

## **Mathematics**

Core and Extended



Practice Book

Ric Pimentel Terry Wall

4 HODDER EDUCATION

# Cambridge IGCSE®

## **Mathematics**

Core and Extended

Practice Book

Ric Pimentel Terry Wall



® IGCSE is the registered trademark of Cambridge International Examinations.

Answers can be found at www.hoddereducation.com/cambridgeextras
This text has not been through the Cambridge endorsement process.

Hachette UK's policy is to use papers that are natural, renewable and recyclable products and made from wood grown in sustainable forests. The logging and manufacturing processes are expected to conform to the environmental regulations of the country of origin.

Orders: please contact Bookpoint Ltd, 130 Milton Park, Abingdon, Oxon OX14 458. Telephone: (44) 01235 827720. Fax: (44) 01235 400454. Lines are open 9.00–5.00, Monday to Saturday, with a 24-hour message answering service. Visit our website at www.hoddereducation.com

© Ric Pimentel and Terry Wall 2013 First published in 2013 by

Hodder Education, an Hachette UK Company,

338 Fuston Road

London NW1 3BH

Impression number 5 4 3 2 1

Year 2014 2013 2012 2011 2010

All rights reserved. Apart from any use permitted under UK copyright law, no part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or held within any information storage and retrieval system, without permission in writing from the publisher or under licence from the copyright Licensing Agency Limited. Further details of such licences (for reprographic reproduction) may be obtained from the Copyright Licensing Agency Limited, Saffron House, 6–10 Kirly Street, London ECIM 8-10.

Cover photo @ senoldo - Fotolia

Illustrations by Datapage (India) Pvt. Ltd

Typeset in 9/11pt Frutiger LT Std 55 Roman by Datapage (India) Pvt. Ltd Printed in the UK

A catalogue record for this title is available from the British Library

ISBN 978 1444 18046 6

### Contents

Exam focus

|   | Topic 1    | Number                                        |     |
|---|------------|-----------------------------------------------|-----|
|   | Chapter 1  | Number and language                           | 1   |
|   |            | Accuracy                                      |     |
|   |            | Calculations and order                        | 5   |
|   | Chapter 4  | Integers, fractions, decimals and percentages | 10  |
|   | Chapter 5  | Further percentages                           | 13  |
|   | Chapter 6  | Ratio and proportion                          | 17  |
|   | Chapter 7  | Indices and standard form                     | 21  |
|   | Chapter 8  | Money and finance                             | 25  |
|   | Chapter 9  |                                               | 28  |
|   |            | Set notation and Venn diagrams                | 29  |
|   | Exam focus |                                               | 33  |
|   | Topic 2    | Algebra and graphs                            |     |
|   |            | Algebraic representation and manipulation     | 36  |
|   |            | Algebraic indices                             | 45  |
|   |            | Equations and inequalities                    | 46  |
|   |            | Linear programming                            | 62  |
|   | Chapter 15 |                                               | 65  |
|   | Chapter 16 |                                               | 68  |
|   | Chapter 17 | Graphs in practical situations                | 70  |
|   | Chapter 18 | Graphs of functions                           | 77  |
|   | Chapter 19 | Functions                                     | 84  |
|   | Exam focus |                                               | 90  |
| • | Topic 3    | Geometry                                      |     |
|   | Chapter 20 | Geometrical vocabulary                        | 95  |
|   | Chapter 21 | Geometrical constructions and scale drawings  | 97  |
|   | Chapter 22 | Similarity                                    | 99  |
|   | Chapter 23 | Symmetry                                      | 102 |
|   | Chapter 24 | Angle properties                              | 104 |
|   | Chapter 25 | Loci                                          | 109 |
|   | Exam focus |                                               | 110 |
|   | Topic 4    | Mensuration                                   |     |
|   | Chapter 26 | Measures                                      | 114 |
|   | Chapter 27 | Perimeter, area and volume                    | 115 |

124

#### Contents

|   | Topic 5    | Coordinate geometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |     |
|---|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   |            | Straight-line graphs                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 127 |
|   | Exam focus |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 137 |
| • | Topic 6    | Trigonometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|   | Chapter 29 | Bearings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 139 |
|   | Chapter 30 | Trigonometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 140 |
|   | Chapter 31 | Further trigonometry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 147 |
|   | Exam focus | and the second s | 152 |
| • | Topic 7    | Matrices and transformations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |     |
|   | Chapter 32 | Vectors                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 154 |
|   | Chapter 33 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 157 |
|   | Chapter 34 | Transformations                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 160 |
|   | Exam focus |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 167 |
|   | Topic 8    | Probability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |     |
|   | Chapter 35 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 172 |
|   | Chapter 36 | Further probability                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 175 |
|   | Exam focus | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 178 |
| • | Topic 9    | Statistics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |     |
|   | Chapter 37 | Mean, median, mode and range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 180 |
|   |            | Collecting and displaying data                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 182 |
|   |            | Cumulative frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 184 |
|   | Exam focus |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 186 |



## Number and language

#### O Exercises 1.1-1.5

| 1 | List all the prime numbers between 80 and 100.                                              | (2 marks)   |
|---|---------------------------------------------------------------------------------------------|-------------|
|   |                                                                                             |             |
|   |                                                                                             |             |
| 2 | List all the factors of the following numbers:                                              |             |
|   | (a) 48                                                                                      | . (2 marks) |
|   | (b) 200                                                                                     | . (2 marks) |
| 3 | List the prime factors of the following numbers and express them as a product of p numbers: | rime        |
|   | (a) 25                                                                                      | (2 marks)   |
|   | (b) 48                                                                                      | . (2 marks) |
| 4 | Find the highest common factor of the following numbers:                                    |             |
|   | (a) 51, 68, 85                                                                              | . (2 marks) |
|   | <b>(b)</b> 36, 72, 108                                                                      | . (2 marks) |
| 5 | Find the lowest common multiple of the following numbers:                                   |             |
|   | (a) 8, 12, 16                                                                               | . (2 marks) |
|   | (b) 23 A2 E                                                                                 | (2 marks)   |

(g) √16

| Exercise |  |
|----------|--|
|          |  |

| 1 | State whether each of the following is a rational or irrational number | er:     |
|---|------------------------------------------------------------------------|---------|
|   | (a) 2.5                                                                | (1 mark |
|   | (b) 0.14                                                               | (1 mark |
|   | (c) √17                                                                | (1 mark |
|   | (d) -0.03                                                              | (1 mark |
|   | (e) √144                                                               | (1 mark |

2 (a) Draw and name three different solid shapes where the surface area is likely to be a rational number.

(b) On each of your shapes write on the dimensions which make this true.
(Do not work out the surface area).
(3 marks)

(3 marks)

| _ | Chapter 1 Number and language                                                                                                                                            |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3 | (a) Draw two different, compound, two-dimensional shapes (a compound shape is made up of more than one shape) where the total area is likely to be an irrational number. |
|   |                                                                                                                                                                          |
|   |                                                                                                                                                                          |
|   |                                                                                                                                                                          |
|   |                                                                                                                                                                          |

(2 marks)

(b) Write on the dimensions of each shape. (Do not work out the area.)

(2 marks)

4 (a) Draw three different solid shapes where the volume is likely to be an irrational number.

(3 marks)

(b) On each of your shapes write on the dimensions which make this true. (Do not work out the volume.)

(3 marks)

| 0 | Exercises 1.7-1.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | Without a calculator work out the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | (a) $\sqrt{0.81}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|   | (b) $\sqrt{5\frac{4}{9}}$ (2 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 2 | Without a calculator work out the following:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | (a) <del></del> ₹-216                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | (b) $\sqrt[3]{15\frac{5}{8}}$ (2 marks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 0 | Exercise 1.10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1 | A hang-glider is launched from a mountainside. It climbs 650 m and then starts its descent. It descends 1220 m before landing.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | (a) How far below the launch point was the hang-glider when it landed?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   | (1 mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|   | (b) If the launch point was at 1650 m above sea level, at what height above sea level did it land?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | and the second s |

2 A plane flying at 8500 m drops a sonar device onto the ocean floor. If the sonar falls a total of

......(2 marks)

10200 m, how deep is the ocean at this point?



#### O Exercises 2.1-2.3

| Round the following numbers to the nearest 10, 100 or 1000 as shown  | n in brackets:                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) 47 (10)                                                          | (1 mark                                                                                                                                                                                                                                                                                    |
| <b>(b)</b> 1250 (100)                                                | (1 mark                                                                                                                                                                                                                                                                                    |
| (c) 524700 (1000)                                                    | (1 mark                                                                                                                                                                                                                                                                                    |
| Write the following numbers to the number of decimal places indicat  | ed in brackets:                                                                                                                                                                                                                                                                            |
| (a) 4.98 (1 d.p.)                                                    | (1 mark                                                                                                                                                                                                                                                                                    |
| (b) 18.04 (1 d.p.)                                                   | (1 mark                                                                                                                                                                                                                                                                                    |
| (c) 0.0048 (2 d.p.)                                                  | (1 mark                                                                                                                                                                                                                                                                                    |
| Write the following numbers to the number of significant figures wri | tten in brackets:                                                                                                                                                                                                                                                                          |
| (a) 15.01 (1 s.f.)                                                   | (1 mark                                                                                                                                                                                                                                                                                    |
| (b) 0.042 99 (2 s.f.)                                                | (1 mark                                                                                                                                                                                                                                                                                    |
| (c) 3.04901 (3 s.f.)                                                 | (1 mark                                                                                                                                                                                                                                                                                    |
|                                                                      | (a) 47 (10) (b) 1250 (100) (c) 524700 (1000)  Write the following numbers to the number of decimal places indicat (a) 4.98 (1 d.p.) (b) 18.04 (1 d.p.) (c) 0.0048 (2 d.p.)  Write the following numbers to the number of significant figures write (a) 15.01 (1 s.f.) (b) 0.04299 (2 s.f.) |

#### O Exercise 2.4

1 Without using a calculator, estimate the answers to the following calculations:

| (a) | 18.8         | <u>u</u> | . (1 ma | ark) |
|-----|--------------|----------|---------|------|
| (b) | $\sqrt{140}$ |          |         |      |
|     | 2.22         |          | (2 mar  | rks) |

2 Estimate the shaded area of the shape below. Do not work out an exact answer.



(3 marks)

|  | ) | X | ere | cis | e | 2. | 4 |
|--|---|---|-----|-----|---|----|---|
|--|---|---|-----|-----|---|----|---|

| 1 | Two pieces of wood measure 14.5 m and 9.4 m, both correct to 1 d.p. What is the lower limit of their total length?                                                                                                                  |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (2 marks)                                                                                                                                                                                                                           |
| 2 | A car holds 70 litres of petrol correct to the nearest litre. Its fuel economy is 12km per litre to the nearest kilometre. Write down, but do not work out, the calculation for the upper limit of the distance the car can travel. |
|   |                                                                                                                                                                                                                                     |
| 3 | A school has 1500 students correct to the nearest 100. The cost to run the school is \$720000 to the nearest \$10000. Write down, but do not work out, the calculation for the lower limit of the cost per student.                 |
|   |                                                                                                                                                                                                                                     |
|   |                                                                                                                                                                                                                                     |

#### O Exercise 2.6

| giv | en to the nearest whole number:                                                                               |                 |
|-----|---------------------------------------------------------------------------------------------------------------|-----------------|
| (a) | 15×25                                                                                                         |                 |
|     |                                                                                                               | . (2 marks)     |
| (b) | 128 × 22                                                                                                      |                 |
|     |                                                                                                               | . (2 marks)     |
| (c) | 1000 × 5                                                                                                      |                 |
|     |                                                                                                               |                 |
| (d) | 3                                                                                                             |                 |
|     |                                                                                                               |                 |
| (e) | 120<br>60                                                                                                     |                 |
|     | 50                                                                                                            |                 |
| giv | Iculate upper and lower bounds for the following calculations, if each of the nur<br>en to one decimal place: |                 |
| (a) | 2.4 + 14.1                                                                                                    |                 |
|     |                                                                                                               |                 |
| (b) | 3.3 × 8.8                                                                                                     |                 |
|     |                                                                                                               |                 |
| (c) | 100.0×4.9                                                                                                     |                 |
| (4) | 21.6 – 12.2                                                                                                   |                 |
| (u) | 21.0 – 12.2                                                                                                   |                 |
| (e) | $(0.4 - 0.1)^2$                                                                                               |                 |
| (0) |                                                                                                               |                 |
| 16  | a=18 and $b=22$ , both to the nearest whole number, between what limits                                       | . (4 111411145) |
|     | $r = 18$ and $b = 22$ , both to the hearest whole number, between what limits $\sqrt{g^2 + b^2}$ ?            |                 |
|     | VO 1 D 1                                                                                                      |                 |
|     |                                                                                                               |                 |
|     |                                                                                                               |                 |

1 Calculate upper and lower bounds for the following calculations, if each of the numbers is

| Exercise 2.7 | 0 | Exe | ercis | e 2 | .7 |
|--------------|---|-----|-------|-----|----|
|--------------|---|-----|-------|-----|----|

|   | correct to 1 d.p. What are the upper and lower limits for the area of the town?                                                                              |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                                              |
|   |                                                                                                                                                              |
| 2 | 303 degrees Kelvin is equivalent to 30 degrees Celsius. Both figures are given to the nearest degree.                                                        |
|   | (a) What is the maximum percentage error in each case?                                                                                                       |
|   |                                                                                                                                                              |
|   | (b) Explain why the percentage errors are different.                                                                                                         |
|   | (1 mark)                                                                                                                                                     |
| 3 | 1 mile equals 1.6093 km, correct to 4 d.p.                                                                                                                   |
|   | If a distance is 7 miles correct to the nearest mile and 12km correct to the nearest kilometre, between what are the limits, in kilometres, of the distance? |
|   |                                                                                                                                                              |
|   |                                                                                                                                                              |
|   |                                                                                                                                                              |
|   | 22 2 2                                                                                                                                                       |



### Calculations and order

#### O Exercises 3.1-3.2





Write the following decimals in order of magnitude, starting with the smallest:

0.5 0.055 5.005 5.500 0.505 0.550

#### O Exercises 3.3-3.5

1 Using the correct order of operations, calculate the answer to the following without the use of a calculator:

(a) 
$$(25-2) \times 10 + 4$$

correct:

2 In the calculations below, insert any brackets that are necessary to make each calculation

| (a) 15 ÷ 3 + 2 ÷ 2 = 6           | ark) |
|----------------------------------|------|
| <b>(b)</b> 15 ÷ 3 + 2 ÷ 2 = 3.75 | ark) |
| (c) 15 ÷ 3 + 2 ÷ 2 = 1.5         | ark) |

3 Work out the following calculation without a calculator:

| 8+2×4 3 | ,     |           |
|---------|-------|-----------|
| 4       | )<br> | (2 marks) |



2

## Integers, fractions, decimals and percentages

#### O Exercises 4.1-4.4

1 Evaluate the following without a calculator:

| (a) $\frac{3}{8}$ of 32(1 mark                            |
|-----------------------------------------------------------|
| (b) 8/9 of 72(1 mark                                      |
| (c) 7/10 of 65                                            |
| Change the following mixed numbers to improper fractions: |
| 3                                                         |

| (4) 0 5 | \(\) | mark) |
|---------|------|-------|
| (b) 3 1 | 27(1 | mark) |

3 Without a calculator, change the following improper fractions to mixed numbers:

| (1 m    | ıark) |
|---------|-------|
| (b) 231 | nark) |

4 Without a calculator, write the following fractions as decimals:

| (a) $3{20}$                 | (1 mark)  |
|-----------------------------|-----------|
| <b>(b)</b> $7\frac{19}{25}$ | (1 mark)  |
| (c) 5                       | (2 marks) |

5 Without a calculator, complete the table below, giving fractions in their lowest terms.

|     | Fraction | Decimal | Percentage |
|-----|----------|---------|------------|
| (a) |          | 0.75    |            |
| (b) | 9 20     |         |            |
| (c) |          |         | 6.5%       |
| (d) |          | 3.08    |            |
| (e) | 2/3      |         |            |
| (f) |          | 1.05    |            |

1 mark) 1 mark)

1 mark) 1 mark) 1 mark)

(1 mark)

|  |  | 4 |  |
|--|--|---|--|
|  |  |   |  |
|  |  |   |  |

| J | Exercise 4.3                                                                                         |     |
|---|------------------------------------------------------------------------------------------------------|-----|
| 1 | Work out the following using long division, giving your answer to 2 d.p.: (a) $4569 \div 12$         |     |
|   | (2 mark                                                                                              | (s) |
|   | (b) 125 ÷ 0.13                                                                                       |     |
|   | (3 mark                                                                                              | (s) |
| 0 | Exercises 4.6-4.10                                                                                   |     |
| 1 | Evaluate the following without a calculator, leaving your answer as a fraction in its simplest form: |     |
|   | (a) $3\frac{2}{5} - 1\frac{5}{6}$                                                                    |     |
|   | (b) $\frac{7}{8} - 2\frac{2}{9} + 1\frac{2}{3}$                                                      |     |
| 2 | Evaluate the following without a calculator, leaving your answer as a fraction in its simplest form: |     |
|   | (a) $\frac{2}{5} \times 1\frac{2}{9}$                                                                |     |
|   | (b) $(\frac{4}{9} - 1\frac{4}{5}) \div \frac{2}{3}$ (2 mark                                          |     |
|   |                                                                                                      | (5) |
| 3 | Change the following fractions to decimals:                                                          |     |
|   | (a) 3 4 (2 marks                                                                                     | (S) |
|   | (b) $5\frac{3}{6}$                                                                                   | re) |

#### O Exercise 4.11

| 1 | Convert each of the following recurring decimals to fractions in their simplest form:            |
|---|--------------------------------------------------------------------------------------------------|
|   | (a) 0.5Ġ                                                                                         |
|   |                                                                                                  |
|   |                                                                                                  |
|   |                                                                                                  |
|   |                                                                                                  |
|   | (b) 1.30 <b>8</b>                                                                                |
|   |                                                                                                  |
|   |                                                                                                  |
|   |                                                                                                  |
|   |                                                                                                  |
| 2 | Without using a calculator, evaluate $0.38-0.25$ by converting each decimal to a fraction first. |
|   |                                                                                                  |
|   |                                                                                                  |
|   |                                                                                                  |
|   |                                                                                                  |



## Further percentages

#### O Exercises 5.1-5.3

1 Express the following as percentages:

|   | (a) 0.25(1 mark)                                                                                                                                                   |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (b) 0.6(1 mark)                                                                                                                                                    |
|   | (c) $\frac{3}{8}$ (1 mark)                                                                                                                                         |
|   | (d) 7/8 (1 mark)                                                                                                                                                   |
| 2 | Evaluate the following:                                                                                                                                            |
|   | (a) 25% of 200                                                                                                                                                     |
|   | (b) 75% of 200(1 mark)                                                                                                                                             |
|   | (c) 12 <sup>1</sup> / <sub>2</sub> % of 400(1 mark)                                                                                                                |
|   | (d) 130% of \$300(1 mark)                                                                                                                                          |
|   | (e) 60% of \$200                                                                                                                                                   |
|   | (f) 62.5% of 56                                                                                                                                                    |
| 3 | In a street of 180 houses, 90 of the houses have only one occupant, 45 have two occupants, 36 have three occupants, and the remainder have four or more occupants. |
|   | (a) Calculate the percentage of houses with less than four occupants.                                                                                              |
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |
|   | (b) Calculate the percentage of houses with four or more occupants.                                                                                                |
|   |                                                                                                                                                                    |
|   |                                                                                                                                                                    |
|   | (1 mark)                                                                                                                                                           |
|   | →                                                                                                                                                                  |

| 4 | Simplif             | y each of t  | he following fractions (i), then express them as a                                                   | percentage (ii): |
|---|---------------------|--------------|------------------------------------------------------------------------------------------------------|------------------|
|   | (a) $\frac{72}{90}$ |              |                                                                                                      |                  |
|   | (i)                 |              |                                                                                                      | (1 mark)         |
|   | (ii)                |              |                                                                                                      | (1 mark)         |
|   | (b) $\frac{45}{75}$ |              |                                                                                                      |                  |
|   |                     |              |                                                                                                      | (1 mark)         |
|   | (ii)                |              |                                                                                                      | (1 mark)         |
|   | (c) $\frac{26}{39}$ |              |                                                                                                      |                  |
|   | (i)                 |              |                                                                                                      | (1 mark)         |
|   | (ii)                |              |                                                                                                      | (1 mark)         |
| 5 |                     | has \$54 of  | friends, Ahmet, Jo and Anna, share \$180 betwee<br>the total, Jo has \$81 and Anna the rest. What po |                  |
|   |                     |              |                                                                                                      |                  |
|   |                     |              |                                                                                                      |                  |
|   |                     |              |                                                                                                      | (3 marks)        |
| 6 |                     |              | ents/litre, and 61 cents of this is tax.<br>centage that motorists pay in tax.                       |                  |
|   |                     |              |                                                                                                      | (2 marks)        |
| 7 | Tim bu              | ys the follo | owing items at a newsagent:                                                                          |                  |
|   | Newsp               | aper         | 35 cents                                                                                             |                  |
|   | Pen                 |              | \$2.08                                                                                               |                  |
|   | Birthda             | ay card      | \$1.45                                                                                               |                  |
|   | Sweets              |              | 35 cents                                                                                             |                  |
|   | Five sta            | amps         | 29 cents each                                                                                        |                  |
|   |                     |              | g a \$10 note, calculate the amount of change he                                                     |                  |
|   |                     |              |                                                                                                      |                  |
|   |                     |              | age of the \$10 note has he spent?                                                                   | (1 mark)         |
|   |                     |              |                                                                                                      |                  |
|   | 20000               |              |                                                                                                      | (2 marks)        |

#### O Exercise 5.4

| 1 | Increase each number by the given percentages:                                                                                                                                         |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (a) 180 by 25%(1 mark                                                                                                                                                                  |
|   | (b) 75 by 100%(1 mark)                                                                                                                                                                 |
|   | (c) 250 by 250%(1 mark)                                                                                                                                                                |
| 2 | Decrease each number by the given percentages:                                                                                                                                         |
|   | (a) 180 by 25%(1 mark)                                                                                                                                                                 |
|   | (b) 150 by 30%(1 mark)                                                                                                                                                                 |
|   | (c) 8 by 37.5%                                                                                                                                                                         |
| 3 | The value of shares in a mobile phone company rises by 135%.                                                                                                                           |
|   | (a) If the value of each share was originally 1620 cents, calculate, to the nearest dollar, the new value of each share.                                                               |
|   |                                                                                                                                                                                        |
|   | (b) How many shares could now be bought with \$10 000?                                                                                                                                 |
|   |                                                                                                                                                                                        |
| 4 | During 2012 the average price of a house in London rose by 14%. If the average price of a house was £376 000 at the start of the year, calculate its new value at the end of the year. |
|   | (2 marks                                                                                                                                                                               |
| 5 | Unemployment figures at the end of last quarter increased by 725000.                                                                                                                   |
|   | If the increase in the number of unemployed this quarter is 7.5% fewer, calculate the increase in the number of people unemployed this quarter.                                        |
|   |                                                                                                                                                                                        |
|   | (2 marks                                                                                                                                                                               |

