Cambridge IGCSE®

Chemistry

(Workbook

Bryan Earl Doug Wilford

Cambridge IGCSE®

Chemistry

Bryan Earl Doug Wilford

The Periodic Table of the eler

1	II						Hydrogen	
Z Li Lithium	Be Begenstum						1	
Na Na sestum	Megnesium 12							
39 K Potassium 19	40 Ca catetum 20	45 SC scantilum 21	48 Ti manum 22	Variatium 23	52 Cr chromium 24	Mn Manganese 25	56 Fe	I
Rb Rubidium	Sr strontium	89 Yttnum	91 Zr zirconium 40	Nb Noobium	Mo Monybdenum 42	TC technetium 43	101 RU Ruthenium	Ī.
CS Caessum 55	137 Ba Rarium 56	139 La Lanthanium 57	178 Hf Hafnium 72	181 Ta Tantalum 73	184 VV Tungsten 74	186 Re Rhenium 75	190 OS Osmium 76	Ī
Fr Prancium	Ra Radium 88	AC Actinium		-		******		

*58-71 Lanthanoid series †90-103 Actinoid series

Key	140 Ce certum 58	141 Pr Prasedymium 59	Nacodymium 60	Pm Promessum 61	
a = relative atomic mass X = atomic symbol b = proton (atomic) number	Th monum 90	Pa Protactinium 91	Uranium 92	Np Neptureum 93	

Contents

The I	Periodic Table of the elements	2
1	The particulate nature of matter	4
2	Elements, compounds and experimental techniques	8
3	Atomic structure and bonding	16
4	Stoichiometry – chemical calculations	22
5	Electricity and chemistry	27
6	Chemical energetics	32
7	Chemical reactions	39
8	Acids, bases and salts	47
9	The Periodic Table	51
10	Metals	57
11	Air and water	63
12	Sulfur	70
13	Inorganic carbon chemistry	76
14	Organic 1	81
15	Organic 2	87
16	Experimental chemistry	93

Preface

This workbook has been written to help you in your further understanding of chemistry for the Cambridge IGCSE specification. This workbook should be used alongside the 3rd edition of the IGCSE Chemistry textbook, written by the same authors.

In this workbook the chapters have the same names as those in the textbook and are organised by syllabus topic. They contain questions related to the content of the equivalent chapters in the IGCSE Chemistry textbook. The questions may be related to:

- the 'core' of the IGCSE syllabus
- both the 'core' and the 'extended' parts of the syllabus. If you are to be entered for the extension paper you should try to do these questions as well as the extended questions.
- · the 'extended' part of the IGCSE syllabus, which is examined in the extension paper.

Chapter 16 has questions that relate to the 'Alternative to Practical' examination paper.

To ensure your answers to the questions are kept together in one place, there are spaces provided in this book for you to write your answers in. This will help when you come to revise for examinations.

Bryan Earl and Doug Wilford

The particulate nature of matter

Core

1. A sample of a solid substance, which had been cooled to -5°C, was put into a test-tube. The test-tube was then heated in a water bath. The temperature of the substance was taken every 5 minutes for an hour. The results obtained are shown below.

Time/min	0	5	10	15	20	25	30	35	40	45	50	55	60
Temperature/°C	-5	-1	5	5	7	13	28	45	62	76	79	82	82

a Plot the results on the graph paper below, putting time on the horizontal axis and temperature on the vertical axis.

b	What is the melting point of the substance?	[1
C	What is the boiling point of the substance?	[1
d	Describe what is happening to the particles of the substance after 50 minutes.	
		1:

[4]

•		
	Explain the meaning of each of the following terms.	
	i melting [1] iv condensation	
	ii chemical change [1] v evaporation	
	iii sublimation	
)	Which of the terms given in part ${\bf a}$ best describes what is taking place in each of the	followin
	I The formation of water droplets on the inside of a window on a cold day.	

	ii The formation of liquid potassium chloride from solid potassium chloride	
	using strong heat	
	iii The formation of iodine vapour from solid iodine on heating.	
	iv Adding sugar to hot coffee to sweeten the drink.	
J	Core/Extended se ideas about kinetic theory to explain the following: Diffusion does not occur in solids,	
) !	se ideas about kinetic theory to explain the following: Diffusion does not occur in solids.	

Extended

5 When the following experiment is set up, a cloud of fine white powder can be seen as the ammonia gas reacts with the hydrogen chloride gas.

ydrogen chloride particles are more than twice as heavy as ammonia particles.	
Which of the particles will move faster?	[1
At which point, $\bf A$ to $\bf E$, along the tube will the white cloud be seen? Explain your answer in terms of the movement of the particles.	
	[2
How do the particles of hydrogen chloride and ammonia gas move along the tube?	
	[1
	Which of the particles will move faster?

		-			
Exar	m 1	0	~	10	r
LAGI		U	U	u:	3

1 a i Give two properties shown by:

a solid [2]
a liquid [2]

a gas [2]

ii Draw diagrams in the boxes below to show how the particles are arranged in each of the physical states.

b The melting and boiling points of five substances are given in the table.

(Take room temperature as 298 K.)

Substance	Melting point/K	Boiling point/K
Oxygen	55	90
Bromine	266	332
Mercury	234	630
Phosphorus	317	553
Iron	1808	3023

131

		i What is the melting point of mercury in °C?	[1]
		ii Which element/s is a gas at room temperature?	[1]
		iii Which element/s is a solid at room temperature?	[1]
		iv Which of the elements will boil first if the temperature is raised from room	
		temperature?	[1]
		[Tota	: 131
2	Us	se the kinetic theory to explain the following.	
		Walking along the street in front of a coffee shop, it is possible to smell the coffee.	
			[2]
	b	When laying railway track, gaps have to be left between the lengths of track.	
			[2]
	c	When a tea bag is placed in a cup of hot water, the colour of the water changes.	(2)
			[2]
	d	In cold weather, the amount of water found running down the inside of windows increases.	
			[2]
	e	A bubble of methane rises from the bottom of the Pacific Ocean. As it rises, the bubble gets bigg	er.
	f	Pollen grains are mixed with water and observed under a microscope. Dust particles in the air also observed in the same way.	
		i What would the pollen grains and dust particles be doing?	
			[1]
		ii What causes the grains and dust particles to behave in the way you have described in part i	?
			[2]
		l Tota	1. 131

Elements, compounds and experimental techniques

Core

1 The table below shows the melting points, boiling points and densities of elements A to E.

Substance	Melting point/°C	Boiling point/°C	Density/g cm ⁻³
A	-259	-253	0.09
В	1085	2580	8.93
C	-7	59	3.1
D	-39	357	13.6
Е	-218	-183	0.0013

- a Which of these substances, A to E, are gases at room temperature? 121 b Which of these substances, A to E, are liquids at room temperature? c Which of these substances, A to E, are solids at room temperature?..... d Which two of these substances, A to E, are most likely to be metals? [2] e Which of these substances, A to E, is most likely to be mercury? f Which of these substances, A to E, is the least dense metal?..... g Which of these substances, A to E, will be a liquid at -210°C? 2 a Pick the 'odd one out' in each of the following groups of elements and explain why it is different
- from the others.
 - I Cu. C. Ca. Cs. Cr. Odd one out Explanation ii nitrogen, neon, sulfur, iron, silicon Odd one out Explanation iii Mg, Al, Cl, Na, Ar Odd one out

	i	There are only 103 elements.
	ii	More elements are metals than non-metals.
	iii	Each element has a chemical name and a symbol.
	iv	Metals such as magnesium contain two atoms joined together to form molecules.

	٧	Molecules of argon contain only one atom.
	vi	Some of the symbols for the elements come from their Chinese names.
	vii	Where elements contain two atoms joined together in pairs, they are called diatomic.
		THE STATE OF THE S
3 a	Dis	stinguish between the terms compound and mixture, using specific examples.

b	He	ere is a list of substances:
b		
b	S	rre is a list of substances: stainless steel carbon monoxide lemonade sulfuric acid cement methane sodium hydroxide limestone beer brass
b	s	stainless steel carbon monoxide lemonade sulfuric acid cement
b	s r	stainless steel carbon monoxide lemonade sulfuric acid cement nethane sodium hydroxide limestone beer brass
b	s r WI	stainless steel carbon monoxide lemonade sulfuric acid cement nethane sodium hydroxide limestone beer brass hich of these substances are:
	s r WI i ii Pic	tainless steel carbon monoxide lemonade sulfuric acid cement methane sodium hydroxide limestone beer brass hich of these substances are: compounds?
	s r WI i i Pic otl	tainless steel carbon monoxide lemonade sulfuric acid cement nethane sodium hydroxide limestone beer brass hich of these substances are: compounds?
	s r WI i i Pic otl	talinless steel carbon monoxide lemonade sulfuric acid cement nethane sodium hydroxide limestone beer brass hich of these substances are: compounds?
	s r WI i i Pic otl	talinless steel carbon monoxide lemonade sulfuric acid cement nethane sodium hydroxide limestone beer brass hich of these substances are: compounds?
	wi ii Pid otti	talinless steel carbon monoxide lemonade sulfuric acid cement nethane sodium hydroxide limestone beer brass hich of these substances are: compounds?
	wi ii Pid otti	tainless steel carbon monoxide lemonade sulfuric acid cement methane sodium hydroxide limestone beer brass hich of these substances are: compounds?
	wi ii Pid otti	tainless steel carbon monoxide lemonade sulfuric acid cement methane sodium hydroxide limestone beer brass hich of these substances are: compounds?
	s r r WI	talinless steel carbon monoxide lemonade sulfuric acid cement methane sodium hydroxide limestone beer brass hich of these substances are: compounds?
	s r r WI	talinless steel carbon monoxide lemonade sulfuric acid cement methane sodium hydroxide limestone beer brass hich of these substances are: compounds?

i	What safety precautions should be taken when carrying out this experiment?
ii	Explain what the 'bright red glow' indicates.
III	Give the chemical name of the 'white powder'.
iv	Write a word equation and a balanced chemical equation for the reaction that has taken place.
V	The white solid is a compound. Explain the difference between the mixture of zinc and sulfur and the compound formed by the chemical reaction between them.
vi	
	of these useful compounds. It is a white crystalline solid and has been prized by people for
	Many compounds are very useful substances. Salt (chemical name sodium chloride) is one of these useful compounds. It is a white crystalline solid and has been prized by people if a very long time. Find and make a list of some things that we use salt for in our world to the compound of
Th	of these useful compounds. It is a white crystalline solid and has been prized by people for a very long time. Find and make a list of some things that we use salt for in our world to be some things that we use salt for in our world to be solved in the s
Th	of these useful compounds. It is a white crystalline solid and has been prized by people for a very long time. Find and make a list of some things that we use salt for in our world to be solved in the solved in t
Th I	of these useful compounds. It is a white crystalline solid and has been prized by people for a very long time. Find and make a list of some things that we use salt for in our world to be metal copper can be extracted from its ore, copper sulfide, in a two-stage process: Copper sulfide reacts with oxygen at a high temperature to form copper oxide and sulful dioxide gas. Then the copper oxide is reacted with carbon, again at high temperature, to form copper metal and carbon dioxide gas. Name the elements mentioned in the passage above.
Th I II	of these useful compounds. It is a white crystalline solid and has been prized by people for a very long time. Find and make a list of some things that we use salt for in our world to be a very long time. Find and make a list of some things that we use salt for in our world to be metal copper can be extracted from its ore, copper sulfide, in a two-stage process: Copper sulfide reacts with oxygen at a high temperature to form copper oxide and sulful dioxide gas. Then the copper oxide is reacted with carbon, again at high temperature, to form copper metal and carbon dioxide gas.

5 a The table below shows the formulae for some compounds.

Complete the table by writing in:

- i the symbols present in each formula and the elements they represent [12]
- ii the number of atoms of each element present in the formula [12]
- iii the total number of atoms present in the formula. [4]

The first one has been done for you.

Formula of		Elements p	resent	Total
substance	Symbol	Name	Number of atoms	number of atoms
LINO ₃	Li	Lithium	1	5
	N	Nitrogen	1	
	0	Oxygen	3	
CaCO ₃				
Mg ₃ N ₂				
Ag ₂ CrO ₄				
AlBr ₄ Cs				

b Balance the following equations. Some of the spaces should be left blank.

iPb(s) +O₂(g)
$$\rightarrow$$
PbO(s) [2]

ii
$$H_2(g) +O_2(g) \rightarrowH_2(g)$$
 [2]

iiiC₃H₄(g) +O₃(g)
$$\rightarrow$$
CO₃(g) +H₃O(l) [2]

vCuO(s) +HCl(aq)
$$\rightarrow$$
CuCl₂(aq) +H₂O(l) [2]

$$VI = SNO_{s}(s) + ... H_{s}(q) \rightarrow ... SN(s) + ... H_{s}(q)$$
 [2]

- 6 a The diagram on the right shows the apparatus used for fractional distillation. The labels have been replaced with numbers.
 - i For each number, write down the correct label from the list below.

Liebig condenser fractionating co cold water out distillate cold v	
thermometer mixture of liquids	heat
1	[1]
2	[1]
3	[1]
4	[1]
5	[1]
6	[1]
7	[1]
8	[1]

ii Which of the following mixtures can be separated successfully by fractional distillation? Explain your answers.

a mixture of dyes

b The diagram on the right shows a simple apparatus used for chromatography. The labels have been replaced with numbers. For each number, write down the correct label from the list in the box.

magnesium and sulfur

pencil line beaker solvent samples chromatography paper

remainment and a second	[1]	4	[1]
2	[1]	5	[1

[1]

crude oil

1	Which of the following are units of:
	i time
	I temperature
	ill volume
	iv mass
	cm ³ kilograms hours degrees Celsius litres minutes
	seconds grams
	In experiments you will require the use of accurate measuring instruments. What accuracy would you expect of:
	i a stopwatch [1] iii an electronic balance
	ii a thermometer
	Takana da di
h	extended The metal zinc can be extracted from its ore, zinc sulfide (zinc blende), in a two-stage process, second part of the process involves a redox reaction in which zinc oxide is reacted with carbolight temperature, to form zinc metal and carbon monoxide gas, zinc oxide + coke (carbon) \rightarrow zinc + carbon monoxide
h	e metal zinc can be extracted from its ore, zinc sulfide (zinc blende), in a two-stage process. second part of the process involves a redox reaction in which zinc oxide is reacted with carb a high temperature, to form zinc metal and carbon monoxide gas.
hihit	e metal zinc can be extracted from its ore, zinc sulfide (zinc blende), in a two-stage process. second part of the process involves a redox reaction in which zinc oxide is reacted with carts high temperature, to form zinc metal and carbon monoxide gas. zinc oxide + coke (carbon) -> zinc + carbon monoxide What do you understand by the term redox?
hihit	emetal zinc can be extracted from its ore, zinc sulfide (zinc blende), in a two-stage process, as escond part of the process involves a redox reaction in which zinc oxide is reacted with carta high temperature, to form zinc metal and carbon monoxide gas. zinc oxide + coke (carbon) -> zinc + carbon monoxide What do you understand by the term redox?
hi	emetal zinc can be extracted from its ore, zinc sulfide (zinc blende), in a two-stage process, as second part of the process involves a redox reaction in which zinc oxide is reacted with cart is high temperature, to form zinc metal and carbon monoxide gas. zinc oxide + coke (carbon) → zinc + carbon monoxide What do you understand by the term redox? Which of the substances shown in the word equation is being:
hihit	emetal zinc can be extracted from its ore, zinc sulfide (zinc blende), in a two-stage process. esecond part of the process involves a redox reaction in which zinc oxide is reacted with carts high temperature, to form zinc metal and carbon monoxide gas. zinc oxide + coke (carbon) — zinc + carbon monoxide What do you understand by the term redox? Which of the substances shown in the word equation is being: [oxidised?

