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Preface 

 
Here are my online notes for my Algebra course that I teach here at Lamar University, although I 
have to admit that it’s been years since I last taught this course.  At this point in my career I 
mostly teach Calculus and Differential Equations.   
 
Despite the fact that these are my “class notes” they should be accessible to anyone wanting to 
learn Algebra or needing a refresher for algebra.  I’ve tried to make the notes as self contained as 
possible and do not reference any book.  However, they do assume that you’ve has some 
exposure to the basics of algebra at some point prior to this.  While there is some review of 
exponents, factoring and graphing it is assumed that not a lot of review will be needed to remind 
you how these topics work.  
 
Here are a couple of warnings to my students who may be here to get a copy of what happened on 
a day that you missed.   
 

1. Because I wanted to make this a fairly complete set of notes for anyone wanting to learn 
algebra I have included some material that I do not usually have time to cover in class 
and because this changes from semester to semester it is not noted here.  You will need to 
find one of your fellow class mates to see if there is something in these notes that wasn’t 
covered in class. 
 

2. Because I want these notes to provide some more examples for you to read through, I 
don’t always work the same problems in class as those given in the notes.  Likewise, even 
if I do work some of the problems in here I may work fewer problems in class than are 
presented here. 
 

3. Sometimes questions in class will lead down paths that are not covered here.  I try to 
anticipate as many of the questions as possible in writing these up, but the reality is that I 
can’t anticipate all the questions.  Sometimes a very good question gets asked in class 
that leads to insights that I’ve not included here.  You should always talk to someone who 
was in class on the day you missed and compare these notes to their notes and see what 
the differences are. 
 

4. This is somewhat related to the previous three items, but is important enough to merit its 
own item.  THESE NOTES ARE NOT A SUBSTITUTE FOR ATTENDING CLASS!!  
Using these notes as a substitute for class is liable to get you in trouble. As already noted 
not everything in these notes is covered in class and often material or insights not in these 
notes is covered in class.
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Outline 

 
Here is a listing of all the material that is currently available in these notes. 
 
Preliminaries 

Integer Exponents – In this section we will start looking at exponents and their 
properties. 
Rational Exponents – We will define rational exponents in this section and extend the 
properties from the previous section to rational exponents. 
Real Exponents – This is a short acknowledgment that the exponent properties from the 
previous two sections will hold for any real exponent. 
Radicals – Here we will define radical notation and relate radicals to rational exponents.  
We will also give the properties of radicals. 
Polynomials – We will introduce the basics of polynomials in this section including 
adding, subtracting and multiplying polynomials. 
Factoring Polynomials – This is the most important section of all the preliminaries.  
Factoring polynomials will appear in pretty much every chapter in this course.  Without 
the ability to factor polynomials you will be unable to complete this course. 
Rational Expressions – In this section we will define rational expressions and discuss 
adding, subtracting, multiplying and dividing them. 
Complex Numbers – Here is a very quick primer on complex numbers and how to 
manipulate them. 
 

Solving Equations and Inequalities 
Solutions and Solution Sets – We introduce some of the basic notation and ideas 
involved in solving in this section. 
Linear Equations – In this section we will solve linear equations, including equations 
with rational expressions. 
Applications of Linear Equations – We will take a quick look at applications of linear 
equations in this section. 
Equations With More Than One Variable – Here we will look at solving equations 
with more than one variable in them. 
Quadratic Equations, Part I – In this section we will start looking at solving quadratic 
equations.  We will look at factoring and the square root property in this section. 
Quadratic Equations, Part II – We will finish up solving quadratic equations in this 
section.  We will look at completing the square and quadratic formula in this section. 
Quadratic Equations : A Summary – We’ll give a procedure for determining which 
method to use in solving quadratic equations in this section.  We will also take a quick 
look at the discriminate. 
Applications of Quadratic Equations – Here we will revisit some of the applications 
we saw in the linear application section, only this time they will involve solving a 
quadratic equation. 
Equations Reducible to Quadratic Form – In this section we will solve equations that 
can be reduced to quadratic in form. 
Equations with Radicals – Here we will solve equations with square roots in them. 
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Linear Inequalities – We will start solving inequalities in this section by looking at 
linear inequalities. 
Polynomial Inequalities – In this section we will look at solving inequalities that contain 
polynomials. 
Rational Inequalities – Here we will solve inequalities involving rational expressions. 
Absolute Value Equations – We will officially define absolute value in this section and 
solve equations that contain absolute value. 
Absolute Value Inequalities – We will solve inequalities that involve absolute value in 
this section. 
 

Graphing and Functions 
Graphing – In this section we will introduce the Cartesian coordinate system and most of 
the basics of graphing equations. 
Lines – Here we will review the main ideas from the study of lines including slope and 
the special forms of the equation of a line. 
Circles – We will look at the equation of a circle and graphing circles in this section. 
The Definition of a Function – We will discuss the definition of a function in this 
section.  We will also introduce the idea of function evaluation. 
Graphing Functions – In this section we will look at the basics of graphing functions.  
We will also graph some piecewise functions in this section. 
Combining functions – Here we will look at basic arithmetic involving functions as well 
as function composition. 
Inverse Functions – We will define and find inverse functions in this section. 
 

Common Graphs 
Lines, Circles and Piecewise Functions – This section is here only to acknowledge that 
we’ve already talked about graphing these in a previous chapter. 
Parabolas – We’ll be graphing parabolas in this section. 
Ellipses – In this section we will graph ellipses. 
Hyperbolas – Here we will be graphing hyperbolas. 
Miscellaneous Functions – In this section we will graph a couple of common functions 
that don’t really take all that much work to so.  We’ll be looking at the constant function, 
square root, absolute value and a simple cubic function. 
Transformations – We will be looking at shifts and reflections of graphs in this section.  
Collectively these are often called transformations. 
Symmetry – We will briefly discuss the topic of symmetry in this section. 
Rational Functions – In this section we will graph some rational functions.  We will also 
be taking a look at vertical and horizontal asymptotes. 
 

Polynomial Functions 
Dividing Polynomials – We’ll review some of the basics of dividing polynomials in this 
section.  
Zeroes/Roots of Polynomials – In this section we’ll define just what zeroes/roots of 
polynomials are and give some of the more important facts concerning them. 
Graphing Polynomials – Here we will give a process that will allow us to get a rough 
sketch of some polynomials. 
Finding Zeroes of Polynomials – We’ll look at a process that will allow us to find some 
of the zeroes of a polynomial and in special cases all of the zeroes. 
Partial Fractions – In this section we will take a look at the process of partial fractions 
and finding the partial fraction decomposition of a rational expression. 
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Exponential and Logarithm Functions 
Exponential Functions – In this section we will introduce exponential functions.  We 
will be taking a look at some of the properties of exponential functions. 
Logarithm Functions – Here we will introduce logarithm functions.  We be looking at 
how to evaluate logarithms as well as the properties of logarithms. 
Solving Exponential Equations – We will be solving equations that contain 
exponentials in this section. 
Solving Logarithm Equations – Here we will solve equations that contain logarithms. 
Applications – In this section we will look at a couple of applications of exponential 
functions and an application of logarithms. 
 

Systems of Equations 
Linear Systems with Two Variables – In this section we will use systems of two 
equations and two variables to introduce two of the main methods for solving systems of 
equations. 
Linear Systems with Three Variables – Here we will work a quick example to show 
how to use the methods to solve systems of three equations with three variables. 
Augmented Matrices – We will look at the third main method for solving systems in 
this section.  We will look at systems of two equations and systems of three equations. 
More on the Augmented Matrix – In this section we will take a look at some special 
cases to the solutions to systems and how to identify them using the augmented matrix 
method. 
Nonlinear Systems – We will take a quick look at solving nonlinear systems of 
equations in this section. 
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Preliminaries 

 

 Introduction 
The purpose of this chapter is to review several topics that will arise time and again throughout 
this material.  Many of the topics here are so important to an Algebra class that if you don’t have 
a good working grasp of them you will find it very difficult to successfully complete the course.  
Also, it is assumed that you’ve seen the topics in this chapter somewhere prior to this class and so 
this chapter should be mostly a review for you.  However, since most of these topics are so 
important to an Algebra class we will make sure that you do understand them by doing a quick 
review of them here. 
 
Exponents and polynomials are integral parts of any Algebra class.  If you do not remember the 
basic exponent rules and how to work with polynomials you will find it very difficult, if not 
impossible, to pass an Algebra class.   This is especially true with factoring polynomials.  There 
are more than a few sections in an Algebra course where the ability to factor is absolutely 
essential to being able to do the work in those sections.  In fact, in many of these sections 
factoring will be the first step taken. 
 
It is important that you leave this chapter with a good understanding of this material!  If you don’t 
understand this material you will find it difficult to get through the remaining chapters.  Here is a 
brief listing of the material covered in this chapter. 
 
Integer Exponents – In this section we will start looking at exponents and their properties. 
Rational Exponents – We will define rational exponents in this section and extend the properties 
from the previous section to rational exponents. 
Real Exponents – This is a short acknowledgment that the exponent properties from the previous 
two sections will hold for any real exponent. 
Radicals – Here we will define radical notation and relate radicals to rational exponents.  We will 
also give the properties of radicals. 
Polynomials – We will introduce the basics of polynomials in this section including adding, 
subtracting and multiplying polynomials. 
Factoring Polynomials – This is the most important section of all the preliminaries.  Factoring 
polynomials will appear in pretty much every chapter in this course.  Without the ability to factor 
polynomials you will be unable to complete this course. 
Rational Expressions – In this section we will define rational expressions and discuss adding, 
subtracting, multiplying and dividing them. 
Complex Numbers – Here is a very quick primer on complex numbers and how to manipulate 
them. 
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 Integer Exponents 
We will start off this chapter by looking at integer exponents.  In fact, we will initially assume 
that the exponents are positive as well.  We will look at zero and negative exponents in a bit. 
 
Let’s first recall the definition of exponentiation with positive integer exponents.  If a is any 
number and n is a positive integer then, 
 

 times

n

n

a a a a a= ⋅ ⋅ ⋅ ⋅"��	�
  

So, for example, 
 53 3 3 3 3 3 243= ⋅ ⋅ ⋅ ⋅ =  
 
We should also use this opportunity to remind ourselves about parenthesis and conventions that 
we have in regards to exponentiation and parenthesis.  This will be particularly important when 
dealing with negative numbers.  Consider the following two cases. 
 ( )4 42 and 2− −  
These will have different values once we evaluate them.  When performing exponentiation 
remember that it is only the quantity that is immediately to the left of the exponent that gets the 
power.   
 
In the first case there is a parenthesis immediately to the left so that means that everything in the 
parenthesis gets the power.  So, in this case we get, 
 ( ) ( )( )( )( )42 2 2 2 2 16− = − − − − =  
 
In the second case however, the 2 is immediately to the left of the exponent and so it is only the 2 
that gets the power.  The minus sign will stay out in front and will NOT get the power.  In this 
case we have the following, 
 ( ) ( ) ( )4 42 2 2 2 2 2 16 16− = − = − ⋅ ⋅ ⋅ = − = −  
 
We put in some extra parenthesis to help illustrate this case.  In general they aren’t included and 
we would write instead, 
 42 2 2 2 2 16− = − ⋅ ⋅ ⋅ = −  
 
The point of this discussion is to make sure that you pay attention to parenthesis.  They are 
important and ignoring parenthesis or putting in a set of parenthesis where they don’t belong can 
completely change the answer to a problem.  Be careful.  Also, this warning about parenthesis is 
not just intended for exponents.  We will need to be careful with parenthesis throughout this 
course. 
 
Now, let’s take care of zero exponents and negative integer exponents. In the case of zero 
exponents we have, 
 0 1 provided 0a a= ≠  
Notice that it is required that a not be zero.  This is important since 00  is not defined.  Here is a 
quick example of this property. 
 ( )01268 1− =  
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We have the following definition for negative exponents.  If a is any non-zero number and n is a 
positive integer (yes, positive) then, 

 1n
na

a
− =  

 
Can you see why we required that a not be zero?  Remember that division by zero is not defined 
and if we had allowed a to be zero we would have gotten division by zero.  Here are a couple of 
quick examples for this definition, 

 ( )
( )

32
32

1 1 1 1 15 4
5 25 64 644

−− = = − = = = −
−−

 

 
Here are some of the main properties of integer exponents.  Accompanying each property will be 
a quick example to illustrate its use.  We will be looking at more complicated examples after the 
properties. 
 
Properties 

1. n m n ma a a +=    Example : 9 4 9 4 5a a a a− − + −= =  
 

2. ( )mn nma a=    Example : ( ) ( )( )3 7 37 21a a a= =  

 

3. , 01

n m
n

m
m n

aa a
a

a

−

−

⎧
⎪= ≠⎨
⎪⎩

  Example : 

4
4 11 7

11

4
7

11 11 4 7

1 1

a a a
a
a a
a a a

− −

−
−

= =

= = =
 

 
4. ( )n n nab a b=    Example : ( ) 4 4 4ab a b− − −=  

 

5. , 0
n n

n

a a b
b b

⎛ ⎞ = ≠⎜ ⎟
⎝ ⎠

  Example : 
8 8

8

a a
b b

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

 

6. 
n n n

n

a b b
b a a

−
⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

  Example : 
10 10 10

10

a b b
b a a

−
⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 

7. ( )
( )

1n
nab

ab
− =   Example : ( )

( )
20

20
1ab

ab
− =  

 

8. 
1 n

n a
a− =    Example : 2

2

1 a
a− =  

 

9. 
n m

m n

a b
b a

−

− =    Example : 
6 17

17 6

a b
b a

−

− =  
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10. ( )kn m nk mka b a b=   Example : ( ) ( )( ) ( )( )3 4 3 9 34 9 12 27a b a b a b−− −= =  

 

11. 
kn nk

m mk

a a
b b

⎛ ⎞
=⎜ ⎟

⎝ ⎠
   Example : 

( )( )

( )( )

2 6 26 12

5 105 2

a a a
b bb

⎛ ⎞
= =⎜ ⎟

⎝ ⎠
 

 
Notice that there are two possible forms for the third property.  Which form you use is usually 
dependent upon the form you want the answer to be in. 
 
Note as well that many of these properties were given with only two terms/factors but they can be 
extended out to as many terms/factors as we need.  For example, property 4 can be extended as 
follows. 
 ( )n n n n nabcd a b c d=  
We only used four factors here, but hopefully you get the point.  Property 4 (and most of the other 
properties) can be extended out to meet the number of factors that we have in a given problem. 
 
There are several common mistakes that students make with these properties the first time they 
see them.  Let’s take a look at a couple of them. 
 
Consider the following case. 

 

2
2 2

2
2

1Correct   :    

1Incorrect :     

aab a
b b

ab
ab

−

−

= =

≠
 

In this case only the b gets the exponent since it is immediately off to the left of the exponent and 
so only this term moves to the denominator.  Do NOT carry the a down to the denominator with 
the b.  Contrast this with the following case. 

 ( )
( )

2
2

1ab
ab

− =  

In this case the exponent is on the set of parenthesis and so we can just use property 7 on it and so 
both the a and the b move down to the denominator.  Again, note the importance of parenthesis 
and how they can change an answer! 
 
 
 
 
Here is another common mistake. 

 

5
5 5

5
5

1 1 1 1Correct   :  
3 3 3

1Incorrect :   3
3

a
a a

a
a

− −

−
−

= =

≠
 

In this case the exponent is only on the a and so to use property 8 on this we would have to break 
up the fraction as shown and then use property 8 only on the second term.  To bring the 3 up with 
the a we would have needed the following. 
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( )

( )5
5

1 3
3

a
a − =  

 
Once again, notice this common mistake comes down to being careful with parenthesis.  This will 
be a constant refrain throughout these notes.  We must always be careful with parenthesis.  
Misusing them can lead to incorrect answers. 
 
Let’s take a look at some more complicated examples now. 
 
Example 1  Simplify each of the following and write the answers with only positive exponents. 

(a) ( )34 54x y−     [Solution] 

(b) ( ) ( )2 52 4 310z y z y
−−−    [Solution] 

(c) 
2

4 37
n m
m n

−

− −    [Solution] 

(d) 
( )

1 4

25 9

5

3

x y

y x

− −

−    [Solution] 

(e) 
65

2 1

z
z x

−

− −

⎛ ⎞
⎜ ⎟
⎝ ⎠

   [Solution] 

(f) 
23 8

5

24
6

a b
a b

−−

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

   [Solution] 

Solution 
Note that when we say “simplify” in the problem statement we mean that we will need to use all 
the properties that we can to get the answer into the required form.  Also, a “simplified” answer 
will have as few terms as possible and each term should have no more than a single exponent on 
it. 
 
There are many different paths that we can take to get to the final answer for each of these.  In the 
end the answer will be the same regardless of the path that you used to get the answer.  All that 
this means for you is that as long as you used the properties you can take the path that you find 
the easiest.  The path that others find to be the easiest may not be the path that you find to be the 
easiest.  That is okay. 
 
Also, we won’t put quite as much detail in using some of these properties as we did in the 
examples given with each property.  For instance, we won’t show the actual multiplications 
anymore, we will just give the result of the multiplication.  
 

(a) ( )34 54x y−  

For this one we will use property 10 first. 

 ( )34 5 3 12 154 4x y x y− −=  
Don’t forget to put the exponent on the constant in this problem.  That is one of the more 
common mistakes that students make with these simplification problems. 
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At this point we need to evaluate the first term and eliminate the negative exponent on the second 
term.  The evaluation of the first term isn’t too bad and all we need to do to eliminate the negative 
exponent on the second term is use the definition we gave for negative exponents. 

 ( )
1534 5 15

12 12

1 644 64 yx y y
x x

− ⎛ ⎞= =⎜ ⎟
⎝ ⎠

 

 
We further simplified our answer by combining everything up into a single fraction.  This should 
always be done. 
 
The middle step in this part is usually skipped.  All the definition of negative exponents tells us to 
do is move the term to the denominator and drop the minus sign in the exponent.  So, from this 
point on, that is what we will do without writing in the middle step. 

[Return to Problems] 
 

(b)  ( ) ( )2 52 4 310z y z y
−−−  

In this case we will first use property 10 on both terms and then we will combine the terms using 
property 1.  Finally, we will eliminate the negative exponents using the definition of negative 
exponents. 

 ( ) ( ) ( )2 5 22 4 3 4 8 15 5 11 13
11 13

10010 10 100z y z y z y z y z y
z y

−− − − − − −− = − = =  

 
There are a couple of things to be careful with in this problem.  First, when using the property 10 
on the first term, make sure that you square the “-10” and not just the 10 (i.e. don’t forget the 
minus sign…).  Second, in the final step, the 100 stays in the numerator since there is no negative 
exponent on it.  The exponent of “-11” is only on the z and so only the z moves to the 
denominator. 

[Return to Problems] 
 
 

(c)  
2

4 37
n m
m n

−

− −  

This one isn’t too bad.  We will use the definition of negative exponents to move all terms with 
negative exponents in them to the denominator.  Also, property 8 simply says that if there is a 
term with a negative exponent in the denominator then we will just move it to the numerator and 
drop the minus sign. 
 
So, let’s take care of the negative exponents first. 

 
2 4 3

4 3 27 7
n m m n m
m n n

−

− − =  

 
Now simplify.  We will use property 1 to combine the m’s in the numerator.  We will use 
property 3 to combine the n’s and since we are looking for positive exponents we will use the first 
form of this property since that will put a positive exponent up in the numerator. 

 
2 5

4 37 7
n m m n
m n

−

− − =  

 
Again, the 7 will stay in the denominator since there isn’t a negative exponent on it.  It will NOT 
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move up to the numerator with the m.  Do not get excited if all the terms move up to the 
numerator or if all the terms move down to the denominator.  That will happen on occasion. 

[Return to Problems] 
 

(d) 
( )

1 4

25 9

5

3

x y

y x

− −

−  

This example is similar to the previous one except there is a little more going on with this one.  
The first step will be to again, get rid of the negative exponents as we did in the previous 
example.  Any terms in the numerator with negative exponents will get moved to the denominator 
and we’ll drop the minus sign in the exponent.  Likewise, any terms in the denominator with 
negative exponents will move to the numerator and we’ll drop the minus sign in the exponent.  
Notice this time, unlike the previous part, there is a term with a set of parenthesis in the 
denominator.  Because of the parenthesis that whole term, including the 3, will move to the 
numerator. 
 
Here is the work for this part. 

 
( )

( ) ( )
25 101 4 6

2 4 9 4 9 105 9

5 3 5 95 45

3

y yx y y
xy x xy x xy x

− −

− = = =  

[Return to Problems] 
 
 

(e) 
65

2 1

z
z x

−

− −

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

There are several first steps that we can take with this one.  The first step that we’re pretty much 
always going to take with these kinds of problems is to first simplify the fraction inside the 
parenthesis as much as possible.  After we do that we will use property 5 to deal with the 
exponent that is on the parenthesis. 

 
6 6 65 2 1 6

2 1 5 3 18

z z x x x
z x z z z

−

− −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
In this case we used the second form of property 3 to simplify the z’s since this put a positive 
exponent in the denominator.  Also note that we almost never write an exponent of “1”.  When 
we have exponents of 1 we will drop them. 

[Return to Problems] 

(f)  
23 8

5

24
6

a b
a b

−−

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

This one is very similar to the previous part.  The main difference is negative on the outer 
exponent.  We will deal with that once we’ve simplified the fraction inside the parenthesis. 

 
2 2 23 8 3 5 8

5 8 9

24 4 4
6

a b a a a
a b b b b

− − −−

−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

Now at this point we can use property 6 to deal with the exponent on the parenthesis.  Doing this 
gives us, 
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2 23 8 9 18

5 8 16

24
6 4 16

a b b b
a b a a

−−

−

⎛ ⎞ ⎛ ⎞
= =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

[Return to Problems]
 
 
Before leaving this section we need to talk briefly about the requirement of positive only 
exponents in the above set of examples.  This was done only so there would be a consistent final 
answer.  In many cases negative exponents are okay and in some cases they are required.  In fact, 
if you are on a track that will take you into calculus there are a fair number of problems in a 
calculus class in which negative exponents are the preferred, if not required, form. 
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 Rational Exponents 
Now that we have looked at integer exponents we need to start looking at more complicated 
exponents.  In this section we are going to be looking at rational exponents.  That is exponents in 
the form 

 
m
nb  

where both m and n are integers. 
 