#### O Exercise 5.5

| 1 | Calculate the value of X in each of the following:                                                                                                                         |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (a) 65% of X is \$292.50(1 mark)                                                                                                                                           |
|   | <b>(b)</b> 15% of <i>X</i> is \$93.00                                                                                                                                      |
|   | (c) X% of 12 is 40.8                                                                                                                                                       |
|   | (d) X% of 20 is 32(1 mark)                                                                                                                                                 |
| 2 | In a school 45% of the students are boys. If there are 117 boys in the school, calculate the number of students in the school.                                             |
|   |                                                                                                                                                                            |
| 3 | In an exam Paulo scored 68%. If he got 153 marks in total, calculate the number of marks available in the exam.                                                            |
|   |                                                                                                                                                                            |
|   | (2 marks)                                                                                                                                                                  |
| 4 | An elastic band can increase its natural length by 625% when fully stretched. If the elastic band has a length of 29cm when fully stretched, calculate its natural length. |
|   |                                                                                                                                                                            |
|   | (3 marks)                                                                                                                                                                  |



Evercise 6 I

4 To make five jam tarts, 80 g of jam is needed. How much jam is needed to make two dozen tarts?

## Ratio and proportion

| 0 | Excitise of i                                                                            |
|---|------------------------------------------------------------------------------------------|
| 1 | A bottling machine fills 3000 bottles in one hour.<br>How many does it fill in a minute? |
|   | (1 mark                                                                                  |
| 2 | A machine prints four sheets of A4 in one minute. How many does it print in an hour?     |
|   |                                                                                          |
| 0 | Exercises 6.2-6.4                                                                        |
| 0 | Exercises 0.2-0.4                                                                        |
| 1 | 4g of copper mixes with 5g of tin.                                                       |
|   | (a) What fraction of the mixture is tin?                                                 |
|   | (b) How much tin is there in 1.8 kg of the same mixture?                                 |
|   | (1 mark                                                                                  |
| 2 | 60% of students in a class are girls.                                                    |
|   | (a) What is the proportion of girls to boys, in its lowest terms?                        |
|   | (1 mark                                                                                  |
|   | (b) What fraction of the same class are boys?                                            |
|   | (1 mark                                                                                  |
|   | (c) If there are 30 students in the class altogether, how many are girls?                |
|   | (1 mark                                                                                  |
| 3 | A recipe needs 300 g of flour to make a dozen cakes.                                     |
|   | How many kilograms of flour would be needed to make 100 cakes?                           |



| 5  | The ratio of the angles of a triangle is 1:2:3. What is the size of the smallest angle?                                                                                                        |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (1 mark                                                                                                                                                                                        |
| 6  | A metre ruler is broken into two parts in the ratio 16:9. How long is each part?                                                                                                               |
|    | (1 mark                                                                                                                                                                                        |
| 7  | A motorbike uses a petrol and oil mixture in the ratio 17:3.                                                                                                                                   |
|    | (a) How much of each is there in 25 litres of mixture?                                                                                                                                         |
|    | ,                                                                                                                                                                                              |
|    | (2 marks                                                                                                                                                                                       |
|    | (b) How much petrol would be mixed with 250ml of oil?                                                                                                                                          |
|    | (1 mark                                                                                                                                                                                        |
| 8  | An aunt gives a brother and two sisters \$2500 to be divided in the ratio of their ages. If the girls are 15 and 17 years old and the boy 18 years old, calculate how much they will each get. |
|    |                                                                                                                                                                                                |
|    |                                                                                                                                                                                                |
|    | (3 marks                                                                                                                                                                                       |
| 9  | The angles of a hexagon add up to $720^\circ$ and are in the ratio $1:2:4:4:3:1$ . Find the size of the largest and smallest angles.                                                           |
|    |                                                                                                                                                                                                |
|    | (2 marks                                                                                                                                                                                       |
| 10 | A company shares profits equally among 120 workers so that they get \$500 each. How much would they each have got had there been 125 workers?                                                  |
|    |                                                                                                                                                                                                |
|    | (2 marks                                                                                                                                                                                       |
| 11 | The table below represents the relationship between the speed and the time taken for a train to travel between two stations.                                                                   |
|    | Speed (km/h)         60         120         90         240                                                                                                                                     |
|    | Time (h) 1.5 3 4                                                                                                                                                                               |
|    | Complete the table. (2 marks                                                                                                                                                                   |

| 12 | A shop can buy 75 shirts costing \$20 each. If the price is reduced by 25%, how many more shirts could be bought?                        |
|----|------------------------------------------------------------------------------------------------------------------------------------------|
|    |                                                                                                                                          |
| 13 | 3 people can dig a trench in 30 hours.                                                                                                   |
|    | (a) How long would it take:                                                                                                              |
|    | (i) 4 people(1 mark                                                                                                                      |
|    | (ii) 5 people?                                                                                                                           |
|    | (i) 15 hours                                                                                                                             |
|    | (ii) 45 hours?                                                                                                                           |
| 14 | A train travelling at 160 km/h takes 5 hours for a journey.<br>How long would it take a train travelling at 200 km/h?                    |
|    | (2 marks                                                                                                                                 |
| 15 | A swimming pool is filled in 81 hours by 3 identical pumps.<br>How much quicker would it be filled if 9 similar pumps were used instead? |
|    |                                                                                                                                          |
|    | (3 marks                                                                                                                                 |
| 0  | Exercise 6.5                                                                                                                             |
| 1  | Increase 250 by the following ratios:                                                                                                    |
|    | (a) 8:5(1 mark                                                                                                                           |
|    | <b>(b)</b> 12.5:5                                                                                                                        |
| 2  | Increase 75 by the following ratios:                                                                                                     |
|    | (a) 7.5:3(1 mark                                                                                                                         |
|    | (b) 5:2(1 mark                                                                                                                           |
| 3  | Decrease 120 by the following ratios:                                                                                                    |
|    | (a) 2:3(1 mark                                                                                                                           |
|    | (h) 1 (4)                                                                                                                                |

|  | 0 | Exer | cise | 6.6 |
|--|---|------|------|-----|
|--|---|------|------|-----|

| 1 | A photograph measuring 12cm by 8cm is enlarged by a ratio of 9:4. What are the dimensions of the new print?                                                                  |  |  |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|   | (2 marks)                                                                                                                                                                    |  |  |
| 2 | A drawing measuring 8cm by 12cm needs to be enlarged. The dimensions of the enlargement need to be 20cm by 30cm. Calculate the enlargement needed and express it as a ratio. |  |  |
|   | (2 marks)                                                                                                                                                                    |  |  |
| 3 | A rectangle measuring 24 cm by 12 cm is enlarged by a ratio of 3:2. (a) What is the area of:                                                                                 |  |  |
|   | (i) the original rectangle(1 mark)                                                                                                                                           |  |  |
|   | (ii) the enlarged rectangle?                                                                                                                                                 |  |  |
|   |                                                                                                                                                                              |  |  |
|   | (b) By what ratio has the area been enlarged?(1 mark)                                                                                                                        |  |  |
| 4 | A cuboid measuring 12.5 cm by 5 cm by 2.5 cm is enlarged by a ratio of 4:1.  (a) What is the volume of:                                                                      |  |  |
|   | (i) the original cuboid(1 mark)                                                                                                                                              |  |  |
|   | (ii) the enlarged cuboid?                                                                                                                                                    |  |  |
|   | (b) By what ratio has the volume been increased?(1 mark)                                                                                                                     |  |  |



## Indices and standard form

#### O Exercises 7.1-7.4

| 1 | Simplify the following using indices:                                                                                                                   |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (a) $2 \times 2 \times 2 \times 3 \times 3 \times 4 \times 4 \times 4$ (1 mark)                                                                         |
|   | $\textbf{(b) } 2 \times 2 \times 2 \times 2 \times 4 \times 4 \times 4 \times 4 \times 4 \times 5 \times 5 \hspace{1.5cm} (1 \hspace{1mm} \text{mark})$ |
|   | (c) $3 \times 3 \times 4 \times 4 \times 5 \times 5 \times 5$                                                                                           |
|   | (d) $2 \times 7 \times 7 \times 7 \times 7 \times 11 \times 11$ (1 mark)                                                                                |
| 2 | Use a calculator to work out the following in full:                                                                                                     |
|   | (a) 14 <sup>2</sup>                                                                                                                                     |
|   | (b) 3 <sup>5</sup> × 4 <sup>3</sup> × 6 <sup>3</sup>                                                                                                    |
|   | (c) $7^2 \times 8^3$ (1 mark)                                                                                                                           |
|   | (d) 13 <sup>2</sup> × 2 <sup>3</sup> × 9 <sup>4</sup>                                                                                                   |
| 3 | Simplify the following using indices:                                                                                                                   |
| 3 | (a) $11^5 \times 6^3 \times 6^5 \times 6^4 \times 11^2$                                                                                                 |
|   | (a) $11 \times 6 \times 6 \times 6 \times 11$ (1 mark)<br>(b) $5^4 \times 5^7 \times 6^3 \times 6^2 \times 6^6$ (1 mark)                                |
|   | (c) 12 <sup>6</sup> ÷ 12 <sup>2</sup> (1 mark)                                                                                                          |
|   | (c) $12 \div 12$ (1 mark)<br>(d) $13^5 \div 13^2$ (1 mark)                                                                                              |
|   | ,,,                                                                                                                                                     |
| 4 | Simplify the following:                                                                                                                                 |
|   | (a) (9²)²                                                                                                                                               |
|   | <b>(b)</b> (17 <sup>2</sup> ) <sup>5</sup>                                                                                                              |
|   | (c) (2 <sup>2</sup> ) <sup>4</sup>                                                                                                                      |
|   | (d) (8 <sup>2</sup> ) <sup>3</sup>                                                                                                                      |
| 5 | Simplify the following:                                                                                                                                 |
|   | (a) 9 <sup>2</sup> × 5 <sup>0</sup> (1 mark)                                                                                                            |
|   | (b) 7 <sup>3</sup> × 7 <sup>-2</sup> (1 mark)                                                                                                           |
|   | (c) $16^3 \times 16^{-2} \times 16^{-2}$                                                                                                                |
|   | (d) 18° ÷ 3²                                                                                                                                            |
|   | →                                                                                                                                                       |

| 6 | Work out the following without a calculator:  |           |
|---|-----------------------------------------------|-----------|
|   | (a) 2 <sup>-2</sup>                           | (2 marks) |
|   | (b) $7 \times 10^{-1}$                        | (2 marks) |
|   | (c) 3×10 <sup>-2</sup>                        | (2 marks) |
|   | (d) 1000 × 10 <sup>-3</sup>                   | (2 marks) |
| 7 | Work out the following without a calculator:  |           |
|   | (a) 16 × 2 <sup>-2</sup>                      | (2 marks) |
|   | (b) 128 × 2 <sup>-6</sup>                     | (2 marks) |
|   | (c) 144 × 6 <sup>-2</sup>                     | (2 marks) |
|   | (d) 100 000 × 10 <sup>-6</sup>                | (2 marks) |
| 8 | Find the value of x in each of the following: |           |
|   | (a) $2^x = 8$                                 | (2 marks) |
|   | <b>(b)</b> $4^x = 256$                        | (2 marks) |
|   | (c) 10 <sup>x</sup> = 1000000                 | (2 marks) |
|   | (d) 5 <sup>x</sup> = 1                        | (2 marks) |
| 9 | Find the value of z in each of the following: |           |
|   | (a) $2^{(z-1)} = 32$                          |           |
|   |                                               | (2 marks) |
|   | <b>(b)</b> 3 <sup>(z+2)</sup> = 81            |           |
|   |                                               | (2 marks) |
|   | (c) 4 <sup>2z</sup> = 64                      |           |
|   |                                               | (2 marks) |
|   | (d) 2 <sup>-z</sup> = 128 <sup>-1</sup>       |           |
|   |                                               |           |

#### O Exercises 7.5-7.6

5

| 1 | Write the following numbers in standard form:                                                 |
|---|-----------------------------------------------------------------------------------------------|
|   | (a) 37000000                                                                                  |
|   | (b) 463 million                                                                               |
| 2 | A snail slides at an average speed of 6 cm per minute. Assuming it continues to slide at this |

rate, calculate how far it travels in centimetres in 24 hours. Write your answer in standard form.

3 The Earth has a radius of 6400 km. A satellite 350 km above Earth has a circular path around the Earth as shown in the diagram below.



(a) Calculate the radius of the satellite's path. Give your answer in standard form.

|                                                                                                                                              | (1 mark) |
|----------------------------------------------------------------------------------------------------------------------------------------------|----------|
| (b) Calculate the distance travelled by the satellite in one complete orb<br>Give your answer in standard form correct to one decimal place. | oit.     |
|                                                                                                                                              |          |
| Write the following numbers in standard form:                                                                                                |          |
| (a) 0.000045                                                                                                                                 | (1 mark) |
| (b) 0.000000000367                                                                                                                           | (1 mark) |
| Deduce the value of x in each of the following:                                                                                              |          |
| (a) $0.03^3 = 2.7 \times 10^x$                                                                                                               | (1 mark) |
| <b>(b)</b> $0.04^x = 1.024 \times 10^{-7}$                                                                                                   |          |
|                                                                                                                                              | 4        |

#### O Exercise 7.7

Evaluate the following without the use of a calculator.

|   | 46½                                     |           |
|---|-----------------------------------------|-----------|
| 2 | 225 2                                   | (1 mark)  |
| 3 | 125 3                                   | (1 mark)  |
| 4 | 1000 000 000 000 000 000 000 000 000 00 | (1 mark)  |
| 5 | 343 <sup>1</sup>                        | (2 marks) |
| 6 | 6251                                    | (2 marks) |
| 7 | 811                                     | (2 marks) |
| 8 | 17283                                   | (2 marks) |

#### O Exercise 7.8

| Wo | rk out the following without the use of a calculator.        |
|----|--------------------------------------------------------------|
| 1  | 17° 22                                                       |
| 2  | 27 <sup>3</sup> / <sub>32</sub>                              |
| 3  | (2 marks)                                                    |
|    | 2º                                                           |
| 5  | 4 <sup>1</sup> /2 <sup>2</sup>                               |
| 6  | $64^{\frac{1}{2}} \times 2^3$                                |
| 7  | 121 <sup>½</sup> ×11²                                        |
|    | 729 <sup>-1</sup> ÷ 3 <sup>-2</sup> (3 marks)                |
| 9  | $4^{\frac{1}{2}} \times 4^{-2} \times \frac{1}{4}$ (3 marks) |
| 10 | $27^{\frac{1}{2}} \times 81^{-2}$                            |



## Money and finance

#### O Exercise 8.1

1 The table below shows the exchange rate for €1 into various currencies.

| Brazil      | 2.6 Brazilian reals     |
|-------------|-------------------------|
| China       | 8.0 Chinese yuans       |
| New Zealand | 1.5 New Zealand dollars |
| Sri Lanka   | 162 Sri Lanka rupees    |

#### Convert the following:

| (a) 150 Brazilian reals to euros            | (1 mark  |
|---------------------------------------------|----------|
| (b) 1000 Sri Lanka rupees to euros          | (1 mark  |
| (c) 500 Chinese yuan to New Zealand dollars |          |
|                                             | (3 marks |
|                                             |          |

#### Exercises 8.2-8.4

1 Manuela makes different items of pottery. The table below shows the number of each item she makes and the amount she is paid for each item.

| Item Amount paid per item |        | Number made |  |  |
|---------------------------|--------|-------------|--|--|
| Cup                       | €2.30  | 15          |  |  |
| Saucer                    | €0.75  | 15          |  |  |
| Teapot                    | €12.25 | 3           |  |  |
| Milk jug                  | €3.50  | 6           |  |  |

| (a) Calculate her gross earnings                                     |       |
|----------------------------------------------------------------------|-------|
| (1)                                                                  | nark) |
| (b) Tax deductions are 18% of gross earnings. Calculate her net pay. |       |
|                                                                      |       |
| (3 m                                                                 | arks  |
|                                                                      |       |

| 2      | A caravan is priced at \$9500. The caravan supplier offers customers two different options for buying the caravan. They are as follows:  Option 1: A deposit of 25% followed by 24 monthly payments of \$350 Option 2: 36 monthly payments of \$380  (a) Calculate the amount extra a customer would have to pay with each of the options. |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|        | (3 marks)                                                                                                                                                                                                                                                                                                                                  |
|        | (b) Explain why a customer might want to choose the more expensive option.                                                                                                                                                                                                                                                                 |
|        |                                                                                                                                                                                                                                                                                                                                            |
| 3      | A professional baker makes cakes. The ingredients for each cake cost the baker \$3.80, If he sells each cake for \$9.20, calculate his percentage profit.                                                                                                                                                                                  |
|        |                                                                                                                                                                                                                                                                                                                                            |
|        |                                                                                                                                                                                                                                                                                                                                            |
| 4      | A house is bought for \$240 000. After 5 years its value has decreased to \$180 000. Calculate the average yearly percentage depreciation.                                                                                                                                                                                                 |
|        |                                                                                                                                                                                                                                                                                                                                            |
|        |                                                                                                                                                                                                                                                                                                                                            |
|        | (3 marks)                                                                                                                                                                                                                                                                                                                                  |
| $\sim$ | Exercise 8.5                                                                                                                                                                                                                                                                                                                               |
| 0      |                                                                                                                                                                                                                                                                                                                                            |
| 1      | What simple rate of interest is paid on a deposit of \$5000 if it earns \$200 interest in 4 years?                                                                                                                                                                                                                                         |
|        |                                                                                                                                                                                                                                                                                                                                            |
| 2      | How long will it take a principal of \$800 to earn \$112 of simple interest at 2% per year?                                                                                                                                                                                                                                                |
|        |                                                                                                                                                                                                                                                                                                                                            |

#### O Exercise 8.6

| 1 A couple borrow \$140000 to buy a house at 5% compound interest for three years.<br>How much will they pay at the end of the three years? |                                                                                                                           |
|---------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                             | (3 marks                                                                                                                  |
| 2                                                                                                                                           | A man buys a BMW for \$50000.<br>He pays with a loan at 10% compound interest for three years. What did his BMW cost him? |
|                                                                                                                                             |                                                                                                                           |
| 3                                                                                                                                           | A girl owes \$250 on a credit card. The APR is 20%. What does she owe in four years if she pays nothing back?             |
|                                                                                                                                             |                                                                                                                           |
| 4                                                                                                                                           | In five years a debt has doubled. What was the compound interest?                                                         |
|                                                                                                                                             |                                                                                                                           |
|                                                                                                                                             | (4 marks                                                                                                                  |
| 5                                                                                                                                           | eq:Aboat has halved in value in three years. What was the percentage loss in compound terms?                              |
|                                                                                                                                             |                                                                                                                           |
|                                                                                                                                             | (4 marks                                                                                                                  |
| 6                                                                                                                                           | A internet company grows by 20% each year.                                                                                |
|                                                                                                                                             | (a) Explain why it will not take 5 years to double in size.                                                               |
|                                                                                                                                             | (2 marks                                                                                                                  |
|                                                                                                                                             | (b) When will it double in size?                                                                                          |
|                                                                                                                                             |                                                                                                                           |
|                                                                                                                                             | (4 marks                                                                                                                  |



|  | rcise |  |
|--|-------|--|
|  |       |  |

| 1 | A cyclist sets off on a ride at 0925. If his journey takes 327 minutes, calculate the time he finishes cycling.                                                                                           |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (2 marks)                                                                                                                                                                                                 |
| 2 | A plane travels 7050 km at an average speed of 940 km/h. If it lands at 1321, calculate the time it departed.                                                                                             |
|   |                                                                                                                                                                                                           |
|   | (3 marks)                                                                                                                                                                                                 |
| 3 | A train travelling from Paris to Istanbul departs at 1630 on a Wednesday. During the journey it stops at several locations. Overall the train travels the 2280 km distance at an average speed of 18km/h. |
|   | (a) Calculate the time taken to travel to Istanbul.                                                                                                                                                       |
|   | (2 marks)                                                                                                                                                                                                 |
|   | (b) What day of the week does the train arrive in Istanbul?                                                                                                                                               |
|   | (1 mark)                                                                                                                                                                                                  |
|   | (c) What time of the day does the train arrive in Istanbul? Give your answer to the nearest minute.                                                                                                       |
|   |                                                                                                                                                                                                           |



## Set notation and Venn diagrams

| 0 | Exerc | ico | п | 0  | ı |
|---|-------|-----|---|----|---|
|   | FVCIC | 136 |   | v. | u |

| • | {Moscow, London, Cairo, New Delhi,}                              |
|---|------------------------------------------------------------------|
|   | (1 mark)                                                         |
|   | (b) Write down two more elements of this set. (2 marks)          |
|   |                                                                  |
| 2 | (a) Describe the following set in words:<br>{euro, dollar, yen,} |
|   | (1 mark)                                                         |
|   | (b) Write down two more elements of this set.                    |
|   |                                                                  |
| 3 | Consider the set $P = \{(x, y): y = x^2 + x\}.$                  |
|   | Write down two elements of the set.                              |
|   |                                                                  |
| 4 | Consider the set $R = \{p: -1 \le p < 7\}$ .                     |
|   | (a) Describe the set.                                            |
|   | (b) Write down two elements of the set.                          |
|   |                                                                  |
|   |                                                                  |
|   |                                                                  |
| 0 | Exercise 10.2                                                    |
| 1 | The set $A = \{x: 0 < x < 10\}$ .                                |
|   | (a) List the subset B {prime numbers}.                           |
|   |                                                                  |
|   | (b) List the subset C (square numbers).                          |
|   |                                                                  |
|   |                                                                  |

| 2 | P = {a, b, c}                         |  |  |  |  |  |  |
|---|---------------------------------------|--|--|--|--|--|--|
|   | (a) List all the subsets of P.        |  |  |  |  |  |  |
|   |                                       |  |  |  |  |  |  |
|   |                                       |  |  |  |  |  |  |
|   | (b) List all the proper subsets of P. |  |  |  |  |  |  |
|   |                                       |  |  |  |  |  |  |
|   | <i>(4</i>                             |  |  |  |  |  |  |

#### O Exercise 10.3

2 The Venn diagram below shows the relationship between three sets of numbers A, B and C.



 3 Consider the Venn diagram below showing the relationship between the sets W, X, Y and Z.



| (a) | Complete | the | following | by | entering th | ne correct | numbers |
|-----|----------|-----|-----------|----|-------------|------------|---------|
|     |          |     |           |    |             |            |         |

| (i) X ∪ Y =                                   | (1 mark) |
|-----------------------------------------------|----------|
| (ii) W ∩ X =                                  | (1 mark) |
| (b) Which of the named sets is a subset of X? | (1 mark) |

#### O Exercise 10.4

 The sets given below represent the letters of the alphabet in each of three English cities. P= {c,a,m,b,r,i,d,g,e}, Q = {b,r,i,g,h,t,o,n} and R = {d,u,r,h,a,m}
 (a) Draw a Venn diagram to illustrate this information.

(b) Complete the following statements:

(b) Complete the following statements:

(ii)  $P \cap Q \cap R = \{....\}$  (1 mark)

2 In a class of 30 students, 16 do athletics (A), 17 do swimming (S), whilst 3 do neither.
(a) Complete the Venn diagram below.



| (b) Calcul | ato the | foll | owing: |
|------------|---------|------|--------|
| (b) Calcul | ate the | TOIL | owing: |

(3 marks)

- Meson people tren
- (i) n(A ∩ S).....(1 mark)

#### O Exercise 10.5

1 A class of 15 students was asked what pets they had. Each student had either a dog (D), cat (C), fish (F), or a combination of them.