е	The word equations below describe reactions by obtained from their ores.	which the metals lead and tin are	
	lead oxide + carbon \rightarrow lead + carbon dioxide		
	$tin(w)$ oxide + hydrogen gas \rightarrow tin + water		
	In each of these reactions, which of the substance	es shown is being:	
	i oxidised?[2]	ii reduced?	[2]
	Which of the substances shown is acting as the:		
	iii oxidising agent?[2]	iv reducing agent?	[2]
	v Write a balanced chemical equation for each of	of these reactions.	
	***************************************		[6]

Exam focus

Core

- 1 The table below shows some information about four different elements, W, X, Y and Z. (Note that W, X, Y and Z are not chemical symbols.)
 - a Complete the following table.

Element	Metal or non-metal?	Shiny?	Conductor of electricity?	Melting point
W	Metal		Yes	High
X	Non-metal	No	No	Low
Y		Yes	Yes	High
Z	Non-metal	No		Low

[3]

b Zinc is a metal. Give one property of zinc, not shown in the table, which shows that it is a metal.

.....[1]

c Sparklers are a type of firework. They usually consist of a chemical mixture that has been moulded onto a thin wire. One of the main substances found in the mixture is iron powder.

The word equation for one of the main reactions that takes place during the burning of a sparkler is: $iron + oxygen \rightarrow iron oxide$

- iii Give one reason why people should be careful when handling sparklers.
- [1]

						[Total: 10
ore/Ex	tende	4				
	usually ex ons involve			ematite (iron(111) ox	ide). The following is a l	orief outline of the
I col	ke + oxyger	n → carbo	on dioxide			
II car	bon dioxid	e + coke	→ carbon mo	noxide		
III iro	n(III) oxide	+ carbon	monoxide –	iron + carbon diox	ide	
a Wr	ite balance	d chemic	al equations i	or:		
i	reaction I.	пополитични	namen analogum (sa		поконской почения станования почения по	
ii	reaction II.	nonununun	www.watananan	DIMINISTONIO PARTO P	ORNALISM WAS PROPERTY WAS A PROPERTY OF THE PR	
b Wi	nich substa	nce is bei	ng oxidised i	n reaction I?		[1
c Wh	nich substa	nce is bei	ng reduced ir	reaction II?		[1
d Bal	lance the fo	llowing	equation for r	eaction III. Some spa	aces may be left blank.	
	Fe ₂ 0	O ₃ (s) +	CO(g	g) → Fe(l)	+CO ₂ (g)	[2
e In	reaction III	, which s	ubstance is ac	ting as the reducing	agent and which is acti	ng as
the	oxidising	agent?			~~~~	[2
f Co	mplete the	table bel	ow.			
Fe	ormula of		Elements	present	Total number	
su	ibstance	Name	Symbol	Number of atoms	of atoms	
Fe	2 ₂ O ₃					
C	0					
Fe	2					
C	02					
TATIS.	als of the o	hotono	a abazua ia th	a talala ana		[25
g wit	ich of the s	uostarice	s shown in th	e table are.		
i	elements?					
ii	compound	ls?				
						[Total: 40

Atomic structure and bonding

Core

1 Complete the following table.

Element	Atomic number	Mass number	Number of protons	Number of electrons	Number of neutrons	Electron configuration
А	5	.11				
В		24	12			
С		39				2,8,8,1
D					20	2,8,8,2

[16]

2 For each of the following statements about ionic/covalent bonding and ionic/covalent compounds, write either 'true' or 'false'.

- a lonic bonds are formed between non-metals only. [1]
- b lonic bonds are formed by transfer of electrons between the elements forming the bond.
 - 1.7
- d Covalent bonds are formed between non-metals only. ________[1]
- e Covalent bonds are formed by sharing of electrons between the elements forming the bond.
- 3 The diagrams below show two different forms of carbon, A and B.

- a Name the two allotropes of carbon shown above.
- b Explain the meaning of the term allotrope.

	of stateture is convergented	but these forms	f sarban?
1000			of carbon?
How many	other carbon atoms are lin	ked to each carb	on atom in form A?
i How many	other carbon atoms are lin	ked to each carb	on atom in form B?
Complete the and substance	table below, which relates	to the propertie	s of the metal copper
and substance	S A dilu b.		
Substance	Electrical conductivity	Melting point	Hardness
Copper	Good	High	High
A	15,000		
В			
			is the name of this allotrop
· · · · / · · ·	.		
	tended	of the followin	g ionic compounds.
w diagrams to	tended o show the bonding in each	of the followin	g ionic compounds.
	tended o show the bonding in each	of the followin	g ionic compounds.
w diagrams to	tended o show the bonding in each	n of the followin	g ionic compounds.
w diagrams to	tended o show the bonding in each	n of the followin	g lonic compounds.
w diagrams to	tended o show the bonding in each	of the followin	g lonic compounds.
w diagrams to	tended o show the bonding in each	a of the followin	g lonic compounds.
w diagrams to	tended o show the bonding in each	a of the followin	g ionic compounds.
w diagrams to	tended o show the bonding in each	of the followin	g lonic compounds.
w diagrams to	tended o show the bonding in each	n of the followin	g lonic compounds.

[4]

5 a The table shows the valencies of some common ions. Use the information in the table to work out the formula of each of the compounds listed below.

	V	alency (oxidation sta	ite)
	1	2	3
Metals	Sodium (Na+) Potassium (K+) Silver (Ag+)	Magnesium (Mg²+) Lead (Pb²+) Barium (Ba²+) Copper (Cu²+)	Aluminium (Al³+) Iron (Fe³+)
Non-metals	Fluoride (F-) Chloride (Cl-) Bromide (Br-)	Oxide (O²-) Sulfide (S²-)	
Groups of atoms	Hydroxide (OH-) Nitrate (NO ₃ -) Ammonium (NH ₄ *)	Carbonate (CO ₃ ²⁻) Sulfate (SO ₄ ²⁻)	Phosphate (PO ₄ 3-)

į	potassium chloride	[1]	vi	ammonium sulfate	[1]
II	copper(ıı) fluoride	[1]	vii	magnesium phosphate	[1]
Ш	sodium carbonate	[1]	viii	barium sulfide	[1]
iv	silver phosphate	[1]	ix	aluminium hydroxide	[1]
٧	lead oxide	[1]	X	iron(m) bromide	[1]

b Using the formulae from your answers to part **a**, give the ratio of the atoms present for each of those compounds.

	LIJ	VI neuronamentamentamentamentamentamentamentamen	[I]
II	[1]	vii	[1]
iii	[1]	viii	[1]
iv	[1]	X	[1]
V	[1]	X	[1]

- 6 Draw diagrams to show the bonding in each of the following covalent compounds.
 - a hydrogen fluoride (HF)

b	nitrogen	trichloride	(NCI,

Extended

7 a The bonding in metals can be described in the following

"It is an electrostatic force of attraction between free electrons and the regular array of positive metal ions within the solid metal. The bonding in metals gives rise to certain properties."

Complete the following passage about the properties of metals by writing in words from the list.

energy levels ductile energy attractive delocalised high malleable lons conductors negative	
Metals are goodof electricity and heat, because the free electron	s from
the outer of metal atoms carry a	
charge or heat through the metal. The free electrons are often de	escribed as
. The free electrons allow metal to slide over each ot	her, so metals
are and They have melting and b	oiling points
due to the strong forces within the structure of the metal.	[10]

b The melting point of calcium (840°C) is much higher than that of potassium (63°C).
Using the idea of metallic bonding, explain why this is the case.

Exam focus

Core

1 One of our most important fuels is natural gas (methane, CH₄). The diagram below shows the bonding in a methane molecule.

a	W	hat type of bonding is shown in this methane molecule?	[1]
b	W	hat type of particle is represented by the dots and crosses?	[1]
C	Me	ethane is a gas at room temperature and pressure. Explain why this is the case.	
			[2]
d	W	hy are four hydrogen atoms needed for each carbon atom in the methane molecule?	
			[2]
e	i	What inert (noble) gas structure do the hydrogen atoms have?	[1]
	ii	What inert (noble) gas structure does the carbon atom have?	[1]
	iii	When atoms within a molecule form chemical bonds, they normally end up with eight electrons in their outer energy level. Why do the hydrogen atoms have only two?	
			[1]

[Total: 9]

Extended

2 The diagram below shows the structure of sodium chloride (salt).

How does the electronic structure of a chlorine atom differ from that of a c	hloride ion?
	[2]
What type of chemical bond is found in sodium chloride?	[1
Using the diagram of sodium chloride above, explain why sodium chloride	e:
i forms crystals that are cubic in shape	
опительного при	
ii has a high melting point (801°C)	
	[2,
iii acts as an insulator when solid, but will conduct electricity when molte	n.
	[Z
	How does the electronic structure of a chlorine atom differ from that of a c What type of chemical bond is found in sodium chloride? Using the diagram of sodium chloride above, explain why sodium chlorid i forms crystals that are cubic in shape ii has a high melting point (801°C)

Stoichiometry – chemical calculations

Use the Periodic Table on page 2 to look up any values for relative atomic mass that you may need in this chapter.

I C.H.OH III CH.CH.COOH

1 a Calculate the relative molecular mass of each of the following compounds.

	_			
4	~	-	-	1

II CH3COOCH2CH3	[1]	iv CH ₃ CH=CH ₂
Calculate the relative formula mass o	f each of th	e following compounds.
i Na ₂ CO ₃	[1]	iii (NH ₄) ₂ SO ₄
ii Ca(OH) ₂	[1]	iv Fe ₂ O ₃
Core/Extended	n iron and l	ydrochloric acid to make some iron(u) chloric
stals. She started with 5.6g of iron an		
i Write a balanced chemical equation	on for the re	action.
ii How many moles of iron did she s		
iii What mass of iron(1) chloride coul	d she have	expected to obtain from this reaction?
iii What mass of iron(n) chloride coul	d she have	
iii What mass of iron(a) chloride coul iv She actually obtained 9.17 g of the	d she have	expected to obtain from this reaction?
iii What mass of iron(s) chloride coul iv She actually obtained 9.17 g of the	d she have on the iron(II) chloride (Fe ₂ O ₃) ir	expected to obtain from this reaction? ride. What was her percentage yield?
iii What mass of iron(s) chloride coul $$	d she have of the iron(II) chloridate (Fe ₂ O ₃) ir	expected to obtain from this reaction? ride. What was her percentage yield?
iii What mass of iron(s) chloride coul $$	d she have of the iron(II) chloridate (Fe ₂ O ₃) ir	expected to obtain from this reaction? ride. What was her percentage yield? the blast furnace. The reaction that produce

[1]

Extended

3	a	Calculate the number of moles of the element in:	
		i 54g of aluminium	[1]
	b	Calculate the number of moles of the compound in:	
		i 51g of aluminium oxide (Al $_2$ O $_3$) [1] ii 116g of butane (C $_4$ H $_{10}$)	[1]
1	Ca	Iculate the mass of:	
	a	2 moles of calcium carbonate	[1]
	b	0.25 mole of water (Annual Conference and Conferenc	[1]
	C	2.5 moles of sodium hydroxide.	[1]
5	a	Calculate the empirical formulae of the compounds with the following compositions by mass.	
		i 24.0g of calcium and 5.6g of nitrogen ii 50.8g of copper and 6.4g of oxygen	
		[2]	[2]
		iii 2.18g of carbon, 0.36g of hydrogen and 1.46g of oxygen	
			[2]
	b	Calculate the empirical formulae of the compounds with the following percentage composition by mass. $ \frac{1}{2} \left(\frac{1}{2} \right) = \frac{1}{2} \left(\frac{1}{2} \right) \left(1$	ns
		i 92.3% carbon and 7.7% hydrogen ii 60.0% magnesium and 40.0% oxygen	
		[2]	[2]
		in 27470 Johan, 1270 Hydrogen, 14370 edison and 37470 oxygen	
		transfer describerations and the contract of t	[2]

a	Calculate the number of moles of solute in each of the following solutions.				
i 0.5 dm³ of 0.25 mol dm³ NaOH					
	100 cm ³ of 0.5 moldm ⁻³ NaCl				
b	(alculate the concentration (in moldm-) of each of the following solutions.	[1,			
	0.5 mole of sodium hydroxide in 500 cm ³	Ca.			
	0.25 mole of copper(s) sulfate in 250 cm ³				
Sh	ind out the concentration of a solution of hydrochloric acid, a student carried out a titra- found that 18.95cm³ of the hydrochloric acid was needed to neutralise 25cm³ of a 0.1 m um carbonate solution.	ation.			
a	Vrite a balanced chemical equation for the reaction between hydrochloric acid and sodi arbonate.	ium			
b	Describe how the titration procedure was carried out.				
C	lse the information given to find the concentration of the hydrochloric acid solution.				
	en sodium chloride reacts with concentrated sulfuric acid, hydrogen chloride gas (HCI) is products. H, $SO_4(I) + NaCI(s) \rightarrow NaHSO_4(s) + HCI(g)$				
be	rdrogen chloride gas is dissolved in water, a solution of hydrochloric acid is formed. Wh he concentration of the hydrochloric acid obtained if the reaction was carried out using um chloride, and the hydrogen chloride gas was dissolved in 250 cm³ of water?				
		[4			

7

8

Exam focus

Extended

1 a	a Copper(n) oxide can be reduced to copper by passing hydrogen gas over tequation below. A student started the experiment with 8g of copper(n) oxi gas over the heated oxide to produce copper metal.	
	$CuO(s) + H_1(g) \rightarrow Cu(s) + H_1O(g)$	

i What volume of hydrogen gas would be needed to react with all the copper(II) oxide? (1 mole of any gas at room temperature and pressure has a volume of 24 dm3.) ii What mass of copper metal could be obtained from this reaction? iii The student obtained 5.8 g of copper. What was his percentage yield? b The hydrocarbon propane (C.H.) undergoes complete combustion as shown by the equation below. $C_sH_g(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$ i What volume of oxygen gas would be needed to react completely with 10 dm³ of propane gas? ii What would be the total volume of gases produced from the reaction of propane with 10 dm3 of oxygen?

[Total: 13]

2. This question is about a titration involving the neutralisation reaction of 25 cm3 of dilute sodium hydroxide with dilute sulfuric acid.

The initial concentration of the dilute sodium hydroxide was 0.25 mol dm⁻³. The solution in the burette was dilute sulfuric acid. The indicator used was phenolphthalein. The table shows the titration results.

	Rough	1	2	3
Final burette reading/cm ³	21.75	28.25	22.35	27.30
Initial burette reading/cm ³	0.00	6.00	0.00	5.00
Volume of sulfuric acid used/cm ³				

a	Complete the table by calculating the volume of dilute sulfuric acid used in each titration.	[1
b	From the three most accurate results, calculate the average volume of sulfuric acid used.	12
C	Write a balanced chemical equation for the reaction.	
d	From the information given, calculate the number of moles of sodium hydroxide in 25 cm³ of solution.	[3,
		[2.
e	How many moles of sulfuric acid were neutralised?	11
f	Calculate the concentration of the dilute sulfuric acid.	Į.k.
		[2

[Total: 11]

Electricity and chemistry

Core

1 The table below shows the results of testing a number of solid and liquid substances to see if they conducted an electric current. The electrodes used were made from platinum in each case.

Substance	Physical state	Conductivity	Products
T	Liquid	Yes	Hydrogen and chlorine
U	Liquid	Yes	Silvery metal and green vapour
V	Liquid	No	None
W	Liquid	Yes	Hydrogen and oxygen
X	Liquid	Yes	None
Υ	Solid	Yes	None
Z	Liquid	Yes	Pink-brown metal and oxygen

- a Which of these substances, **T** to **Z**, are electrolytes? [4]
 b Which of these substances, **T** to **Z**, may be metals? [2]
 c Which of these substances, **T** to **Z**, may be sodium chloride? [1]
 d Which of these substances, **T** to **Z**, may be mercury? [1]
 e Which of these substances, **T** to **Z**, may be sugar solution? [1]
 f Give the name of a substance that **W** may be . [1]
- 2 Complete the table below about a series of electrolysis experiments.

