) is the maximum diameter among all
subgraphs obtained from G by deleting a vertices and b edges.

The a-wide distance d, (u, v) between vertices « and v is the minimum integer
[, for which there are at least a internally disjoint (¥ — v) paths of length at
most / in G: cf. Hsu-Lyuu-Flandrin-Li distance. The a-wide diameter of G is
maxy yev da(u, v); it is at least D(o—1,0)(G).

Given a strong orientation O of a connected graph G = (V, E), i.e., a strongly
connected digraph D = (V, E’) with arcs ¢’ € E’ obtained from edges ¢ € E by
orientation O, the diameter of D is the maximal length of shortest directed (¢ —v)
path in it. The oriented diameter of a graph G is the smallest diameter among
strong orientations of G. If it is equal to the diameter of G, then any orientation
realizing this equality is called tight. For example, a hypercube graph H(m,2)
admits a tight orientation if m > 4 (McCanna, 1988).

Path quasi-metric in digraphs

The path quasi-metric in digraphs dgp.m is a quasi-metric on the vertex-set
V of a strongly connected digraph D = (V, E) defined, for any u,v € V, as the
length of a shortest directed (# — v) path in D.

The circular metric in digraphs is a metric on the vertex-set V of a strongly
connected digraph D = (V, E), defined by dupam (1, v) + dapan (v, ).

Strong distance in digraphs

The strong distance in digraphs is a metric between vertices v and v of
a strongly connected digraph D = (V,E) defined (Chartrand—Erwin—Raines—
Zhang, 1999) as the minimum size (the number of edges) of a strongly connected
subdigraph of D containing v and v. Cf. Steiner distance of a set.

T -metric

Given a class 7" of connected graphs, the metric d of a metric space (X, d) is
called a T -metric if (X, d) is isometric to a subspace of a metric space (V, dypath),
where G = (V,E) € T, and dypan is the weighted path metric on V with
positive edge-weight function w; cf. tree-like metric.

Tree-like metric

A tree-like metric (or weighted tree metric) d on a set X is a 7"-metric for
the class 7 of all trees, i.e., the metric space (X, d) is isometric to a subspace of
a metric space (V, dwpan), Where T = (V, E) is a tree, and dypan is the weighted
path metric on the vertex-set V of T with a positive weight function w. A metric
is a tree-like metric if and only if it satisfies the four-point inequality. Any such
metric has (Hendy, 1992) a unique tree representation.

A metric d on a set X is called a relaxed tree-like metric if the set X can be
embedded in some (not necessary positively) edge-weighted tree such that, for
any x,y € X, d(x,y) is equal to the sum of all edge weights along the (unique)
path between corresponding vertices x and y in the tree. A metric is a relaxed
tree-like metric if and only if it satisfies the relaxed four-point inequality.
Katz similarity

Given a connected graph G = (V, E) with positive edge-weight function w =
(W(e))eek, let V.= {vi,...,v,}. Denote by A the (n x n)-matrix ((a;;)), where
a; = a; = w(ij) if ij is an edge, and a; = 0, otherwise. Let I be the identity
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(n x n)-matrix, and let £,0 < ¢t < l , be a parameter, where A = max; |A4;] is the
spectral radius of A and A; are the elgenvalues of A. Define the (n x n)-matrix

K= ((ky) =Y tAl=I—1A)" —1

i=1

The number k;; is called the Katz similarity between v; and v;. Katz, 1953,
proposed it for evaluating social status.

Chebotarev, 2011, defined, for a similar (n x n)-matrix ((¢;)) = Y oy ‘A" =
(I — tA)~! and connected edge-weighted multigraphs allowing loops, the walk
distance between vertices v; and v; as any positive multiple of d4,(i,j) =
—In ﬁ (cf. the Nei standard genetic distance in Chap. 23). He proved that d,
is a cutpoint additive metric and the path metric in G coincides with the short
walk distance lim,_, o+ in G, while the resistance metric in G coincides

in the graph G’ obtained from G by

=
with the long walk distance lim,_, ;- = 2% -
attaching weighted loops that provide G’ with uniform weighted degrees.
If G is a simple unweighted graph, then A is its adjacency matrix. Let J be the
(n x n)-matrix of all ones and let & = min; A;. Let N = ((ny)) = n( —J) — A.
Neumaier, 1980, remarked that ((,/7;)) is a semimetric on the vertices of G.
* Resistance metric
Given a connected graph G = (V, E) with positive edge-weight function w =
(w(e))eek, let us interpret the edge-weights as electrical conductances and their
inverses as resistances. For any two different vertices u and v, suppose that a
battery is connected across them, so that one unit of a current flows in at # and
out in v. The voltage (potential) difference, required for this, is, by Ohm’s law,
the effective resistance between u and v in an electrical network; it is called the
resistance (or electric) metric §2 (u, v) between them (Sharpe, 1967, Gvishiani—
Gurvich, 1987, and Klein—Randic, 1993). So, if a potential of one volt is applied
across vertices 1 and v, a current of m will flow. The number m is a
measure of the connectivity between u and v.
Let r(u,v) = ﬁ if uv is an edge, and r(u, v) = 0, otherwise. Formally,

2. v) = Q_fwrw.v)™",

wev

where f : V — [0, 1] is the unique function with f(¥) = 1, f(v) = 0 and
Y oer (FO¥) = f(2)r(w.2) = 0 forany w # u. v.

The resistance metric is a weighted average of the lengths of all (« — v) paths.
It is applied when the number of (u — v) paths, for any u, v € V, matters.

A probabilistic interpretation (Gobel-Jagers, 1974) is: 2(u,v) =
(deg(u)Pr(u — v))~!, where deg(u) is the degree of the vertex u, and Pr(u — v)
is the probability for a random walk leaving u to arrive at v before returning to
u. The expected commuting time between u and v is 2 ), w(e) 2 (u, v).
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Then £2(u,v) < minp ) ,cp ﬁ, where P is any (u — v) path (cf. inverse
weighted path metric), with equality if and only if such a path P is unique. So, if
w(e) = 1 for all edges, the equality means that G is a geodetic graph, and hence

the path and resistance metrics coincide. Also, it holds that £2 (u, v) = %
/— .
if uv is an edge, and £2(u,v) = %, otherwise, where T, T’ are the sets of

spanning trees for G = (V,E) and G’ = (V, E U {uv}).

If w(e) = 1 for all edges, then 2(u,v) = (guu + gvv) — (8w + guvu), Where
((gi)) is the Moore—Penrose generalized inverse of the Laplacian matrix ((I;7))
of the graph G: here /; is the degree of vertex i, while, for i # j, [; = —1
if the vertices i and j are adjacent, and [;; = 0, otherwise. A symmetric (for an
undirected graph) and positive-semidefinite matrix ((g;;)) admits a representation
KKT. So, £2(u,v) is the squared Euclidean distance between the u-th and v-th
rows of K.

The distance /2 (u, v) is a Mahalanobis distance (Chap. 17) with a weight-
ing matrix ((g;)). So, £2.v = au|((g))|auw, Where a,, are the vectors of zeros
except for 41 and —1 in the u-th and v-th positions. This distance is called a
diffusion metric in [CLMNWZ05] because it depends on a random walk.

The number %Zu’vevﬂ(u, v) is called the fotal resistance (or Kirchhoff
index) of G.

« Hitting time quasi-metric

Let G = (V,E) be a connected graph. Consider random walks on G, where
at each step the walk moves to a vertex randomly with uniform probability from
the neighbors of the current vertex. The hitting (or first-passage) time quasi-
metric H(u,v) fromu € V to v € V is the expected number of steps (edges) for
a random walk on G beginning at u to reach v for the first time; it is O for u = v.
This quasi-metric is a weightable quasi-semimetric (Chap. 1).

The commuting time metric is C(«, v) = H(u,v) + H(v, u).

Then C(u,v) = 2|E|£2(u,v), where £2(u,v) is the resistance metric (or
effective resistance), i.e., 0 if u = v and, otherwise, m is the current flowing
into v, when grounding v and applying a 1 volt potential to u (each edge is seen as

a resistor of 1 ohm). Also, £2(u, v) = SUps.y_,g p(f)=0 M, where DE(f)

DE(f)
is the Dirichlet energy of f,i.e., Y cx(f(s) —f(1)>.

The above setting can be generalized to weighted digraphs D = (V, E) with
arc-weights ¢; for ij € E and the cost of a directed (¢ — v) path being the sum
of the weights of its arcs. Consider the random walk on D, where at each step
the walk moves by arc ij with reference probability p;; proportional to Ciy, set

pij = 0if ij ¢ E. Saerens et al., 2008, defined the randomized et al. shortest
path quasi-distance d(u, v) on vertices of D as the minimum expected cost of a
directed (1 — v) path in the probability distribution minimizing the expected cost
among all distributions having a fixed Kullback-Leibler distance (Chap. 14)
with reference probability distribution. In fact, their biased random walk model
depends on a parameter 6 > 0. For § = 0 and large 6, the distance d(u, v) +
d(v, u) become a metric; it is proportional to the commuting time and the usual
path metric, respectively.
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Chebotarev—Shamis metric

Given @ > 0 and a connected weighted multigraph G = (V,E;w) with
positive edge-weight function w = (w(e)).cg, denote by L = ((I;)) the
Laplacian (or Kirchhoff) matrix of G, ie., I = —w(ij) for i # jand l; =
> i#i W(j). The Chebotarev—Shamis metric d, (u, v) (Chebotarev and Shamis,
2000, called %da (u, v) a-forest metric) between vertices u and v is defined by

2quy — Guu — Guv

for the protometric ((g;)) = —(I + L)™', where I is the identity matrix.

Chebotarev and Shamis showed that their metric of G = (V,E;w) is the
resistance metric of another weighted multigraph, G’ = (V', E’;w’), where
V =VU{0LE = EU{u0 : u € V}, while w'(e) = aw(e) foralle € E
and w'(u0) = 1 for all u € V. In fact, there is a bijection between the forests of
G and trees of G'. This metric becomes the resistance metric of G = (V, E; w) as
a — 00.

Their forest metric (1997) is the case o = 1 of the a-forest metric.

Chebotarev, 2010, remarked that 2 In g,,, —In g,,—In g,,, is a cutpoint additive
metric d, (u, v), i.e., d,(u, w) + dlJ(w,v) = dl(u,v) holds if and only if w lies
on any path connecting u and v. The metric d/ is the path metric if « — 0% and
the resistance metric if ¢« — oo.

Truncated metric

The truncated metric is a metric on the vertex-set of a graph, which is equal
to 1 for any two adjacent vertices, and is equal to 2 for any nonadjacent different
vertices. It is the 2-truncated metric for the path metric of the graph. It is the
(1,2) — B-metric if the degree of any vertex is at most B.
Hsu-Lyuu-Flandrin-Li distance

Given an m-connected graph G = (V,E) and two vertices u,v € V, a
container C(u,v) of width m is a set of m (u — v) paths with any two of them
intersecting only in u and v. The length of a container is the length of the longest
path in it.

The Hsu-Lyuu-Flandrin-Li distance between vertices # and v (Hsu-Lyuu,
1991, and Flandrin-Li, 1994) is the minimum of container lengths taken over all
containers C(u, v) of width m. This generalization of the path metric is used in
parallel architectures for interconnection networks.

Multiply-sure distance

The multiply-sure distance is a distance on the vertex-set V of an m-
connected weighted graph G = (V,E), defined, for any u,v € V, as the
minimum weighted sum of lengths of m disjoint (u—v) paths. This generalization
of the path metric helps when several disjoint paths between two points are
needed, for example, in communication networks, where m — 1 of (1 — v) paths
are used to code the message sent by the remaining (u — v) path (see [McCa97]).
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Cut semimetric

A cut is a partition of a set into two parts. Given a subset S of V,, =
{1, ..., n}, we obtain the partition {S, V,\S} of V,,. The cut semimetric (or split
semimetric) s defined by this partition, is a semimetric on V,, defined by

. 1, if i#j|SN{ij} =1,
3s(0.) = 0, otherwise.
Usually, it is considered as a vector in RIE|, E(n) = {{i.j} : 1 <i <j <n}.

A circular cut of V,, is defined by a subset 41 = {k+1,...,[}( mod n) C
Vy: if we consider the points {1, ...,n} as being ordered along a circle in that
circular order, then Sy is the set of its consecutive vertices from k + 1 to
[. For a circular cut, the corresponding cut semimetric is called a circular cut
semimetric.

An even cut semimetric (odd cut semimetric) is §s on V, with even
(odd, respectively) |S|. A k-uniform cut semimetric is ds on V, with |S| €
{k,n — k}. An equicut semimetric (inequicut semimetric) is §s on V, with
IS| € {151, 51} (ISI & {15]. [51}, respectively); see, for example, [DeLa97].
Decomposable semimetric

A decomposable semimetric is a semimetric on V, = {1,...,n} which can
be represented as a nonnegative linear combination of cut semimetrics. The set
of all decomposable semimetrics on V, is a convex cone, called the cut cone
CUT,.

A semimetric on V, is decomposable if and only if it is a finite /,-semimetric.

A circular decomposable semimetric is a semimetric on V, = {1,...,n}
which can be represented as a nonnegative linear combination of circular cut
semimetrics. A semimetric on V,, is circular decomposable if and only if it is a
Kalmanson semimetric with respect to the same ordering (see [ChFi98]).
Finite /,-semimetric

A finite /,-semimetric d is a semimetric on V,, = {1,. .., n} such that (V,, d)
is a semimetric subspace of the [}-space (R™, d;,) for some m € N.

If, instead of V,, is taken X = {0, 1}", the metric space (X, d) is called the
l,-cube. The [{-cube is called a Hamming cube; cf. Chap.4. It is the graphic
metric space associated with a hypercube graph H(n, 2), and any subspace of it
is called a partial cube.

Kalmanson semimetric

A Kalmanson semimetric d with respect to the ordering 1,...,n is a

semimetric on V, = {1, ..., n} which satisfies the condition

max{d(i,j) + d(r,s),d(i,s) + d(j,r)} <d(i,r) +d(j,s)
foralll <i<j<r<s<n.

Equivalently, if the points {1,...,n} are ordered along a circle C, in that
circular order, then the distance d on V, is a Kalmanson semimetric if the
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inequality
d(i,r) +d(j.s) = d(.j) +d(r,s)

holds for i,j,r,s € V, whenever the segments [i,/], [r, s] are crossing chords
of C,.

A tree-like metric is a Kalmanson metric for some ordering of the vertices of
the tree. The Euclidean metric, restricted to the points that form a convex polygon
in the plane, is a Kalmanson metric.

* Multicut semimetric

Let {Si,....,S4}, ¢ > 2, be a partition of the set V, = {1,...,n}, ie., a
collection Sy, .. ., S, of pairwise disjoint subsets of V,, such that §;U- - -US, = V.

The multicut semimetric 851““,3‘/ is a semimetric on V,, defined by

0, if i,j € S, forsomeh,1 <h <gq,
1, otherwise.

¢ Oriented cut quasi-semimetric
Given a subset S of V,, = {1,..., n}, the oriented cut quasi-semimetric § is
a quasi-semimetric on V,, defined by

ro 1,ifieS,jgs
8 , — bl 9 ’ bl
s(0.J) % 0, otherwise.
Usually, it is considered as the vector of R I(n) = {(i,j) : 1 <i #j < n}.
The cut semimetric §s is 8 -+ 8;, \s-
¢ Oriented multicut quasi-semimetric
Given a partition {Sy,...,S4}, ¢ = 2, of V,, the oriented multicut quasi-

1, if i€SyjeSy,h<m,
""" 0, otherwise

15.2 Distance-Defined Graphs

Below we first give some graphs defined in terms of distances between their vertices.
Then some graphs associated with metric spaces are presented.

A graph (V,E) is, say, distance-invariant or distance monotone if its metric
space (V,dpun) is distance invariant or distance monotone, respectively (cf.
Chap. 1). The definitions of such graphs, being straightforward subcases of corre-
sponding metric spaces, will be not given below.
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e k-power of a graph

The k-power of a graph G = (V, E) is the supergraph G* = (V, E’) of G with

edges between all pairs of vertices having path distance at most k.
* Distance-residual subgraph

For a connected finite graph G = (V,E) and a set M C V of its vertices, a
distance-residual subgraph is (Luksic and Pisanski, 2010) a subgraph induced
on the set of vertices u of G at the maximal point-set distance min,ep dpan (1, v)
from M. Such a subgraph is called vertex-residual if M consists of a vertex, and
edge-residual if M consists of two adjacent vertices.

* Isometric subgraph

A subgraph H of a graph G = (V, E) is called an isometric subgraph if the
path metric between any two points of H is the same as their path metric in G.

A subgraph H is called a convex subgraph if it is isometric, and for any u, v €
H every vertex on a shortest (¢« — v) path belonging to H also belongs to H.
Taking, instead of shortest, other types of paths (say, any, longest, induced) or
walks, one gets corresponding notions of convexity.

A subset M C V is called gated if for every u € V \ M there exists a unique
vertex g € M (called a gate) lying on a shortest (u — v) path for every v € M.
The subgraph induced by a gated set is a convex subgraph.

* Retract subgraph

A subgraph H of G is called a retract subgraph if it is induced by an
idempotent metric mapping of G into itself, ie., f2 = f : V — V with
dpain (f (1), f(v)) < dpan(u, v) for u, v € V. Any retract subgraph is isometric.

* Partial cube

A partial cube is an isometric subgraph of a Hamming cube, i.e., of a
hypercube H (m, 2). Similar topological notion was introduced by Acharya, 1983:
any graph (V, E) admits a set-indexing f : VUE — 2X with injective f|y, f|z and
f(mv) = f(u) Af (v) for any (uv) € E. The set-indexing number is min | X]|.

e Median graph

A connected graph G = (V,E) is called a median graph if, for any three
vertices u, v,w € V, there exists a unique vertex that lies simultaneously on a
shortest (v — v), (u —w) and (w — v) paths, i.e., (V, dpan) is a median metric
space.

The median graphs are exactly retract subgraphs of hypercubes and exactly
1-skeletons of a CAT(0) cube complexes. Also, they are exactly partial cubes
such that the vertex-set of any convex subgraph is gated (cf. isometric sub-
graph).

¢ Geodetic graph

A graph is called geodetic if there exists at most one shortest path between any
two of its vertices. A graph is called strongly geodetic if there exists at most one
path of length less than or equal to the diameter between any two of its vertices.

A uniformly geodetic graph is a connected graph such that the number of
shortest paths between any two vertices « and v depends only on d(u, v).

A graph is a forest (disjoint union of trees) if and only if there exists at most
one path between any two of its vertices.
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The geodetic number of a finite connected graph (V, E) ([BuHa90]) is min |M|
over sets M C V such that any x € V lies on a shortest («—v) path with u, v € M.

¢ k-geodetically connected graph

A k-connected graph is called (Entringer—Jackson—Slater, 1977) k-
geodetically connected (k — GC) if the removal of less than k vertices (or,
equivalently, edges) does not affect the path metric between any pair of the
remaining vertices.

2 — GC graphs are called self-repairing. Cf. Hsu-Lyuu-Flandrin-Li
distance.

¢ Interval distance monotone graph

A connected graph G = (V, E) is called interval distance monotone if any
of its intervals I (u, v) induces a distance monotone graph, i.e., its path metric
is distance monotone, cf. Chap. 1.

A graph is interval distance monotone if and only if (Zhang—Wang, 2007) each
of its intervals is isomorphic to either a path, a cycle or a hypercube.

¢ Distance-regular graph

A connected regular (i.e., every vertex has the same degree) graph G = (V, E)
of diameter 7 is called distance-regular (or drg) if, for every two its vertices u, v
and any integers 0 < i,j < T, the number |[{w € V : dpan (. W) = i, dpan (v, W) =
Jj}| depends only on i, j and k = dpan (1, v), but not on the choice of u and v.

A special case of it is a distance-transitive graph, i.e., such that its group of
automorphisms is transitive, forany 0 < i < T, on the pairs of vertices («, v) with
dpan (1, v) = i. Given a number 5,1 < s < T, a graph is said to be s-geodesic-
transitive or s-distance transitive if its automorphism group acts transitively on
the sets of i-geodesics (shortest paths of length i), for 0 < i < s, or, respectively,
on the sets of ordered vertex pairs at distance i, for 0 <i <.

Any drg is a distance-balanced graph (or dbg), i.e., |W,,| = |W,.|, where
Wi = {x € V 1 d(x,u) < d(x,v)}. Such graph is also called self-median since
it is exactly one, metric median (cf. eccentricity in Chap. 1) of which is V. A
gbg is called nicely distance-balanced if |W, | is the same for all edges uv.

Any drg is a distance degree-regular graph (i.e., |[{x € V : d(x,u) = i}
depends only on i; such graph is also called strongly distance-balanced), and a
walk-regular graph (i.e., the number of closed walks of length i starting at u
depends only on i). van Dam—-Omidi, 2013, call a graph strongly walk-regular if
there is an / > 2 such that the number of walks of length / from u to v depends
only on whether the d(u, v) is 0, 1, or > 2; for [ = 2, itis a strongly regular graph,
i.e., a drg of diameter 2. A d-Deza graph (Gu, 2013) is a regular graph (V, E) in
which there are exactly d different values of [{w € V : d(u,w) = d(v,w) = 1}|
for distinct u, v € V.

Any drg is a sphere-regular graph (Dehmer, 2008), i.e., its path metric is
distance-invariant (all closed balls of the same radius have the same size; cf.

Chap. 1).
A graph G is a distance-regularized graph if for each u € V, if admits
an intersection array at vertex u, i.e., the numbers a;(u) = |Gi(u) N G,(v)|,

bi(u) = |Gi+1(u) N G1(v)| and ¢;(u) = |Gi—1(v) N G;(v)| depend only on the
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distance d(u, v) = i and are independent of the choice of the vertex v € G;(u).
Here, for any i, G;(w) is the set of all vertices at the distance i from w. Godsil—-
Shawe-Taylor, 1987, defined such graph and proved that it is either drg or
distance-biregular (a bipartite one with vertices in the same class having the
same intersection array).

A drg is also called a metric association scheme or P-polynomial association
scheme. A finite polynomial metric space (Chap. 1) is a special case of it, also
called a (P and Q)-polynomial association scheme.

¢ Distance-regular digraph

A strongly connected digraph D = (V,E) is called distance-regular
(Damerell, 1981) if, for any its vertices u, v with dpan(u, v) = k and for any
integer 0 < i < k + 1, the number of vertices w, such that dpau(, w) = i and
dpain (v, w) = 1, depends only on k and #, but not on the choice of u and v. In order
to find interesting classes of distance-regular digraphs with unbounded diameter,
the above definition was weakened by two teams in different directions.

Call d(x,y) = (d(x,y),d(y,x)) the two-way distance in digraph D. A
strongly connected digraph D = (V,E) is called weakly distance-regular
(Wang and Suzuku, 2003) if, for any its vertices u, v with d(u,v) = (ki, k),
the number of vertices w, such that d(w,u) = (i1,i2) and d(w,v) = (j1,j2),
depends only on the values ki, k>, i1, 12, j1,j>. Comellas et al., 2004, defined a
weakly distance-regular digraph as one in which, for any vertices u and v, the
number of u — v walks of every given length only depends on the distance
d(u,v).

e Metrically almost transitive graph

An automorphism of a graph G = (V,E)isamap g : V — V such that u
is adjacent to v if and only if g(u) is adjacent to g(v), for any u,v € V. The
set Aut(G) of automorphisms of G is a group with respect to the composition of
functions.

A graph G is metrically almost transitive (Kron—Moller, 2008) if there is an
integer r such that, for any vertex u € V it holds

Ugeau(o){g(Bu,r) = {v € V : dpan(u,v) < 1)} = V.

* Metric end

Given an infinite graph G = (V, E), a ray is a sequence (xo, x1, . . .) of distinct
vertices such that x; and x;+ are adjacent for i > 0.

Two rays R; and R, are equivalent whenever it is impossible to find a
bounded—set of vertices F such that any path from R to R, contains an element
of F.

Metric ends are defined as equivalence classes of metric rays which are rays
without infinite, bounded subsets.
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Graph of polynomial growth
Let G = (V,E) be a transitive locally finite graph. For a vertex v € V, the
growth function is defined by

Fn) = [u e V: du,v) < n}l,

and it does not depend on v. Cf. growth rate of metric space in Chap. 1.

The graph G is a graph of polynomial growth if there are some positive
constants k, C such that f(n) < Cn* for all n > 0. It is a graph of exponential
growth if there is a constant C > 1 such that f(n) > C" forall n > 0.

A group with a finite symmetric set of generators has polynomial growth rate
if the corresponding Cayley graph has polynomial growth. Here the metric ball
consists of all elements of the group which can be expressed as products of at
most n generators, i.e., it is a closed ball centered in the identity in the word
metric, cf. Chap. 10.

Distance-polynomial graph

Given a connected graph G = (V, E) of diameter 7, for any 2 < i < T denote
by G; the graph (V,E ) withE' = {e = uv € E : dpan(, v) = i}. The graph G
is called a distance-polynomial if the adjacency matrix of any G;,2 <i < T, is
a polynomial in terms of the adjacency matrix of G.

Any distance-regular graph is a distance-polynomial.

Distance-hereditary graph

A connected graph is called distance-hereditary (Howorka, 1977) if each of
its connected induced subgraphs is isometric.

A graph is distance-hereditary if each of its induced paths is isometric. A
graph is distance-hereditary, bipartite distance-hereditary, block graph, tree if
and only if its path metric is a relaxed tree-like metric for edge-weights being,
respectively, nonzero half-integers, nonzero integers, positive half-integers, pos-
itive integers.

A graphis called a parity graph if, for any u, v € V, the lengths of all induced
(u—v) paths have the same parity. A graph is a parity graph (moreover, distance-
hereditary) if and only if every induced subgraph of odd (moreover, any) order
of at least five has an even number of Hamiltonian cycles (McKee, 2008).
Distance magic graph

A graph G = (V,E) is called (Vilfred, 1994) a distance magic graph if it
admits a distance magic labeling, i.e., a magic constant k > 0 and a bijection
f:V—=A{L2,... |V} withw(v) = ), cpf(v) = kforeveryu e V.

Cf. rendez-vous number in Chap. 1. These graphs generalize magic squares
(such complete n-partite graphs with parts of size n). Among such trees, cycles
and K, only Py, P3, C4 are distance magic. The hypercube graph H(m,?2) is
distance magic if m = 2,6 butnotif m =0, 1,3 ( mod 4).