We will start simple by looking at the following special case, 

1
nb  

where n is an integer.  Once we have this figured out the more general case given above will 
actually be pretty easy to deal with. 
 
Let’s first define just what we mean by exponents of this form. 

 
1

is equivalent to nna b a b= =  
 

In other words, when evaluating 
1
nb  we are really asking what number (in this case a) did we 

raise to the n to get b.  Often 
1
nb  is called the nth root of b. 

 
Let’s do a couple of evaluations. 
 
Example 1  Evaluate each of the following. 

(a) 
1
225    [Solution] 

(b) 
1
532    [Solution] 

(c) 
1
481    [Solution] 

(d) ( )
1
38−    [Solution] 

(e) ( )
1
416−    [Solution] 

(f) 
1
416−    [Solution] 

Solution 
When doing these evaluations we will do actually not do them directly.  When first confronted 
with these kinds of evaluations doing them directly is often very difficult.  In order to evaluate 
these we will remember the equivalence given in the definition and use that instead. 
 
We will work the first one in detail and then not put as much detail into the rest of the problems. 
 

(a) 
1
225  

So, here is what we are asking in this problem. 

 
1
225 ?=  
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Using the equivalence from the definition we can rewrite this as, 
 2? 25=  
So, all that we are really asking here is what number did we square to get 25.  In this case that is 
(hopefully) easy to get.  We square 5 to get 25.  Therefore, 

 
1
225 5=  

[Return to Problems] 
 

(b) 
1
532  

So what we are asking here is what number did we raise to the 5th power to get 32? 
1

5532 2 because 2 32= =  
[Return to Problems] 

 

(c) 
1
481  

What number did we raise to the 4th power to get 81? 

 
1

4481 3 because 3 81= =  
[Return to Problems] 

 

(d) ( )
1
38−  

We need to be a little careful with minus signs here, but other than that it works the same way as 
the previous parts.  What number did we raise to the 3rd power (i.e. cube) to get -8? 

 ( ) ( )
1 3
38 2 because 2 8− = − − = −  

[Return to Problems] 
 

(e) ( )
1
416−  

This part does not have an answer.  It is here to make a point.  In this case we are asking what 
number do we raise to the 4th power to get -16.  However, we also know that raising any number 
(positive or negative) to an even power will be positive.  In other words, there is no real number 
that we can raise to the 4th power to get -16. 
 
Note that this is different from the previous part.  If we raise a negative number to an odd power 
we will get a negative number so we could do the evaluation in the previous part. 
 
As this part has shown, we can’t always do these evaluations. 

[Return to Problems] 
 

(f) 
1
416−  

Again, this part is here to make a point more than anything.  Unlike the previous part this one has 
an answer.  Recall from the previous section that if there aren’t any parentheses then only the part 
immediately to the left of the exponent gets the exponent.  So, this part is really asking us to 
evaluate the following term. 
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1 1
4 416 16

⎛ ⎞
− = −⎜ ⎟

⎝ ⎠
 

So, we need to determine what number raised to the 4th power will give us 16.  This is 2 and so in 
this case the answer is, 

 ( )
1 1
4 416 16 2 2

⎛ ⎞
− = − = − = −⎜ ⎟

⎝ ⎠
 

[Return to Problems]
 
As the last two parts of the previous example has once again shown, we really need to be careful 
with parenthesis.  In this case parenthesis makes the difference between being able to get an 
answer or not. 
 
Also, don’t be worried if you didn’t know some of these powers off the top of your head.  They 
are usually fairly simple to determine if you don’t know them right away.  For instance in the part 
b we needed to determine what number raised to the 5 will give 32.  If you can’t see the power 
right off the top of your head simply start taking powers until you find the correct one.  In other 
words compute 52 , 53 , 54  until you reach the correct value.  Of course in this case we wouldn’t 
need to go past the first computation. 
 
The next thing that we should acknowledge is that all of the properties for exponents that we gave 
in the previous section are still valid for all rational exponents.  This includes the more general 
rational exponent that we haven’t looked at yet. 
 
Now that we know that the properties are still valid we can see how to deal with the more general 
rational exponent.  There are in fact two different ways of dealing with them as we’ll see.  Both 
methods involve using property 2 from the previous section.  For reference purposes this property 
is, 

 ( )mn nma a=  
 
So, let’s see how to deal with a general rational exponent.  We will first rewrite the exponent as 
follows. 

 
( )1m m

nnb b
⎛ ⎞
⎜ ⎟
⎝ ⎠=  

 
In other words we can think of the exponent as a product of two numbers.  Now we will use the 
exponent property shown above.  However, we will be using it in the opposite direction than what 
we did in the previous section.  Also, there are two ways to do it.  Here they are, 
 

 ( )
1 1

OR
mm m

mn n n nb b b b
⎛ ⎞

= =⎜ ⎟
⎝ ⎠

 

 
Using either of these forms we can now evaluate some more complicated expressions 
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Example 2  Evaluate each of the following. 

(a) 
2
38    [Solution] 

(b) 
3
4625    [Solution] 

(c) 

4
5243

32
⎛ ⎞
⎜ ⎟
⎝ ⎠

   [Solution] 

Solution 
We can use either form to do the evaluations.  However, it is usually more convenient to use the 
first form as we will see. 
 

(a) 
2
38  

Let’s use both forms here since neither one is too bad in this case.  Let’s take a look at the first 
form. 

 ( )
22 1 1

2 33 3 38 8 2 4 8 2 because 2 8
⎛ ⎞

= = = = =⎜ ⎟
⎝ ⎠

 

 
Now, let’s take a look at the second form. 

 ( ) ( )
2 11 1

2 33 33 38 8 64 4 64 4 because 4 64= = = = =  
 
So, we get the same answer regardless of the form.  Notice however that when we used the 
second form we ended up taking the 3rd root of a much larger number which can cause problems 
on occasion. 

[Return to Problems] 
 

(b) 
3
4625  

Again, let’s use both forms to compute this one. 

 ( )
33 1 1

3 44 4 4625 625 5 125 625 5  because  5 625
⎛ ⎞

= = = = =⎜ ⎟
⎝ ⎠

 

 ( ) ( )
3 1 1

3 44 4 4625 625 244140625 125 because 125 244140625= = = =  
 
As this part has shown the second form can be quite difficult to use in computations.  The root in 
this case was not an obvious root and not particularly easy to get if you didn’t know it right off 
the top of your head. 

[Return to Problems] 
 

(c) 

4
5243

32
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

In this case we’ll only use the first form.  However, before doing that we’ll need to first use 
property 5 of our exponent properties to get the exponent onto the numerator and denominator. 
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 ( )
( )

41
544 455

4 4 41
5 5

243
3243 243 81

32 16232 32

⎛ ⎞
⎜ ⎟

⎛ ⎞ ⎝ ⎠= = = =⎜ ⎟
⎝ ⎠ ⎛ ⎞

⎜ ⎟
⎝ ⎠

 

[Return to Problems] 
 
We can also do some of the simplification type problems with rational exponents that we saw in 
the previous section. 
 
Example 3  Simplify each of the following and write the answers with only positive exponents. 

(a) 

1
42

1
216

w

v

−⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

   [Solution] 

(b) 

1
2 7

2 3

1
32

x y

x y

−
−

− −

⎛ ⎞
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

   [Solution] 

Solution 
(a) For this problem we will first move the exponent into the parenthesis then we will eliminate 
the negative exponent as we did in the previous section.  We will then move the term to the 
denominator and drop the minus sign. 

 

1 12
4 2

1 1 11 11
8 8 22 44

1

2 216

w w

v v wv

⎛ ⎞− −⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

= =  

[Return to Problems] 
 
(b) In this case we will first simplify the expression inside the parenthesis. 

 

1 11
12 21 17 77 32 752 2 3 73 32 2

32
1 2

32 3 1
x y x x y x y x y
x y y

− −−
−− −+

− −

⎛ ⎞ ⎛ ⎞⎛ ⎞
⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟= = = ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎝ ⎠⎜ ⎟ ⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

 

 
Don’t worry if, after simplification, we don’t have a fraction anymore.  That will happen on 
occasion.  Now we will eliminate the negative in the exponent using property 7 and then we’ll use 
property 4 to finish the problem up. 

 

1
2 7

2 3

1 1 15
7532 7 314
32

1 1x y

x y x yx y

−
−

− −

⎛ ⎞
⎜ ⎟ = =⎜ ⎟⎜ ⎟ ⎛ ⎞⎝ ⎠ ⎜ ⎟

⎝ ⎠

 

[Return to Problems]
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We will leave this section with a warning about a common mistake that students make in regards 
to negative exponents and rational exponents.  Be careful not to confuse the two as they are 
totally separate topics. 
 
In other words, 

 1n
nb

b
− =  

and NOT 

 
1

n nb b− ≠  
 
This is a very common mistake when students first learn exponent rules. 
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 Real Exponents 
This is a fairly short section.  It’s only real purpose is to acknowledge that the exponent properties 
we listed in the first section work for any exponent.  We’ve already used them on integer and 
rational exponents but we aren’t actually restricted to these kinds of exponents.  The properties 
will work for any exponent that we want to use. 
 
Example 1  Simplify each of the following and write the answers with only positive exponents. 

(a) ( )0.58.2 0.26 2x y z−  

(b) 
33 4.1

2.7

x y
x

−−

−

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Solution 
We will not put as much detail into these as we have in the previous sections.  By this point it is 
assumed that you’re starting to get a good handle on the exponent rules. 
(a)  

 ( )
4.10.58.2 0.26 2 4.1 0.13
0.13

x zx y z x y z
y

− −= =  

(b) 

 
3 3 3 33 4.1 3 2.7 5.7 4.1 12.3

2.7 4.1 4.1 5.7 17.1

x y x x x y y
x y y x x

− − −−

−

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
= = = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
 

 
Note that we won’t be doing anything like this in the remainder of this course.  This section is 
here only to acknowledge that these rules will work for any kind of exponent that we might need 
to work with. 
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 Radicals 
We’ll open this section with the definition of the radical.  If n is a positive integer that is greater 
than 1 and a is a real number then, 

 
1

n na a=  
where n is called the index, a is called the radicand, and the symbol  is called the radical.  
The left side of this equation is often called the radical form and the right side is often called the 
exponent form. 
 
From this definition we can see that a radical is simply another notation for the first rational 
exponent that we looked at in the rational exponents section. 
 
Note as well that the index is required in these to make sure that we correctly evaluate the radical.  
There is one exception to this rule and that is square root.  For square roots we have, 

2 a a=  
In other words, for square roots we typically drop the index. 
 
Let’s do a couple of examples to familiarize us with this new notation. 
 
Example 1  Write each of the following radicals in exponent form. 

(a) 4 16  
(b) 10 8x  

(c) 2 2x y+  
Solution 

(a) 
1

4 416 16=  
 

(b) ( )
1

10 108 8x x=  
 

(c) ( )
1

2 2 2 2 2x y x y+ = +  

 
 
As seen in the last two parts of this example we need to be careful with parenthesis.  When we 
convert to exponent form and the radicand consists of more than one term then we need to 
enclose the whole radicand in parenthesis as we did with these two parts.  To see why this is 
consider the following, 

 
1

108x  
From our discussion of exponents in the previous sections we know that only the term 
immediately to the left of the exponent actually gets the exponent.  Therefore, the radical form of 
this is, 

 
1

10 10108 8 8x x x= ≠  
 
So, we once again see that parenthesis are very important in this class.  Be careful with them. 
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Since we know how to evaluate rational exponents we also know how to evaluate radicals as the 
following set of examples shows. 
 
Example 2  Evaluate each of the following. 

(a) 16  and 4 16    [Solution] 
(b) 5 243    [Solution] 
(c) 4 1296    [Solution] 
(d) 3 125−    [Solution] 
(e) 4 16−    [Solution] 

 
Solution 
To evaluate these we will first convert them to exponent form and then evaluate that since we 
already know how to do that. 
 
(a) These are together to make a point about the importance of the index in this notation.  Let’s 
take a look at both of these. 
 

 
1

2216 16 4 because 4 16= = =  

 
1

44 416 16 2 because 2 16= = =  
 
So, the index is important.  Different indexes will give different evaluations so make sure that you 
don’t drop the index unless it is a 2 (and hence we’re using square roots). 
 

(b) 
1

55 5243 243 3 because 3 243= = =  
 

(c) 
1

44 41296 1296 6 because 6 1296= = =  
 

(d) ( ) ( )
1 33 3125 125 5 because 5 125− = − = − − = −  

 

(e) ( )
1

4 416 16− = −  
As we saw in the integer exponent section this does not have a real answer and so we can’t 
evaluate the radical of a negative number if the index is even.  Note however that we can evaluate 
the radical of a negative number if the index is odd as the previous part shows. 
 
Let’s briefly discuss the answer to the first part in the above example.  In this part we made the 
claim that 16 4=  because 24 16= .  However, 4 isn’t the only number that we can square to 

get 16.  We also have ( )24 16− = .  So, why didn’t we use -4 instead?  There is a general rule 
about evaluating square roots (or more generally radicals with even indexes).  When evaluating 
square roots we ALWAYS take the positive answer.  If we want the negative answer we will do 
the following. 
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 16 4− = −  
 
This may not seem to be all that important, but in later topics this can be very important.  
Following this convention means that we will always get predictable values when evaluating 
roots. 
 
Note that we don’t have a similar rule for radicals with odd indexes such as the cube root in part 
(d) above.  This is because there will never be more than one possible answer for a radical with an 
odd index. 
 
We can also write the general rational exponent in terms of radicals as follows. 

 ( ) ( )
1 1

OR
mm mm

nm mnn n n na a a a a a
⎛ ⎞

= = = =⎜ ⎟
⎝ ⎠

 

 
We now need to talk about some properties of radicals. 
 
Properties 
If n is a positive integer greater than 1 and both a and b are positive real numbers then, 

1. n na a=  

2. n n nab a b=  

3. 
n

n
n

a a
b b
=  

 
Note that on occasion we can allow a or b to be negative and still have these properties work.  
When we run across those situations we will acknowledge them.  However, for the remainder of 
this section we will assume that a and b must be positive. 
 
Also note that while we can “break up” products and quotients under a radical we can’t do the 
same thing for sums or differences.  In other words, 
 ANDn n n n n na b a b a b a b+ ≠ + − ≠ −  
 
If you aren’t sure that you believe this consider the following quick number example. 
 5 25 9 16 9 16 3 4 7= = + ≠ + = + =  
If we “break up” the root into the sum of the two pieces we clearly get different answers!  So, be 
careful to not make this very common mistake! 
 
We are going to be simplifying radicals shortly so we should next define simplified radical 
form.  A radical is said to be in simplified radical form (or just simplified form) if each of the 
following are true. 
 

1. All exponents in the radicand must be less than the index. 
2. Any exponents in the radicand can have no factors in common with the index. 
3. No fractions appear under a radical. 
4. No radicals appear in the denominator of a fraction. 

 



College Algebra 

© 2007 Paul Dawkins 19 http://tutorial.math.lamar.edu/terms.aspx 
 

In our first set of simplification examples we will only look at the first two.  We will need to do a 
little more work before we can deal with the last two. 
 
Example 3  Simplify each of the following. 

(a) 7y    [Solution] 

(b) 9 6x    [Solution] 

(c) 6 1118x y    [Solution] 

(d) 9 5 124 32x y z    [Solution] 

(e) 12 4 245 x y z    [Solution] 

(f) 3 32 29 6x x    [Solution] 
 
Solution 

(a) 7y  
In this case the exponent (7) is larger than the index (2) and so the first rule for simplification is 
violated.  To fix this we will use the first and second properties of radicals above.  So, let’s note 
that we can write the radicand as follows. 

 ( )27 6 3y y y y y= =  
So, we’ve got the radicand written as a perfect square times a term whose exponent is smaller 
than the index.  The radical then becomes, 

 ( )27 3y y y=  
Now use the second property of radicals to break up the radical and then use the first property of 
radicals on the first term. 

 ( )27 3 3y y y y y= =  
 
This now satisfies the rules for simplification and so we are done. 
 
Before moving on let’s briefly discuss how we figured out how to break up the exponent as we 
did.  To do this we noted that the index was 2.  We then determined the largest multiple of 2 that 
is less than 7, the exponent on the radicand.  This is 6.  Next, we noticed that 7=6+1.   
 
Finally, remembering several rules of exponents we can rewrite the radicand as, 

 ( )( ) ( )23 27 6 3y y y y y y y= = =  
 
In the remaining examples we will typically jump straight to the final form of this and leave the 
details to you to check. 

[Return to Problems] 
 

(b) 9 6x  
This radical violates the second simplification rule since both the index and the exponent have a 
common factor of 3.  To fix this all we need to do is convert the radical to exponent form do some 
simplification and then convert back to radical form. 
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 ( ) ( )
6 21 1

9 36 6 2 29 39 3x x x x x x= = = = =  
[Return to Problems] 

 

(c) 6 1118x y  
Now that we’ve got a couple of basic problems out of the way let’s work some harder ones.  
Although, with that said, this one is really nothing more than an extension of the first example. 
 
There is more than one term here but everything works in exactly the same fashion.  We will 
break the radicand up into perfect squares times terms whose exponents are less than 2 (i.e. 1). 

 ( ) ( ) ( ) ( )2 26 11 6 10 3 518 9 2 9 2x y x y y x y y= =  
Don’t forget to look for perfect squares in the number as well. 
 
Now, go back to the radical and then use the second and first property of radicals as we did in the 
first example. 

 ( ) ( ) ( ) ( ) ( )2 2 2 26 11 3 5 3 5 3 518 9 2 9 2 3 2x y x y y x y y x y y= = =  
 
Note that we used the fact that the second property can be expanded out to as many terms as we 
have in the product under the radical.  Also, don’t get excited that there are no x’s under the 
radical in the final answer.  This will happen on occasion. 

[Return to Problems] 
 

(d) 9 5 124 32x y z  
This one is similar to the previous part except the index is now a 4.  So, instead of get perfect 
squares we want powers of 4.  This time we will combine the work in the previous part into one 
step. 

 ( ) ( ) ( )4 49 5 12 8 4 12 2 4 3 2 344 44 4 4 4432 16 2 16 2 2 2x y z x y z xy x y z xy x y z xy= = =  
[Return to Problems] 

 

(e) 12 4 245 x y z  
Again this one is similar to the previous two parts. 

 ( ) ( ) ( )5 512 4 24 10 20 2 4 4 2 4 2 4 4 2 4 2 4 45 5 55 55x y z x z x y z x z x y z x z x y z= = =  
 
In this case don’t get excited about the fact that all the y’s stayed under the radical.  That will 
happen on occasion. 

[Return to Problems] 
 

(f) 3 32 29 6x x  
This last part seems a little tricky.  Individually both of the radicals are in simplified form.  
However, there is often an unspoken rule for simplification.  The unspoken rule is that we should 
have as few radicals in the problem as possible.  In this case that means that we can use the 
second property of radicals to combine the two radicals into one radical and then we’ll see if there 
is any simplification that needs to be done. 
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 ( )( )3 3 32 2 2 2 439 6 9 6 54x x x x x= =  
 
Now that it’s in this form we can do some simplification. 

 ( )3 3 32 2 3 3 3 339 6 27 2 27 2 3 2x x x x x x x x= = =  
[Return to Problems]

 
Before moving into a set of examples illustrating the last two simplification rules we need to talk 
briefly about adding/subtracting/multiplying radicals.  Performing these operations with radicals 
is much the same as performing these operations with polynomials.  If you don’t remember how 
to add/subtract/multiply polynomials we will give a quick reminder here and then give a more in 
depth set of examples the next section. 
 
Recall that to add/subtract terms with x in them all we need to do is add/subtract the coefficients 
of the x.  For example, 
 ( ) ( )4 9 4 9 13 3 11 3 11 8x x x x x x x x+ = + = − = − = −  
 
Adding/subtracting radicals works in exactly the same manner.  For instance, 
 
 ( ) ( )10 10 10 104 9 4 9 13 3 5 11 5 3 11 5 8 5x x x x+ = + = − = − = −  
 
We’ve already seen some multiplication of radicals in the last part of the previous example.  If we 
are looking at the product of two radicals with the same index then all we need to do is use the 
second property of radicals to combine them then simplify.  What we need to look at now are 
problems like the following set of examples. 
 
Example 4  Multiply each of the following. 

(a) ( )( )2 5x x+ −    [Solution] 

(b) ( )( )3 2 5x y x y− −    [Solution] 

(c) ( )( )5 2 5 2x x+ −    [Solution] 

Solution 
In all of these problems all we need to do is recall how to FOIL binomials.  Recall, 
 ( )( ) ( ) ( ) ( ) ( ) 2 23 5 2 3 3 2 5 5 2 3 6 5 10 3 10x x x x x x x x x x x− + = + − − = + − − = + −  
 
With radicals we multiply in exactly the same manner.  The main difference is that on occasion 
we’ll need to do some simplification after doing the multiplication 
 
(a) ( )( )2 5x x+ −  

 

( )( ) ( )
2

2 5 5 2 10

3 10

3 10

x x x x x x

x x

x x

+ − = − + −

= − −

= − −
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As noted above we did need to do a little simplification on the first term after doing the 
multiplication. 

[Return to Problems] 
 
(b) ( )( )3 2 5x y x y− −  

Don’t get excited about the fact that there are two variables here.  It works the same way! 

 

( )( ) 2 23 2 5 6 15 2 5

6 15 2 5

6 17 5

x y x y x x y x y y

x xy xy y

x xy y

− − = − − +

= − − +

= − +

 

 
Again, notice that we combined up the terms with two radicals in them. 

[Return to Problems] 
 
(c) ( )( )5 2 5 2x x+ −  

Not much to do with this one. 