Substance	Material of electrodes	Substance formed at the cathode	Substance formed at the anode
Molten lead(ii) chloride	Carbon		
	Platinum	Hydrogen	Oxygen
Molten calcium bromide			
		Sodium	Chlorine
Copper(ii) sulfate solution	Copper		

[10]

Core/Extended

3 Explain the following.

 In the purification of copper by electrolysis, it is essential that a little dilute sulfuric acid is added to the electrolyte.

b In the electrolysis of concentrated sodium chloride solution, it is necessary to keep the chlorine gas and sodium hydroxide separated.

c In the extraction of aluminium from aluminium oxide, the anodes are replaced regularly.

d In any electroplating process, it is necessary to degrease the metal to be plated before the process is started.

Extended

4 Complete and balance the following ionic equations for processes that take place at the electrodes during electrolysis.

a Na++...... → Na

c Ca²⁺ + → [2]

f → OH⁻ → OH⁻ → OH⁻ → OH⁻ + → OH⁻ +

.... [2]

5 The diagram below shows an electrolysis cell.

a	a Name the materials used to make:	
	i the anode	[1]
b	b i Hydrogen is produced at the cathode. Balance the following electrode equation for Some spaces may be left blank.	this process.
	$H^+(aq) + \dots + H_2(g)$	[2]
	ii Chlorine is produced at the anode. Balance the following electrode equation for Some spaces may be left blank.	this process.
	Cl-(aq) \rightarrow e-	[2]
	iii Give two large-scale uses for hydrogen and two for chlorine.	
		[4]
C	c The overall chemical equation that represents what is happening in the electrolysis above is:	cell shown
	$2NaCl(aq) + 2H_2O(I) \to 2NaOH(aq) + Cl_2(g) + H_2(g)$	
	If 234g of sodium chloride was electrolysed, calculate the mass of each of the follow substances that would be formed. (Ar values: $H=1$; $O=16$; $Na=23$; $CI=35.5$)	ving
	j sodium hydroxide	
	ii chlorine	[2]
		[2]
	III hydrogen	
		[2]
d	d Give two large-scale uses for sodium hydroxide.	
		[2]

Exam focus

Extended

1	Why is aluminium extracted from its oxide by electrolysis rather than by using a chemical reduce agent such as the element carbon?
)	The electrolysis cell operates at about 1000 °C. This is well below the melting point of aluminium oxide, which is 2070 °C. How is the molten state maintained so that electrolysis can take place?
	i At which electrode is the aluminium produced?
	ii Balance the following equation for the depositing of aluminium. $AP^+ + \dots P^- + \dots AI$
	i Oxygen gas is produced at the other electrode. What is this electrode made from?
	ii Balance the following equation for the production of oxygen gas at this electrode.
	$\label{eq:controller} \frac{O^2 \to \dots O_2 + \dots e^c}{i \text{What further chemical reaction takes place at the electrode where oxygen is produced?}}$
	ii Write a balanced chemical equation for this reaction.
	Why are aluminium smelters situated in hilly or mountainous areas?
	Large amounts of aluminium are recycled. Suggest two advantages of doing this.

2 Food cans are usually made from mild steel with a thin layer of tin deposited on its surface by electrolysis. A simplified diagram of the electroplating process is shown below.

	tin(i) chloride solution
	How does the mass of the cathode change during the process? Why does the mass of the cathode change?
	What charge do the tin ions in the tin(ti) sulfate solution carry? How did you decide on your answer to part i?
i	Does the concentration of the tin(n) sulfate solution differ at the end of the process compared to the beginning? Explain your answer to part f.
i	Write a balanced equation for the electrode process that takes place at the cathode for the depositing of tin.
ii	Write a balanced equation for the electrode process that takes place at the anode.
St	seel used to be plated by dipping it into molten tin. Why has this method been replaced by cetroplating?
	iggest a reason why food cans are made from mild steel electroplated with tin rather than fo ild steel alone.

Chemical energetics

Core

1 Crude oil is a very important mixture. There are many substances in this mixture that are used as fuels or as the starting materials for the production of a variety of important chemicals. Oil can be separated by fractional distillation. A simplified diagram of this process is shown below.

i What change to the crude oil takes place in part A?	[1
	[2
Name the fraction B	[1]
iii Give the use C.	[1
iv Name the fraction D	[1
Which of the fractions shown in the diagram contains:	
i the biggest molecules?	[1]
ii the smallest molecules?	[1]
Which of the fractions represents liquids with the lowest boiling points?	
	[1,
The gasoline is itself a mixture of substances. How are these different substances separated?	

d

[1]

1	What is a fuel?
	Give four properties of a good fuel.
	Name:
	i a liquid fuel
	ii a solid fuel
	iii a gaseous fuel.
	Write word and balanced chemical equations for the burning of the gaseous fuel you have named in your answer to part ε III.
	Extended e reaction between methane and oxygen is exothermic. The standard heat of combustion of sthane is -728kJ mol ⁻¹ .
	Extended e reaction between methane and oxygen is exothermic. The standard heat of combustion of
	Extended e reaction between methane and oxygen is exothermic. The standard heat of combustion of sthane is -728kJ mol ⁻¹ .
	Extended e reaction between methane and oxygen is exothermic. The standard heat of combustion of sthane is -728kJ mol^{-1} . CH ₃ (g) $+ 2O_3(g) \rightarrow CO_3(g) + 2H_3O(l) \qquad \Delta H = -728 \text{kJ mol}^{-1}$ Calculate the amount of energy produced when each of the following amounts of methane
	Extended e reaction between methane and oxygen is exothermic. The standard heat of combustion of sthane is -728kJ mol^{-1} . CH ₄ (g) $+ 2O_2$ (g) $\rightarrow CO_3$ (g) $+ 2H_2$ O(l) $\Delta H = -728 \text{kJ mol}^{-1}$ Calculate the amount of energy produced when each of the following amounts of methane completely combusted.
	Extended e reaction between methane and oxygen is exothermic. The standard heat of combustion of sthane is -728 kJ mol ⁻¹ . CH ₄ (g) $+ 2O_2(g) \rightarrow CO_3(g) + 2H_3O(l) \qquad \Delta H = -728$ kJ mol ⁻¹ Calculate the amount of energy produced when each of the following amounts of methane completely combusted.

2

4 Use the bond energy data given in the table below to answer this question.

Bond	Bond energy/kJmol ⁻¹
С—Н	413
0=0	498
C=0	805
н-о	464
C—C	347

a	Calculate	the	enthalpy	of	combustion of	pro	pane.

$$C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g)$$

b Draw an energy level diagram to represent this combustion process.

c How much energy is released when each of the following amounts of propane is burned? (A, values: H = 1; C = 12)

 i
 0.5 mole of propane
 [1]

 II
 5 moles of propane
 [1]

III 11g of propane [1]

III 11g of propane

5 Water is formed and energy is released when hydrogen combines with oxygen.

a Write a balanced chemical equation, including state symbols, for this reaction.

[3]

Is the bon	d breaking process exother	nic or endothermic? Explain your answer.
Use the h	and energies in the table b	low to calculate the energy change for the reaction vo
	ond energies in the table be	low to calculate the energy change for the reaction yo
	n in part a.	low to calculate the energy change for the reaction yo
have shov		low to calculate the energy change for the reaction yo
have show	n in part a. Bond energy/kJmol-1	low to calculate the energy change for the reaction yo

6 The table below gives the enthalpies of combustion of four alcohols.

Alcohol	Molecular formula	Enthalpy of combustion/kJ mol-1
Methanol	CH,OH	-726
Ethanol	C,H,OH	-1370
Propan-1-ol	C ₃ H ₂ OH	-2010
Butan-1-ol	C.H.OH	-2670

a Plot a graph of the enthalpy of combustion against relative molecular mass for these four alcohols.

[4]

b i From your graph, predict the enthalpy change of combustion of pentan-1-ol.

		u say about the energy produced ned in air?	when alcohols of p	
1 50	me countri	es, including Brazil, ethanol is mix	ed with petrol.	***************************************
i	Write a ba	alanced chemical equation for the	complete combust	ion of ethanol.
ii	Use the be	ond energy data in the tables belo	ow to calculate the	enthalpy of combustion of
	Bond	Bond energy/kJ mol ⁻¹	Bond	Bond energy/kJmol ⁻¹
	C—H	413	H—O	464
	0=0	498	C—C	347
	C=O	805	C-O	358
		suranna manuana manana man		
cc	the manut ensity. This empare the ne enthalpy	facture of cars, an important facto is the amount of energy released energy efficiencies of different fu of combustion of hydrogen gas is d ethanol in kJkg ⁻¹ .	or that is considered when 1 kg of the fu uels. Using your ans	I is known as the energy uel is burned. It can be used wer to part a ii , and given
cc	the manut ensity. This empare the ne enthalpy	facture of cars, an important facto is the amount of energy released energy efficiencies of different fu of combustion of hydrogen gas is d ethanol in kJ kg-1.	or that is considered when 1 kg of the fi lels. Using your ans s –286 kJ mol ⁻¹ , calcu	I is known as the energy uel is burned. It can be used wer to part a ii , and given

8 The diagram below shows an electrochemical cell that is based on the first ever chemical cell.

a The electrode reaction taking place at the anode is:

$$Cu^{2+}(aq) + 2e^- \rightarrow Cu(s)$$

Does this equation show oxidation or reduction? Explain your answer.

d What carries the electric current through the solutions?

- пошлонного полительного полительного подательного подател
- b Write an equation to show what occurs at the cathode, including state symbols.
- c Which way would the electrons flow in the wire from copper to magnesium or from
- magnesium to copper?
- e What is the purpose of the porous pot?
- e what is the purpose of the porous pot?

Exam focus

Extended

1 An experiment was carried out to determine the enthalpy of combustion of butan-1-ol. The apparatus used is shown on the right. The heat source was a spirit burner containing butan-1-ol.

The mass of the spirit burner and butan-1-ol was recorded. It was allowed to burn for 4 minutes under a copper beaker that contained 500 cm³ of water. The initial temperature of the water was also recorded.

After 4 minutes, the mass of the spirit burner and the remaining butan-1-ol was recorded, as well as the final temperature of the water.

Th	e results are shown below.		
b	nitial mass of spirit burner and butan-1-ol = 29.42g		
F	final mass of spirit burner and butan-1-ol = 27.51 g		
þ	nitial temperature of the water = 21.2°C		
F	inal temperature of the water = 42.0 °C		
a I	What mass of butan-1-ol was burned during the experiment?		
0	What was the temperature rise of the water during the exper	riment?	
	Use the following relationship to find the energy transferred (The density of water is $1 \mathrm{gcm}^{-3}$.)	during th	e experiment in joules.
	energy transferred = mass of water \times 4.2 \times temperature rise		
d	How many moles of butan-1-ol were burned during the experi	ment? (A,	values: H = 1; C = 12; O =
	Using the results from this experiment, what is the enthalpy	of combu	stion of butan-1-ol?
	NO 2010 CONTRACTOR SERVICE SER		
	ANTANIA MENANDIA MANTANIA MAN		[To
Hv	drazine, H,N—NH, has been used as a rocket fuel for many	vears. Wh	en it burns in oxygen g
	icts to form nitrogen gas and water as the only products.	6	70 0
1	Write a balanced chemical equation for the combustion of hy	drazine.	
)	When hydrazine undergoes combustion, a lot of energy is	Bond	Bond energy/kJ mol-1
	produced. Use the bond energies in the table to	N—H	390
	calculate the magnitude of this energy change.	N-N	158
		N≡N	946
		О-Н	464
		0=0	498
	TCO(0)	-Charles	
	If 240 kg of hydrazine was burned completely, what amount $(A_{realise}: H = 1; N = 14)$	or neat en	ergy would be released
	rvatios		

			[Tot

Chemical reactions

State	four other fact	ors	that r		fect th										[4]
	in the meaning		each		follov										[4]
II su	ccessful collision	n													[2]
*****														******	[2]
studer arbonat olution otton w le repea	nt carried out a te, CaCO ₃) of di onto a digital l vool into the ne ated the experi ts are shown in	rea ffer pala eck me	ection rent si ance a of the nt but	betwee zes. H nd the flask. this ti	en dil e place en add He re me us	ute hy ed a co led 10- cordeo	droch onical g of la d the	loric a flask o arge m loss in	acid an contai narble mass	d mai ning 5 chips. (in gra	ble ch 0 cm ³ He in 1ms) a	ilps (ca of hyd serted	alcium Irochle a pie	oric ac	
studer arbonat olution otton w le repea	nt carried out a te, CaCO ₃) of di onto a digital h vool into the ne ated the experi ts are shown in	rea ffer pala eck me	ection rent si ance a of the nt but	betwee zes. H nd the flask. this ti	en dil e place en add He re me us	ute hy ed a co led 10- cordeo	droch onical g of la d the	loric a flask o arge m loss in	acid an contai narble mass	d mai ning 5 chips. (in gra	ble ch 0 cm ³ He in 1ms) a	ilps (ca of hyd serted	alcium Irochle a pie	oric ac	id
A studer arbonat olution otton w de repea dis result	t carried out a te, CaCO ₃) of di onto a digital b vool into the ne ated the experi ts are shown in in 10g of large marble chips	rea ffer pala eck me the	ection rent si ance a of the nt but e table	betwee zes. H nd the flask. this ti below	en dil e place en add He re me us w.	ute hy ed a co led 10- cordec ed 10-	rdroch onical g of la d the g of si	lloric a flask o arge m loss in maller	acid an contai narble mass marb	ning 5 chips. (in gra le chip	rble ch i0 cm ³ He in ams) a	ilps (co of hyd serted gainst	lrochle a ple time.	oric acce of	
A studer arbonat olution otton w de repea dis result	nt carried out a te, CaCO ₃) of di onto a digital b orool into the ne ated the experi ts are shown in in 10g of large	rea ffer oala eck me the	nction rent si ance a of the nt but e table	betwee zes. H nd the flask. this ti below	en dil e place en add He re- me us w.	ute hy ed a co led 10- cordec ed 10-	ordroch onical g of la d the g of sr 2½ 0.93	flask of fla	acid an contai narble mass marb	d maing 5 chips. (in gralle chips 4	He in ams) and seed the seed t	of hyd serted gainst	lricium lrochle a pie time.	oric acce of	id 6%

d Plot a graph of the loss in mass (vertical axis) against time (horizontal axis). You will need to draw two lines on the same axes, one for the small chips and one for the large chips.

e Which of the reactions was the fastest? How can you tell this from the graph?

Core/Extended

3 The graphs on the right were produced by carrying out reactions between sulfuric acid and 2q of magnesium in five different experiments.

[6]

The experiments carried out involved:

- 1 2 g of magnesium ribbon and 40 cm3 of 0.1 moldm-3 sulfuric acid at 25 °C
- II 2g of magnesium ribbon and 40 cm3 of 0.05 moldm3 sulfuric acid at 25°C
- III 2 g of magnesium powder and 40 cm3 of 0.1 moldm3 sulfuric acid at 25 °C

IV 2 g of magnesium powder and 20 cm3 of 0.1 mol dm-3 sulfuric acid at 25°C

V 2 g of magnesium powder and 20 cm3 of 0.1 mol dm-3 sulfuric acid at 50 °C.

a. Which of the two reactants is in excess?

b In the table below, write in the number of the experiment that is represented by each of the lines on the graph.