The graph G = (V, E) is said (Kamatchi—-Arumugam, 2013) to be distance
anti-magic if w(u) # w(v) for all u,v € V. Cichacz et al., 2015, extended both
above notions on vertex-labeling by elements of an Abelian group.
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The graph G = (V, E) is said (O’Neil-Slater, 2011) to be D-distance magic
if it admits a D-distance magic labeling, i.e., a magic constant k > 0 and a
bijection f 1 V — {1,2,..., |V]} with w(v) = 3 cv.yvyepf ) = k for every
ucV.
* Block graph
A graph is called a block graph if each of its blocks (i.e., a maximal 2-
connected induced subgraph) is a complete graph. Any tree is a block graph.
A graph is a block graph if and only if its path metric is a tree-like metric or,
equivalently, satisfies the four-point inequality.
* Ptolemaic graph
A graph is called Ptolemaic if its path metric satisfies the Ptolemaic
inequality

d(x,y)d(u,z) < d(x,u)d(y,z) + d(x,2)d(y, u).

A graph is Ptolemaic if and only if it is distance-hereditary and chordal, i.e., every
cycle of length greater than 3 has a chord. So, any block graph is Ptolemaic.
* k-cocomparability graph
A graph G = (V,E) is called (Chang-Ho-Ko, 2003) k-cocomparability
graph if its vertex-set admits a linear ordering < such that for any three vertices
u<v<w,d(u,w) <kimplies d(u,v) < kord(v,w) < k.
* Distance-perfect graph
Cvetkovic et al., 2007, observed that any graph of diameter 7' has at most
k 4+ T* vertices, where k is its location number (Chap. 1), i.e., the minimal
cardinality of a set of vertices, the path distances from which uniquely determines
any vertex. They called a graph distance-perfect if it meets this upper bound and
proved that such a graph has T # 2.
* t-irredundant set
A set S C V of vertices in a connected graph G = (V,E) is called -
irredundant (Hattingh—Henning, 1994) if for any u € S there exists a vertex
v € V such that, for the path metric dpa, of G, it holds

dpath(vsx) =t< dpath(vs VAS) = n;:}? dpath(vs u).

The r-irredundance number ir; of G is the smallest cardinality |S| such that S is
t-irredundant but S U {v} is not, for every v € V\S.

The t-independent number o, and distance -domination number y, of G
are, respectively, the cardinality of the largest [%] -packing and smallest (¢ + 1)-
covering (by the open balls of the radius -+ 1) of the metric space (V, dpam (1, v));
cf. the radii of metric space in Chap. 1. Then it holds "’TH <ir, <y <.

Let C, be the largest constant such that y1 > C, 37, d(x;,x;) for r
vertices of any connected graph; Kang, 2015, showed that C, = % and C, =
ﬁ for r > 3, implying that y; > ad(G), where ad denotes the average
distance.
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The distance t-vertex cover number of G is (Canales et al., 2015) the minimum
cardinality of the set S C V, such that for each edge e of G, there is a path of
length at most # that contains e and a vertex from S.

If G is plane graph, then its distance t-guarding number is (Canales et al.,
2015) the minimum cardinality of the set S C V, such that for every face f of G,
there is a vertex u in the boundary of f, and a vertex v € S with dpam (1, v) < 1.

¢ r-locating-dominating set

Let D=(V,E) be a digraph and C C V, and let B, (v) denote the set of all
vertices x such that there exists a directed (x — v) path with at most r arcs.

If B-(v) N C, v € V\ C (respectively, v € V), are nonempty distinct
sets, C is called (Slater, 1984) an r-locating-dominating set (respectively, an r-
identifying code; cf. Chap. 16) of D. Such sets of smallest cardinality are called
optimal.

¢ Locating chromatic number

The locating chromatic number of a graph G = (V,E) is the minimum
number of color classes Cy, ..., C, needed to color vertices of G so that any two
adjacent vertices have distinct colors and each vertex u € V has distinct color
code (minyec, d(u, v), . .., minyec, d(u, v)).

* k-distant chromatic number

The k-distant chromatic number of a graph G = (V,E) is the minimum
number of colors needed to color vertices of G so that any two vertices at distance
at most k have distinct colors, i.e., it is the chromatic number of the k-power of G.

* Distance between edges

The distance between edges in a connected graph G = (X, E) is the number
of vertices in a shortest path between them. So, adjacent edges have distance 1.

A distance-k matching of G is a set of edges no two of which are within
distance k. For k = 1, it is the usual matching. For k = 2, it is also induced (or
strong) matching. A distance-k matching of G is equivalent to an independent set
in the k-power of the line graph of G. A distance-k edge-coloring of G is an
edge-coloring such that each color class induces a distance-k matching.

The distance-k chromatic index 1, (G) is the least integer ¢ such that there
exists a distance-r edge-coloring of G. The distance-k matching number v;(G)
is the largest integer ¢ such that there exists a distance-# matching in G with ¢
edges. It holds that ui (G)vi(G) > |E]|.

The distance between faces of a plane graph is the number of vertices in a
shortest path between them. A distance-k face-coloring is a face-coloring such
that any two faces at distance at most k have different colors. The distance-k
face chromatic index is the least integer ¢ such that such coloring by ¢ colors
exists. The dual notion is k-distance coloring of a graph G = (V,E), i.e, a
vertex-coloring such that any two vertices at distance at most k receives different
colors.

* Distance integral graph

Given a finite graph G, its distance polynomial (cf. Chap. 1) is the determi-
nant det(D — AI), where D is the distance matrix of the path metric of G.

A graph is called distance integral if all roots of this polynomial are integers.
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¢ D-distance graph

Given a set D of positive numbers containing 1 and a metric space (X, d), the
D-distance graph is a graph G = (V = X, E) with the edge-set E = {uv :
d(u,v) € D} (cf. D-chromatic number in Chap. 1). If (X, d) is path metric of a
graph H, then G is called the distance power H” of H.

Alon—Kupavsky, 2014, call G (in the case (X,d) = E", d = {1}) the faithful
unit-distance graph, using term unit-distance graph for E C {(u,v) : |lu—v||, =
1}.

For a positive number ¢, the signed distance graph is (Fiedler, 1969) a signed
graph with the vertex-set X in which vertices x, y are joined by a positive edge if
t > d(x,y), by a negative edge if d(x, y) > ¢, and not joined if d(x,y) = r.

A D-distance graph is called a distance graph (or unit-distance graph) if
D = {1}, an €-unit graph if D = [1 — €, 1 + €], a unit-neighborhood graph if
D = (0, 1], an integral-distance graph if D = 7, a rational-distance graph if
D = Q4, and a prime-distance graph if D is the set of prime numbers (with 1).

Every finite graph can be represented by a D-distance graph in some E". The
minimum dimension of such a Euclidean space is called the D-dimension of G.
A matchstick graph is a crossingless unit-distance graph in E?.

¢ Distance-number of a graph

Given a graph G = (V, E), its degenerate drawing is a mapping f : V — R?
such that |[f(V)| = |V| and f(uv) is an open straight-line segment joining the
vertices f(¢#) and f(v) for any edge uv € Ej it is a drawing if, moreover, f(w) ¢
f(uv) forany uv € Eandw € V.

The distance-number dn(G) of a graph G is (Carmi et al. 2008) the
minimum number of distinct edge-lengths in a drawing of G.

The degenerate distance-number of G, denoted by ddn(G), is the minimum
number of distinct edge-lengths in a degenerated drawing of G. The first of
the Erdos-type distance problems in Chap. 19 is equivalent to determining
ddn(K,).

¢ Dimension of a graph

The dimension dim(G) of a graph G is (Erdos—Harary—Tutte, 1965) the
minimum k such that G has a unit-distance representation in RX, i.e., every edge
is of length 1. The vertices are mapped to distinct points of R¥, but edges may
Cross.

For example, dim(G) =n—1,4,2 for G = K,,, K;,, C, (im > n > 3).

¢ Bar-and-joint framework

A n-dimensional bar-and-joint framework is a pair (G,f), where G =
(V,E) is a finite graph (no loops and multiple edges) and f : V — R” is a map
with f (1) # f(v) whenever uv € E. The framework is a straight line realization
of G in R" in which the length of an edge uv € E is given by ||f(u) — f(v)]]2-

The vertices and edges are called joints and bars, respectively, in terms of
Structural Engineering. A tensegrity structure (Fuller, 1948) is a mechanically
stable bar framework in which bars are either cables (tension elements which
cannot get further apart), or struts (compression elements which cannot get closer
together).
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A framework (G,f) is globally rigid if every framework (G, f”), satisfying
(If(@) — f)|l2 = [If'(w) — f'(v)|]» for all uv € E, also satisfy it for all
u,v € V. A framework (G, f) is rigid if every continuous motion of its vertices
which preserves the lengths of all edges, also preserves the distances between
all pairs of vertices. The framework (G, f) is generic if the set containing the
coordinates of all the points f(v) is algebraically independent over the rationals.
The graph G is n-rigid if every its n-dimensional generic realization is rigid. For
generic frameworks, rigidity is equivalent to the stronger property of infinitesimal
rigidity.

An infinitesimal motion of (G,f) isa map m : V — R" with (m(u) —
m())(f(u) — f(v)) = 0 whenever uv € E. A motion is trivial if it can be
extended to an isometry of R". A framework is an infinitesimally rigid if every
motion of it is trivial, and it is isostatic if, moreover, the deletion of any its edge
will cause loss of rigidity. (G.,f) is an elastic framework if, for any ¢ > 0,
there exists a § > 0 such that for every edge-weighting w : E — R.( with
max,peg [wuv) — ||f (@) — f()||2] < 8, there exist a framework (G, ') with
maxyev |[f (1) —f'(v)|]2 < e.

A framework (G,f) with ||[f(u) — f(v)||o > rif u,v € V,u # c and
[If (w),f(v)||2 < Rif uv € E, for some 0 < r < R, is called (Doyle—Snell, 1984)
a civilized drawing of a graph. The random walks on such graphs are recurrent if
n=1,2.

* Distance constrained labeling

Given a sequence o = («j, ..., ;) of distance constraints o; > --- > o >
0, a Ay-labeling of a graph G = (V,E) is an assignment of labels f(v) from
the set {0, 1,...,A} of integers to the vertices v € V such that, for any ¢ with

0 <t <k |f(v) —f(u)| > a; whenever the path distance between u and v is 7.

The radio frequency assignment problem, where vertices are transmitters
(available channels) and labels represent frequencies of not-interfering channels,
consists of minimizing A. Distance-two labeling is the main interesting case
a = (2,1); its span is the difference between the largest and smallest labels
used.

¢ Distance-related graph embedding

An embedding of the guest graph G = (V), E)) into the host graph H =
(Va, E») with |V| < |V3|, is an injective map from V) into V;.

The wire length, dilation and antidilation of G in H are

min 3 dy(£().fW). min max dy(£0).f©). max min dy(F(0).f(0).

(uv)€E;

respectively, where f is any embedding of G into H. The main distance-
related graph embedding problems consist of finding or estimating these three
parameters.

The bandwidth and antibandwidth of G is the dilation and antidilation,
respectively, of G in a path H with V| vertices.
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¢ Bandwidth of a graph

Given a graph G = (V, E) with |V| = n, its ordering is a bijective mapping
f:V—=>{l,...,n}. Given a number b > 0, the bandwidth problem for (G, b) is
the existence of ordering f with the stretch max,,eg |f(u) — f(v)| at most b.

The bandwidth of G, denoted by bw(G), is the minimum stretch over all f.

The antibandwidth problem for G is to find ordering f with maximal
min,,eg |f () — f(v)| (antibandwidth).

¢ Path distance width of a graph

Given a connected graph G = (V, E), an ordered partition V = U_, L; of its
vertices is called a distance structure on Gif L; = {v € V : minyey, dpan (1, v) =
i— 1} for 1 <i <t The structure is rooted if |L;| = 1.

The path distance width pwd(G) of G is defined (Yamazaki et al., 1999) as
min max <;< |L;| over all distance structures on G.

An ordered partition V = U!_ L; is called a level structure on G if for each
edge uv with u € L; and v € L;, it holds that |i — j| < 1. The level width (or
strong pathwidth) Iw(G) is min max, <;<; |L;| over all level structures.

Clearly, iw(G) < pdw(G). Yamazaki et al., 1999, proved that pdw(G) can be
arbitrarily larger than the bandwidth bw(G) and Iw(G) < bw(G) < 2Iw(G).

* Tree-length of a graph

A tree decomposition of a graph G = (V, E) is a pair of a tree T with vertex-

set W and a family of subsets {X; : i € W} of V with U;eyX; = V such that

1. for every edge (#v) € E, there is a subset X; containing u, v, and
2. forevery v € V, the set {i € W : v € X;} induces a connected subtree of 7.

The chordal graphs (i.e., ones without induced cycles of length at least 4) are
exactly those admitting a tree decomposition where every X; is a clique.

For tree decomposition, the tree-length is max;ew diam(X;) (diam(X;) is the
diameter of the subgraph of G induced by X;) and tree-width is max;ew |X;| —
1. The tree-length of G (Dourisboure—Gavoille, 2004) and its tree-width
(Robertson—Seymour, 1986) are the minima, over all tree decompositions, of
above tree-length and tree-width. The path-length G is defined taking as trees
only paths.

Given a linear ordering ey, ..., e|g of the edges of G, let, for I < i <
|E|, denote by G<; and G, the graphs induced by the edges {ei,...,e;} and
{eir1, ..., e}, respectively. The linear-length is max;<;|g diam(V(G<;) N
V(Gi<)). The linear-length of G (Umezawa—Yamazaki, 2009) is the minimum
of the above linear-length taken over all the linear orderings of its edges.

e Spatial graph

A spatial graph (or spatial network) is a graph G = (V, E), where each vertex
v has a spatial position (vy, ..., v,) € R". (G is called a geometric graph if it is
drawn on R? and its edges are straight-line segments.)

The graph-theoretic dilation and geometric dilation of G are, respectively:

d(v, u) d(v, u)
v,u€V ||U—M||2 (vu)€EE ||U—M||2'
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¢ Distance Geometry problem
Given a weighted finite graph G = (V,E;w), the Distance Geometry
problem (DGP) is the problem of realizing it as a spatial graph G = (V', E),
where x : V — V' is a bijection with x(v) = (v1,...,v,) € R" foreveryv € V
and E' = {(x(u)x(v)) : (uv) € E}, so that for every edge (uv) € E it holds that

[lx(u) = x(@)]]2 = w(uv).

The main application of DGP is the molecular DGP: to find the coordinates of
the atoms of a given molecular conformation are by exploiting only some of the
distances between pairs of atoms found experimentally; cf. [MLLM13].

¢ Arc routing problems

Given a finite set X, a quasi-distance d(x,y) onitandaset A C {(x,y) : x,y €
X}, consider the weighted digraph D = (X, A) with the vertex-set X and arc-
weights d(x, y) for all arcs (x,y) € A. For given sets V of vertices and E of arcs,
the arc routing problem consists of finding a shortest (i.e., with minimal sum
of weights of its arcs) (V, E)-tour, i.e., a circuit in D = (X, A), visiting each
vertex in V and each arc in E exactly once or, in a variation, at least once.

The Asymmetric Traveling Salesman problem corresponds to the case V = X,
E = 0; the Traveling Salesman problem is the symmetric version of it (usually,
each vertex should be visited exactly once). The Bottleneck Traveling Salesman
problem consists of finding a (V, E)-tour T with smallest maxyer d(x,y).

The Windy Postman problem corresponds to the case V = @, E = A, while
the Chinese Postman problem is the symmetric version of it.

The above problems are also considered for general arc- or edge-weights;
then, for example, the term Metric TSP is used when edge-weights in the
Traveling Salesman problem satisfy the triangle inequality, i.e., d is a quasi-
semimetric.

» Steiner distance of a set

The Steiner distance of a set S C V of vertices in a connected graph
G = (V,E) is (Chartrand et al., 1989) the minimum size (number of edges) of a
connected subgraph of G, containing S. Such a subgraph is a tree, and is called a
Steiner tree for S. Cf. general Steiner diversity in Steiner ratio (Chap. 1).

The Steiner distance of the set S = {u, v} is the path metric between u and
v. The Steiner k-diameter of G is the maximum Steiner distance of any k-subset
of V.

* f-spanner

A factor, i.e., a spanning subgraph, H = (V,E(H)) of a connected graph
G = (V,E) is called a t-spanner (or t-multiplicative spanner) of G if, for every
u,v € V, the inequality df};th(u, v)/ dgath(u, v) < t holds. The value ¢ is called
the stretch factor (or dilation) of H. Cf. distance-related graph embedding and
spatial graph.

The graph H = (V, E(H)) is called a k-additive spanner of G if, for every

u,v € V, the inequality d},, (u, v) < dS (u,v) + k holds.
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Mulder and Nebesky, 2012, defined, for connected H, the guide of (H, G) as
the ternary relation R C V x V x V consisting of ordered triples (u, w, v) such
that uw € E and d{;{nh(u, w) + d{;{nh(w, V) = dg’ath(u, v). The guide of (G, G) is

called the step ternary relation; cf. metric betweenness in Chap. 1.
¢ Optimal realization of metric space

Given a finite metric space (X, d), a realization of it is a weighted graph G =
(V,E;w) with X C V such that d(x,y) = dg(x,y) holds forall x,y € X.

The realization is optimal if it has minimal ) (uyeg W(Uv).

¢ Proximity graph

Given a finite subset V of a metric space (X, d), its proximity graph is a graph
representing neighbor relationships between points of V. Such graphs are used
in Computational Geometry and many real-world problems. The main examples
are presented below. Cf. underlying graph of a metric space in Chap. 1.

A spanning tree of V is a set T of |V| — 1 unordered pairs (x, y) of different
points of V forming a tree on V; the weight of T is Z(X’},)ET d(x,y). A minimum
spanning tree MST (V) of V is a spanning tree with the minimal weight. Such a
tree is unique if the edge-weights are distinct.

A nearest neighbor graph is the digraph NNG(V) = (V, E) with vertex-set
V =wi,...,vy and, forx,y € V, xy € Eif y is the nearest neighbor of x, i.e.,
d(x,y) = min,ey\(x d(x, v;) and only v; with maximal index i is picked. The k-
nearest neighbor graph arises if k such v; with maximal indices are picked. The
undirect version of NNG(V) is a subgraph of MST (V).

A relative neighborhood graph is (Toussaint, 1980) the graph RNG(V) =
(V,E) with vertex-set V and, for x,y € V, xy € E if there is no point z € V
with max{d(x,z),d(y,z)} < d(x,y). Also considered, for (X,d) = (R?,||x —
yll2), the related Gabriel graph GG(V) (in general, B-skeleton) and Delaunay
triangulation DT(V); then NNG(V) € MST(V) € RNG(V) € GG(V) <
DT (V).

For any x € V, its sphere of influence is the open metric ball B(x, r,) = {z €
X :d(x,z) < r}in(X,d) centered at x with radius 7, = min e\ d(x, 2).

Sphere of influence graph is the graph SIG(V) = (V, E) with vertex-set V
and, forx,y € V, xy € Eif B(x,r,) N B(y,ry) # @; so, it is a proximity graph
and an intersection graph. The closed sphere of influence graph is the graph
CSIG(V) = (V,E) with xy € Eif B(x,r,) N B(y, ry) # @.

15.3 Distances on Graphs

¢ Chartrand-Kubicki-Schultz distance
The Chartrand-Kubicki—Schultz distance (or ¢-distance, 1998) between
two connected graphs G; = (V, E}) and G, = (Va, Ez) with |V| = |V, = niis

min{Z |d, (1, v) — dg, (¢ (), p ()1},



298 15 Distances in Graph Theory

where dg,,dg, are the path metrics of graphs Gy, G, the sum is taken over
all unordered pairs u, v of vertices of G|, and the minimum is taken over all
bijections ¢ : V| — V.
e Subgraph metric
LetF = {F) = (V1,E)),F, = (Va,E,),...,} be the set of isomorphism
classes of finite graphs. Given a finite graph G = (V, E), denote by s;(G) the
number of injective homomorphisms from F; into G, i.e., the number of injections
¢V, > Vwithp(x)p(y) € Eif xy € E; divided by the number % of such
injections from F; with |V;| < |V| into K}y. Set s(G) = (s:/(G)Z € [0, 1]°°.
Let d be the Cantor metric (Chap. 18) d(x,y) = > 2, 27 |x; — y;| on [0, 1]
or any metric on [0, 1]°° inducing the product topology. Then Bollobas—Riordan,
2007, defined the subgraph metric between the graphs G; and G, as

d(s(G1), s(G2))

and generalized it on kernels (or graphons), i.e., symmetric measurable functions
k:[0,1] x [0, 1] = Rs, replacing G by k and the above 5;(G) by

Vil

si(k) = /[0.1] " 1_[ k()cht)l—[dxY

StEE;

¢ Benjamini-Schramm metric

The rooted graphs (G, 0) and (G', 0’) (where G = (V,E),G = (V',E’) and
0 € V,0' € V') are isomorphic is there is a graph-isomorphism of G onto G’
taking o to o’. Let X be the set of isomorphism classes of rooted connected locally
finite graphs and let (G, 0), (G’, 0’) be representatives of two classes.

Let k be the supremum of all radii r, for which rooted metric balls
(Bg(0,7),0) and (Bg(0',r),0') (in the usual path metric) are isomorphic as
rooted graphs. Benjamini and Schramm, 2001, defined the metric 27* between
classes represented by (G, 0) and (G, 0'). Here 27°° means 0. Benjamini and
Curien, 2011, defined the similar distance 1—+k

¢ Rectangle distance on weighted graphs

Let G = G(«, B) be a complete weighted graph on {1,...,n} with vertex-
weights o; > 0, 1 < i < n, and edge-weights B;; € R, 1 < i < j < n. Denote by
o Pl

(leiﬁjai)z ’
The rectangle distance (or cut distance) between two weighted graphs G =

G(a, B) and G’ = G(/, B') (with vertex-weights (;) and edge-weights (8)) is
defined (Borgs—Chayes—Lovasz—S6s—Vesztergombi, 2007) by

A(G) the n x n matrix ((a;)), where a; =

/

o
maX | Z (al] a; )|+Z| :
1Jcil v 2151<n ) Zliifﬂ o

""" i€l jeJ

where A(G) = ((a;)) and A(G') = ((a})).
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In the case (a)) = (), the rectangle distance is [|A(G) — A(G)]|cus, i-e.,
the cut norm metric (cf. Chap. 12) between matrices A(G) and A(G’) and the
rectangle distance from Frieze—Kannan, 1999. In this case, the /- and l,-metrics
between two weighted graphs G and G’ are defined as ||A(G) — A(G')|]; and
[|A(G) —A(G)||2, respectively. The subcase o; = 1 forall 1 < i < n corresponds
to unweighted vertices. Cf. the Robinson-Foulds weighted metric.

Authors generalized the rectangle distance on kernels (or graphons), i.e.,
symmetric measurable functions & : [0, 1] x [0, 1] — Rxo, using the cut norm
1kl e = Sups 7oy | forer KCx. y)ddy].

A map ¢ : [0, 1] — [0, 1] is measure-preserving if, for any measurable subset
A C [0, 1], the measures of A and ¢~!(A) are equal. For a kernel k, define the
kernel k% by k? (x,y) = k(¢ (x), ¢(y)). The Lovasz—Szegedy semimetric (2007)
between kernels k; and k; is defined by

igfllk‘f — k2 lewrs

where ¢ ranges over all measure-preserving bijections [0,1] — [0,1]. Cf.
Chartrand-Kubicki-Schultz distance.
* Spectral semimetric between graphs

Given a finite weighted graph G = (V, E, w), its normalised Laplacian matrix
is Ag = I—D™'A, where D is the diagonal matrix ((;;)) with /; being the degree
of vertex i, while A is the adjacency matrix of G; cf. the resistance metric.

The spectrum of G consists of all eigenvalues A;,1 < i < |V|, of Ag. The
spectrum, organised as A¢ = (4i,...,4)y|), where the A; do not decrease, is
called the spectral vector.

The spectral semimetric between two finite weighted graphs G = (V, E, w)
and G’ = (V/, E',w') with |V| = |V'| = n is defined (Gu-Hua-Liu, 2015) as

1
dy(G.G') = ~lAe = e .

i.e., the /,-distance between the spectral vectors, forany 1 < p < co.

In fact, by assigning a probability measure via the spectrum of the normalised
Laplacian matrix to each graph, Gu, Hua, and Liu defined their spectral distance
d, as the L,-Wasserstein distance (cf. Chap. 14) between probability measures
on the set of all, including infinite and random, weighted graphs.

¢ Subgraph-supergraph distances

A common subgraph of graphs G| and G is a graph which is isomorphic to
induced subgraphs of both G| and G,. A common supergraph of graphs G| and
G, is a graph which contains induced subgraphs isomorphic to G and G,.

The Zelinka distance d; ([Zeli75]) on the set G of all graphs (more exactly,
on the set of all equivalence classes of isomorphic graphs) is defined by

dz = max{n(G,),n(G,)} — n(Gy, G)
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for any Gy, G, € G, where n(G;) is the number of vertices in G;, i = 1,2, and
n(Gi, G,) is the maximum number of vertices of their common subgraph.

The Bunke-Shearer metric (1998) on the set of nonempty graphs is defined
by

_ n(G1.Gy)
max{n(Gi),n(G,)}’

Given any set M of graphs, the common subgraph distance d,; on M is
max{n(G,),n(G2)} — n(Gi, G2),

and the common supergraph distance d;fl is defined, for any G|, G, € M, by
N(Gi, Gy) — min{n(Gy),n(G2)},

where n(G;) is the number of vertices in G;, i = 1,2, while n(G;, G;) and
N(G1, Gy) are the maximal order of a common subgraph G € M and the minimal
order of a common supergraph H € M, respectively, of G| and G,.

dy is a metric on M if the following condition (i) holds:

(i) if H € M is a common supergraph of G, G, € M, then there exists a
common subgraph G € M of G; and G, with n(G) > n(G) +n(G,) —n(H).
dy; is a metric on M if the following condition (ii) holds:
(ii) if G € M is a common subgraph of G|, G, € M, then there exists a common
supergraph H € M of G and G, with n(H) < n(Gy) + n(G,) — n(G).

One has dy < dj; if the condition (i) holds, and dy > dj; if (ii) holds.

The distance d), is a metric on the set G of all graphs, the set of all cycle-free
graphs, the set of all bipartite graphs, and the set of all trees. The distance dj;
is a metric on the set G of all graphs, the set of all connected graphs, the set of
all connected bipartite graphs, and the set of all trees. The Zelinka distance dz
coincides with dys and dj; on the set G of all graphs. On the set T of all trees the
distances dy and d}; are identical, but different from the Zelinka distance.

The Zelinka distance dz is a metric on the set G(n) of all graphs with n
vertices, and is equal to n — k or to K — n for all G|, G, € G(n), where k is
the maximum number of vertices of a common subgraph of G| and G,, and K is
the minimum number of vertices of a common supergraph of G| and G».

On the set T(n) of all trees with n vertices the distance dy is called the Zelinka
tree distance (see, for example, [Zeli75]).