 ( )( ) 25 2 5 2 25 10 10 4 25 4x x x x x x+ − = − + − = −  
Notice that, in this case, the answer has no radicals.  That will happen on occasion so don’t get 
excited about it when it happens. 

[Return to Problems]
 
The last part of the previous example really used the fact that 
 ( )( ) 2 2a b a b a b+ − = −  
If you don’t recall this formula we will look at it in a little more detail in the next section. 
 
Okay, we are now ready to take a look at some simplification examples illustrating the final two 
rules.  Note as well that the fourth rule says that we shouldn’t have any radicals in the 
denominator.  To get rid of them we will use some of the multiplication ideas that we looked at 
above and the process of getting rid of the radicals in the denominator is called rationalizing the 
denominator.  In fact, that is really what this next set of examples is about.  They are really more 
examples of rationalizing the denominator rather than simplification examples. 
 
Example 5  Rationalize the denominator for each of the following. 

(a) 4
x

   [Solution] 

(b) 5
3

2
x

   [Solution] 

(c) 1
3 x−

   [Solution] 

(d) 5
4 3x +

   [Solution] 

Solution 
There are really two different types of problems that we’ll be seeing here.  The first two parts 
illustrate the first type of problem and the final two parts illustrate the second type of problem.  
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Both types are worked differently. 
 

(a) 
4
x

 

In this case we are going to make use of the fact that n na a= .  We need to determine what to 
multiply the denominator by so that this will show up in the denominator.  Once we figure this 
out we will multiply the numerator and denominator by this term. 
 
Here is the work for this part. 

 
2

4 4 4 4x x x
xx x x x

= = =  

 
Remember that if we multiply the denominator by a term we must also multiply the numerator by 

the same term.  In this way we are really multiplying the term by 1 (since 1a
a
= ) and so aren’t 

changing its value in any way. 
[Return to Problems] 

 

(b) 5
3

2
x

 

We’ll need to start this one off with first using the third property of radicals to eliminate the 
fraction from underneath the radical as is required for simplification. 

 
5

5
3 5 3

2 2
x x

=  

 
Now, in order to get rid of the radical in the denominator we need the exponent on the x to be a 5.  

This means that we need to multiply by 5 2x  so let’s do that. 

 
5 5 52 2 25

5
3 5 5 53 2 5

2 2 2 2x x x
x xx x x

= = =  

[Return to Problems] 
 

(c) 
1

3 x−
 

In this case we can’t do the same thing that we did in the previous two parts.  To do this one we 
will need to instead to make use of the fact that  
 ( )( ) 2 2a b a b a b+ − = −  
 
When the denominator consists of two terms with at least one of the terms involving a radical we 
will do the following to get rid of the radical. 

 
( ) ( ) ( )( )

1 1 3 3 3
93 3 3 3 3

x x x
xx x x x x

+ + +
= = =

−− − + − +
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So, we took the original denominator and changed the sign on the second term and multiplied the 
numerator and denominator by this new term.  By doing this we were able to eliminate the radical 
in the denominator when we then multiplied out. 

[Return to Problems] 
 

(d)  
5

4 3x +
 

This one works exactly the same as the previous example.  The only difference is that both terms 
in the denominator now have radicals.  The process is the same however. 

 
( )

( )
( )

( )
( )( )

( )4 3 5 4 3 5 4 35 5
16 34 3 4 3 4 3 4 3 4 3

x x x

xx x x x x

− − −
= = =

−+ + − + −
 

[Return to Problems]
 
Rationalizing the denominator may seem to have no real uses and to be honest we won’t see 
many uses in an Algebra class.  However, if you are on a track that will take you into a Calculus 
class you will find that rationalizing is useful on occasion at that level. 
 
We will close out this section with a more general version of the first property of radicals.  Recall 
that when we first wrote down the properties of radicals we required that a be a positive number.  
This was done to make the work in this section a little easier.  However, with the first property 
that doesn’t necessarily need to be the case. 
 
Here is the property for a general a (i.e. positive or negative) 
 

if  is even
if  is odd

n n a n
a

a n
⎧

= ⎨
⎩

 

 
where a  is the absolute value of a.  If you don’t recall absolute value we will cover that in detail 
in a section in the next chapter.  All that you need to do is know at this point is that absolute value 
always makes a a positive number. 
 
So, as a quick example this means that, 

 8 8 1111ANDx x x x= =  
 
For square roots this is, 

 2x x=  
 
This will not be something we need to worry all that much about here, but again there are topics 
in courses after an Algebra course for which this is an important idea so we needed to at least 
acknowledge it. 
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 Polynomials 
In this section we will start looking at polynomials.  Polynomials will show up in pretty much 
every section of every chapter in the remainder of this material and so it is important that you 
understand them. 
 
We will start off with polynomials in one variable.  Polynomials in one variable are algebraic 
expressions that consist of terms in the form nax  where n is a non-negative (i.e. positive or zero) 
integer and a is a real number and is called the coefficient of the term.  The degree of a 
polynomial in one variable is the largest exponent in the polynomial. 
 
Note that we will often drop the “in one variable” part and just say polynomial. 
 
Here are examples of polynomials and their degrees. 

 

12 6 5

4 3 2

23

5 2 198 1 degree : 12
1 degree : 4

56 degree : 23
5 7 degree : 1

8 degree : 0

x x x x
x x x x

x
x

− + − +

− + − +

−
−

 

 
So, a polynomial doesn’t have to contain all powers of x as we see in the first example.  Also, 
polynomials can consist of a single term as we see in the third and fifth example. 
 
We should probably discuss the final example a little more.  This really is a polynomial even it 
may not look like one.  Remember that a polynomial is any algebraic expression that consists of 
terms in the form nax .  Another way to write the last example is 
 08x−  
Written in this way makes it clear that the exponent on the x is a zero (this also explains the 
degree…) and so we can see that it really is a polynomial in one variable. 
 
Here are some examples of things that aren’t polynomials. 

 

6 8

2

3

4 15 1

5
2 2

x x

x x x

x
x

−+ +

− +

+ −

 

 
The first one isn’t a polynomial because it has a negative exponent and all exponents in a 
polynomial must be positive. 
 
To see why the second one isn’t a polynomial let’s rewrite it a little. 

 
1

2 225 5x x x x x x− + = − +  
By converting the root to exponent form we see that there is a rational root in the algebraic 
expression.  All the exponents in the algebraic expression must be integers in order for the 
algebraic expression to be a polynomial.  As a general rule of thumb if an algebraic expression 
has a radical in it then it isn’t a polynomial. 
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Let’s also rewrite the third one to see why it isn’t a polynomial. 

 3 1 32 2 2 2x x x
x

−+ − = + −  

So, this algebraic expression really has a negative exponent in it and we know that isn’t allowed.  
Another rule of thumb is if there are any variables in the denominator of a fraction then the 
algebraic expression isn’t a polynomial. 
 
Note that this doesn’t mean that radicals and fractions aren’t allowed in polynomials.  They just 
can’t involve the variables.  For instance, the following is a polynomial 

 4 23 147 15 5 113
12 8

x x x− + −  

There are lots of radicals and fractions in this algebraic expression, but the denominators of the 
fractions are only numbers and the radicands of each radical are only a numbers.  Each x in the 
algebraic expression appears in the numerator and the exponent is a positive (or zero) integer.  
Therefore this is a polynomial. 
 
Next, let’s take a quick look at polynomials in two variables.  Polynomials in two variables are 
algebraic expressions consisting of terms in the form n max y .  The degree of each term in a 
polynomial in two variables is the sum of the exponents in each term and the degree of the 
polynomial is the largest such sum. 
 
Here are some examples of polynomials in two variables and their degrees. 

 

2 3 12 2

4 4 2

4 2 3 3 4

14 3

6 10 7 1 degree :  15
6 8 degree :  4

degree : 6
6 10 3 11 degree :  14

x y x y x y
x y xy

x y x y xy x
x y x y

− + − +

+ −

− − +

− + −

 

 
In these kinds of polynomials not every term needs to have both x’s and y’s in them, in fact as we 
see in the last example they don’t need to have any terms that contain both x’s and y’s.  Also, the 
degree of the polynomial may come from terms involving only one variable.  Note as well that 
multiple terms may have the same degree. 
 
We can also talk about polynomials in three variables, or four variables or as many variables as 
we need.  The vast majority of the polynomials that we’ll see in this course are polynomials in 
one variable and so most of the examples in the remainder of this section will be polynomials in 
one variable. 
 
Next we need to get some terminology out of the way.  A monomial is a polynomial that consists 
of exactly one term.  A binomial is a polynomial that consists of exactly two terms.  Finally, a 
trinomial is a polynomial that consists of exactly three terms.  We will use these terms off and on 
so you should probably be at least somewhat familiar with them. 
 
Now we need to talk about adding, subtracting and multiplying polynomials.  You’ll note that we 
left out division of polynomials.  That will be discussed in a later section where we will use 
division of polynomials quite often. 
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Before actually starting this discussion we need to recall the distributive law.  This will be used 
repeatedly in the remainder of this section.  Here is the distributive law. 
 
 ( )a b c ab ac+ = +  
 
We will start with adding and subtracting polynomials.  This is probably best done with a couple 
of examples. 
 
Example 1  Perform the indicated operation for each of the following. 

(a) Add 5 26 10 45x x x− + −  to 213 9 4x x− + .   [Solution] 
(b) Subtract 3 25 9 3x x x− + −  from 2 1x x+ + .   [Solution] 

 
Solution 
(a) Add 5 26 10 45x x x− + −  to 213 9 4x x− + . 
The first thing that we should do is actually write down the operation that we are being asked to 
do. 
 ( ) ( )5 2 26 10 45 13 9 4x x x x x− + − + − +  
In this case the parenthesis are not required since are adding the two polynomials.  They are there 
simply to make clear the operation that we are performing.  To add two polynomials all that we 
do is combine like terms.  This means that for each term with the same exponent we will add or 
subtract the coefficient of that term. 
 
In this case this is, 

 ( ) ( ) ( ) ( )5 2 2 5 2

5 2

6 10 45 13 9 4 6 10 13 1 9 45 4

6 3 8 41

x x x x x x x x

x x x

− + − + − + = + − + + − − +

= + − −
 

[Return to Problems] 
 

(b) Subtract 3 25 9 3x x x− + −  from 2 1x x+ + . 
Again, let’s write down the operation we are doing here.  We will also need to be very careful 
with the order that we write things down in.  Here is the operation 
 ( )2 3 21 5 9 3x x x x x+ + − − + −  
 
This time the parentheses around the second term are absolutely required.  We are subtracting the 
whole polynomial and the parenthesis must be there to make sure we are in fact subtracting the 
whole polynomial. 
 
In doing the subtraction the first thing that we’ll do is distribute the minus sign through the 
parenthesis.  This means that we will change the sign on every term in the second polynomial.  
Note that all we are really doing here is multiplying a “-1” through the second polynomial using 
the distributive law.  After distributing the minus through the parenthesis we again combine like 
terms. 
 
Here is the work for this problem. 

 ( )2 3 2 2 3 2

3 2

1 5 9 3 1 5 9 3

5 10 4

x x x x x x x x x x

x x

+ + − − + − = + + − + − +

= − + +
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Note that sometimes a term will completely drop out after combing like terms as the x did here.  
This will happen on occasion so don’t get excited about it when it does happen. 

[Return to Problems]
 
Now let’s move onto multiplying polynomials.  Again, it’s best to do these in an example. 
 
Example 2  Multiply each of the following. 

(a) ( )2 24 6 2x x x− +    [Solution] 

(b) ( )( )3 5 10x x+ −    [Solution] 

(c) ( )( )24 6 3x x x− −    [Solution] 

(d) ( )( )3 7 2x y x y+ −    [Solution] 

(e) ( )( )22 3 1x x x+ − +    [Solution] 

Solution 
(a) ( )2 24 6 2x x x− +  

This one is nothing more than a quick application of the distributive law. 
 ( )2 2 4 3 24 6 2 4 24 8x x x x x x− + = − +  

[Return to Problems] 
 
(b)  
( )( )3 5 10x x+ − This one will use the FOIL method for multiplying these two binomials. 

 ( )( ) 2 2

irst Terms uter Terms nner TeF O I Lrms ast Terms

3 5 10 3 30 5 50 3 25 50x x x x x x x+ − = − + − = − −�	
 �	
 �	
 �	
  

 
Recall that the FOIL method will only work when multiplying two binomials.  If either of the 
polynomials isn’t a binomial then the FOIL method won’t work. 
 
Also note that all we are really doing here is multiplying every term in the second polynomial by 
every term in the first polynomial.  The FOIL acronym is simply a convenient way to remember 
this. 

[Return to Problems] 
 
(c) ( )( )24 6 3x x x− −  

Again we will just FOIL this one out. 
  
 ( )( )2 2 3 2 3 24 6 3 24 12 6 3 12 27 6x x x x x x x x x x− − = − − + = − + −  

[Return to Problems] 
(d) ( )( )3 7 2x y x y+ −  
We can still FOIL binomials that involve more than one variable so don’t get excited about these 
kinds of problems when they arise. 

( )( ) 2 2 2 23 7 2 3 6 7 14 3 14x y x y x xy xy y x xy y+ − = − + − = + −  
[Return to Problems] 
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(e) ( )( )22 3 1x x x+ − +  

In this case the FOIL method won’t work since the second polynomial isn’t a binomial.  Recall 
however that the FOIL acronym was just a way to remember that we multiply every term in the 
second polynomial by every term in the first polynomial. 
 
That is all that we need to do here. 
 ( )( )2 3 2 2 3 22 3 1 2 2 2 3 3 3 2 3x x x x x x x x x x x+ − + = − + + − + = + − +  

[Return to Problems]
 
Let’s work another set of examples that will illustrate some nice formulas for some special 
products.  We will give the formulas after the example. 
 
Example 3  Multiply each of the following. 

(a) ( )( )3 5 3 5x x+ −    [Solution] 

(b) ( )22 6x +    [Solution] 

(c) ( )21 7x−    [Solution] 

(d) ( )24 3x +    [Solution] 
Solution 
(a) ( )( )3 5 3 5x x+ −  
We can use FOIL on this one so let’s do that. 
 ( )( ) 2 23 5 3 5 9 15 15 25 9 25x x x x x x+ − = − + − = −  
In this case the middle terms drop out. 

[Return to Problems] 
 
 
 
 
 
(b) ( )22 6x +  

Now recall that ( )( )24 4 4 16= = .  Squaring with polynomials works the same way.  So in this 
case we have, 
 ( ) ( )( )2 2 22 6 2 6 2 6 4 12 12 36 4 24 36x x x x x x x x+ = + + = + + + = + +  

[Return to Problems] 
 
(c) ( )21 7x−  
This one is nearly identical to the previous part. 
 ( ) ( )( )2 2 21 7 1 7 1 7 1 7 7 49 1 14 49x x x x x x x x− = − − = − − + = − +  

[Return to Problems] 
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(d) ( )24 3x +  
This part is here to remind us that we need to be careful with coefficients.  When we’ve got a 
coefficient we MUST do the exponentiation first and then multiply the coefficient. 
 ( ) ( )( ) ( )2 2 24 3 4 3 3 4 6 9 4 24 36x x x x x x x+ = + + = + + = + +  
You can only multiply a coefficient through a set of parenthesis if there is an exponent of “1” on 
the parenthesis.  If there is any other exponent then you CAN’T multiply the coefficient through 
the parenthesis. 
 
Just to illustrate the point. 
 ( ) ( ) ( )( )2 2 24 3 4 12 4 12 4 12 16 96 144x x x x x x+ ≠ + = + + = + +  
 
This is clearly not the same as the correct answer so be careful! 

[Return to Problems]
 
The parts of this example all use one of the following special products. 

 

( )( )
( )
( )

2 2

2 2 2

2 2 2

2

2

a b a b a b

a b a ab b

a b a ab b

+ − = −

+ = + +

− = − +

 

 
Be careful to not make the following mistakes! 

 
( )
( )

2 2 2

2 2 2

a b a b

a b a b

+ ≠ +

− ≠ −
 

 
These are very common mistakes that students often make when they first start learning how to 
multiply polynomials. 
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 Factoring Polynomials 
Of all the topics covered in this chapter factoring polynomials is probably the most important 
topic.  There are many sections in later chapters where the first step will be to factor a 
polynomial.  So, if you can’t factor the polynomial then you won’t be able to even start the 
problem let alone finish it. 
 
Let’s start out by talking a little bit about just what factoring is.  Factoring is the process by which 
we go about determining what we multiplied to get the given quantity.  We do this all the time 
with numbers.  For instance, here are a variety of ways to factor 12. 
  

 
( )( ) ( )( ) ( )( )( )

( ) ( )( ) ( )( )( )

12 2 6 12 3 4 12 2 2 3

112 24 12 2 6 12 2 2 3
2

= = =

⎛ ⎞= = − − = − −⎜ ⎟
⎝ ⎠

 

 
There are many more possible ways to factor 12, but these are representative of many of them.   
 
A common method of factoring numbers is to completely factor the number into positive prime 
factors.  A prime number is a number whose only positive factors are 1 and itself.  For example 
2, 3, 5, and 7 are all examples of prime numbers.  Examples of numbers that aren’t prime are 4, 6, 
and 12 to pick a few. 
 
If we completely factor a number into positive prime factors there will only be one way of doing 
it.  That is the reason for factoring things in this way.  For our example above with 12 the 
complete factorization is, 

( )( )( )12 2 2 3=  
 
Factoring polynomials is done in pretty much the same manner.  We determine all the terms that 
were multiplied together to get the given polynomial.  We then try to factor each of the terms we 
found in the first step.  This continues until we simply can’t factor anymore.  When we can’t do 
any more factoring we will say that the polynomial is completely factored. 
 
Here are a couple of examples. 
 ( )( )2 16 4 4x x x− = + −  
This is completely factored since neither of the two factors on the right can be further factored. 
 
Likewise, 
 ( )( )4 2 216 4 4x x x− = + −  
is not completely factored because the second factor can be further factored.  Note that the first 
factor is completely factored however.  Here is the complete factorization of this polynomial. 
 ( )( )( )4 216 4 2 2x x x x− = + + −  
 
The purpose of this section is to familiarize ourselves with many of the techniques for factoring 
polynomials. 
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Greatest Common Factor 
The first method for factoring polynomials will be factoring out the greatest common factor.  
When factoring in general this will also be the first thing that we should try as it will often 
simplify the problem. 
 
To use this method all that we do is look at all the terms and determine if there is a factor that is 
in common to all the terms.  If there is, we will factor it out of the polynomial.  Also note that in 
this case we are really only using the distributive law in reverse.  Remember that the distributive 
law states that 
 ( )a b c ab ac+ = +  
In factoring out the greatest common denominator we do this in reverse.  We notice that each 
term has an a in it and so we “factor” it out using the distributive law in reverse as follows, 
 ( )ab ac a b c+ = +  
Let’s take a look at some examples. 
 
Example 1  Factor out the greatest common factor from each of the following polynomials. 

(a) 4 3 28 4 10x x x− +    [Solution] 
(b) 3 2 4 5 33 5x y x y x y+ +    [Solution] 
(c) 6 23 6 3x x x− +    [Solution] 
(d) ( ) ( )29 2 7 12 2 7x x x x+ − +    [Solution] 

Solution 
(a)  4 3 28 4 10x x x− +  
First we will notice that we can factor a 2 out of every term.  Also note that we can factor an x2 
out of every term.  Here then is the factoring for this problem. 
 ( )4 3 2 2 28 4 10 2 4 2 5x x x x x x− + = − +  
 
Note that we can always check our factoring by multiplying the terms back out to make sure we 
get the original polynomial. 

[Return to Problems] 
 
(b) 3 2 4 5 33 5x y x y x y+ +  
In this case we have both x’s and y’s in the terms but that doesn’t change how the process works.  
Each term contains and x3 and a y so we can factor both of those out.  Doing this gives, 
 ( )3 2 4 5 3 3 2 23 5 3 5x y x y x y x y y x x y+ + = + +  

[Return to Problems] 
 
(c) 6 23 6 3x x x− +  
In this case we can factor a 3x out of every term.  Here is the work for this one. 
 ( )6 2 53 6 3 3 2 1x x x x x x− + = − +  
Notice the “+1” where the 3x originally was in the final term, since the final term was the term we 
factored out we needed to remind ourselves that there was a term there originally.  To do this we 
need the “+1” and notice that it is “+1” instead of “-1” because the term was originally a positive 
term.  If it had been a negative term originally we would have had to use “-1”.   
 
One of the more common mistakes with these types of factoring problems is to forget this “1”.   
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Remember that we can always check by multiplying the two back out to make sure we get the 
original.  To check that the “+1” is required, let’s drop it and then multiply out to see what we 
get. 
 ( )5 6 2 6 23 2 3 6 3 6 3x x x x x x x x− = − ≠ − +  
 
So, without the “+1” we don’t get the original polynomial!  Be careful with this.  It is easy to get 
in a hurry and forget to add a “+1” or “-1” as required when factoring out a complete term. 

[Return to Problems] 
 
(d) ( ) ( )29 2 7 12 2 7x x x x+ − +  
This one looks a little odd in comparison to the others.  However, it works the same way.  There 
is a 3x in each term and there is also a 2 7x + in each term and so that can also be factored out.  
Doing the factoring for this problem gives, 
 ( ) ( ) ( )( )29 2 7 12 2 7 3 2 7 3 4x x x x x x x+ − + = + −  

[Return to Problems]
 
Factoring By Grouping 
This is a method that isn’t used all that often, but when it can be used it can be somewhat useful.  
This method is best illustrated with an example or two. 
 
Example 2  Factor by grouping each of the following. 