Line	Α	В	C	D	E
Experiment					

[5]

	Explain why the rea	ctio	n sho	wn b	y lin	e D o	ccurs	mon	e rap	idly than the reaction shown by li
	Extended									
Ex	plain each of the fol	low	ng u	sing	the o	ollisio	on the	eory.		
a	Reactions in solutio	n oc	cur f	aster	if the	e solu	ition	has a	high	concentration.
		******		araurus.	none man	etionismo	n Partie Partie	na n		CONTRACTOR OF THE PROPERTY OF
b		al re	acts :	aste	with	n hyd	rochl	oric a	acid t	o give hydrogen gas than strips of
	metal do.									
	metal do.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	www							

c	A catalyst increases	the	rate	of a	chem	ical r	eacti	on.		
c		the	rate	of a	chem	lcal r	eactle	on.		

a Plot a graph of the volume of hydrogen produced (vertical axis) against time (horizontal axis).

b	i When was the reaction the fastest?	. [1]
	ii How can you tell this from the graph?	
C	Write a balanced chemical equation for the reaction between sodium and water,	[1]
d	What mass of sodium did the student use in the experiment?	. [3]
e	How much hydrogen was produced in the experiment after:	[3]
	i 25 seconds?	[1]
f	Which other Group I metal could the student have used, instead of sodium, to give a slower	
	reaction with water?	[1]
a	Write a balanced chemical equation for the reaction between carbon monoxide and nitroge monoxide gases.	
b	The reaction you have written in part ${\bf a}$ shows both oxidation and reduction. Which of the reactants has been:	
	i oxidised? [1] ii reduced?	[1]
C	What catalyst is used in the catalytic converter?	
		[1
d	5dm^2 of petrol is combusted in a car engine. Assume that it is octane (C $_{\text{B}}H_{\text{1B}}$), which has a det of $0.70\text{g}\text{cm}^{-3}$.	nsity
	i Write a balanced chemical equation for the combustion of octane.	
	Calculate the mass of carbon dioxide that would be produced.	. [3
		. 15

		If the car pro converted to				de, wh	nat m	ass of	carbo	n dio	xide v	vould	this b
d	econ	dent was tryin mpose hydrog ve water and c	en peroxide										
	W	hat is a catalys	st?										
)	Wr	rite a balance	d chemical e	quation for t	he de	comp	ositio	n of h	ydrog	en pe	roxid	e.	
		onnanamonomen		tudent's resu			urumu	-		nin ann	- CONTRACTOR	urusuru	eneuronen
	Th	ie table below	shows the s										
		ie table below	shows the s		0	30	60	90	120	150	180	210	240
	Ti Ve	ime/s folume of exygen gas	5 g of man	ganese(iv)	0	9	17	23	26	28	29	30	30
	Ti Ve or cc	ime/s folume of	5g of man oxide 5g of copp	ganese(iv) er(ii) oxide	0 0 oduced	9	17	23	26 9	28 11	29 13	30 15	30 17
c	Ti Ve or cc	ime/s folume of exygen gas collected/cm³ ot a graph of t	5g of man oxide 5g of copp	ganese(iv) er(ii) oxide	0 0 oduced	9	17	23	26 9	28 11	29 13	30 15	30 17
c	Ti Ve or cc	ime/s folume of exygen gas collected/cm³ ot a graph of t	5g of man oxide 5g of copp	ganese(iv) er(ii) oxide	0 0 oduced	9	17	23	26 9	28 11	29 13	30 15	30 17
	Ti Ve or cc	ime/s folume of exygen gas collected/cm³ ot a graph of t	5g of man oxide 5g of copp	ganese(iv) er(ii) oxide	0 0 oduced	9	17	23	26 9	28 11	29 13	30 15	30 17
	Ti Ve or cc	ime/s folume of exygen gas collected/cm³ ot a graph of t	5g of man oxide 5g of copp	ganese(iv) er(ii) oxide	0 0 oduced	9	17	23	26 9	28 11	29 13	30 15	30 17
c	Ti Ve or cc	ime/s folume of exygen gas collected/cm³ ot a graph of t	5g of man oxide 5g of copp	ganese(iv) er(ii) oxide	0 0 oduced	9	17	23	26 9	28 11	29 13	30 15	30 17
c	Ti Ve or cc	ime/s folume of exygen gas collected/cm³ ot a graph of t	5g of man oxide 5g of copp	ganese(iv) er(ii) oxide	0 0 oduced	9	17	23	26 9	28 11	29 13	30 15	30 17
	Ti Ve or cc	ime/s folume of exygen gas collected/cm³ ot a graph of t	5g of man oxide 5g of copp	ganese(iv) er(ii) oxide	0 0 oduced	9	17	23	26 9	28 11	29 13	30 15	30 17
c	Ti Ve or cc	ime/s folume of exygen gas collected/cm³ ot a graph of t	5g of man oxide 5g of copp	ganese(iv) er(ii) oxide	0 0 oduced	9	17	23	26 9	28 11	29 13	30 15	30 17
c	Ti Ve or cc	ime/s folume of exygen gas collected/cm³ ot a graph of t	5g of man oxide 5g of copp	ganese(iv) er(ii) oxide	0 0 oduce	9	17	23	26 9	28 11	29 13	30 15	30 17
c	Ti Ve or cc	ime/s folume of exygen gas collected/cm³ ot a graph of t	5g of man oxide 5g of copp	ganese(iv) er(ii) oxide	0 0 oduce	9	17	23	26 9	28 11	29 13	30 15	30 17

e Draw apparatus that could be used to carry out this experiment.

f	What mass of copper(ω) oxide would be obtained at the end of the experiment? Explain your answer.	[7]
		[3]

Exam focus

Extended

1 This question is about a series of experiments involving the reaction between sodium thiosulfate and dilute hydrochloric acid.

$$Na_sS_sO_s(aq) + 2HCl(aq) \rightarrow 2NaCl(aq) + H_sO(l) + SO_s(g) + S(s)$$

The same amount of dilute hydrochloric acid was used in each experiment but the concentration of sodium thiosulfate was changed.

The volumes of water and sodium thiosulfate shown in the table below were put into a conical flask, which was placed on a pencil cross on a piece of paper. The acid was added and a stopwatch started. The student carrying out the experiment looked down through the flask at the cross and stopped the stopwatch when she could no longer see it.

Experiment	Volume of 0.2 mol dm ⁻³ sodium thiosulfate/cm ³	Volume of water/cm ³	Concentration of sodium thiosulfate/ mol dm ⁻³	Time for cross to become invisible/s	Rate of reaction/s ⁻¹
1	100	0	0.2	25	4.0×10^{-2}
2	80	20	0.16	43	
3	60	40	0.12	65	
4	40	60	0.08	102	
5	20	80	0.04	160	

a	Why was it important to keep the total volume of solution used in each experiment the same?

Complete the ta experiments 2 t	able by calculating and writing in the rate of reaction for each o 5.	ch of
Plot a graph of (horizontal axis	the rate of reaction (vertical axis) against concentration of se).	odium thiosulfate
Use your graph	to find:	
i the concentr	ation of sodium thiosulfate at which the cross would becon	ne invisible after
50 seconds		1
	of sodium thiosulfate for which the cross would become inv	and the same of
		1
iii the time you	would expect the experiment to take if the concentration o	of sodium thiosulfate
	il flask was 0.10 mol dm ⁻³ .	

2 A student carried out a series of reactions between zinc metal and dilute sulfuric acid. In each of the reactions he used the same mass of zinc (an excess) and the same volume of sulfuric acid. The graph below shows his results.

a Which was the fastest reaction? Explain how you can tell this from the graph.

[2]

b Which of the reactions was carried out:

i at the highest temperature? [1]

c How could the rate of reaction A have been increased?

d What volume of 0.05 mol dm⁻³ sulfuric acid was used for reaction C?

What was the total mass of hydrogen gas produced in reaction A?

[Total: 10]

Acids, bases and salts

	and nitric acid		
magnesium and h	ydrochloric acid		
omplete the table b soluble salts.	elow, which is about	the different metho	ods of preparing soluble and
Substances used to I	make the salt	Salt prepared	Other products
Calcium oxide	Hydrochloric acid		14111112
	Sulfuric acid	Sodium sulfate	Water
otassium carbonate		Potassium nitrate	Water and carbon dioxide
	Hydrochloric acid	Zinc chloride	Hydrogen
_ead nitrate	Sodium chloride		Sodium nitrate
Barium chloride	Potassium sulfate		
	id identity the prese	nce, in solution, or e	each of the following lons.
chloride, bromide i Cl			
chloride, bromide i Cl- ii Br-		Manusa Ma	
chloride, bromide i Cl- ii Br-		Manusa Ma	
chloride, bromide i CF			
ii Br	lons		
chloride, bromide i Cl- ii Br- iii l- carbonate ions sulfate ions iron(ii) and iron(iii)	lons		

Core/Extended

4 The diagram below shows some reactions of Iron. Name and give the formulae of the substances P to T shown in the diagram.

5 a Use lines to link together the substance in Column A with its pH in Column B.

Column R

0.1 mol dm ⁻³ HCl	13.0
0.1 mol dm ⁻³ NaOH	7.0
0.1 mol dm ⁻³ CH ₃ COOH	1.0
Pure H ₂ O	11.0
0.1 mol dm ⁻³ NH ₃ solution	2.9

b Why are the pHs of 0.1 moldm⁻³ HCl and 0.1 moldm⁻³ CH₃COOH not the same?

Extended

Column A

6 a Write down the names of two chemical solutions that could be added together to form each of the following insoluble salts by a precipitation reaction.

iii calcium carbonate [2]

[5]

b	Give full experimental details to explain how you could prepare a sample of the yellow insoluble salt lead(s) lodified, in your account, you should name the reactants and give a balanced ionic equation, with state symbols, for the reaction you would carry out.	
7 a	What is the characteristic feature of an acid?	[8]
b	Describe what is meant by each of the following terms.	
	ii a strong acid	
c	Write equations to show:	[2]
	i the ionisation of hydrochloric acid	
	note that the description of t	[2]
	ii the Ionisation of ethanoic acid.	
d	Explain the difference between the terms strong and weak acids compared with concentrated and dilute acids.	
		[4]
Ex	am focus	
Co	re/Extended	
1	a Complete the following paragraph.	
	Acids dissolve in water to produceions, which can be written as Alkalis are soluble They dissolve in water to produce	
	ions, which can be written as	
	together to produce solutions with a pH of 7; these are called	[6]
	Tedestoris.	[0]

	 Write an ionic equation for the neutralisation reaction that takes place when an acid rea an alkali. 	icts with
		[3]
c	c In a reaction between potassium carbonate and hydrochloric acid to produce potassium crystals, the following method was used.	n chloride
	25 cm³ of hydrochloric acid was placed in a beaker. Solid potassium carbonate was add acid and effervescence was seen. The mixture was stirred and potassium carbonate was until some remained at the bottom of the beaker. The mixture was then filtered and the collected in an evaporating basin. The filtrate was heated until about one half had evap crystals were starting to form. The solution that remained was allowed to cool, and cry	s added filtrate orated and
	i Write a balanced chemical equation for the reaction.	
		[3]
	ii $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	ker?
	iii What was the name of the filtrate?	
	iv What name is given to a solution that has crystals starting to form from it?	mananana [1]
	The final is given to a solution dust has crystals starting to form from it.	111
		5-3
		[Total: 15]
		[Total: 15]
Exte	ended	[Total: 15]
	ended a A reaction is carried out to prepare a sample of sodium sulfate crystals, starting from disodium hydroxide and dilute sulfuric acid. The reaction is carried out using a titration clearly how you would prepare the sodium sulfate crystals.	ilute
	A reaction is carried out to prepare a sample of sodium sulfate crystals, starting from disodium hydroxide and dilute sulfuric acid. The reaction is carried out using a titration.	ilute
	A reaction is carried out to prepare a sample of sodium sulfate crystals, starting from disodium hydroxide and dilute sulfuric acid. The reaction is carried out using a titration.	ilute
	A reaction is carried out to prepare a sample of sodium sulfate crystals, starting from disodium hydroxide and dilute sulfuric acid. The reaction is carried out using a titration.	ilute
	A reaction is carried out to prepare a sample of sodium sulfate crystals, starting from disodium hydroxide and dilute sulfuric acid. The reaction is carried out using a titration.	ilute
2 a	a A reaction is carried out to prepare a sample of sodium sulfate crystals, starting from d sodium hydroxide and dilute sulfuric acid. The reaction is carried out using a titration clearly how you would prepare the sodium sulfate crystals.	ilute Explain
2 a	A reaction is carried out to prepare a sample of sodium sulfate crystals, starting from disodium hydroxide and dilute sulfuric acid. The reaction is carried out using a titration.	Explain [7]
2 a	a A reaction is carried out to prepare a sample of sodium sulfate crystals, starting from d sodium hydroxide and dilute sulfuric acid. The reaction is carried out using a titration clearly how you would prepare the sodium sulfate crystals.	ilute Explain

The Periodic Table

Core

1 There are five elements in Group VII of the Periodic Table. They are known as the halogens. The table below gives the melting and boiling points of the halogens. However, one of the values is missing.

Element	Atomic number	Melting point/K	Boiling point/K
F	9	54	85
Cl	17	172	239
Br	35	266	
1	53	387	458
At	85	576	610

a Plot a graph of the melting and boiling points of the halogens against their atomic numbers. Join the plotted points for the melting points together and, in a different colour, the plotted points for the boiling points.

ti)

d Which of the halogens would be a gas at room temperature (298 K)?

Chlorine gas will react with aluminium metal using the apparatus shown below.

c What is the trend in the melting points of the halogens?

[6]

a	Write word and balanced symbol equations for the reaction between aluminium metal and chlorine gas.	
		[4]
b	Why is it necessary to ensure that the unreacted chlorine gas is passed into a fume cupboard?	[1]
C	Name a halogen that would react with aluminium metal more quickly than chlorine does.	[1]
d	Name a metal that would react with chlorine gas more quickly than aluminium does.	Lil
Co	omplete the following passage.	[1]
Th	ie modern Periodic Table has been credited to the work of the Russian chemist	
in in	. After many years of chemists across the world trying to classify	
th	e elements in a useful way, he came up with the table that we have been using for nearly 150	
ye	ars. He arranged the elements in order of increasing	nad
to	swap elements around so that they were in the same as other elements with	1
sin	nilar properties, for example tellurium (Te) and(at
he	e introduced to his classification was that he left for elements that had not be	en
dis	scovered at the time. Today, the elements in the modern Periodic Table are arranged in order of	2
inc	creasing	[7]
	Core/Extended	
Ele	ement ${f Y}$ has a proton number of 19 and a relative atomic mass of 39.	
a	$i \text{How many electrons, protons and neutrons are there in an atom of element \mathbf{Y}?}$	
	What is the electronic configuration of this element? Ill In which group of the Periodic Table would you find this element? Explain your answer.	[1]
		[2]
		[1]

reaction	occurs,							a	gas ja	rofl	oron	nine	vap	our,	a chen	nical
What do the white fumes consist of?																
ii Write	Write word and balanced chemical equations for the reaction.															
When potassium is reacted with chlorine gas, the reaction is more vigorous. Explain the observation in terms of the reactivity of the halogens.																
he diagrar	n below	shows	part o		Perio	dic T	able.			н	N	v	И	VII	0	
			L	H.							С	N		F	Ne	
	Na	Mg Ca			Mn					Al		Р	S	Rr	Kr	
Jsing the e is a trans has four	sition ele	ement				wn th			ol for a	full c	utei				nergy	
level	mannen room					[1) f		has an	elec	tror	ic c	onfi	gura	ition	
is a liqui	d at roo	m temp	peratu	re and	i				of 2,8,	5						
pressure						[1	<i>j</i> g	,	is a Gr	oup	l me	tal .				
is stored	under	oil	naniania			[1	<i>j</i> F	1	is a ga	seou	ıs Gr	oup	VII	elen	nent	
n 1817, Joh order that v One of thes	would be	e usefu is conta	I to ot ined t	her ch	nemis ement	ts. He ts lith	e put nium,	so	ement dium a	into	gro	oups	of			
Describe																