(a) If n(D) = 10, n(C) = 11 and n(F) = 9, calculate:

#### Exam focus

1 State whether the following number is rational or irrational. Justify your answer.  $1+(3\times\sqrt{81})$ 2 A square has an area of 225 cm<sup>2</sup> to the nearest whole number. (a) What is the maximum area of the square? .....[1] (b) What are the maximum dimensions of the square to 2 d.p.? (c) What is the minimum perimeter of the square to 2 d.p.? [2] (b) Find 64% of 350. [1] (c) Luca score 64% in a maths exam. He got 160 marks. How many marks were available in the exam? [2] (d) Luca needed 78% or more for an A grade. How many more marks did he need? 4 The side length of cube A and side length of cube B are in the ratio 3:2. What is the ratio of their volumes? 5 Evaluate the following without using a calculator: (a)  $\frac{625^{-1}}{2} \times 5^2 \times \frac{1}{2}$ [3] (b)  $\frac{64^{\frac{1}{2}} + 5}{2^2}$ .....

[3]

| (a) Use a calculator to work out the following:                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------|
| (i) $\left(\frac{1}{2}\right)^{\frac{1}{2}}$                                                                                                    |
| (ii) $(\frac{3}{2})^{\frac{3}{4}}$                                                                                                              |
| (ii) $(\frac{5}{2})^{\frac{1}{2}}$                                                                                                              |
| (b) Using trial and error, solve the following. Give your answer correct to 1 d.p. $x^{\star}{=}\ 1000$                                         |
|                                                                                                                                                 |
|                                                                                                                                                 |
| [2]                                                                                                                                             |
| A water molecule is made up of two hydrogen atoms and one oxygen atom. The mass of a                                                            |
| water molecule is $3.0 \times 10^{-26}$ kg. If the mass of a hydrogen atom is $1.674 \times 10^{-27}$ kg, calculate the mass of an oxygen atom. |
|                                                                                                                                                 |
| [3]                                                                                                                                             |
| Octay is thinking of buying a caravan for \$20000. He knows that it will lose 30% of its value in the first year and 25% in the second year.    |
| (a) What is it worth at the end of year 1?[1]                                                                                                   |
| (b) What is it worth at the end of the second year?[1]                                                                                          |
| (c) How much has he lost in depreciation?[1]                                                                                                    |
| (d) Octay could have invested his money at 4% compound interest. What money would he have had after 2 years?                                    |
|                                                                                                                                                 |
| [3]                                                                                                                                             |

9 The sets P, Q and R are shown in the Venn diagram below.



(a) Complete the following statements:

| (i) R = {                                    |  |
|----------------------------------------------|--|
| (ii) R ∩ Q = {                               |  |
| (iii) P ∩ Q ∩ R' = {                         |  |
| (b) Is R a subset of P? Justify your answer. |  |



### Algebra and graphs

# 11

# Algebraic representation and manipulation

### O Exercises II.I-II.3

| Expand the following and simplify where possible. |
|---------------------------------------------------|
| 1 –5(x + 4)                                       |
| 2 –3(y – 2)                                       |
| 3 4a(2b + 4)                                      |
| 4 6(2c – 8)                                       |
| 5 –3a²(2a – 3b)                                   |
| (2 marks)                                         |
| 6 12(p + 3) - 12(p - 1)                           |
| (2 marks)                                         |
| 7 5a(a + 3) – 5(a² – 1)                           |
| (2 marks)                                         |
| $8 \frac{1}{2}(8x+4) + 2(3x+6)$                   |
| 2(2 marks)                                        |
| 9 $2(2x+6y)+\frac{3}{4}(4x-8y)$                   |
| (2 marks)                                         |
| 10 $\frac{1}{8}(16x - 24y) + 4(x - 5y)$           |
| (2 marks)                                         |
| Expand and simplify the following:                |
| 11 4p – 3(p + 7)                                  |
| (1 mark)                                          |
| <b>12</b> 3q(2+7r) + 2r(3+4q)                     |
|                                                   |
| (2 marks)                                         |

| 13  | -2x(2y - 3z) - 2y(2z - 2y)              |
|-----|-----------------------------------------|
|     |                                         |
|     | (2 marks)                               |
| 14  | <sup>a</sup> / <sub>9</sub> (27 + 72b)  |
|     |                                         |
|     | (2 marks)                               |
| 15  | $\frac{p}{2}(4q-4) - \frac{p}{3}(9q-9)$ |
|     |                                         |
|     | (2 marks)                               |
| 16  | (a + 8)(a + 4)                          |
|     |                                         |
| 17  | (b - 3)(b + 3)                          |
|     | (2 marks)                               |
| 18  | (c – 9)(c – 9)                          |
|     | (2 marks)                               |
| 10  | (1 - m)(1 - m).                         |
| 13  | (2 marks)                               |
|     | 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 |
| 20  | (j + k)(k - m)                          |
|     |                                         |
|     |                                         |
| 0   | Exercise 11.4                           |
| Fac | ctorise the following.                  |
| 1   | 3a+6b(1 mark)                           |
| 2   | -14c - 28d(1 mark)                      |
| 3   | 42x <sup>2</sup> – 21xy <sup>2</sup>    |
|     | (2 marks)                               |
| 4   | $m^3 - m^2 n - n^2 m$                   |
|     |                                         |
| 5   | $-13p^2 - 32r^3$                        |
| 900 | (2 marks)                               |

### O Exercise II.5

| Evaluate the expressions below if: $p = 3$ , $q = -3$ , $r = -1$ and $s = 5$ | Evaluate the express | ions below if: | p = 3, q = -3 | r = -1 | and $s = 5$ |
|------------------------------------------------------------------------------|----------------------|----------------|---------------|--------|-------------|
|------------------------------------------------------------------------------|----------------------|----------------|---------------|--------|-------------|

| 1 | p - q + r - s            |
|---|--------------------------|
|   |                          |
| 2 | 5(p+q+r+s)               |
|   | (2 marks                 |
| 3 | 2p(q - r)(2 marks        |
|   | (2 marks                 |
| 4 | $p^2 + q^2 + r^2 + s$    |
|   | (2 marks                 |
| 5 | $-p^3 - q^3 - r^3 - s^3$ |
|   | (2 marks                 |

### O Exercise II.6

Make the letter in bold the subject of the formula.

|   | (2 marks)                           |
|---|-------------------------------------|
| 2 | a <b>b</b> – c = d                  |
|   |                                     |
|   |                                     |
| 3 | $\frac{1}{8}\mathbf{m} + 3 = 2r$    |
|   |                                     |
|   | (2 marks)                           |
| 4 | $p - \frac{q}{r} = s$               |
|   |                                     |
|   | (2 marks)                           |
| 5 | $\frac{\rho}{-\mathbf{q}} + r = -s$ |
|   |                                     |
|   | (3                                  |

### O Exercise II.7

| Ex | Expand and simplify the following.   |     |  |  |  |
|----|--------------------------------------|-----|--|--|--|
| 1  | (2d+3)(2d-3)                         |     |  |  |  |
|    | (2 mark                              |     |  |  |  |
|    |                                      |     |  |  |  |
| 2  | (3e – 7)(3e – 7)                     |     |  |  |  |
|    | (2 mark                              | (5) |  |  |  |
| 3  | (2f+3q)(2f-3q)                       |     |  |  |  |
|    |                                      |     |  |  |  |
|    |                                      |     |  |  |  |
| 4  | (4 – 5h)(5h + 4)                     |     |  |  |  |
|    |                                      |     |  |  |  |
|    | (2 mark                              | 15  |  |  |  |
| 20 | (2x + 1)(3x - 1)                     |     |  |  |  |
| 5  |                                      |     |  |  |  |
|    |                                      |     |  |  |  |
|    | (2 mark                              | S   |  |  |  |
|    |                                      |     |  |  |  |
| 0  | Exercise II.8                        |     |  |  |  |
|    |                                      |     |  |  |  |
| Fa | torise the following by grouping.    |     |  |  |  |
| 1  | ac + a + b + bc                      |     |  |  |  |
|    |                                      |     |  |  |  |
|    |                                      |     |  |  |  |
|    | (2 mark                              |     |  |  |  |
| 2  | 3cd + 3d + 4e + 4ce                  |     |  |  |  |
|    |                                      |     |  |  |  |
|    | (2 mark                              |     |  |  |  |
|    |                                      |     |  |  |  |
| 3  | fg – 4f – 6g + 24                    | **  |  |  |  |
|    |                                      |     |  |  |  |
|    | (2 mark                              | (5) |  |  |  |
| 1  | $p^2 - 2pq - 2pr + 4rq$              |     |  |  |  |
| 4  |                                      |     |  |  |  |
|    |                                      |     |  |  |  |
|    | (2 mark                              | S   |  |  |  |
| 5  | 16m <sup>2</sup> + 44mn + 121n + 44m |     |  |  |  |
|    |                                      |     |  |  |  |
|    |                                      |     |  |  |  |
|    |                                      |     |  |  |  |

### O Exercise 11.9 Factorise the following. 1 16m<sup>2</sup> – 121n<sup>2</sup> ...... (2 marks) $2 x^6 - y^6$ (2 marks) 3 9a<sup>4</sup> – 144b<sup>4</sup>..... (2 marks) 4 81m<sup>2</sup> - 16n<sup>2</sup> ..... ......(2 marks) Exercise II.IO By factorising, evaluate the following. 1 172 – 162 (2 marks) 2 34-1 (2 marks) (2 marks) O Exercise II.II Factorise the following quadratic expressions. 1 a<sup>2</sup> + 5a + 6..... (2 marks) 2 b<sup>2</sup> - 3b - 10

3 c² – 10c + 16 (2 marks)

| 4          | d² – 18d + 81                                                                                                                                                                                                                              |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            |                                                                                                                                                                                                                                            |
| 5          | 2e <sup>2</sup> + 3e + 1                                                                                                                                                                                                                   |
|            |                                                                                                                                                                                                                                            |
| 6          | 3f <sup>2</sup> + f - 2                                                                                                                                                                                                                    |
|            |                                                                                                                                                                                                                                            |
| 7          | 2g <sup>2</sup> – g – 1                                                                                                                                                                                                                    |
|            | (3 marks)                                                                                                                                                                                                                                  |
| 8          | 9h² – 4                                                                                                                                                                                                                                    |
|            | (3 marks)                                                                                                                                                                                                                                  |
| 9          | $j^2 + 4jk + 4k^2$                                                                                                                                                                                                                         |
|            | (3 marks)                                                                                                                                                                                                                                  |
|            |                                                                                                                                                                                                                                            |
|            |                                                                                                                                                                                                                                            |
| 0          | Exercises 11.12-11.13                                                                                                                                                                                                                      |
|            | Exercises 11.12-11.13 the formulas below make 'a' the subject.                                                                                                                                                                             |
| In         |                                                                                                                                                                                                                                            |
| In         | the formulas below make 'a' the subject.                                                                                                                                                                                                   |
| In         | he formulas below make 'a' the subject. $\frac{p}{q} = \frac{2xa}{r}$                                                                                                                                                                      |
| In<br>1    | the formulas below make 'a' the subject. $\frac{p}{q} = \frac{2xa}{r}$                                                                                                                                                                     |
| In<br>1    | the formulas below make ' $a$ ' the subject. $\frac{\rho}{q} = \frac{2 \varkappa a}{r}$ (3 marks)                                                                                                                                          |
| In<br>1    | the formulas below make 'a' the subject. $\frac{\rho}{q} = \frac{2xa}{r}$ $\frac{ma^2}{3n} = \frac{2}{n}$ (3 marks)                                                                                                                        |
| In<br>1    | the formulas below make 'a' the subject. $\frac{p}{q} = \frac{2 k a}{r}$                                                                                                                                                                   |
| In<br>1    | the formulas below make 'a' the subject. $\frac{p}{q} = \frac{2 \lambda a}{r}$                                                                                                                                                             |
| In<br>1    | the formulas below make 'a' the subject. $\frac{p}{q} = \frac{2 \lambda a}{r}$                                                                                                                                                             |
| In 1 2     | the formulas below make 'a' the subject. $\frac{p}{q} = \frac{2\kappa a}{r}$                                                                                                                                                               |
| In 1 2     | the formulas below make 'a' the subject. $\frac{p}{q} = \frac{2 \lambda a}{r}$                                                                                                                                                             |
| In 1 2     | the formulas below make 'a' the subject. $\frac{p}{q} = \frac{2\kappa a}{r}$                                                                                                                                                               |
| In 1 2     | the formulas below make 'a' the subject. $\frac{p}{q} = \frac{2 k a}{r}$ (3 marks) $t = \frac{2 r \sqrt{a}}{b}$ (3 marks) $t = \frac{2 r \sqrt{b}}{a}$                                                                                     |
| In 1 2 3 4 | the formulas below make 'a' the subject. $\frac{p}{q} = \frac{2 \kappa a}{r}$                                                                                                                                                              |
| In 1 2 3 4 | the formulas below make 'a' the subject. $\frac{p}{q} = \frac{2ka}{r}$ (3 marks) $\frac{ma^2}{3n} = \frac{2}{n}$ (3 marks) $t = \frac{2r\sqrt{a}}{b}$ (3 marks) $t = \frac{2p\sqrt{b}}{a}$ (3 marks)                                       |
| In 1 2 3 4 | the formulas below make 'a' the subject. $\frac{p}{q} = \frac{2ka}{r}$ (3 marks) $\frac{ma^2}{3n} = \frac{2}{n}$ (3 marks) $t = \frac{2r\sqrt{a}}{b}$ (3 marks) $t = \frac{2p\sqrt{b}}{a}$ (3 marks) $\frac{2\sqrt{a}}{a} = \frac{b^2}{c}$ |

# Exercise II.14 In each of the questions below:

|   | (a) change the subject of the formula (b) solve the problem.                                                                                                                                                                      |
|---|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | The circumference of a circle is given by the equation $C=2\pi r$ . Find $r$ when $C$ is 18.8cm.                                                                                                                                  |
|   | (2 marks)                                                                                                                                                                                                                         |
|   | (2 marks)                                                                                                                                                                                                                         |
| 2 | The area of a circle is given by the equation $A = \pi r^2$ .<br>Find $r$ when $A = 78.5 \mathrm{cm}^2$ .                                                                                                                         |
|   | (2 marks)                                                                                                                                                                                                                         |
|   | (2 marks)                                                                                                                                                                                                                         |
| 3 | A parallelogram has area $48\mathrm{cm}^2$ and one side $8\mathrm{cm}$ . Find the perpendicular height of the parallelogram using the formula $A=lp$ , where $l^p$ is the length of a side and $l^p$ is the perpendicular height. |
|   |                                                                                                                                                                                                                                   |
|   | (2 marks)                                                                                                                                                                                                                         |
| 4 | The surface area of a cylinder is $188\mathrm{cm}^2$ . Its radius is 3 cm. Given the formula $A=2\pir(r+h)$ , rearrange to find an expression for $h$ , then find the value of $h$ . Draw a sketch if necessary.                  |
| 5 |                                                                                                                                                                                                                                   |
|   |                                                                                                                                                                                                                                   |
|   | (2 marks)                                                                                                                                                                                                                         |

### O Exercise II.I5

Simplify the following fractions.

- 1  $\frac{2a^2}{3} \times \frac{6}{a}$  (2 marks)
- $2 \quad \frac{5c^2}{2d} \times \frac{6e}{c} \times \frac{d^2}{c} \qquad \dots$
- 3  $\frac{9\rho}{7} \times \frac{14}{3\rho}$  (2 marks)
- 4  $\frac{6}{r} \times \frac{5d}{3s} \times \frac{3rs}{2d}$  (2 marks)
- $5 = \frac{4x^3}{3y^4} \times \frac{6y^5}{2x^2}$  (2 marks

### O Exercises II.16-II.17

Simplify the following fractions.

- - 2 3c 2c (2 marks)

- ......(2 marks)
- $5 \frac{f}{g} + f$

### O Exercise 11.18

Simplify the following fractions.

| 1 | $\frac{1}{p+3} + \frac{2}{p-1}$        |
|---|----------------------------------------|
|   |                                        |
|   |                                        |
|   | (3 marks                               |
| 2 | $\frac{\alpha(\alpha+5)}{b(\alpha+5)}$ |
|   |                                        |
|   |                                        |
|   | (3 marks                               |
| 3 | $\frac{a^2-3a}{(a+1)(a-3)}$            |
|   |                                        |
|   |                                        |
|   | (3 marks                               |
| 4 | $\frac{a^2 + 2a}{a^2 + 5a + 6}$        |
|   |                                        |
|   |                                        |
|   | (3 marks                               |
| 5 | $\frac{a^3-a}{a^2-1}$                  |
|   |                                        |
|   |                                        |



## Algebraic indices

### O Exercises 12.1-12.2

| 1 | Simplify the following using indices:                                                            |
|---|--------------------------------------------------------------------------------------------------|
|   | (a) $a^5 \times a^3 \times b^5 \times b^4 \times c^2$                                            |
|   | (b) $p^4 \times q^7 \times p^3 \times q^2 \times r$                                              |
|   | (c) $m^9 + m^2 + (m^2)^4 \times m^2$                                                             |
|   | (d) $a^5 \times e^3 \times b^5 \times e^4 \times e^2 \times e^5 \div e^{13}$ (2 marks)           |
| 2 | Simplify the following:                                                                          |
|   | (a) $ac^5 \times ac^3$ (2 marks)                                                                 |
|   | (b) m <sup>4</sup> n ÷ nm <sup>2</sup>                                                           |
|   | (c) $(b^3)^2 + b^8$                                                                              |
|   | (d) 3(2b³)³(2 marks)                                                                             |
|   |                                                                                                  |
| 0 | Exercise 12.3                                                                                    |
| 1 | Rewrite the following in the form $a^{\frac{m}{n}}$ :                                            |
|   | (a) $(\sqrt[4]{a})^5$                                                                            |
|   | <b>(b)</b> $(\sqrt{a})^7$                                                                        |
| 2 | Rewrite the following in the form $(\sqrt[q]{\mathcal{D}})^m$ :                                  |
|   | (a) $b^{\frac{-1}{5}}$                                                                           |
|   | (b) $b^{\frac{7}{3}}$                                                                            |
| 3 | Simplify the following algebraic expressions, giving your answer in the form $a^{\frac{m}{n}}$ : |
|   | (a) $a^{\frac{3}{2}} \times a^{\frac{-1}{4}}$                                                    |
|   | (b) $\frac{a^{-3}}{\sqrt[3]{a}}$ (2 marks)                                                       |
|   | (c) $\frac{(\sigma^2)^3}{\sigma^{\frac{3}{2}} \times (\sqrt[3]{\sigma})^2}$                      |



### Equations and inequalities

### O Exercise 13.1

Solve the following linear equations. ......(1 mark)  $5 = \frac{e}{3} - 2 = 4$ ..... (2 marks)  $6 \frac{3f}{5} - 1 = 5$ (2 marks)  $7 \frac{2g-1}{3} = 3$ .....  $8 \frac{4(h+5)}{3} = 12...$  $9 \frac{7-2j}{5} = \frac{11-3j}{8}$ (3 marks) 10 3(2k+4) = 2(5k-4)....

### O Exercise 13.2

1 The triangle below has angles  $x^{\circ}$ ,  $x^{\circ}$  and  $(x + 30)^{\circ}$ . Find the value of each angle.



(3 marks)

2 The triangle below has angles  $x^{\circ}$ ,  $(x+40)^{\circ}$  and  $(2x-20)^{\circ}$  degrees. Find the value of each angle.



......(3 marks)

3 The isosceles triangle below has its equal sides of length (3x + 20) cm and (4x - 5) cm. Calculate the value of x.



......(3 marks)

4 Two straight lines cross at opposite angles of  $(7x + 4)^\circ$  and  $(9x - 32)^\circ$  degrees as shown. Calculate the size of all four angles.



100011 10 1001



5 The area of a rectangle is 432cm<sup>2</sup>. Its length is three times its width. Draw a diagram and work out the size of the sides.

......(3 marks)

### Calculate the angles in the following.

6



(4 marks)

- 5



(A marks)

8



(3 marks)





......(3 marks)

11 A right–angled triangle has two acute angles of  $(4x-45)^\circ$  and  $(9x-60)^\circ$ . Calculate their size in degrees.



.....(3 marks)



12 The interior angles of a regular pentagon add up to 540 degrees. A pentagon has angles  $(4x + 20)^{\circ}$ ,  $(x + 40)^{\circ}$ ,  $(3x - 50)^{\circ}$ ,  $(3x - 130)^{\circ}$  and  $110^{\circ}$  as shown. Find the value of each angle.



(3 marks)

13 An isosceles trapezium has angles as shown. Find the value of x.



..... (3 marks)

### O Exercises 13.3-13.5

Solve the following simultaneous equations.