¢ Fernandez—Valiente metric

Given graphs G and H, let G = (Vi,E;) and G, = (V,,E,) be their
maximum common subgraph and minimum common supergraph;, cf. subgraph—
supergraph distances. The Fernandez—Valiente metric (2001) between G and
His

(IVal + |E2]) = (V1] + | EA ]).
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Graph edit distance
The graph edit distance (Axenovich—Kézdy—Martin, 2008, and Alon—Stav,
2008) between graphs G and G’ on the same labeled vertex-set is defined by

dea(G. G') = |E(G)AE(G)|.

It is the minimum number of edge deletions or additions needed to transform G
into G/, and half of the Hamming distance between their adjacency matrices.

Given a graph property (i.e., a family H of graphs), let d.s(G,H) be
min{d.,(G,G’) : V(G') = V(G),G' € H}. Given a number p € (0, 1], the
edit distance function of a property # is (if this limit exists) defined by

edyu(p) = Tim max{d.a(G, H) : [V(G)| = n,|EG)| = LP<Z)J}((§))—‘.

If H is hereditary (closed under the taking induced subgraphs) and nontrivial
(contains arbitrarily large graphs), then (Balogh—Martin, 2008) it holds

edyu(p) = lim E[ded(c(n,pm)](@ )

G(n, p) is the random graph (Chap. 1) on n vertices with edge probability p.

Bunke, 1997, defined the graph edit distance between vertex- and edge-
labeled graphs G and G, as the minimal total cost of matching G and G, using
deletions, additions and substitutions of vertices and edges. Cf. also tree, top-
down, unit cost and restricted edit distance between rooted trees.

The Bayesian graph edit distance between two relational graphs (i.e., triples
(V,E,A), where V,E A are the sets of vertices, edges, vertex-attributes) is
(Myers—Wilson—Hancock, 2000) their graph edit distance with costs defined by
probabilities of operations along an editing path seen as a memoryless error
process. Cf. transduction edit distances (Chap.11) and Bayesian distance
(Chap. 14).

The structural Hamming distance between two digraphs G = (X, E) and
G' = (X,E) is defined (Acid—Campos, 2003) as SHD(G,G’) = |EAE'|. The
ring sum (or symmetric difference) of G and G’ is defined (Deo, 1974) as (X U
X',EAFE).

Edge distance
The edge distance on the set of all graphs is defined (Balaz et al., 1986) by

|E1] + |E2| = 2|Era] + [[Vi] — V2]
for any graphs G; = (V1,E}) and G, = (V,, E»), where G, = (Vi2,Epp) is a

common subgraph of G; and G, with maximal number of edges. This distance
has many applications in Organic and Medical Chemistry.
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Contraction distance
The contraction distance is a distance on the set G(n) of all graphs with n
vertices defined by

n—k

for any G, G, € G(n), where k is the maximum number of vertices of a graph
which is isomorphic simultaneously to a graph, obtained from each of G; and G,
by a finite number of edge contractions. To perform the contraction of the edge
uv € E of a graph G = (V, E) means to replace u# and v by one vertex that is
adjacent to all vertices of V\{u, v} which were adjacent to u or to v.

Edge move distance

The edge move distance (Baldz et al., 1986) is a metric on the set G(n, m) of
all graphs with n vertices and m edges, defined, for any G|, G, € G(m, n), as the
minimum number of edge moves necessary for transforming the graph G, into
the graph G,. It is equal to m — k, where k is the maximum size of a common
subgraph of G; and G».

An edge move is one of the edge transformations, defined as follows: H can be
obtained from G by an edge move if there exist (not necessarily distinct) vertices
u,v,w, and x in G such that uv € E(G), wx ¢ E(G),and H = G — uv + wx.
Edge jump distance

The edge jump distance is an extended metric (which in general can take the
value oo) on the set G(n, m) of all graphs with n vertices and m edges defined,
for any G, G, € G(m, n), as the minimum number of edge jumps necessary for
transforming G into G».

An edge jump is one of the edge transformations, defined as follows: H can
be obtained from G by an edge jump if there exist four distinct vertices u, v, w,
and x in G, such that uv € E(G), wx ¢ E(G), and H = G — av + wx.

Edge flipping distance

Let P = {v1,...,v,} be a collection of points on the plane. A triangulation
T of P is a partition of the convex hull of P into a set of triangles such that each
triangle has a disjoint interior and the vertices of each triangle are points of P.

The edge flipping distance is a distance on the set of all triangulations of
P defined, for any triangulations 7" and 7, as the minimum number of edge
flippings necessary for transforming 7 into 77.

An edge e of T is called flippable if it is the boundary of two triangles ¢ and
{ of T,and C = t U is a convex quadrilateral. The flipping e is one of the
edge transformations, which consists of removing e and replacing it by the other
diagonal of C. Edge flipping is an special case of edge jump.

The edge flipping distance can be extended on pseudo-triangulations, i.e.,
partitions of the convex hull of P into a set of disjoint interior pseudo-triangles
(simply connected subsets of the plane that lie between any three mutually
tangent convex sets) whose vertices are given points.
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* Edge rotation distance

The edge rotation distance (Chartand—Saba—Zou, 1985) is a metric on the
set G(n,m) of graphs with n vertices and m edges, defined, for any G, G,, as
the minimum number of edge rotations needed for transforming G, into G,.
Cf. Pospichal-Kvasni¢ka chemical distance, called also reaction metric, in
Chap. 24.

An edge rotation is one of the edge transformations, defined as follows: H can
be obtained from G by an edge rotation if there exist distinct vertices u, v, and w
in G, such that uv € E(G), uw ¢ E(G), and H = G — uv + uw.

* Tree edge rotation distance

The tree edge rotation distance is a metric on the set T(n) of all trees with
n vertices defined, for all T}, T, € T(n), as the minimum number of tree edge
rotations necessary for transforming 7 into T,. A tree edge rotation is an edge
rotation performed on a tree, and resulting in a tree.

For T(n) the tree edge rotation and the edge rotation distances may differ.

¢ Edge shift distance

The edge shift distance (or edge slide distance) is a metric (Johnson, 1985)
on the set G.(n, m) of all connected graphs with n vertices and m edges defined,
for any G1, G, € G.(m,n), as the minimum number of edge shifts necessary for
transforming G, into G».

An edge shift is one of the edge transformations, defined as follows: H can be
obtained from G by an edge shift if there exist distinct vertices u, v, and w in G
such that uv, vw € E(G), uw ¢ E(G), and H = G — uv + uw. Edge shift is a
special kind of edge rotation in the case when the vertices v, w are adjacent in G.

The edge shift distance can be defined between any graphs G and H with
components G;(1 < i < k) and H;(1 < i < k), respectively, such that G; and H;
have the same order and the same size.

* F-rotation distance

The F-rotation distance is a distance on the set Gr(n, m) of all graphs with
n vertices and m edges, containing a subgraph isomorphic to a given graph F of
order at least 2 defined, for all G|, G, € Gg(m, n), as the minimum number of
F-rotations necessary for transforming G into G.

An F-rotation is one of the edge transformations, defined as follows: let F " be
a subgraph of a graph G, isomorphic to F, let u, v, w be three distinct vertices of
the graph G such that u ¢ V(F), v,w € V(F), uwv € E(G), and uw ¢ E(G); H
can be obtained from G by the F-rotation of the edge uv into the position uw if
H=G—uv + uw.

¢ Binary relation distance

Let R be a nonreflexive binary relation between graphs, i.e., R C G x G, and
there exists G € G such that (G, G) ¢ R.

The binary relation distance is a metric (which can take the value co) on the
set G of all graphs defined, for any graphs G| and G, as the minimum number
of R-transformations necessary for transforming G| into G,. We say that a graph
H can be obtained from a graph G by an R-transformation if (H, G) € R.
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An example is the distance between two triangular embeddings of a complete
graph (i.e., its cellular embeddings in a surface with only 3-gonal faces) defined
as the minimal number ¢ such that, up to replacing ¢ faces, the embeddings are
isomorphic.

¢ Crossing-free transformation metrics

Given a subset S of R?, a noncrossing spanning tree of S is a tree whose
vertices are points of S, and edges are pairwise noncrossing straight line
segments.

The crossing-free edge move metric (see [AAHOO]) on the set Ty of all
noncrossing spanning trees of a set S, is defined, for any 7,7, € T, as the
minimum number of crossing-free edge moves needed to transform T into 7.
Such move is an edge transformation which consists of adding some edge e in
T € Ts and removing some edge f from the induced cycle so that e and f do not
Cross.

The crossing-free edge slide metric is a metric on the set Ty of all
noncrossing spanning trees of a set S defined, for any 71,7, € Ts, as the
minimum number of crossing-free edge slides necessary for transforming 7 into
T,. Such slide is one of the edge transformations which consists of taking some
edge e in T € Ts and moving one of its endpoints along some edge adjacent to
e in T, without introducing edge crossings and without sweeping across points
in S (that gives a new edge f instead of e). The edge slide is a special kind of
crossing-free edge move: the new tree is obtained by closing with f a cycle C of
length 3 in 7, and removing e from C, in such a way that f avoids the interior of
the triangle C.

¢ Traveling salesman tours distances

The Traveling Salesman problem is the problem of finding the shortest tour
that visits a set of cities. We will consider only Traveling Salesman problem with
undirected links. For an n-city traveling salesman problem, the space 7, of tours
is the set of @ cyclic permutations of the cities 1,2, ..., n.

The metric D on 7, is defined in terms of the difference in form: if tours
T,.T € T, differ in m links, then D(T,T') = m.

A k-OPT transformation of a tour T is obtained by deleting k links from 7', and
reconnecting. A tour T', obtained from T by a k-OPT transformation, is called
a k-OPT of T. The distance d on the set Ty is defined in terms of the 2-OPT
transformations: d(7T, T/) is the minimal i, for which there exists a sequence of
i 2-OPT transformations which transforms 7 to 7'. In fact, d(T, T/) < D(T, T/)
forany T, T ¢ Tn (see, for example, [MaMo095]). Cf. arc routing problems.

* Orientation distance

The orientation distance (Chartrand—Erwin—Raines—Zhang, 2001) between
two orientations D and D’ of a finite graph is the minimum number of arcs of D
whose directions must be reversed to produce an orientation isomorphic to D’.
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¢ Subgraphs distances
The standard distance on the set of all subgraphs of a connected graph G =
(V, E) is defined by

min{dpan(u,v) : u € V(F),v € V(H)}

for any subgraphs F, H of G. For any subgraphs F, H of a strongly connected
digraph D = (V, E), the standard quasi-distance is defined by

min{dapan (., v) 1 u € V(F),v € V(H)}.

Using standard operations (rotation, shift, etc.) on the edge-set of a graph, one
gets corresponding distances between its edge-induced subgraphs of given size
which are subcases of similar distances on the set of all graphs of a given size
and order.

The edge rotation distance on the set S¥(G) of all edge-induced subgraphs
with k edges in a connected graph G is defined as the minimum number of edge
rotations required to transform F € S*(G) into H € S¥(G). We say that H can be
obtained from F by an edge rotation if there exist distinct vertices «, v, and w in
G such that uv € E(F), uw € E(G)\E(F),and H = F — uv + uw.

The edge shift distance on the set S¥(G) of all edge-induced subgraphs with
k edges in a connected graph G is defined as the minimum number of edge shifts
required to transform F € S*(G) into H € S¥(G). We say that H can be obtained
from F by an edge shift if there exist distinct vertices u, v and w in G such that
uv,vw € E(F),uw € E(G)\E(F),and H = F — uv + uw.

The edge move distance on the set S¥(G) of all edge-induced subgraphs
with k edges of a graph G (not necessary connected) is defined as the minimum
number of edge moves required to transform F € S*(G) into H € S¥(G). We say
that H can be obtained from F by an edge move if there exist (not necessarily
distinct) vertices u, v, w, and x in G such that uv € E(F), wx € E(G)\E(F), and
H = F —uv + wx. The edge move distance is a metric on S¥(G). If F and H have
s edges in common, then it is equal to k — s.

The edge jump distance (which in general can take the value co) on the
set S¥(G) of all edge-induced subgraphs with k edges of a graph G (not
necessary connected) is defined as the minimum number of edge jumps required
to transform F € S*(G) into H € S¥(G). We say that H can be obtained from F
by an edge jump if there exist four distinct vertices u, v, w, and x in G such that
uv € E(F), wx € E(G)\E(F),and H = F — uv + wx.

15.4 Distances on Trees

Let T be a rooted tree, i.e., a tree with one of its vertices being chosen as the root.
The depth of a vertex v, depth(v), is the number of edges on the path from v to the
root. A vertex v is called a parent of a vertex u, v = par(u), if they are adjacent,
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and depth(u) = depth(v) + 1; in this case u is called a child of v. A leaf is a vertex
without child. Two vertices are siblings if they have the same parent.

The in-degree of a vertex is the number of its children. 7'(v) is the subtree of 7,
rooted at anode v € V(T). If w € V(T (v)), then v is an ancestor of w, and w is a
descendant of v; nca(u, v) is the nearest common ancestor of the vertices u and v.

T is called a labeled tree if a symbol from a fixed finite alphabet A is assigned
to each node. T is called an ordered tree if a left-to-right order among siblings in
T is given. On the set T,;, of all rooted labeled ordered trees there are three editing
operations:

* Relabel—change the label of a vertex v;

* Deletion—delete a nonrooted vertex v with parent v, making the children of
v become the children of v'; the children are inserted in the place of v as a
subsequence in the left-to-right order of the children of v';

» Insertion—the complement of deletion; insert a vertex v as a child of a v making
v the parent of a consecutive subsequence of the children of v

For unordered trees above operations (and so, distances) are defined similarly, but
the insert and delete operations work on a subset instead of a subsequence.

We assume that there is a cost function defined on each editing operation, and the
cost of a sequence of editing operations is the sum of the costs of these operations.

The ordered edit distance mapping is a representation of the editing operations.
Formally, the triple (M, T, T) is an ordered edit distance mapping from T to Ty,
T.,T, € Ty, if M C V(T)) x V(Ty) and, for any (v, w;), (v2,wz) € M, the
following conditions hold: v; = v, if and only if w; = w, (one-to-one condition),
v is an ancestor of v, if and only if w; is an ancestor of w; (ancestor condition), v,
is to the left of v, if and only if wy is to the left of wy (sibling condition).

We say that a vertex v in T; and 7T is touched by a line in M if v occurs in
some pair in M. Let N; and N, be the set of vertices in T} and 7>, respectively, not
touched by any line in M. The cost of M is given by y(M) = Z(U’W)EM y(v —
W)+ D en, Y = A) + 37 ey, V(A — w), where y(a — b) = y(a,b) is the cost
of an editing operation @ — b which is a relabel if a,b € A, a deletion if b = A,
and an insertion if @ = A. Here A ¢ A is a special blank symbol, and y is a metric
on the set A U A (excepting the value y (4, 1)).

¢ Tree edit distance

The tree edit distance (see [Tai79]) on the set T,;, of all rooted labeled
ordered trees is defined, for any 7', T» € T,,, as the minimum cost of a sequence
of editing operations (relabels, insertions, and deletions) turning 77 into 75.

In terms of ordered edit distance mappings, it is equal to mingy 7, 1,) ¥ (M),
where the minimum is taken over all such mappings (M, T}, T5).

The unit cost edit distance between 7| and 7T, is the minimum number of
three above editing operations turning 7 into 7>, i.e., it is the tree edit distance
with cost 1 of any operation.
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* Selkow distance

The Selkow distance (or top-down edit distance, degree-1 edit distance)
is a distance on the set T,, of all rooted labeled ordered trees defined, for
any 71,7, € T,,, as the minimum cost of a sequence of editing operations
(relabels, insertions, and deletions) turning 7 into 75 if insertions and deletions
are restricted to leaves of the trees (see [Selk77]).

The root of 7} must be mapped to the root of T,, and if a node v is to be
deleted (inserted), then any subtree rooted at v is to be deleted (inserted).

In terms of ordered edit distance mappings, it is equal to mingy 7, 1,) ¥ (M),
where the minimum is taken over all such mappings (M, T;,T>) such that
(par(v), par(w)) € M if (v, w) € M, where neither v nor w is the root.

* Restricted edit distance

The restricted edit distance is a distance on the set T,;, of all rooted labeled
ordered trees defined, for any 7, T, € T,,, as the minimum cost of a sequence
of editing operations (relabels, insertions, and deletions) turning 7 into 7, with
the restriction that disjoint subtrees should be mapped to disjoint subtrees.

In terms of ordered edit distance mappings, it is equal to mingy 7, 1,) ¥ (M),
where the minimum is taken over all such mappings (M, T}, T») satisfying the
following condition: for all (v, wy), (v2,w2), (v3,w3) € M, nca(vy,vy) is a
proper ancestor of vs if and only if nca(wy, wy) is a proper ancestor of wj.

This distance is equivalent to the structure respecting edit distance which
is defined by minws 1, 7o) y(M). Here the minimum is taken over all ordered
edit distance mappings (M, Ty, T»), satisfying the following condition: for all
(vy,w1), (v2,wy), (v3,ws3) € M, such that none of vy, vy, and v3 is an ancestor of
the others, nca(vy, v2) = nca(vy, v3) if and only if nca(wy, wp) = nca(wy, ws).

Cf. constrained edit distance in Chap. 11.

¢ Alignment distance

The alignment distance (see [JWZ94]) is a distance on the set T, of all
rooted labeled ordered trees defined, for any 7y, T, € T,,, as the minimum cos?
of an alignment of T and T,. It corresponds to a restricted edit distance, where
all insertions must be performed before any deletions.

Thus, one inserts spaces, i.e., vertices labeled with a blank symbol A, into
T, and T so that they become isomorphic when labels are ignored; the resulting
trees are overlaid on top of each other giving the alignment T 4 which is a tree,
where each vertex is labeled by a pair of labels. The cost of T 4 is the sum of the
costs of all pairs of opposite labels in 7 4.

¢ Splitting-merging distance

The splitting-merging distance (see [ChLu85]) is a distance on the set T,
of all rooted labeled ordered trees defined, for any 7', 7> € T, as the minimum
number of vertex splittings and mergings needed to transform 77 into 75.

¢ Degree-2 distance

The degree-2 distance is a metric on the set T; of all labeled trees (labeled free
trees), defined, for any 71, T, € T, as the minimum number of editing operations
(relabels, insertions, and deletions) turning 7 into T if any vertex to be inserted



308 15 Distances in Graph Theory

(deleted) has no more than two neighbors. This metric is a natural extension of
the tree edit distance and the Selkow distance.

A phylogenetic X-tree is an unordered unrooted tree with the labeled leaf set X and
no vertices of degree two. If every interior vertex has degree three, the tree is called
binary. Let T(X) denote the set of all phylogenetic X-trees.

* Robinson-Foulds metric
A cut A|B of X is a partition of X into two subsets A and B (see cut
semimetric). Removing an edge e from a phylogenetic X-tree induces a cut of
the leaf set X which is called the cut associated with e.
The Robinson-Foulds metric (or Bourque metric, bipartition distance) is a
metric on the set T(X), defined, for any phylogenetic X-trees T, T» € T(X), by

1 1 1
SIZTAZT)| = SIS\ E(@)| + 12T\ (1),
where X (T) is the collection of all cuts of X associated with edges of T.
The Robinson-Foulds weighted metric is a metric on the set T(X) of all
phylogenetic X-trees defined by

> [wi(A[B) = wa(A]B)]

A|BEX(T)UX(T2)

for all T1,T, € T(X), where w; = (w(e))cer(r;) is the collection of positive
weights, associated with the edges of the X-tree T;, X (T;) is the collection of all
cuts of X, associated with edges of T;, and w;(A|B) is the weight of the edge,
corresponding to the cut A|B of X, i = 1, 2. Cf. more general cut norm metric
in Chap. 12 and rectangle distance on weighted graphs.

e u-metric
Given a phylogenetic X-tree T with n leaves and a vertex v in it, let u(v) =
(n1(v), ..., na(v)), where p;(v) is the number of different paths from the vertex

v to the i-th leaf. Let «(7T) denote the multiset on the vertex-set of T with p(v)
being the multiplicity of the vertex v.

The p-metric (Cardona—Rosell6—Valiente, 2008) is a metric on the set T(X)
of all phylogenetic X-trees defined, for all T}, T» € T(X), by

1
§|M(T1)AM(T2)|,

where A denotes the symmetric difference of multisets.
Cf. the metrics between multisets in Chap. 1 and the Dodge—Shiode WebX
quasi-distance in Chap. 22.
¢ Nearest neighbor interchange metric
The nearest neighbor interchange metric (or crossover metric) on the
set T(X) of all phylogenetic X-trees, is defined, for all 71,7, € T(X), as the
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minimum number of nearest neighbor interchanges required to transform 7 into
1.

A nearest neighbor interchange consists of swapping two subtrees in a tree

that are adjacent to the same internal edge; the remainder of the tree is unchanged.
e Subtree prune and regraft distance

The subtree prune and regraft distance is a metric on the set T(X) of all
phylogenetic X-trees defined, for all T}, T, € T(X), as the minimum number of
subtree prune and regraft transformations required to transform 7 into 7.

A subtree prune and regraft transformation proceeds in three steps: one
selects and removes an edge uv of the tree, thereby dividing the tree into two
subtrees 7, (containing ) and T), (containing v); then one selects and subdivides
an edge of T, giving a new vertex w; finally, one connects # and w by an edge,
and removes all vertices of degree two.

* Tree bisection-reconnection metric

The tree bisection-reconnection metric (or TBR-metric) on the set T(X) of
all phylogenetic X-trees is defined, for all T}, T, € T(X), as the minimum number
of tree bisection and reconnection transformations required to transform 77 into
1.

A tree bisection and reconnection transformation proceeds in three steps: one
selects and removes an edge uv of the tree, thereby dividing the tree into two
subtrees 7, (containing ) and T), (containing v); then one selects and subdivides
an edge of T, giving a new vertex w, and an edge of 7, giving a new vertex z;
finally one connects w and z by an edge, and removes all vertices of degree two.

¢ Quartet distance

The quartet distance (see [EMMS85]) is a distance of the set T,(X) of all
binary phylogenetic X-trees defined, for all 77,7, € T,(X), as the number of
mismatched quartets (from the total number () possible quartets) for 71 and 7.

This distance is based on the fact that, given four leaves {1, 2, 3, 4} of a tree,
they can only be combined in a binary subtree in three ways: (12|34), (13|24), or
(14]23): the notation (12|34) refers to the binary tree with the leaf set {1, 2, 3, 4}
in which removing the inner edge yields the trees with the leaf sets {1,2} and
{3,4}.

* Triples distance

The triples distance (see [CPQ96]) is a distance of the set T, (X) of all binary
phylogenetic X-trees defined, for all 7,7, € T,(X), as the number of triples
(from the total number () possible triples) that differ (for example, by which
leaf is the outlier) for 7} and T>.

¢ Perfect matching distance

The perfect matching distance is a distance on the set T, (X) of all rooted
binary phylogenetic X-trees with the set X of n labeled leaves defined, for any
T\, T, € T (X), as the minimum number of interchanges necessary to bring the
perfect matching of 7 to the perfect matching of 7.

GivenasetA = {1,..., 2k} of 2k points, a perfect matching of A is a partition
of A into k pairs. A rooted binary phylogenetic tree with n labeled leaves has
a root and n — 2 internal vertices distinct from the root. It can be identified
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with a perfect matching on 2n — 2, different from the root, vertices by following
construction: label the internal vertices with numbersn+1, ..., 2n—2 by putting
the smallest available label as the parent of the pair of labeled children of which
one has the smallest label among pairs of labeled children; now a matching is
formed by peeling off the children, or sibling pairs, two by two.

* Tree rotation distance

The tree rotation distance is a distance on the set T, of all rooted ordered
binary trees with n interior vertices defined, for all T}, T, € T,, as the minimum
number of rotations, required to transform 7 into 7.

Given interior edges uv, vv’, vv” and uw of a binary tree, the roration is
replacing them by edges uv, uv”, vv’ and vw.

There is a bijection between edge flipping operations in triangulations of
convex polygons with n 4 2 vertices and rotations in binary trees with n interior
vertices.

* Attributed tree metrics

An attributed tree is a triple (V, E,«), where T = (V,E) is the underlying
tree, and « is a function which assigns an attribute vector a(v) to every vertex
v € V. Given two attributed trees (Vi, Ej,«) and (V», E;, B), consider the set
of all subtree isomorphisms between them, i.e., the set of all isomorphisms f :
H, — H,, Hy C V|, H, C V,, between their induced subtrees.

Given a similarity s on the set of attributes, the similarity between isomorphic
induced subtrees is defined as W (f) = ZUEHI s(a(v), B(f(v))). Let ¢ be the
isomorphism with maximal similarity W(¢) = W(¢).

The following four semimetrics on the set T, of all attributed trees are used:

max{|[Vi|.[Va[} = W(9). [Vi| + [V2| —2W(¢) and

W) 1_ (o)
max{[Vi|, [Va|}’ Vil + [Va| — W(g)

They become metrics on the set of equivalences classes of attributed trees: two
such trees (V1, E1, o) and (Va, E», B) are called equivalent if they are attribute-
isomorphic, i.e., if there exists an isomorphism g : V| — V, between the trees
such that, for any v € Vj, we have «(v) = B(g(v)). Then |V;| = |V,| = W(g).
* Maximal agreement subtree distance

The maximal agreement subtree distance (MAST) is (Finden—Gordon,
1985) a distance of the set T of all trees defined, for all 7,,7, € T, as the
minimum number of leaves removed to obtain a (greatest) agreement subtree.

An agreement subtree (or common pruned tree) of two trees is an identical
subtree that can be obtained from both trees by pruning leaves with the same
label.
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* [,-distances between trees
Given p > 1, the /,-distance between trees T, T’ on the same vertex-set is the
l,-metric between their (shortest path) distance matrices D, D’ seen as vectors.
For p = 1, it is edge difference distance (Williams—Clifford, 1971). For
p = 2, it is path difference distance (Steel-Penny, 1993). For p = oo, it is
path interval (or k-interval cospeciation, as in original Hugguns et al., 2012)
distance.



Chapter 16
Distances in Coding Theory

Coding Theory deals with the design and properties of error-correcting codes for
the reliable transmission of information across noisy channels in transmission lines
and storage devices. The aim of Coding Theory is to find codes which transmit and
decode fast, contain many valid code words, and can correct, or at least detect, many
errors. These aims are mutually exclusive, however; so, each application has its own
good code.

In communications, a code is a rule for converting a piece of information
(for example, a letter, word, or phrase) into another form or representation, not
necessarily of the same sort. Encoding is the process by which a source (object)
performs this conversion of information into data, which is then sent to a receiver
(observer), such as a data processing system. Decoding is the reverse process of
converting data which has been sent by a source, into information understandable
by a receiver.