Explain your answers in terms of the electronic structure and/or size of the atoms of the elements. b In another group Döbereiner placed the elements strontium, barium and calcium. i In which group of the modern Periodic Table will you find these elements? iii How many electrons will each of these elements have in its outer energy level? iiii Which of these elements will undergo the most vigorous reaction when added to water? Explain your answer in terms of its electronic structure. This question is about the transition elements. a Give two physical properties of transition elements that make them more useful to us than the Group I metals. b i What type of chemical bonding is present in all transition elements? ii Draw a labelled diagram to show the type of chemical bonding present in transition elements. c The transition elements, and their compounds, often make very good catalysts and are used extensively in industrial processes. i Explain why a catalyst would be used in an industrial process. ii Give two examples of processes that use a transition element catalyst, or a compound of a transition element, and state the catalyst used.		ii diffe	erent.
i In which group of the modern Periodic Table will you find these elements? ii How many electrons will each of these elements have in its outer energy level? iii Which of these elements will undergo the most vigorous reaction when added to water? Explain your answer in terms of its electronic structure. This question is about the transition elements. a Give two physical properties of transition elements that make them more useful to us than the Group I metals. b i What type of chemical bonding is present in all transition elements? ii Draw a labelled diagram to show the type of chemical bonding present in transition elements. c The transition elements, and their compounds, often make very good catalysts and are used extensively in industrial processes. i Explain why a catalyst would be used in an industrial process. ii Give two examples of processes that use a transition element catalyst, or a compound of a transition element, and state the catalyst used.		Expla	ain your answers in terms of the electronic structure and/or size of the atoms of the
ii How many electrons will each of these elements have in its outer energy level? iii Which of these elements will undergo the most vigorous reaction when added to water? Explain your answer in terms of its electronic structure. This question is about the transition elements. a Give two physical properties of transition elements that make them more useful to us than the Group I metals. b i What type of chemical bonding is present in all transition elements? ii Draw a labelled diagram to show the type of chemical bonding present in transition elements. c The transition elements, and their compounds, often make very good catalysts and are used extensively in industrial processes. i Explain why a catalyst would be used in an industrial process. ii Give two examples of processes that use a transition element catalyst, or a compound of a transition element, and state the catalyst used.	b	In anot	her group Döbereiner placed the elements strontium, barium and calcium.
iii Which of these elements will undergo the most vigorous reaction when added to water? Explain your answer in terms of its electronic structure. This question is about the transition elements. a Give two physical properties of transition elements that make them more useful to us than the Group I metals. b i What type of chemical bonding is present in all transition elements? ii Draw a labelled diagram to show the type of chemical bonding present in transition elements. c The transition elements, and their compounds, often make very good catalysts and are used extensively in industrial processes. i Explain why a catalyst would be used in an industrial process. ii Give two examples of processes that use a transition element catalyst, or a compound of a transition element, and state the catalyst used.		i In w	hich group of the modern Periodic Table will you find these elements?
Explain your answer in terms of its electronic structure. This question is about the transition elements. a Give two physical properties of transition elements that make them more useful to us than the Group I metals. b i What type of chemical bonding is present in all transition elements? ii Draw a labelled diagram to show the type of chemical bonding present in transition elements. c The transition elements, and their compounds, often make very good catalysts and are used extensively in industrial processes. i Explain why a catalyst would be used in an industrial process. ii Give two examples of processes that use a transition element catalyst, or a compound of a transition element, and state the catalyst used.		ii How	many electrons will each of these elements have in its outer energy level?
This question is about the transition elements. a Give two physical properties of transition elements that make them more useful to us than the Group I metals. b i What type of chemical bonding is present in all transition elements? ii Draw a labelled diagram to show the type of chemical bonding present in transition elements. c The transition elements, and their compounds, often make very good catalysts and are used extensively in industrial processes. i Explain why a catalyst would be used in an industrial process. ii Give two examples of processes that use a transition element catalyst, or a compound of a transition element, and state the catalyst used.		Expl	ain your answer in terms of its electronic structure.
a Give two physical properties of transition elements that make them more useful to us than the Group I metals. b i What type of chemical bonding is present in all transition elements? ii Draw a labelled diagram to show the type of chemical bonding present in transition elements. c The transition elements, and their compounds, often make very good catalysts and are used extensively in industrial processes. i Explain why a catalyst would be used in an industrial process. ii Give two examples of processes that use a transition element catalyst, or a compound of a transition element, and state the catalyst used.			
i What type of chemical bonding is present in all transition elements? ii Draw a labelled diagram to show the type of chemical bonding present in transition elements. c The transition elements, and their compounds, often make very good catalysts and are used extensively in industrial processes. i Explain why a catalyst would be used in an industrial process. ii Give two examples of processes that use a transition element catalyst, or a compound of a transition element, and state the catalyst used.	Th	is questi	on is about the transition elements.
b i What type of chemical bonding is present in all transition elements? ii Draw a labelled diagram to show the type of chemical bonding present in transition elements. C The transition elements, and their compounds, often make very good catalysts and are used extensively in industrial processes. i Explain why a catalyst would be used in an industrial process.	а		
c The transition elements, and their compounds, often make very good catalysts and are used extensively in industrial processes. i Explain why a catalyst would be used in an industrial process. ii Give two examples of processes that use a transition element catalyst, or a compound of a transition element, and state the catalyst used.	b		
extensively in industrial processes. i Explain why a catalyst would be used in an industrial process. ii Give two examples of processes that use a transition element catalyst, or a compound of a transition element, and state the catalyst used.			
extensively in industrial processes. i Explain why a catalyst would be used in an industrial process. ii Give two examples of processes that use a transition element catalyst, or a compound of a transition element, and state the catalyst used.			
extensively in Industrial processes. i Explain why a catalyst would be used in an Industrial process. ii Give two examples of processes that use a transition element catalyst, or a compound of a transition element, and state the catalyst used.			
ii Give two examples of processes that use a transition element catalyst, or a compound of a transition element, and state the catalyst used.	c		
ii Give two examples of processes that use a transition element catalyst, or a compound of a transition element, and state the catalyst used.		i Expl	
			two examples of processes that use a transition element catalyst, or a compound

Extended

8 Use the information given in the table below to answer the following questions about elements A, B, C, D and E.

Element	Proton number	Nucleon number	Electronic structure
A	10	20	2,8
В	19	39	2,8,8,1
С	13	27	
D	8	16	
E		35	2,8,7

a	Comp	lete	the	table	by wr	itina	in:

i	the electronic structure of elements C and D	[2
11	the proton number of element E.	[1

b	i	Which of these elements, A to E, is a noble gas?	[1]

II	Which of these elements, A to E, is a Group	Lelement?	[1]
	Triller of these elements, A to E, is a droug	Telefficite, minimum	4 1 2

iii Which of these elements, A to E , is a Group VII element?	[1]
---	-----

1	Which of these elements, A to E, is aluminium?	[1]
1	Which of these elements A to E will form an ion with a +3 charge?	[11]

T THIRD OF CHOSE	cicincines, re to m, r	 To cridige t innomination	1.3
and control of the co	AND DESCRIPTION OF THE PARTY OF	 and the second	/272

II	Which of these elements,	A to E, wil	form an ion	with a –2 charge	?	J

iii Which of these elements, A to E, will not form an ion?	[1]
--	-----

Exam focus

- 1 Displacement reactions occur when a solution containing a halide ion reacts with a more reactive halogen. This type of reaction can be seen when a solution of potassium bromide reacts with chlorine.
 - a Write word and balanced chemical equations for the reaction that occurs between potassium bromide solution and chlorine.

b	W	ny is chlorine more reactive than bromine?
		0.2.11
C	WI	nich other halogen would react with potassium bromide?
d		uld there be a reaction between a solution of sodium fluoride and bromine? plain your answer
	******	[Total
re/	Ex	tended
the	e ele	Periodic Table, elements are arranged in vertical columns called groups. Within each group, ments have similar chemical reactions but show a trend in their physical properties such as rity and melting point.
a	Co	nsider the two elements potassium and sodium, both found in Group I of the Periodic Table.
	i	Give the electronic configurations of the elements sodium and potassium.
		Which of these elements, potassium or sodium, is the more reactive when added to water? Explain your answer in terms of their atomic structure.
	iii	Write a balanced chemical equation for the reaction of sodium with water.
b		Group VII there are five elements, all of which have the same number of electrons in their our gy level. $\ \ \ \ \ \ \ \ \ \ \ \ \ $
	i	How many electrons do these elements have in their outer energy level?
	ii	What do all of these elements do when they react and form ions?
		маления под принцений под принцений под принцений под
	iii	What would be the charge on an ion of any of the Group VII ions?
	iv	Which of the Group VII elements would be the most reactive? Explain your answer.

Cambridge IGCSE Chemistry Workbook

Why is limeston	e added as a raw material to t				
Write chemical equations for each of the following processes, which occur in the blast furnace					
i the thermal	decomposition of limestone				
ii the oxidation	n of carbon (coke)				
	n of carbon monoxide				
	n of iron from the haematite				
v the formation	n of calcium silicate (slag)				
Milest rela de se		the extraction process?			
		perties of some different types of steel and cast			
	Composition	Properties Very brittle, easily moulded, hard			
/pe of steel	96% En 4% C				
/pe of steel ast iron	96% Fe, 4% C				
ype of steel ast iron lild steel	99.5% Fe, 0.5% C	Easily worked, little brittleness, springy			
ype of steel ast iron fild steel ard steel	99.5% Fe, 0.5% C 99% Fe, 1% C	Easily worked, little brittleness, springy Tougher than mild steel, brittle			
ype of steel ast iron fild steel ard steel tainless steel	99.5% Fe, 0.5% C 99% Fe, 1% C 74% Fe, 18% Cr, 8% NI	Easily worked, little brittleness, springy Tougher than mild steel, brittle Tough, does not rust			
ype of steel ast iron fild steel ard steel tainless steel ungsten steel	99.5% Fe, 0.5% C 99% Fe, 1% C 74% Fe, 18% Cr, 8% NI 95% Fe, 5% W	Easily worked, little brittleness, springy Tougher than mild steel, brittle			
ype of steel ast iron lild steel ard steel tainless steel ungsten steel	99.5% Fe, 0.5% C 99% Fe, 1% C 74% Fe, 18% Cr, 8% NI 95% Fe, 5% W	Easily worked, little brittleness, springy Tougher than mild steel, brittle Tough, does not rust Tough even at high temperatures			

- c Cars and ships made from steel often suffer from rusting. Stainless steel, however, does not rust. Why do we not make cars or ships out of stainless steel?
- d Complete the table below to give the properties required for the objects listed and the type of steel you would choose to make them out of.

Object	Properties	Steel	The state of the s
Chisel	Tough	Hard steel	
Car body		U	
Axe			
Surgical knife			

3 A student set up the experiment below to find out what conditions were needed for rusting to occur.

a What was the purpose of:

ii boiling the water in tube C?

- I the anhydrous calcium chloride in tube B?
- A THE USE OF THE PARTY OF THE P
- iii the layer of oil in tube C?
- b What conditions were present in each of the tubes? Put ticks in the table below to show if
- oxygen or water were present in each of the tubes.

Tube	Water	Oxygen
A		
В		III I
C		
D		

. [2]

[6]

	[2
ii Explain your answer to part i.	(2)
I In which tube will the nails rust the most?	[2
ii Explain your answer to part i.	
	[1
Core/Extended	
omplete and balance the following chemical equations.	
+ $H_2SO_4(aq) \rightarrow MgSO_4(aq) + H_2O(l) +$	[.
$2Ca(s) + O_2(g) \rightarrow {}_{reconstruction}$	ſ
$Mg(s) + \dots \rightarrow MgSO_a(aq) + Zn(s)$	ĺ
+	·I
$Zn(s) + 2 - + H_{s}(g)$	I
Extended he list below shows four metals in order of their chemical reactivity. Use it to answer the quentat follow.	
Extended he list below shows four metals in order of their chemical reactivity. Use it to answer the quentat follow. (most reactive) zinc iron tin copper (least reactive)	stions
Extended he list below shows four metals in order of their chemical reactivity. Use it to answer the quentat follow. (most reactive) zinc iron tin copper (least reactive)	stions
Extended ne list below shows four metals in order of their chemical reactivity. Use it to answer the quentat follow. (most reactive) zinc iron tin copper (least reactive) i Write a balanced symbol equation for the reaction that occurs when zinc powder (grey) added to copper(ii) sulfate solution (blue).	stions
Extended he list below shows four metals in order of their chemical reactivity. Use it to answer the quentat follow. (most reactive) zinc iron tin copper (least reactive) i Write a balanced symbol equation for the reaction that occurs when zinc powder (grey) added to copper(ii) sulfate solution (blue).	is (3
Extended The list below shows four metals in order of their chemical reactivity. Use it to answer the quent follow. The list below shows four metals in order of their chemical reactivity. Use it to answer the quent follow. The list below shows four metals in order of their chemical reactive) Write a balanced symbol equation for the reaction that occurs when zinc powder (grey) added to copper(ii) sulfate solution (blue). The list below shows four metals in order of their chemical reactive) Write a balanced symbol equation for the reaction that occurs when zinc powder (grey) added to copper(ii) sulfate solution? The list below shows four metals in order of their chemical reactivity. Use it to answer the quently list of their chemical reactivity. Use it to answer the quently list of their chemical reactive).	is (2
Extended he list below shows four metals in order of their chemical reactivity. Use it to answer the quenat follow. (most reactive) zinc iron tin copper (least reactive) i Write a balanced symbol equation for the reaction that occurs when zinc powder (grey) added to copper(v) sulfate solution (blue). ii What changes would you see when the zinc is added to copper(v) sulfate solution?	is (3

	frite balanced chemical equations for the reactions between each of the following pairs of ibstances.							of	
a	lithium	metal and	water						
b		tal and hyd							
c		ium and co			***************************************	***************************************			*************
d		d silver nitr					***************************************		
	***************************************		·			***************************************		-	
e	zinc me	tal and stea	am						
f		lum metal							

A	to F. Sm ie studer	all strips of at looked fo	each metal or a reaction	were place n occurring		tions of the	e nitrates o	erent metals, I of the other fiv	
h					tion would			dna2	**********
D					tion would	trie studen	t be observ	mgr	
c The table below shows a record of the student's results.									
	Metal	A nitrate	B nitrate	C nitrate	D nitrate	E nitrate	F nitrate		
	Α	_	1	X	×	1	1		
	В	Х	_	X	X	1	1		
	C	1	1	_	/	1	1		
	D	1	1	Х		1	1		
	E	X	X	Х	X	_	×		
	F			×		1		1	

-	
60	Photocopying prohibited

✓ reaction occurred ✗ no reaction — reaction not done

Put the metals A to F in order of their reactivity, with the least reactive metal first.