1 a+b=12

a-b=2

(2 marks)

2 3c + d = 19

3c + 4d = 49

(3 marks)

| 3  | 7e + 4f = 56   |
|----|----------------|
|    | e+4f=32        |
|    |                |
|    | (3 marks)      |
| 4  | g+h=-12        |
|    | g-h=2          |
|    |                |
|    | (2 marks)      |
| 5  | -5p - 3q = -24 |
|    | -5p + 3q = -6  |
|    |                |
|    | (3 marks)      |
| 6  | 2r - 3s = 0    |
|    | 2r + 4s = -14  |
|    |                |
|    | (3 marks)      |
| 7  | W + x = 0      |
|    | W-X=10         |
|    |                |
|    | (2 marks)      |
| 8  | x + y = 2      |
|    | x - y = 1      |
|    |                |
|    | (2 marks)      |
| 9  | 2a + 3b = 12   |
|    | a+b=5          |
|    |                |
|    | (3 marks)      |
| 10 | 3c - 3d = 12   |
|    | 2c+d=11        |
|    |                |
|    | (3 marks)      |
|    |                |

| 11 | e-f=0                   |
|----|-------------------------|
|    | 4e + 2f = -6            |
|    |                         |
|    | (3 marks)               |
| 12 | 12g + 6y = 15           |
|    | g+2y=2                  |
|    |                         |
|    | (3 marks)               |
| 13 | 4h+j=14                 |
|    | 12h - 6j = 6            |
|    |                         |
|    | (4 marks)               |
|    | 100k – 10l = –20        |
|    | -15k + 3l = 9           |
|    | -13K+31-3               |
|    | (4 marks)               |
|    |                         |
|    | -3 = m + n              |
|    | m-n=11                  |
|    |                         |
|    | (3 marks)               |
|    | 3-p=q                   |
|    | 3-q=2                   |
|    |                         |
|    |                         |
| 17 | 3r - 2s = 26            |
|    | 4s+2=r                  |
|    |                         |
|    | (4 marks)               |
| 18 | $\frac{1}{2}t + 2w = 1$ |
|    | $\frac{2}{4w-t}=0$      |
|    |                         |
|    | (4 marks)               |

| 19 | The sum of two numbers is 37 and their difference is 11. Find the numbers.                                                                                                                       |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|    | (3 marks)                                                                                                                                                                                        |
| 20 | The sum of two numbers is –2 and their difference is 12. Find the numbers.                                                                                                                       |
|    |                                                                                                                                                                                                  |
|    | (3 marks)                                                                                                                                                                                        |
|    | If a girl multiplies her age in years by four and adds three times her brother's age, she gets 64.<br>If the boy adds his age in years to double his sister's age, he gets 28. How old are they? |
|    |                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                  |
|    | (4 marks)                                                                                                                                                                                        |
|    | 4                                                                                                                                                                                                |
| 22 | A rectangle has opposite sides of $3a + b$ and 25 and $2a + 3b$ and 26 as shown.<br>Find the values of $a$ and $b$ .                                                                             |
|    | 2a + 3b                                                                                                                                                                                          |
|    |                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                  |
|    | 3a+b 25                                                                                                                                                                                          |
|    |                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                  |
|    | 26                                                                                                                                                                                               |
|    |                                                                                                                                                                                                  |
| 23 | A square has sides 2x, 40 – 3x, 25 + 3y and 10 – 2y. Calculate:                                                                                                                                  |
|    | (a) the values of x and y                                                                                                                                                                        |
|    |                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                  |
|    | (b) the area of the square                                                                                                                                                                       |
|    |                                                                                                                                                                                                  |
|    | (c) the perimeter of the square                                                                                                                                                                  |
|    | (1 mark)                                                                                                                                                                                         |
| 24 | A grandmother is four times as old as her granddaughter. She is also 48 years older than her. How old are they both?                                                                             |
|    |                                                                                                                                                                                                  |
|    |                                                                                                                                                                                                  |
|    | (3 marks)                                                                                                                                                                                        |

| 0 | Exercise 13.6                                                                                                                                                                            |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 | A number is trebled then four is added. The total is –17. Find the number.                                                                                                               |
|   | (2 marks                                                                                                                                                                                 |
| 2 | Two is the answer when 20 is added to three times a number. Find the number.                                                                                                             |
|   | .(2 marks                                                                                                                                                                                |
| 3 | A number divided by 17 gives –4. Find the number.                                                                                                                                        |
|   | .(2 marks                                                                                                                                                                                |
| 4 | A number squared, divided by 5, less 1, is 44. Find two possible values for the number.                                                                                                  |
|   | .(5 marks                                                                                                                                                                                |
| 5 | Zach is two years older than his sister Leda and three years younger than his dog, Spot.  (a) By writing Zach's age as x, write expressions for the ages of Leda and Spot in terms of x. |
|   |                                                                                                                                                                                          |
|   | (b) Find their ages if their total age is 22 years.                                                                                                                                      |
| 6 | A decagon has five equal exterior angles, whilst the others are three times bigger.  Find the size of the two different angles.                                                          |
|   |                                                                                                                                                                                          |

7 A triangle has interior angles of  $x^{\circ}$ ,  $2x^{\circ}$ ,  $6x^{\circ}$  as shown.

|   | 6x° 2cq                                                                                                                      |
|---|------------------------------------------------------------------------------------------------------------------------------|
|   | Find the size of its exterior angles.                                                                                        |
|   |                                                                                                                              |
|   |                                                                                                                              |
| 8 | A number squared has the number squared then doubled added to it. The total is 300. Find two possible values for the number. |
|   |                                                                                                                              |
|   |                                                                                                                              |
|   |                                                                                                                              |
|   |                                                                                                                              |
|   | Exercise 13.7  Ive the following equations and give two solutions for x.                                                     |
| 1 | $x^2 + x - 12 = 0$                                                                                                           |
|   |                                                                                                                              |
|   |                                                                                                                              |
|   | (3 marks)                                                                                                                    |
| 2 | $x^2 - 9x + 18 = 0$                                                                                                          |
|   |                                                                                                                              |
|   |                                                                                                                              |
|   | (3 marks)                                                                                                                    |
| 3 | $x^2 + 10x + 21 = 0$                                                                                                         |
|   |                                                                                                                              |
|   |                                                                                                                              |
|   | (3 marks)                                                                                                                    |

| 4   | $x^2 = -(3x+2)$                                      |
|-----|------------------------------------------------------|
|     |                                                      |
|     |                                                      |
|     | (3 marks)                                            |
| 5   | $x^2 - 2x = 35$                                      |
|     |                                                      |
|     |                                                      |
|     | (3 marks)                                            |
| 6   | $-42+13x=x^2$                                        |
|     |                                                      |
|     |                                                      |
|     | (3 marks)                                            |
| 7   | $x^2 - 169 = 0$                                      |
|     |                                                      |
|     |                                                      |
|     | (3 marks)                                            |
| 8   | $x^2 - 40 = 9$                                       |
|     |                                                      |
|     |                                                      |
|     | (3 marks)                                            |
| _   |                                                      |
|     | Exercise 13.8                                        |
| Sol | ve the following quadratic equations where possible. |
| 1   | $2x^2 + 8x + 6 = 0$                                  |
|     |                                                      |
|     |                                                      |
|     | (4 marks)                                            |
| 2   | $3x^2 + 4x = -1$                                     |
|     |                                                      |
|     |                                                      |
|     | (4 marks)                                            |

| 3  | $5x^2 = 4x + 1$      |
|----|----------------------|
|    |                      |
|    |                      |
|    |                      |
| 4  | $3x^2 = 108$         |
|    |                      |
|    |                      |
|    | (3 marks)            |
| 5  | $3x^2 = 27$          |
|    |                      |
|    |                      |
|    | (3 marks)            |
| 6  | $3x^2 = -36$         |
|    |                      |
|    |                      |
|    | (3 marks)            |
| 7  | $3x^2 = -108$        |
|    |                      |
|    |                      |
|    | (3 marks)            |
|    |                      |
| 8  | $4x^2 = 1$           |
|    |                      |
|    |                      |
|    |                      |
| 9  | $16x^2 = 1$          |
|    |                      |
|    |                      |
|    | (3 marks)            |
|    |                      |
| 10 | $3x^2 = \frac{4}{3}$ |
|    |                      |
|    |                      |
|    |                      |
|    |                      |

| 11 | $25x^2 = 64$  |
|----|---------------|
|    |               |
|    |               |
|    |               |
| 12 | $16x^2 = -64$ |
|    |               |
|    |               |
|    | (3 marks)     |

### O Exercise 13.9



2 A triangle has base length 2bcm and a height two less than 2bcm. Its area is 60cm² as shown. What is the base length and height?



(1 marks)

3 Drawn below is a right-angled triangle with a hypotenuse of 13 cm. The two shorter sides are xcm and x + 7 cm long. If the square of the longest side equals the sum of the squares of the other two sides (Pythagoras' theorem), find the length of the two sides.



(4 marks)

| 4                                                                                                       | Two consecutive numbers multiply to make 552. Find the numbers.                                                                                     |  |  |
|---------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                         |                                                                                                                                                     |  |  |
|                                                                                                         |                                                                                                                                                     |  |  |
|                                                                                                         | (4 marks)                                                                                                                                           |  |  |
| 5                                                                                                       | A man buys a number of golf balls for \$6. If he had paid 50 cents less for each, he could have bought six more for \$6. How many balls did he buy? |  |  |
|                                                                                                         |                                                                                                                                                     |  |  |
|                                                                                                         |                                                                                                                                                     |  |  |
|                                                                                                         | (4 marks)                                                                                                                                           |  |  |
|                                                                                                         |                                                                                                                                                     |  |  |
| 0                                                                                                       | Exercise 13.10                                                                                                                                      |  |  |
| Solve the following quadratic equations either by using the quadratic formula or by complet the square. |                                                                                                                                                     |  |  |
| 1                                                                                                       | $6x^2 + 22x = -12$                                                                                                                                  |  |  |
|                                                                                                         |                                                                                                                                                     |  |  |
|                                                                                                         |                                                                                                                                                     |  |  |
|                                                                                                         | (4 marks)                                                                                                                                           |  |  |
| 2                                                                                                       | $x^2 = -(1+4x)$                                                                                                                                     |  |  |
|                                                                                                         |                                                                                                                                                     |  |  |
|                                                                                                         |                                                                                                                                                     |  |  |
|                                                                                                         | (4 marks)                                                                                                                                           |  |  |
| 3                                                                                                       | $10x - 2 = -4x^2$                                                                                                                                   |  |  |
|                                                                                                         |                                                                                                                                                     |  |  |
|                                                                                                         |                                                                                                                                                     |  |  |
|                                                                                                         |                                                                                                                                                     |  |  |
|                                                                                                         | (4 marks)                                                                                                                                           |  |  |
| 4                                                                                                       | $3-x=3x^2$                                                                                                                                          |  |  |
|                                                                                                         |                                                                                                                                                     |  |  |
|                                                                                                         |                                                                                                                                                     |  |  |
|                                                                                                         |                                                                                                                                                     |  |  |
|                                                                                                         | (4 marks)                                                                                                                                           |  |  |

| 5  | $15 = 7x + 2x^2$         |
|----|--------------------------|
|    |                          |
|    |                          |
|    |                          |
|    | (4 marks)                |
| 6  | $4y^2 = -5y - 1$         |
|    |                          |
|    |                          |
|    |                          |
|    |                          |
| 7  | $8x - 4x^2 = -6$         |
|    |                          |
|    |                          |
|    |                          |
|    |                          |
| 8  | $10x^2 = 60 - 25x$       |
|    |                          |
|    |                          |
|    |                          |
|    |                          |
| 9  | $2x^2 + 6.6x - 1.4 = 0$  |
|    |                          |
|    |                          |
|    |                          |
|    |                          |
| 10 | $2x(x+1) = x^2 - 2x - 4$ |
|    |                          |
|    |                          |
|    |                          |
|    | (4                       |

(3 marks)

(3 marks)

(3 marks)

### O Exercises 13.11-13.12

Write the following as linear inequalities using the correct mathematical symbols and show the solution on a number line.

1 16 plus 2x is less than 10.

2 19 is greater than or equal to 9x plus 1.....

3 1 minus 3x is equal to or exceeds 13

| 4  | A half x is smaller than 2                                                 |            |
|----|----------------------------------------------------------------------------|------------|
| 5  | A third of x is equal to or bigger than 1                                  | (3 marks   |
| 6  | 4x is more than 8 but less than 16                                         | (3 marks)  |
| 7  | 9x is between 9 and 45 but not equal to either                             | (4 marks   |
| 8  | 2x – 6 is between 4 and 10 but equal to neither                            | (4 marks   |
|    |                                                                            | (4 marks)  |
| ,  |                                                                            | (4 marks)  |
| 10 | 20 is equal to or bigger than 2x – 5 which is greater than or equal to 10. |            |
|    |                                                                            | . (4 marks |
|    |                                                                            |            |



### Linear programming

### O Exercise 14.1

Solve each of the following inequalities.

- 1 4x 12 ≥ -6 .....
- /4 model
- O Exercise 14.2

In each question below, shade the region which satisfies the inequality, on the axes given.

 $1 \quad y \leq \frac{1}{2}$ 



(1 mark)

2 y + 2x - 4 < 0



(2 marks)

#### 3 $x - 3y \ge 6$



(3 marks)

### O Exercise 14.3

On the same pair of axes plot the following inequalities and leave **unshaded** the region which satisfies all of them simultaneously.

1 
$$y \le -2x - 3$$
,  $y > -\frac{1}{2}x - 3$ ,  $x \ge -3$ 



(3 marks)

2 
$$y \le -\frac{1}{2}x + 2, y \ge 0, 3y + 2x - 6 > 0$$



(3 marks)

### O Exercise 14.4

- 1 A team at the Olympics has the following number of male (x) and female (y) athletes:
  - · the number of male athletes is greater than 5
  - the number of female athletes is greater than 7
  - · the total number of athletes is less than or equal to 15.

(a) Express each of the three statements above as inequalities.

(3 marks

(b) On the axes below, identify the region that satisfies all the inequalities by shading the unwanted regions.



(6 marks)

(c) State the possible solution(s) for the number of male and female athletes in this Olympic team.



#### O Exercises | 5.1-| 5.2

Give the next two terms in each of the following sequences of numbers.

- 3 5, 13, 21, 29......(1 mark)
- 4 (a) Draw the next two patterns in the sequence below.



(2 marks)

(b) Complete the table below linking the number of white squares to the number of shaded squares.

| Number of white squares  | 2 | 3 | 4 | 5 | 6 |
|--------------------------|---|---|---|---|---|
| Number of shaded squares |   |   |   |   |   |

(c) Write the rule for the nth term of the sequence.

(d) Use your rule to predict the number of shaded squares in a pattern with 50 white squares.

(2 mark



| 5  | (i) calculate the next (ii) explain the patter                                      | t two terms                                                    |           |  |  |  |  |
|----|-------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------|--|--|--|--|
|    | (a) 9, 16, 25, 36                                                                   |                                                                | (2 marks) |  |  |  |  |
|    |                                                                                     |                                                                | (2 marks) |  |  |  |  |
|    | <b>(b)</b> 12, 24, 36, 48                                                           |                                                                | (2 marks) |  |  |  |  |
|    |                                                                                     |                                                                | (2 marks) |  |  |  |  |
|    | (c) 1, 1, 2, 3, 5, 8, 13                                                            |                                                                | (2 marks) |  |  |  |  |
|    |                                                                                     |                                                                | (2 marks) |  |  |  |  |
| 6  | For each of the sequences shown below, give an expression for the <i>n</i> th term: |                                                                |           |  |  |  |  |
|    | (a) 7, 11, 15, 19                                                                   |                                                                | (2 marks) |  |  |  |  |
|    | <b>(b)</b> 7, 9, 11, 13                                                             |                                                                | (2 marks) |  |  |  |  |
|    | (c) 3, 6, 11, 18                                                                    |                                                                | (2 marks) |  |  |  |  |
| U: | Using a table if necessary:  (a) give the next two term (b) find the formula for t  | rms in each of the following sequence<br>the <i>n</i> th term. |           |  |  |  |  |
| 1  | 0, 7, 26, 63, 124                                                                   |                                                                |           |  |  |  |  |
|    | (a)                                                                                 |                                                                |           |  |  |  |  |
|    |                                                                                     |                                                                |           |  |  |  |  |
|    | ***************************************                                             |                                                                | (2 marks) |  |  |  |  |
|    | (b)                                                                                 |                                                                |           |  |  |  |  |
|    |                                                                                     |                                                                | (2 marks) |  |  |  |  |
| 2  | 2 3, 10, 29, 66, 127                                                                |                                                                |           |  |  |  |  |
|    | (a)                                                                                 |                                                                |           |  |  |  |  |
|    |                                                                                     |                                                                |           |  |  |  |  |
|    |                                                                                     |                                                                | (3 marks) |  |  |  |  |
|    | (b)                                                                                 |                                                                |           |  |  |  |  |
|    |                                                                                     |                                                                | (2   1 )  |  |  |  |  |

### O Exercise I 5.4

| Gi                                                   | ve the next two terms in each of the following sequences of numbers.                                                      |  |  |  |  |
|------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 1                                                    | 64, 32, 16, 8                                                                                                             |  |  |  |  |
| 2                                                    | 5000, 500, 50, 5                                                                                                          |  |  |  |  |
| 3                                                    | 10³, 10², 10(1 mark                                                                                                       |  |  |  |  |
| 4                                                    | The nth term of a geometric sequence is given by the formula $u_n=2\times 3^{n-1}$ . (a) Calculate $u_i,\ u_2$ and $u_3.$ |  |  |  |  |
|                                                      |                                                                                                                           |  |  |  |  |
|                                                      |                                                                                                                           |  |  |  |  |
|                                                      | (b) What is the value of $n$ if $u_n = 1458$ ?                                                                            |  |  |  |  |
|                                                      |                                                                                                                           |  |  |  |  |
|                                                      |                                                                                                                           |  |  |  |  |
| 5                                                    | Part of a geometric sequence is given below:                                                                              |  |  |  |  |
|                                                      | ,, 4,,, $\frac{1}{16}$ where $u_3 = 4$ and $u_6 = \frac{1}{16}$                                                           |  |  |  |  |
| Ca                                                   | Iculate:                                                                                                                  |  |  |  |  |
|                                                      | (a) the common ratio r                                                                                                    |  |  |  |  |
|                                                      | 70 - 12                                                                                                                   |  |  |  |  |
|                                                      | (b) the value of $u_1$ (2 marks                                                                                           |  |  |  |  |
|                                                      | (2 marks                                                                                                                  |  |  |  |  |
|                                                      | (c) the formula for the <i>n</i> th term                                                                                  |  |  |  |  |
|                                                      | ,                                                                                                                         |  |  |  |  |
|                                                      | (2 marks                                                                                                                  |  |  |  |  |
| (d) the 10th term, giving your answer as a fraction. |                                                                                                                           |  |  |  |  |
|                                                      |                                                                                                                           |  |  |  |  |
|                                                      |                                                                                                                           |  |  |  |  |



#### O Exercise 16.1

| 1 | (a) If d is proportional to p and the constant of proportionality is k, write an equation for d in terms of p.                                                                   |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (1 mark)                                                                                                                                                                         |
|   | <b>(b)</b> If $d = 10$ when $p = 5$ find $k$                                                                                                                                     |
|   | (c) Find d when p = 20(1 mark)                                                                                                                                                   |
|   | (d) Find p when d = 2(1 mark)                                                                                                                                                    |
| 2 | a is inversely proportional to $b$ .                                                                                                                                             |
|   | (a) If $k$ is the constant of proportionality, write an equation for $a$ in terms of $b$ .                                                                                       |
|   | (1 mark)                                                                                                                                                                         |
|   | <b>(b)</b> If $k = 20$ , find $a$ when $b = 40$ (1 mark)                                                                                                                         |
| 3 | p is inversely proportional to $q$ squared. If $q = 0.5$ when $p = 2$ :                                                                                                          |
|   | (a) Write an equation for p in terms of q(1 mark)                                                                                                                                |
|   | <b>(b)</b> Find <i>p</i> when <i>q</i> = 5(1 mark)                                                                                                                               |
|   | (c) If $p = 0.005$ find two values for $q$ .                                                                                                                                     |
|   |                                                                                                                                                                                  |
|   |                                                                                                                                                                                  |
| 4 | q is proportional to $p$ squared and $q$ is inversely proportional to $r$ cubed. Using $k$ as the final constant of proportionality, write an equation for $p$ in terms of $r$ . |
|   |                                                                                                                                                                                  |
|   |                                                                                                                                                                                  |
|   |                                                                                                                                                                                  |
|   |                                                                                                                                                                                  |
|   |                                                                                                                                                                                  |
| 0 | Exercise 16.2                                                                                                                                                                    |
| 1 | a is proportional to the cube of $b$ . If $b=2$ when $a=32$ , find $a$ when $b=5$ .                                                                                              |
|   |                                                                                                                                                                                  |
|   |                                                                                                                                                                                  |
|   |                                                                                                                                                                                  |

#### O Exercise 16.3

| 1 | The power of an engine is proportional to the square of its mass. If an engine weighing 10 kg gives 200 b.h.p. find:                                                                                                                                           |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (a) the power of an engine weighing 30 kg                                                                                                                                                                                                                      |
|   |                                                                                                                                                                                                                                                                |
|   |                                                                                                                                                                                                                                                                |
|   | (b) the mass of an engine giving 5000 b.h.p.                                                                                                                                                                                                                   |
|   | (2 marks)                                                                                                                                                                                                                                                      |
| 2 | The speed (v) in metres/seconds of a dam outlet is measured. It is proportional to the square root of the level indicated on a gauge (f) in metres. If $J=64$ when $v=24$ , calculate v when $J=12100$ .                                                       |
|   |                                                                                                                                                                                                                                                                |
|   |                                                                                                                                                                                                                                                                |
|   | (3 marks)                                                                                                                                                                                                                                                      |
| 3 | The force (f) Newtons between two objects is inversely proportional to the square of the distance (f) metres between them. Two magnets attract with a force of 18 Newtons when they are 2 cm apart.  What is the force of attraction when they are 6 cm apart? |
|   |                                                                                                                                                                                                                                                                |
|   |                                                                                                                                                                                                                                                                |
|   |                                                                                                                                                                                                                                                                |



### Graphs in practical situations

#### O Exercise 17.1

Water is charged at \$0.20 per unit.
 (a) Draw a conversion graph on the axes below up to 50 units.



(3 marks)

- (b) From your graph, estimate the cost of using 23 units of water.

2 A Science exam is marked out of 180.

(a) Draw a conversion graph to change the marks to percentages.



(3 marks)

(b) Using the graph and showing your method clearly, estimate the percentage score if a student achieved a mark of 130.

(c) Using the graph and showing your method clearly, estimate the actual mark if a student got 35%. 

#### O Exercise 17.2

|   | (a) 60 m in 12s(1 mark                |
|---|---------------------------------------|
|   | (b) 140km in 1 h 20 min               |
| 2 | How far will an object travel during: |
|   | (a) 25s at 32 m/s                     |

(b) 2h 18min at 15m/s? .....

3 How long will an object take to travel:

1 Find the average speed of an object moving:

(b) 4.8km at 48 m/s?

#### O Exercises 17.3-17.4

1 Two people, A and B, set off from points 300 m apart and travel towards each other along a straight road. A graph of their movement is shown below.



- (a) Calculate the speed of person A.
- (1 mark) (b) Calculate the speed of person B when she is moving.
- (c) Use the graph to estimate how far apart they are 50 seconds after person A has set off.

  (2 marks)
- (d) Explain the motion of person B in the first 20 seconds.

(e) Calculate the average speed of person B during the first 60 seconds.

(2 marks)

- 2 A cyclist sets off at 0900 one morning and does the following:
  - Stage 1: Cycles for 30 minutes at a speed of 20 km/h
  - Stage 2: Rests for 15 minutes
  - . Stage 3: Cycles again at a speed of 30km/h for 30 minutes
  - Stage 4: Rests for another 15 minutes
  - Stage 5: Realises his front wheel has a puncture so walks with the bicycle for 30 minutes at a speed of 5 km/h to his destination.
  - (a) At what time does the cyclist reach his destination?

(1 mark)
(b) How far does he travel during stage 1?

(c) Draw a distance–time graph on the axes below, to show the cyclist's movement.



(5 marks)

(d) Calculate the cyclist's average speed for the whole journey. Give your answer in km/h.

3-

#### O Exercises 17.5-17.6

1 Using the graphs below, calculate the acceleration/deceleration in each case.

(a) 10 9 8 8 (8/1) 6 19 9 5 5 4 4

4



.....(2 marks)

2 A sprinter is in training. Below is a graph of one of his sprints.

8 10 12 14 16 18 20

Time (s)



(a) Describe in words the sprinter's motion between the second and eighth second.

(b) Calculate the acceleration/deceleration during the first two seconds.

(c) Calculate the acceleration/deceleration during the last phase of the sprint.

(1 mark)

#### O Exercise 17.7

- 1 A stone is dropped off the top of a cliff. It accelerates at a constant rate of 10 m/s² for 4 seconds before hitting the water at the bottom of the cliff.
  - (a) Complete the table below.

| Time (s)    | 0 | 1 | 2 | 3 | 4 |
|-------------|---|---|---|---|---|
| Speed (m/s) | 0 |   |   |   |   |

(2 marks)

(b) Plot a speed-time graph below for the 4 seconds it takes for the stone to drop.



(2 marks)

(c) Calculate the distance fallen by the stone between the first and third seconds.

...(2 marks)

(d) Calculate the height of the cliff.

(1 mark)

2 Two objects. A and B, are at the same point when the time t = 0s.

At that point, object A accelerates from rest at a constant rate of 2 m/s2 for 6 seconds.

Object B is travelling at 15 m/s but decelerates at a constant rate of 3 m/s<sup>2</sup> until it comes to rest.