An error-correcting code is a code in which every data signal conforms to
specific rules of construction so that departures from this construction in the
received signal can generally be automatically detected and corrected. It is used
in computer data storage, for example in dynamic RAM, and in data transmission.
Error detection is much simpler than error correction, and one or more “check”
digits are commonly embedded in credit card numbers in order to detect mistakes.
The two main classes of error-correcting codes are block codes, and convolutional
codes.

A block code (or uniform code) of length n over an alphabet A, usually, over
a finite field F, = {0,...,g — 1}, is a subset C C A"; every vector x € C is
called a codeword, and M = |C)| is called size of the code. Given a metric d on
IE‘Z (for example, the Hamming metric, Lee metric, Levenstein metric), the value
d* = d*(C) = min, yec £y d(x,y) is called the minimum distance of the code C.
The weight w(x) of a codeword x € C is defined as w(x) = d(x,0). An (n, M, d*)-
code is a g-ary block code of length n, size M, and minimum distance d*. A binary
code is a code over .
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When codewords are chosen such that the distance between them is maximized,
the code is called error-correcting, since slightly garbled vectors can be recovered
by choosing the nearest codeword. A code C is a t-error-correcting code (and a 2¢-
error-detecting code) if d*(C) > 2t + 1. In this case each neighborhood U,(x) =
{y € C:d(x,y) <t}of x € Cisdisjoint with U;(y) forany y € C,y # x.

A perfect code is a g-ary (n,M,2t 4+ 1)-code for which the M spheres U,(x)
of radius 7 centered on the codewords fill the whole space Fy completely, without
overlapping.

A block code C C Fy is called linear if C is a vector subspace of 7. An [n, k]-
code is a k-dimensional linear code C C IF" (with the minimum distance d*); it
has size ¢, i.e., it is an (n q~, d*) code. The Hamming code is the linear perfect
one-error correctlng( — ’f]’ T — 1, 3)-code.

A kxnmatrix G Wlth rows that are basis vectors for a linear [n, k]-code C is called
a generator matrix of C. In standard form it can be written as (1;|A), where 1; is
the k x k identity matrix. Each message (or information symbol, source symbol) u =
(ur,...,u) € F’; can be encoded by multiplying it (on the right) by the generator
matrix: uG € C.

The matrix H = (—AT|1,-;) is called the parity-check matrix of C. The number
r = n— k corresponds to the number of parity check digits in the code, and is called
the redundancgz of the code C. The information rate (or code rate) of a code C is the
number R = ng . For a g-ary [n.k]-code, R = % log, g; for a binary [n, k]-code,
R = ;.

A convolutional code is a type of error-correction code in which each k-bit
information symbol to be encoded is transformed into an n-bit codeword, where
R = 5 is the code rate (n > k), and the transformation is a function of the last m
information symbols, where m is the constraint length of the code. Convolutional
codes are often used to improve the performance of radio and satellite links.

A variable length code is a code with codewords of different lengths.

In contrast to error-correcting codes which are designed only to increase the
reliability of data communications, cryptographic codes are designed to increase
their security. In Cryptography, the sender uses a key to encrypt a message before it
is sent through an insecure channel, and an authorized receiver at the other end then
uses a key to decrypt the received data to a message.

Often, data compression algorithms and error-correcting codes are used in
tandem with cryptographic codes to yield communications that are efficient, robust
to data transmission errors, and secure to eavesdropping and tampering. Encrypted
messages which are, moreover, hidden in text, image, etc., are called steganographic
messages.

The encryption/assortment theory of humor (Flamson—Barrett, 2008) proposes
that people signal similarity in locally variable personal features through humor. In
a successful joke, both the producer and the receiver share common background
information—the key—and the joke is engineered in such a way (via devices such
as incongruity) that there is a nonrandom fit between the surface utterance and this
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information that would only be apparent to a person with access to it. The function
of encrypted humor is not secrecy per se, but rather, honestly indexing the presence
of shared keys.

16.1 Minimum Distance and Relatives

Minimum distance
Given acode C C V, where V is an n-dimensional vector space equipped with
a metric d, the minimum distance d* = d*(C) of the code C is defined by

min d(x,y).
x,y€C x#y

The metric d depends on the nature of the errors for the correction of which the
code is intended. For a prescribed correcting capacity it is necessary to use codes
with a maximum number of codewords. Such most widely investigated codes are
the g-ary block codes in the Hamming metric dy(x,y) = |{i : x; # yi,i =
1,...,n}.

For a linear code C the minimum distance d*(C) = w(C), where w(C) =
min{w(x) : x € C} is a minimum weight of the code C. As there are rank(H) <
n — k independent columns in the parity check matrix H of an [n, k]-code C, then
d*(C) < n—k+ 1 (Singleton upper bound).

Dual distance

The dual distance d of a linear [n, k]-code C C [F7 is the minimum distance
of the dual code C* of C defined by C*+ = {v € F : (v,u) = 0 forany u € C}.

The code C is a linear [n, n — k]-code, and its (n — k) x n generator matrix is
the parity-check matrix of C.

Bar product distance

Given linear codes C; and C; of length n with C, C Cj, their bar product
C1|C3 is alinear code of length 2n defined by C;|C, = {x|x+y:x € C1,y € Cy}.

The bar product distance between C; and C, is the minimum distance
d*(C1|C,) of their bar product C|C.

Design distance

A linear code is called a cyclic code if all cyclic shifts of a codeword also
belong to C, i.e., if for any (ay, . ..,a,—1) € C the vector (a,—1, ao, - ..,d,—) €
C. It is convenient to identify a codeword (ay, ..., a,—;) with the polynomial
c(x) = ap+ajx+---+a,—1x¥""!; then every cyclic [n, k]-code can be represented
as the principal ideal (g(x)) = {r(x)g(x) : r(x) € R,} of the ring R, =
F,(x)/(x"—1), generated by the generator polynomial g(x) = go+gi1x+-- Xk
of C.

Given an element o of order n in a finite field s, a Bose—Chaudhuri—
Hocquenghem [n, k]-code of design distance d is a cyclic code of length n,
generated by a polynomial g(x) in IF,(x) of degree n — k, that has roots at «,
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a?, ..., a% ' The minimum distance d* of such a code of odd design distance d

is at least d.

A Reed—Solomon code is a Bose—Chaudhuri-Hocquenghem code with s =
1. The generator polynomial of a Reed—Solomon code of design distance d is
gx) = (x —a)...(x — a® ") with degree n — k = d — 1; that is, for a Reed-
Solomon code the design distance d = n—k+ 1, and the minimum distance d* >
d. Since, for a linear [n, k]-code, the minimum distance d* < n—k+ 1 (Singleton
upper bound), a Reed—Solomon code achieves this bound. Compact disc players
use a double-error correcting (255,251, 5) Reed—Solomon code over Fs6.

¢ Goppa designed minimum distance

The Goppa designed minimum distance ([Gopp71]) is a lower bound d* (m)
for the minimum distance of one-point geometric Goppa codes (or algebraic
geometry codes) G(m). For G(m), associated to the divisors D and mP, m € N,
of a smooth projective absolutely irreducible algebraic curve of genus g > 0 over
a finite field IF;, one has d*(m) = m + 2 —2gif2g -2 <m < n.

In fact, for a Goppa code C(m) the structure of the gap sequence at P may
allow one to give a better lower bound of the minimum distance (cf. Feng—Rao
distance).

* Feng-Rao distance

The Feng-Rao distance §pg(m) is a lower bound for the minimum distance
of one-point geometric Goppa codes G(m) which is better than the Goppa
designed minimum distance. The method of Feng and Rao for encoding the
code C(m) decodes errors up to half the Feng—Rao distance §rg(m), and gives an
improvement of the number of errors that one can correct for one-point geometric
Goppa codes.

Formally, the Feng—Rao distance is defined as follows. Let S be a subsemi-
group S of N U {0} such that the genus g = |N U {0}\S| of S is finite, and
0 € S. The Feng—Rao distance on S is a function érg : S — N U {0} such that
8rr(m) = min{v(r) : r > m,r € S}, where v(r) = |{(a,b) € > :a + b = r}|.

The generalized r-th Feng—Rao distance on S is 8},,(m) = min{v[m,,...,
my):m<m <---<m,m €8}, where vimy,...,m;]=1{aeS:m—ac
S for some i = 1,...,r}|. Then §pr(m) = 8}x(m). See, for example, [FaMu03].

* Free distance

The free distance is the minimum nonzero Hamming weight of any codeword
in a convolutional code or a variable length code.

Formally, the k-th minimum distance d of such code is the smallest
Hamming distance between any two initial codeword segments which are k frame
long and disagree in the initial frame. The sequence df,d}.d5,... (df < d; <
diy < ...)is called the distance profile of the code. The free distance of a
convolutional code or a variable length code is max; d = lim; o0 d]' = d,.

» Effective free distance

A turbo code is a long block code in which there are L input bits, and each of
these bits is encoded ¢ times. In the j-th encoding, the L bits are sent through a
permutation box P;, and then encoded via an [N;, L] block encoder (code fragment
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encoder) which can be thought of as an L x N; matrix. The overall turbo code is
then a linear [Ny + - -+ 4+ N,, L]-code (see, for example, [BGT93)).

The weight-i input minimum distance d'(C) of a turbo code C is the minimum
weight among codewords corresponding to input words of weight i. The effective
free distance of C is its weight-2 input minimum distance d*(C), i.e., the
minimum weight among codewords corresponding to input words of weight 2.

Turbo codes were the first practical codes to closely approach the Shannon
limit (or channel capacity), the theoretical limit of maximum information transfer
rate over a symmetric memory-less noisy channel. These codes are used in 3G
mobile and satellite communications. Another capacity-approaching codes with
similar performance are linear LDPC (low-density parity-check) codes.
Distance distribution

Given a code C over a finite metric space (X,d) with the diameter
diam(X,d) = D, the distance distribution of C is a (D+ 1)-vector (Ao, ...,Ap),
where A; = ﬁl{(c, ¢) € C* : d(c,c) = i}|. That is, one considers A;(c) as
the number of code words at distance i from the codeword ¢, and takes A; as the
average of A;(c) overall c € C. Ay = 1 and, if d* = d*(C) is the minimum
distance of C, thenA; = --- = Agx—1 = 0.

The distance distribution of a code with given parameters is important,
in particular, for bounding the probability of decoding error under different
decoding procedures from maximum likelihood decoding to error detection. It
can also be helpful in revealing structural properties of codes and establishing
nonexistence of some codes.

Unicity distance

The unicity distance of a cryptosystem (Shannon, 1949) is the minimal length
of a cyphertext that is required in order to expect that there exists only one
meaningful decryption for it. For classic cryptosystems with fixed key space, the
unicity distance is approximated by the formula H(K)/D, where H(K) is the key
space entropy (roughly log, N, where N is the number of keys), and D measures
the redundancy of the plaintext source language in bits per letter.

A cryptosystem offers perfect secrecy if its unicity distance is infinite. For
example, the one-time pads offer perfect secrecy; they were used for the “red
telephone” between the Kremlin and the White House.

More generally, Pe-security distance of a cryptosystem (Tilburg—Boekee,
1987) is the minimal expected length of cyphertext that is required in order to
break the cryptogram with an average error probability of at most Pe.

16.2 Main Coding Distances

Arithmetic codes distance

An arithmetic code (or code with correction of arithmetic errors) is a finite
subset of the set Z of integers (usually, nonnegative integers). It is intended for
the control of the functioning of an adder (a module performing addition). When
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adding numbers represented in the binary number system, a single slip in the
functioning of the adder leads to a change in the result by some power of 2, thus,
to a single arithmetic error. Formally, a single arithmetic error on 7Z is defined
as a transformation of a number n € Z to a number n’ = n &+ 20i=1,2,....

The arithmetic codes distance is a metric on Z defined, for any ny,n, € Z,
as the minimum number of arithmetic errors taking n; to n,. It is wy(n; — ny),
where w,(n) is the arithmetic 2-weight of n, i.e., the smallest possible number
of nonzero coefficients in representations n = Zf;o ei2, where ¢; = 0, +1, and
k is some nonnegative integer. For each n there is a unique such representation
with ex # 0, eje;y1 = Oforalli = 0,...,k— 1, which has the smallest number
of nonzero coefficients (cf. arithmetic 7-norm metric in Chap. 12).

e b-burst metric

Given the number b > 1 and the set Z),, = {0, 1,...,m—1}", each its element

x = (x1,...,x,) can be uniquely represented as

ki, o b—lnky b1
0"y v 0%uyvy " ..0),

where u; # 0, 0 is the string of k > 0 zeroes and v”~! is any string of length
b—1.
The b-burst metric between elements x and y of Z, is (Bridewell and Wolf,
1979) the number of b-tuples uv?~! in x — y. It describes the burst errors.
* Sharma-Kaushik metrics
Let g > 2, m > 2. A partition {By, By, ...By—1} of Z,, is called a Sharma—
Kaushik partition if the following conditions hold:

. By = {0};

. Foranyie€ Z,,i € Bjifandonlyifm—ieB;,s =1,2,...,q—1;

. Ifi € By,j € B;, and s > ¢, then min{i, m — i} > min{j, m — j};
Ifs>1ts51t=0,1,...,g— 1, then |Bs| > |B;| except for s = ¢ — 1 in which
case |Bq—1| = %|Bq—2|-

AW =

Given a Sharma—Kaushik partition of Z,,, the Sharma-Kaushik weight wsk (x) of
any element x € Z,, is defined by wsg(x) = iifx € B;,i € {0,1,...,qg—1}.
The Sharma-Kaushik metric ([ShKa79]) is a metric on Z,, defined by

wsk (x — y).

The Sharma—Kaushik metric on Z}, is defined by wi, (x — y) where, for x =
(x1,...x,) € Z!, one has Wi (x) = Y1 weg (x;).

The Hamming metric and the Lee metric arise from two specific partitions
of the above type: Py = {By, B1}, where By = {1,2,...,q — 1}, and P, =
{Bo.B1,...,Blg}, where B; = {i,m—i},i=1,..., 1]
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Varshamov metric
The Varshamov metric between two binary n-vectors x = (xy,...,x,) and
y=1,...,y,) fromZ; = {0, 1}" is defined by

n n
maX(E Ixi=1_y,.=o,2 Li=1-y=1)-
i=1 i=1

This metric was introduced by Varshamov, 1965, to describe asymmetric errors.
Absolute summation distance

The absolute summation distance (or Lee distance) is the Lee metric on the
set Z! =1{0,1,...,m— 1}" defined by

WLzE(x_y)s

where wie.(x) = >/, min{x;, m — x;} is the Lee weight of x = (x1,...,x,) €
Zy,.

If 77, is equipped with the absolute summation distance, then a subset C of
77, is called a Lee distance code. The most important such codes are negacyclic
codes.

Mannheim distance

The Mannheim distance is a 2D generalization of the Lee metric.

Let Z[i] = {a+ bi : a, b € Z} be the set of Gaussian integers. Let 1 = a + bi
(a > b > 0) be a Gaussian prime, i.e., either

(i) (a+ bi)(a—bi) = a*> + b*> = p, where p = 1 (mod 4) is a prime number, or
(ii) up to an integer, 7 = p 4+ 0 - i, where p = 3 (mod 4) is a prime number.

The Mannheim distance is not a metric; it is defined ([Hube94a]), for any x, y €
Z[i), as [x'| + |y'|, where X’ + y'i = x —y (mod ), which is defined as (x —
y) — [%]n in the case (i). Here [.] denotes rounding to the closest Gaussian
integer, i.e., [c + di] = [c] + [d]i with [c] denoting the rounding to the closest
integer.

In general, the elements of the finite field F, = {0,1,...,p— 1} forp = 1
(mod4), p = a* + b?, and of the finite field F,» for p = 3 (mod4), p = a,
can be mapped on a subset of Z[i] using the complex modulo function u(k) =
k— [@](d + bi), k = 0,...,p — 1. The set of the selected Gaussian integers

a+ bi with the minimal complex modulus norms +/(a + bi)(a — bi) = a2 + b2
is called a constellation.

The Mannheim distance between two vectors over Z[i] is the sum of the
Mannheim distances of corresponding components. It was introduced to make
2D QAM-like signals more susceptible to algebraic decoding methods.

For codes over hexagonal signal constellations, a similar metric was

introduced over Z(i‘/g%l) in [Hube94b]. Cf. Z(1,,)-related norm metrics in
Chap. 12.
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Generalized Lee metric

Let IF,» denote the finite field with p™ elements, where p is prime number and
m > 1 is an integer. Let ¢; = (0,...,0,1,0,...,0), 1 < i <k, be the standard
basis of Z*. Choose elements a; € Fyn, 1 < i < k, and the mapping ¢ : 7k —
Fpn, sending any x = ZLI xiei, X; € 7k, to ¢ (x) = Zf;l a;x;(mod p), so that
¢ is surjective. So, for each a € F,u, there exists x € Z* such that a = ¢(x).
For each a € [Fn, its k-dimensional Lee weight is wi(a) = min{Zle |x:| 2 x =
(xi) € Z,a = ¢p(x)}.

The generalized Lee metric between vectors (a;) and (b;) of F}, is defined
(Nishimura—Hiramatsu, 2008) by

n
> wilaj — by).
=1

It is the Lee metric (or absolute summation distance) if ¢(e¢;) = 1 while
¢(e;) = 0for2 < i <k.Itis the Mannheim distance if k =2, p = 1 (mod 4),
¢(e1) = 1 while ¢(e2) = a is a solution in F, of the quadratic congruence

x> = —1 (mod p).

¢ p-Lee metric

The p-Lee metric on Zj is given by df(x,y) = Yo d(xi,y)P if p € [1,00),
and d(x,y) = max]_, d(x;,y;) if p = oo, where x = (x1,...,%,),y =
O1,...,yn) € Z7, and d(x;,y;) is the Lee metric min{|x; — y;|,q — |x; — yi|}
on Z.

Poset metric

Let (V,, X) be a poset on V,, = {1,...,n}. A subset I of V, is called ideal if
x € I andy < x imply thaty € [. If J C V,, then (J) denotes the smallest ideal
of V,, which contains J. Consider the vector space Iy over a finite field Fy. The
P-weight of an element x = (xy,...,x,) € F”? is defined as the cardinality of

q
the smallest ideal of V,, containing the support of x: wp(x) = |(supp(x))|, where

supp(x) = {i 1 x; # 0}.
The poset metric (see [BGL95]) is a metric on IFZ defined by

wp(x —y).

If I}, is equipped with a poset metric, then a subset C of Iy is called a poset code.
If V, forms the chain 1 < 2 < ... < p, then the linear code C of dimension k
consisting of all vectors (0, ...,0, ay—k+1,...,ay) € IFZ is a perfect poset code
with the minimum (poset) metric dj5(C) =n—k + 1.

If V,, forms an antichain, then the poset distance coincides with the Hamming
metric. If V,, consists of finite disjoint union of chains of equal lengths, then the
poset distance coincides with the NRT metric.
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Rank metric
Let IF, be a finite field, K = F,» an extension of degree m of IF,, and K" a
vector space of dimension n over K. Forany a = (ay, ... a,) € K" define its rank,
rank(a), as the dimension of the vector space over I, generated by {a, ..., a,}.
The rank metric (Delsarte, 1978) is a metric on K" defined by

rank(a — b).

A constant rank-distance k set is (Gow et al., 2014) a set U of n x n matrices
over a field F such that rank(A—B) = kforall A,B € U,A # B andrank(A) = k
for all A € U,A # 0. Such set is called a partial spread set if k = n; it
defines a partial spread in the (2n — 1)-dimensional projective, hermitian polar
or symplectic polar space, if U consists of arbitrary, hermitian or symmetric
matrices, respectively.

Gabidulin—Simonis metrics

Let ¥y be the vector space over a finite field Iy and let F' = {Fi:ieljbea
finite family of its subsets such that the minimal linear subspace of Iy containing
UierFi1s IFZ Without loss of generality, F' can be an antichain of linear subspaces
of Fy.

The F-weight wg of a vector x = (x1,...,x,) € IFZ is the smallest |J| over
such subsets J C [ that x belongs to the minimal linear subspace of IF; containing
UiesF;. A Gabidulin-Simonis metric (or F-distance, see [GaSi98]) on IFZ is
defined by

wr(x —y).

The Hamming metric corresponds to the case of F;,i € I, forming the standard
basis. The Vandermonde metric is F-distance with F;, i € I, being the columns
of a generalized Vandermonde matrix. Among other examples are: the rank
metric and the combinatorial metrics (by Gabidulin, 1984), including the b-
burst metric.
Subspace metric

Let I, be the vector space over a finite field g and let P, 4 be the set of all
subspaces of . For any subspace U € P, 4, let dim(U) denote its dimension
andlet U+ = {v € Fy : (u,v) = 0 forall u € U} be its orthogonal space.

LetU+V ={u+tv:u€U,v € V}ie, U+Visthe smallest subspace of F
containing both V and V. Then dim(U + V) = dim(U) + dim(V) —dim(U N V).
IfUNV =0,then U+ Visadirectsum U @ V.

The subspace metric between two subspaces U and V from P, , is defined by

d(U,V) =dim(U + V) —dim(UNV) =dim(U) + dim(V) — 2dim(U N V).
This metric was introduced by Koetter and Kschischang, 2007, for network

coding. It holds d(U,V) = d(U*,V1t). Cf. the lattice valuation metric in
Chap. 10 and distances between subspaces in Chap. 12.
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NRT metric

Let M, ,(F,) be the set of all m x n matrices with entries from a finite field
IF, (in general, from any finite alphabet A = {a, ..., a4}). The NRT norm ||.||rr
on M, ,(F,) is defined as follows: if m = 1 anda = (§1, &, ...,&,) € M ,(F,),
then [[014[rr = O, and [la||lgr = max{i : & # 0} for a # 01, if
A= (al,...,am)T € Mm,n(Fq)’ a; € Ml,n(Fq)’ 1 S] = m, then ”A”RT =
> i lajllrr-

The NRT metric (or Niederreiter—Rosenbloom—Tsfasman metric, since intro-
duced by Niederreiter, 1991, and Rosenbloom-Tsfasman, 1997; or ordered
Hamming distance, in ([MaSt99]) is a matrix norm metric (in fact, an ultra-
metric) on M,, ,(IF,), defined by

|A = B||&r.

For every matrix code C C M,,,(F,) with qk elements the minimum NRT
distance dg;(C) < mn — k + 1. Codes meeting this bound are called maximum
distance separable codes.

The most used distance between codewords of a matrix code C C M, ,(F,) is
the Hamming metric on M,, ,(F,) defined by ||A — B||n, where ||A||g is the
Hamming weight of a matrix A € M, ,(IF,), i.e., the number of its nonzero
entries.

The LRTJ-metric (introduced as Generalized Lee—Rosenbloom—Tsfasman
pseudo-metric by Jain, 2008) is the norm metric for the following generalization
of the above norm ||a||gr in the case a # 0y ,:

llallzrrs = g%min{&’ q—&} + max{i—1:§ # 0}.

It is the Lee metric for m = 1 and the NRT metric for g = 2, 3.
ACME distance
The ACME distance on a code C C A" over an alphabet A is defined by

min{dy(x,y), di(x,y)},

where dy is the Hamming metric, and d; is the swap metric (Chap. 11), i.e.,
the minimum number of interchanges of adjacent pairs of symbols, converting x
into y.
Indel distance

Let W be the set of all words over an alphabet A. A deletion of a letter in

a word B = b;...b, of the length n is a transformation of 8 into a word
,3/ = by...bi_1bi+1...b, of the length n — 1. An insertion of a letter in
a word B = b;...b, of the length n is a transformation of 8 into a word

B’ =by...bibbiy, ...by, of the length n + 1.
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The indel distance is a metric on W, defined as the minimum number of
deletions and insertions of letters converting « into . Cf. indel metric in
Chap. 11.

A code C with correction of deletions and insertions is an arbitrary finite
subset of W. An example of such a code is the set of words B = by...b, of
length n over the alphabet A = {0, 1} for which > "_, ib; = 0 (modn + 1). The
number of words in this code is equal to m >, ¢ (k)20 TD/k where the sum
is taken over all odd divisors k of n + 1, and ¢ is the Euler function.

* Interval distance

The interval distance (see, for example, [Bata95]) is a metric on a finite group

(G, +, 0) defined by

Wint ()C - y) s

where w;,(x) is an interval weight on G, i.e., a group norm whose values are
consecutive nonnegative integers 0, . . . , m. This distance is used for group codes
CcCG.

* Fano metric

The Fano metric is a decoding metric with the goal to find the best sequence
estimate used for the Fano algorithm of sequential decoding of convolutional
codes. In a convolutional code each k-bit information symbol to be encoded is
transformed into an n-bit codeword, where R = % is the code rate (n > k), and
the transformation is a function of the last m information symbols.

The linear time-invariant decoder (fixed convolutional decoder) maps an
information symbol u; € {ui,...,un}, ;i = (uir,...u), w; € F», into a
codeword x; € {xi,...,xn}, Xi = (Xi1,....Xn), Xj € F», so one has a code
{x1,...,xy} with N codewords which occur with probabilities {p(x),...,
p(xn)}. A sequence of / codewords forms a path x = x;1 ) = {x1,...,x;} which
is transmitted through a discrete memoryless channel, resulting in the received
sequence y = yji .

The task of a decoder minimizing the sequence error probability is to find a
sequence maximizing the joint probability of input and output channel sequences
p(y,x) = p(y|x) - p(x). Usually it is sufficient to find a procedure that maximizes
p(y|x), and a decoder that always chooses as its estimate one of the sequences
that maximizes it or, equivalently, the Fano metric, is called a max-likelihood
decoder.

Roughly, we consider each code as a tree, where each branch represents one
codeword. The decoder begins at the first vertex in the tree, and computes the
branch metric for each possible branch, determining the best branch to be the one
corresponding to the codeword x; resulting in the largest branch metric, pur(x;).

This branch is added to the path, and the algorithm continues from the new
node which represents the sum of the previous node and the number of bits in
the current best codeword. Through iterating until a terminal node of the tree is
reached, the algorithm traces the most likely path.
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In this construction, the bit Fano metric is defined by

pOilx)
pO) ’

the branch Fano metric is defined by

log,

p(ilx;i)
)48

pur() = (log, —R).
i=1

and the path Fano metric is defined by

!
prGn) = ) mrlx),

J=1

where p(y;|x;;) are the channel transition probabilities, p(y;) = me PP ilxm)
is the probability distribution of the output given the input symbols averaged over
all input symbols, and R = 5 is the code rate.

For a hard-decision decoder p(y; = Olx; = 1) = p(y; = 1|x; = 0) = p,
0<p< %, the Fano metric for a path x[; ; can be written as

wr(xp.g) = —ady g, xpg) + B -1 n,

where o = —log, l‘T’p > 0,8 =1—R+1log,(1 —p), and dy is the Hamming
metric.
The generalized Fano metric is defined, for 0 < w < 1, by

In

Wr(xpy) = Z (log2 % — WR) .