[3]

	Write word and balanced chemical equations for t	he reaction that occurs.	
	Name the pink-brown solid that is formed in the r		
C	Name the solid that is yellow when hot and white	when cold.	[1,
d	i Which of the reactants is being oxidised in this	reaction?	[1,
	ii Explain why this reactant is being oxidised.		
		rounoumus our monnous monormis	[1,
	iii What is happening to the other reactant when	the reaction occurs?	
			11
	annananananananananananananananananana	ionarationa maintenanticioni netrational de la contractional de la	enementer L'a
Cor	am focus e/Extended Look at the flow diagram shown below.	Solution D + Gas E	
Cor	e/Extended	dilute HCI	
Cor	e/Extended Look at the flow diagram shown below. heat in air heat with powdi	dilute HCI sered Mg Solid B + Solid C	
Cor	e/Extended Look at the flow diagram shown below. heat in air heat with powdi	dilute HCI → Solid B + Solid C electrolysis of molten B	
Cor	e/Extended Look at the flow diagram shown below. heat in air heat with powdi	dilute HCl seed Mg Solid B + Solid C electrolysis of molten B Silvery metal F + Gas G	
Cor	e/Extended Look at the flow diagram shown below. heat in air heat with powdi	ored Mg Solid B + Solid C Solid B + So	
Cor	e/Extended Look at the flow diagram shown below. Zinc heat in air Solid A heat with powds	ored Mg Solid B + Solid C electrolysis of motten B Silvery metal F + Gas G CuSO ₄ (ng)	
Cor	e/Extended Look at the flow diagram shown below. Zinc heat in air Zinc heat in air A solid A heat with powds a Name and give the formulae of substances A to I.	ored Mg Solid B + Solid C Solid B + So	
Cor	e/Extended Look at the flow diagram shown below. Description	Solid B + Solid C electrolysis of molten B Silvery metal F + Gas G CusO _s (ari) Brown-plak solid H + Solution I F	[1
Cor	e/Extended Look at the flow diagram shown below. Zinc heat in air Solid A heat with powel	ored Mg Solid B + Solid C electrolysis of motten B Silvery metal F + Gas G CuSO_(set) Brown-pink solid H + Solution I F	[1

i	solution D and gas E were formed.		
	Write anode and cathode reactions for the processes that take notten B .	place during the	
95			[Total:
	the reactivity series on the right to answer the questions follow.	sodium magnesium	†
ı V	When lead(II) oxide reacts with iron, a redox reaction occurs.	zinc	
i	Write a balanced chemical equation for the reaction.	iron lead hydrogen	increasing reactivity
i	What is a redox reaction?	copper silver	
i	i Describe what is happening to the iron and the lead(n) ox	ide when the read	
	Magnesium reacts with hydrochloric acid to give a salt and h		THE THE STREET STREET STREET
1	Write a balanced chemical equation for the reaction.		
ii	Copper metal does not react with acid. Explain why the re does occur for magnesium.		
i	i Name another metal that will not react with hydrochloric	acid	
V	inc oxide is unusual in that it changes colour when it is heal when cold. When zinc oxide reacts with magnesium metal, a fter the reaction has ended.		
i	What is the white solid?		
i	Write a balanced chemical equation for the reaction.		
i	i What would happen to the white solid obtained if it were		
	мания подально в постоя в подавления в подав	no in in a common and a common a	unconnomnomnom
			[Total:

Core

He	elium, neon and argon are noble gases found in the atmosphere.	
а	Which group in the Periodic Table do these elements belong to?	[1]
b	The atomic numbers and mass numbers of these elements are given below.	
	⁴ He ²⁰ ₁₀ Ne ⁴⁰ ₁₈ Ar	
	i What are the electronic structures of each of these elements?	
		[3]
	ii Why are these elements classified as inert gases?	[1]
	iii When elements combine by means of covalent bonds, what electronic structure do they try achieve in their outer electron energy level?	
		[2]
C	Give a use for each of these gases based on their inert nature.	
		(2)
141		
	ater pollution has become a real problem. Water is such a good solvent that many substances vasolve in it, including fertilisers.	VIII
a	Explain how fertilisers get into rivers.	
		[2]
b	Give the names and formulae of the nitrogen-containing ions, from chemical fertilisers, that pollute water in rivers. $ \frac{1}{2} \int_{-\infty}^{\infty} \frac{1}{2} \left(\frac{1}{$	
C	Name and give the formula of an artificial fertiliser that contains the ions you have named in your answer to part b .	[4]
		[2]

ii What effect does the growth of these organisms have on life in the river? As well as the substances you would expect in pure dry air, other substances called pollutants are found in the atmosphere. These pollutants cause air pollution. a Explain the meaning of the two sentences above, using specific examples where possible. b Sulfur dioxide is a pollutant. Major sources of this gas are heavy industry and power stations i From which three substances would sulfur dioxide be produced in these industries? ii The word and balanced chemical equations for the production of sulfur dioxide are given be sulfur + oxygen → sulfur dioxide S(s) + O₂(g) → SO₂(g) Calculate the mass of sulfur dioxide produced by 32 kg of sulfur. (A₂ values: O = 16; S = 32.) iii The sulfur dioxide dissolves in water in the atmosphere and produces an acid. This acid is oxidised to give a different acid. What are the names and formulae of the initial acid and final acid produced on oxidation? iv What problems do the acids produced from sulfur dioxide in the air cause in the environr				ivers by the presence of artificial fe	
As well as the substances you would expect in pure dry air, other substances called pollutants at found in the atmosphere. These pollutants cause air pollution. a Explain the meaning of the two sentences above, using specific examples where possible. b Sulfur dioxide is a pollutant. Major sources of this gas are heavy industry and power stations i From which three substances would sulfur dioxide be produced in these industries? ii The word and balanced chemical equations for the production of sulfur dioxide are given to sulfur + oxygen -> sulfur dioxide 5(s) + O ₃ (g) -> SO ₃ (g) Calculate the mass of sulfur dioxide produced by 32 kg of sulfur. (A ₁ values: O = 16; S = 32. iii The sulfur dioxide dissolves in water in the atmosphere and produces an acid. This acid is oxidised to give a different acid. What are the names and formulae of the initial acid and final acid produced on oxidation? iv What problems do the acids produced from sulfur dioxide in the air cause in the environry.					[2]
 b Sulfur dioxide is a pollutant. Major sources of this gas are heavy industry and power stations i From which three substances would sulfur dioxide be produced in these industries? ii The word and balanced chemical equations for the production of sulfur dioxide are given by sulfur + oxygen → sulfur dioxide S(s) + O₂(g) → SO₂(g) Calculate the mass of sulfur dioxide produced by 32 kg of sulfur. (A₁ values: O = 16; S = 32) iii The sulfur dioxide dissolves in water in the atmosphere and produces an acid. This acid is oxidised to give a different acid. What are the names and formulae of the initial acid and final acid produced on oxidation? iv What problems do the acids produced from sulfur dioxide in the air cause in the environry. 	II as th	the substances y	ou would expect in pure	dry air, other substances called po	
b Sulfur dioxide is a pollutant. Major sources of this gas are heavy industry and power stations i From which three substances would sulfur dioxide be produced in these industries? ii The word and balanced chemical equations for the production of sulfur dioxide are given be sulfur + oxygen → sulfur dioxide 5(s) + O₂(g) → SO₂(g) Calculate the mass of sulfur dioxide produced by 32 kg of sulfur. (A₂ values: O = 16; S = 32) iii The sulfur dioxide dissolves in water in the atmosphere and produces an acid. This acid is oxidised to give a different acid. What are the names and formulae of the initial acid and final acid produced on oxidation? iv What problems do the acids produced from sulfur dioxide in the air cause in the environry.					
 i From which three substances would sulfur dioxide be produced in these industries? ii The word and balanced chemical equations for the production of sulfur dioxide are given by sulfur + oxygen → sulfur dioxide 5(s) + O₂(g) → SO₂(g) Calculate the mass of sulfur dioxide produced by 32 kg of sulfur. (A₁ values: O = 16; S = 32) iii The sulfur dioxide dissolves in water in the atmosphere and produces an acid. This acid is oxidised to give a different acid. What are the names and formulae of the initial acid and final acid produced on oxidation? iv What problems do the acids produced from sulfur dioxide in the air cause in the environment. 					
ii The word and balanced chemical equations for the production of sulfur dioxide are given by sulfur + oxygen → sulfur dioxide 5(s) + O _x (g) → SO _x (g) Calculate the mass of sulfur dioxide produced by 32kg of sulfur. (A _x values: O = 16; S = 32) iii The sulfur dioxide dissolves in water in the atmosphere and produces an acid. This acid is oxidised to give a different acid. What are the names and formulae of the initial acid and final acid produced on oxidation? iv What problems do the acids produced from sulfur dioxide in the air cause in the environment.	From	which three su	bstances would sulfur di	oxide be produced in these industri	es?
Calculate the mass of sulfur dioxide produced by 32 kg of sulfur. (A, values: O = 16; S = 32. III The sulfur dioxide dissolves in water in the atmosphere and produces an acid. This acid is oxidised to give a different acid. What are the names and formulae of the initial acid and final acid produced on oxidation? IV What problems do the acids produced from sulfur dioxide in the air cause in the environry		word and baland sulfur + oxyge	ed chemical equations fo n → sulfur dioxide		
iii The sulfur dioxide dissolves in water in the atmosphere and produces an acid. This acid is oxidised to give a different acid. What are the names and formulae of the initial acid and final acid produced on oxidation? Iv What problems do the acids produced from sulfur dioxide in the air cause in the environre	Calcul	12.E. T.	1,6,71	d by 32 kg of sulfur. (A_r values: O =	16; S = 32)
oxidised to give a different acid. What are the names and formulae of the initial acid and final acid produced on oxidation? IV What problems do the acids produced from sulfur dioxide in the air cause in the environr	**********	a-14-74-10-10-14			(t).
iv What problems do the acids produced from sulfur dioxide in the air cause in the environr	oxidis	ised to give a di	ferent acid. What are th		
	What	t problems do t			
					[3]
v Units are being added to some power stations to prevent the emission of sulfur dioxide. What is the name given to these units?	What	t is the name gi	en to these units?		

Core/Extended

4	Ni	trogen gas was discovered by Daniel Rutherford in 1772. It is now known to be a very importan is in the atmosphere. It is also an element that is essential for the well-being of animals and plan	it nts.
	a	It is known that nitrogen atoms have an atomic number of 7. What information does this give you about atoms of nitrogen?	
			[4]
	b	Nitrogen is a <i>diatomic gas and contains a triple bond between the nitrogen atoms</i> . With the ail of a bonding diagram, showing the outermost energy levels only, show that you understand the meaning of the phrase in italics.	
	C	i Which of the bonds found in oxygen and nitrogen molecules is the strongest?	
		ii Explain your answer to part I.	[1]
	d	Give two uses for nitrogen.	
5	a	Nitrogen is one of the three essential mineral elements needed by plants.	[2]
		What type of compound in plants, essential for their growth, contains nitrogen?	[1]
		ii What are the other two essential mineral elements needed by plants for healthy growth?	[2]
	b	The nitrogen needed by plants can be obtained by two different routes. Some plants are able take nitrogen directly from the air whilst others obtain their nitrogen from the soil.	0
		Name a plant that is able to take nitrogen directly from the air. How do farmers ensure that there is sufficient nitrogen in the soil for their crops to	[1]
		grow healthily?	[1]

	Ca	alculate the percentage of nitrogen in each of these nitrogen compounds used by farmers.	
	i	sodium nitrate, NaNO ₃	
		-	[1]
	II	ammonium phosphate, (NH _e) ₃ PO ₄	
		; www.managagagagaga	[1]
	Ш	urea, CO(NH ₂) ₂	
		And the state of t	[1]
	iv	ammonium sulfate, $(NH_d)_2SO_4$	
			[1]
	E>	xtended	
		es of nitrogen are atmospheric pollutants. Motor vehicles are responsible for much of the tion by these oxides that is found in the atmosphere in towns and cities.	
9		trogen monoxide is formed by the reaction of nitrogen and oxygen inside the car engine, ne word and symbol equations are given below.	
	1	nitrogen + oxygen → nitrogen monoxide	
	1	$N_2(g) + O_2(g) \rightarrow 2NO(g)$	
	i	Calculate the volume of nitrogen monoxide produced at room temperature from $48\mbox{dm}^{2}$ of nitrogen.	
		**************************************	[1]
	II.	As it exits the exhaust, the nitrogen monoxide produced in the car engine then reacts with oxygen from the air and forms the brown gas nitrogen(w) oxide. This is an acidic gas. The word and symbol equations are given below.	
		$nitrogen\ monoxide + oxygen \rightarrow nitrogen(w)\ oxide$	
		$NO(g) + O_2(g) \to NO_2(g)$	
		Balance the chemical equation above.	
			(2)

Ш	What attachment to a car would help to eliminate t	he problem of pol	
	nitrogen?		[1]
so	hen nitrogen(w) oxide reacts with water from the atr me nitrogen monoxide. Name and give the formula of the acid produced.	nosphere, an acid	is produced along with
	Committee of the contraction of		
II	Write word and balanced chemical equations for the	production of th	
The g	ases in the air can be separated by fractional	Gas	Boiling point/°C
	ation of liquid air. In this process, water vapour and	Argon	-186
	n dioxide are removed from the air. The remaining in the air are then liquefied and separated by	Helium	-269
	onal distillation. The table shows these gases, along	Krypton	-157
	their boiling points.	Neon	-246
	Service and the service of the servi	Nitrogen	-196
		Oxygen	-183
		Xenon	-108
с Ве	what temperature is the air cooled to remove the carbo fore distilling the air, it is cooled to below ~200°C at Why is it necessary to remove the carbon dioxide an temperature is taken down to ~200°C?	high pressure. d water vapour fro	om the air before the
II	Which of the gases will not become liquids at -200%	C?	[2]
111	Which two gases are difficult to separate by this me	thod?	(2)
	Explain your answer to part iii.		[2]
d Ex	plain how the liquid air is separated by fractional dis		[1]
			[M]

Exam focus

a i	How is filtration of the water from the reservoir carried out?	
i	What is the purpose of filtering at this stage?	
	Chlorine is added to the water near the end of the purification process. Why is chlorine added?	
c (Phorine produces an acidic solution containing two acids. The incomplete chemical equation is hown below. The acid shown as a product is called chloric(i) acid.	L
	$Cl_2(g) + H_2O(l) \rightarrow \dots (aq) + HOCl(aq)$	
1	What are the name and formula of the other acid that is produced?	
2		I.
d I	Why is sodium hydroxide added after chlorination?	
		[
e T	o prevent tooth decay, an ion is often added to the water before it is supplied to homes. Name	
t	his ion and give its formula.	Į
fi	Tap water usually contains some chloride ions rather than chlorine. Describe a chemical test that would show that tap water does contain chloride ions.	
		I
i	$\label{eq:prop:prop:special} Explain in terms of electronic configurations what happens to chlorine when it is converted into chloride ions.$	
	in the theoretical description of the theoretical descriptio	
	жолдання поломина выполня выпол	I
	[Total:	7

Extended

2 Gaseous ammonia is manufactured in large quantities. The process by which it is manufactured was developed by Fritz Haber in 1911 and first used industrially in 1913. The production of this important chemical is affected both by the temperature and by the pressure at which the process is run. The equation that represents the synthesis of ammonia is:

$$N_2(g) + 3H_2(g) \rightarrow 2NH_2(g)$$

A	n in	on catalyst is used.	
		rraph shows how the percentage yield of ammonia	400
a	Us	ing the graph, state:	
	i	the effect of increasing the pressure on the yield of ammonia	r
	ii	the effect of decreasing the temperature on the yield of ammonia.	[2
b	Ex	eplain why the change you have described in part a i occurs with increasing pressure.	[
c		sing your answer to part a ii, deduce the sign of the energy change that occurs during the oduction of ammonia. Explain your answer.	[3
			. [3
d	atı	ne conditions used in industry for the production of ammonia are a pressure of 200 mospheres and a temperature of 723 K. What is the percentage yield of ammonia under ese conditions?	[]
e	W	hy is a temperature lower than 723 K not used?	
			[2

[Total: 12]

12 Sulfur

a	Rainwater is naturally acidic. I Explain why this is the case.	
	ii What is the expected pH of naturally acidic rainwater?	
	iii Another acid is found in rain, which is caused by human activity producing oxides	
	of nitrogen. Give the name and formula of this acid	name and
b	In many parts of the world, the pH of rainwater has fallen.	
	i What is the pH of the acid rain found in many parts of the world?	
	материте по при	
	ii Give two problems associated with acid rain.	
Fo	Core/Extended r each of the following statements, write either 'true' or 'false'. Sulfur is a metallic element.	
b		
	Sulfur reacts with burning magnesium to form magnesium sulfide.	
C	Sulfur reacts with burning magnesium to form magnesium sulfide	
	Initially when sulfur dioxide dissolves in rainwater it forms sulfurous acid.	
d	initially when sulfur dioxide dissolves in rainwater it forms sulfurous acid	

3 Draw lines to link each substance on the left with the correct description on the right.

а	H ₂ S ₂ O ₇
b	CaSO ₄
С	SO ₂
d	KHSO ₄
е	MAZIT metals
f	BaSO ₄
g	Concentrated H,SO,

A	Formed when testing for a sulfate
В	A powerful dehydrating agent
C	Will react with dilute sulfuric acid
D	A main cause of acid rain
E	Used in making detergents
F	A normal salt of sulfuric acid
G	An acid salt

[7]

Extended

4 The scheme below shows some reactions of dilute sulfuric acid.

a Name and give the formulae of substances A to E.