(a) On the same axes below, plot a speed-time graph for both objects.



(4 marks)

(b) After how many seconds are the two objects travelling at the same speed?

......(1 mark)

(c) Assuming both objects are travelling in the same straight line, calculate how far apart they are after 4 seconds.



### (18) Graphs of functions

#### O Exercise 18.1

For each of the following quadratic functions, complete the table of values and draw the graph on the grid provided.

1  $y = 2x^2 + 12x + 16$ 

| X | -5 | -4 | -3 | -2 | -1 |
|---|----|----|----|----|----|
| V |    |    |    |    |    |

(2 marks)



(2 marks)

2  $y = -x^2 + 3x + 4$ 

| х | -2 | -1 | 0 | 1 | 2 | 3 | 4 | 5 |
|---|----|----|---|---|---|---|---|---|
| v |    |    |   |   |   |   |   |   |

(2 marks)



#### O Exercise 18.2

Solve each of the following quadratic functions below by first plotting a graph of the function.

1  $2x^2 - 8x - 10 = 0$ 



x = .....(2 marks)

(3 marks)

 $2 -2x^2 + 16x - 24 = 0$ 

-20



x = .....(2 marks)

 $3 - \frac{1}{2}x^2 - x + 24 = 0$ 



#### O Exercise 18.3

Using the graphs you drew in the previous exercise, solve the following quadratic equations. Show your method clearly.

1  $2x^2 - 8x + 6 = 0$ 

......(2 marks)

 $2 -2x^2 + 16x - 30 = 0$ 

(2 marks)

$$3 - \frac{1}{2}x^2 - x + 12 = 0$$

(2 marks)

#### O Exercise 18.4

1 Complete the table of values and draw on the grid provided the graph of the reciprocal function  $y = \frac{3}{2x}$ .

| х | -4 | -3 | -2 | -1 | 0 | 1 | 2 | 3 | 4 |
|---|----|----|----|----|---|---|---|---|---|
| v |    |    |    |    |   |   |   |   |   |

(2 marks)



(2 marks)

#### O Exercises 18.5-18.6

For each of the functions given below:
(a) draw up a table of values for x and f(x)
(b) plot a graph of the function.

$$1 \quad f(x) = \frac{1}{x^2} - x \qquad -4 \le x \le 3$$

(a)



- 2  $f(x) = 3^x x 2$   $-5 \le x \le 2$
- (b)

| J | ١ | ۱ |  |
|---|---|---|--|
|   |   |   |  |
|   |   |   |  |
|   |   |   |  |



-3.

(2 marks)

(3 marks)

#### O Exercise 18.7

For each of the functions below:

(a) plot a graph

(b) calculate the gradient of the function at the point given.

1  $v = x^2 - x - 2$   $-2 \le x \le 3$  Gradient where x = 2

(a)



(2 marks)

- (b) .....
  - (3 marks)

2  $y = 2x^{-1} + x$   $1 \le x \le 6$  Gradient where x = 2

(a) y 6



(2 marks)

(b) ....

(3 marks)

#### O Exercise 18.8

1 (a) Plot the function  $y = \frac{3}{x^2} - 2x$  for  $-5 \le x \le 2$ .



(3 marks)

| *************************************** |                  |         |                 |     |         |      | <br> | <br> | (4 m |
|-----------------------------------------|------------------|---------|-----------------|-----|---------|------|------|------|------|
| a) Plot the                             | function         | $y=3^x$ | $+\frac{1}{2}x$ | for | 4 ≤ x ≤ | ≤ 2. |      |      |      |
|                                         | <i>y</i> <b></b> |         |                 |     |         |      |      |      |      |
|                                         | 11               |         |                 |     |         |      |      |      |      |
|                                         | 10               |         |                 |     |         |      |      |      |      |
|                                         | 9                | _       |                 |     |         |      |      |      |      |
| -                                       | 8                | -       |                 |     |         |      |      |      |      |
|                                         | 7                | -       |                 |     |         |      |      |      |      |
|                                         | 6                |         |                 |     |         |      |      |      |      |
|                                         | 5                | -       |                 |     |         |      |      |      |      |
| -                                       | 4                | -       |                 |     |         |      |      |      |      |
|                                         | 3                | -       |                 |     |         |      |      |      |      |
|                                         | 2                | -       |                 |     |         |      |      |      |      |
|                                         | 1                |         |                 |     |         |      |      |      |      |
|                                         | 2 _1 0           | 1 1     | •               |     |         |      |      |      |      |
| -4 -3 -                                 | -1               | 1 2     | X               |     |         |      |      |      |      |
|                                         | -2-              | -       |                 |     |         |      |      |      |      |
|                                         | -3-              | _       |                 |     |         |      |      |      |      |
|                                         | -4               | -       |                 |     |         |      |      |      |      |
|                                         | _5               |         |                 |     |         |      |      |      | (3 m |

2



| 0 | Exercise 19.1                           |
|---|-----------------------------------------|
| 1 | If $f(x) = 3x + 3$ , calculate;         |
|   | (a) f(2)                                |
|   | (b) f(4)                                |
|   | (c) $f(\frac{1}{2})$                    |
|   | (2)                                     |
|   | (d) f(-2)                               |
|   | (e) f(-6)                               |
|   | (f) $f(-\frac{1}{2})$ (1 mark)          |
| 2 | If $f(x) = 2x - 5$ , calculate:         |
|   | (a) f(4)                                |
|   | (b) f(7)                                |
|   | (c) $f(\frac{7}{2})$                    |
|   | (d) f(-4.25)                            |
|   |                                         |
| 3 | If $g(x) = -x + 6$ , calculate:         |
|   | (a) g(0)                                |
|   | <b>(b)</b> g(4.5)                       |
|   | (c) g(-6.5)                             |
|   | (d) g(-2.3)(1 mark)                     |
| 0 | Exercise 19.2                           |
|   | 74                                      |
| 1 | If $f(x) = \frac{2x}{3} + 4$ calculate: |
|   | (a) f(3)                                |
|   |                                         |
|   | (b) f(9)                                |
|   |                                         |
|   | (c) f(-0.9)                             |
|   |                                         |
|   | (d) f(-1.2)                             |
| - |                                         |

| 2 | If $g(x) = \frac{7x}{2} - 3$ , calculate:   |           |
|---|---------------------------------------------|-----------|
|   | (a) g(2)                                    |           |
|   |                                             | (2 marks) |
|   | (b) g(0)                                    |           |
|   |                                             | (2 marks) |
|   | (c) g(-4)                                   |           |
|   |                                             |           |
|   | (d) g(-0.2)                                 |           |
|   |                                             | (2 marks) |
| 3 | If $h(x) = \frac{-18x}{4} + 2$ , calculate: |           |
|   | (a) h(1)                                    |           |
|   |                                             | (2 marks) |
|   | (b) h(6)                                    |           |
|   |                                             | (2 marks) |
|   | (c) h(-4)                                   |           |
|   |                                             | (2 marks) |
|   | (d) h(-0.8)                                 |           |
|   |                                             | (2 marks) |
|   |                                             |           |
| 0 | Exercise 19.3                               |           |
| 1 | If $f(x) = x^2 + 7$ , calculate:            |           |
|   | (a) f(11)                                   |           |
|   | (4)                                         |           |
|   |                                             |           |
|   | (b) f(1.1)                                  |           |
|   |                                             |           |
|   | (c) f(-13)                                  |           |
|   |                                             | (2 marks) |
|   | (d) $f(\frac{1}{2})$                        |           |
|   |                                             |           |
|   | (e) f(\sqrt{2})                             |           |
|   |                                             | (2 marks) |

| 2 If | $f(x) = 2x^2 - 1$ , calculate:                                         |           |
|------|------------------------------------------------------------------------|-----------|
| 0000 | a) f(5)                                                                |           |
|      |                                                                        | (2 marks) |
|      | b) f(–12)                                                              |           |
|      |                                                                        | (2 marks) |
|      | c) f(\sqrt{3})                                                         |           |
|      |                                                                        |           |
|      | d) $f(-\frac{1}{3})$                                                   |           |
|      |                                                                        |           |
| 3    | $f g(x) = -5x^2 + 1, calculate:$                                       |           |
| 9    | a) g(1/2)                                                              |           |
|      | (2)                                                                    |           |
| á    | b) g(-4)                                                               |           |
|      |                                                                        | (2 marks) |
| 1000 | c) g(√5)                                                               |           |
|      |                                                                        |           |
| 6010 | d) $g(-\frac{3}{2})$                                                   |           |
|      |                                                                        |           |
|      |                                                                        |           |
| )    | Exercise 19.4                                                          |           |
|      |                                                                        | 1         |
|      | f f(x) = 3x + 1, write down the following in their si<br>a) $f(x + 2)$ |           |
| -    | a) T(x + 2)                                                            |           |
|      | b) f(2x – 1)                                                           |           |
| 1    | b) 1(2x - 1)                                                           |           |
| - 6  | r) f(2x²)                                                              |           |
| - 8  | C) T(ZX )                                                              |           |
|      | d) $f\left(\frac{x}{2}+2\right)$                                       |           |
|      | (2 2)                                                                  | /2        |

| If g | $(x) = 2x^2 - 1$ , write down the following in their simplest form: |          |
|------|---------------------------------------------------------------------|----------|
| (a)  | ) g(3x)                                                             |          |
|      |                                                                     |          |
| (b   | ) g(x/z)                                                            |          |
|      | 147                                                                 |          |
| (=)  | ) g(\(\sqrt{2x}\)                                                   |          |
| (c)  | , 9(22)                                                             |          |
|      |                                                                     | (3 marks |
| (d   | ) g(x – 5)                                                          |          |
|      |                                                                     |          |
|      |                                                                     |          |
| E    | xercise 19.5                                                        |          |
| nd 1 | the inverse of each of the following functions.                     |          |
|      | ) f(x) = x + 4                                                      |          |
|      |                                                                     |          |
| (b   | ) f(x) = 5x                                                         |          |
| ,    | a(x) = 3x - 5                                                       |          |
| (a   | $\int g(x) = 3x - 5$                                                |          |
|      |                                                                     | (3 marks |
| (b   | $g(x) = \frac{5x}{2} - 1$                                           |          |
|      |                                                                     |          |
| (c)  | $g(x) = \frac{2(2x-3)}{x}$                                          |          |
|      | 5                                                                   |          |
|      |                                                                     | ****     |

## O Exercise 19.6 1 If f(x) = x - 1, evaluate: (b) f<sup>-1</sup>(0) (1 mark) 2 If f(x) = 2x + 3 evaluate: (a) f<sup>-1</sup>(5) (3 marks) 3 If g(x) = 3(x - 2), evaluate g<sup>-1</sup>(12). 4 If $g(x) = \frac{x}{2} + 1$ , evaluate $g^{-1}(\frac{1}{2})$ ..... O Exercise 19.7 1 Write a formula for fg(x) in each of the following: (a) f(x) = 2x, g(x) = x + 4... (3 marks) (b) f(x) = x + 4, g(x) = x - 4

| 2 | Write a formula for pq(x) in each of the following:   |
|---|-------------------------------------------------------|
|   | (a) $p(x) = 2x$ , $q(x) = x + 1$                      |
|   | (3 marks                                              |
|   | <b>(b)</b> $p(x) = x + 1$ , $q(x) = 2x$               |
|   | (3 marks                                              |
| 3 | Write a formula for $jk(x)$ in each of the following: |
|   | (a) $j(x) = \frac{x-2}{4}$ , $k(x) = 2x$              |
|   | (4 marks                                              |
|   | <b>(b)</b> $j(x) = 6x + 2$ , $k(x) = \frac{x - 3}{2}$ |
|   | -                                                     |
|   |                                                       |
| 4 | (a) $f(x) = 3x - 2$ , $g(x) = \frac{x}{3} + 2$        |
|   | $(a) (x) = 3x - 2, g(x) = \frac{\pi}{3} + 2$          |
|   | (4 marks                                              |
|   | <b>(b)</b> $f(x) = \frac{2}{x+1}$ , $g(x) = -x+1$     |
|   |                                                       |

#### Exam focus

1 (a) Factorise 9a2 - 36b2.

 $V = \frac{1}{2}\pi r^2 h$ , find the radius r.

- .....[2]
- **(b)** Factorise  $d^2 + d 12$ .
- (c) Make 'a' the subject of the formula  $\frac{m}{a} = \frac{3c}{b} \frac{a}{b}$ .
- .....[3]
- (d) Factorise and simplify  $\frac{a^2+5a}{a^2+2a-15}$  .
- 2 A cone has a height (h) of 8 cm and a volume (V) of 300 cm<sup>3</sup>. Given the formula
  - [3]
- - (d)  $\frac{(a^2)^2}{(a^2)^2}$

#### 4 Consider the shape below.



|   | x cm                                                                                                                                                                                                                                                                          |     |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | (a) Write an equation in terms of x for the area of the shape.                                                                                                                                                                                                                |     |
|   | (b) Solve the equation to find the value of x.                                                                                                                                                                                                                                | [3] |
|   |                                                                                                                                                                                                                                                                               | [3] |
| 5 | (a) Write the equation $4x^2 - 24x + 29 = 0$ in completed square form.                                                                                                                                                                                                        |     |
|   |                                                                                                                                                                                                                                                                               | [3] |
|   | <b>(b)</b> Solve the equation $4x^2 - 24x + 29 = 0$ giving your answer(s) to 1 d.p.                                                                                                                                                                                           |     |
|   |                                                                                                                                                                                                                                                                               |     |
| 6 | A man takes some chickens (x) and ducks (y) to sell at a market. The number of chickens and twice the number of ducks is less than or equal to 30. Three times the number of chickens and half the number of ducks is greater than 15. The number of chickens is less than 4. | [4] |
|   | (a) Express the three conditions above as inequalities.                                                                                                                                                                                                                       |     |
|   | ,                                                                                                                                                                                                                                                                             |     |
|   |                                                                                                                                                                                                                                                                               |     |
|   |                                                                                                                                                                                                                                                                               | [3] |



(b) On the axes below, identify the region that satisfies all the inequalities by shading the unwanted regions.



[6]

- (c) State the possible solution(s) for the number of chickens and ducks that the man takes to market.
- 7 For each of the sequences given below:
  - (i) calculate the next two terms
    (ii) calculate the rule for the nth term.
  - (II) calculate the rule for the *n*th term
  - (a) 11, 22, 33, 44......[2]
- [3]

- 9 An object is travelling as shown on the speed–time graph below. Its motion was recorded as four stages: A, B, C and D.



- (a) During which stage(s) was the object travelling at constant speed? Justify your answer.
- (b) What was the rate of acceleration during stage C?
- (c) During which stage was the deceleration greatest? Justify your answer by calculation and by referring to the shape of the graph.



| (d) What is the distance travelled during stage C?                                             |      |
|------------------------------------------------------------------------------------------------|------|
|                                                                                                | [2   |
| (e) What is the total distance travelled by the object?                                        |      |
|                                                                                                | [3   |
| The function $y = \frac{4}{x^2} - 3$ is shown below.                                           |      |
| 4                                                                                              |      |
| 2                                                                                              |      |
| 1 2                                                                                            |      |
| -7 -6 -5 -4 -3 -2 +1 0                                                                         |      |
| -3                                                                                             |      |
| 41                                                                                             |      |
| Using the graph, solve the equation $x^3 + 5x^2 - 4 = 0$ .                                     |      |
|                                                                                                |      |
|                                                                                                | . [4 |
| 1 If $h(x) = \frac{1}{3}x - 3$ , evaluate $h^{-1}(-\frac{1}{2})$ .                             |      |
|                                                                                                |      |
|                                                                                                | . [4 |
| 2 The functions $g(x)$ and $h(x)$ are given below:<br>$g(x) = 10(3x - 1), h(x) = \frac{2x}{5}$ |      |
| $g(x) = 10(3x - 1), \ n(x) = \frac{1}{5}$ (a) Write a formula for gh(x).                       |      |
|                                                                                                |      |
|                                                                                                |      |
| (b) Evaluate gh(-4).                                                                           | [3   |
|                                                                                                |      |

# (Topic ) Geometry

## (20) Geometrical vocabulary

#### O Exercise 20.1

1 Explain, giving reasons, whether the following triangles are definitely congruent. (Note: the diagrams are not drawn to scale.)





#### O Exercise 20.2

1 Complete the table below, by entering either 'Yes' or 'No' in each cell.

|                                       | Rhombus | Parallelogram | Kite |
|---------------------------------------|---------|---------------|------|
| Opposite sides equal in length        |         |               |      |
| All sides equal in length             |         |               |      |
| All angles right angles               |         |               |      |
| Both pairs of opposite sides parallel |         |               |      |
| Diagonals equal in length             |         |               |      |
| Diagonals intersect at right angles   |         |               |      |
| All angles equal                      |         |               |      |

(3 marks)

#### O Exercise 20.3

1 Three nets A, B and C are shown below. Which (if any) can be folded to make a cube?

|     | В |    |
|-----|---|----|
| Α — |   | с  |
|     |   |    |
|     |   | (2 |



# Geometrical constructions and scale drawings

- O Exercises 21.1-21.3
- 1 Using only a ruler and a pair of compasses, construct the following triangle XYZ. XY = 5 cm, XZ = 3 cm and YZ = 7 cm.

(3 marks)

2 Draw an angle of  $300^{\circ}$  below. Using a pair of compasses, bisect the angle.

3 On the triangle ABC below:

(a) Construct the perpendicular bisector of each of the triangle's sides.

(b) Draw a circle such that the circumference passes through each of the vertices A, B and C.

(3 marks) (1 mark)



#### Exercise 21.4

The scale of a map is 1:20000.

(a) Two villages are 12cm apart on the map. How far apart are they in real life? Give your answer in kilometres.

(b) If the length of the real car is 4.9m, what is the length of the model car?

......(1 mark) (b) The distance from a village to the edge of a lake is 8km in real life.

How far apart would they be on the map? Give your answer in centimetres.

2 (a) A model car is a  $\frac{1}{25}$  scale model. Express this as a ratio.



#### O Exercise 22.1

1 Two triangles are shown below.



#### O Exercise 22.2

| The five rectangles below are each an enlargement of the previous one by a scale factor of 1.2.                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| A B C D E                                                                                                                                                                  |
|                                                                                                                                                                            |
| (a) If the area of rectangle D is 100cm², calculate to 1 d.p. the area of:                                                                                                 |
| (i) rectangle E(1 mark)                                                                                                                                                    |
| (ii) rectangle A                                                                                                                                                           |
|                                                                                                                                                                            |
| (b) If the rectangles were to continue in this sequence, which letter rectangle would be the<br>last to have an area below 500 cm <sup>2</sup> ? Show your method clearly. |
|                                                                                                                                                                            |
|                                                                                                                                                                            |
|                                                                                                                                                                            |
| (3 marks)                                                                                                                                                                  |
|                                                                                                                                                                            |
| A triangle has an area of 50cm <sup>2</sup> . If the lengths of its sides are all reduced by a scale factor of 30%, calculate the area of the reduced triangle.            |
|                                                                                                                                                                            |
|                                                                                                                                                                            |
| (3 marks)                                                                                                                                                                  |
|                                                                                                                                                                            |
|                                                                                                                                                                            |
| Exercises 22.3-22.4                                                                                                                                                        |
| A cube has a side length of 4.5 cm.                                                                                                                                        |
| (a) Calculate its total surface area.                                                                                                                                      |
| (4) ************************************                                                                                                                                   |
| (2 marks)                                                                                                                                                                  |
| (b) The cube is enlarged and has a total surface area of 1093.5cm <sup>2</sup> .                                                                                           |
| Calculate the scale factor of enlargement.                                                                                                                                 |
| -                                                                                                                                                                          |
|                                                                                                                                                                            |
| (c) Calculate the volume of the enlarged cube.                                                                                                                             |
|                                                                                                                                                                            |
| (2 marks)                                                                                                                                                                  |
|                                                                                                                                                                            |

2 The two cylinders shown below are similar.



- (a) Calculate the volume factor of enlargement.
- (1 mark)
  (b) Calculate the scale factor of enlargement. Give your answer to 2 d.p.
- (c) Calculate the value of x. (2 marks)
- ......(1 mark)
- 3 A large cone has its top sliced as shown in the diagram below. The smaller cone is mathematically similar to the original cone.



- (a) What is the scale factor of enlargement from the small cone to the original cone?
- (b) If the original cone has a volume of 1350 cm³, calculate the volume of the smaller cone.
- /2 marke)
- 4 An architect's drawing is drawn to a scale of 1:50. The area of a garden on his drawing is 620 cm<sup>2</sup>. Calculate the area of the real garden, giving your answer in m<sup>2</sup>.



#### O Exercise 23.1

On each of the pairs of diagrams below, draw a different plane of symmetry.
 (a) A cuboid with a square cross-section.



(2 marks)

(b) A triangular prism with an isosceles triangular cross-section.



(2 marks)

2 Determine the order of rotational symmetry of the cube, about the axis given.



#### O Exercise 23.2

1 In the circle below, O is the centre, AB = CD and X and Y are the midpoints of AB and CD respectively. Angle OCD = 50° and angle AOD = 30°.



|    |    | F 1 1   | 11  |        |    |     | 100   | -    |     |        |       |
|----|----|---------|-----|--------|----|-----|-------|------|-----|--------|-------|
| -( | a) | Explain | wnv | triang | es | AOR | and C | JUD. | are | congru | ιent. |

| b) What type of triangle is triangle AOB?(1 mark) |
|---------------------------------------------------|
| c) Calculate the obtuse angle XOY.                |
|                                                   |
| 3                                                 |
| (3 marks)                                         |

#### O Exercise 23.3

1 The diagram below shows a circle with centre at O. XZ and YZ are both tangents to the circle.



| Calculate, giving detailed reasons, the size of the angle marked p. |  |  |  |  |
|---------------------------------------------------------------------|--|--|--|--|
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |
|                                                                     |  |  |  |  |





## Angle properties

#### O Exercises 24.1-24.3

1 Calculate the size of each of the labelled angles below.



 a =
 .(1 mark)

 b =
 .(1 mark)

 c =
 .(1 mark)

 d .(1 mark)

 e =
 .(1 mark)

2 Calculate the size of the labelled angles in the kite below.



p = .....(1 mark) q = .....(2 marks)

#### O Exercise 24.4

1 The size of each interior angle of a regular polygon is 165°. Calculate:
(a) the size of each exterior angle

(b) the number of sides of the regular polygon. (2 marks)

2 Find the value of each interior angle of a regular polygon with:

#### O Exercise 24.5

In each of the following diagrams, O marks the centre of the circle. Calculate the value of  $\boldsymbol{x}$  in each case.





#### O Exercise 24.6

In each of the following diagrams, O marks the centre of the circle. Calculate the value of  $\boldsymbol{x}$  in each case.





1 The pentagon below has angles as shown.



| (a) | State the sum of the internal angles of a pentagon.      |
|-----|----------------------------------------------------------|
|     | (1 mark)                                                 |
| (b) | Calculate the value of x.                                |
|     |                                                          |
|     |                                                          |
| (c) | Calculate the size of each of the angles of the hexagon. |
|     |                                                          |
|     | (2 marks)                                                |

2 The diagram below shows an octagon.



In each of the following diagrams, O marks the centre of the circle. Calculate the value of the marked angles in each case.

33



.....(3 marks)

(2 marks)

#### O Exercise 24.9

In the following, calculate the size of the marked angles.