Jj=1
For w = 1/2, it is the Fano metric with a multiplicative constant 1/2.
¢ Channel metrization

A square channel over [n] = {1,...,n} is an n x n probability matrix P =
(OPj) such that Pj; is the probability P(j|i) = P(j received if i sent).

For a code C C [n], the maximum likelihood decoder (MLD) decodes j as
¢ € C maximizing P(j|c). If a metric d is defined on [n], then the minimum
distance decoder (MDD) decodes j as ¢ € C minimizing d(J, ¢).

Channel metrization is (D’Oliveira—Firer, 2015), for a given channel P over
[1], to find a metric d on [r] with coinciding decoders MLD and MDD, i.e., for
every C C [n] andj € [n], argmin{d(j,c) : ¢ € C} = argmax{P(j|c) : ¢ € C}.
Main example: metrization of the binary symmetric channel by the Hamming
metric.
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¢ Metric recursion of a MAP decoding
Maximum a posteriori sequence estimation, or MAP decoding for variable
length codes, used the Viterbi algorithm, and is based on the metric recursion

l(th)

(m)
m m m p(yknlx = 1) m
A" = A+ E tn log zm + 2log, p(i"),
k| X = -

where A,((m) is the branch metric of branch m at time (level) k, x;, is the

n-th bit of the codeword having l,((m) bits labeled at each branch, yi, is the
respective received soft-bit, ;' is the source symbol of branch m at time k and,

assuming statistical independence of the source symbols, the probability p(uk )
is equivalent to the probability of the source symbol labeled at branch m, that
may be known or estimated. The metric increment is computed for each branch,
and the largest value, when using log-likelihood values, of each state is used for
further recursion. The decoder first computes the metric of all branches, and then
the branch sequence with largest metric starting from the final state backward is
selected.
» Distance decoder

A graph family A is said (Peleg, 2000) to have an /(n) distance labeling
scheme if there is a function Ls labeling the vertices of each n-vertex graph
G € A with distinct labels up to /(n) bits, and there exists an algorithm, called
a distance decoder, that decides the distance d(u«, v) between any two vertices
u,v € Xinagraph G € A, i.e..d(u,v) = f(Lg(u), Lg(v)), polynomial in time in
the length of their labels L(u), L(v).

Cf. distance constrained labeling in Chap. 15.

 Identifying code

Let G = (X, E) be adigraph and C C V, and let B(v) denote the set consisting
of v and all of its incoming neighbors in G. If the sets B(v) N C are nonempty
and distinct, C is called identifying code of G. Such sets of smallest cardinality
are called (Karpovsky—Chakrabarty—Levitin, 1998) minimum identifying codes;
denote this cardinality by M(G). An r-locating-dominating set (Chap. 15) with
r = 1 differs from an identifying code only in that B(v) N C are not required to
be unique identifying sets for v € C.

A minimum identifying code graph of order n is a graph G = (X, E) with
X = nand M(G) = [log2;,(n + 1)] having the minimum number of edges |E|.




Chapter 17
Distances and Similarities in Data Analysis

A data set is a finite set comprising m sequences (x"i, ... ,x{l),j e {l,...,m}, of
length n. The values xl.l, ..., X" represent an attribute S;.

Among numerical data, metric data is any reading at an interval scale, mea-
suring the degree of difference between items, or at a ratio scale measuring the
ratio between a magnitude of a continuous quantity and a unit magnitude of
the same kind; with them one have a meter permitting define distances between
scale values. Nonmetric (or categorial, qualitative) data are collected from binary
(presence/absence expressed by 1/0), ordinal (numbers expressing rank only), or
nominal (items are not ordered) scale.

Geometric data analysis refer to geometric aspects of image, pattern and shape
analysis that treats arbitrary data sets as clouds of points in R".

Often data are organized in a metric database (especially, metric tree), i.e., a
database indexed in a metric space. The term metric indexing is also used.

Cluster Analysis (or Classification, Taxonomy, Pattern Recognition) consists
mainly of partition of data A into a relatively small number of clusters, i.e., such sets
of objects that (with respect to a selected measure of distance) are at best possible
degree, “close” if they belong to the same cluster, “far” if they belong to different
clusters, and further subdivision into clusters will impair the above two conditions.

We give three typical examples. In Information Retrieval applications, nodes
of peer-to-peer database network export data (collection of text documents); each
document is characterized by a vector from R”. An user needs to retrieve all
documents in the database which are relevant to a query object (say, a vector
x € R"), i.e., belong to the ball in R", center x, of fixed radius and with a convenient
distance function. Such similarity query is called a metric range query. In Record
Linkage, each document (database record) is represented by a term-frequency vector
x € R" or a string, and one wants to measure semantic relevancy of syntactically
different records. In Ecology, let x,y be species abundance distributions, obtained
by two sample methods (i.e., x;,y; are the numbers of individuals of species j,
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observed in a corresponding sample); one needs a measure of the distance between
x and y, in order to compare two methods.

Once a distance d between objects is selected, it is intra-distance or inter-
distance if the objects are within the same cluster or in two different clusters,
respectively.

The linkage metric, i.c., a distance between clusters A = {ay,...,a,} and B =
{b1,...,by,} is usually one of the following:

average linkage: the average of the distances between the all members of the
clusters, i.e., W;

single linkage: the distance min;;d(a;,; ) between the nearest members of the
clusters, i.e., the set-set distance (Chap. 1);

complete linkage: the distance max;; d(a;, b;) between the furthest members of
the clusters, i.e., the spanning distance (Chap. 1);

centroid linkage: the distance between the centroids of the clusters, i.e, ||a—b||»,

. o - b
where & = 2% and b = h;
m n

Ward linkage: the distance /-""||a — bll».

Multidimensional Scaling is a technique developed in the behavioral and Social
Sciences for studying the structure of objects or people. Together with Cluster
Analysis, it is based on distance methods. But in Multidimensional Scaling, as
opposed to Cluster Analysis, one starts only with some m x m matrix D of distances
of the objects and (iteratively) looks for a representation of objects in R” with low
n, so that their Euclidean distance matrix has minimal square deviation from the
original matrix D.

The related Metric Nearness Problem (Dhillon—-Sra—Tropp, 2003) is to approxi-
mate a given finite distance space (X, d) by a metric space (X, d’). Other examples
of distance methods in Data Analysis are distance-based outlier detection (in Data
Mining) and distance-based redundancy analysis (in Multivariate Statistics).

There are many similarities used in Data Analysis; the choice depends on the
nature of data and is not an exact science. We list below the main such similarities
and distances.

Given two objects, represented by nonzero vectors x = (x1,...,x,) and y =
15 - -+, yn) from R”, the following notation is used in this chapter.

Y x; means Y ._, X;.

1r is the characteristic function of event F: 1 = 1 if F happens, and 1 = 0,
otherwise.

||x||]2 = {/>_ x? is the ordinary Euclidean norm on R".

X denotes Zf, i.e., the mean value of components of x. So, X = % if xis a
frequency vector (discrete probability distribution), i.e., all x; > 0, and )_x; = 1;
and x = ”*2'1 if x is a ranking (permutation), i.e., all x; are different numbers from
{1,...,n}.

The k-th moment is Z(X’T_X)k; it is called variance, skewness, kurtosis if k =

2,3,4.
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In the binary case x € {0, 1}" (i.e., when x is a binary n-sequence), let X = {1 <
i<n:x;=1}andX ={l1 <i<n:x;=0}Let|XNnY||XUY||X\Y| and
|XAY]| denote the cardinality of the intersection, union, difference and symmetric
difference (X\Y) U (Y\X) of the sets X and Y, respectively.

17.1 Similarities and Distances for Numerical Data

¢ Ruzicka similarity
The Ruzicka similarity is a similarity on R”, defined by

> min{x;, y;}
> max{x;, y;}

The corresponding Soergel distance

B Yomin{x,yit D |xi — il
Y max{x;,y;} Y. max{x;, y;}

coincides on R with the fuzzy polynucleotide metric (Chap. 23).
The Wave-Edges distance is defined by

min{x;, yi} |x; — yil
Z(l B max{x,-,y,-}) N Z max{x;, y;}

¢ Roberts similarity
The Roberts similarity is a similarity on R”, defined by

¥ (i + yi) mintad
(x4 i)

¢ Ellenberg similarity
The Ellenberg similarity is a similarity on R" defined by

o 4 ¥ L0
Z(xi + yi)(l + lxiyi=0)

¢ Gleason similarity
The Gleason similarity is a similarity on R”, defined by

(i + Yi) Liyio
Y +y)
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The Czekanowsky-Dice distance (or nonmetric coefficient, Bray—Curtis, 1957)
is a near-metric on {0, 1}" defined by

2XNY|  [XAY
X[+ 1Yl X+ Y]

e Warrens inequalities on similarities
Denote by S, 1 < k < 7 above intersection, Kulczynski 2, Bray—Curtis,
Roberts, Ruzicka, Eilenberg and Gleason similarities, respectively.
Warrens (2016), showed that

1>85>85>8>5>8>0 and S5=<S8=<57>S;.

¢ Jaccard similarity
The Jaccard similarity of community, Jaccard, 1908, is a similarity on R”
defined by

inyi
YoXT Yy =YXy

The corresponding Jaccard distance is defined by
- D X0 _ o xi—w)’
PIEEE D IR DI VEED BE AR D BE D BE N

The binary cases of Jaccard, Ellenberg and Ruzicka similarities coincide; it is
called Tanimoto similarity:

XNY|
xXuyl

The Tanimoto distance (or biotope distance from Chap.23) is a distance on
{0, 1}" defined by

IXNYl  |XAY|
xXuyl |xury|

¢ Czekanowsky similarity
The Czekanowsky similarity is a similarity on R”, defined by

Z min{x;, y,}
x4y

The corresponding Czekanowsky distance is defined by

- 2 min{xi,yi} 3% —vil
> (i + yi) Y +y)
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¢ Dice similarity
The Dice similarity is a similarity on R”, defined by
DXy
PR D

The corresponding Dice distance is defined by

(o 2y byl
Y+ Xy X+ Xy
e Maryland Bridge similarity

The Maryland Bridge similarity is (Mirkin and Koonin, 2003) a similarity
on R" defined by

l(ZXiyt' n > Xy
2\ X% Xy )

The corresponding Maryland Bridge distance is defined by

1_1 inYi+inYi
2\ X% Xy

¢ Simpson similarity
The Simpson (or overlap) similarity is a similarity on R” defined by

in)’i
min{zxis Zyl} '

¢ Intersection distance
The intersection distance is a distance on R”, defined by

Z min{xis yl}
min{}_x;, 3o vit
It becomes % > |x; — yi| if x, y are frequency vectors.
¢ Kulczynski similarity 1
The Kulczynski similarity 1 is a similarity on R” defined by
> min{x;, yi}
Slxi—wil

The corresponding Kulezynski distance is

2w — il
Y- min{x;, yi}
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¢ Kulczynski similarity 2
The Kulczynski similarity 2 is a similarity on R” defined by

1 1
g (§ + §) Zmin{x;,y;}.

In the binary case it coincides with Maryland bridge similarity; its form is

IXOY-(X|+]Y) _|IXNnY|  [XNY]
21X]- Y| 21X| 2|y

* Motyka similarity
The Motyka similarity is a similarity on R”, defined by

Yomin{x;, yi} nzmin{xivyi}
Yi+y) X4y

The corresponding Motyka distance is

_ 2omin{x, i} 3 max{x;, i}
Yi+y) Yty

e Bray-Curtis similarity
The Bray—Curtis similarity, 1957, is a similarity on R” defined by

2 .
m Z mln{x;, yj}

It is called Renkonen percentage similarity if x, y are frequency vectors.
* Segrensen distance
The Sgrensen (or Bray—Curtis) distance on R” is defined (Sgrensen, 1948)
by

2 b=yl
Z(xt + )’t

The binary cases of Bray—Curtis, Cleason, Czekanowsky and Dice similarities
coincide; it is called Sgrensen similarity:

n<x G4 2t} =

21X NY| _2lxny]
XuYl+|XnY|l |X|+]|Y|

¢ Canberra distance
The Canberra distance (Lance—Williams, 1967) is a distance on R”, defined
by

Z lx; — yil
|xi| + |y1
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¢ Baroni-Urbani—Buser similarity
The Baroni-Urbani—Buser similarity is a similarity on R” defined by

Y- min{x;, y;} + /Y min{x;, y;} D (max <j<, X — max{x;, y;})
> max{x;, yi} + \/Z min{x;, y;} D (max, <j<, xj — max{x;, y;}) ’

In the binary case it takes the form

IXNY|++/IXNY|-[XUY|

IXUY|++/IXNY|-[XUY|

17.2 Relatives of Euclidean Distance

¢ Power (p, r)-distance
The power ( p, r)-distance is a distance on R" defined, for x,y € R”, by

n

1

(E lxi — yil”) 7.
i=1

For p = r > 1, it is the [,-metric, including the Euclidean, Manhattan (or
magnitude) and Chebyshev (or maximum-value, dominance, template) metrics
for p = 2, 1 and oo, respectively.

The case (p,r) = (2, 1) corresponds to the squared Euclidean distance.

The power (p,r)-distance with 0 < p = r < 1 is called the fractional
l,-distance (not a metric since the unit balls are not convex). It is used for
“dimensionality-cursed” data, i.e., when there are few observations and the
number n of variables is large. The case 0 < p < r = 1, i.e., of the p-th power of
the fractional /,-distance, corresponds to a metric on R".

The weighted versions (}_ w;|x; — yilp)ll’ (with nonnegative weights w;) are
also used, for p = 1,2, in applications. Given weights w; > 0, the weighted
Manhattan quasi-metric for x,y € R" is Z?=1 d;, where every d; is the quasi-
metric defined by d; = w;(x; — y;) if x; > y; and d; = W;(y; — x;), otherwise.

The ordinal distance on R” is defined (Bahari and Van hamme, 2014) by

QI w-we.

i=1 l<j<i

* YJHHR metrics
We call YJHHR metrics the following metrics, introduced by Yang, Jiang,
Hahn, Housworth, and Radivojac, 2016.
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For any p > 1 and two finite sets X, Y, define

d(X,Y) = (X \ YP + Y\ X]")7

d(X,Y)

d d(X,Y) =
and d(X.Y) = 07

if |XUY|>0, d(X,Y) =0, otherwise.

For any p > 1 and two bounded integrable functions f, g on R, define

D(f.g) = ((/(max(f—g,o)dx)p + (/(max(g -/ O))x)/’);lz

D(f,g)
S max(|f], [ f].1f — ghdx’

and D'(f.g) =

e Multiplicative distance
In order to offset instability of the norm distances for high-dimensional data
(i.e., in R" with large n), Mansouri and Khademi, 2014, introduced the following
multiplicative distance for any x,y € R™:

dyk(x,y) = =1+ [ J(1 + |5 = yi)°,

i=1

where ci, ..., c, are given positive numbers.
Qureshi, 2015, introduced another multiplicative distance for any x,y € N":

n
do(x.y) = Y [lI(x) = 1)1
i=1
where l(a) = (o1, @2, ... ) for any number a € N represented as p}'p5” ... ; here
P1, D2, - .. is the sequence of prime numbers.
* Penrose size and shape distances

The Penrose size distance and Penrose shape distance are the distances on

R" defined, respectively, by

V) |xi—yi| and \/Z((Xi —X) — (i =)~

The sum of their squares is the squared Euclidean distance.

The mean character distance (Czekanowsky, 1909) is defined by =1,
* Lorentzian distance

The Lorentzian distance is a distance on R”, defined by

Zln(l + |xi — yil).
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o Effect size
Let X,y be the means of samples x, y and let 52 be the pooled variance of both
samples. The effect size (a term used mainly in social sciences) is defined by

-3
.

Its symmetric version [x = 3 is called statistical distance by Johnson—Wichern,
1982, and standard dlstance by Flury—Riedwyl, 1986.
Cf. the engineer semimetric in Chap. 14 and the ward linkage.
¢ Binary Euclidean distance

The binary Euclidean distance is a distance on R” defined by

\/Z(lxi>0 - 1y,->0)2-

¢ Mean censored Euclidean distance
The mean censored Euclidean distance is a distance on R" defined by

Z(xi - yi)z
Z 1x,.2+y,-27é0
* Normalized /,-distance

The normalized /,-distance, 1 < p < 00, is a distance on R" defined by

|l = yllp
%1y + {1l

The only integer value p for which the normalized /,-distance is a metric, is p=2.

Moreove-r, the distance % is a metric for any a, b > 0 ([Yian91]).
¢ Clark distance
The Clark distance (Clark, 1952) is a distance on R”", defined by

1
S ())
n ;] + [yil ‘
¢ Meehl distance

The Meehl distance (or Meehl index) is a distance on R” defined by

Z (xi —yi — xit1 + )’i+1)2-

1<i<n—1
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e Hellinger distance
The Hellinger distance is a distance on R’, defined by

(i)

Cf. Hellinger metric in Chap. 14.

The Whittaker index of association is defined by 3 > | — F

+ Symmetric y’>-measure
The symmetric y’-measure is a distance on R”" defined by

Zi (¥ — yi%)*
Xy oxi+yo

« Symmetric y2-distance
The symmetric y2-distance (or chi-distance) is a distance on R" defined by

x+y K din X+y (Y —yix)?
) C R D D -
n(xz-i-yz) Xy n(x-y) xi + yi

It is a weighted Euclidean distance.
¢ Weighted Euclidean distance
The general quadratic-form distance on R” is defined by

Vx=yTA(x —y),

where A is a real nonsingular symmetric n x n matrix; cf. Mahalanobis distance.
The weighted Euclidean distance is the case A = diag(a;), a; # 0, i.e., itis

‘/Zai(xi — )%

Some examples are: pseudo-Euclidean distance (Chap.7), standardized
Euclidean distance and first two metrics (Euclidean R®-distances) in Sect. 18.3.
¢ Mahalanobis distance
The Mahalanobis distance (or quadratic distance, or directionally weighted
distance) is a semimetric on R” defined (Mahalanobis, 1936) by

[lx =ylla = vV(x =)A= )T,

where A is a positive-semidefinite matrix. It is a metric if A is positive-definite.
Cf. Mahalanobis semimetric in Chap. 14. The square ||x — y||3 is called
generalized ellipsoid (or generalized squared interpoint) distance.
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Usually, A = C~!, where C is a covariance matrix ((Cov(x;,x;))) of some
data points x,y € R” (say, random vectors with the same distribution), or A =
(det(C))r C" so that det(A) = 1.

Clearly, ||x—y||; is the Euclidean distance. If C = ((c;j)) is a diagonal matrix,
then ¢; = Var(x;) = Var(y;) = o7 and it holds

lx=ylle—1 =

Such diagonal Mahalanobis distance is called the standardized Euclidean
distance (or normalized Euclidean distance, scaled Euclidean distance).
The maximum scaled difference (Maxwell-Buddemeier, 2002) is defined by

(xi — yi)2
max ————.
i 2

1

17.3 Similarities and Distances for Binary Data

Usually, such similarities s range from 0 to 1 or from —1 to 1; the corresponding

distances are usually 1 — s or %, respectively.

¢ Hamann similarity
The Hamann similarity, 1961, is a similarity on {0, 1}", defined by

AXAY| | n-2xAY]
n B n ’

¢ Rand similarity
The Rand similarity (or Sokal-Michener’s simple matching) is a similarity
on {0, 1}" defined by

XAY] _ | _|xav|
n o n '

Its square root is called the Euclidean similarity. The corresponding metric p(niyl

is called the variance or Manhattan similarity; cf. Penrose size distance.
¢ Sokal-Sneath similarities
The Sokal-Sneath similarities 1, 2, 3 are the similarity on {0, 1}" defined by

2[XAY| IXNY| IXAY]|
n+|XAY|" [XUY|+|XAY]" |XAY|




338 17 Distances and Similarities in Data Analysis

* Russel-Rao similarity
The Russel-Rao similarity is a similarity on {0, 1}", defined by

XN Y|
—.

¢ Forbes—Mozley similarity
The Forbes—Mozley similarity is a similarity on {0, 1}" defined by
nXNY)|
IX|ly|

¢ Braun-Blanquet similarity
The Braun-Blanquet similarity is a similarity on {0, 1}" defined by

XNy
max{|X[, [Y]}"

* Roger-Tanimoto similarity
The Roger-Tanimoto similarity, 1960, is a similarity on {0, 1}" defined by
|XAY|
n+ |XAY|

¢ Faith similarity
The Faith similarity is a similarity on {0, 1}", defined by

X NY|+|XAY]|
2n '

¢ Tversky similarity
The Tversky similarity is a similarity on {0, 1}", defined by

XNy
alXAY|+blXNY|

It becomes the Tanimoto, Sgrensen and (the binary case of) Kulczynsky 1
similarities for (a,b) = (1, 1), (%, 1) and (1, 0), respectively.
¢ Mountford similarity
The Mountford similarity, 1962, is a similarity on {0, 1}", defined by

2X N Y|

IXIIY\X|+ [Y[IX\Y]
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* Gower-Legendre similarity
The Gower-Legendre similarity is a similarity on {0, 1}" defined by

IXAY]| 3 IXAY|
alXAY| + |XAY| n+(a—1)|XAY]

¢ Anderberg similarity
The Anderberg (or Sokal-Sneath 4 similarity) on {0, 1}" is defined by

|xmy|(1 N 1)+|xuy| 1 N 1
4 x| " || 4 \xlJv)°

¢ Yule similarities
The Yule Q similarity (Yule, 1900) is a similarity on {0, 1}", defined by

XNY|-|XUY|—|X\Y]|- |Y\X|
XNY|-|XUY|+|X\Y|- |Y\X|

The Yule Y similarity of colligation (1912) is a similarity on {0, 1}" defined

by
VXY XUY| = IX\Y]- [P\X]
VIXNY[-XUY|+ IX\Y]-[V\X]

¢ Dispersion similarity
The dispersion similarity is a similarity on {0, 1}", defined by

XNYl-[XUY|—[|X\Y][Y\X|
n2 '

¢ Pearson ¢ similarity
The Pearson ¢ similarity is a similarity on {0, 1}" defined by

IXNY]- XU Y[ —[X\Y]-[V\X]|

X1+ 1X]-[Y]-]Y]

¢ Gower similarity 2
The Gower 2 (or Sokal-Sneath 5) similarity on {0, 1}" is defined by

XNyl XUY|

X1+ IX1- Y] - Y|
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* Pattern difference
The pattern difference is a distance on {0, 1}", defined by

41X\Y|- [Y\X|
n2 ’

¢ (Qo-difference
The Qo-difference is a distance on {0, 1}", defined by

IX\Y[- [Y\X]|
Xnyl-xXuy|

* Model distance
Let X, Y be two data sets, and let A; be the eigenvalues of the symmetrized

cross-correlation matrix Cx\yy\x X Cr\xx\y-
The model distance (Todeschini, 2004) is a distance on {0, 1}" defined by

\/|X\Y| Finx -2/,
J

The CMD-distance (or, canonical measure of distance, Todeschini et al., 2009)

1S
\/|x| T r-2) /A
J

where A; are the nonzero eigenvalues of the cross-correlation matrix Cxy x Cyy.

17.4 Correlation Similarities and Distances

The covariance between two real-valued random variables X and Y is Cov(x,y) =
E[(X — EX])(Y — E[Y])] = E[XY] — E[X]E[Y]. The variance of X is Var(X) =

. : _ Cov(X,Y) .
Cov(X, X) and the Pearson correlation of X and Y is Corr(X,Y) = Tarota

cf. Chap. 14.

Let (X,Y),(X',Y),(X”,Y”) be independent and identically distributed. The
distance covariance (Székely, 2005) is the square root of dCov*(X,Y) = E[|X —
XY =Y+ E[IX - X"[[E[|Y - Y'[] - E[|X - X'||Y — Y"[] - E[|X - X"[|Y - Y|] =
E[|X=X'||Y-Y'||+E[|X=X'||E[|]Y—Y'|] -2E[|X—X'||]Y—Y"|]. Itis O if and only if X
and Y are independent. The distance correlation dCor(X,Y) is «/%.

The vectors x, y below can be seen as samples (series of n measurements) of X, Y.
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¢ Covariance similarity
The covariance similarity is a similarity on R" defined by

(i =X —Y) _ Xy o

—-X-y
n n

¢ Pearson correlation similarity
The Pearson correlation similarity, or, by its full name, Pearson product-
moment correlation coefficient) is a similarity on R” defined by

_ Y =X —Y) .
V=320 —)?

The Pearson distance (or correlation distance) is defined by

l—szlz< x; x_ i ?_)
2 V=32 V20—

A multivariate generalization of the Pearson correlation similarity is the RV

coefficient (Escoufier, 1973) RV(X,Y) = % where X,Y are

matrices of centered random (column) vectors with covariance matrix C(X,Y) =
E[X"Y], and Covv(X, Y) is the trace of the matrix C(X, Y)C(Y,X).
¢ Cosine similarity
The cosine similarity (or Orchini similarity, angular similarity, normalized
dot product) is the case X = y = 0 of the Pearson correlation similarity, i.e., it
is

{x,y)

———— =cos¢
[1x[12 - [Iyl]2 ’

where ¢ is the angle between vectors x and y. In the binary case, it becomes

XN Y|
X[~ 1Y

and is called the Ochiai—-Otsuka similarity.
In Record Linkage, cosine similarity is called TF-IDF similarity; it (or tf-idf,
TFIDF) are used as an abbreviation of Frequency-Inverse Document Frequency.
The angular semimetric on R” is defined by arccos ¢. The cosine distance
is 1 — cos ¢, and the Orloci distance (or chord distance) is

V2(1 —cos¢) = \/Z( —)2,

E IIyIIz
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¢ Similarity ratio
The similarity ratio (or Kohonen similarity, Kumar—-Hassebrook similarity)
is a similarity on R” defined by

{x.y)
() + =113
Its binary case is the Tanimoto similarity.
e Morisita—Horn similarity

The Morisita—Horn similarity (Morisita, 1959) is a similarity on R" defined
by

2(x,y)
[1xl13 - 2 + [1yI13 -

<l

¢ Spearman rank correlation
If the sequences x, y € R" are ranked separately, then the Pearson correlation
similarity is approximated by the following Spearman p rank correlation:

i—a)(bi—b 6
Z(d a)( )_ =1— 2—1 Z(ai _ b,’)z,
V@-arxe-p "D
where n > 1 and a; = rank(x;),b; = rank(y;),a = (ai,...,a,),b =
(b1,...,by). This approximation is good for such ordinal data when it holds
- = n+
X =y = 5 -

The Spearman footrule is defined by

3
1—n2_12|xi—yi|.