А этомической полительной	12.
B	[2,
C	[2
D	[2

substances B , C , D and E are formed.	
Describe a chemical test to confirm the identity of gas C .	P.
e real acidity in acid rain is mainly caused by sulfuric acid. The amount of this acid can be ermined by carrying out a titration. The results below came from a titration of a sample of aci	d
n with sodium hydroxide solution. The neutralisation reaction taking place is: $H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_5SO_4(aq) + 2H_O(I)$	
	01
$H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(1)$ $00cm^3$ of acid rain was just neutralised by $15.00cm^3$ of a $0.10moldm^{-3}$ sodium hydroxide solutions	10
$H_2SO_4(aq) + 2NaOH(aq) \rightarrow Na_2SO_4(aq) + 2H_2O(l)$ 00cm^3 of a $0.10\text{mol}\text{dm}^{-3}$ sodium hydroxide solution culate: the concentration of sulfuric acid in the acid rain solution	01
$H_2SO_a(aq) + 2NaOH(aq) \rightarrow Na_aSO_a(aq) + 2H_2O(l)$ 00cm^3 of acid rain was just neutralised by 15.00cm^3 of a $0.10\text{mol}\text{dm}^{-3}$ sodium hydroxide solution the concentration of sulfuric acid in the acid rain solution	
$H_2SO_a(aq) + 2NaOH(aq) \rightarrow Na_aSO_a(aq) + 2H_aO(l)$ 00 cm³ of acid rain was just neutralised by 15.00 cm³ of a 0.10 mol dm³ sodium hydroxide solution the concentration of sulfuric acid in the acid rain solution the amount of sulfuric acid in 1000 litres of acid rain.	

	$Fe_2O_3(s) + H_2SO_4(aq) \rightarrow Fe_2(SO_4)_3(aq) + H_2O(I)$
	Balance the chemical equation above.
)	The steel sheets are only left in the acid for a short time. Why are they not left in for longer
	Sulfuric acid is used in the manufacture of the fertiliser (NH,),SO,. What is the name of this
	substance?
	MAC A
	substance? To make the fertiliser in part c, sulfuric acid has to be neutralised by an alkaline substance,
	substance?
	substance?

Exam focus

Extended

1 When manufacturing sulfuric acid, sulfur dioxide is first made into sulfur trioxide.

	oxygen layers of catalyst	
a	Give three reasons why a catalyst is used in this reaction.	i.
b	Name and give the formula of the catalyst used in this process.	. [3]
c	Write word and balanced chemical equations for the making of sulfur trioxide.	. [2]
d	The reaction in part c goes almost to completion. What does this mean with respect to this reaction?	. [4]
		. [2]
e	The sulfur trioxide produced is then dissolved in concentrated sulfuric acid. $SO_{\nu}(g) + H_{\nu}SO_{\nu}(l) \rightarrow H_{\nu}SO_{\nu}(l)$	
	$i \text{Give the name of the substance H_{S,Q_2}} \\ ii \text{Why is sulfur trioxide not dissolved directly into water to form concentrated sulfuric acid?} \\$	[1]
f	With the aid of a balanced chemical equation, explain how concentrated sulfuric acid is made in $H_{r_2}^{\rm SO}$	2.2

[Total: 20] It has been found in recent years that the sulfuric acid in acid rain reacts with limestone, which is eaten away by the following process. CaCO ₃ (s) + H ₂ SO ₄ (aq) → CaSO ₄ (s) + H ₂ O(l) + CO ₂ (g) a Write the ionic equation for the above reaction. [3] b What other pollutant gases, apart from sulfur dioxide, contribute to acid rain? [4] c i How many moles of calcium carbonate are there in 150 g of calcium carbonate? (A, values: C = 12; O = 16) [3] ii Calculate the mass of carbon dioxide formed when 150 g of calcium carbonate reacts with excess sulfuric acid. [3] iii The amount of sulfuric acid in rainwater has increased over the years. Explain the reasons for this.	g (Give two uses for concentrated sulfuric acid.	
2 It has been found in recent years that the sulfuric acid in acid rain reacts with limestone, which is eaten away by the following process. CaCO ₃ (s) + H ₂ CO ₄ (aq) → CaSO ₄ (s) + H ₂ O(l) + CO ₂ (g) a Write the ionic equation for the above reaction. [3] b What other pollutant gases, apart from sulfur dioxide, contribute to acid rain? [1] c i How many moles of calcium carbonate are there in 150 g of calcium carbonate? (A ₂ values: C = 12; O = 16) [3] ii Calculate the mass of carbon dioxide formed when 150 g of calcium carbonate reacts with excess sulfuric acid. [3] iii The amount of sulfuric acid in rainwater has increased over the years. Explain the reasons for this.	54		[2]
eaten away by the following process. CaCO ₃ (s) + H ₂ OO ₄ (aq) → CaSO ₄ (s) + H ₂ O(l) + CO ₂ (g) a Write the ionic equation for the above reaction. [3] b What other pollutant gases, apart from sulfur dioxide, contribute to acid rain? [1] c i How many moles of calcium carbonate are there in 150 g of calcium carbonate? (A ₂ values: C = 12; O = 16) [3] ii Calculate the mass of carbon dioxide formed when 150 g of calcium carbonate reacts with excess sulfuric acid. [3] iii The amount of sulfuric acid in rainwater has increased over the years. Explain the reasons for this.		[Total:	20,
a Write the ionic equation for the above reaction. [3] b What other pollutant gases, apart from sulfur dioxide, contribute to acid rain? [1] c i How many moles of calcium carbonate are there in 150 g of calcium carbonate? (A, values: C = 12; O = 16) [3] ii Calculate the mass of carbon dioxide formed when 150 g of calcium carbonate reacts with excess sulfuric acid. [3] iii The amount of sulfuric acid in rainwater has increased over the years. Explain the reasons for this.			
b What other pollutant gases, apart from sulfur dioxide, contribute to acid rain? [I] c I How many moles of calcium carbonate are there in 150 g of calcium carbonate? (A, values: C = 12; O = 16) [3] ii Calculate the mass of carbon dioxide formed when 150 g of calcium carbonate reacts with excess sulfuric acid. [3] iii The amount of sulfuric acid in rainwater has increased over the years. Explain the reasons for this.	C	$^{1}aCO_{3}(s) + H_{2}SO_{4}(aq) \rightarrow CaSO_{4}(s) + H_{2}O(l) + CO_{2}(g)$	
b What other pollutant gases, apart from sulfur dioxide, contribute to acid rain? [1] [2] [3] [4] [5] [6] [6] [7] [7] [8] [8] [8] [8] [9] [9] [9] [10] [11] [12] [13] [14] [15] [15] [16] [16] [17] [18]	a W	rite the ionic equation for the above reaction.	
c i How many moles of calcium carbonate are there in 150 g of calcium carbonate? (A ₂ values: C = 12; O = 16) Calculate the mass of carbon dioxide formed when 150 g of calcium carbonate reacts with excess sulfuric acid. 33		инальный кактанта на принять п	[3]
c i How many moles of calcium carbonate are there in 150 g of calcium carbonate? (A, values: C = 12; O = 16) [3] ii Calculate the mass of carbon dioxide formed when 150 g of calcium carbonate reacts with excess sulfuric acid. [3] iii The amount of sulfuric acid in rainwater has increased over the years. Explain the reasons for this.	b 1	What other pollutant gases, apart from sulfur dioxide, contribute to acid rain?	
(A, values: C = 12; O = 16) [3] [3] [4] [5] [6] [7] [7] [8] [8] [8] [8] [8] [8	**		[1]
ii Calculate the mass of carbon dioxide formed when 150g of calcium carbonate reacts with excess sulfuric acid. [3] [3] [4] [5] [6] [7] [8]	c i		
ii Calculate the mass of carbon dioxide formed when 150g of calcium carbonate reacts with excess sulfuric acid. [3] [3] [4] [5] [6] [7] [8]			
sulfuric acid. [3] III The amount of sulfuric acid in rainwater has increased over the years. Explain the reasons for this.		оположного положного положн	[3]
iii The amount of sulfuric acid in rainwater has increased over the years. Explain the reasons for this.	i		ess:
iii The amount of sulfuric acid in rainwater has increased over the years. Explain the reasons for this.			
for this.			[3]
	i		
			13
		ITheat	

Inorganic carbon chemistry

Core

Li	me	stone is a very important raw material in a number of industries.	
a	W	hat do you understand by the term raw material?	
b	GI	ve three important uses for limestone.	[2
C		mestone is obtained by open-cast mining. What are the advantages and disadvantages to th cal community of an open-cast limestone mine in their area?	[3 ie
a		Calcium hydroxide, or slaked lime, is a cheap industrial alkali. Explain the meaning of the term alkali.	[6
	II	Give two large-scale uses for calcium hydroxide.	
b	j	A weak solution of calcium hydroxide in water is called limewater. It is used to test for carb dioxide gas. Explain what happens in this test, giving the chemical name and formula of the major substance produced during the test.	
	II	If carbon dioxide is passed through limewater continuously, a further change takes place. Describe what happens to the limewater solution and give an explanation of what is happening, along with the name and formula of the major product.	[3
	III	If calcium hydroxide is mixed with sand, what useful building material is produced?	[4
			[1

2

3 The diagram shows the limestone cycle.

a. Give the chemical name and formula for:

	Ilmestone	[2
	ii quicklime	[2
	iii slaked lime	[2
b	Slaked lime is sometimes used for <i>neutralising</i> soil acidity. One of the causes of soil acidity is <i>a rain</i> and the sulfuric acid found in it in particular.	cid
	I What do you understand by the words and phrases in Italics?	
		[4
	ii Write a word and balanced chemical equation for the reaction that takes place when the acid in the soil is neutralised in this way.	
		[4
	recent years, scientists have detected an increase in the amount of carbon dioxide in the mosphere. Carbon dioxide is a <i>greenhouse gas</i> and has been linked to <i>global warming</i> .	
a	Explain the meaning of each of the following terms.	
	I greenhouse gas	
		[2
	ii global warming	
		re.

	pre/Extended
Di	raw a labelled diagram of the apparatus that could be used to prepare a sample of carbon (
	you wanted a dry sample of the gas, how would you alter the apparatus to allow you to is dry sample? Name any chemical substances you would use.
	and the state of t
i	Carbon dioxide will only allow very strongly burning substances, such as magnesium, to continue burning in it. Describe what you would see during this reaction.
i	Carbon dioxide will only allow very strongly burning substances, such as magnesium, to continue burning in it. Describe what you would see during this reaction.
	Carbon dioxide will only allow very strongly burning substances, such as magnesium, to continue burning in it. Describe what you would see during this reaction. Balance the following chemical equation for this reaction.
II	Carbon dioxide will only allow very strongly burning substances, such as magnesium, to continue burning in it. Describe what you would see during this reaction. Balance the following chemical equation for this reaction. $Mg(s) + \dots = CO_3(g) \rightarrow \dots = MgO(s) + \dots = C(s)$
II	Carbon dioxide will only allow very strongly burning substances, such as magnesium, to continue burning in it. Describe what you would see during this reaction. Balance the following chemical equation for this reaction.
111	Carbon dioxide will only allow very strongly burning substances, such as magnesium, to continue burning in it. Describe what you would see during this reaction. Balance the following chemical equation for this reaction. $Mg(s) + \dots = CO_s(g) \rightarrow \dots = MgO(s) + \dots = C(s)$ Write the word equation for this reaction.
III	Carbon dioxide will only allow very strongly burning substances, such as magnesium, to continue burning in it. Describe what you would see during this reaction.

6 a	Burning fossil fuels makes a large contribution to the amount of carbon dioxide in the atmos	pher
	i Coal is a fossil fuel. What is a fossil fuel?	
	ii Methane gas is also a fossil fuel. It usually occurs together with a further fossil fuel. Give	
	name of this other fossil fuel	I:
	The balanced chemical equation for burning mechanic in all is. $CH_k(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(l)$	
	Calculate the mass of carbon dioxide produced when 32 g of methane is burned. (A, values: $H=1$; $C=12$; $O=16$)	
		[.
	iv What volume of carbon dioxide would be produced when 32 g of methane is burned? (1 mole of gas occupies 24 dm² at room temperature and pressure.)	
		<i>[</i>
Coi	e Marble is a naturally occurring form of calcium carbonate, CaCO _p When marble is heated, it decomposes in a chemical reaction to form quicklime by an endothermic reaction.	
	Marble (calcium carbonate) Quicklime (A) +	
	a i Give the chemical name and formula of substance A.	[
	ii Give the name and formula of the further substance that is produced during the	
	decomposition of marble	[2
	iii What has to be added to substance A to make substance B?	[]

iv Give the chemical name and formula of substance B...

b	Explain the term endothermic reaction as applied to the decomposition of marble.
	[2]
c	Name a further naturally occurring form of calcium carbonate
d	Give one use for each of substances A and B.
	[Total: 12]
'e	'Extended
	mestone is a very important industrial substance. It can be converted into aicklime in a kiln. A simplified diagram of this is shown on the right.
a	How is the kiln heated?
b	Why do you think hot air is blown through the kiln?
c	The main reaction in the kiln involves the thermal decomposition of calcium carbonate. The balanced chemical equation is: $CaCO_{3}(s) \rightarrow CaO(s) + CO_{2}(g)$
	i What do you understand by the term thermal decomposition?
	ii What mass of quicklime can be made from 100 tonnes of limestone? (A_v values: $C = 12$; $O = 16$; $Ca = 40$)
d	In addition to the above reaction in the kiln, there is a further reaction taking place in which carbon dioxide is produced. Write word and balanced chemical equations for this reaction.
	[4]
e	Modern kiins have been converted to be heated with a gaseous fuel. Name and give the formula of a possible gaseous fuel that could be used safely in this process.

	[Total: 12]

Co

Core

1	Cracking using a catalyst is one of the most important chemical processes carried out by the oil
	industry. Cracking involves the thermal decomposition of the fractions containing the larger alkane
	molecules. The process produces a mixture of saturated and unsaturated molecules.

Explain the meaning of each of the following terms.

	a	cracking	[2]
	b	catalyst	[2]
	C	thermal decomposition	[2]
	d	alkane	[2]
	е	saturated	[2]
	f	unsaturated	[2]
2	a	Use the words below to complete the following passage about plastics.	
		addition polymer, polymerisation, monomers, chains, polymers, macromolecules, ethene	
		When small molecules such asjoin together to form long	***
		of atoms, called	ıles
		like ethene that join together in this way are called	with
		ethene is an	[7]
	b	Other addition polymers include PVC and PTFE. Give the chemical name of:	
		i PVC	[1]
		II PTFE	[1]
	C	Name and draw the monomer unit that each of these polymers is made from.	
		i PVC	

[2]

d	Draw part of the polymer chain for each of these two addition polymers.	
	іі РТЕЕ	
е	Give two uses for:	
	i PVC	
3 a	Ethene, C,H,, is the starting material for making plastic carrier bags.	
	i Name the type of chemical change taking place in the diagram above.	
	Name the product formed by this reaction. The alkene ethene is made by cracking large alkane molecules, Describe a simple chemic test to show that ethene is present.	al
b	The majority of carrier bags are difficult to dispose of.	
	i Explain why carrier bags should not just be thrown away.	210
	II Explain why the majority of plastic carrier bags are recycled.	
	III Constitution of the second	

Core/Extended

4 a Alkanes are unreactive compounds. They are not affected by many substances. Name two common classes of substance that they do not react with.