(a) 23 2 12 8x x x− + −    [Solution] 
(b) 4 32 2x x x+ − −    [Solution] 
(c) 5 3 23 2 6x x x− − +    [Solution] 

Solution 
(a) 23 2 12 8x x x− + −  
In this case we group the first two terms and the final two terms as shown here, 
 ( ) ( )23 2 12 8x x x− + −  
Now, notice that we can factor an x out of the first grouping and a 4 out of the second grouping.  
Doing this gives, 
 ( ) ( )23 2 12 8 3 2 4 3 2x x x x x x− + − = − + −  
We can now see that we can factor out a common factor of 3 2x −  so let’s do that to the final 
factored form. 
 ( )( )23 2 12 8 3 2 4x x x x x− + − = − +  
 
And we’re done.  That’s all that there is to factoring by grouping.  Note again that this will not 
always work and sometimes the only way to know if it will work or not is to try it and see what 
you get. 

[Return to Problems] 
 
(b)  4 32 2x x x+ − −  
In this case we will do the same initial step, but this time notice that both of the final two terms 
are negative so we’ll factor out a “-” as well when we group them.  Doing this gives, 
 ( ) ( )4 32 2x x x+ − +  
Again, we can always distribute the “-” back through the parenthesis to make sure we get the 
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original polynomial. 
 
At this point we can see that we can factor an x out of the first term and a 2 out of the second 
term.  This gives, 
 ( ) ( )4 3 3 32 2 1 2 1x x x x x x+ − − = + − +  
We now have a common factor that we can factor out to complete the problem. 
 ( )( )4 3 32 2 1 2x x x x x+ − − = + −  

[Return to Problems] 
 
(c) 5 3 23 2 6x x x− − +  
This one also has a “-” in front of the third term as we saw in the last part.  However, this time the 
fourth term has a “+” in front of it unlike the last part.  We will still factor a “-” out when we 
group however to make sure that we don’t lose track of it.  When we factor the “-” out notice that 
we needed to change the “+” on the fourth term to a “-”.  Again, you can always check that this 
was done correctly by multiplying the “-” back through the parenthsis. 
 ( ) ( )5 3 23 2 6x x x− − −  
 
Now that we’ve done a couple of these we won’t put the remaining details in and we’ll go straight 
to the final factoring. 
 
 ( ) ( ) ( )( )5 3 2 3 2 2 2 33 2 6 3 2 3 3 2x x x x x x x x− − + = − − − = − −  

[Return to Problems]
 
Factoring by grouping can be nice, but it doesn’t work all that often.  Notice that as we saw in the 
last two parts of this example if there is a “-” in front of the third term we will often also factor 
that out of the third and fourth terms when we group them. 
 
Factoring Quadratic Polynomials 
First, let’s note that quadratic is another term for second degree polynomial.  So we know that the 
largest exponent in a quadratic polynomial will be a 2.  In these problems we will be attempting 
to factor quadratic polynomials into two first degree (hence forth linear) polynomials.  Until you 
become good at these, we usually end up doing these by trial and error although there are a 
couple of processes that can make them somewhat easier. 
 
Let’s take a look at some examples. 
 
Example 3  Factor each of the following polynomials. 

(a) 2 2 15x x+ −    [Solution] 
(b) 2 10 24x x− +    [Solution] 
(c) 2 6 9x x+ +    [Solution] 
(d) 2 5 1x x+ +    [Solution] 
(e) 23 2 8x x+ −    [Solution] 
(f) 25 17 6x x− +    [Solution] 
(g) 24 10 6x x+ −    [Solution] 
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Solution 
(a) 2 2 15x x+ −  
Okay since the first term is x2 we know that the factoring must take the form. 
 ( )( )2 2 15x x x x+ − = + +  
We know that it will take this form because when we multiply the two linear terms the first term 
must be x2 and the only way to get that to show up is to multiply x by x.  Therefore, the first term 
in each factor must be an x.  To finish this we just need to determine the two numbers that need to 
go in the blank spots. 
 
We can narrow down the possibilities considerably.  Upon multiplying the two factors out these 
two numbers will need to multiply out to get -15.  In other words these two numbers must be 
factors of -15.  Here are all the possible ways to factor -15 using only integers. 
 ( )( ) ( )( ) ( )( ) ( )( )1 15 1 15 3 5 3 5− − − −  
 
Now, we can just plug these in one after another and multiply out until we get the correct pair.  
However, there is another trick that we can use here to help us out.  The correct pair of numbers 
must add to get the coefficient of the x term.  So, in this case the third pair of factors will add to 
“+2” and so that is the pair we are after. 
 
Here is the factored form of the polynomial. 
 ( )( )2 2 15 3 5x x x x+ − = − +  
 
Again, we can always check that we got the correct answer my doing a quick multiplication. 
 
Note that the method we used here will only work if the coefficient of the x2 term is one.  If it is 
anything else this won’t work and we really will be back to trial and error to get the correct 
factoring form. 

[Return to Problems] 
 
(b) 2 10 24x x− +  
Let’s write down the initial form again, 
 ( )( )2 10 24x x x x− + = + +  
Now, we need two numbers that multiply to get 24 and add to get -10.  It looks like -6 and -4 will 
do the trick and so the factored form of this polynomial is, 
 ( )( )2 10 24 4 6x x x x− + = − −  

[Return to Problems] 
 
(c) 2 6 9x x+ +  
Again, let’s start with the initial form, 
 ( )( )2 6 9x x x x+ + = + +  
This time we need two numbers that multiply to get 9 and add to get 6.  In this case 3 and 3 will 
be the correct pair of numbers.  Don’t forget that the two numbers can be the same number on 
occasion as they are here. 
 
Here is the factored form for this polynomial. 
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 ( )( ) ( )22 6 9 3 3 3x x x x x+ + = + + = +  
 
Note as well that we further simplified the factoring to acknowledge that it is a perfect square.  
You should always do this when it happens. 

[Return to Problems] 
 
(d) 2 5 1x x+ +  
Once again, here is the initial form, 
 ( )( )2 5 1x x x x+ + = + +  
Okay, this time we need two numbers that multiply to get 1 and add to get 5.  There aren’t two 
integers that will do this and so this quadratic doesn’t factor. 
 
This will happen on occasion so don’t get excited about it when it does. 

[Return to Problems] 
 
(e) 23 2 8x x+ −  
Okay, we no longer have a coefficient of 1 on the x2 term.  However we can still make a guess as 
to the initial form of the factoring.  Since the coefficient of the x2 term is a 3 and there are only 
two positive factors of 3 there is really only one possibility for the initial form of the factoring. 
 ( )( )23 2 8 3x x x x+ − = + +  
 
Since the only way to get a 3x2 is to multiply a 3x and an x these must be the first two terms.  
However, finding the numbers for the two blanks will not be as easy as the previous examples.  
We will need to start off with all the factors of -8. 

( )( ) ( )( ) ( )( ) ( )( )1 8 1 8 2 4 2 4− − − −  
 
At this point the only option is to pick a pair plug them in and see what happens when we 
multiply the terms out.  Let’s start with the fourth pair.  Let’s plug the numbers in and see what 
we get. 
 ( )( ) 23 2 4 3 10 8x x x x+ − = − −  
Well the first and last terms are correct, but then they should be since we’ve picked numbers to 
make sure those work out correctly.  However, since the middle term isn’t correct this isn’t the 
correct factoring of the polynomial. 
 
That doesn’t mean that we guessed wrong however.  With the previous parts of this example it 
didn’t matter which blank got which number.  This time it does.  Let’s flip the order and see what 
we get. 
 ( )( ) 23 4 2 3 2 8x x x x− + = + −  
 
So, we got it.  We did guess correctly the first time we just put them into the wrong spot. 
 
So, in these problems don’t forget to check both places for each pair to see if either will work. 

[Return to Problems] 
 
(f) 25 17 6x x− +  
Again the coefficient of the x2 term has only two positive factors so we’ve only got one possible 
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initial form. 
 ( )( )25 17 6 5x x x x− + = + +  
Next we need all the factors of 6.  Here they are. 
 ( )( ) ( )( ) ( )( ) ( )( )1 6 1 6 2 3 2 3− − − −  
Don’t forget the negative factors.  They are often the ones that we want.  In fact, upon noticing 
that the coefficient of the x is negative we can be assured that we will need one of the two pairs of 
negative factors since that will be the only way we will get  negative coefficient there.  With 
some trial and error we can get that the factoring of this polynomial is, 
 ( )( )25 17 6 5 2 3x x x x− + = − −  

[Return to Problems] 
 
(g) 24 10 6x x+ −  
In this final step we’ve got a harder problem here.  The coefficient of the x2 term now has more 
than one pair of positive factors.  This means that the initial form must be one of the following 
possibilities. 

 
( )( )
( )( )

2

2

4 10 6 4

4 10 6 2 2

x x x x

x x x x

+ − = + +

+ − = + +
 

 
To fill in the blanks we will need all the factors of -6.  Here they are, 
 ( )( ) ( )( ) ( )( ) ( )( )1 6 1 6 2 3 2 3− − − −  
 
With some trial and error we can find that the correct factoring of this polynomial is, 
 ( )( )24 10 6 2 1 2 6x x x x+ − = − +  
 
Note as well that in the trial and error phase we need to make sure and plug each pair into both 
possible forms and in both possible orderings to correctly determine if it is the correct pair of 
factors or not. 
 
We can actually go one more step here and factor a 2 out of the second term if we’d like to.  This 
gives, 

( )( )24 10 6 2 2 1 3x x x x+ − = − +  
 
This is important because we could also have factored this as, 

( )( )24 10 6 4 2 3x x x x+ − = − +  
which, on the surface, appears to be different from the first form given above.  However, in this 
case we can factor a 2 out of the first term to get, 

( )( )24 10 6 2 2 1 3x x x x+ − = − +  
 
This is exactly what we got the first time and so we really do have the same factored form of this 
polynomial. 

[Return to Problems]
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Special Forms 
There are some nice special forms of some polynomials that can make factoring easier for us on 
occasion.  Here are the special forms. 
 

 

( )
( )
( )( )
( )( )
( )( )

22 2

22 2

2 2

3 3 2 2

3 3 2 2

2

2

a ab b a b

a ab b a b

a b a b a b

a b a b a ab b

a b a b a ab b

+ + = +

− + = −

− = + −

+ = + − +

− = − + +

 

 
Let’s work some examples with these. 
 
Example 4  Factor each of the following. 

(a) 2 20 100x x− +    [Solution] 
(b) 225 9x −    [Solution] 
(c) 38 1x +    [Solution] 

Solution 
(a) 2 20 100x x− +  
In this case we’ve got three terms and it’s a quadratic polynomial.  Notice as well that the 
constant is a perfect square and its square root is 10.  Notice as well that 2(10)=20 and this is the 
coefficient of the x term.  So, it looks like we’ve got the second special form above.  The correct 
factoring of this polynomial is, 
 ( )22 20 100 10x x x− + = −  
 
To be honest, it might have been easier to just use the general process for factoring quadratic 
polynomials in this case rather than checking that it was one of the special forms, but we did need 
to see one of them worked. 

[Return to Problems] 
 
(b) 225 9x −  
In this case all that we need to notice is that we’ve got a difference of perfect squares, 
 ( ) ( )2 2225 9 5 3x x− = −  
So, this must be the third special form above.  Here is the correct factoring for this polynomial. 
 ( )( )225 9 5 3 5 3x x x− = + −  

[Return to Problems] 
(c) 38 1x +  
This problem is the sum of two perfect cubes, 
 ( ) ( )3 338 1 2 1x x+ = +  
and so we know that it is the fourth special form from above.  Here is the factoring for this 
polynomial. 
 ( )( )3 28 1 2 1 4 2 1x x x x+ = + − +  

[Return to Problems]
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Do not make the following factoring mistake! 
 ( )22 2a b a b+ ≠ +  
This just simply isn’t true, so be careful not to make this very common mistake.  The sum of two 
perfect squares doesn’t factor! 
 
Factoring Polynomials with Degree Greater than 2 
There is no one method for doing these in general.  However, there are some that we can do so 
let’s take a look at a couple of examples. 
 
Example 5  Factor each of the following. 

(a) 4 3 23 3 36x x x− −    [Solution] 
(b) 4 25x −    [Solution] 
(c) 4 2 20x x+ −    [Solution] 

Solution 
(a) 4 3 23 3 36x x x− −  
In this case let’s notice that we can factor out a common factor of 3x2 from all the terms so let’s 
do that first. 
 ( )4 3 2 2 23 3 36 3 12x x x x x x− − = − −  
What is left is a quadratic that we can use the techniques from above to factor.  Doing this gives 
us, 
 ( )( )4 3 2 23 3 36 3 4 3x x x x x x− − = − +  
 
Don’t forget that the FIRST step to factoring should always be to factor out the greatest common 
factor.  This can only help the process. 

[Return to Problems] 
 
(b) 4 25x −  
There is no greatest common factor here.  However, notice that this is the difference of two 
perfect squares. 

 ( ) ( )2 24 225 5x x− = −  
So, we can use the third special form from above. 
 ( )( )4 2 225 5 5x x x− = + −  
 
Neither of these can be further factored and so we are done.  Note however, that often we will 
need to do some further factoring at this stage. 

[Return to Problems] 
 
(c) 4 2 20x x+ −  
Let’s start this off by working a factoring a different polynomial. 
 ( )( )2 20 4 5u u u u+ − = − +  
We used a different variable here since we’d already used x’s for the original polynomial. 
 

So, why did we work this?  Well notice that if we let 2u x=  then ( )22 2 4u x x= = .  We can then 
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rewrite the original polynomial in terms of u’s as follows, 
 4 2 220 20x x u u+ − = + −  
and we know how to factor this!  So factor the polynomial in u’s then back substitute using the 
fact that we know 2u x= . 
 

 ( )( )
( )( )

4 2 2

2 2

20 20
4 5

4 5

x x u u
u u

x x

+ − = + −

= − +

= − +

 

 
Finally, notice that the first term will also factor since it is the difference of two perfect squares.  
The correct factoring of this polynomial is then, 
 
 ( )( )( )4 2 220 2 2 5x x x x x+ − = − + +  
 
Note that this converting to u first can be useful on occasion, however once you get used to these 
this is usually done in our heads. 

[Return to Problems]
 
We did not do a lot of problems here and we didn’t cover all the possibilities.  However, we did 
cover some of the most common techniques that we are liable to run into in the other chapters of 
this work. 
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 Rational Expressions 
We now need to look at rational expressions.  A rational expression is nothing more than a 
fraction in which the numerator and/or the denominator are polynomials.  Here are some 
examples of rational expressions. 

 
2 4 2

2 2

6 1 18 1 4 6 10
1 5 6 1

z m m x x
x z m m

− + + + −
− + − −

 

 
The last one may look a little strange since it is more commonly written 24 6 10x x+ − .  
However, it’s important to note that polynomials can be thought of as rational expressions if we 
need to, although they rarely are. 
 
There is an unspoken rule when dealing with rational expressions that we now need to address.  
When dealing with numbers we know that division by zero is not allowed.  Well the same is true 
for rational expressions.  So, when dealing with rational expressions we will always assume that 
whatever x is it won’t give division by zero.  We rarely write these restrictions down, but we will 
always need to keep them in mind. 
 
For the first one listed we need to avoid x=1.  The second rational expression is never zero in the 
denominator and so we don’t need to worry about any restrictions.  Note as well that the 
numerator of the second rational expression will be zero.  That is okay, we just need to avoid 
division by zero.  For the third rational expression we will need to avoid m=3 and m=-2.  The 
final rational expression listed above will never be zero in the denominator so again we don’t 
need to have any restrictions. 
 
The first topic that we need to discuss here is reducing a rational expression to lowest terms. A 
rational expression has been reduced to lowest terms if all common factors from the numerator 
and denominator have been canceled.  We already know how to do this with number fractions so 
let’s take a quick look at an example. 
 

 
( )412not reduced to lowest terms  

8
⇒ =

( )
( )

3

4 ( )
3  reduced to lowest terms
22

= ⇐  

 
With rational expression it works exactly the same way. 
 

 
( )3

not reduced to lowest terms  
x +

⇒
( )

( )
1

3

x

x x

−

+
1  reduced to lowest termsx

x
−

= ⇐  

 
We do have to be careful with canceling however.  There are some common mistakes that 
students often make with these problems.  Recall that in order to cancel a factor it must multiply 
the whole numerator and the whole denominator.  So, the x-3 above could cancel since it 
multiplied the whole numerator and the whole denominator.  However, the x’s in the reduced 
form can’t cancel since the x in the numerator is not times the whole numerator.  
 
To see why the x’s don’t cancel in the reduced form above put a number in and see what happens.  
Let’s plug in x=4. 
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 4 1 3 4
4 4
−

=
1

4
− 1= −  

Clearly the two aren’t the same number!   
 
So, be careful with canceling.  As a general rule of thumb remember that you can’t cancel 
something if it’s got a “+” or a “-” on one side of it.  There is one exception to this rule of thumb 
with “-” that we’ll deal with in an example later on down the road. 
 
Let’s take a look at a couple of examples. 
 
Example 1  Reduce the following rational expression to lowest terms. 

(a) 
2

2

2 8
9 20

x x
x x

− −
− +

   [Solution] 

(b) 
2

2

25
5
x
x x
−
−

   [Solution] 

(c) 
( )

7 6 5

83

2
1

x x x
x x
+ +

+
   [Solution] 

Solution 
When reducing a rational expression to lowest terms the first thing that we will do is factor both 
the numerator and denominator as much as possible.  That should always be the first step in these 
problems. 
 
Also, the factoring in this section, and all successive section for that matter, will be done without 
explanation.  It will be assumed that you are capable of doing and/or checking the factoring on 
your own.  In other words, make sure that you can factor! 
 

(a) 
2

2

2 8
9 20

x x
x x

− −
− +

 

We’ll first factor things out as completely as possible.  Remember that we can’t cancel anything 
at this point in time since every term has a “+” or a “-” on one side of it!  We’ve got to factor 
first! 
 

 ( )( )
( )( )

2

2

4 22 8
9 20 5 4

x xx x
x x x x

− +− −
=

− + − −
 

 
At this point we can see that we’ve got a common factor in both the numerator and the 
denominator and so we can cancel the x-4 from both.  Doing this gives, 
 

 
2

2

2 8 2
9 20 5

x x x
x x x

− − +
=

− + −
 

 
This is also all the farther that we can go.  Nothing else will cancel and so we have reduced this 
expression to lowest terms. 

[Return to Problems] 
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(b) 
2

2

25
5
x
x x
−
−

 

Again, the first thing that we’ll do here is factor the numerator and denominator. 

 ( )( )
( )

2

2

5 525
5 5

x xx
x x x x

− +−
=

− −
 

At first glance it looks there is nothing that will cancel.  Notice however that there is a term in the 
denominator that is almost the same as a term in the numerator except all the signs are the 
opposite. 
 
We can use the following fact on the second term in the denominator. 
 ( ) ( )ORa b b a a b a b− = − − − + = − −  
This is commonly referred to as factoring a minus sign out because that is exactly what we’ve 
done.  There are two forms here that cover both possibilities that we are liable to run into.  In our 
case however we need the first form. 
 
Because of some notation issues let’s just work with the denominator for a while. 

 

( ) ( )
( )( )
( )( )

( )( )( )
( )

5 5

1 5

1 5

1 5

5

x x x x

x x

x x

x x

x x

− = − −⎡ ⎤⎣ ⎦
= − −⎡ ⎤⎣ ⎦
= − −

= − −

= − −

 

Notice the steps used here.  In the first step we factored out the minus sign, but we are still 
multiplying the terms and so we put in an added set of brackets to make sure that we didn’t forget 
that.  In the second step we acknowledged that a minus sign in front is the same as multiplication 
by “-1”.  Once we did that we didn’t really need the extra set of brackets anymore so we dropped 
them in the third step.  Next, we recalled that we change the order of a multiplication if we need 
to so we flipped the x and the “-1”.  Finally, we dropped the “-1” and just went back to a negative 
sign in the front. 
 
Typically when we factor out minus signs we skip all the intermediate steps and go straight to the 
final step. 
 
Let’s now get back to the problem.  The rational expression becomes, 

 ( )( )
( )

2

2

5 525
5 5

x xx
x x x x

− +−
=

− − −
 

At this point we can see that we do have a common factor and so we can cancel the x-5. 

 
2

2

25 5 5
5
x x x
x x x x
− + +

= = −
− −

 

[Return to Problems] 
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(c) 
( )

7 6 5

83

2
1

x x x
x x
+ +

+
 

In this case the denominator is already factored for us to make our life easier.  All we need to do 
is factor the numerator. 

 
( )

( )
( )

( )
( )

25 2 57 6 5

8 8 83 3 3

2 1 12
1 1 1

x x x x xx x x
x x x x x x

+ + ++ +
= =

+ + +
 

Now we reach the point of this part of the example.  There are 5 x’s in the numerator and 3 in the 
denominator so when we cancel there will be 2 left in the numerator.  Likewise, there are 2 
( )1x + ’s in the numerator and 8 in the denominator so when we cancel there will be 6 left in the 
denominator.  Here is the rational expression reduced to lowest terms. 

 
( ) ( )

7 6 5 2

8 63

2
1 1

x x x x
x x x
+ +

=
+ +

 

[Return to Problems] 
 
Before moving on let’s briefly discuss the answer in the second part of this example.  Notice that 
we moved the minus sign from the denominator to the front of the rational expression in the final 
form.  This can always be done when we need to.  Recall that the following are all equivalent. 

 a a a
b b b

−
− = =

−
 

In other words, a minus sign in front of a rational expression can be moved onto the whole 
numerator or whole denominator if it is convenient to do that.  We do have to be careful with this 
however.  Consider the following rational expression. 

 3
1

x
x
− +
+

 

 
In this case the “-” on the x can’t be moved to the front of the rational expression since it is only 
on the x.  In order to move a minus sign to the front of a rational expression it needs to be times 
the whole numerator or denominator.  So, if we factor a minus out of the numerator we could then 
move it into the front of the rational expression as follows, 

 ( )33 3
1 1 1

xx x
x x x

− −− + −
= = −

+ + +
 

 
The moral here is that we need to be careful with moving minus signs around in rational 
expressions. 
 
We now need to move into adding, subtracting, multiplying and dividing rational expressions. 
 