Cf. the Spearman p distance and Spearman footrule distance in Chap. 11.
Another correlation similarity for rankings is the Kendall 7 rank correlation:

23 i<icjn Sign(xi — x;)sign(yi — y;)
nn—1) '

Cf. the Kendall 7 distance on permutations in Chap. 11.
¢ Global correlation distance
Let x € R” and (A, d) be a metric space with n points ay,...,a,. For any
d > 0, the Moran autocorrelation coefficient is defined by

n Zlgi;éjfn Wij(d)(xi - )_C)(‘xj - f)
D i<istizn Wil d) 20 <i<n (i — 0

1(d) =
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where the weight wi;(d) is 1 if d(a;,a)) = d and 0, otherwise. In spatial
analysis, eventual clustering of (A, d) implies that /(d) decreases with increasing
d. I(d) is a global indicator of the presumed spatial dependence that evaluate the
existence/size of clusters in the spatial arrangement (A, d) of a given variable.
The global correlation distance is the least value ¢’ for which I(d) = 0.
* Log-likelihood distance
Given two clusters A and B, their log-likelihood distance is the decrease
in log-likelihood (cf. the Kullback-Leibler distance in Chap. 14 and the log-
likelihood ratio quasi-distance in Chap.21) as they are combined into one
cluster. Simplifying (taking A, B C R.), it is defined by

X X
log — log — —
Zx og |A|+§x og 13|

X€EA

Y xlog
og ——.
TR AU B

XEAUB

e Spatial analysis

In Statistics, spatial analysis (or spatial statistics) includes the formal
techniques for studying entities using their topological, geometric, or geographic
properties. More restrictively, it refers to Geostatistics and Human Geography. It
considers spatially distributed data as a priori dependent one on another.

Spatial dependence is a measure for the degree of associative dependence
between independently measured values in an ordered set, determined in samples
selected at different positions in a sample space. Cf. spatial correlation in
Chap. 24. An example of such space-time dynamics: Gould, 1997, showed that
~ 80 % of the diffusion of HIV in the US is highly correlated with the air
passenger traffic (origin-destination) matrix for 102 major urban centers.

SADIFE (Spatial Analysis by Distance IndicEs) is a methodology (Perry, 1998)
to measure the degree of nonrandomness in 2D spatial patterns of populations.
Given n sample units x; € R? with associated counts N;, the distance to
regularity is the minimal total Euclidean distance that the individuals in the
sample would have to move, from unit to unit, so that all units contained an
identical number of individuals. The distance to crowding is the minimal total
distance that individuals in the sample must move so that all are congregated in
one unit. The indices of aggregation are defined by dividing above distances by
their mean values. Cf. Earth Mover’s distance in Chap.21.

¢ Distance sampling

Distance sampling is a widely-used group of methods for estimating the
density and abundance of biological populations. It is an extension of plot- (or
quadrate-based) sampling, where the number of objects at given distance from a
point or a segment is counted. Also, Distance is the name of a Windows-based
computer package that allows to design and analyze distance sampling surveys.

A standardized survey along a series of lines or points is performed, searching
for objects of interest (say, animals, plants or their clusters). Detection distances
r (perpendicular ones from given lines and radial ones from given points) are
measured to each detected object. The detection function g(r) (the probability
that an object at distance r is detected) is fit then to the observed distances, and
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this fitted function is used to estimate the proportion of objects missed by the
survey. It gives estimates for the density and abundance of objects in the survey
area.

* Cook distance

The Cook distance is a distance on R" giving a statistical measure of
deciding if some i-th observation alone affects much regression estimates. It
is a normalized squared Euclidean distance between estimated parameters
from regression models constructed from all data and from data without i-th
observation.

The main similar distances, used in Regression Analysis for detecting influ-
ential observations, are DFITS distance, Welsch distance, and Hadi distance.

¢ Periodicity p-self-distance

Ergun—Muthukrishnan—Sahinalp, 2004, call a data stream x = (xy, ..., x,) p-
periodic approximatively, for given 1 < p < 3 and distance function d between
p-blocks of x, if the periodicity p-self-distance Zi# A((Xjpt1, -+ s Xjptp),
(Xip+15 - - - » Xip+p)) is below some threshold.

Above notion of self-distance is different from ones given in Chaps. 1 and 28.
Also, the term self-distance is used for round-off error (or rounding error), i.e.,
the difference between the calculated approximation of a number and its exact
value.

¢ Distance metric learning

Let xy,...,x, denote the samples in the training set X C R™; here m is the
number of features. Distance metric learning is an approach for the problem
of clustering with side information, when algorithm learns a distance function
d prior to clustering and then tries to satisfy some positive (or equivalence)
constraints P and negative constraints D. Here S and D are the sets of similar
(belonging to the same class) and dissimilar pairs (x;, x;), respectively.

Usually d is a Mahalanobis metric ||x; — xj|[a = +/(x; —x)TA(x; — X)),
where A is a positive-semidefinite matrix, i.e., A = WTW for a matrix W with m
columns and ||x; — x| |2 = ||Wx; — Wx;||?. Then, for example, one look for (Xing
etal., 2003) A minimizing 3, s |1xi — 513 while 3o, ep [l —xl3 = 1.

* Heterogeneous distance

The following IBL (instance-based learning) setting is used for many real-
world applications (neural networks, etc.), where data are incomplete and have
both continuous and nominal attributes. Given an m x (n 4 1) matrix ((x;)), its
row (X0, X1, ...,Xi,) denotes an instance input vector x; = (X1, ...,Xp) with
output class xjo; the set of m instances represents a training set during learning.
For any new input vector y = (y1,...,y), the closest (in terms of a selected
distance d) instance x; is sought, in order to classify y, i.e., predict its output class
as X;o.

A heterogeneous distance d(x;, y) is defined ((WiMa97]) by

> (xiy)
j=1
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with d;(x;;, y;) = 11if x; or y; is unknown. If the attribute (input variable) j is
nominal, then d;(x;, y;) is defined, for example, as 1xiﬁéij or as

2

a

|{1§t§m:x,0:a,x,;,~:x,~j}|_|{1§t§m:xr0:a,x,~j:y,~}| 4

{1 <1 <m:x;=x;} {1 <t<m:x; =y}

for g = 1 or 2; the sum is taken over all output classes, i.e., values a from
{x0 : 1 <t < mj. For continuous attributes j, the number dj is taken to be

|x;j — ;| divided by max, x;; — min, x;, or by 1 of the standard deviation of values
x4, L <t <m.



Chapter 18
Distances in Systems and Mathematical
Engineering

In this chapter we group the main distances used in Systems Theory (such as
Transition Systems, Dynamical Systems, Cellular Automata, Feedback Systems)
and other interdisciplinary branches of Mathematics, Engineering and Theoretical
Computer Science (such as, say, Robot Motion and Multi-objective Optimization).

A labeled transition system (LTS) is a triple (S, T, F) where S is a set of states,
T is a set of labels (or actions) and F € S x T x § is a ternary relation. Any
(x,t,y) € F represents a t-labeled transition from state x to state y. A LTS with
|T| = 1 corresponds to an unlabeled transition system.

A pathis a sequence ((x1, 11, X2), - . ., (X;, i, Xi+1), - . . ) of transitions; it gives rise
to a trace (ty,...,t;,...). Two paths are trace-equivalent if they have the same
traces. The term trace, in Computer Science, refers in general to the equivalence
classes of strings of a trace monoid, wherein certain letters in the string are allowed
to commute. It is not related to the trace in Linear Algebra.

A LTS is called deterministic if for any x € Sand t € T it holds that [{y € S :
(x,t,y) € F}| = 1. Such LTS without output is called a semiautomaton (S, T,f)
where S is a set of states, T is an input alphabet and f : X x T — S is a transition
function.

A deterministic finite-state machine is a tuple (S, so, T, f, S') with S, T, f as above
but 0 < |S|, |T| < oo, while s, € S is an initial state, and S’ C § is the set of final
states.

The free monoid on a set T is a monoid (algebraic structure with an associative
binary operation and an identity element) 7* whose elements are all the finite
sequences x = Xo, ..., X, of elements from 7. The identity element is the empty
string A, and the operation is string concatenation. The free semigroup on 7 is
Tt = T*\ {A}. Let T® denote the set of all infinite sequences x = (xg,X1,...)
in T, and let T* denote T* U T*.

A finite-state machine is nondeterministic if the next possible state is not
uniquely determined. A weighted automaton is a such machine, say, M equipped
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with a cost function ¢ > 0, over some semiring (S, @, ®), on transitions. For a
probabilistic automaton, the semiring is (R>o, +, x) and 0 < ¢ < 1.

A distance automaton is (Hashiguchi, 1982) a weighted automaton over the
tropical semiring TROP = (N U {oo}, min, +). A run over a word (string in the
language of M) (ay, . . . , a;) is asequence (so, . . ., 5x) of states. The run’s distance is
the sum Zf=1 c(a;)p,_,p; of costs of involved transitions. The run is accepting if sy is
initial and sy is a final state. The distance of a word recognized by M is the minimum
of the distances over the all accepting runs. The distance of M is the supremum over
the distances of all recognized words. Distance automata are equivalent to finitely
generated monoids of matrices over TROP: nondeterministic automata recognize
the same language as some deterministic ones but with transitions acting on the sets
of original states.

18.1 Distances in State Transition and Dynamical Systems

* Distances on formal languages

A formal language over an alphabet T is a set of words over T

The similarity between two words of a language are measured usually by the
Hamming metric (cf. Sect. 1.5) or (cf. Sect. 11.1) by the Levenstein metric (or
edit distance) and prefix, suffix and substring distances.

Given a language L and a distance d on it, the distance between a word u
and L is the point-set distance (Sect. 1.5) min,e; d(u, v).

The inner distance (or self distance) d of L is (Mihri, 2007) miny yez, uv
d(u, v); cf. separation in the item metric spread in Sect. 1.3.

The similarity between two languages L and L’ are measured usually by the
following extensions: min,ey, yer/ us£y d(u, v) and (called by Choftrut—Pighizzini,
2002, the relative distance d) max,c; minye;s d(u, v). In terms of Sect. 1.5, they
are, respectively, the set-set distance and the directed Hausdorff distance.

See also in Sect. 28.3 the language distance from English and other notions
of distance between words of a natural language and between languages.

¢ Fahrenberg-Legay—Thrane distances

Given a labeled transition system (LTS) (S, T, F) Fahrenberg—Legay—Thrane,
2011, call T the set of traces and define a trace distance as an extended
hemimetric (or quasi-semimetric) 7 : 7° x T — Ry U {oo} such that
h(x,y) = oo for any sequences x,y € T of different length.

For a given distance d on the set T of labels and a discount factor g (0 < g <
1), they defined the pointwise, accumulating and limit-average trace distance
as, respectively, PW,,(x,y) = sup; ¢'d(x;, yi), ACCy4(x,y) = Y, ¢'d(x;, y;) and
AVGy = 1im,_, oo 77 Do d(%,3))-

If d is a discrete metric, i.e., d(z,/') = 1 whenevert # ¢, then ACC, is the
Hamming metric for finite traces of the same length, and ACC,, with ¢ < 1
and AVG, are analogs of the Hamming metric for infinite traces.
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Other examples of trace distances are a Cantor-like distance (1 + inf{i : x; #
y,<}>)_1 and the maximum-lead distance, defined, for T C X' x R, by Henzinger—
Majumdar—Prabhu, 2005, as sup; | 3/ x/ — > i, ¥/ | if x; = y; for all i and oo,
otherwise. Here any z € T is denoted by (7, 7”), where 7 € X and 7" € R.

Fahrenberg-Legay-Thrane, 2011, also define the two following extended
simulation hemimetrics between states x,y € S.

The accumulating simulation distance h,.(x,y) and the pointwise simulation

distance hp,(x,y) are the least fixed points, respectively, to the set of equations

hee(x,y) =  max min  (d(t,7) + gha(¥',y")) and
teT:(xtx')EF €T (y,',y')EF

hpo(x,y) =  max min  max{d(1,7), hyo(x',y")}.
teT:(x,tx')EF V€T :(y,l',y)EF

The above hemimetrics generalize the lifting by Alfaro—Faella—Stoelinga, 2004,
of the quasi-metric max{x” — y”,0} between labels x,y € T = ¥ x R on an
accumulating trace distance and then the lifting of it on the directed Hausdorff
distance (Chap. 1) between the sets of traces from two given states.
The case hae(x,y) = hyo(x,y) = 0 corresponds to the simulation of x by y,
written x < y, i.e., to the existence of a weighted simulation relation R C § x S,
i.e., whenever (x,y) € Rand (x,t,x') € F, then (y,t,y") € F with (x',y) € R.
The case hae(x,y) < 00 or hpy,(x,y) < oo corresponds to the existence of
an unweighted simulation relation R C S x S, i.e., whenever (x,y) € R and
(x,1,x') € F,then (y,7,y) € F with (x',y') € Rand d(t,7) < oc.
The relation < is a pre-order on S. Two states x and y are similar if x <y and
y < x; they are bisimilar if, moreover, the simulation R of x by y is the inverse
of the simulation of y by x. Similarity is an equivalence relation on S which is
coarser than the bisimilarity congruence.
The above trace and similarity system hemimetrics are quantitative gen-
eralizations of system relations: trace-equivalence and simulation pre-order,
respectively.
¢ Cellular automata distances
Let S,|S| > 2, be a finite set (alphabet), and let S be the set of Z-

indexed bi-infinite sequences {x;}2__, (configurations) of elements of S. A
(one-dimensional) cellular automaton is a continuous self-map f : §° — §*°
that commutes with all shift (or translation) maps g : S*° — S° defined by
g(x;) = Xiy1.

Such cellular automaton form a discrete dynamical system with the time set
T = Z (of cells, positions of a finite-state machine) on the finite-state space S.
The main distances between configurations {x;}; and {y;}; (see [BFK99]) follow.

The Cantor metric is a metric on §°° defined, for x # y, by

9~ min{i=0:lxi—yi|+lx—i—y—i|#0}

It corresponds to the case a = % of the generalized Cantor metric in Chap. 11.
The corresponding metric space is compact.
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The Besicovitch semimetric is a semimetric on S°° defined, for x # y, by

T |—I<i<l:x;#yil
im .
[—00 2[+1

Cf. Besicovitch distance on measurable functions in Chap. 13. The correspond-
ing semimetric space is complete.
The Weyl semimetric is a semimetric on S*°, defined by

hml_morl?azx .
€

l

This and the above semimetric are translation invariant, but are neither
separable nor locally compact. Cf. Weyl distance in Chap. 13.
¢ Dynamical system

A (deterministic) dynamical system is a tuple (7, X, f) consisting of a metric
space (X, d), called the state space, a time set T and an evolution function f :
T x X — X. Usually, T is a monoid, (X, d) is a manifold locally diffeomorphic
to a Banach space, and f is a continuous function.

The system is discrete if T = Z (cascade) or if T = {0,1,2...}. It is real
(or flow) if T is an open interval in R, and it is a cellular automaton if X is finite
and T = Z". Dynamical systems are studied in Control Theory in the context of
stability; Chaos Theory considers the systems with maximal possible instability.

A discrete dynamical system with 7 = {0, 1,2...} is defined by a self-map
f : X — X.Forany x € X, its orbit is the sequence {f"(x)},; here f"(x) =
F(f" 1 (x)) with f°(x) = x. The orbit of x € X is called periodic if f"(x) = x for
some n > 0.

A pair (x,y) € X x X is called proximal if lim,_, d(f"(x),f"(y)) = 0, and
distal, otherwise. The system is called distal if any pair (x, y) of distinct points is
distal.

The dynamical system is called expansive if there exists a constant D > 0
such that the inequality d(f"(x),f"(y)) > D holds for any distinct x,y € X and
some n.

An attractor is a closed subset A of X such that there exists an open
neighborhood U of A with the property that lim,—,» d(f"(b),A) = 0 for every
b € U, ie., A attracts all nearby orbits. Here d(x,A) = inf,e4 d(x,y) is the
point-set distance.

If for large n and small r there exists a number « such that

_RGpdF@. o) srl<ij=ml

n2

CX,n,r) ,
then « is called (Grassberger—Hentschel-Procaccia, 1983) the correlation dimen-
sion.

The Lyapunov time is the characteristic timescale on which a dynamical
system is chaotic, i.e., small differences in initial conditions yield widely
diverging outcomes, rendering long-term prediction impossible in general.
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Melnikov distance

The evolution of a planar dynamical system can be represented in a 3D
state space with orthogonal coordinate axes Ox, Ox’, Ot. A homoclinic orbit
(nongeneric orbit that joins a saddle point) can be seen in that space as the
intersection with a plane of section ¢ = const of the stable manifold (the surface
consisting of all trajectories that approach yy = Ot asymptotically in forward
time) and the unstable manifold (the surface consisting of all trajectories that
approach Ot in reverse time).

Under a sufficiently small perturbation € which is bounded and smooth
enough, Ot persists as a smooth curve y. = yo + O(€), and the perturbed system
has (not coinciding since € > 0) stable and unstable manifolds contained in an
O(¢e) neighborhood of the unperturbed manifolds.

The Melnikov distance is the distance between stable and unstable manifolds
measured along a line normal to the unperturbed manifolds, i.e., a direction that
is perpendicular to the unperturbed homoclinic orbit. Cf. Sect. 18.2.

Fractal

For a metric space, its topological dimension does not exceed its Hausdorff
dimension; cf. Chap. 1. A fractal is a metric space for which this inequality is
strict. (Originally, Mandelbrot defined a fractal as a point set with noninteger
Hausdorff dimension.) For example, the Cantor set, seen as a compact metric
subspace of (R, d(x,y) = |x — y|) has the Hausdorff dimension %; cf. another
Cantor metric in Chap. 11. Another classical fractal, the Sierpinski carpet of
[0, 1]x[0, 1], is a complete geodesic metric subspace of (R?, d(x,y) = ||x—y]||1).

The term fractal is used also, more generally, for a self-similar (i.e., roughly,
looking similar at any scale) object (usually, a subset of R"). Cf. scale invari-
ance.

Scale invariance

Scale invariance is a feature of laws or objects which do not change if length
scales are multiplied by a common factor.

Examples of scale invariant phenomena are fractals and power laws; cf.
scale-free network in Chap.22 and self-similarity in long range dependence.
Scale invariance arising from a power law y = Cx*, for a constant C and
scale exponent k, amounts to linearity logy = log C + klogx for logarithms.
Much of scale invariant behavior (and complexity in nature) is explained (Bak—
Tang—Wiesenfeld, 1987) by self-organized cruciality (SOC) of many dynamical
systems, i.e., the property to have the critical point of a phase transition as an
attractor which can be attained spontaneously without any fine-tuning of control
parameters.

Two moving systems are dynamically similar if the motion of one can be
made identical to the motion of the other by multiplying all lengths by one scale
factor, all forces by another one and all time periods by a third scale factor.
Dynamic similarity can be formulated in terms of dimensionless parameters as,
for example, the Reynolds number in Chap. 24.

Long range dependence

A (second-order stationary) stochastic process X, k € Z, is called long range

dependent (or long memory) if there exist numbers o,0 < o < I,and ¢, > 0
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such that limy_,o c,k*p(k) = 1, where p(k) is the autocorrelation function. So,
correlations decay very slowly (asymptotically hyperbolic) to zero implying that
> rez |p(k)| = oo, and that events so far apart are correlated (long memory). If
the above sum is finite and the decay is exponential, then the process is short
range.

Examples of such processes are the exponential, normal and Poisson processes
which are memoryless, and, in physical terms, systems in thermodynamic
equilibrium. The above power law decay for correlations as a function of time
translates into a power law decay of the Fourier spectrum as a function of
frequency f and is called 1 noise.

A process has a self-similarity exponent (or Hust parameter) H if X; and
X, have the same finite-dimensional distributions for any positive 7. The
cases H = % and H = 1 correspond, respectively, to purely random process
and to exact self-similarity: the same behavior on all scales. Cf. fractal, scale
invariance and, in Chap. 22, scale-free network. The processes with % <H<1
are long range dependent with « = 2(1 — H).

Long range dependence corresponds to heavy-tailed (or power law) distribu-
tions. The distribution function and tail of a nonnegative random variable X are
F(x) = P(X < x) and F(x) = P(X > x). A distribution F(X) is heavy-tailed if
there exists a number o, 0 < o < 1, such that lim,_, x‘)‘m =1.

Many such distributions occur in the real world (for example, in Physics,
Economics, the Internet) in both space (distances) and time (durations). A
standard example is the Pareto distribution W =x* x> 1, where k > 0
is a parameter. Cf. Sect. 18.4 and, in Chap. 29, distance decay.

Also, the random-copying model (the cultural analog of genetic drift) of the
frequency distributions of various cultural traits (such as of scientific papers
citations, first names, dog breeds, pottery decorations) results (Bentley—Hahn—
Shennan, 2004) in a power law distribution y = Cx™*, where y is the proportion
of cultural traits that occur with frequency x in the population, and C and k are
parameters.

A general Lévy flight is a random walk in which the increments have a power
law probability distribution.

* Lévy walks in human mobility

A jump is alongest straight line trip from one location to another done without
a directional change or pause. Consider a 2D random walk (taking successive
jumps, each in a random direction) model that involves two distributions: a
uniform one for the turning angle 6; and a power law P(l;) ~ 7 for the jump
length ;.

Brownian motion has « > 3 and normal diffusion, i.e., the MSD (mean
squared displacement) grows linearly with time 1: MSD ~ ",y = 1.

A Lévy walk has 1 < o < 3. Its jump length is scale-free, i.e., lacks an
average scale [;, and it is superdiffusive: MSD ~ 7,y > 1. Intuitively, Lévy
walks consist of many short jumps and, exceptionally, long jumps eliminating
the effect of short ones in average jump lengths.
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Lévy-like walk dispersal was observed in our Web browsing and image
scanning, as well as in foraging animals. It and two-mode Brownian search
strategies might be optimal for finding patches of randomly dispersed abundant
resources: to cluster, in order to save time and effort, closely located activities
and then make many short jumps within the clustered areas and a few long jumps
among areas.

Human mobility occurs on many length scales, ranging from walking to air
travel. On average, humans spend 1.1 h of their daily time budget traveling.
Schafer and Victor, 2000, estimated the average travel distance, per person per
year, as 1814, 4382 and 6787 km for 1960, 1990 and 2020, respectively.

Brockmann—Hafnagel-Geisel, 2006, studied long range human traffic via the
geographic circulation of money. To track a bill, a user stamps it and enters
data (serial number, series and local ZIP code) in a computer. The site www.
wheresgeorge.com reports the time and distance between the bill’s consecutive
sightings. 57 % of all ~ 465,000 considered bills traveled 50-800km over 9
months in US. The probability of a bill traversing a distance r (an estimate of
the probability of humans moving such a distance) followed, over 10-3500km, a
power law P(r) = r~!®, Banknote dispersal was fractal, and the bill trajectories
resembled Lévy walks.

Gonzilez—Hidalgo—Barabdsi, 2008, studied the trajectory of 100,000
anonymized mobile phone users (a random sample of 6 million) over 6 months.
The probability of finding a user at a location of rank k (by the number of
times a user was recorded in the vicinity) was P(k) ~ % 40 % of the time users
were found at their first two preferred locations (home, work), while spending
remaining time in 5-50 places. Phithakkitnukoon et al., 2011, found that ~ 80 %
of places visited by mobile phone users are within of their geo-social radius
(nearest social ties’ locations) 20 km.

Jiang—Yin—Zhao, 2009, analyzed people’s moving trajectories, obtained from
GPS data of 50 taxicabs over 6 months in a large street network. They found
a Lévy behavior in walks (both origin-destination and between streets) and
attributed it to the fractal property of the underlying street network, not to the
goal-directed nature of human movement. Rhee et al., 2009, analyzed ~1000h
of GPS traces of walks of 44 participants. They also got Lévy walks.

* Total distance between trajectories

A trajectory in R¥ is a sequence X = ((x1,t), ..., (x,.1,)) of state-time points
with x; € R¥ and increasing “time” #; € N. In R?, a trajectory can be seen as a list
of consecutive GPS points for a moving object; sometimes, a semantic tag (say,
“Shop, Restaurant”) is attached to each point.

Let ¢(X) be the center of mass of {xi,...,x,}, [(X) the length of X, and s(X)
the displacement of X (cf. Sect. 24.1), i.e., the vector from x; to x,,.

The total distance between trajectories X = ((x,#1), ..., (x,,2,)) and X' =
(1), (¥, 2,,) is (Liu-Schneider, 2012) 24, where @ € [0, 1]

is a parameter, the semantic similarity Sem(X,X’) is the length of their longest
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common subsequence divided by min(n, n’), while

/ 1) — 1) IsCOll + sG] (). s(X))
A (eX). e XN+ 0wy~ 2 TGO - 5G]

is their geographic distance Geo(X,X').
The Lyapunov time, reflecting the limits of system’s predictability, is the time
for the distance between nearby system’s trajectories to increase by a factor of e.

18.2 Distances in Control Theory

Control Theory deals with influencing the behavior of dynamical systems. It
considers the feedback loop of a plant P (a function representing the object to
be controlled, a system) and a controller C (a function to design). The output y,
measured by a sensor, is fed back to the reference value r.

Then the controller takes the error e = r — y to make inputs u = Ce. Subject to
zero initial conditions, the input and output signals to the plant are related by y =
Pu, where r,u, v and P, C are functions of the frequency variable s. So, y = H’f—gcr
and y ~ r (i.e., one controls the output by simply setting the reference) if PC is
large for any value of s.

If the system is modeled by a system of linear differential equations, then
its transfer function H’f—gc, relating the output with the input, is a rational func-
tion. The plant P is stable if it has no poles in the closed right half-plane
Ci={z€C:Re(z) > 0}.

The robust stabilization problem is: given a nominal plant (a model) Py and some
metric d on plants, find the open ball of maximal radius which is centered in Py, such
that some controller (rational function) C stabilizes every element of this ball.

The graph G(P) of the plant P is the set of all bounded input-output pairs (u,y =
Pu). Both u and y belong to the Hardy space H*(C) of the right half-plane; the
graph is a closed subspace of H>(C4) + H?*(C). In fact, G(P) is a closed subspace
of H*(C?), and G(P) = f(P) - H*(C?) for some function f(P), called the graph
symbol.

Cf. a dynamical system and the Melnikov distance in Sect. 18.1.

¢ Gap metric
The gap metric between plants P; and P, (Zames—El-Sakkary, 1980) is
defined by

gap(Py, Py) = [[TT1(Py) — I1(P2)|l2,

where I1(P;), i = 1,2, is the orthogonal projection of the graph G(P;) of P; seen
as a closed subspace of H?(C?). We have

gap(Py, Py) = max{§; (P, P2),81(P2, P1)},

where 6, (Py, Py) = infpepoo || f(P1) —f(P2)Q||noo, and f(P) is a graph symbol.
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Here H is the space of matrix-valued functions that are analytic and bounded
in the open right half-plane {s € C : 9% s > 0}; the H>°-norm is the maximum
singular value of the function over this space.