. [4	2]

- b The most important property of alkanes is that they will generally burn quite easily. The gaseous alkanes are some of the most useful fuels. When a gas like methane burns in a plentiful supply of air, which type of combustion does it undergo? c What is the common name for methane?
- d The balanced chemical equation for the burning of methane in a plentiful supply of air is given below

$$CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)$$
 $\Delta H = -ve$

- i What does the sign of ΔH tell you about the reaction?
- Ii How many moles of carbon dioxide are produced by 1 mole of methane?
- iii What mass of carbon dioxide would be produced by 64g of methane burning in a plentiful supply of air? (A values: H = 1: C = 12: O = 16)
- iv What volume of carbon dioxide would be produced when 100 dm3 of methane is burned in a plentiful supply of air? (1 mole of any gas occupies 24 dm³ at room temperature and pressure.)

Extended

5 a What structural feature does an alkene possess that an alkane does not?

b The diagram on the right shows the outer energy levels of the elements present in the compound ethene. Complete the bonding diagram by drawing dots and crosses to show the electrons in the overlap areas.

		e the name and structural formula of the main organic product(s) formed when each of the lowing chemical procedures is carried out.	
é	a	A mixture of methane and chlorine is exposed to ultraviolet light.	
ł	0	A mixture of ethene and steam is passed over an acid catalyst at high temperature and pressu	[2] re.
(A mixture of ethene and hydrogen is passed over a metal catalyst at a high temperature.	[2]
(d	Ethene is bubbled into a solution of bromine in 1,1,1-trichloroethane.	[2]
•	9	Decane is passed over a heated catalyst.	[2]
7 8		Explain the meaning of the term <i>isomer</i> with reference to the molecule C _a H _{to} . Name and draw the structures of any substances you include in your answer.	[4]
ı	0	What would you expect to be the relative boiling points of the isomers you have drawn in par	
		Explain why the isomers you have drawn in part a have different boiling points.	1/1
			(2)

Exam focus

Core/Extended

1 The diagram shows the apparatus used in the cracking of a liquid alkane. Some of the labels have been replaced with letters.

a For each letter, write down the correct label from the list below.

hard glass hoiling tube

gusearancie nara guss sonnig tase pararini sourca niniciai nosi viate.	
A	I
B	[
c_{\dots}	[
D	I.
What is the purpose of the porcelain chips in this experiment?	
	[:
Give an explanation of the following observation: The substance collected in the test-tube was found to decolourise bromine dissolved in an organic solvent.'	
	I.
Draw a star on the diagram above to show the position where you would introduce a further piece of apparatus to collect any liquid product.	[
An explosive element gas can also be produced in this process. Give the name and formula	
of this gas.	
i Complete the following symbol equation for a possible cracking of dodecane.	
$C_{12}H_{26} \rightarrow C_4H_8 + \dots$	I:
ii Name the products of the reaction shown in the equation in part i.	
	B

0			

2 a	a	The alkanes form a homologous series of hydrocarbons obtained from crude oil. What do you
		understand by the terms homologous series and hydrocarbons?

1500

b i The first four members of the alkane family are shown in the table below.

Alkane	Formula	Structure
Methane		H H — C — H H
Ethane	C ₂ H ₆	
Propane		H H H
Butane		

Complete the table by filling in the missing formulae and structures.

[5]

ii Name the type of bonding present in alkanes.....

v What is the general formula for the alkane series?.....

[2]

iii By showing the outer electron energy levels, draw a diagram to show the chemical bonding in a molecule of ethane.

[4]

iv All the alkanes shown in the table above are gases. What would be the physical difference between these four alkanes and the alkane decane, C_wH₂,?

11

.....[1]

[Total: 18]

Extended

- 1 Butanol is the fourth member of the alcohols and has a molecular formula C₄H₉OH. Biobutanol is a fuel of the future. It can be made by the fermentation of almost any form of biomass such as grain, straw or leaves.
 - a Draw the structural formula of butanol.

b	Write a word and a balanced symbol equation for the complete combustion of butanol.	
	Why is it important to develop these fuels, such as biobutanol, as alternatives to petroleum?	[4
Al	l alcoholic drinks contain ethanol (alcohol).	[2
9	Explain why alcoholic drinks go sour if left open for some time. Write a word and balanced chemical equation to help with your explanation.	
		[5
)	Alcohols react with carboxylic acids to produce which type of compound? Give two uses of the type of substance you have named in part i.	[1

[1]

3 The structure of the cholesterol molecule is shown below.

a What type of bonding is present in this molecule?

b	Which part of the molecule will react with:
	i steam?
	ji ethanoic acid?
C	If an addition polymer was to be made with this cholesterol, which part of the molecule would be likely to react?
d	If a condensation polymer like Terylene was to be made with this cholesterol, which part of the molecule would be likely to react?
a	Starch can undergo a process called hydrolysis. Explain what you understand by the term hydrolysis.
b	The chart below represents the breaking down of starch and subsequent reactions of the products. Identify and give the formulae of substances A to C.
	Starch A yeast B + Carbon dloxide
	acidfied potassium dichromatic(v)
	B C+Water

[1]

What type of reagent is potassium dichromate(v)?
A different substance will be produced instead of A if an enzyme is used in the first stage Name the different substance that would be produced if an enzyme was used.
Name an enzyme that could be used instead of the dilute acid.
Name the polymerisation process that is used to make both nylon and Terylene.
Name the starting materials for making:
i nylon
II Terylene.
Give the name and formula of the small molecule produced during the polymerisation reactions used to produce both nylon and Terylene.
Give the name of the chemical link that holds together:
i nylon
ii Terylene.
Give two uses for:
i nylon
ii Terylene.
Explain the difference between the type of polymerisation you have named in part ${\bf a}$ and addition polymerisation.
Bernette anderstrein der het beschiebt der

6 The amount of ethanoic acid in vinegar can be determined by carrying out a titration. The results below came from a titration of a vinegar solution with sodium hydroxide solution. The neutralisation reaction taking place is:

CH,COOH(ag) + NaOH(ag) → CH,COONa(ag) + H,O(I)

25.00 cm³ of vinegar was just neutralised by 20.00 cm³ of a 0.10 mol dm⁻³ sodium hydroxide solution. Calculate:

a the concentration of ethanoic acid in the vinegar solution

- b the mass of ethanoic acid in a 1 litre (1 dm²) bottle of this vinegar. (A, values: H = 1; C = 12; O = 16)
- 7 a Amino acids are essential for the formation of proteins. How many amino acids are there?
 [1]
 - b Each amino acid contains two functional groups. What are the names of these functional groups?
 - c The structure of the first amino acid, glycine, is shown below.

Redraw the structure to show a bonding diagram for this substance, showing the outer electron energy levels only.

- d Amino acids are the building blocks for proteins. Proteins are long-chain molecules or natural polymers.
 - I Name the polymerisation process that is required to form proteins.

[1]

ii Which industrial polymer contains the same link as that found in proteins?

rev

[1]

iii The diagram below shows a dipeptide.

What do you understand by the term dipeptide?

[1]

iv Draw a circle around the link that holds this dipeptide together.

Exam focus

Core/Extended

- 1 Ethanol (alcohol) is a product of many fermentation reactions and of the hydration of ethene. The molecular formula of ethanol is C,H₂OH.
 - a Draw the structural formula of ethanol.

111

b i Balance the following chemical equation for the fermentation reaction. Some spaces may be left blank.

$$\dots C_{\delta}H_{12}O_{\delta}(aq) \rightarrow \dots C_{2}H_{5}OH(l) + \dots CO_{2}(g)$$
 [2]

ii Name the substance C₆H₁₂O₆

iii Calculate the $M_{\rm s}$ value for ${\rm C_sH_{12}O_{g}}$

C	W	hen ethanol is heated with potassium dichromate(v1), it is converted to ethanoic acid.
	C.	$H_3OH(l) \rightarrow CH_3COOH(l)$
	i	What type of reaction is this?
	ii	Ethanoic acid belongs to a homologous series of organic acids. What is the name given to this homologous series of acids?
	iii	When ethanoic acid is reacted with ethanol in the presence of a catalyst, a new substance is produced. Give the name and formula of this new substance.
	iv	Name the catalyst you would use for the reaction in part iii.
	v	The reaction in part iii is known as a reversible reaction. Explain the meaning of the term reversible reaction.
		[Total:
E	xt	ended
T	he f	irst member of the homologous series of carboxylic acids is methanoic acid (HCOOH).
a	W	hat do you understand by the term homologous series?
	27131	
	nen	
b	ca	some areas, when water is boiled the inside of the kettle becomes coated with a layer of calciur rbonate. This type of water is known as temporary hard water. This deposit of calcium carbona n be removed by adding methanoic acid.
	i	Complete the equation for the reaction between calcium carbonate and methanoic acid.
		$CaCO_3 + \dots + HCOOH \rightarrow Ca(HCOO)_2 + \dots + \dots + \dots$
	ii	Methanoic acid reacts with most metals above hydrogen in the reactivity series.
		Complete the word equation for the reaction between methanoic acid and magnesium.
		methanoic acid + magnesium →+
	iii	Aluminium is also above hydrogen in the reactivity series. Why do you think methanoic acid does not react with aluminium?
c	Gi	ive the name, molecular formula and empirical formula of the third acid in this series.
	37000	
		[Total:

Experimental chemistry

1 Concentrated sodium chloride solution was broken down by the passage of electricity using the apparatus shown below.

- a What is the name of this process?..... b Suggest a suitable material from which to make the electrodes. c Gas A bleached moist indicator paper. What is gas A and what is its formula?

- 2 Ethene can be obtained by passing liquid paraffin vapour over hot aluminium oxide or broken pot.

d Gas B is hydrogen. Suggest a chemical test to prove this.

- a Complete the boxes in the diagram to show the chemicals used in this experiment.
- b Show on the diagram where the heat is applied during the experiment using two arrows.
- c Why must the delivery tube be removed from the water before the heating is stopped?
- d Ethene is an unsaturated hydrocarbon. Describe a chemical test you could use to test for this unsaturation.

[2]

***************************************			***************************************			
n each of th	ne qualitative	analysis stages b	elow, identify b	y name and fo	ormula the substa	ances A to
When blu	ie-green cryst	als, A, were heat	ed in a dry test	-tube, a brown	gas, B, was pro	duced.
A black s	olid residue. C	L was left behind	I. When some o	lilute sulfuric a	acid was added to	
		, was left behind solved. There wa				o the black
						o the black is produced
residue, t	he residue dis		as no effervesce	nce and a blue	e solution, D , wa	o the black is produced
residue, t	he residue dis	ssolved. There wa	oride solution	to a portion of	e solution, D , wa	o the black is produced
residue, t	he residue dis	ssolved. There wa	oride solution	to a portion of	e solution, D , wa	o the black is produced is produced ipitate,
Upon add E, is form	ding a few drough which is in	ops of barium chi nsoluble in dilute asked to identifi tests in an attern	oride solution shydrochloric a	to a portion of	e solution, D , wa	o the black is produced ipitate, en solid,
c Upon add E, is form An analytica C. He carried	the residue dis	ops of barium chi nsoluble in dilute asked to identifi tests in an attern	oride solution hydrochloric a two colourles of to identify th	to a portion of	e solution, D , wa	ipitate,

Substance	Flame test colour	Dilute HCl(aq)	Addition of NH ₃ (aq)		Dilute	Dilute
			Few drops	Excess	HNO ₃ (aq) + AgNO ₃ (aq)	
А	Brick red	No reaction	White precipitate	Precipitate dissolves	White precipitate	No reaction
В	Lilac	No reaction	No reaction	No reaction	No reaction	White precipitate
C	Green	Fizzes	Blue precipitate when added to solution from effect of HCI(aq)	Precipitate dissolves	Fizzes	Fizzes

a Look at the results that were obtained for solution A.

i Which metal ion is present in the solution?

[1]

	What does the formation of a white precipitate when acidified silver nitrate is added tell y	
	ii Write a balanced ionic equation for the formation of the white precipitate, including state symbols.	
b	ook at the results that were obtained for solution B .	[2]
	Which metal ion is present in the solution?	[1]
	i Which anion must be present for a white precipitate to form when dilute hydrochloric a and barium chloride solution are added to solution B ?	
	II Write a balanced ionic equation for the formation of the white precipitate, including sta symbols.	ate
	жиминаличная подавления	[2]
C	ook at the results that were obtained for solid C .	
	Which metal ion is present in the solid?	[1]
	i Which anion must be present to give fizzing when hydrochloric acid is added to solid C?	
	MATERIAL PRODUCTION OF THE PROPERTY OF THE PRO	[1]
d	Jsing the information in the table, give the formula of the chemical present in each of solu A and B and solid C.	itions
	solution A [1] ii solution B [1] iii solid C [1]	[1]
ln	ach of the qualitative analysis stages below, identify the substances G to L by name and fo	rmula
a	When a white powder, G , was heated in a dry test-tube, a gas, H , was produced. When bub hrough limewater, gas H gave a white precipitate.	bled
		[4]
b	A yellow solid residue, I, was left behind, which turned white on cooling. When some dillut sydrochloric acid was added to the white residue, the residue dissolved. There was no ffervescence and a colourless solution, J, was produced.	
C	When a few drops of dilute sodium hydroxide was added to a small portion of J, a white precipitate, K, was formed. This precipitate dissolved in excess of the dilute sodium hydroxi	
		[2]
d	Jpon adding a few drops of nitric acid followed by silver nitrate solution to a further portic , a white precipitate, L , was produced. This went grey on standing in sunlight.	on of

6

Hachtet UK's polity is to use papers that are natural, renewable and recyclable products and made from wood grown in sustainable forests. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

Orders: please contact Bookpoint Ltd. 130 Milton Park, Abingdon, Oxon OX14 458. Telephone: (44) 01235 827720. Fax: (44) 01235 400454. Lines are open 9.00-5.00, Monday to Saturday, with a 24-hour message answering service. Visit our website at www.hoddereducation.com

Bryan Earl and Doug Wilford 2015

First published in 2012

by Hodder Education, An Hachette UK Company,

338 Euston Road

London NW1 3BH

This second edition published 2015

Impression number

Year 2019 2018 2017 2016 2015

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information strongs and retrieval system, without permission in writing from the publisher on the Copyright, Uteraing Agency, United, Father details of such licenses for regrographic reproduction may be obtained from the Copyright, Uteraing Agency, United, Eurober details of such licenses for regrographic reproduction may be obtained from the Copyright.

Cover photo © fox17 – Fotolia

Illustrations by Integra Software Services

Typeset in 10/13pt Frutiger LT Std 55 Roman by Integra Software Services Pvt. Ltd., Pondicherry, India Printed in the UK

A catalogue record for this title is available from the British Library

® IGCSE is the registered trademark of Cambridge International Examinations.

This book has not been through the Cambridge endorsement process.

ISBN 978 1471 80725 1

This Workbook supports students using the Cambridge IGCSE Chemistry textbook, providing additional practice questions to help achieve examination success.

- Perfect for practice throughout the course ensures students learn each topic thoroughly
- Differentiated practice questions ideal for Core and Extended students
- Knowledge-testing, exam-style questions
- \blacksquare Answers available in the accompanying Teacher's Resource CD

Cambridge International Examinations and Hodder Education

Hodder Education works closely with Cambridge International Examinations and is an authorised publisher of endorsed textbooks for a wide range of Cambridge syllabuses and curriculum frameworks. Hodder Education resources, tried and tested over many years but updated regularly, are used with confidence worldwide by thousands of Cambridge students.