Let’s start with multiplying and dividing rational expressions.  The general formulas are as 
follows, 

 a c ac
b d bd
⋅ =  
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a
a c a db

c b d b c
d

= ÷ = ⋅  

 
Note the two different forms for denoting division.  We will use either as needed so make sure 
you are familiar with both.  Note as well that to do division of rational expressions all that we 
need to do is multiply the numerator by the reciprocal of the denominator (i.e. the fraction with 
the numerator and denominator switched). 
 
Before doing a couple of examples there are a couple of special cases of division that we should 
look at.  In the general case above both the numerator and the denominator of the rational 
expression where fractions, however, what if one of them isn’t a fraction.  So let’s look at the 
following cases. 

 

a
a b
c c
d

 

 
Students often make mistakes with these initially.  To correctly deal with these we will turn the 
numerator (first case) or denominator (second case) into a fraction and then do the general 
division on them. 

 

1
1

1

1

a
a a d ad
c c c c
d d

a a
a ab b

cc b c bc

= = ⋅ =

= = ⋅ =

 

 
Be careful with these cases.  It is easy to make a mistake with these and incorrectly do the 
division. 
 
Now let’s take a look at a couple of examples. 
 
Example 2  Perform the indicated operation and reduce the answer to lowest terms. 

(a) 
2 2

2 2

5 14 4
3 2 14 49

x x x
x x x x
− − −

⋅
− + − +

   [Solution] 

(b) 
2

2

9 3
5 6 2

m m
m m m

− −
÷

+ + +
   [Solution] 

(c) 
2

2

5 4
1
5

y y
y
y

+ +
−
+

   [Solution] 
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Solution 
Notice that with this problem we have started to move away from x as the main variable in the 
examples.  Do not get so used to seeing x’s that you always expect them.  The problems will work 
the same way regardless of the letter we use for the variable so don’t get excited about the 
different letters here. 
 

(a) 
2 2

2 2

5 14 4
3 2 14 49

x x x
x x x x
− − −

⋅
− + − +

 

Okay, this is a multiplication.  The first thing that we should always do in the multiplication is to 
factor everything in sight as much as possible. 

 ( )( )
( )( )

( )( )
( )

2 2

22 2

7 2 2 25 14 4
3 2 14 49 2 1 7

x x x xx x x
x x x x x x x

− + − +− − −
⋅ = ⋅

− + − + − − −
 

 
Now, recall that we can cancel things across a multiplication as follows. 

 a
b k

c k
⋅

a c
d b d

= ⋅  

Note that this ONLY works for multiplication and NOT for division! 
 
In this case we do have multiplication so cancel as much as we can and then do the multiplication 
to get the answer. 

 ( )
( )

( )
( )

( )
( )( )

22 2

2 2

2 2 25 14 4
3 2 14 49 1 7 1 7

x x xx x x
x x x x x x x x

+ + +− − −
⋅ = ⋅ =

− + − + − − − −
 

[Return to Problems] 
 

(b) 
2

2

9 3
5 6 2

m m
m m m

− −
÷

+ + +
 

With division problems it is very easy to mistakenly cancel something that shouldn’t be canceled 
and so the first thing we do here (before factoring!!!!) is do the division.  Once we’ve done the 
division we have a multiplication problem and we factor as much as possible, cancel everything 
that can be canceled and finally do the multiplication. 
 
So, let’s get started on this problem. 

 ( )( )
( )( )

( )
( )

2 2

2 2

9 3 9 2
5 6 2 5 6 3

3 3 2
3 2 3

m m m m
m m m m m m

m m m
m m m

− − − +
÷ = ⋅

+ + + + + −
− + +

= ⋅
+ + −

 

 
Now, notice that there will be a lot of canceling here.  Also notice that if we factor a minus sign 
out of the denominator of the second rational expression.  Let’s do some of the canceling and then 
do the multiplication. 

 ( )
( )

( )
( )

2

2

3 39 3 1
5 6 2 1 3 3

m mm m
m m m m m

− −− −
÷ = ⋅ =

+ + + − − − −
 

 
Remember that when we cancel all the terms out of a numerator or denominator there is actually 
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a “1” left over!  Now, we didn’t finish the canceling to make a point.  Recall that at the start of 
this discussion we said that as a rule of thumb we can only cancel terms if there isn’t a “+” or a “-
” on either side of it with one exception for the “-”.  We are now at that exception.  If there is a “-
” if front of the whole numerator or denominator, as we’ve got here, then we can still cancel the 
term.  In this case the “-” acts as a “-1” that is multiplied by the whole denominator and so is a 
factor instead of an addition or subtraction.  Here is the final answer for this part. 
 

 
2

2

9 3 1 1
5 6 2 1

m m
m m m

− −
÷ = = −

+ + + −
 

 
In this case all the terms canceled out and we were left with a number.  This doesn’t happen all 
that often, but as this example has shown it clearly can happen every once in a while so don’t get 
excited about it when it does happen. 

[Return to Problems] 
 

(c)  
2

2
5 4

1
5

y y
y
y

+ +
−
+

 

This is one of the special cases for division.  So, as with the previous part, we will first do the 
division and then we will factor and cancel as much as we can. 
 
Here is the work for this part. 

 
( )( ) ( )( )( )

( )( )
( )( )22

2 2

5 4 5 1 4 5 4 55 4
1 1 1 1 1
5

y y y y y y y yy y
y y y y y
y

+ + + + + + + ++ +
= = =

− − + − −
+

 

[Return to Problems] 
 
Okay, it’s time to move on to addition and subtraction of rational expressions.  Here are the 
general formulas. 

 a b a b a b a b
c c c c c c

+ −
+ = − =  

 
As these have shown we’ve got to remember that in order to add or subtract rational expression or 
fractions we MUST have common denominators.  If we don’t have common denominators then 
we need to first get common denominators. 
 
Let’s remember how do to do this with a quick number example. 

 5 3
6 4
−  

In this case we need a common denominator and recall that it’s usually best to use the least 
common denominator, often denoted lcd.  In this case the least common denominator is 12.  So 
we need to get the denominators of these two fractions to a 12.  This is easy to do.  In the first 
case we need to multiply the denominator by 2 to get 12 so we will multiply the numerator and 
denominator of the first fraction by 2.  Remember that we’ve got to multiply both the numerator 
and denominator by the same number since we aren’t allowed to actually change the problem and 
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this is equivalent to multiplying the fraction by 1 since 1a
a
= .  For the second term we’ll need to 

multiply the numerator and denominator by a 3. 
 

 ( )
( )

( )
( )

5 2 3 35 3 10 9 10 9 1
6 4 6 2 4 3 12 12 12 12

−
− = − = − = =  

 
Now, the process for rational expressions is identical.  The main difficulty is in finding the least 
common denominator.  However, there is a really simple process for finding the least common 
denominator for rational expressions.  Here is it. 
 

1. Factor all the denominators. 
2. Write down each factor that appears at least once in any of the denominators.  Do NOT 

write down the power that is on each factor, only write down the factor 
3. Now, for each factor written down in the previous step and write down the largest power 

that occurs in all the denominators containing that factor. 
4. The product all the factors from the previous step is the least common denominator. 

 
Let’s work some examples. 
 
Example 3  Perform the indicated operation. 

(a) 2 5 3

4 1 5
6 3 2x x x

− +    [Solution] 

(b) 
2 1

1 2
z

z z
−

−
+ +

   [Solution] 

(c) 2

2 3
2 1 1 2
y

y y y y
− +

− + − +
   [Solution] 

(d) 2

2 1 2
9 3 3

x
x x x

− −
− + −

   [Solution] 

(e) 4 1 1
2y y
− +

+
   [Solution] 

Solution 

(a) 2 5 3

4 1 5
6 3 2x x x

− +  

For this problem there are coefficients on each term in the denominator so we’ll first need the 
least common denominator for the coefficients.  This is 6.  Now, x (by itself with a power of 1) is 
the only factor that occurs in any of the denominators.  So, the least common denominator for this 
part is x with the largest power that occurs on all the x’s in the problem, which is 5.  So, the least 
common denominator for this set of rational expression is 
 
 5lcd : 6x  
 
So, we simply need to multiply each term by an appropriate quantity to get this in the 
denominator and then do the addition and subtraction.  Let’s do that. 
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( )
( )

( )
( )

( )
( )

3 2

2 5 3 52 3 3 2

3 2

5 5 5

3 2

5

4 5 31 24 1 5
6 3 2 3 26 2 3

4 2 15
6 6 6
4 2 15

6

x x
x x x xx x x x

x x
x x x
x x

x

− + = − +

= − +

− +
=

 

 [Return to Problems] 
 

(b) 
2 1

1 2
z

z z
−

−
+ +

 

In this case there are only two factors and they both occur to the first power and so the least 
common denominator is. 
 ( )( )lcd : 1 2z z+ +  
 
Now, in determining what to multiply each part by simply compare the current denominator to 
the least common denominator and multiply top and bottom by whatever is “missing”.  In the first 
term we’re “missing” a 2z +  and so that’s what we multiply the numerator and denominator by.  
In the second term we’re “missing” a 1z +  and so that’s what we’ll multiply in that term. 
 
Here is the work for this problem. 

 ( )
( )( )

( )( )
( )( )

( ) ( )( )
( )( )

2 2 1 1 2 2 1 12 1
1 2 1 2 2 1 1 2

z z z z z zz
z z z z z z z z

+ − + + − − +−
− = − =

+ + + + + + + +
 

 
The final step is to do any multiplication in the numerator and simplify that up as much as 
possible. 

 
( )

( )( ) ( )( ) ( )( )

2 2 22 4 12 1 2 4 1 2 5
1 2 1 2 1 2 1 2

z zz z z z z
z z z z z z z z

+ − −− + − + − + +
− = = =

+ + + + + + + +
 

 
Be careful with minus signs and parenthesis when doing the subtraction. 

[Return to Problems] 
 

(c) 2

2 3
2 1 1 2
y

y y y y
− +

− + − +
 

Let’s first factor the denominators and determine the least common denominator. 

 
( )2

2 3
1 21

y
y yy

− +
− +−

 

So, there are two factors in the denominators a y-1 and a y+2.  So we will write both of those 
down and then take the highest power for each.  That means a 2 for the y-1 and a 1 for the y+2.  
Here is the least common denominator for this rational expression. 
 ( )( )2lcd : 2 1y y+ −  
 
Now determine what’s missing in the denominator for each term, multiply the numerator and 
denominator by that and then finally do the subtraction and addition. 
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( )
( ) ( )

( )( )
( )( )( )

( )
( ) ( )

( ) ( )( ) ( )
( ) ( )

2

2 22

2

2

2 2 1 2 3 12 3
2 1 1 2 1 1 21 2 1 2

2 2 1 2 3 1
1 2

y y y y yy
y y y y y y yy y y y

y y y y y
y y

+ − + −
− + = − +

− + − + − − +− + − +

+ − − + + −
=

− +

 

 
Okay now let’s multiply the numerator out and simplify.  In the last term recall that we need to do 
the multiplication prior to distributing the 3 through the parenthesis.  Here is the simplification 
work for this part. 

 

( ) ( )
( ) ( )

( ) ( )

( ) ( )

2 2 2

22

2 2 2

2

2

2

2 2 2 3 2 12 3
2 1 1 2 1 2

2 2 2 4 3 6 3
1 2

2 6 7
1 2

y y y y y yy
y y y y y y

y y y y y y
y y

y y
y y

+ − + − + − +
− + =

− + − + − +

+ − − + + − +
=

− +

− +
=

− +

 

[Return to Problems] 
 

(d) 2

2 1 2
9 3 3

x
x x x

− −
− + −

 

Again, factor the denominators and get the least common denominator. 

 
( )( )

2 1 2
3 3 3 3

x
x x x x

− −
− + + −

 

The least common denominator is, 
 ( )( )lcd : 3 3x x− +  
 
Notice that the first rational expression already contains this in its denominator, but that is okay.  
In fact, because of that the work will be slightly easier in this case.  Here is the subtraction for this 
problem. 

 

( )( )
( )

( )( )
( )

( )( )
( ) ( )
( )( )

( )( )

( )( )

2

1 3 2 32 1 2 2
9 3 3 3 3 3 3 3 3

2 3 2 3
3 3

2 3 2 6
3 3

3
3 3

x xx x
x x x x x x x x x

x x x
x x

x x x
x x

x
x x

− +
− − = − −

− + − − + + − − +

− − − +
=

− +

− + − −
=

− +

− −
=

− +

 

 
Notice that we can actually go one step further here.  If we factor a minus out of the numerator 
we can do some canceling. 
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 ( )
( )( )2

32 1 2 1
9 3 3 3 3 3

xx
x x x x x x

− + −
− − = =

− + − − + −
 

Sometimes this kind of canceling will happen after the addition/subtraction so be on the lookout 
for it. 

[Return to Problems] 
 
 
 

(e) 
4 1 1

2y y
− +

+
 

The point of this problem is that “1” sitting out behind everything.  That isn’t really the problem 
that it appears to be.  Let’s first rewrite things a little here. 

 4 1 1
2 1y y
− +

+
 

 
In this way we see that we really have three fractions here.  One of them simply has a 
denominator of one.  The least common denominator for this part is, 
 ( )lcd : 2y y +  
 
Here is the addition and subtraction for this problem. 

 
( )( ) ( )

( )
( )

( ) ( )
( )

24 1 1 4 2
2 1 2 2 2

4 2 2
2

y yy y
y y y y y y y y

y y y y
y y

++
− + = − +

+ + + +

− + + +
=

+

 

 
Notice the set of parenthesis we added onto the second numerator as we did the subtraction.  We 
are subtracting off the whole numerator and so we need the parenthesis there to make sure we 
don’t make any mistakes with the subtraction. 
 
Here is the simplification for this rational expression. 

 
( ) ( )

2 24 1 1 4 2 2 5 2
2 1 2 2

y y y y y y
y y y y y y

− − + + + −
− + = =

+ + +
 

[Return to Problems] 
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 Complex Numbers 
The last topic in this section is not really related to most of what we’ve done in this chapter, 
although it is somewhat related to the radicals section as we will see.  We also won’t need the 
material here all that often in the remainder of this course, but there are a couple of sections in 
which we will need this and so it’s best to get it out of the way at this point. 
 
In the radicals section we noted that we won’t get a real number out of a square root of a negative 
number.  For instance 9−  isn’t a real number since there is no real number that we can square 
and get a NEGATIVE 9. 
 
Now we also saw that if a and b were both positive then ab a b= .  For a second let’s 
forget that restriction and do the following. 
 ( )( )9 9 1 9 1 3 1− = − = − = −  
 
Now, 1−  is not a real number, but if you think about it we can do this for any square root of a 
negative number.  For instance, 

 

100 100 1 10 1

5 5 1

290 290 1 .etc

− = − = −

− = −

− = −

 

So, even if the number isn’t a perfect square we can still always reduce the square root of a 
negative number down to the square root of a positive number (which we or a calculator can deal 
with) times 1− . 
 
So, if we just had a way to deal with 1−  we could actually deal with square roots of negative 
numbers.  Well the reality is that, at this level, there just isn’t any way to deal with 1−  so 
instead of dealing with it we will “make it go away” so to speak by using the following definition. 

 1i = −  
 
Note that if we square both sides of this we get, 

 2 1i = −  
It will be important to remember this later on.  This shows that, in some way, i is the only 
“number” that we can square and get a negative value. 
 
Using this definition all the square roots above become, 

 
9 3 100 10

5 5 290 290

i i

i i

− = − =

− = − =
 

 
These are all examples of complex numbers. 
 
The natural question at this point is probably just why do we care about this?  The answer is that, 
as we will see in the next chapter, sometimes we will run across the square roots of negative 
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numbers and we’re going to need a way to deal with them.  So, to deal with them we will need to 
discuss complex numbers. 
 
So, let’s start out with some of the basic definitions and terminology for complex numbers.  The 
standard form of a complex number is 
 a bi+  
where a and b are real numbers and they can be anything, positive, negative, zero, integers, 
fractions, decimals, it doesn’t matter.  When in the standard form a is called the real part of the 
complex number and b is called the imaginary part of the complex number. 
 
Here are some examples of complex numbers. 

 43 5 6 10 16 113
5

i i i i+ − +  

 
The last two probably need a little more explanation.  It is completely possible that a or b could 
be zero and so in 16i the real part is zero.  When the real part is zero we often will call the 
complex number a purely imaginary number.  In the last example (113) the imaginary part is 
zero and we actually have a real number.  So, thinking of numbers in this light we can see that the 
real numbers are simply a subset of the complex numbers. 
 
The conjugate of the complex number a bi+  is the complex number a bi− .  In other words, it 
is the original complex number with the sign on the imaginary part changed.  Here are some 
examples of complex numbers and their conjugates. 
 

 

complex number conjugate
1 13 3
2 2

12 5 12 5
1 1
45 45
101 101

i i

i i
i i
i i

+ −

− +
− +

−

 

 
Notice that the conjugate of a real number is just itself with no changes. 
 
Now we need to discuss the basic operations for complex numbers.  We’ll start with addition and 
subtraction.  The easiest way to think of adding and/or subtracting complex numbers is to think of 
each complex number as a polynomial and do the addition and subtraction in the same way that 
we add or subtract polynomials. 
 
Example 1  Perform the indicated operation and write the answers in standard form. 

(a) ( ) ( )4 7 5 10i i− + + −  

(b) ( ) ( )4 12 3 15i i+ − −  

(c) ( )5 9i i− − +  
Solution 
There really isn’t much to do here other than add or subtract.  Note that the parentheses on the 
first terms are only there to indicate that we’re thinking of that term as a complex number and in 
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general aren’t used. 
 
(a) ( ) ( )4 7 5 10 1 3i i i− + + − = −  
 
(b) ( ) ( )4 12 3 15 4 12 3 15 1 27i i i i i+ − − = + − + = +  
 
(c) ( )5 9 5 9 9 4i i i i i− − + = + − = +  
 
Next let’s take a look at multiplication.  Again, with one small difference, it’s probably easiest to 
just think of the complex numbers as polynomials so multiply them out as you would 
polynomials.  The one difference will come in the final step as we’ll see. 
 
Example 2  Multiply each of the following and write the answers in standard form. 

(a) ( )7 5 2i i− +    [Solution] 

(b) ( )( )1 5 9 2i i− − +    [Solution] 

(c) ( )( )4 2 3i i+ +    [Solution] 

(d) ( )( )1 8 1 8i i− +    [Solution] 
 
Solution 
(a) So all that we need to do is distribute the 7i through the parenthesis. 
 ( ) 27 5 2 35 14i i i i− + = − +  
Now, this is where the small difference mentioned earlier comes into play.  This number is NOT 
in standard form.  The standard form for complex numbers does not have an i2 in it.  This 
however is not a problem provided we recall that  
 2 1i = −  
 
Using this we get, 
 ( ) ( )7 5 2 35 14 1 14 35i i i i− + = − + − = − −  
We also rearranged the order so that the real part is listed first. 

[Return to Problems] 
 
(b) In this case we will FOIL the two numbers and we’ll need to also remember to get rid of the 
i2. 
 ( )( ) ( )21 5 9 2 9 2 45 10 9 47 10 1 1 47i i i i i i i− − + = − + + − = − + − − = +  

[Return to Problems] 
(c) Same thing with this one. 
 ( )( ) ( )24 2 3 8 12 2 3 8 14 3 1 5 14i i i i i i i+ + = + + + = + + − = +  

[Return to Problems] 
 
(d) Here’s one final multiplication that will lead us into the next topic. 
 ( )( ) 21 8 1 8 1 8 8 64 1 64 65i i i i i− + = + − − = + =  
Don’t get excited about it when the product of two complex numbers is a real number.  That can 
and will happen on occasion. 

[Return to Problems]
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In the final part of the previous example we multiplied a number by its conjugate.  There is a nice 
general formula for this that will be convenient when it comes to discussion division of complex 
numbers. 
 ( )( ) 2 2 2 2 2a bi a bi a abi abi b i a b+ − = − + − = +  
 
So, when we multiply a complex number by its conjugate we get a real number given by, 

 ( )( ) 2 2a bi a bi a b+ − = +  
 
Now, we gave this formula with the comment that it will be convenient when it came to dividing 
complex numbers so let’s look at a couple of examples. 
 
Example 3  Write each of the following in standard form. 

(a) 
3

2 7
i
i

−
+

   [Solution] 

(b) 3
9 i−

   [Solution] 

(c) 8
1 2

i
i+

   [Solution] 

(d) 
6 9

2
i

i
−

   [Solution] 

Solution 
So, in each case we are really looking at the division of two complex numbers.  The main idea 
here however is that we want to write them in standard form.  Standard form does not allow for 
any i's to be in the denominator.  So, we need to get the i's out of the denominator.   
 
This is actually fairly simple if we recall that a complex number times its conjugate is a real 
number.  So, if we multiply the numerator and denominator by the conjugate of the denominator 
we will be able to eliminate the i from the denominator. 
 
Now that we’ve figured out how to do these let’s go ahead and work the problems. 
 

(a) 
( )
( )

( )
( )

2

2 2

3 2 73 6 23 7 1 23 1 23
2 7 2 7 2 7 2 7 53 53 53

i ii i i i i
i i i

− −− − + − −
= = = = − −

+ + − +
 

 
Notice that to officially put the answer in standard form we broke up the fraction into the real and 
imaginary parts. 

[Return to Problems] 

(b) 
( )

( )
( ) 2 2

93 3 27 3 27 3
9 9 9 9 1 82 82

i i i
i i i

+ +
= = = +

− − + +
 

[Return to Problems] 
 

(c) 
( )

( )
( )

2

2 2

1 28 8 8 16 16 8 16 8
1 2 1 2 1 2 1 2 5 5 5

ii i i i i i
i i i

− − +
= = = = +

+ + − +
 

[Return to Problems] 
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(d) This one is a little different from the previous ones since the denominator is a pure imaginary 
number.  It can be done in the same manner as the previous ones, but there is a slightly easier way 
to do the problem.   
 
First, break up the fraction as follows. 