If A is an m x n matrix with m < n, then its n columns span an n-dimensional
subspace, and the matrix B of the orthogonal projection onto the column space
of A is A(ATA)~'AT . If the basis is orthonormal, then B = AAT.

In general, the gap metric between two subspaces of the same dimension
is the lr-norm of the difference of their orthogonal projections; see also the
definition of this distance as an angle distance between subspaces.

In applications, when subspaces correspond to autoregressive models, the
Frobenius norm is used instead of the l,-norm. Cf. Frobenius distance in
Chap. 12.

¢ Vidyasagar metric

The Vidyasagar metric (or graph metric) between plants P; and P, is

defined by

max{8>(Pi, P2), 82(P2, P1)},

where 8,(P1, P») = infjjg) <1 || f(P1) — f(P2)Q||poe.

The behavioral distance is the gap between extended graphs of P, and P;; a
term is added to the graph G(P), in order to reflect all possible initial conditions
(instead of the usual setup with the initial conditions being zero).

* Vinnicombe metric

The Vinnicombe metric (v-gap metric) between plants P, and P, is

defined by

_1 _1
8y(P1.P2) = ||(1 + P,P3) 2(P, — P1)(1 + P{P1) ? ||

if wno(f*(P2)f(P1)) = 0, and it is equal to 1, otherwise.

Here f(P) is the graph symbol function of plant P. See [Youn98] for the
definition of the winding number wno( f) of a rational function f and for a good
introduction to Feedback Stabilization.

¢ Lanzon-Papageorgiou quasi-distance

Given a plant P, a perturbed plant Pand an uncertainty structure expressed via
a generalized plant H, let A be the set of all possible perturbations that explain
the discrepancy between P and P. Then Lanzon-Papageorgiou quasi-distance
(2009) between P and P is defined as 0o if A = @ and infse 5 [|6]]00, Otherwise.

This quasi-distance corresponds to the worst-case degradation of the stability
margin due to a plant perturbation. For standard uncertainity structures H, it is a
metric, but it is only a quasi-metric for multiplicative uncertainity.

* Distance to uncontrollability

Linear Control Theory concerns a system of the form x = Ax(¢) + Bu(t),
where, at each time ¢, x(¢) € C" is the state vector, u(t) € C™ is the control input
vector, and A € C™", B € C"™" are the given matrices. The system (matrix pair
(A, B)) is called controllable if, for any initial and final states x(0) and x(7'), there
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exists u(r),0 <t < T, that drive the state from x(0) to x(7’) within finite time, or,
equivalently (Kalman, 1963) the matrix A — AIB has full row rank for all A € C.
The distance to uncontrollability (Paige, 1981, and Eising, 1984) is defined as

min{||[E, F]|| : (A + E, B+ F) is uncontrollable} = IAni(rjl 0.(A — AIB),
€

where [|.|| is the spectral or Frobenius norm (cf. Sect. 12.3) and 0,(A — AIB)
denotes the n-th largest singular value of the (n x (n + m))-matrix A — AIB.

A matrix A € C™" is stable if any its eigenvalue A has real part Re(A) < 0.
The distance to instability is (Van Loan, 1985) min{||E||} : A + E is unstable},
where ||.|| is one of two above norms. Cf. nearness matrix problems in
Chap. 12.

18.3 Motion Planning Distances

Automatic motion planning methods are applied in Robotics, Virtual Reality Systems
and Computer Aided Design. A motion planning metric is a metric used in
automatic motion planning methods.

Let a robot be a finite collection of rigid links organized in a kinematic hierarchy.
If the robot has n degrees of freedom, this leads to an n-dimensional manifold C,
called the configuration space (or C-space) of the robot. The workspace W of the
robot is the space (usually, E®) in which the robot moves. Usually, it is modeled as
the Euclidean space E*. A workspace metric is a motion planning metric in the
workspace R3.

The obstacle region CB is the set of all configurations g € C that either cause
the robot to collide with obstacles B, or cause different links of the robot to collide
among themselves. The closure c/(Cjyee) of Cpee = C\{CB} is called the space of
collision-free configurations. A motion planning algorithm must find a collision-
free path from an initial configuration to a goal configuration.

A configuration metric is a motion planning metric on the configuration
space C of a robot. Usually, the configuration space C consists of six-tuples
(x,y,z,a, B,y), where the first three coordinates define the position, and the last
three the orientation. The orientation coordinates are the angles in radians.

Intuitively, a good measure of the distance between two configurations is a
measure of the workspace region swept by the robot as it moves between them (the
swept volume distance). However, the computation of such a metric is prohibitively
expensive.

The simplest approach has been to consider the C-space as a Cartesian space and
to use Euclidean distance or its generalizations. For such configuration metrics,
one normalizes the orientation coordinates so that they get the same magnitude as
the position coordinates. Roughly, one multiplies the orientation coordinates by the
maximum x, y or z range of the workspace bounding box. Examples of such metrics
are given below.



18.3 Motion Planning Distances 357

More generally, the configuration space of a 3D rigid body can be identified with
the Lie group ISO(3): C = R3 x RP?. The general form of a matrix in ISO(3) is

given by
RX
01/}’

where R € SO(3) = RP?, and X € R>.

If X, and R, represent the translation and rotation components of the configura-
tion ¢ = (X,,R,) € ISO(3), then a configuration metric between configurations g
and r is given by w;||X; — X/|| + wyf (Ry, R,), where the translation distance
[|X, — X,|| is obtained using some norm [|.|| on R, and the rotation distance
f(Ry, R,) is a positive scalar function which gives the distance between the rotations
Ry, R, € SO(3). The rotation distance is scaled relative to the translation distance
via the weights wy, W,

There are many other types of metrics used in motion planning methods, in
particular, the Riemannian metrics, the Hausdorff metric and, in Chap.9, the
separation distance, the penetration depth distance and the growth distances.

« Weighted Euclidean R®-distance
The weighted Euclidean R°-distance is a configuration metric on R®
defined, for any x,y € R®, by

1

3 6 2
(Z e — yil” + Y (wilx; _Yi|)2> ,

i=1 i=4

where x = (x1,...,Xg), X1,X2, X3 are the position coordinates, x4, x5, x¢ are the
orientation coordinates, and w; is the normalization factor. Cf. the general, i.e., in
R”", weighted Euclidean distance in Chap. 17.

The scaled weighted Euclidean R®-distance is defined, for any x,y € RS, by

1

3 6 2
(SZ b —vil> + (1 —s) Z(Wi|xi —)’i|)2) :

i=1 i=4

This distance changes the relative importance of the position and orientation
components through the scale parameter s.
¢ Weighted Minkowskian distance
The weighted Minkowskian distance is a configuration metric on R®
defined, for any x, y € R®, by

3 6 ;
(zlxi—muzwxi-w) |
i=1 i=4
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It gives the same importance to both position and orientation.
* Modified Minkowskian distance
The modified Minkowskian distance is a configuration metric on R®
defined, for any x,y € R®, by

3 6 »
(z b+ z<wi|xi—yi|>ﬁz) |

i=1 i=4

It distinguishes between position and orientation coordinates using the parame-
ters p; > 1 (for the position) and p, > 1 (for the orientation).
¢ Weighted Manhattan distance
The weighted Manhattan distance is a configuration metric on R® defined,
for any x,y € R®, by

3

6
Z i — yil + Zwilxi =il

i=1 i=4

* Robot displacement metric
The robot displacement metric (or DISP distance, Latombe, 1991, and
LaValle, 2006) is a configuration metric on a configuration space C of a robot
defined by

max [la(q) - a(7)|

for any two configurations ¢, r € C, where a(q) is the position of the point & in the
workspace R? when the robot is at configuration ¢, and ||.|| is one of the norms
on R?, usually the Euclidean norm. Intuitively, this metric yields the maximum
amount in workspace that any part of the robot is displaced when moving from
one configuration to another (cf. bounded box metric).
¢ Euler angle metric

The Euler angle metric is a rotation metric on the group SO(3) (for the
case of using three—Heading-Elevation-Bank—FEuler angles to describe the
orientation of a rigid body) defined by

Wit vV AO1, 02)2 + A1, 2)2 + A1, m2)?

for all R;, R, € SO(3), given by Euler angles (0y, ¢1, n1), (62, ¢2, 12), respec-
tively, where A(6;,6,) = min{|0; — 6,|,27w — |0, — 6,|}, 6; € [0,2x], is the
metric between angles, and w,,, is a scaling factor.
e Unit quaternions metric
The unit quaternions metric is a rotation metric on the unit quaternion
representation of SO(3), i.e., a representation of SO(3) as the set of points (unit
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quaternions) on the unit sphere S* in R* with identified antipodal points (g ~
=)

This representation of SO(3) suggested a number of possible metrics on it, for
example, the following ones:

1. min{{lg — rl[.[lg + r|[},
2. |lng~" )l

3. wie(1 = |A)]),

4. arccos |A[,

where ¢ = g1 + q2i + q3j + quk, Z?:l ¢ =1,||.||isanormonR* A = (g,7) =
Z?:l qiri, and w,,, is a scaling factor.
* Center of mass metric

The center of mass metric is a workspace metric, defined as the Euclidean
distance between the centers of mass of the robot in the two configurations. The
center of mass is approximated by averaging all object vertices.

* Bounded box metric

The bounded box metric is a workspace metric defined as the maximum
Euclidean distance between any vertex of the bounding box of the robot in one
configuration and its corresponding vertex in the other configuration.

The box metric in Chap. 4 is unrelated.

* Pose distance

A pose distance provides a measure of dissimilarity between actions of agents
(including robots and humans) for Learning by Imitation in Robotics.

In this context, agents are considered as kinematic chains, and are represented
in the form of a kinematic tree, such that every link in the kinematic chain is
represented by a unique edge in the corresponding tree.

The configuration of the chain is represented by the pose of the corresponding
tree which is obtained by an assignment of the pair (n;, [;) to every edge e;. Here
n; is the unit normal, representing the orientation of the corresponding link in the
chain, and /; is the length of the link.

The pose class consists of all poses of a given kinematic tree. One of the
possible pose distances is a distance on a given pose class which is the sum of
measures of dissimilarity for every pair of compatible segments in the two given
poses.

Another way is to view a pose D(m) in the context of the a precedent and a
subsequent frames as a 3D point cloud {D/(i) : m—a < i < m+a,j € J},
where J is the joint set. The set D(m) contains k = |J|(2a + 1) points (joint
positions) p; = (x;,y;,2:), | < i < k. Let Ty, denote the linear transformation
which simultaneously rotates all points of a point cloud about the y axis by an
angle 6 € [0.27] and then shifts the resulting points in the xz plane by a vector
(x,0,2) € R3. Then the 3D point cloud distance (Kover and Gleicher, 2002)
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between the poses D(m) = (pi)ie[1,4 and D(n) = (gi)ie[1 4 is defined as

k
min{}  [1pi = To.ca(a|3}

i=1

Cf. Procrustes distance in Chap. 21.
¢ Joint angle metric
For a given frame (or pose) i in an animation, let us define p; € R3 as the global
(root) position and ¢;; € S° as the unit quaternion describing the orientation of
a joint k from the joint set J. Cf. unit quaternions metric and 3D point cloud
distance. The joint angle metric between frames x and y is defined as follows:

P —pyl* + Y wil log(g 4 g |-
keJ

The second term describes the weighted sum of the orientation differences; cf.
weighted Euclidean R°-distance. Sometimes, the terms expressing differences
in derivatives, such as joint velocity and acceleration, are added.

* Millibot train metrics

In Microbotics (the field of miniature mobile robots), nanorobot, microrobot,
millirobot, minirobot, and small robot are terms for robots with characteristic
dimensions at most one micrometer, mm, cm, dm, and m, respectively.

A millibot train is a team of heterogeneous, resource-limited millirobots
which can collectively share information. They are able to fuse range information
from a variety of different platforms to build a global occupancy map that
represents a single collective view of the environment.

In the construction of a motion planning metric of millibot trains, one casts a
series of random points about a robot and poses each point as a candidate position
for movement. The point with the highest overall utility is then selected, and the
robot is directed to that point. Thus:

the free space metric, determined by free space contours, only allows
candidate points that do not drive the robot through obstructions;

the obstacle avoidance metric penalizes for moves that get too close to
obstacles;

the frontier metric rewards for moves that take the robot towards open space;
the formation metric rewards for moves that maintain formation;

the localization metric, based on the separation angle between one or
more localization pairs, rewards for moves that maximize localization (see
[GKCO04)).

Cf. collision avoidance distance and piano movers distance in Chap. 19.
A swarm-bot can form more complex (more sensors and actuators) and
flexible (interconnecting at several angles and with less accuracy) configurations.
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The wingspan range of flying robots includes 2.8 cm (quadcopter Lisa/S)
and 40 m (Global Hawk). During 2012, a robot Papa Mau (PacX Wave Glider),
piloted remotely, swam 16,668 km from San Francisco to Australia.

18.4 MOEA Distances

Most optimization problems have several objectives but, for simplicity, only one
of them is optimized, and the others are handled as constraints. Multi-objective
optimization considers (besides some inequality constraints) an objective vector
function f : X C R" — R¥ from the search (or genotype, decision variables)
space X to the objective (or phenotype, decision vectors) space f(X) = {f(x) : x €
X} C RK

A point x* € X is a Pareto-optimal solution if, for every other x € X, the decision
vector f(x) does not Pareto-dominate f(x*), i.e., f(x) < f(x*). The Pareto-optimal
front is the set PF* = {f(x) : x € X*}, where X* is the set of all Pareto-optimal
solutions.

Multi-objective evolutionary algorithms (MOEA) produce, at each generation,
an approximation set (the found Pareto front PFy,,,, approximating the desired
Pareto front PF*) in objective space in which no element Pareto-dominates another
element. Examples of MOEA metrics, i.e., measures evaluating how close PF,n
is to PF*, follow.

* Generational distance
The generational distance is defined by

(L, )3

- )
where m = |PFiuoun|, and d; is the Euclidean distance (in the objective space)
betweenff (x) (i.e., j-th member of PF},,,,,) and the nearest member of PF*. This
distance is zero if and only if PFj,,,, = PF*.

The term generational distance (or rate of turnover) is also used for the
minimal number of branches between two positions in any system of ranked
descent represented by a hierarchical tree. Examples are: phylogenetic distance
on a phylogenetic tree (cf. Chap.23), the number of generations separating
a photocopy from the original block print, and the number of generations
separating the audience at a memorial from the commemorated event.

¢ Spacing

The spacing is defined by

ST @- )\
m—1 ’
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where m = |PFiuoun|, d; is the Li-metric (in the objective space) between F(x)
(i.e., j-th member of PFy,,,,) and the nearest other member of PFyo,, While d
is the mean of all d;.
¢ Overall nondominated vector ratio
The overall nondominated vector ratio is defined by

|PFkn0wn|
|PF*|

¢ Crowding distance
The crowding distance (Deb et al., 2002) is a diversity metric assigned to
each Pareto-optimal solution. It is the sum, for all objectives, of the absolute
difference of the objective values of two nearest solutions on each side, if they
exist.
The boundary solutions, i.e., those with the smallest or the highest such value,
are assigned an infinite crowding distance.



Part V
Computer-Related Distances




Chapter 19
Distances on Real and Digital Planes

19.1 Metrics on Real Plane

Any L,-metric (as well as any norm metric for a given norm |[.|| on R?) can be
used on the plane R2, and the most natural is the L,-metric, i.e., the Euclidean
metric dg(x,y) = +/(x1 —y1)? + (x2 — y2)? which gives the length of the straight
line segment [x, y], and is the intrinsic metric of the plane.

However, there are other, often “exotic”, metrics on R2. Many of them are used
for the construction of generalized Voronoi diagrams on R2 (see, for example,
Moscow metric, network metric, nice metric). Some of them are used in Digital
Geometry.

« Erdés-type distance problems
Those distance problems were given by Erdds and his collaborators, usually,
for the Euclidean metric on R2, but they are of interest for R” and for other
metrics on R?. Examples of such problems are to find out:

the least number of different distances (or largest occurrence of a given
distance) in an m-subset of R?;

the largest cardinality of a subset of R? determining at most m distances;

the minimum diameter of an m-subset of R? with only integral distances (or,
say, without a pair (d;, d») of distances with 0 < |d| — d»| < 1);

the Erdds-diameter of a given set S, i.e., the minimum diameter of a rescaled
set rS, r > 0, in which any two different positive distances differ at least by
one;

the largest cardinality of an isosceles set in R?, i.e., a set of points, any three
of which form an isosceles triangle;

existence of an m-subset of R? with, for each 1 < i < m, a distance occurring
exactly i times (examples are known for m < 8);
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existence of a dense subset of R? with rational distances (Ulam problem);
existence of m, m > 7, noncollinear points of R? with integral distances;
forbidden (not occurring within each part) distances of a partition of R?.

The general Erdds distinct distances problem, still open for n > 2, is to prove
that if A C R", |A| = m and d(A) denotes the set {Y 1, (x; — yi)? : x,y € A},
then |d(A)| > Cm? for some constant C > 0. This problem was generalized for
distinct “distances” (cf. Chap. 3) over a finite field. Also, its continuous analog,
open Falconer distance problem is to prove that if the Hausdorff dimension
of A C R"is > 3, then 1-dimensional Lebesque measure of d(A) is positive.
Related result by Quas, 2009: if the upper density of A C R" is positive, then
there is ry > 0 such that for any r > ry, there are x,y € A with dg(x,y) = r.

The three-distance theorem (S6s, 1957): given a € (0,1) and n € N, the
points {0}, {a}, {2a},...,{na} (mod 1) on the circle of perimeter 1, partition it
into n + 1 intervals having at most three lengths, one being the sum of the other
two.

The problem of dispersion (or finding System of Distant Representatives) in
a family of n subsets of a metric space is (Fiala et al., 2005) that of selecting
n points, one in each subset, such that the minimum inter-point distance is
maximized.

* Distance inequalities in a triangle

The multitude of inequalities, involving Euclidean distances between points
of R", is represented below by some distance inequalities in a triangle.

Let AABC be a triangle on R? with side-lengths a = d(B,C),b =
d(C,A),c = d(A,B) and area A = %\/(az + b2+ 2?2 —2(a* + b* + ¢*).

Let P, P’ be two arbitrary interior points in AABC. Denote by D4, Dg, D¢
the distances d(P,A), d(P, B), d(P, C) and by d4, dg, dc the point-line distances
(Chap.4) from P to the sides BC, CA, AB opposite to A, B, C. For the point P’
define D), D}, D and d),, dy, d. similarly.

The point P is circumcenter if Dy = Dp = Dc; this distance, R = %{,
is circumcircle’s radius. The point P is incenter if dy = dp = dc; this
distance, r = - f;::_c, is incircle’s radius. The centroid (the center of mass)
is the point G of concurrency of three triangle’s medians m,, my, m.; it holds
dA,G) = %ma,d(B, G) = %mb,d(C, G) = %mc. The symmedian point is the
point of concurrency of three triangle’s symmedians (reflections of medians at
corresponding angle bisectors).

The orthocenter is the point of concurrency of three triangle’s altitudes.
The centroid is situated on the Euler line through the circumcenter and the
orthocenter, at % of their distance. At % of their distance lies the center of the
circle going through the midpoints of three sides and the feet of three altitudes.

— If P and P’ are the circumcenter and incenter of AABC, then (Euler, 1765)

d*(P,P’) > R(R —2r)
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holds implying R > 2r with equality if and only if triangle is equilateral. In
fact, the general Euler’s inequality R > nr holds (Klamkin—Tsintsifas, 1979)
for the radii R, r of circumscribed and inscribed spheres of an n-simplex.

For any P, P, the Erdés—Mordell inequality (Mordell-Barrow, 1937) is

Dy +Dp+ Dc > 2(dy + dp + dc).

Liu, 2008, generalized above as follows: for all x, y, z > 0 it holds

/DAl + \/DBDM +/DeDed = 2y Jdadye+ \/ dpdlycz+ \/ dedloxy).

Lemoine, 1873, proved that

447 2 2 2
a’+ b2+ = dj +dpt+dc

with equality if and only if P is the symmedian point.
Posamentier and Salkind, 1996, showed

3 3
Z(a—}—b—i—c) < mg+mp+m. < a+b+c, while Z(az—i—bz—i—cz) = mZ—l—mi—i—m?.
Kimberling, 2010, proved that

8A®
dydgde <
ATBEC = 2 7abe

with equality if and only if P is the centroid.
He also gave (together with unique point realizing equality) inequality

(2A)1
2 2 2
(aq—l + baT + Cq—l)q—l

<di+dj+di

forany g < Oorg > 1. For 0 < g < 1, the reverse inequality holds.

The side-lengths d(A, B),d(B, C),d(C,A) of a right triangle are in arithmetic
progression only if their ratio is 3:4:5. They are in geometric progression only if

1+4/5

their ratio is 1: /¢, where ¢ is the golden section =5
¢ City-block metric

The city-block metric is the L;-metric on R? defined by

lx =yl = [x1 = yif + [x2 = yal-
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It is also called the taxicab metric, Manhattan metric, rectilinear metric,
right-angle metric, 4-metric and, on Z", grid metric. The von Neumann
neighborhood of a point is the set of points at a Manhattan distance of 1 from it.
¢ Chebyshev metric
The Chebyshev metric (or chessboard metric, king-move metric,
8-metric) is the Loo-metric on R? defined by

X = Ylloo = max{lx; — yi, [x2 — y2}.

On Z", this metric is called also the lattice (or uniform, sup) metric. A point’s
Moore neighborhood is the set of points at a Chebyshev distance of 1.
* «a-metric
Given « € [0, Z], the a-metric for x,y € R? is defined (Tian, 2005) by

dy(x,y) = max{|x; — y1], |x2 — y2|} — (sec ¢ — tan &) min{|x; — y1], |[x2 — y2|.

It is the city-block metric if « = 0. For ¢ = 4, ie.,seca —tana = /2 —1,
it is the Chinese checkers metric (Chen, 1992) Chznese checkers (as well as
Hexagonal chess, Masonic chess, Sannin shogi, Hexshogi) is a strategy board
game with hexagonal cells, while Tiangular chess, Tri-chess, Trishogi have
triangular cells. Cf. hexagonal metric. Gelisgen and Kaya, 2006, generalized
a-metric on R".

* Relative metrics on R?

The (p, g)-relative and M-relative distances are defined in Chap.5 on any
Ptolemaic space. The (p,q)-relative distance on R? (in general, on R") is
defined (for x or y # 0) in the cases | < p < oo and p = o0, respectively,
by

|lx —yll2 0 |lx—yll2
GAIE + 1115y (max{||x[|2. [[y[|2})?

Let f : [0,00) — (0,00) be a convex increasing function such that @ is

decreasing for x > 0. The M-relative distance on R? (in general, on R"), is
defined by

A=yl
FAL) -1y

In particular, the distance below is a metric if and only if p > 1:
|lx—yll2

YU+ I+ 111

A similar metric on R?\{0} (in general, on R"\{0}) is defined by HHX il

xll2- [yl *
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MBR metric
The MBR metric (Schonemann, 1982, for bounded response scales in
Psychology) is a metric d((x1,x2), (y1.y2)) on R?, defined by

lx1 —yi| + |x2 — y2|
L+ xg —yil|x2 — y2|

= tanh(arctanh(|x; — y;|) + arctanh(|xz — y»|)).

Moscow metric

The Moscow (or Karlsruhe, Amsterdam) metric is a metric on R?, defined as
the minimum Euclidean length of all admissible connecting curves between x
and y € R?, where a curve is called admissible if it consists only of radial streets
(segments of straight lines passing through the origin) and circular avenues
(segments of circles centered at the origin); see, for example, [Klei88]).

If the polar coordinates for points x,y € R? are (ry, 6y), (ry, 6,), respectively,
then the distance between them is equal to min{ry, r,} A0y — 0y) + |re — 1y
if 0 < A(6:.0y) < 2, and is equal to r + ry if 2 < A(6,,0,) < m, where
A(by, 6y) = min{|0,— 0|, 2w —|0,—6,|}, 6, 6, € [0, 27), is the metric between
angles.

French Metro metric

Given a norm ||.|| on R?, the French Metro metric is a metric on R? defined

by

|lx —y|| if x = cy for some 0 # ¢ € R (i.e., x1y2 = x2)1),
and by

[Ix|] + ||y||, otherwise.

For the Euclidean norm ||.||2, it is called the Paris metric, radial metric,
hedgehog metric, or French railroad metric, enhanced SNCF metric.

In this case it can be defined as the minimum Euclidean length of all
admissible connecting curves between two given points x and y, where a curve is
called admissible if it consists only of segments of straight lines passing through
the origin.

In graph terms, this metric is similar to the path metric of the tree consisting
of a point from which radiate several disjoint paths. In the case when only one
line radiates from the point, this metric is called the train metric.

The Paris metric is an example of an R-tree T which is simplicial, i.e., its set
of points x with T\ {x} not having exactly two components, is discrete and closed.
Lift metric

The lift metric (or jungle river metric, raspberry picker metric, barbed wire
metric) is a metric d((x, x2), (y1,y2)) on R? defined (see, for example, [Brya85])
by

lx1 —y1] if X3 = y2,
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and by

[x1| + |2 — 2| + [y1] if 2 # yo.

It is the minimum Euclidean length of all admissible (consisting only of segments
of straight lines parallel to the x; axis and segments of the x, axis) connecting
curves between points (x, x;) and (y1, y2).
The lift metric is an nonsimplicial (cf. French Metro metric) R-tree.
* Radar screen metric
Given a norm ||.|| on R? (in general, on R"), the radar screen metric is a
special case of the 7-truncated metric (Chap.4) defined by

min{1, |]x — y[[}.

 British Rail metric
Given a norm ||.|| on R? (in general, on R"), the British Rail metric is a
metric defined as O for x = y and, otherwise, by

x|+ 11yl

Itis also called the Post Office metric, caterpillar metric and shuttle metric.
¢ Flower-shop metric
Let d be a metric on R?, and let f be a fixed point (a flower-shop) in the plane.
The flower-shop metric (sometimes called SNCF metric) is a metric on R?
(in general, on any metric space) defined by

d(x.f) +d(f.y)

for x # y (and is equal to 0, otherwise). So, a person living at point x, who wants
to visit someone else living at point y, first goes to f, to buy some flowers. In the
case d(x,y) = ||x — y|| and the point f being the origin, it is the British Rail
metric.

If £k > 1 flower-shops fi, . . . , fy are available, one buys the flowers, where the
detour is a minimum, i.e., the distance between distinct points x,y is equal to
min; << {d(x. f;) + d(fi. y)}-

¢ Rickman’s rug metric

Given a number o € (0, 1), the Rickman’s rug metric on R? is a 2D case of

the parabolic distance (Chap. 6) defined by

d((x1,x2), (y1,y2)) = lx1 —y1] + |x2 — y2*.