In the following, calculate the size of the marked angles.

1



(2 marks)

2



/m 1.3



#### Exercises 25.1-25.3

1 The diagram below shows a plan view of a rail AB bent at 90° at C. A horse is tethered to the rail by a ring attached to a rope 3m long. The ring can run freely along the full length of the rail. The horse can access both sides of the rail. Using a scale of 1 cm = 1m, shade the locus of all the points that the horse can reach.



(3 marks)

2 The diagram below is a plan view of a tall column and three people, one each at A, B and C. The people at A and B cannot see over the column. In the current position, the person at C cannot be seen by either of the people at A or B.



#### Exam focus

1 Draw a possible net for the cuboid in the grid below.



- 2



- 2 The scale of a map is 1:50000.
  - (a) Two rivers are 8.2 cm apart on the map. How far apart are they in real life? Give your answer in metres.

(b) Two towns are 20km apart in real life. How far apart are they on the map?

Give your answer in centimetres.

.....[2]

- A cube is enlarged by increasing the lengths of its sides by 10%.
   (a) Calculate the volume factor of enlargement from the original to the enlarged cube.
  - (b) If the volume of the enlarged cube is 2662 cm³, calculate the volume of the original cube.

[2

4 Two right-angled triangular prisms are shown below. One is an enlargement of the other. (Knowledge of Pythagoras' theorem is needed for this question.)



| (a) | Calculate the scale factor of enlargement.                                                            |    |
|-----|-------------------------------------------------------------------------------------------------------|----|
|     |                                                                                                       |    |
| (b) | Calculate the area factor of enlargement.                                                             |    |
|     |                                                                                                       | [1 |
| (c) | Calculate the volume factor of enlargement.                                                           |    |
|     |                                                                                                       | [1 |
| (d) | If the volume of the larger prism is $5000\mathrm{cm^3}$ , calculate the volume of the smaller prism. |    |
|     |                                                                                                       |    |
|     |                                                                                                       | [2 |
|     |                                                                                                       |    |

5 Calculate the angle marked x in the diagram below. O is the centre of the circle and PQ and QR are both tangents to the circle.





6 The diagram below shows only two of the sides of a regular polygon.



Each internal angle of the regular polygon is 176°. Calculate the number of sides of the regular polygon.

7 In the diagram below, AB and BC are tangents to the circle. AB = 8 cm, OB = x cm and angle OAC = 24°.



(a) Calculate the angle ABO. [2]

[3]

8 The circle below has its centre at O.



| (a) Calculate the size of the angle x. |
|----------------------------------------|
|                                        |
| [3                                     |
| (b) Calculate the size of the angle y. |
|                                        |
| [2                                     |

9 A trapezium is shown in the circle below. Each of its vertices lies on the circumference of the circle.



(a) Calculate the size of angle n.

(b) Calculate the size of angle m. [2]

10 A rectangular garden ABCD of dimensions  $8\,\text{m} \times 4\,\text{m}$  is shown below.



A landscape designer wants to construct a path through the garden so that its central line is always equidistant from the corners A and C. If the path is 1m wide, construct and shade the locus of the points representing the path.

# (Topic Amensuration

## **26** Measures

#### O Exercises 26.1-26.5

| 1 | Convert the following lengths to the units indicated:                         |           |
|---|-------------------------------------------------------------------------------|-----------|
|   | (a) 0.072 m to mm                                                             | mark)     |
|   | (b) 20400m to km                                                              | mark)     |
| 2 | Convert the following masses into the units indicated:                        |           |
|   | (a) 420 g to kg(1 i                                                           | mark)     |
|   | (b) 1.04 tonnes to kg                                                         | mark)     |
| 3 | Convert the following liquid measures into the units indicated:               |           |
|   | (a) 12ml to litres                                                            | mark)     |
|   | (b) 0.24 litres to ml                                                         | mark)     |
| 4 | A rectangular field has an area of $105000m^2$ . Convert the area into $km^2$ |           |
|   | (2 m                                                                          |           |
| 5 | (a) A container has a volume of 3.6 m³. Convert the volume into cm³.          |           |
|   | (2 m                                                                          | ıarks)    |
|   | (b) A box has a volume of 3250 cm <sup>3</sup> . Convert the volume into:     |           |
|   | (i) mm³                                                                       | narks)    |
|   | (1) m <sup>3</sup>                                                            | a a ulca) |



## Perimeter, area and volume

#### O Exercises 27.1-27.5

1 Calculate the circumference and area of the circle below.



2 A circle has an area of 12.25π cm<sup>2</sup>. Calculate:

(b) its circumference. (2 marks

3 A semicircular shape is removed from a trapezium shape as shown.



If the semicircle has a radius of 7 cm, calculate the shaded area remaining.

(3 marks)

4 A trapezium and parallelogram are joined as shown.



If the total area is  $53.2 \, \text{cm}^2$ , calculate the value of x.

5 1

| 5 | Five thin semicircular chocolate pieces are placed in a rectangular box as shown.  \$\begin{align*} \delta & \de |  |  |
|---|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|   | (a) the length of the box                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
|   | (b) the area occupied by one piece of chocolate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|   | (1 mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|   | (c) the area of the box not covered by chocolate pieces.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
|   | (2 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| , | A circular hole is cut out of a circular shape as shown.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |
| ь | A circular nois is crucial to a circular snape as snown. The area remaining is the same as the area of the hole removed. The circumference of the original piece is $15\pi$ cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|   | Calculate the radius of the circular hole.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|   | (4 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 0 | Exercises 27.6-27.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |
| 1 | A cuboid has a length of 7 cm, a width of 2.5 cm and a total surface area of 114.8 cm $^{\!2}\!.$ Calculate its height.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|   | (2 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |
| 2 | A cylinder has a total surface area of 100 cm². If the radius of its circular cross-section is 3.6 cm, calculate its height.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |

3 A cylinder and cuboid have dimensions as shown.



| h cm                                                                                      |          |
|-------------------------------------------------------------------------------------------|----------|
| (a) Write an expression for the total surface area of the cuboid.                         |          |
| (                                                                                         | 2 marks) |
| (b) Write an expression for the total surface area of the cylinder.                       |          |
|                                                                                           | 2 marks) |
| (c) If the total surface area of the cylinder is twice that of the cuboid, find the value | of h.    |
| ,                                                                                         |          |
|                                                                                           |          |
| (                                                                                         | 3 marks) |
| A metal hand weight is made from two cubes and a cylinder joined as shown:                |          |



Calculate the total volume of the shape.

......(3 marks)

5 A cylinder and a cylindrical pipe have the same volume and diameter.



(a) Calculate the volume of the solid cylinder.

(b) Write an expression for the volume of the cylindrical pipe.

(c) Calculate the value of x.

#### O Exercises 27.10-27.11

1 A sector has a radius of 6.7cm and an arc length of 3.2cm. Calculate the angle of the sector θ.

2 A sector has an angle of 162° and an arc length of 14.5 cm. Calculate the length of the sector's radius.

3 The diagram below shows two arcs with the same centre and an angle  $\theta$ .



(a) Write an expression for the length x in terms of r.

(3 marks)

#### Exercises 27.12-27.13

1 Two sectors A and B are shown below.



(a) Calculate the area of sector A.

(b) What is the ratio of the areas of sectors A:B? Give your answer in the form 1:n.

2 A prism with a cross-section in the shape of a sector is shown below.



#### O Exercises 27.14-27.15

A sphere has a volume of 0.5 m³. Calculate the sphere's radius, giving your answer in cm to 1 d.p.

......(1 mark)

2 A hemispherical bowl, with an outer radius of 20 cm, is shown below. A sphere is placed inside the bowl. The size of the sphere is such that it just fits the inside of the bowl.



(a) Explain why the expression for the volume of the hemispherical bowl in terms of x can be written as  $\frac{2}{3}\pi \times 20^3 - \frac{2}{3}\pi(20 - x)^3$ .

(2)

| (b) Write an expression for the volume of the sphere in terms of x                                              |
|-----------------------------------------------------------------------------------------------------------------|
| (c) If both the bowl and sphere have the same volume, show that $3(20-x)^3=8000$ .                              |
| (2 marks)                                                                                                       |
| (d) Calculate the thickness x of the bowl.                                                                      |
|                                                                                                                 |
| Exercise 27.16                                                                                                  |
| A hemisphere has a radius of 5cm.                                                                               |
| (a) Calculate the area of its base.                                                                             |
| (1 mark)                                                                                                        |
| (b) Calculate its total surface area.                                                                           |
|                                                                                                                 |
|                                                                                                                 |
| A solid shape is made from two hemispheres joined together. The base of each hemisphere shares the same centre. |
| 6 cm                                                                                                            |
| (a) Calculate the surface area of the smaller hemisphere.                                                       |
|                                                                                                                 |
| (b) Calculate the total surface area of the shape.                                                              |
|                                                                                                                 |
| (b) Calculate the total surface area of the shape.                                                              |
| (b) Calculate the total surface area of the shape.                                                              |

2

#### O Exercises 27.17-27.19

1 A rectangular-based pyramid is shown below.



Calculate:

(a) the volume of the pyramid .......(2 marks) (b) the total surface area of the pyramid, using Pythagoras' theorem.

(4 marks)

2 Two square-based pyramids are joined at their bases. The bases have an edge length of 6 cm.



(a) Calculate the volume of the pyramid on the left.

......(2 marks)

(b) If the volume of the pyramid on the left is twice that of the pyramid on the right, calculate the value of x.

(c) By using Pythagoras as part of the calculation, calculate the total surface area of the shape.

#### O Exercises 27.20-27.23

| 1 | A cone has a base diameter of 8cm and a sloping face length of 5cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (a) Calculate its perpendicular height.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | (2 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | (b) Calculate the volume of the cone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | (c) Calculate the total surface area of the cone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 2 | Two similar sectors are shown below.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|   | 16 cm 200° Rcm 200° (a) Calculate the length of the radius r.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   | (2 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | (b) What is the value of R?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|   | (1 mark)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | What are a companied and the Line Companies and the Companies and |
|   | The sectors are assembled to form cones.  (c) Calculate the volume of the smaller cone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|   | (c) Calculate the volume of the smaller cone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|   | (4 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|   | (d) Calculate the curved surface area of the large cone.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|   | ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|   | (2 marks)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

3 A cone of base radius 10cm and a vertical height of 20cm, has a cone of base radius 10cm and a vertical height 10cm removed from its inside as shown below.



(a) Calculate the volume of the small cone removed from the inside.

(2 marks
(b) Calculate the volume of the shape that is left (i.e the volume of the large cone with the small cone removed).

(2 marks
(c) Calculate the total curved surface area of the final shape.

#### Exam focus

- 1 A field has an area of 8700 m<sup>2</sup>. Convert the area into km<sup>2</sup>.
- .....[2]
- A swimming pool has a volume of 800 m<sup>3</sup>. Give the volume in cm<sup>3</sup> written in standard index form.

  [3]
- 3 Two cylinders A and B are shown below. The total surface area of B is twice that of A.



Calculate:

(a) the surface area of cylinder A

.....[2]

(c) the ratio of the volume A:B in the form 1:n.

4 A shape is made from two sectors arranged in such a way that they share the same centre. The radius of the smaller sector is 6 cm, whilst the radius of the larger sector is 10 cm. The angle at the centre of the smaller sector is 22" as shown.



(a) Calculate the area of the smaller sector.

centre of the large sector.

(b) If the shaded area is four times the area of the smaller sector, calculate the angle at the

5 Two identical spheres are placed inside a box, so that they just fit. The length of the box is 30 cm as shown.



(a) Calculate the volume of one of the spheres.

(b) Calculate the percentage volume of the box that is occupied by the spheres.





6 The solid shape below is made up of a cone, a cylinder and a hemisphere. The length of each of the three pieces is 5cm.



| (a) | Wł   | nat is the diameter of the base of the cone?[1] |
|-----|------|-------------------------------------------------|
| (b) | Cal  | culate:                                         |
|     | (i)  | the volume of the cone                          |
|     |      |                                                 |
|     |      | [2]                                             |
|     | (ii) | the total volume of the shape.                  |
|     |      |                                                 |
|     |      |                                                 |
| (c) | Cal  | [3] culate:                                     |
|     | (i)  | the surface area of the cone                    |
|     |      |                                                 |
|     |      |                                                 |
|     |      | [3]                                             |
|     | (ii) | the total surface area of the shape.            |
|     |      |                                                 |
|     |      |                                                 |



### **Coordinate geometry**



## Straight-line graphs

#### Exercises 28.1-28.3

In each of the following, identify the coordinates of some of the points on the line and use these

(a) the gradient of the line

(b) the equation of the straight line.



2



3







4



(2 marks

5



....(2 marks)

In each of the following, identify the coordinates of some of the points on the line and use these to find the equation of the straight line.

6



(3 marks)

7



.. (3 marks)

8



(2 1 )

9



(2 1 )

10



(Amoules)

11 The general equation of a straight line takes the form y = mx + c. In your own words, explain the significance of 'm' and 'c'.

For the following linear equations, calculate both the gradient and y-intercept in each case.

| 1 | (a) | y = 4x - 2             | <b>(b)</b> $y = -(2x + 6)$                       |
|---|-----|------------------------|--------------------------------------------------|
|   |     |                        |                                                  |
|   |     |                        |                                                  |
|   |     | (2 marks)              | (2 marks)                                        |
| 2 | (a) | $y + \frac{1}{2}x = 3$ | <b>(b)</b> $y - (4 - 3x) = 0$                    |
|   |     |                        |                                                  |
|   |     |                        |                                                  |
|   |     |                        |                                                  |
|   |     | (3 marks)              | (3 marks)                                        |
| 3 | (a) | $\frac{1}{2}y+x-2=0$   | <b>(b)</b> $-5y - 1 - 10x = 0$                   |
|   |     |                        |                                                  |
|   |     |                        |                                                  |
|   |     |                        |                                                  |
|   |     |                        |                                                  |
|   |     | (4 marks)              | (4 marks)                                        |
| 4 | (a) | $-\frac{4}{3}y+2x=4$   | <b>(b)</b> $\frac{3x-2y}{5} = -3$                |
|   |     |                        |                                                  |
|   |     |                        |                                                  |
|   |     |                        |                                                  |
|   |     |                        |                                                  |
|   |     | (4 marks)              | (4 marks)                                        |
| 5 | (a) | $\frac{2y-x}{x-y}=3$   | <b>(b)</b> $\frac{2x}{y+1} + \frac{2}{3y+3} = 2$ |
|   |     |                        |                                                  |
|   |     |                        |                                                  |
|   |     |                        |                                                  |
|   |     |                        |                                                  |
|   |     | (4 marks)              | (4 marks)                                        |

1 Find the equation of the straight line parallel to y = -2x + 6 that passes through the point (2, 5).

......(2 marks)

2 Find the equation of the straight line parallel to 7y - 3x + 28 = 0 that passes through the point  $(7, \frac{11}{2})$ . Give your answer in the form ax + by + c = 0.

#### O Exercise 28.6

Plot the following straight lines.

1 y = x - 3



$$y = 2x + 3$$



(2 marks)



(2 marks)



(3 marks)



(3 marks)

Solve the simultaneous equations below:

- (a) by graphical means
- (b) by algebraic means.

(a)



(4 marks)

2 y+3=x and 3x+y-1=0

(a)



(4 marks)

In each of the following:

1 (7, 3) and (7, 9)

(a) calculate the length of the line segment between each of the pairs of points to 1 d.p. (b) calculate the coordinates of the midpoint of the line segment.

|   | (a)                         |                                           | (b) |           |
|---|-----------------------------|-------------------------------------------|-----|-----------|
|   |                             |                                           |     |           |
|   |                             | (1 mark)                                  |     | (1 mark)  |
| 2 | (3, !                       | 5) and (–2, 7)                            |     |           |
|   | (a)                         |                                           | (b) |           |
|   |                             |                                           |     |           |
|   |                             |                                           |     |           |
|   |                             | (2 marks)                                 |     | (1 mark)  |
| 3 |                             | , -4) and (4, 0)                          |     |           |
|   | (a)                         |                                           | (b) |           |
|   |                             |                                           |     |           |
|   |                             |                                           |     |           |
|   |                             |                                           |     |           |
| 4 | $(\frac{1}{2}, -$           | $-3$ ) and $\left(-\frac{1}{2}, 6\right)$ |     |           |
|   | (a)                         |                                           | (b) |           |
|   |                             |                                           |     |           |
|   |                             |                                           |     |           |
|   |                             |                                           |     | (2 marks) |
| 5 | $\left(-\frac{1}{4}\right)$ | $\left(-\frac{3}{4}, \frac{1}{2}\right)$  |     |           |
|   | (a)                         |                                           | (b) |           |
|   |                             |                                           |     |           |
|   |                             |                                           |     |           |
|   |                             | (2 marks)                                 |     | (2 marks) |

| Fir | d the equation of the straight line which passes through each of the following pairs of points. |
|-----|-------------------------------------------------------------------------------------------------|
| 1   | (4, -2) and (-6, -7)                                                                            |
|     |                                                                                                 |
| 2   | $(0,6)$ and $\left(\frac{1}{2},5\right)$                                                        |
|     |                                                                                                 |
|     | (3 marks)                                                                                       |
| 3   | (-2, 7) and (3, 7)                                                                              |
|     |                                                                                                 |
|     | (3 marks)                                                                                       |
| 4   | $(-4, 2)$ and $(3, -\frac{3}{2})$                                                               |
|     |                                                                                                 |
|     | £ 13                                                                                            |
| 5   | $(\frac{1}{2}, -4)$ and $(\frac{1}{2}, -\frac{1}{2})$ (3 marks)                                 |
|     | 12 / (2 2)                                                                                      |
|     |                                                                                                 |
|     | (3 marks)                                                                                       |
| 6   | (0, 4) and (–5, 2)                                                                              |
|     |                                                                                                 |
|     | SE 5 8                                                                                          |
| 7   | $\left(2,-\frac{14}{3}\right)$ and $\left(4,-\frac{16}{3}\right)$                               |
|     |                                                                                                 |
|     |                                                                                                 |

In each of the following, calculate:

- (a) the gradient of the line joining the points
- (b) the gradient of a line perpendicular to this line
- (c) the equation of the perpendicular line if it passes through the first point each time.

| 1 | (8,  | 3) and (10, 7)    |
|---|------|-------------------|
|   | (a)  | (1 mark)          |
|   | (b)  | (1 mark)          |
|   | (c)  |                   |
|   |      |                   |
| 2 | (3,  | 5) and (4, 4)     |
|   | (a)  | (1 mark)          |
|   | (b)  | (1 mark)          |
|   | (c)  |                   |
|   |      | (2 marks)         |
| 3 | (-3, | , –1) and (–1, 4) |
|   | (a)  | (1 mark)          |
|   | (b)  | (1 mark)          |
|   | (c)  |                   |
|   |      |                   |
| 4 | (4,  | 8) and (–2, 8)    |
|   | (a)  | (1 mark)          |
|   | (b)  | (1 mark)          |
|   | (c)  |                   |
|   |      | (2 marks)         |
|   |      |                   |

#### Topic 5 Coordinate geometry

| 5 | $\left(\frac{1}{5}, \frac{5}{2}\right)$ and $\left(3, -\frac{5}{4}\right)$          |
|---|-------------------------------------------------------------------------------------|
|   | (a)                                                                                 |
|   | (b)(1 mark)                                                                         |
|   | (c)                                                                                 |
|   |                                                                                     |
| 6 | $\left(-\frac{7}{3},\frac{1}{7}\right)$ and $\left(-\frac{7}{3},\frac{3}{2}\right)$ |
|   | (a)(1 mark)                                                                         |
|   | (b)(1 mark)                                                                         |
|   | (c)                                                                                 |
|   | (2 marks)                                                                           |

#### O Exam focus

1 Deduce the equation of the straight line drawn below.



2 Calculate the gradient and y-intercept for each of the straight lines below: (a) 3x + y = 5

**(b)**  $\frac{5x-3y}{2} = -3$ 

[4]

3 Plot the line given by the equation x + 6y + 6 = 0.



4 Consider the coordinates of the points A and M: A (7, 6) and M (10, 2)

(a) Calculate the length of the line segment AM.



[3]

| 5 | Calculate the equation of the straight line passing through these two points: (-2, 20) and (2, -4)                                      |
|---|-----------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                         |
|   |                                                                                                                                         |
|   | [3]                                                                                                                                     |
| 6 | (a) Calculate the gradient of the line joining the points $A\left(\frac{1}{2},4\right)$ and $B\left(-\frac{3}{2},7\right)$ .            |
|   | [2]                                                                                                                                     |
|   | (b) Calculate the equation of the line perpendicular to AB and which passes through B. Give your answer in the form $ax + by + c = 0$ . |
|   |                                                                                                                                         |
|   | 3                                                                                                                                       |
|   |                                                                                                                                         |
|   |                                                                                                                                         |

# Trigonometry

## **29** Bearings

#### O Exercise 29.1

A boat sets off from a point A on a bearing of 130° for 4km to a point B.
 At B it changes direction and sails on a bearing of 240° to a point C, 7km away.
 At point C it changes direction again and heads back to point A.
 (a) Using a scale of 1 cm: 1km, draw a scale diagram of the boat's journey.

|                                | (4 marks) |
|--------------------------------|-----------|
| b) From your diagram work out: |           |
| (i) the distance AC            | (1 mark)  |
| (ii) the bearing of A from C.  | (2 marks) |

## **30** Trigonometry

#### O Exercises 30.1-30.3

Calculate the value of x in each of the diagrams below. Give your answers to 1 d.p.



......(2 marks)

2 x cm 30°

......(2 marks)

3 3.5 cm

\_\_\_\_\_\_(2 marks)



(Z marks)



.... (2 marks)











#### Exercises 30.4-30.5

In each of the following, calculate the length of the marked side, giving your answer to 1 d.p.







2



3



1



. . .

- 5 Three towns, A, B and C, are positioned relative to each other as follows:
  - . Town B is 68 km from A on a bearing of 225°.
  - . Town C is on a bearing of 135° from A.
  - Town C is on a bearing of 090° from B.