 6 9 6 9 3 9
2 2 2 2

i i
i i i i
−

= − = −  

Now, we want the i out of the denominator and since there is only an i in the denominator of the 
first term we will simply multiply the numerator and denominator of the first term by an i. 

 ( )
( ) 2

36 9 9 3 9 3 9 9 3
2 2 2 1 2 2

ii i i i
i i i i
−

= − = − = − = − −
−

 

[Return to Problems]
 
The next topic that we want to discuss here is powers of i.  Let’s just take a look at what happens 
when we start looking at various powers of i. 

( ) ( )

( )( )

1 1

2 2

3 2 3

2 24 2 4

5 4 5

6 2 4 6

1 1

1 1 1

1 1 1 1

i i i i
i i
i i i i i i

i i i

i i i i i i
i i i i

= =

= − = −

= ⋅ = − = −

= = − = =

= ⋅ = =

= ⋅ = − = − = −

 

 
( ) ( )

7 6 7

2 28 4 81 1 1

i i i i i i

i i i

= ⋅ = − = −

= = = =
 

 
Can you see the pattern?  All powers if i can be reduced down to one of four possible answers and 
they repeat every four powers.  This can be a convenient fact to remember. 
 
We next need to address an issue on dealing with square roots of negative numbers.  From the 
section on radicals we know that we can do the following. 
 ( )( ) ( )( )6 36 4 9 4 9 2 3 6= = = = =  
In other words, we can break up products under a square root into a product of square roots 
provided both numbers are positive. 
 
It turns out that we can actually do the same thing if one of the numbers is negative.  For instance, 
 ( )( ) ( )( )6 36 4 9 4 9 2 3 6i i i= − = − = − = =  
 
However, if BOTH numbers are negative this won’t work anymore as the following shows. 
 ( )( ) ( )( ) 26 36 4 9 4 9 2 3 6 6i i i= = − − ≠ − − = = = −  
 
We can summarize this up as a set of rules.  If a and b are both positive numbers then, 



College Algebra 

© 2007 Paul Dawkins 57 http://tutorial.math.lamar.edu/terms.aspx 
 

 

( )( )

a b ab

a b ab

a b ab

a b a b

=

− = −

− = −

− − ≠ − −

 

 
Why is this important enough to worry about?  Consider the following example. 
 
Example 4  Multiply the following and write the answer in standard form. 
 ( )( )2 100 1 36− − + −  
Solution 
If we where to multiply this out in its present form we would get, 
 ( )( )2 100 1 36 2 2 36 100 36 100− − + − = + − − − − − −  
Now, if we were not being careful we would probably combine the two roots in the final term 
into one which can’t be done! 
 
So, there is a general rule of thumb in dealing with square roots of negative numbers.  When 
faced with them the first thing that you should always do is convert them to complex number.  If 
we follow this rule we will always get the correct answer. 
 
So, let’s work this problem the way it should be worked. 
 ( )( ) ( )( ) 22 100 1 36 2 10 1 6 2 2 60 62 2i i i i i− − + − = − + = + − = +  
 
The rule of thumb given in the previous example is important enough to make again.  When faced 
with square roots of negative numbers the first thing that you should do is convert them to 
complex numbers. 
 
There is one final topic that we need to touch on before leaving this section.  As we noted back in 
the section on radicals even though 9 3=  there are in fact two numbers that we can square to 
get 9.  We can square both 3 and -3. 
 
The same will hold for square roots of negative numbers.  As we saw earlier 9 3i− = .  As with 
square roots of positive numbers in this case we are really asking what did we square to get -9?  
Well it’s easy enough to check that 3i is correct. 
 ( )2 23 9 9i i= = −  
However, that is not the only possibility.  Consider the following, 
 ( ) ( )2 2 2 23 3 9 9i i i− = − = = −  
and so if we square -3i we will also get -9.  So, when taking the square root of a negative number 
there are really two numbers that we can square to get the number under the radical.  However, 
we will ALWAYS take the positive number for the value of the square root just as we do with the 
square root of positive numbers. 
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Solving Equations and Inequalities 

 

 Introduction 
In this chapter we will look at one of the standard topics in any Algebra class.  The ability to 
solve equations and/or inequalities is very important and is used time and again both in this class 
and in later classes.  We will cover a wide variety of solving topics in this chapter that should 
cover most of the basic equations/inequalities/techniques that are involved in solving. 
 
Here is a brief listing of the material covered in this chapter. 
 
Solutions and Solution Sets – We introduce some of the basic notation and ideas involved in 
solving in this section. 
Linear Equations – In this section we will solve linear equations, including equations with 
rational expressions. 
Applications of Linear Equations – We will take a quick look at applications of linear equations 
in this section. 
Equations With More Than One Variable – Here we will look at solving equations with more 
than one variable in them. 
Quadratic Equations, Part I – In this section we will start looking at solving quadratic 
equations.  We will look at factoring and the square root property in this section. 
Quadratic Equations, Part II – We will finish up solving quadratic equations in this section.  
We will look at completing the square and quadratic formula in this section. 
Quadratic Equations : A Summary – We’ll give a procedure for determining which method to 
use in solving quadratic equations in this section.  We will also take a quick look at the 
discriminate. 
Applications of Quadratic Equations – Here we will revisit some of the applications we saw in 
the linear application section, only this time they will involve solving a quadratic equation. 
Equations Reducible to Quadratic Form – In this section we will solve equations that can be 
reduced to quadratic in form. 
Equations with Radicals – Here we will solve equations with square roots in them. 
Linear Inequalities – We will start solving inequalities in this section by looking at linear 
inequalities. 
Polynomial Inequalities – In this section we will look at solving inequalities that contain 
polynomials. 
Rational Inequalities – Here we will solve inequalities involving rational expressions. 
Absolute Value Equations – We will officially define absolute value in this section and solve 
equations that contain absolute value. 
Absolute Value Inequalities – We will solve inequalities that involve absolute value in this 
section. 
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 Solutions and Solution Sets 
We will start off this chapter with a fairly short section with some basic terminology that we use 
on a fairly regular basis in solving equations and inequalities. 
 
First, a solution to an equation or inequality is any number that, when plugged into the 
equation/inequality, will satisfy the equation/inequality.  So, just what do we mean by satisfy?  
Let’s work an example or two to illustrate this. 
 
Example 1  Show that each of the following numbers are solutions to the given equation or 
inequality. 

(a) 3x =  in 2 9 0x − =    [Solution] 
(b) 8y =  in ( )3 1 4 5y y+ = −    [Solution] 

(c) 1z =  in ( )2 5 4z z− ≤    [Solution] 

(d) 5z = −  in ( )2 5 4z z− ≤    [Solution] 
Solution 
(a) We first plug the proposed solution into the equation. 

 

?23 9 0
9 9 0

0 0 OK

− =
− =

=
 

So, what we are asking here is does the right side equal the left side after we plug in the proposed 
solution.  That is the meaning of the “?” above the equal sign in the first line.   
 
Since the right side and the left side are the same we say that 3x =  satisfies the equation. 

[Return to Problems] 
 
(b) So, we want to see if 8y =  satisfies the equation.  First plug the value into the equation. 

 ( ) ( )?3 8 1 4 8 5
27 27 OK
+ = −

=
 

So, 8y =  satisfies the equation and so is a solution.  
[Return to Problems] 

 
(c) In this case we’ve got an inequality and in this case “satisfy” means something slightly 
different.  In this case we will say that a number will satisfy the inequality if, after plugging it in, 
we get a true inequality as a result. 
 
Let’s check 1z = . 

 ( ) ( )
?

2 1 5 4 1
8 4 OK

− ≤

− ≤
 

 
So, -8 is less than or equal to 4 (in fact it’s less than) and so we have a true inequality.  Therefore 

1z =  will satisfy the inequality and hence is a solution 
[Return to Problems] 
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(d) This is the same inequality with a different value so let’s check that. 

 ( ) ( )
?

2 5 5 4 5
20 20 OK

− − ≤ −

− ≤ −
 

In this case -20 is less than or equal to -20 (in this case it’s equal) and so again we get a true 
inequality and so 5z = −  satisfies the inequality and so will be a solution. 

[Return to Problems]
 
We should also do a quick example of numbers that aren’t solution so we can see how these will 
work as well. 
 
Example 2  Show that the following numbers aren’t solutions to the given equation or 
inequality. 

(a) 2y = −  in ( )3 1 4 5y y+ = −    [Solution] 

(b) 12z = −  in ( )2 5 4z z− ≤    [Solution] 
Solution 
(a) In this case we do essentially the same thing that we did in the previous example.  Plug the 
number in and show that this time it doesn’t satisfy the equation.  For equations that will mean 
that the right side of the equation will not equal the left side of the equation. 

 ( ) ( )?3 2 1 4 2 5
3 13 NOT  OK

− + = − −

− ≠ −
 

So, -3 is not the same as -13 and so the equation isn’t satisfied.  Therefore 2y = −  isn’t a solution 
to the equation. 

[Return to Problems] 
 
(b) This time we’ve got an inequality.  A number will not satisfy an inequality if we get an 
inequality that isn’t true after plugging the number in. 

 ( ) ( )
?

2 12 5 4 12

34

− − ≤ −

− ≤ 48 NOT  OK−
 

In this case -34 is NOT less than or equal to -48 and so the inequality isn’t satisfied.  Therefore 
12z = −  is not a solution to the inequality. 

[Return to Problems]
 
Now, there is no reason to think that a given equation or inequality will only have a single 
solution.  In fact, as the first example showed the inequality ( )2 5 4z z− ≤  has at least two 

solutions.  Also, you might have noticed that 3x =  is not the only solution to  2 9 0x − = .  In 
this case 3x = −  is also a solution. 
 
We call the complete set of all solutions the solution set for the equation or inequality.  There is 
also some formal notation for solution sets although we won’t be using it all that often in this 
course.  Regardless of that fact we should still acknowledge it. 
 



College Algebra 

© 2007 Paul Dawkins 61 http://tutorial.math.lamar.edu/terms.aspx 
 

For equations we denote the solution set by enclosing all the solutions is a set of braces, { } .  For 
the two equations we looked at above here are the solution sets them. 
 

 
( ) { }

{ }2

3 1 4 5 Solution Set : 8

9 0 Solution Set : 3,3

y y

x

+ = −

− = −
 

 
For inequalities we have a similar notation.  Depending on the complexity of the inequality the 
solution set may be a single number or it may be a range of numbers.  If it is a single number then 
we use the same notation as we used for equations.  If the solution set is a range of numbers, as 
the only we looked at above is, we will use something called set builder notation.  Here is the 
solution set for the inequality we looked at above. 
 
 { }| 5z z ≥ −  
 
This is read as : “The set of all z such that z is greater than or equal to -5”.  
 
Most of the inequalities that we will be looking at will have simple enough solution sets that we 
often just shorthand this as, 
 
 5z ≥ −  
 
There is one final topic that we need to address as far as solution sets go before leaving this 
section.  Consider the following equation and inequality. 
 

 
2

2

1 0
0

x
x
+ =

<
 

 
If we restrict ourselves to only real solutions (which we won’t always do) then there is no 
solution to the equation.  Squaring x makes x greater than equal to zero, then adding 1 onto that 
means that the left side is guaranteed to be at least 1.  In other words, there is no real solution to 
this equation.  For the same basic reason there is no solution to the inequality.  Squaring any real 
x makes it positive or zero and so will never be negative. 
 
We need a way to denote the fact that there are no solutions here.  In solution set notation we say 
that the solution set is empty and denote it with the symbol : ∅ .  This symbol is often called the 
empty set.  
 
We now need to make a couple of final comments before leaving this section.   
 
In the above discussion of empty sets we assumed that were only looking for real solutions.  
While that is what we will be doing for inequalities, we won’t be restricting ourselves to real 
solutions with equations.  Once we get around to solving quadratic equations (which 2 1 0x + =  
is) we will allow solutions to be complex numbers and in the case looked at above there are 
complex solutions to 2 1 0x + = .  If you don’t know how to find these at this point that is fine we 
will be covering that material in a couple of sections.  At this point just accept that 2 1 0x + =  
does have complex solutions. 
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Finally, as noted above we won’t be using the solution set notation much in this course.  It is a 
nice notation and does have some use on occasion especially for complicated solutions.  
However, for the vast majority of the equations and inequalities that we will be looking at will 
have simple enough solution sets that it’s just easier to write down the solutions and let it go at 
that.  Therefore, that is what we will not be using the notation for our solution sets.  However, 
you should be aware of the notation and know what it means. 
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 Linear Equations 
We’ll start off the solving portion of this chapter by solving linear equations.  A linear equation 
is any equation that can be written in the form 
 0ax b+ =  
where a and b are real numbers and x is a variable.  This form is sometimes called the standard 
form of a linear equation.  Note that most linear equations will not start off in this form.  Also, 
the variable may or may not be an x so don’t get too locked into always seeing an x there. 
 
To solve linear equations we will make heavy use of the following facts. 
 

1. If a b=  then a c b c+ = +  for any c.  All this is saying is that we can add a number, c, 
to both sides of the equation and not change the equation. 
 

2. If a b=  then a c b c− = −  for any c.  As with the last property we can subtract a 
number, c, from both sides of an equation. 
 

3. If a b=  then ac bc=  for any c.  Like addition and subtraction we can multiply both 
sides of an equation by a number, c, without changing the equation. 
 

4. If a b=  then 
a b
c c
=  for any non-zero c.  We can divide both sides of an equation by a 

non-zero number, c, without changing the equation. 
 
These facts form the basis of almost all the solving techniques that we’ll be looking at in this 
chapter so it’s very important that you know them and don’t forget about them.  One way to think 
of these rules is the following.  What we do to one side of an equation we have to do to the other 
side of the equation.  If you remember that then you will always get these facts correct. 
 
In this section we will be solving linear equations and there is a nice simple process for solving 
linear equations.  Let’s first summarize the process and then we will work some examples. 
 
Process for Solving Linear Equations 
 

1. If the equation contains any fractions use the least common denominator to clear the 
fractions.  We will do this by multiplying both sides of the equation by the LCD.   
 
Also, if there are variables in the denominators of the fractions identify values of the 
variable which will give division by zero as we will need to avoid these values in our 
solution. 
 
 

2. Simplify both sides of the equation.  This means clearing out any parenthesis, and 
combining like terms. 
 

3. Use the first two facts above to get all terms with the variable in them on one side of the 
equations (combining into a single term of course) and all constants on the other side. 
 

4. If the coefficient of the variable is not a one use the third or fourth fact above (this will 
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depend on just what the number is) to make the coefficient a one.   
 
Note that we usually just divide both sides of the equation by the coefficient if it is an 
integer or multiply both sides of the equation by the reciprocal of the coefficient if it is a 
fraction. 
 

5. VERIFY YOUR ANSWER!  This is the final step and the most often skipped step, yet 
it is probably the most important step in the process.  With this step you can know 
whether or not you got the correct answer long before your instructor ever looks at it.  We 
verify the answer by plugging the results from the previous steps into the original 
equation.  It is very important to plug into the original equation since you may have made 
a mistake in the very first step that lead you to an incorrect answer. 
 
Also, if there were fractions in the problem and there were values of the variable that give 
division by zero (recall the first step…) it is important to make sure that one of these 
values didn’t end up in the solution set.  It is possible, as we’ll see in an example, to have 
these values show up in the solution set. 

 
 
Let’s take a look at some examples. 
 
Example 1  Solve each of the following equations. 

(a) ( ) ( )3 5 2 6 2x x x+ = − − −    [Solution] 

(b) 2 21
3 7

m m−
+ =    [Solution] 

(c) 2

5 10
2 6 6 9

y
y y y

−
=

− − +
   [Solution] 

(d) 2 3 2
3 10

z
z z

= +
+ −

   [Solution] 

Solution 
In the following problems we will describe in detail the first problem and the leave most of the 
explanation out of the following problems. 
 
(a) ( ) ( )3 5 2 6 2x x x+ = − − −  
For this problem there are no fractions so we don’t need to worry about the first step in the 
process.  The next step tells to simplify both sides.  So, we will clear out any parenthesis by 
multiplying the numbers through and then combine like terms. 

 
( ) ( )3 5 2 6 2
3 15 12 2 2
3 15 12 4

x x x
x x x
x x

+ = − − −

+ = − − −
+ = − −

 

 
The next step is to get all the x’s on one side and all the numbers on the other side.  Which side 
the x’s go on is up to you and will probably vary with the problem.  As a rule of thumb we will 
usually put the variables on the side that will give a positive coefficient.  This is done simply 
because it is often easy to lose track of the minus sign on the coefficient and so if we make sure it 
is positive we won’t need to worry about it. 
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So, for our case this will mean adding 4x to both sides and subtracting 15 from both sides.  Note 
as well that while we will actually put those operations in this time we normally do these 
operations in our head. 
 

 4
3
15 15

15 12 4
3 15 12 4

7 27
4x x

x x
x x

x

+
+

= − −
+ = − + −

= −
− −  

 
The next step says to get a coefficient of 1 in front of the x.  In this case we can do this by 
dividing both sides by a 7. 
 

 

7 27
7 7

27
7

x

x

−
=

= −
 

 

Now, if we’ve done all of our work correct 
27
7

x = −  is the solution to the equation.   

 
The last and final step is to then check the solution.  As pointed out in the process outline we need 
to check the solution in the original equation.  This is important, because we may have made a 
mistake in the very first step and if we did and then checked the answer in the results from that 
step it may seem to indicate that the solution is correct when the reality will be that we don’t have 
the correct answer because of the mistake that we originally made.  
 
The problem of course is that, with this solution, that checking might be a little messy.  Let’s do it 
anyway. 

 

?

?

27 27 273 5 2 6 2
7 7 7

8 15 543 2
7 7 7
24 24 OK
7 7

⎛ ⎞⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + = − − − − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎝ ⎠
⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=

 

 
So, we did our work correctly and the solution to the equation is, 

 27
7

x = −  

 
Note that we didn’t use the solution set notation here.  For single solutions we will rarely do that 
in this class.  However, if we had wanted to the solution set notation for this problem would be, 

 27
7

⎧ ⎫−⎨ ⎬
⎩ ⎭

 

 
Before proceeding to the next problem let’s first make a quick comment about the “messiness’ of 
this answer.  Do NOT expect all answers to be nice simple integers.  While we do try to keep 
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most answer simple often they won’t be so do NOT get so locked into the idea that an answer 
must be a simple integer that you immediately assume that you’ve made a mistake because of the 
“messiness” of the answer. 

[Return to Problems] 
 

(b) 
2 21

3 7
m m−

+ =  

Okay, with this one we won’t be putting quite as much explanation into the problem. 
 
In this case we have fractions so to make our life easier we will multiply both sides by the LCD, 
which is 21 in this case.  After doing that the problem will be very similar to the previous 
problem.  Note as well that the denominators are only numbers and so we won’t need to worry 
about division by zero issues. 
 
Let’s first multiply both sides by the LCD. 

 ( )

( ) ( )( )

2 221 1 21
3 7

2 221 21 1 21
3 7

7 2 21 2 3

m m

m m

m m

−⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
−⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
− + =

 

Be careful to correctly distribute the 21 through the parenthesis on the left side.  Everything 
inside the parenthesis needs to be multiplied by the 21 before we simplify.  At this point we’ve 
got a problem that is similar the previous problem and we won’t bother with all the explanation 
this time. 

 

( ) ( )( )7 2 21 2 3
7 14 21 6

7 7 6
7

m m
m m

m m
m

− + =

− + =
+ =

= −

 

 
So, it looks like 7m = −  is the solution.  Let’s verify it to make sure. 

 

( )?

?

?

2 77 2 1
3 7

9 141
3 7

3 1 2
2 2 OK

−− −
+ =

−
+ =−

− + =−
− = −

 

So, it is the solution. 
[Return to Problems] 

 

(c) 2

5 10
2 6 6 9

y
y y y

−
=

− − +
 

This one is similar to the previous one except now we’ve got variables in the denominator.  So, to 
get the LCD we’ll first need to completely factor the denominators of each rational expression. 
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( ) ( )2

5 10
2 3 3

y
y y

−
=

− −
 

So, it looks like the LCD is ( )22 3y − .  Also note that we will need to avoid 3y =  since if we 
plugged that into the equation we would get division by zero. 
 
Now, outside of the y’s in the denominator this problem works identical to the previous one so 
let’s do the work. 

 

( )( ) ( ) ( )
( )( )

( ) ( )

2 2
2

5 102 3 2 3
2 3 3

5 3 2 10
5 15 20 2

7 35
5

yy y
y y

y y
y y

y
y

⎛ ⎞⎛ ⎞ −
− = −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠

− = −

− = −
=
=

 

 
Now the solution is not 3y =  so we won’t get division by zero with the solution which is a good 
thing.  Finally, let’s do a quick verification. 

 ( ) ( )
?

2

5 10 5
2 5 6 5 6 5 9

5 5 OK
4 4

−
=

− − +

=

 

 
So we did the work correctly. 

[Return to Problems] 
 

(d) 
2 3 2

3 10
z

z z
= +

+ −
 

In this case it looks like the LCD is ( )( )3 10z z+ −  and it also looks like we will need to avoid 
3z = −  and 10z =  to make sure that we don’t get division by zero. 

 
Let’s get started on the work for this problem. 

 

( )( ) ( )( )

( ) ( ) ( )( )
( )2 2

2 33 10 2 3 10
3 10

2 10 3 3 2 3 10

2 20 3 9 2 7 30

zz z z z
z z

z z z z z

z z z z z

⎛ ⎞ ⎛ ⎞+ − = + + −⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠
− = + + + −

− = + + − −

 

 
At this point let’s pause and acknowledge that we’ve got a z2 in the work here.  Do not get excited 
about that.  Sometimes these will show up temporarily in these problems.  You should only worry 
about it if it is still there after we finish the simplification work. 
 
So, let’s finish the problem. 
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22z 220 3 9 2z z z− = + + 14 60
20 11 51

51 9
51
9

17
3

z
z z

z

z

z

− −
− = − −

=

=

=

 

 

Notice that the z2 did in fact cancel out.  Now, if we did our work correctly 
17
3

z =  should be the 

solution since it is not either of the two values that will give division by zero.  Let’s verify this. 