¢ Burago-Burago-Ivanov metric
The Burago—Burago—Ivanov metric ((BBIO1]) is a metric on R? defined by

[l = [y [zl + min{] [z, [Iy[l2} - v/ £(x. )
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where Z(x,y) is the angle between vectors x and y, and ||.||, is the Euclidean
norm on R2. The corresponding internal metric on R? is equal to | [|x||> — ||y||2|
if Z(x,y) = 0, and is equal to ||x||2 + ||y||2, otherwise.

* 2n-gon metric

Given a centrally symmetric regular 2n-gon K on the plane, the 2r-gon metric
is a metric on R? defined, for any x, y € R?, as the shortest Euclidean length of a
polygonal line from x to y with each of its sides parallel to some edge of K.

If K is a square with the vertices {(£1,+£1)}, one obtains the Manhat-
tan metric. The Manhattan metric arises also as the Minkowskian met-
ric with the unit ball being the diamond, i.e., a square with the vertices
{(1.0).(0.1), (=1,0), (0. =1)}.

* A-distance

GivenasetA, |A| > 2, of distinct orientations (i.e., angles with fixed x axis) on
the plane R?, the A-distance (or fixed orientation metric) is (Widmayer—Wu—
Wong, 1987) Euclidean length of the shortest (zig-zag) path of line segments
with orientations from A. Any A-distance is a metric.

A-distance with A = {% 11 <i < n}forfixedn € [2, o0], is called a uniform
orientation metric; cf. 2n-gon metric. It is the /;-metric, hexagonal metric, /»-
metric for n = 2, 3, oo, respectively.

* Central Park metric

The Central Park metric is a metric on R?, defined as the length of a shortest
L,-path (Manhattan path) between two points x,y € R? in the presence of a
given set of areas which are traversed by a shortest Euclidean path (for example,
Central Park in Manhattan).

* Collision avoidance distance

Let O = {Oy,...,0,} be a collection of pairwise disjoint polygons on the
Euclidean plane representing a set of obstacles which are neither transparent nor
traversable.

The collision avoidance distance (or piano movers distance, shortest path
metric with obstacles) is a metric on the set R?\{O}, defined, for any x,y €
R?\{O}, as the length of the shortest path among all possible continuous paths,
connecting x and y, that do not intersect obstacles O;\d0; (a path can pass
through points on the boundary d0; of O;),i = 1,...m.

* Rectilinear distance with barriers

Let O = {Oy,...,0,} be a set of pairwise disjoint open polygonal barriers
on R2. A rectilinear path (or Manhattan path) P,, from x to y is a collection of
horizontal and vertical segments in the plane, joining x and y. The path P,y is
called feasible if P, N (UL, B;) = 0.

The rectilinear distance with barriers (or rectilinear distance in the pres-
ence of barriers) is a metric on R>\{O}, defined, for any x,y € R?\{O}, as the
length of the shortest feasible rectilinear path from x to y.

The rectilinear distance in the presence of barriers is a restriction of the
Manhattan metric, and usually it is considered on the set {g1,...,g,} C R? of
n origin-destination points: the problem to find such a path arises, for example,
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in Urban Transportation, or in Plant and Facility Layout (see, for example,
[LaLi81]).
* Link distance

Let P C R2. The polygonal distance (or link distance as defined by Suri,
1986) between any two points of P is the smallest number of edges of a polygonal
path in P connecting them if such path exists and oo, otherwise.

If the path is restricted to be rectilinear, one obtains the rectilinear link
distance. If each line segment of the path is parallel to one from a set A of
fixed orientations, one obtains the A-oriented link distance; cf. fixed orientation
metric above.

If the turning points of the path are constrained to lie on the boundary of P,
then the path is called drp (diffuse reflection path). The drp-diameter of P is the
minimum number of diffuse reflections (segments in a drp) needed to illuminate
any target point from any point light source inside P.

¢ Facility layout distances

A layout is a partition of a rectangular plane region into smaller rectangles,
called departments, by lines parallel to the sides of original rectangle. All interior
vertices should be of degree 3, and some of them, at least one on the boundary of
each department, are doors, i.e., input-output locations.

The problem is to design a convenient notion of distance d(x,y) between
departments x and y which minimizes the cost function ) y F(x, y)d(x,y), where
F(x,y) is some material flow between x and y. The main distances used are:

the centroid distance, i.c., the shortest Euclidean or Manhattan distance
between centroids (the intersections of the diagonals) of x and y;
the perimeter distance, i.e., the shortest rectilinear distance between doors of
x and y, but going only along the walls (department perimeters).

* Quickest path metric

A quickest path metric (or network metric, time metric) is a metric on R?
(or on a subset of Rz) in the presence of a given transportation network, i.e., a
finite graph G = (V, E) with V C R? and edge-weight function w(e) > 1: the
vertices and edges are stations and roads. For any x,y € R2, it is the time needed
for a quickest path (i.e., a path minimizing the travel duration) between them
when using, eventually, the network.

Movement takes place, either off the network with unit speed, or along its
roads e € E with fixed speeds w(e) >> 1, with respect to a given (usually,
Euclidean or Manhattan) metric d on the plane. The network G can be accessed
or exited only at stations (usual discrete model) or at any point of roads (the
continuous model).

The heavy luggage metric (Abellanas—Hurtado—Palop, 2005) is a quickest
path metric on R? in the presence of a network with speed 1 outside of the
network and speed oo (so, travel time 0) inside of it.

The airlift metric is a quickest path metric on R? in the presence of an
airports network, i.e., a planar graph G = (V, E) on n vertices (airports) with
positive edge weights (w,).cg (flight durations). The graph may be entered and
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exited only at the airports. Movement off the network takes place with unit speed
with respect to the Euclidean metric. We assume that going by car takes time
equal to the Euclidean distance d, whereas the flight along an edge e = uv of G
takes time w(e) < d(u, v). In the simplest case, when there is an airlift between
two points a,b € R2, the distance between x and y is equal to

min{d(x,y),d(x,a) +w + d(b,y),d(x,b) + w + d(a,y)},

where w is the flight duration from a to b.

The city metric is a quickest path metric on R? in the presence of a city
public transportation network, i.e., a planar straight line graph G with horizontal
or vertical edges. G may be composed of many connected components, and may
contain cycles.

One can enter/exit G at any point, be it at a vertex or on an edge (it is possible
to postulate fixed entry points, too). Once having accessed G, one travels at
fixed speed v > 1 in one of the available directions. Movement off the network
takes place with unit speed with respect to the Manhattan metric, as in a large
modern-style city with streets arranged in north—south and east—west directions.

A variant of such semimetric is the subway semimetric defined ([O’Bri03]),
for x,y € R?, as min(d(x, y),d(x, L) + d(y, L)), where d is the Manhattan metric
and L is a (subway) line.

* Shantaram metric

For any numbers a, b with 0 < b < 2a < 2b, the Shantaram metric between
two points x,y € R?is 0, a or b if x and y coincide in exactly 2, 1 or O coordinates,
respectively.

* Periodic metric

A metric d on R? is called periodic if there exist two linearly independent
vectors v and u such that the translation by any vector w = mv + nu, m,n € Z,
preserves distances, i.e., d(x,y) = d(x + w,y + w) for any x,y € R,

Cf. translation invariant metric in Chap. 5.

* Nice metric

A metric d on R? with the following properties is called nice (Klein—-Wood,

1989):

1. d induces the Euclidean topology;

2. The d-circles are bounded with respect to the Euclidean metric;

3. If x,y € R?> and x # y, then there exists a point z,z # x,z # y, such that
d(x,y) =d(x,2) +d(z,y);

4. If x,y € R?, x < y (where < is a fixed order on R?, the lexicographic order,
for example), C(x,y) = {z € R? : d(x,z) < d(y.2)}, D(x,y) = {z € R? :
d(x,z) < d(y,z), and D(x,y) is the closure of D(x, y), then J(x,y) = C(x,y) N
D(x,y) is a curve homeomorphicto (0, 1). The intersection of two such curves
consists of finitely many connected components.

Every norm metric fulfills 1, 2, and 3 Property 2 means that the metric d is
continuous at infinity with respect to the Euclidean metric. Property 4 is to ensure



374 19 Distances on Real and Digital Planes

that the boundaries of the correspondent Voronoi diagrams are curves, and that
not too many intersections exist in a neighborhood of a point, or at infinity.

A nice metric d has a nice Voronoi diagram: in the Voronoi diagram
V(P,d,R?) (where P = {pi1,...,pc}, k > 2, is the set of generator points)
each Voronoi region V(p;) is a path-connected set with a nonempty interior, and
the system {V(py1), ..., V(pi)} forms a partition of the plane.

¢ Contact quasi-distances

The contact quasi-distances are the following variations of the distance
convex function (Chap. 1) defined on R? (in general, on R") for any x,y € R2.

Given a set B C R2, the first contact quasi-distance dp is defined by

inf{o > 0:y—x € aB}

(cf. sensor network distances in Chap. 29).
Given, moreover, a point b € Band aset A C R2, the linear contact quasi-
distance is a point-set distance defined by dj(x,A) = inf{e > 0 : ab + x € A}.
The intercept quasi-distance is, for a finite set B, defined by W.
* Radar discrimination distance

The radar discrimination distance is a distance on R? defined by

lox — Py + 9xy|

if x,y € R?\{0}, and by

lox — pyl

if x = 0 ory = 0, where, for each x € R2, o denotes the radial distance of x
from {0} and, for any x,y € R*\{0}, 6,, denotes the radian angle between them.
¢ Ehrenfeucht—-Haussler semimetric
Let S be a subset of R? such that x; > x, — 1 > 0 for any x = (x;,x;) € S.
The Ehrenfeucht—Haussler semimetric (see [EhHa88]) on S is defined by

V2 X2
hd lOl‘Oldal metl'lc

The toroidal metric is a metricon 7 = [0, 1) x [0, 1) = {x = (x;,x2) € R?:
0 < x1,x; < 1} defined for any x,y € R? by

2 2
Vit 8,

where t; = min{|x; — yi|, |x; — y; + 1|} for i = 1, 2 (cf. torus metric).
* Circle metric
The circle metric is the intrinsic metric on the unit circle S' in the plane.
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As S' = {(x,y) : x> +y> =1} = {&¥ : 0 < 0 < 27}, it is the length of the
shorter of the two arcs joining the points ¢, ¢’ € S', and can be written as

. |9 -6, ift0<|}—-0|<m,
0—v|,2r—|0-9|} = .
min{|6 — 9|, 27 — 16 — 1} {27t—|19—9|, it |9 -6 > 7.
¢ Metric between angles
The metric between angles A is a metric on the set of all angles in the plane
R? defined for any 6, € [0, 27) (cf. circle metric) by

. |9 —6|, ift0<|}—-0|<m,
min{|6 = 9], 2z — 6 =9I} = { 2r—|9 -6, i |9—0]>7
* Metric between directions
On R2, a direction 1is a class of all straight lines which are parallel to a given
straight line / C R2. The metric between directions is a metric on the set £
of all directions on the plane defined, for any directions I, € L, as the angle
between any two representatives.
¢ Angular distance
The angular distance traveled around a circle is the number § = é of radians
the path subtends, § = é, where [ is the path length, and r is the circle’s radius.
* Circular distance
The circular distance is the distance traveled by a wheel. Each revolution of
a wheel with radius r is equivalent to the distance of 27 r radians.
¢ Circular-railroad quasi-metric
The circular-railroad quasi-metric on the unit circle S' C R? is defined, for
any x,y € S', as the length of the counterclockwise circular arc from x to y in S'.
* Inversive distance
The inversive distance between two nonintersecting circles in the plane R? is
defined as the natural logarithm of the ratio of the radii (the larger to the smaller)
of two concentric circles into which the given circles can be inverted.
Let ¢ be the distance between the centers of two nonintersecting circles of
radii a and b < a. Then their inversive distance is given by

A+ b*—?

cosh™!
2ab

The circumcircle and incircle of a triangle with circumradius R and inradius r
are at the inversive distance 2 sinh™! (% \/%).

Given three noncollinear points, construct three tangent circles such that one
is centered at each point and the circles are pairwise tangent to one another. Then
there exist exactly two nonintersecting circles, called the Soddy circles, that are
tangent to all three circles. Their inversive distance is 2 cosh™ 2.
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19.2 Digital Metrics

Here we list special metrics which are used in Computer Vision (or Pattern
Recognition, Robot Vision, Digital Geometry).

A computer picture (or computer image) is a subset of Z" which is called a digital
nD space. Usually, pictures are represented in the digital plane (or image plane) 7,
or in the digital space (or image space) 7. The points of Z? and Z> are called pixels
and voxels, respectively. An nD m-quantized space is a scaling %Z”.

A digital metric (see, for example, [RoPf68]) is any metric on a digital nD space.
Usually, it should take integer values.

The metrics on Z" that are mainly used are the L;- and Lo -metrics, as well as the
L,-metric after rounding to the nearest greater (or lesser) integer. In general, a given
list of neighbors of a pixel can be seen as a list of permitted one-step moves on 7.
Let us associate a prime distance, i.e., a positive weight, to each type of such move.

Many digital metrics can be obtained now as the minimum, over all admissible
paths (i.e., sequences of permitted moves), of the sum of corresponding prime
distances.

In practice, the subset (Z,,)" = {0,1,...,m — 1}" is considered instead of the
full space Z". (Z,,)* and (Z,,)* are called the m-grill and m-framework, respectively.
The most used metrics on (Z,,)" are the Hamming metric and the Lee metric.

* Grid metric
The grid metric is the L;-metric on Z". It can be seen as the path metric of an
infinite graph: two points of Z" are adjacent if their L;-distance is 1.
For n = 2, this metric is the restriction on Z? of the city-block metric which
is also called the taxicab (or rectilinear, Manhattan, 4-) metric.
» Lattice metric
The lattice metric is the Loo-metric on Z". It can be seen as the path metric of
an infinite graph: two points of Z" are adjacent if their Lo, -distance is 1. For Z2,
the adjacency corresponds to the king move in chessboard terms, and this graph
is called the Loo-grid, while this metric is also called the chessboard metric,
king-move metric, 8-metric, or checking distance.
This metric is the restriction on Z" of the Chebyshev metric which is also
called the sup metric, or uniform metric.
¢ Hexagonal metric
The hexagonal metric (or 6-metric) is a metric on Z> with a unit sphere
(centered at x € Z?) defined by S' (x) = S} () U{(x1—1.xa—1), (1 — L. xa+1)}
for even x,, and ' (x) = Sil @ U{(x1+1,x2—1), (x1 + 1,x2 + 1)} for odd x,.
For any x = (x1,x2),y = (y1.y2) € Z2, this metric d¢(x, y) can be written as

|2 — ya X2 — Y2 x+1 y+1
- + - — () — )
max q [x; — y2|, 5 3 + > 3 (1 —y1)

It is the path metric of the triangular grid (or, dually, the minimum number of
cell moves of the hexagonal grid) on the plane. In hexagonal coordinates (hy, hy)
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(in which the h;- and hj-axes are parallel to the grid’s edges) the hexagonal
distance between points &2 = (hy, hy) and i = (i1, ip) is

1
ds(h,i) = = (|l — iy| + |ho — ia| + [(hy —i1) — (ha — D)),
2

e, [hy —it| + |hy — iaf, if (hy — i1)(h2 — i) < 0, and max{|hy — i1, |h2 — 2]},
if otherwise; cf. [LuR076]. The coordinates (41, &) of a point x are related to its
Cartesian coordinates (x1,x2) by by = x1 — [ 3], hy = x2.
This metric approximates the Euclidean metric better than L;- or Lo-metric.
The hexagonal Hausdorff metric is a metric on the set of all bounded subsets
(pictures, or images) of the hexagonal grid on the plane defined by

inf{p,g:ACB+qH,BCA+pH}

for any pictures A and B, where pH is the regular hexagon of size p (i.e., with p+1
pixels on each edge), centered at the origin and including its interior, and + is the
Minkowski addition: A + B = {x +y :x € A,y € B} (cf. Pompeiu—Hausdorff-
Blaschke metric in Chap. 9). If A is a pixel x, then the distance between x and B
is equal to sup,ep de(x, y), where d is the hexagonal metric.
* Digital volume metric

The digital volume metric is a metric on the set K of all bounded subsets

(pictures, or images) of Z* (in general, of Z") defined by

vol(AAB),

where vol(A) = |A|, i.e., the number of pixels contained in A, and AAB is the
symmetric difference between sets A and B.
This metric is a digital analog of the Nikodym metric in Chap.9.
¢ Neighborhood sequence metric

On the digital plane Z?2, consider two types of motions: the city-block motion,
restricting movements only to the horizontal or vertical directions, and the
chessboard motion, also allowing diagonal movements.

The use of both these motions is determined by a neighborhood sequence B =
{b(1),b(2),...,b(])}, where b(i) € {1,2} is a particular type of neighborhood,
with b(i) = 1 signifying unit change in 1 coordinate (city-block neighborhood),
and b(i) = 2 meaning unit change also in 2 coordinates (chessboard neighbor-
hood). The sequence B defines the type of motion to be used at every step (see
[Das90]).

The neighborhood sequence metric is a metric on Z> defined as the length
of a shortest path between x and y € Z?, determined by a given neighborhood
sequence B. It can be written as

max{dy(u), dz(u)},
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where u; = x; — yi, ua = X — Y2, dy(u) = max{luyl,|uz|}, da(u) =
Yo [LalHel B0 | p0) = 0, f() = i k() 1 < 0 < Lg() =
fO—fG-H-11<j<L

For B = {1} one obtains the city-block metric, for B = {2} one obtains
the chessboard metric. The case B = {1,2}, i.e., the alternative use of these
motions, results in the octagonal metric, introduced in [RoPf68].

A proper selection of the B-sequence can make the corresponding metric very
close to the Euclidean metric. It is always greater than the chessboard metric, but
smaller than the city-block metric.

* nD-neighborhood sequence metric

The nD-neighborhood sequence metric is a metric on Z", defined as the
length of a shortest path between x and y € Z", determined by a given nD-
neighborhood sequence B (see [Faze99]).

Formally, two points x,y € Z" are called m-neighbors, 0 < m < n,if 0 <
xi —yi| < 1,1 <i < n,and >\, |xi — y;| < m. A finite sequence B =
{b(1),...,b(D}, b(i) € {1,2,...,n}, is called an nD-neighborhood sequence
with period I. For any x,y € Z", a point sequence x = x°,x!,...,x* =y, where
x'and x't1,0 <i < k— 1, are r-neighbors, r = b((i mod[) + 1), is called a path
from x to 'y determined by B with length k. The distance between x and y can be
written as

l B
max d;(u) with d;(x,y) = Z \‘ai + gi(])J ’

1=z A0
J=
where u = (|uy|, [uz], . . ., |uy|) is the nonincreasing ordering of |u,,|, w,, = x,, —
n—i+1

Ymsm = 1, n, thatis, |u| < |w|ifi <jia =3 20" wy; bi(j) = b(j) if
b(j) <n—i+2,andisn—i+ 1, otherwise; f;(j) = Z‘Lzlbi(k) ifl <j<l|,
andis 0if j = 0; :(j) =fi() —fiG—D -1 1=j=<L
¢ Strand-Nagy distances
The face-centered cubic lattice is Az = {(ay, a2, a3) € Z> 1 a1 + a» + a3 =
0(mod 2)}, and the body-centered cubic lattice is its dual

Ay ={(a1, a2, a3) € 73 :a, = a, = az(mod?2)}.

Let L € {A3,A}}. Forany pointsx,y € L, let d;(x,y) = 213:1 |x; — y;| denote the
Li-metric and doo(x,y) = maXje{i 2,3} |X; — yj| denote the Lo,-metric between
them. Two points x,y € L are called /-neighbors if di(x,y) < 3 and 0 <
doo(x,y) < 1; they are called 2-neighbors if di(x,y) < 3and 1 < deo(x,y) < 2.

Given a sequence B = {b(i)}2, over the alphabet {1,2}, a B-path in L is a
point sequence x = x°,x',...,x* = y, where ¥’ and X', 0 < i < k— 1, are
1-neighbors if b(i) = 1 and 2-neighbors if b(i) = 2.

The Strand-Nagy distance between two points x,y € L (or B-distance in
Strand and Nagy, 2007) is the length of a shortest B-path between them. For
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L = Aj, itis

d )
min{k : k > max{%

Jdoo(x,y) — {1 < i < k: i) = 2}]}.
The Strand—Nagy distance is a metric, for example, for the periodic
sequence B = (1,2,1,2,1,2,...) but not for the periodic sequence B =
2,1,2,1,2,1,...).
¢ Path-generated metric
Consider the lo-grid, i.e., the graph with the vertex-set Z2, and two vertices
being neighbors if their [, -distance is 1. Let P be a collection of paths in the /.-
grid such that, for any x, y € Z2, there exists at least one path from P between x
and y, and if P contains a path Q, then it also contains every path contained in Q.
Let dp(x,y) be the length of the shortest path from 7P between x and y € Z2.
If dp is a metric on Z?, then it is called a path-generated metric (see [Melt91]).
Let G be one of the sets: G; = {1, =}, Goa = {1, 7}, G = (PN},
G = {/,\}; Gp = {—=, N}, Gu = {—, 1,7}, Gap{—, 1,\}, G =
{—=, N} G{t, /NG Gs = {1, 7, N Let P(G) be the set of paths
which are obtained by concatenation of paths in G and the corresponding paths
in the opposite directions. Any path-generated metric coincides with one of the
metrics dp(g). Moreover, one can obtain the following formulas:

L. dp@)(x.y) = |u1| + |ual;

2. dp(Go) (x,y) = max{|2u; — us|, |uz]};

3. dp Gy (x,y) = max{|2u; + ua|, |uzl};

4. dp(Gye) (x,y) = max{|2uz + uil, |ur]};

5. dP(Gzl))(x’ y) = max{|2u2 — ullv |“1|}§

6. dp(Gyy (x,y) = maxilui], |uzl, lu1 — ual};

7. dp(Gyp) (x,y) = max{lun|, |ua], [u1 + ual};

8. dp(Gy(x,y) = max{2[(jui] — [uz])/2]. 0} + |ual;
9. dp(Gyy (x.y) = max{2[(Juz| — u1])/2], 0} + [u1;

10 dp(Gy)(x.y) = max|ui]. luz]},

where u; = x; — y1, U = x2 — y, and [.] is the ceiling function: for any real x
the number [x] is the least integer greater than or equal to x.

The metric spaces obtained from G-sets with the same numerical index are
isometric. dp(g,) is the city-block metric, and dp(g;) is the chessboard metric.

* Chamfer metric

Given numbers «, B with 0 < o < B < 20, the («, B)-weighted loo-grid
is the graph with the vertex-set Z2, two vertices being adjacent if their /oo-
distance is one, while horizontal/vertical and diagonal edges have weights o and
B, respectively.

A chamfer metric (or (o, 8)-chamfer metric, [Borg86]) is the weighted path
metric in this graph. For any x, y € Z? it can be written as

pm + a(M —m),

where M = max{|u;|, |uz|}, m = min{|uy|, |uz|}, ur = x1 — y1, up = x, — y,.
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If the weights o and B are equal to the Euclidean lengths 1, +/2 of hori-
zontal/vertical and diagonal edges, respectively, then one obtains the Euclidean
length of the shortest chessboard path between x and y. If « = § = 1, one
obtains the chessboard metric. The (3, 4)-chamfer metric is the most used one
for digital images.

A 3D-chamfer metric is the weighted path metric of the graph with the
vertex-set Z> of voxels, two voxels being adjacent if their /-distance is one,
while weights o, 8, and y are associated, respectively, to the distance from 6 face
neighbors, 12 edge neighbors, and 8 corner neighbors.

* Weighted cut metric

Consider the weighted lo-grid, i.e., the graph with the vertex-set 72, two
vertices being adjacent if their /-distance is one, and each edge having some
positive weight (or cost). The usual weighted path metric between two pixels is
the minimal cost of a path connecting them. The weighted cut metric between
two pixels is the minimal cost (defined now as the sum of costs of crossed edges)
of a cut, i.e., a plane curve connecting them while avoiding pixels.

¢ Knight metric

The knight (or octogonal) metric on Z? is the minimum number of moves a
chess knight would take to travel from x toy € Z2. Its unit sphere Sllm'ght’ centered
at the origin, contains exactly 8 integral points {(£2, +1), (£1, £2)}, and can
be written as Sp,,..,, = S7, NS, where S} is the L;-sphere of radius 3, and S7__
is the Loo-sphere of radius 2, both centered at the origin (see [DaCh88]).

The distance between x and y is 3 if (M, m) = (1,0),is 4 if (M, m) = (2,2)
and is equal to max{[%], [@]} + (M + m) — max{ [%], [@]} (mod 2),
otherwise, where M = max{|ui|, |uz|}, m = min{|uy]|, |uz|}, u1 = x1 — y1, up =
X2 — 2.

¢ Super-knight metric

Let p,g € N. A (p, q)-super-knight (or (p, q)-leaper, (p, q)-spider) is a
(variant) chess piece whose move consists of a leap p squares in one orthogonal
direction followed by a 90° direction change, and ¢ squares leap to the destination
square. Rook, bishop and queen have g = 0, ¢ = p and g = 0, p, respectively.

Chess-variant terms exist for a (p, 1)-leaper with p = 0,1,2,3,4 (Wazir,
Ferz, usual Knight, Camel, Giraffe), and for a (p,2)-leaper with p = 0,1,2,3
(Dabbaba, usual Knight, Alfil, Zebra).

A (p, q)-super-knight metric (or (p, q)-leaper metric) is a metric on Z>
defined as the minimum number of moves a chess (p, g)-super-knight would
take to travel from x to y € Z?. Thus, its unit sphere S},, ,» centered at the origin,
contains exactly 8 integral points {(£p, +¢q), (£¢q, £p)}. (See [DaMu90].)

The knight metric is the (1, 2)-super-knight metric. The city-block metric
can be considered as the Wazir metric, i.e., (0, 1)-super-knight metric.

* Rook metric

The rook metric is a metric on Z? defined as the minimum number of moves
a chess rook would take to travel from x to y € Z?. This metric can take only the
values {0, 1,2}, and coincides with the Hamming metric on 72
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Chess programming distances

On a chessboard Zé, files are 8 columns labeled from a to h and ranks are
8 rows labeled from 1 to 8. Given two squares, their file-distance and rank-
distance are the absolute differences between the 0—7 indices of their files or,
respectively, ranks. The Chebyshev distance and Manhattan distance are the
maximum or, respectively, the sum of their file-distance and rank-distance.

The center distance and corner distance of a square are its (Chebyshev or
Manhattan) distance to closest square among {d4,d5, e4, e5} or, respectively,
closest corner. For example, the program Ch