(a) Drawing a sketch if necessary, deduce the distance from A to C.

|   | (b) Calculate the distance from B to C.                                                                                                                                             |
|---|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   |                                                                                                                                                                                     |
|   | (2 marks                                                                                                                                                                            |
| 6 | A boat starts at a point P and heads due north for 20 km to a point Q. At Q it heads east for 15 km to a point R. At R it heads on a bearing of 045° for 10 km to a point S.        |
|   | (a) Drawing a sketch if necessary, calculate the horizontal distance between R and S.                                                                                               |
|   | (a) Drawing a sketch if necessary, calculate the nonzontal distance between K and 5.                                                                                                |
|   |                                                                                                                                                                                     |
|   |                                                                                                                                                                                     |
|   |                                                                                                                                                                                     |
|   |                                                                                                                                                                                     |
|   |                                                                                                                                                                                     |
|   |                                                                                                                                                                                     |
|   |                                                                                                                                                                                     |
|   |                                                                                                                                                                                     |
|   |                                                                                                                                                                                     |
|   | (b) Calculate the vertical distance between P and S.                                                                                                                                |
|   |                                                                                                                                                                                     |
|   | (2 marks                                                                                                                                                                            |
|   | (c) Calculate the shortest distance between P and S.                                                                                                                                |
|   |                                                                                                                                                                                     |
|   | (2 marks                                                                                                                                                                            |
|   | (d) Calculate the bearing of 5 from P. Give the answer to the nearest degree.                                                                                                       |
|   | ,-,                                                                                                                                                                                 |
|   | (2 marks                                                                                                                                                                            |
|   | \2 IIIdik3                                                                                                                                                                          |
| 7 | Two trees, A and B, are standing on flat ground 12m apart as shown. The tops of the two trees are 16m apart. The angle of elevation of the top of tree A to the ground at X is 50°. |
|   | 16m1                                                                                                                                                                                |
|   | 1011                                                                                                                                                                                |
|   | 11                                                                                                                                                                                  |
|   | 10m , , ,                                                                                                                                                                           |
|   | 1011/                                                                                                                                                                               |
|   |                                                                                                                                                                                     |
|   | γ 50° R                                                                                                                                                                             |
|   | 12 m                                                                                                                                                                                |
|   | (a) Calculate the distance AX.                                                                                                                                                      |
|   |                                                                                                                                                                                     |
|   | (2 marks                                                                                                                                                                            |
|   |                                                                                                                                                                                     |

| (b) | Calculate the height of tree B.                                                |
|-----|--------------------------------------------------------------------------------|
|     |                                                                                |
|     | (3 marks)                                                                      |
| (c) | Calculate the angle of depression from the top of tree B to the top of tree A. |
|     |                                                                                |
|     |                                                                                |

#### O Exercise 30.6

1 A point A is at the top of a vertical cliff, 25m above sea level as shown below. Two points X and Y are in the sea. The angle of elevation from Y to A is 23°. Y is twice as far from the cliff as X.



| • A2 1 3                                                                                                        |
|-----------------------------------------------------------------------------------------------------------------|
| a) Calculate the horizontal distance of Y from the foot of the cliff.                                           |
|                                                                                                                 |
| (2 marks                                                                                                        |
| b) Calculate the angle of depression from A to X to the nearest whole number.                                   |
|                                                                                                                 |
|                                                                                                                 |
| c) Calculate the ratio of the distances AX : AY. Give your answer in the form 1:n where n is<br>given to 1 d.p. |
| ,                                                                                                               |
|                                                                                                                 |
|                                                                                                                 |
|                                                                                                                 |
| (5 marks                                                                                                        |

2 A tall vertical mast is supported by two wires, AC and BC, as shown. Points A and B are 2.5m and 6m above horizontal ground level respectively. Horizontally, the mast is 20m and 27m from A and B respectively. The angle of elevation of C from A is 30°.



#### O Exercises 30.7-30.8

| 1 | Express the following in terms of the sine of another angle between 0° and 180°:                               |           |
|---|----------------------------------------------------------------------------------------------------------------|-----------|
|   | (a) sin 86°                                                                                                    | (1 mark)  |
|   | (b) sin 158°                                                                                                   | (1 mark)  |
| 2 | Express the following in terms of the cosine of another angle between 0° and 180°:                             |           |
|   | (a) cos 38°                                                                                                    | (1 mark)  |
|   | (b) cos 138°                                                                                                   | (1 mark)  |
| 3 | Find the two angles between 0° and 180° which have the following sine. Give each answer to the nearest degree. | i         |
|   | (a) 0.37                                                                                                       | (2 marks) |
|   | (b) 0.85                                                                                                       | (2 marks) |
| 4 | The cosine of which acute angle has the same value as:                                                         |           |
|   | (a) -cos 162°                                                                                                  | (2 marks) |
|   | MY Japan                                                                                                       | 70 1 3    |

### (31)

### Further trigonometry

#### O Exercises 31.1-31.2

1 Calculate the length of the side marked x.



2 Calculate the length of the side marked x.



.... (2 marks)

3 Calculate the length of the side marked x.



(2 moules)

4 Calculate the size of the angle marked  $\theta$ .



(2 marks



5 Calculate the size of the angle  $\theta$ .



(2 marke)

6 Calculate the size of the angle  $\theta$  below, given that it is an obtuse angle (between 90° and 180°).



(1 marks)

#### O Exercise 31.3

1 A bird, B, flies above horizontal ground. The bird is 126 m from point A on the ground and 88 m from a point C also on the ground.



Given that the distance between A and C is 100m, calculate:

(a) the angle of elevation from A to B

| b | the height of the bird above the ground. |
|---|------------------------------------------|
|   |                                          |
|   |                                          |

... (2 marks)

#### O Exercise 31.4

1 Calculate the area of the triangle below.



(2 marks)

2 A triangle and rectangle are joined as shown below. If the total area of the combined shape is 110 cm², calculate the length of the side marked x.



... (4 marks)

#### O Exercises 31.5-31.6

1 The cone below has its apex P directly above the centre of the circular base X. PQ = 12 cm and angle PQX = 72°.



| (a) Calculate the height of the cone.        |       |
|----------------------------------------------|-------|
| (b) Calculate the circumference of the base. | narks |
|                                              |       |
|                                              | narks |

2 The cuboid ABCDEFGH is shown below. AD = 8 cm, DH = 5 cm and X is the midpoint of CG.



Calculate the following: (a) the length EG

| (b) | the angle EGA |
|-----|---------------|
|     |               |
|     | (2 marks)     |
| (c) | the length AX |
|     |               |
|     | (2 marks)     |
| (d) | the angle AXE |
|     |               |

3 A right-angled triangular prism ABCDEF is shown below. AB = 3cm, AC = 4cm, BE = 9cm and point X divides BE in the ratio 1:2.



Calculate the following: (a) the length BC

(1 mark)

| (b) the angle BXC                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                             |
| (c) the length XF                                                                                                           |
|                                                                                                                             |
| (2 marks)                                                                                                                   |
| (d) the angle between XF and the plane ABDE                                                                                 |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
| The diagram below shows a right pyramid, where E is vertically above X. $AB=5cm,BC=4cm,EX=7cm$ and P is the midpoint of CE. |
| 7 cm P C A cm A                                                                                                             |
| Calculate:                                                                                                                  |
| (a) the length AX                                                                                                           |
|                                                                                                                             |
| (b) the angle XCE                                                                                                           |
| (b) the angle ACE                                                                                                           |
|                                                                                                                             |
| (c) the length XP                                                                                                           |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
|                                                                                                                             |
| (5 marks)                                                                                                                   |

#### Exam focus

1 If the bearing from X to Y is 127°, calculate the back bearing Y to X.

[2]

2 Calculate the value of x in the triangle below.



3 Calculate the value of  $\theta$  to the nearest degree.



4 Calculate the distance AB.



5  $\theta$  is an obtuse angle. If  $\sin \theta = 0.75$ , calculate  $\theta$  to the nearest degree.

6 A field PQRS has dimensions and angles as shown.



# Matrices and transformations



### **Vectors**

#### O Exercise 32.1



Describe each of the following translations using a column vector:

|        | (1 mark) |
|--------|----------|
|        | (1 mark) |
|        | (1 mark) |
|        | (1 mark) |
| (a) =A | (1       |

#### O Exercises 32.2-32.3

In questions 1 and 2 consider the following vectors:

$$a = \begin{pmatrix} 2 \\ 0 \end{pmatrix}$$
  $b = \begin{pmatrix} -3 \\ 1 \end{pmatrix}$   $c = \begin{pmatrix} 3 \\ -2 \end{pmatrix}$ 

1 Express the following as a single column vector:

| (a) 3a                                     | . (1 mark) |
|--------------------------------------------|------------|
| (b) 2c – b                                 | (2 marks)  |
| (c) $\frac{1}{2}(\mathbf{a} - \mathbf{b})$ | (2 marks)  |
| A D Color                                  | fa         |

2 Draw vector diagrams to represent the following:





(b) -c + b



(3 marks)

#### O Exercise 32.4

1 Consider the vectors:

$$a = \begin{pmatrix} -2 \\ 0 \end{pmatrix}$$
  $b = \begin{pmatrix} -3 \\ 2 \end{pmatrix}$   $c = \begin{pmatrix} 4 \\ -4 \end{pmatrix}$ 

Calculate the magnitude of the following, giving your answers to 1 d.p.

| a) | ) a + b + c |     |
|----|-------------|-----|
|    |             |     |
|    |             |     |
|    | (3 mari     | (5) |
| b) | ) 2b – c    |     |
|    |             |     |
|    |             | 000 |
|    |             |     |

#### O Exercises 32.5-32.7

1 Consider the vector diagram below.



If  $\overrightarrow{AB} = \mathbf{a}$  and  $\overrightarrow{BC} = \mathbf{b}$ , express the following in terms of  $\mathbf{a}$  and  $\mathbf{b}$ .

2 In the diagram below, AB = a, BD = b, D divides the line BC in the ratio 2:1 and E is the midpoint of AC.



Express the following in terms of a and b:

| (a) AD        | (1 mark) |  |
|---------------|----------|--|
| $\rightarrow$ |          |  |

(2 marks)

(d) ED (2 marks)



| 0 |  |  |  |  |
|---|--|--|--|--|
|   |  |  |  |  |
|   |  |  |  |  |

| 4 | C: | 41 | <br> | fall and a |  |
|---|----|----|------|------------|--|
|   |    |    |      |            |  |

(a)  $P = \begin{pmatrix} 1 & 3 & 7 & 3 \\ 2 & 0 & 4 & 3 \end{pmatrix}$  .....(1 mark)

(b) 
$$T = \begin{bmatrix} 2 \\ 1 \\ 3 \\ 0 \end{bmatrix}$$
 ......(1 mark

2 The hair colour of students in two classes is recorded. In one class, there are 6 black, 6 brown, 4 blonde and 2 ginger haired students. In the other class there are 8 black, 3 brown and 5 blonde haired students.

Write this information in a 4 × 2 matrix.

(2 marks)

#### O Exercise 33.2

Evaluate the following calculations.

1 
$$\begin{pmatrix} 5 & -1 & 0 \\ 2 & -3 & 4 \end{pmatrix} + \begin{pmatrix} -2 & 0 & 1 \\ -2 & -4 & 6 \end{pmatrix}$$
 (2 marks)

$$2 \begin{pmatrix} 7 & -2 \\ 3 & 0 \\ -1 & 4 \end{pmatrix} - \begin{pmatrix} 3 & 2 \\ 3 & -4 \\ -2 & 5 \end{pmatrix} ..... (2 marks)$$

3 Michael Phelps, a swimmer from the USA, won 6 gold medals and 2 bronze medals at the 2004 Olympic games in Atthens, 8 gold medals at the 2008 Olympic games in Beijing and 4 gold medals and 2 silver medals at the 2012 Olympic games in London.

(a) Express this information as the sum of three  $1 \times 3$  matrices.

(b) Write down the matrix to represent the total number of each type of medal Phelps won in the three Olympic games.

. (1 mark)

#### O Exercises 33.3-33.5

1 Evaluate:

(a) 
$$4 \begin{pmatrix} 1 & 3 \\ -2 & 0 \\ 2 & \frac{1}{2} \end{pmatrix}$$
 (1 mark)

**(b)**  $-3\begin{pmatrix} 0 & -4 & 2 \\ 1 & -3 & -\frac{1}{3} \end{pmatrix}$  (1 mark)

2 Evaluate:

(b) 
$$\begin{pmatrix} 1 & -2 & 3 \\ -4 & 5 & -6 \end{pmatrix} \begin{pmatrix} 6 & -5 \\ -4 & 3 \\ 2 & -1 \end{pmatrix}$$
 (3 marks)

3 The order of three matrices are given below: Matrix A: (3 × 2) Matrix B: (4 × 3) Matrix C: (2 × 4) (a) Give an example of a matrix multiplication that is possible using the matrices above.

......(1 mark)

(b) Give an example of a matrix multiplication that is not possible using the matrices above.
......(1 mark)

#### Exercises 33.6-33.7

 $1 \quad \text{The matrix A is} \begin{pmatrix} 0 & 2 \\ 4 & -1 \\ 3 & -1 \end{pmatrix}.$ 

If 
$$AB = \begin{pmatrix} 0 & 2 \\ 4 & -1 \\ 3 & -1 \end{pmatrix}$$
:

(a) Write down matrix B.

(1 mark)

(b) What is the name usually given for matrix B?

......(1 mark)

| 2 | Calculate the determinant of the following matrices: (a) $\begin{pmatrix} 4 & 4 \\ -2 & 1 \end{pmatrix}$                                    |        |
|---|---------------------------------------------------------------------------------------------------------------------------------------------|--------|
|   | (b) (0 5) (1 6)                                                                                                                             | marks  |
| 3 | If $A = \begin{pmatrix} 3 & -1 \\ 4 & 0 \\ -2 & 2 \end{pmatrix}$ and $B = \begin{pmatrix} 1 & 0 & -2 \\ 3 & 6 & -1 \end{pmatrix}$ :         | marks  |
|   | (a) calculate BA                                                                                                                            |        |
|   | (b) evaluate   3BA .                                                                                                                        | marks  |
|   |                                                                                                                                             |        |
|   |                                                                                                                                             | marks  |
|   | <b>Exercise 33.8</b> Using simultaneous equations and giving each element as a fraction, calculate the invertee matrix $\binom{4-2}{4-2}$ . | rse of |
| 2 | (a) If $A^{-1}=\begin{pmatrix} 2 & 0 \\ 1 & 2 \end{pmatrix}$ , calculate matrix $A$ .                                                       | marks  |
|   | (b) Deduce the matrix produced by AA <sup>-1</sup> .                                                                                        | marks  |
|   |                                                                                                                                             |        |

(2 marks)



### Transformations

#### O Exercises 34.1-34.2

- 1 On the following diagrams:
  - (i) draw the position of the mirror line(s)(ii) give the equation of the mirror line(s).

(a) (i)



(b) (i)



(ii)......(2 marks)

(ii) ...... (4 marks)

2 Reflect the following object in the line y = -x + 1.



(2 marks)



#### O Exercises 34.3-34.4

1 In the following, the object and centre of rotation have been given. Draw the object's image under the stated rotation.

(a)



(b)



Rotation 180°

(2 marks)

Rotation 90° anticlockwise

(2 marks)

2 In the following, the object (unshaded) and image (shaded) have been drawn. In each diagram, mark the centre of rotation and calculate the angle and direction of rotation.

(a)

(a)





......(2 marks)

#### O Exercise 34.5

In the diagrams below, assume the shaded shape is the object. By construction:

(a) find the centre of rotation and give its coordinates

(3 marks) (2 marks)

(b) find the angle and direction of the rotation.





#### O Exercises 34.6-34.7

1 In the following diagram, object A has been translated to each of the images B, C and D. Give the translation vector in each case.



2 In the diagram below, translate the object by the stated vector.



(-2)

#### O Exercises 34.8-34.9

1 Find the centre of enlargement and the scale factor of enlargement in the diagrams below.

8 A CCA



...... (2 marks) ...... (2 marks)

2 Enlarge the object below, by the scale factor given and from the centre of enlargement shown.



Scale factor  $\frac{1}{4}$ 

(2 marks)

#### Exercise 34.10

1 An object and part of its image under enlargement are given in the diagram below.



- (a) Complete the image.
  - (b) Find the centre of enlargement.
  - (c) Calculate the scale factor of enlargement.
    - ......(1 mark)



(2 marks)

(1 mark)

#### O Exercise 34.11

1 In this question draw each transformation on the same grid and label the images clearly.



- (a) Map the triangle ABC onto A'B'C' by an enlargement of scale factor –2, with the centre of enlargement at (–4, 2).
- (b) Map the triangle  $A^1B^1C^1$  onto  $A^2B^2C^2$  by a reflection in the line x = 4. (2 marks)
- (c) Map the triangle A<sup>2</sup>B<sup>2</sup>C<sup>2</sup> onto A<sup>2</sup>B<sup>2</sup>C<sup>3</sup> by a rotation of 180°, with the centre of rotation at (2 marks)

#### O Exercises 34.12-34.13

1 The object ABC undergoes a transformation. The transformation matrix is  $\begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$ .



(a) Express the vertices of the triangle ABC as a matrix.

| Draw tl  | ne im                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | age /                             | A'B'C'                                                                                                                                                  | on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | the gr                                                                                                                                                  | id op                                                                                                             | posite                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | label                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | l each                                                                                                                                                                                                                                                                                                                                                         | verte                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ex.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | narks<br>mark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (ii) De: | cribe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | l term                                                                                                                                                  | ıs a di                                                                                                           | fferen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ıt tra                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | nsfor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | matic                                                                                                                                                                                                                                                                                                                                                          | n tha                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ıt maj                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | os tria                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ingle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (1<br>ABC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mark<br>on to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| The gri  | d bel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ow sh                             | nows                                                                                                                                                    | a tri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                         |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <i>y</i> ↑                                                                                                                                              |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | H                                 |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14-                                                                                                                                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11-                                                                                                                                                     |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8-<br>7-<br>6-                                                                                                                                          | В                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                                                                                                                         | Α.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 4-3-2                                                                                                                                                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ш        | П                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | П                                 |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1-                                                                                                                                                      | Ш                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ε,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                                                                                                                         | ian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | gle AB                                                                                                                                                  |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ,,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 22                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| arra rac | Ci ciii                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                   | tices i                                                                                                                                                 | 70                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ٠.                                                                                                                                                      |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                | atrix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\begin{pmatrix} -\frac{5}{2} \\ -1 \end{pmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\left(\begin{array}{c} 0 \\ -\frac{5}{2} \end{array}\right)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (4 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | narks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                   |                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                         |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (2 m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | iarks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|          | (i) Description (ii) Description (iii) Descripti | (ii) Describe ABCC. The grid belo | (ii) Describe in ge (iii) Describe in g A'B'C'.  The grid below sl  12 -10 -8 -6  Calculate the are  Draw the image and label the ver Calculate the det | (i) Describe in geomet (ii) Describe in geomet ABC.  The grid below shows.  The grid below shows.  Calculate the area of the support of the s | (ii) Describe in geometrical (iii) Describe in geometrica A'B'C'.  The grid below shows a tri  The grid below shows a tri  Calculate the area of trian. | (i) Describe in geometrical term A'B'C'.  The grid below shows a triangle 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 | (i) Describe in geometrical terms the table of the grid below shows a triangle ABC.  The grid below shows a triangle ABC. | (ii) Describe in geometrical terms the transformation of the trans | (ii) Describe in geometrical terms the transformation of the trans | (ii) Describe in geometrical terms the transformation of ABC.  The grid below shows a triangle ABC.  The grid below shows a triangle ABC.  The grid below shows a triangle ABC.  Calculate the area of triangle ABC.  Draw the image of ABC under the transformation of and label the vertices A'B'C. Calculate the determinant of the transformation matures. | (ii) Describe in geometrical terms the transformation that not a control of the properties of the prop | (ii) Describe in geometrical terms the transformation that maps in the control of the properties of the control | (ii) Describe in geometrical terms a different transformation that may A'B'C'.  The grid below shows a triangle ABC.  The grid below shows a triangle ABC. | (i) Describe in geometrical terms the transformation that maps triangle AB (ii) Describe in geometrical terms a different transformation that maps triangle ABC.  The grid below shows a triangle ABC. | (i) Describe in geometrical terms the transformation that maps triangle ABC on ABC.  The grid below shows a triangle ABC. | Draw the image A'B'C' on the grid opposite and label each vertex.  (1) Describe in geometrical terms the transformation that maps triangle ABC on to A'  (3) Describe in geometrical terms a different transformation that maps triangle ABC on to A'  (4) Describe in geometrical terms a different transformation that maps triangle ABC on the grid below shows a triangle ABC.  (5) The grid below shows a triangle ABC.  (6) Describe in geometrical terms a different transformation that maps triangle ABC on the grid below shows a triangle ABC.  (7) Describe in geometrical terms a different transformation that maps triangle ABC on the grid below shows a triangle ABC.  (8) Describe in geometrical terms a different transformation that maps triangle ABC on the grid below shows a triangle ABC.  (9) Describe in geometrical terms a different transformation that maps triangle ABC on the grid below shows a triangle ABC.  (1) Describe in geometrical terms a different transformation that maps triangle ABC on the grid below shows a triangle ABC.  (1) Describe in geometrical terms a different transformation that maps triangle ABC on the grid below shows a triangle ABC.  (2) Describe in geometrical terms a different transformation that maps triangle ABC on the grid below shows a triangle ABC.  (3) Describe in geometrical terms a different transformation that maps triangle ABC on the grid below shows a triangle ABC.  (4) Describe in geometrical terms a different transformation that maps triangle ABC on the grid below shows a triangle ABC.  (5) Describe in geometrical terms a different transformation that maps triangle ABC on the grid below shows a triangle ABC.  (6) Describe in geometrical terms a different transformation that maps triangle ABC on the grid below that the grid below the grid below the grid below that the grid below that the grid below that the grid below the grid below the grid below |

(b) By carrying out the appropriate calculation, determine in matrix form, the vertices of the image A'B'C'.

#### O Exercise 34.14

- 1 Two transformation matrices T and U are stated as follows:
  - $T = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$ 
    - $U = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$

The grid below shows a rectangle ABCD.



- (a) On the grid, draw an image of ABCD under the transformation of matrix T and label its vertices A'B'C'D'. (4 marks)
- (b) On the grid, draw an image of A'B'C'D' under the transformation of matrix U and label its vertices A'B"C"D". (4 marks)
- (c) Determine the single transformation matrix that would map ABCD on to A''B''C''D''.

(3 marks)

(d) Determine the single transformation matrix that would map A"B"C"D" on to ABCD.

(4 marks)

#### Exam focus

1 If  $\mathbf{a} = \begin{pmatrix} 5 \\ -2 \end{pmatrix}$  and  $\mathbf{b} = \begin{pmatrix} -1 \\ 4 \end{pmatrix}$ , write the column vector for:

2 The position vector of P is 
$$\begin{pmatrix} 3\\1 \end{pmatrix}$$
, the position vector of Q is  $\begin{pmatrix} -2\\-3 \end{pmatrix}$ .

[3]

3 The rhombus ABCD is shown below.



 $\overrightarrow{AB} = \mathbf{a}$  and  $\overrightarrow{AD} = \mathbf{b}$ . X divides the line BC in the ratio 1:3 and Y divides the line CD in the ratio 2:1. Express the following in terms of  $\mathbf{a}$  and  $\mathbf{b}$ :

| (a) | BC                    |   | ľ |
|-----|-----------------------|---|---|
| (b) | $\overrightarrow{AX}$ | 3 | 7 |
|     | $\rightarrow$         |   |   |



4 The graph below shows the rainfall (mm) per guarter over the six year period 2007–2012.



Represent the data in a  $6 \times 4$  matrix.

5 Two matrices P and Q are given as follows:

$$P = \begin{pmatrix} 3 & 6 & -1 \\ 4 & 0 & -2 \end{pmatrix} \text{ and } \mathbf{Q} = \begin{pmatrix} -1 & 0 \\ 2 & 0 \\ 3 & -2 \\ 0 & -4 \end{pmatrix}$$

(a) Which product of the two matrices is possible? Justify your answer.

(b) Carry out the multiplication stated in part (a) above.

r

- 6  $\mathbf{A} = \begin{pmatrix} 2 & -2 \\ 0 & 1 \end{pmatrix}$  and  $\mathbf{B} = \begin{pmatrix} -1 & 0 \\ 2 & 0 \end{pmatrix}$ 
  - (a) Evaluate A B.

.....[3

(b) Calculate the matrix  $(\mathbf{A} - \mathbf{B})^{-1}$ .