 

?

?

?

172
33 217 173 10

3 3
34

33 226 13
3 3

34 3 33 2
3 26 13

17 17 OK
13 13

⎛ ⎞
⎜ ⎟
⎝ ⎠ = +
+ −

= +
−

⎛ ⎞ ⎛ ⎞= − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=

 

 
The checking can be a little messy at times, but it does mean that we KNOW the solution is 
correct. 

[Return to Problems]
 
Okay, in the last couple of parts of the previous example we kept going on about watching out for 
division by zero problems and yet we never did get a solution where that was an issue.  So, we 
should now do a couple of those problems to see how they work. 
 
Example 2  Solve each of the following equations. 

(a) 2

2
2 5 6

x
x x x

−
=

+ + +
   [Solution] 

(b) 2 24
1 1

x
x x

= −
+ +

   [Solution] 

 
Solution 

(a) 2

2
2 5 6

x
x x x

−
=

+ + +
 

The first step is to factor the denominators to get the LCD. 



College Algebra 

© 2007 Paul Dawkins 69 http://tutorial.math.lamar.edu/terms.aspx 
 

 
( )( )

2
2 2 3

x
x x x

−
=

+ + +
 

So, the LCD is ( )( )2 3x x+ +  and we will need to avoid 2x = −  and 3x = −  so we don’t get 
division by zero. 
 
Here is the work for this problem. 

 

( )( ) ( )( ) ( )( )

( )

22 3 2 3
2 2 3

2 3
2 6

3 6
2

xx x x x
x x x

x x
x x

x
x

⎛ ⎞−⎛ ⎞+ + = + +⎜ ⎟⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠
+ = −

+ = −
= −
= −

 

 
So, we get a “solution” that is in the list of numbers that we need to avoid so we don’t get 
division by zero and so we can’t use it as a solution.  However, this is also the only possible 
solution.  That is okay.  This just means that this equation has no solution. 

[Return to Problems] 
 

(b) 
2 24

1 1
x

x x
= −

+ +
 

The LCD for this equation is 1x +  and we will need to avoid 1x = −  so we don’t get division by 
zero.  Here is the work for this equation. 

 

( ) ( )

( )

2 21 4 1
1 1

2 4 1 2
2 4 4 2
2 2 4
2 2
1

xx x
x x

x x
x x
x
x

x

⎛ ⎞ ⎛ ⎞+ = − +⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
= + −

= + −
= +

− =
− =

 

 
So, we once again arrive at the single value of x that we needed to avoid so we didn’t get division 
by zero.  Therefore, this equation has no solution. 

[Return to Problems]
 
So, as we’ve seen we do need to be careful with division by zero issues when we start off with 
equations that contain rational expressions. 
 
At this point we should probably also acknowledge that provided we don’t have any division by 
zero issues (such as those in the last set of examples) linear equations will have exactly one 
solution.  We will never get more than one solution and the only time that we won’t get any 
solutions is if we run across a division by zero problems with the “solution”. 
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Before leaving this section we should note that many of the techniques for solving linear 
equations will show up time and again as we cover different kinds of equations so it very 
important that you understand this process. 
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 Application of Linear Equations 
We now need to discuss the section that most students hate.  We need to talk about applications to 
linear equations.  Or, put in other words, we will not start looking at story problems or word 
problems.  Throughout history students have hated these.  It is my belief however that the main 
reason for this is that students really don’t know how to work them.  Once you understand how to 
work them, you’ll probably find that they aren’t as bad as they may seem on occasion.  So, we’ll 
start this section off with a process for working applications. 
 
Process for Working Story/Word Problems 
 

1. READ THE PROBLEM. 
 

2. READ THE PROBLEM AGAIN.  Okay, this may be a little bit of overkill here.  
However, the point of these first two steps is that you must read the problem. This step is 
the MOST important step, but it is also the step that most people don’t do properly. 
 
You need to read the problem very carefully and as many times as it takes.  You are only 
done with this step when you have completely understood what the problem is asking you 
to do.  This includes identifying all the given information and identifying what you being 
asked to find. 
 
Again, it can’t be stressed enough that you’ve got to carefully read the problem.  
Sometimes a single word can completely change how the problem is worked.  If you just 
skim the problem you may well miss that very important word. 
 

3. Represent one of the unknown quantities with a variable and try to relate all the other 
unknown quantities (if there are any of course) to this variable. 
 

4. If applicable, sketch a figure illustrating the situation.  This may seem like a silly step, 
but it can be incredibly helpful with the next step on occasion. 
 

5. Form an equation that will relate known quantities to the unknown quantities.  To do this 
make use of known formulas and often the figure sketched in the previous step can be 
used to determine the equation. 
 

6. Solve the equation formed in the previous step and write down the answer to all the 
questions.  It is important to answer all the questions that you were asked.  Often you will 
be asked for several quantities in the answer and the equation will only give one of them. 
 

7. Check your answer.  Do this by plugging into the equation, but also use intuition to make 
sure that the answer makes sense.  Mistakes can often be identified by acknowledging 
that the answer just doesn’t make sense. 

 
Let’s start things off with a couple of fairly basic examples to illustrate the process.  Note as well 
that at this point it is assumed that you are capable of solving fairly simple linear equations and so 
not a lot of detail will be given for the actual solution stage.  The point of this section is more on 
the set up of the equation than the solving of the equation. 
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Example 1  In a certain Algebra class there is a total of 350 possible points.  These points come 
from 5 homework sets that are worth 10 points each and 3 hour exams that are worth 100 points 
each.  A student has received homework scores of 4, 8, 7, 7, and 9 and the first two exam scores 
are 78 and 83.  Assuming that grades are assigned according to the standard scale and there are no 
weights assigned to any of the grades is it possible for the student to receive an A in the class and 
if so what is the minimum score on the third exam that will give an A?  What about a B? 
 
Solution 
Okay, let’s start off by defining p to be the minimum required score on the third exam. 
 
Now, let’s recall how grades are set.  Since there are no weights or anything on the grades, the 
grade will be set by first computing the following percentage. 
 

 actual points grade percentage
total possible points

=  

 
Since we are using the standard scale if the grade percentage is 0.9 or higher the student will get 
an A.  Likewise if the grade percentage is between 0.8 and 0.9 the student will get a B. 
 
We know that the total possible points is 350 and the student has a total points (including the third 
exam) of, 
 4 8 7 7 9 78 83 196p p+ + + + + + + = +  
 
The smallest possible percentage for an A is 0.9 and so if  p is the minimum required score on the 
third exam for an A we will have the following equation. 

 196 0.9
350

p+
=  

 
This is a linear equation that we will need to solve for p. 
 ( )196 0.9 350 315 315 196 119p p+ = = ⇒ = − =  
 
So, the minimum required score on the third exam is 119.  This is a problem since the exam is 
worth only 100 points.  In other words, the student will not be getting an A in the Algebra class. 
 
Now let’s check if the student will get a B.  In this case the minimum percentage is 0.8.  So, to 
find the minimum required score on the third exam for a B we will need to solve, 

 196 0.8
350

p+
=  

 
Solving this for p gives, 
 ( )196 0.8 350 280 280 196 84p p+ = = ⇒ = − =  
 
So, it is possible for the student to get a B in the class.  All that the student will need to do is get 
at least an 84 on the third exam. 
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Example 2  We want to build a set of shelves.  The width of the set of shelves needs to be 4 
times the height of the set of selves and the set of shelves must have three shelves in it.  If there 
are 72 feet of wood to use to build the set of shelves what should the dimensions of the set of 
shelves be? 
 
Solution 
We will first define x to be the height of the set of shelves.  This means that 4x is width of the set 
of shelves.  In this case we definitely need to sketch a figure so we can correctly set up the 
equation.  Here it is, 

 
Now we know that there are 72 feet of wood to be used and we will assume that all of it will be 
used.  So, we can set up the following word equation. 
 

 
length of length of 

72
vertical pieces horizontal pieces
⎛ ⎞ ⎛ ⎞

+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
It is often a good idea to first put the equation in words before actually writing down the equation 
as we did here.  At this point, we can see from the figure there are two vertical pieces; each one 
has a length of x.  Also, there are 4 horizontal pieces, each with a length of 4x. So, the equation is 
then, 

 

( ) ( )4 4 2 72
16 2 72

18 72
4

x x
x x

x
x

+ =

+ =
=
=

 

So, it looks like the height of the set of shelves should be 4 feet.  Note however that we haven’t 
actually answered the question however.  The problem asked us to find the dimensions.  This 
means that we also need the width of the set of shelves.  The width is 4(4)=16 feet.  So the 
dimensions will need to be 4x16 feet. 
 
Pricing Problems 
The next couple of problems deal with some basic principles of pricing. 
 
Example 3  A calculator has been marked up 15% and is being sold for $78.50.  How much did 
the store pay the manufacturer of the calculator? 
 
Solution 
First, let’s define p to be the cost that the store paid for the calculator.  The stores markup on the 
calculator is 15%.  This means that 0.15p has been added on to the original price (p) to get the 
amount the calculator is being sold for.  In other words, we have the following equation 
 0.15 78.50p p+ =  
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that we need to solve for p.  Doing this gives, 

 78.501.15 78.50 68.26087
1.15

p p= ⇒ = =  

 
The store paid $68.26 for the calculator.  Note that since we are dealing with money we rounded 
the answer down to two decimal places. 
 
Example 4  A shirt is on sale for $15.00 and has been marked down 35%.  How much was the 
shirt being sold for before the sale? 
 
Solution 
This problem is pretty much the opposite of the previous example.  Let’s start with defining p to 
be the price of the shirt before the sale.  It has been marked down by 35%.  This means that 0.35p 
has been subtracted off from the original price.  Therefore, the equation (and solution) is, 

 
0.35 15.00
0.65 15.00

15.00 23.0769
0.65

p p
p

p

− =
=

= =

 

 
So, with rounding it looks like the shirt was originally sold for $23.08. 
 
Distance/Rate Problems 
These are some of the standard problems that most people think about when they think about 
Algebra word problems.  The standard formula that we will be using here is 
 
 Distance Rate  Time= ×  
 
All of the problems that we’ll be doing in this set of examples will use this to one degree or 
another and often more than once as we will see. 
 
Example 5  Two cars are 500 miles apart and moving directly towards each other.  One car is 
moving at a speed of 100 mph and the other is moving at 70 mph.  Assuming that the cars start 
moving at the same time how long does it take for the two cars to meet? 
 
Solution 
Let’s let t represent the amount of time that the cars are traveling before they meet.  Now, we 
need to sketch a figure for this one.  This figure will help us to write down the equation that we’ll 
need to solve. 

 
From this figure we can see that the Distance Car A travels plus the Distance Car B travels must 
equal the total distance separating the two cars, 500 miles. 
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Here is the word equation for this problem in two separate forms. 
 

 

Distance Distance
500

of Car A of Car B

Rate of Time of Rate of Time of
500

 Car A  Car A  Car B  Car B

⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
+ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
We used the standard formula here twice, once for each car.  We know that the distance a car 
travels is the rate of the car times the time traveled by the car.  In this case we know that Car A 
travels at 100 mph for t hours and that Car B travels at 70 mph for t hours as well.  Plugging these 
into the word equation and solving gives us, 
 

 
100 70 500

170 500
500 2.941176 hrs
170

t t
t

t

+ =
=

= =

 

 
So, they will travel for approximately 2.94 hours before meeting. 
 
Example 6  Repeat the previous example except this time assume that the faster car will start 1 
hour after slower car starts. 
 
Solution 
For this problem we are going to need to be careful with the time traveled by each car.  Let’s let t 
be the amount of time that the slower travel car travels.  Now, since the faster car starts out 1 hour 
after the slower car it will only travel for 1t −  hours. 
 
Now, since we are repeating the problem from above the figure and word equation will remain 
identical and so we won’t bother repeating them here.  The only difference is what we substitute 
for the time traveled for the faster car.  Instead of t as we used in the previous example we will 
use 1t −  since it travels for one hour less that the slower car. 
 
Here is the equation and solution for this example. 

 

( )100 1 70 500
100 100 70 500

170 600
600 3.529412 hrs
170

t t
t t

t

t

− + =

− + =
=

= =

 

 
In this case the slower car will travel for 3.53 hours before meeting while the faster car will travel 
for 2.53 hrs (1 hour less than the faster car…). 
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Example 7  Two boats start out 100 miles apart and start moving to the right at the same time.  
The boat on the left is moving at twice the speed as the boat on the right.  Five hours after starting 
the boat on the left catches up with the boat on the right.  How fast was each boat moving? 
 
Solution 
Let’s start off by letting r be the speed of the boat on the right (the slower boat).  This means that 
the boat to the left (the faster boat) is moving at a speed of 2r.  Here is the figure for this situation. 

 
From the figure it looks like we’ve got the following word equation. 

 
Distance Distance

100
of Boat B of Boat A
⎛ ⎞ ⎛ ⎞

+ =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Upon plugging in the standard formula for the distance gives, 
Rate of Time of Rate of Time of

100
 Boat B  Boat B  Boat A  Boat A
⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞

+ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
For this problem we know that the time each is 5 hours and we know that the rate of Boat A is 2r 
and the rate of Boat B is r.  Plugging these into the work equation and solving gives, 

 

( )( ) ( )( )100 5 2 5
100 5 10

100 5
20

r r
r r

r
r

+ =

+ =
=
=

 

 
So, the slower boat is moving at 20 mph and the faster boat is moving at 40 mpg (twice as fast). 
 
Work/Rate Problems 
These problems are actually variants of the Distance/Rate problems that we just got done 
working.  The standard equation that will be needed for these problems is, 

 
Portion of job Work Time Spent

done in given time Rate Working
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

As you can see this formula is very similar to the formula we used above. 
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Example 8  An office has two envelope stuffing machines.  Machine A can stuff a batch of 
envelopes in 5 hours, while Machine B can stuff a batch of envelopes in 3 hours.  How long 
would it take the two machines working together to stuff a batch of envelopes? 
 
Solution 
Let t be the time that it takes both machines, working together, to stuff a batch of envelopes.  The 
word equation for this problem is, 

 

Portion of job Portion of job 
1 Job

done by Machine A done by Machine B

Work Rate Time Spent Work Rate Time Spent
1

of Machine A Working of Machine B Working

⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
+ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
We know that the time spent working is t however we don’t know the work rate of each machine.  
To get these we’ll need to use the initial information given about how long it takes each machine 
to do the job individually.  We can use the following equation to get these rates. 

 
Work Time Spent

1 Job
Rate Working

⎛ ⎞ ⎛ ⎞
= ×⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Let’s start with Machine A. 

 ( ) ( ) 11 Job Work Rate of A 5 Work Rate of A
5

= × ⇒ =  

Now, Machine B. 

 ( ) ( ) 11 Job Work Rate of B 3 Work Rate of B
3

= × ⇒ =  

 
Plugging these quantities into the main equation above gives the following equation that we need 
to solve. 

 

1 1 1 Multiplying both sides by 15
5 3
3 5 15

8 15
15 1.875 hours
8

t t

t t
t

t

+ =

+ =
=

= =

 

So, it looks like it will take the two machines, working together, 1.875 hours to stuff a batch of 
envelopes. 
 
Example 9  Mary can clean an office complex in 5 hours.  Working together John and Mary can 
clean the office complex in 3.5 hours.  How long would it take John to clean the office complex 
by himself? 
 
Solution 
Let t be the amount of time it would take John to clean the office complex by himself.  The basic 
word equation for this problem is, 
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Portion of job Portion of job 
1 Job

done by Mary done by John

Work Rate Time Spent Work Rate Time Spent
1

of Mary Working of John Working

⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
+ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
This time we know that the time spent working together is 3.5 hours.  We now need to find the 
work rates for each person.  We’ll start with Mary. 

 ( ) ( ) 11 Job Work Rate of Mary 5 Work Rate of Mary
5

= × ⇒ =  

Now we’ll find the work rate of John.  Notice however, that since we don’t know how long it will 
take him to do the job by himself we aren’t going to be able to get a single number for this.  That 
is not a problem as we’ll see in a second. 

 ( ) ( ) 11 Job Work Rate of John Work Rate of Johnt
t

= × ⇒ =  

Notice that we’ve managed to get the work rate of John in terms of the time it would take him to 
do the job himself.  This means that once we solve the equation above we’ll have the answer that 
we want.  So, let’s plug into the work equation and solve for the time it would take John to do the 
job by himself. 

 

( ) ( )

( )( )

1 13.5 3.5 1 Multiplying both sides by 5
5
3.5 3.5 5 5

17.5 1.5
17.5 11.67 hrs
1.5

t
t

t t
t

t t

+ =

+ =

=

= ⇒ =

 

 
So, it looks like it would take John 11.67 hours to clean the complex by himself. 
 
Mixing Problems 
This is the final type of problems that we’ll be looking at in this section.  We are going to be 
looking at mixing solutions of different percentages to get a new percentage.  The solution will 
consist of a secondary liquid mixed in with water.  The secondary liquid can be alcohol or acid 
for instance. 
 
The standard equation that we’ll use here will be the following. 

 
Amount of secondary Percentage of Volume of

liquid in the water Solution Solution
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

= ×⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

Note as well that the percentage needs to be a decimal.  So if we have an 80% solution we will 
need to use 0.80. 
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Example 10  How much of a 50% alcohol solution should we mix with 10 gallons of a 35% 
solution to get a 40% solution? 
 
Solution 
Okay, let x be the amount of 50% solution that we need.  This means that there will be 10x +  
gallons of the 40% solution once we’re done mixing the two. 
 
Here is the basic work equation for this problem. 

 

( ) ( ) ( )

Amount of alcohol Amount of alcohol Amount of alcohol
in 50% Solution in 35% Solution in 40% Solution

Volume of Volume of Volume of 
0.5 0.35 0.4

50% Solution 35% Solution 40% So

⎛ ⎞ ⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠ lution
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

 
Now, plug in the volumes and solve for x. 

 

( ) ( )0.5 0.35 10 0.4 10
0.5 3.5 0.4 4

0.1 0.5
0.5 5gallons
0.1

x x
x x

x

x

+ = +

+ = +
=

= =

 

 
So, we need 5 gallons of the 50% solution to get a 40% solution. 
 
Example 11  We have a 40% acid solution and we want 75 liters of a 15% acid solution.  How 
much water should we put into the 40% solution to do this?  
 
Solution 
Let x be the amount of water we need to add to the 40% solution.  Now, we also don’t how much 
of the 40% solution we’ll need.  However, since we know the final volume (75 liters) we will 
know that we will need 75 x−  liters of the 40% solution. 
 
Here is the word equation for this problem. 
 

 
Amount of acid Amount of acid Amount of acid

in the water in 40% Solution in 15% Solution
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 

 
Notice that in the first term we used the “Amount of acid in the water”.  This might look a little 
weird to you because there shouldn’t be any acid in the water.  However, this is exactly what we 
what.  The basic equation tells us to look at how much of the secondary liquid is in the water.  So, 
this is the correct wording.  When we plug in the percentages and volumes we will think of the 
water as a 0% percent solution since that is in fact what it is.  So, the new word equation is, 
 

 ( ) ( ) ( )
Volume Volume of Volume of 

0 0.4 0.15
of Water 40% Solution 15% Solution
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

+ =⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠
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Do not get excited about the zero in the first term.  This is okay and will not be a problem.  Let’s 
now plug in the volumes and solve for x. 

 

( )( ) ( )( ) ( )( )0 0.4 75 0.15 75
30 0.4 11.25

18.75 0.4
18.75 46.875 liters

0.4

x x
x

x

x

+ − =

− =
=

= =

 

So, we need to add in 46.875 liters of water to 28.125 liters of a 40% solution to get 75 liters of a 
15% solution. 
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 Equations With More Than One Variable 
In this section we are going to take a look at a topic that often doesn’t get the coverage that it 
deserves in an Algebra class.  This is probably because it isn’t used in more than a couple of 
sections in an Algebra class.  However, this is a topic that can, and often is, used extensively in 
other classes. 
 
What we’ll be doing here is solving equations that have more than one variable in them.  The 
process that we’ll be going through here is very similar to solving linear equations, which is one 
of the reasons why this is being introduced at this point.  There is however one exception to that.  
Sometimes, as we will see, the ordering of the process will be different for some problems.  Here 
is the process in the standard order. 
 

1. Multiply both sides by the LCD to clear out any fractions. 
2. Simplify both sides as much as possible.  This will often mean clearing out parenthesis 

and the like. 
3. Move all terms containing the variable we’re solving for to one side and all terms that 

don’t contain the variable to the opposite side. 
4. Get a single instance of the variable we’re solving for in the equation.  For the types of 

problems that we’ll be looking at here this will almost always be accomplished by simply 
factoring the variable out of each of the terms. 

5. Divide by the coefficient of the variable.  This step will make sense as we work 
problems.  Note as well that in these problems the “coefficient” will probably contain 
things other than numbers. 

 
It is usually easiest to see just what we’re going to be working with and just how they work with 
an example.  We will also give the basic process for solving these inside the first example. 
 
Example 1  Solve ( )1A P rt= +  for r. 
 
Solution 
What we’re looking for here is an expression in the form, 
 
 Equation involving numbers, , , and r A P t=  
 
In other words, the only place that we want to see an r is on the left side of the equal sign all by 
itself.  There should be no other r’s anywhere in the equation.  The process given above should do 
that for us. 
 
Okay, let’s do this problem.  We don’t have any fractions so we don’t need to worry about that.  
To simplify we will multiply the P through the parenthesis.  Doing this gives, 
 A P Prt= +  
 
Now, we need to get all the terms with an r on them on one side.  This equation already has that 
set up for us which is nice.  Next, we need to get all terms that don’t have an r in them to the 
other side.  This means subtracting a P from both sides. 
 A P Prt− =  
 
As a final step we will divide both sides by the coefficient of r.  Also, as noted in the process 
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listed above the “coefficient” is not a number.  In this case it is Pt.  At this stage the coefficient of 
a variable is simply all the stuff that multiplies the variable. 
 