[4]





(a) By construction, find the position and coordinates of the centre of enlargement.

Mark it on the diagram and label it O. [2]

(b) Calculate the scale factor of enlargement.

[1]

(c) If the area of the object is 8 units², and using your answer from (b), deduce the area of the image A'B'C'D'.

[2]

8 In the diagram below, the shaded shape is the object and it is mapped on to its image by rotation.



9 The object ABC is mapped on to A'B'C' by the transformation matrix  $\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}$ .





-2 -3 -4

- .....[3]
- (ii) Plot the image A'B'C' on the grid above, labelling the vertices clearly. [1]
  (b) A'B'C' is mapped onto A''B''C'' by the transformation matrix  $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ .

  Plot the image A''B''C'' on the same grid, labelling the vertices clearly. [3]
- (c) Determine the single matrix that will map ABC on to A"B"C".

(e) Calculate the single matrix that will map A"B"C" on to ABC.



[4]

## (Topic 8) Probability

### **35** Probability

#### O Exercises 35.1-35.4

|   | the following:                                                                                                                         | ting each or  |
|---|----------------------------------------------------------------------------------------------------------------------------------------|---------------|
|   | (a) a score of 6                                                                                                                       | (1 mark       |
|   | (b) a score of 2 or 3                                                                                                                  | (1 mark       |
|   | (c) an even number                                                                                                                     | (1 mark)      |
|   | (d) a score less than 1                                                                                                                | (1 mark)      |
|   | (e) a score of more than 1                                                                                                             | (1 mark)      |
|   | (f) a score less than 4 or more than 4                                                                                                 | (1 mark)      |
| 2 | (a) Calculate the probability of being born in June. (Assume a year is 365 days.)                                                      |               |
|   |                                                                                                                                        | (1 mark       |
|   | <b>(b)</b> Explain why the answer to part (a) is not $\frac{1}{12}$ .                                                                  |               |
|   |                                                                                                                                        | (1 mark)      |
|   | (c) What is the probability of not being born in June?                                                                                 | (1 mark)      |
| 3 | A container has 749 white sweets and 1 red sweet. What is the probability of pic sweet if a child randomly picks:                      | king the red  |
|   | (a) 1 sweet                                                                                                                            | (1 mark       |
|   | (b) 500 sweets                                                                                                                         | (1 mark)      |
|   | (c) 150 sweets                                                                                                                         | (1 mark)      |
|   | (d) 750 sweets?                                                                                                                        | (1 mark)      |
| 4 | In a class there are 23 girls and 17 boys. They enter the room in a random order. probability that the first student to enter will be: | Calculate the |
|   | (a) a girl                                                                                                                             | (1 mark)      |
|   | (b) a boy.                                                                                                                             | (1 mark       |

| 5 | Tiles, each lettered with one different letter of the word MATHEMATICS, are put into a bag. If one tile is drawn out at random, calculate the probability that it is:                  |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (a) an A or M or T                                                                                                                                                                     |
|   | (b) not a consonant                                                                                                                                                                    |
|   | (c) not an X, Y or Z(1 mark)                                                                                                                                                           |
|   | (d) not a letter in your first name                                                                                                                                                    |
| 6 | (a) Three red, 17 white, 25 blue and 7 green counters are put into a bag. If one is picked at random, calculate the probability that it is:                                            |
|   | (i) a green counter                                                                                                                                                                    |
|   | (ii) not a blue counter                                                                                                                                                                |
|   | (b) If the first counter taken out is green and it is not put back into the bag, calculate the probability that the second counter picked is:                                          |
|   | (i) not a green counter                                                                                                                                                                |
|   | (ii) a red counter                                                                                                                                                                     |
| 7 | The letters of the word MATHEMATICS are written on individual cards. A card is chosen at random, it is then replaced and a second card is chosen. What is the probability of choosing: |
|   | (a) an M twice                                                                                                                                                                         |
|   |                                                                                                                                                                                        |
|   | (b) an S followed by a T?                                                                                                                                                              |
|   |                                                                                                                                                                                        |
| 8 | A computer uses the letters A, T or R at random to make three-letter words. Assuming that a letter can be repeated, calculate the probability of getting:                              |
|   | (a) the letters R,R,R                                                                                                                                                                  |
|   | (3 marks)                                                                                                                                                                              |
|   | (b) any one of the words TAR, RAT or ART.                                                                                                                                              |
|   |                                                                                                                                                                                        |
|   | (2 marks)                                                                                                                                                                              |

9 The gender and age of members of a film club are recorded and shown below.

|        | Child | Adult | Senior |
|--------|-------|-------|--------|
| Male   | 14    | 58    | 21     |
| Female | 18    | 44    | 45     |

| (a) How many members has the film club got?                                               |                     |
|-------------------------------------------------------------------------------------------|---------------------|
|                                                                                           | (1 mark)            |
| (b) A member is picked at random. Calculate the probability that it is:                   |                     |
| (i) a child                                                                               | (1 mark)            |
| (ii) female                                                                               | (1 mark)            |
| (iii) a female child.                                                                     | (1 mark)            |
| 10 Two friends are standing in a hall with many other people. A person is pi<br>the hall. | icked randomly from |
| How many people are in the hall if the probability of either of the friend 0.008?         | ds being picked is  |
|                                                                                           |                     |



2

### **36** Further probability

| 0 |    |    |     |    | - | -  |  |
|---|----|----|-----|----|---|----|--|
|   | Ex | er | CI: | se | 3 | о. |  |

| 1 | A fair cubic dice and a fair tetrahedral dice are rolled. |
|---|-----------------------------------------------------------|
|   | Use a two-way table if necessary to find:                 |

(a) the probability that both dice show the same number

| (b) the probability that the number on one dice is double the number on t                                              | he other. |
|------------------------------------------------------------------------------------------------------------------------|-----------|
|                                                                                                                        | (2 marks) |
| Two fair octahedral dice are rolled.<br>Use a table if necessary to find the probability of getting:<br>(a) any double |           |
|                                                                                                                        |           |
|                                                                                                                        |           |
|                                                                                                                        |           |
|                                                                                                                        | (2 marks) |
| (b) a total score of 13                                                                                                | (2 marks) |
| (c) a total score of 17                                                                                                | (2 marks) |
| (d) a total which is either a multiple of 2, 3 or 5.                                                                   |           |

### O Exercise 36.2

| 1 | A football team plays three matches. In each match the team is equally likely to win, lose or draw.                                                                                                                                                                                  |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|   | (a) Calculate the probability that the team:                                                                                                                                                                                                                                         |
|   | (i) wins no matches                                                                                                                                                                                                                                                                  |
|   | (3 marks)                                                                                                                                                                                                                                                                            |
|   | (ii) loses at least two matches.                                                                                                                                                                                                                                                     |
|   |                                                                                                                                                                                                                                                                                      |
|   | (b) Explain why it is not very realistic to assume that the outcomes are equally likely in this case of football matches.                                                                                                                                                            |
|   | (1 mark)                                                                                                                                                                                                                                                                             |
| 2 | A spinner is split into fifths, numbered 1-5. If it is spun twice, calculate the probability of getting:                                                                                                                                                                             |
|   | (a) two fives                                                                                                                                                                                                                                                                        |
|   | (b) two numbers the same                                                                                                                                                                                                                                                             |
|   |                                                                                                                                                                                                                                                                                      |
|   | Exercise 36.3                                                                                                                                                                                                                                                                        |
| 1 | A particular board game involves players rolling an octahedral dice. However, before a player can start, he or she needs to roll an odd number. Draw a tree diagram if necessary (there is blank space for this on the page opposite) to calculate the probability of the following: |
|   | (a) getting an eight on the first throw                                                                                                                                                                                                                                              |
|   | (b) starting within the first two throws                                                                                                                                                                                                                                             |
|   | (3 marks)                                                                                                                                                                                                                                                                            |
|   | (c) not starting within the first three throws                                                                                                                                                                                                                                       |
|   |                                                                                                                                                                                                                                                                                      |
|   | (d) starting within the first three throws.                                                                                                                                                                                                                                          |
|   |                                                                                                                                                                                                                                                                                      |
|   | (e) If you add the answers to (c) and (d) what do you notice? Explain this result.                                                                                                                                                                                                   |
|   | (2 marks)                                                                                                                                                                                                                                                                            |
|   |                                                                                                                                                                                                                                                                                      |

| 2 | In England 40% of trucks are foreign made. Calculate the following probabilities:                                     |
|---|-----------------------------------------------------------------------------------------------------------------------|
|   | (a) the next two trucks to pass a particular spot are both English                                                    |
|   | (3 marks)                                                                                                             |
|   | (b) two of the next three trucks are foreign                                                                          |
|   |                                                                                                                       |
|   | (c) two or more of the next three trucks are English.                                                                 |
|   |                                                                                                                       |
| 3 | The first team of Barcelona F.C. has a 0.05 chance of losing a game. Calculate the probability of the team achieving: |
|   | (a) two consecutive losses                                                                                            |
|   |                                                                                                                       |
|   | (b) 20 consecutive wins.                                                                                              |
|   |                                                                                                                       |

#### O Exam focus

| 1 | A dice is a regular dodecahedron. It is numbered 1–12.                                                                                                       |     |
|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|   | (a) What is the probability of throwing a 6 with the first throw?                                                                                            | *** |
|   | (b) What is the probability of throwing a prime number? (1 is not a prime)                                                                                   |     |
|   | (c) What is the probability of throwing two 1's in the first two throws?                                                                                     |     |
|   | (d) What is the probability of not throwing two 1's in the first two throws?                                                                                 |     |
| 2 |                                                                                                                                                              | [1] |
| _ | Find the probability:                                                                                                                                        |     |
|   | (a) of getting a head and a factor of 20                                                                                                                     |     |
|   | 3                                                                                                                                                            |     |
|   |                                                                                                                                                              | [2] |
|   | (b) of getting a prime number and a tail.                                                                                                                    |     |
|   |                                                                                                                                                              |     |
|   |                                                                                                                                                              | [2] |
| 3 | A computer uses the letters A, E or T at random to make three-letter words.<br>Assuming that a letter can be repeated, calculate the probability of getting: |     |
|   | (a) the letters AAA                                                                                                                                          |     |
|   |                                                                                                                                                              | [2] |
|   | (b) the word EAT, TEA, ATE or TEE.                                                                                                                           |     |
|   |                                                                                                                                                              |     |

| A top tennis player calculates ne has a 20% chance of losing a set of tennis. As a percentage                                                                           | 2:                                                                                                                                                                                                                                                                                                                                                                |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (a) What is the probability that he loses 3 consecutive sets?                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                   |
| (b) What is the probability that he wins three consecutive sets?                                                                                                        | •                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                         | [3]                                                                                                                                                                                                                                                                                                                                                               |
| A bag contains $r$ red balls and $\dot{b}$ blue balls. Two balls are chosen. If the first ball is not replaced after being picked, what is the probability of choosing: |                                                                                                                                                                                                                                                                                                                                                                   |
| (a) a red ball first                                                                                                                                                    | [3]                                                                                                                                                                                                                                                                                                                                                               |
| (b) a red ball first and a red ball second                                                                                                                              | 1-1                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                         | [4]                                                                                                                                                                                                                                                                                                                                                               |
| (c) one ball of each colour?                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                         | <br>[41                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                         | (a) What is the probability that he loses 3 consecutive sets?  (b) What is the probability that he wins three consecutive sets?  A bag contains r red balls and b blue balls. Two balls are chosen.  If the first ball is not replaced after being picked, what is the probability of choosing:  (a) a red ball first  (b) a red ball first and a red ball second |





## Mean, median, mode and range

| 0 | Exercises 37.1                                                                  | -3    | 7.2    |        |      |        |         |        |         |       |       |      |       |
|---|---------------------------------------------------------------------------------|-------|--------|--------|------|--------|---------|--------|---------|-------|-------|------|-------|
| 1 | A student looks at the re                                                       | sults | of her | last 1 | en m | aths t | ests. E | Each s | core is | s out | of 10 |      |       |
|   | 6 4 9 8 8 3 4 5                                                                 | 8     | 6      |        |      |        |         |        |         |       |       |      |       |
|   | Calculate:                                                                      |       |        |        |      |        |         |        |         |       |       |      |       |
|   | (a) the mean test score                                                         |       |        |        |      |        |         |        |         |       |       |      |       |
|   |                                                                                 |       |        |        |      |        |         |        |         |       |       | (1 r | nark) |
|   | (b) the median test score                                                       |       |        |        |      |        |         |        |         |       |       |      |       |
|   |                                                                                 |       |        |        |      |        |         |        |         |       |       | (1 r | nark) |
|   | (c) the modal test score                                                        |       |        |        |      |        |         |        |         |       |       | (1 r | nark  |
|   | (d) the test score range .                                                      |       |        |        |      |        |         |        |         |       |       | (1 r | nark) |
| 2 | The mean mass of 15 rug<br>The mean mass of the te<br>Calculate the mass of the | am pl | us a s | ubstit |      |        |         |        |         |       |       |      |       |
|   |                                                                                 |       |        |        |      |        |         |        |         |       |       |      |       |
|   |                                                                                 |       |        |        |      |        |         |        |         |       |       | (2 m | arks) |
| 3 | A chocolate manufacture<br>A number of these boxes<br>The results are shown be  | are s |        |        |      |        |         |        |         |       |       |      |       |
|   | Number of chocolates                                                            | 42    | 43     | 44     | 45   | 46     | 47      | 48     | 1       |       |       |      |       |
|   | Frequency                                                                       | 3     | 7      | 8      | 7    | 9      | 5       | 1      | 1       |       |       |      |       |

| (b) | What is the modal | number of | chocolates? | (1 mar | rk) |
|-----|-------------------|-----------|-------------|--------|-----|

| (d) Calculate t                                                | he med                       | lian nu                            | mber o                                  | f choco            | olates         |
|----------------------------------------------------------------|------------------------------|------------------------------------|-----------------------------------------|--------------------|----------------|
| (e) Calculate t                                                | he rang                      | ge of th                           | ne num                                  | ber of             | chocola        |
|                                                                |                              |                                    |                                         |                    |                |
|                                                                |                              |                                    |                                         |                    |                |
| Exercise                                                       | 37.                          | .3                                 |                                         |                    |                |
|                                                                |                              |                                    |                                         |                    |                |
| 0 0 00 00 0                                                    |                              | E & 1                              | <b>T</b> 1 (2)                          | 191.01             | ,              |
| A school holds                                                 | ca cnor                      |                                    |                                         |                    |                |
| A school holds                                                 |                              |                                    |                                         |                    |                |
| A school hold:<br>shown in the                                 |                              |                                    |                                         |                    |                |
| shown in the                                                   | groupe                       | d frequ                            | ency ta                                 | ble be             | low.           |
|                                                                |                              |                                    |                                         |                    |                |
| shown in the                                                   | groupe                       | d frequ                            | ency ta                                 | ble be             | low.           |
| shown in the                                                   | groupe<br>4-                 | d frequ                            | ency ta                                 | ble be             | low.<br>8–9    |
| Time/mins Frequency                                            | groupe<br>4–<br>1            | 5-<br>4                            | 6–<br>8                                 | 7-<br>7            | 8–9<br>2       |
| Time/mins Frequency  (a) How many                              | 4-<br>1<br>studer            | 5-<br>4                            | 6-<br>8<br>pleted                       | 7-<br>7<br>the rac | 8–9<br>2       |
| Time/mins Frequency  (a) How many (b) Estimate the             | 4-<br>1<br>studer            | 5-<br>4<br>ats com                 | 6-<br>8<br>pleted<br>it took            | 7-<br>7<br>the rac | 8–9<br>2<br>e? |
| Time/mins Frequency (a) How many                               | 4-<br>1<br>studer            | 5-<br>4<br>ats com                 | 6-<br>8<br>pleted<br>it took            | 7–<br>7<br>the rac | 8–9<br>2<br>e? |
| Time/mins Frequency  (a) How many (b) Estimate the             | 4-<br>1<br>studer            | 5-<br>4<br>ats com                 | 6-<br>8<br>pleted<br>it took            | 7–<br>7<br>the rac | 8–9<br>2<br>e? |
| Time/mins Frequency  (a) How many (b) Estimate the Give your a | 4-<br>1<br>studer<br>ne mear | 5-<br>4<br>ats comn time<br>to the | 6-<br>8<br>pleted<br>it took<br>nearest | 7-<br>7<br>the rac | 8–9<br>2<br>e? |



# Collecting and displaying data

#### O Exercises 38.1-38.3

1 In 2012, the Olympics were held in London. 15 athletes were chosen at random and their height (cm) and mass (kg) were recorded. The results are shown below.

| Height/cm | Mass/kg | Height/cm | Mass/kg |
|-----------|---------|-----------|---------|
| 201       | 120     | 166       | 65      |
| 203       | 93      | 160       | 41      |
| 191       | 97      | 189       | 82      |
| 163       | 50      | 198       | 106     |
| 166       | 63      | 204       | 142     |
| 183       | 90      | 179       | 88      |
| 182       | 76      | 154       | 53      |
| 183       | 87      |           | •       |

(a) What type of correlation (if any) would you expect between a person's height and mass? Justify your answer.

(2 marke)

(b) Plot a scatter graph on the grid below.



(3 marks)

| (c) (i) | Calculate the mean height of the athletes.                                                                |         |
|---------|-----------------------------------------------------------------------------------------------------------|---------|
|         |                                                                                                           | (1 mark |
| (ii)    | Calculate the mean mass of the athletes.                                                                  |         |
|         |                                                                                                           | (1 mark |
| (iii)   | ) Plot the point representing the mean height and mean mass of the athletes.                              |         |
|         | Label it M.                                                                                               | (1 mark |
| (d) Dra | aw a line of best fit for the data, making sure it passes through the mean point                          | M.      |
|         |                                                                                                           | (1 mark |
| (e) (i) | From the results you have plotted, describe the correlation between the heigh mass of the athletes. $ \\$ | nt and  |
|         |                                                                                                           | (1 mark |
| (ii)    | How does the correlation compare with your prediction in (a)?                                             |         |

#### Exercises 38.4-38.5

1 The ages of 80 people, selected randomly, travelling on an aeroplane are given in the grouped frequency table below.

| Age (years)       | 0- | 15- | 25- | 35- | 40- | 50- | 60- | 80-100 |
|-------------------|----|-----|-----|-----|-----|-----|-----|--------|
| Frequency         | 10 | 10  | 10  | 10  | 10  | 10  | 10  | 10     |
| Frequency density |    |     |     |     |     |     |     |        |

- (a) Complete the table above by calculating the frequency density.
- (b) Represent the information as a histogram on the grid below.

(2 marks)



(3 marks)



### Cumulative frequency

#### Exercises 39.1-39.2

1 A candle manufacturer wishes to test the consistency of his candles by seeing how long they last. He randomly selects 160 candles, lights them and records how long they last in minutes. The results are presented in the grouped frequency table below.

| Time (mins)          | 140- | 150- | 160- | 170- | 180- | 190- | 200- | 210-220 |  |
|----------------------|------|------|------|------|------|------|------|---------|--|
| Frequency            | 5    | 20   | 45   | 30   | 25   | 20   | 10   | 5       |  |
| Cumulative frequency |      |      |      |      |      |      |      |         |  |

(a) Complete the table above by calculating the cumulative frequency. (b) Plot a cumulative frequency graph on the axes below.

(1 mark)



| (c) | ) From your graph, estimate the median amount of time that the candles last.                                                                                                                    |            |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
|     |                                                                                                                                                                                                 | (1 mark)   |
| (d) | I) From your graph estimate:                                                                                                                                                                    |            |
|     | (i) the upper quartile time                                                                                                                                                                     | . (1 mark) |
|     | (ii) the lower quartile time                                                                                                                                                                    | . (1 mark) |
|     | (iii) the interquartile range.                                                                                                                                                                  | . (1 mark) |
| (e) | ) The candle manufacturer is aiming that the lifespans of the middle 50% of his car<br>not differ by more than 30 minutes. Explain, giving your justification, whether the<br>supports his aim. |            |
|     |                                                                                                                                                                                                 |            |

#### Exam focus

1 Eight people are weighed. Their masses (kg) are given below.

Two of their masses are unknown and are given as x and y. The mean of the 8 masses is known to be 74kg, the median 73kg and the range 51kg. Calculate a possible pair of values for x and v.

2 Eight different cars are selected at random. Their mass (kg) is recorded, as is their average

fuel consumption (kpl). The results are presented in the table below.

|     |                              | 22-100-100-100 |      |      |      |      |      |      |      |
|-----|------------------------------|----------------|------|------|------|------|------|------|------|
| Ma  | ss (kg)                      | 2150           | 1080 | 1390 | 1820 | 900  | 1210 | 1620 | 810  |
| Ave | erage fuel consumption (kpl) | 5.1            | 11.2 | 7.8  | 6.5  | 15.1 | 10.7 | 11.6 | 12.0 |

(a) Plot a scatter graph on the grid below.



(b) Describe the correlation between mass and fuel consumption

[3]

....[2]

(c) Calculate:

and label it M.

- (i) the mean mass of the sampled cars
- (ii) the mean fuel consumption of the sampled cars.
- (d) Plot the point that represents the mean mass and mean fuel consumption on your graph
- (e) Draw a line of best fit on your graph that passes through M.
- (f) A car manufacturer brings out a new car that weighs only 700 kg. Using your graph, estimate what its average fuel consumption is likely to be.

3 A bus company wishes to investigate how late its buses on a particular route are. The lateness (mins) of buses over a day is recorded and presented in the grouped frequency table below.

| Bus lateness (mins) | 0- 0.5- |   | 1- | 2- | 5- | 10- | 20-30 |  |
|---------------------|---------|---|----|----|----|-----|-------|--|
| Frequency           | 10      | 8 | 16 | 15 | 20 | 10  | 5     |  |
| Frequency density   |         |   |    |    |    |     |       |  |

- (a) Complete the table by calculating the frequency density.
- (b) Plot a histogram on the grid below.



4 An experiment is set up to investigate the effect of tiredness on the reaction time(s) of adults.



The same test is carried out on each adult, once when they have had a full night's sleep and once when they have not slept.

The results are shown in the tables below.

#### Full sleep

| Reaction time (s)    | 0- | 0.1- | 0.2- | 0.3- | 0.4- | 0.5-0.6 |
|----------------------|----|------|------|------|------|---------|
| Frequency            | 1  | 14   | 18   | 4    | 2    | 1       |
| Cumulative frequency |    |      |      |      |      |         |

#### No sleep

| Reaction time (s)    | 0- | 0.1- | 0.2- | 0.3- | 0.4- | 0.5- | 0.6- | 0.7-0.8 |
|----------------------|----|------|------|------|------|------|------|---------|
| Frequency            | 0  | 2    | 5    | 15   | 10   | 5    | 2    | 1       |
| Cumulative frequency |    |      |      |      |      |      |      |         |

(a) Complete the cumulative frequency row in each of the tables above.

[2]

(b) On the grid below, plot cumulative frequency curves for both sets of data. Label each one clearly.



|  | (c) | Estimate | from the | graphs | the median | reaction | time | for | each | set | of | data |
|--|-----|----------|----------|--------|------------|----------|------|-----|------|-----|----|------|
|--|-----|----------|----------|--------|------------|----------|------|-----|------|-----|----|------|

(d) Estimate from the graphs the interquartile range for each set of data.

F 47

(e) State two conclusions you can make from the results of your calculations in (c) and (d) above.

[2]