 A P A Pr r
Pt Pt
− −

= ⇒ =  

 
To get a final answer we went ahead and flipped the order to get the answer into a more 
“standard” form. 
 
We will work more examples in a bit.  However, let’s note a couple things first.  These problems 
tend to seem fairly difficult at first, but if you think about it all we really did was use exactly the 
same process we used to solve linear equations.  The main difference of course, is that there is 
more “mess” in this process.  That brings us to the second point.  Do not get excited about the 
mess in these problems.  The problems will, on occasion, be a little messy, but the steps involved 
are steps that you can do!  Finally, the answer will not be a simple number, but again it will be a 
little messy, often messier than the original equation.  That is okay and expected. 
 
Let’s work some more examples. 
 

Example 2  Solve 
1 5aRV m
b m

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 for R. 

 
Solution 
This one is fairly similar to the first example.  However, it does work a little differently.  Recall 
from the first example that we made the comment that sometimes the ordering of the steps in the 
process needs to be changed?  Well, that’s what we’re going to do here. 
 
The first step in the process tells us to clear fractions.  However, since the fraction is inside a set 
of parenthesis let’s first multiply the m through the parenthesis.  Notice as well that if we multiply 
the m through first we will in fact clear one of the fractions out automatically.  This will make our 
work a little easier when we do clear the fractions out.   

 5mV aR
b

= −  

Now, clear fractions by multiplying both sides by b.  We’ll also go ahead move all terms that 
don’t have an R in them to the other side. 

 5
5

Vb m abR
Vb m abR

= −
− = −

 

Be careful to not lose the minus sign in front of the 5!  It’s very easy to lose track of that.  The 
final step is to then divide both sides by the coefficient of the R, in this case -5ab. 
 

 ( )
5 5 5 5 5

Vb mVb m Vb m Vb m m VbR
ab ab ab ab ab

− −− − − + −
= = − = = =

−
 

 
Notice as well that we did some manipulation of the minus sign that was in the denominator so 
that we could simplify the answer somewhat. 
 
In the previous example we solved for R, but there is no reason for not solving for one of the 
other variables in the problems.  For instance, consider the following example. 
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Example 3  Solve 
1 5aRV m
b m

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 for b. 

 
Solution 
The first couple of steps are identical here.  First, we will multiply the m through the parenthesis 
and then we will multiply both sides by b to clear the fractions.  We’ve already done this work so 
from the previous example we have, 
 5Vb m abR− = −  
 
In this case we’ve got b’s on both sides of the equal sign and we need all terms with b’s in them 
on one side of the equation and all other terms on the other side of the equation.  In this case we 
can eliminate the minus signs if we collect the b’s on the left side and the other terms on the right 
side.  Doing this gives, 
 5Vb abR m+ =  
 
Now, both terms on the right side have a b in them so if we factor that out of both terms we arrive 
at, 
 ( )5b V aR m+ =  
 
Finally, divide by the coefficient of b.  Recall as well that the “coefficient” is all the stuff that 
multiplies the b.  Doing this gives, 

 
5

mb
V aR

=
+

 

 

Example 4  Solve 
1 1 1
a b c
= +  for c. 

 
Solution 
First, multiply by the LCD, which is abc for this problem. 

 ( ) ( )1 1 1abc abc
a b c

bc ac ab

⎛ ⎞= +⎜ ⎟
⎝ ⎠

= +

 

 
Next, collect all the c’s on one side (the right will probably be easiest here), factor a c out of the 
terms and divide by the coefficient. 

 ( )
bc ac ab

c b a ab
abc

b a

− =

− =

=
−
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Example 5  Solve 
4

5 9
y

x
=

−
 for x. 

Solution 
First, we’ll need to clear the denominator.  To do this we will multiply both sides by 5 9x − .  
We’ll also clear out any parenthesis in the problem after we do the multiplication. 

 
( )5 9 4

5 9 4
y x

xy y
− =

− =
 

Now, we want to solve for x so that means that we need to get all terms without a y in them to the 
other side.  So add 9y to both sides and the divide by the coefficient of x. 

 
5 9 4

9 4
5

xy y
yx

y

= +
+

=
 

 

Example 6  Solve 
4 3
1 8

xy
x

−
=

+
 for x. 

Solution 
This one is very similar to the previous example.  Here is the work for this problem. 

 

( )

( )

1 8 4 3
8 4 3

8 3 4
8 3 4

4
8 3

y x x
y xy x
xy x y

x y y
yx

y

+ = −

+ = −
+ = −

+ = −

−
=

+

 

 
As mentioned at the start of this section we won’t be seeing this kind of problem all that often in 
this class.  However, outside of this class (a Calculus class for example) this kind of problem 
shows up with surprising regularity.
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 Quadratic Equations – Part I 
Before proceeding with this section we should note that the topic of solving quadratic equations 
will be covered in two sections.  This is done for the benefit of those viewing the material on the 
web.  This is a long topic and to keep page load times down to a minimum the material was split 
into two sections. 
 
So, we are now going to solve quadratic equations.  First, the standard form of a quadratic 
equation is 

2 0 0ax bx c a+ + = ≠  
 
The only requirement here is that we have an 2x  in the equation.  We guarantee that this term 
will be present in the equation by requiring 0a ≠ .  Note however, that it is okay if b and/or c are 
zero. 
 
There are many ways to solve quadratic equations.  We will look at four of them over the course 
of the next two sections.  The first two methods won’t always work, yet are probably a little 
simpler to use when the work.  This section will cover these two methods.  The last two methods 
will always work, but often require a little more work or attention to get correct.  We will cover 
these methods in the next section. 
 
So, let’s get started. 
  
Solving by Factoring 
As the heading suggests we will be solving quadratic equations here by factoring them.  To do 
this we will need the following fact.   
 
 If  0   then  either  0  and/or  0ab a b= = =  
 
This fact is called the zero factor property or zero factor principle.  All the fact says is that if a 
product of two terms is zero then at least one of the terms had to be zero to start off with. 
 
Notice that this fact will ONLY work if the product is equal to zero.  Consider the following 
product. 
 6ab =  
In this case there is no reason to believe that either a or b will be 6.  We could have 2a =  and 

3b =  for instance.  So, do not misuse this fact! 
 
To solve a quadratic equation by factoring we first must move all the terms over to one side of the 
equation.  Doing this serves two purposes.  First, it puts the quadratics into a form that can be 
factored.  Secondly, and probably more importantly, in order to use the zero factor property we 
MUST have a zero on one side of the equation.  If we don’t have a zero on one side of the 
equation we won’t be able to use the zero factor property. 
 
Let’s take a look at a couple of examples.  Note that it is assumed that you can do the factoring at 
this point and so we won’t be giving any details on the factoring.  If you need a review of 
factoring you should go back and take a look at the Factoring section of the previous chapter. 
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Example 1  Solve each of the following equations by factoring. 
(a) 2 12x x− =    [Solution] 
(b) 2 40 14x x+ = −    [Solution] 
(c) 2 12 36 0y y+ + =    [Solution] 
(d) 24 1 0m − =    [Solution] 
(e) 23 2 8x x= +    [Solution] 
(f) 210 19 6 0z z+ + =    [Solution] 
(g) 25 2x x=    [Solution] 

 
Solution 
Now, as noted earlier, we won’t be putting any detail into the factoring process, so make sure that 
you can do the factoring here. 
 
(a) 2 12x x− =  
First, get everything on side of the equation and then factor. 

 
( )( )

2 12 0
4 3 0

x x
x x

− − =

− + =
 

Now at this point we’ve got a product of two terms that is equal to zero.  This means that at least 
one of the following must be true. 
 

 
4 0 OR 3 0

4 OR 3
x x

x x
− = + =

= = −
 

 
Note that each of these is a linear equation that is easy enough to solve.  What this tell us is that 
we have two solutions to the equation, 4x =  and 3x = − .  As with linear equations we can 
always check our solutions by plugging the solution back into the equation.  We will check 

3x = −  and leave the other to you to check. 

 

( ) ( )2 ?

?

3 3 12

9 3 12
12 12 OK

− − − =

+ =
=

 

 
So, this was in fact a solution. 

[Return to Problems] 
 
(b) 2 40 14x x+ = −  
As with the first one we first get everything on side of the equal sign and then factor. 

 
( )( )

2 40 14 0
4 10 0

x x
x x

+ + =

+ + =
 

Now, we once again have a product of two terms that equals zero so we know that one or both of 
them have to be zero.  So, technically we need to set each one equal to zero and solve.  However, 
this is usually easy enough to do in our heads and so from now on we will be doing this solving in 
our head. 
 



College Algebra 

© 2007 Paul Dawkins 87 http://tutorial.math.lamar.edu/terms.aspx 
 

The solutions to this equation are, 
 4 AND 10x x= − = −  
Tto save space we won’t be checking any more of the solutions here, but you should do so to 
make sure we didn’t make any mistakes. 

[Return to Problems] 
 
(c) 2 12 36 0y y+ + =  
In this case we already have zero on one side and so we don’t need to do any manipulation to the 
equation all that we need to do is factor.  Also, don’t get excited about the fact that we now have 
y’s in the equation.  We won’t always be dealing with x’s so don’t expect to always see them. 
 
So, let’s factor this equation. 

 ( )
( )( )

2

2

12 36 0

6 0

6 6 0

y y

y

y y

+ + =

+ =

+ + =

 

 
In this case we’ve got a perfect square.  We broke up the square to denote that we really do have 
an application of the zero factor property.  However, we usually don’t do that.  We usually will 
go straight to the answer from the squared part. 
 
The solution to the equation in this case is, 

6y = −  
We only have a single value here as opposed to the two solutions we’ve been getting to this point.  
We will often call this solution a double root or say that it has multiplicity of 2 because it came 
from a term that was squared. 

[Return to Problems] 
 
(d) 24 1 0m − =  
As always let’s first factor the equation. 

 
( )( )

24 1 0
2 1 2 1 0

m
m m

− =

− + =
 

Now apply the zero factor property.  The zero factor property tells us that, 

 
2 1 0 OR 2 1 0

2 1 OR 2 1
1 1OR
2 2

m m
m m

m m

− = + =
= = −

= = −

 

Again, we will typically solve these in our head, but we needed to do at least one in complete 
detail.  So we have two solutions to the equation. 

 1 1AND
2 2

m m= = −  

[Return to Problems] 
 
(e) 23 2 8x x= +  
Now that we’ve done quite a few of these, we won’t be putting in as much detail for the next two 
problems.  Here is the work for this equation. 
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( )( )

23 2 8 0
43 4 2 0 and 2
3

x x

x x x x

− − =

+ − = ⇒ = − =
 

[Return to Problems] 
 
(f) 210 19 6 0z z+ + =  
Again, factor and use the zero factor property for this one. 

 
( )( )

210 19 6 0
2 35 2 2 3 0 and    
5 2

z z

z z z z

+ + =

+ + = ⇒ = − = −
 

[Return to Problems] 
 
(g) 25 2x x=  
This one always seems to cause trouble for students even though it’s really not too bad.   
 
First off.  DO NOT CANCEL AN x FROM BOTH SIDES!!!!  Do you get the idea that might be 
bad?  It is.  If you cancel an x from both sides, you WILL miss a solution so don’t do it.  
Remember we are solving by factoring here so let’s first get everything on one side of the equal 
sign. 
 25 2 0x x− =  
 
Now, notice that all we can do for factoring is to factor an x out of everything.  Doing this gives, 
 ( )5 2 0x x − =  
 

From the first factor we get that 0x =  and from the second we get that
2
5

x = .  These are the two 

solutions to this equation.  Note that is we’d canceled an x in the first step we would NOT have 
gotten 0x =  as an answer! 

[Return to Problems]
 
Let’s work another type of problem here.  We saw some of these back in the Solving Linear 
Equations section and since they can also occur with quadratic equations we should go ahead and 
work on to make sure that we can do them here as well. 
 
Example 2  Solve each of the following equations. 

(a) 1 51
1 2 4x x
= −

+ −
   [Solution] 

(b) 3 43
1 1

xx
x x

−
+ + =

− −
   [Solution] 

Solution 
Okay, just like with the linear equations the first thing that we’re going to need to do here is to 
clear the denominators out by multiplying by the LCD.  Recall that we will also need to note 
value(s) of x that will give division by zero so that we can make sure that these aren’t included in 
the solution. 
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(a) 
1 51

1 2 4x x
= −

+ −
 

The LCD for this problem is ( )( )1 2 4x x+ −  and we will need to avoid 1x = −  and 2x =  to 
make sure we don’t get division by zero.  Here is the work for this equation. 

 

( )( ) ( )( )

( )( ) ( )

( )( )

2

2

1 51 2 4 1 2 4 1
1 2 4

2 4 1 2 4 5 1

2 4 2 2 4 5 5
0 2 9 5
0 2 1 5

x x x x
x x
x x x x

x x x x
x x
x x

⎛ ⎞ ⎛ ⎞+ − = + − −⎜ ⎟ ⎜ ⎟+ −⎝ ⎠ ⎝ ⎠
− = + − − +

− = − − − −

= − −

= + −

 

So, it looks like the two solutions to this equation are, 

 1 and        5
2

x x= − =  

Notice as well that neither of these are the values of x that we needed to avoid and so both are 
solutions. 

[Return to Problems] 
 

(b) 
3 43

1 1
xx

x x
−

+ + =
− −

 

In this case the LCD is 1x −  and we will need to avoid 1x =  so we don’t get division by zero.  
Here is the work for this problem. 

 

( ) ( )

( )( )

( )( )

2

2

3 41 3 1
1 1

1 3 3 4

2 3 3 4
3 4 0

1 4 0

xx x x
x x

x x x

x x x
x x

x x

−⎛ ⎞ ⎛ ⎞− + + = −⎜ ⎟ ⎜ ⎟− −⎝ ⎠ ⎝ ⎠
− + + = −

+ − + = −

+ − =

− + =

 

So, the quadratic that we factored and solved has two solutions, 1x =  and 4x = − .  However, 
when we found the LCD we also saw that we needed to avoid 1x =  so we didn’t get division by 
zero.  Therefore, this equation has a single solution, 

4x = −  
[Return to Problems] 

 
Before proceeding to the next topic we should address that this idea of factoring can be used to 
solve equations with degree larger than two as well.  Consider the following example. 
 
Example 3  Solve 3 25 5 10 0x x x− − = . 
 
Solution 
The first thing to do is factor this equation as much as possible.  In this case that means factoring 
out the greatest common factor first.  Here is the factored form of this equation. 
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( )

( )( )

25 2 0

5 2 1 0

x x x

x x x

− − =

− + =
 

 
Now, the zero factor property will still hold here.  In this case we have a product of three terms 
that is zero.  The only way this product can be zero is if one of the terms is zero.  This means that, 

 
5 0 0

2 0 2
1 0 1

x x
x x
x x

= ⇒ =
− = ⇒ =
+ = ⇒ = −

 

 
So, we have three solutions to this equation. 
 
So, provided we can factor a polynomial we can always use this as a solution technique.  The 
problem is, of course, that it is sometimes not easy to do the factoring. 
 
Square Root Property 
The second method of solving quadratics we’ll be looking at uses the square root property, 
 2If     then   p d p d= = ±  
 
There is a (potentially) new symbol here that we should define first in case you haven’t seen it 
yet.  The symbol “± ” is read as : “plus or minus” and that is exactly what it tells us.  This symbol 
is shorthand that tells us that we really have two numbers here.  One is p d=  and the other is 

p d= − .  Get used to this notation as it will be used frequently in the next couple of sections as 
we discuss the remaining solution techniques.  It will also arise in other sections of this chapter 
and even in other chapters. 
 
This is a fairly simple property to use, however it can only be used on a small portion of the 
equations that we’re ever likely to encounter.  Let’s see some examples of this property. 
 
Example 4  Solve each of the following equations. 

(a) 2 100 0x − =    [Solution] 
(b) 225 3 0y − =    [Solution] 
(c) 24 49 0z + =    [Solution] 
(d) ( )22 9 5t − =    [Solution] 

(e) ( )23 10 81 0x + + =    [Solution] 
Solution 
There really isn’t all that much to these problems.  In order to use the square root property all that 
we need to do is get the squared quantity on the left side by itself with a coefficient of 1 and the 
number on the other side.  Once this is done we can use the square root property.    
 
(a) 2 100 0x − =  
This is a fairly simple problem so here is the work for this equation. 
 2 100 100 10x x= = ± = ±  
So, there are two solutions to this equation, 10x = ± .  Remember this means that there are really 
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two solutions here, 10x = −  and 10x = . 
[Return to Problems] 

 
(b) 225 3 0y − =  
Okay, the main difference between this one and the previous one is the 25 in front of the squared 
term.  The square root property wants a coefficient of one there.  That’s easy enough to deal with 
however; we’ll just divide both sides by 25.  Here is the work for this equation. 

 

2

2

25 3

3 3 3
25 25 5

y

y y

=

= ⇒ = ± = ±
 

In this case the solutions are a little messy, but many of these will do so don’t worry about that.  
Also note that since we knew what the square root of 25 was we went ahead and split the square 
root of the fraction up as shown.  Again, remember that there are really two solutions here, one 
positive and one negative. 

[Return to Problems] 
 
(c) 24 49 0z + =  
This one is nearly identical to the previous part with one difference that we’ll see at the end of the 
example.  Here is the work for this equation. 

 

2

2

4 49

49 49 49 7
4 4 4 2

z

z z i i

= −

= − ⇒ = ± − = ± = ±
 

 

So, there are two solutions to this equation : 
7
2

z i= ± .  Notice as well that they are complex 

solutions.  This will happen with the solution to many quadratic equations so make sure that you 
can deal with them. 

[Return to Problems] 
 
(d) ( )22 9 5t − =  
This one looks different from the previous parts, however it works the same way.  The square 
root property can be used anytime we have something squared equals a number.  That is what we 
have here.  The main difference of course is that the something that is squared isn’t a single 
variable it is something else.  So, here is the application of the square root property for this 
equation. 
 2 9 5t − = ±  
 
Now, we just need to solve for t and despite the “plus or minus” in the equation it works the same 
way we would solve any linear equation.  We will add 9 to both sides and then divide by a 2. 

 
( )

2 9 5

1 9 59 5
2 2 2

t

t

= ±

= ± = ±
 

 
Note that we multiplied the fraction through the parenthesis for the final answer.  We will usually 
do this in these problems.  Also, do NOT convert these to decimals unless you are asked to.  This 
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is the standard form for these answers.  With that being said we should convert them to decimals 
just to make sure that you can.  Here are the decimal values of the two solutions. 

 9 5 9 55.61803 and 3.38197
2 2 2 2

t t= + = = − =  

[Return to Problems] 
 
(e) ( )23 10 81 0x + + =  
In this final part we’ll not put much in the way of details into the work. 

 

( )23 10 81
3 10 9

3 10 9
10 3
3

x
x i

x i

x i

+ = −

+ = ±
= − ±

= − ±

 

So we got two complex solutions again and notice as well that with both of the previous part we 
put the “plus or minus” part last.  This is usually the way these are written. 

[Return to Problems]
 
As mentioned at the start of this section we are going to break this topic up into two sections for 
the benefit of those viewing this on the web.  The next two methods of solving quadratic 
equations, completing the square and quadratic formula, are given in the next section. 
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 Quadratic Equations – Part II 
The topic of solving quadratic equations has been broken into two sections for the benefit of those 
viewing this on the web.  As a single section the load time for the page would have been quite 
long.  This is the second section on solving quadratic equations. 
 
In the previous section we looked at using factoring and the square root property to solve 
quadratic equations.  The problem is that both of these solution methods will not always work.  
Not every quadratic is factorable and not every quadratic is in the form required for the square 
root property.   
 
It is now time to start looking into methods that will work for all quadratic equations.  So, in this 
section we will look at completing the square and the quadratic formula for solving the quadratic 
equation, 

2 0 0ax bx c a+ + = ≠  
 
Completing the Square 
The first method we’ll look at in this section is completing the square.  It is called this because it 
uses a process called completing the square in the solution process.  So, we should first define 
just what completing the square is. 
 
Let’s start with  

2x bx+  
and notice that the x2 has a coefficient of one.  That is required in order to do this.  Now, to this 

lets add 
2

2
b⎛ ⎞

⎜ ⎟
⎝ ⎠

.  Doing this gives the following factorable quadratic equation. 

 
2 2

2

2 2
b bx bx x⎛ ⎞ ⎛ ⎞+ + = +⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
 

This process is called completing the square and if we do all the arithmetic correctly we can 
guarantee that the quadratic will factor as a perfect square. 
 
Let’s do a couple of examples for just completing the square before looking at how we use this to 
solve quadratic equations. 
 
Example 1  Complete the square on each of the following. 

(a) 2 16x x−    [Solution] 
(b) 2 7y y+    [Solution] 

 
Solution 
(a) 2 16x x−  
Here’s the number that we’ll add to the equation. 

 ( )
2

216 648
2
−⎛ ⎞ = =⎜ ⎟ −

⎝ ⎠
 

Notice that we kept the minus sign here even though it will always drop out after we square 
things.  The reason for this will be apparent in a second.  Let’s now complete the square. 
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 ( )22 64 816x x x− = −+  
Now, this is a quadratic that hopefully you can factor fairly quickly.  However notice that it will 
always factor as x plus the blue number we computed above that is in the parenthesis (in our case 
that is -8).  This is the reason for leaving the minus sign.  It makes sure that we don’t make any 
mistakes in the factoring process. 

[Return to Problems] 
 
(b) 2 7y y+  
Here’s the number we’ll need this time. 

 
27 49

2 4
⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

It’s a fraction and that will happen fairly often with these so don’t get excited about it.  Also, 
leave it as a fraction.  Don’t convert to a decimal.  Now complete the square. 

 
2

2 7
2

7 49
4

y y y⎛ ⎞+ = ⎜ + ⎟
⎝ ⎠

+  

This one is not so easy to factor.  However, if you again recall that this will ALWAYS factor as y 
plus the blue number above we don’t have to worry about the factoring process. 

[Return to Problems]
 
It’s now time to see how we use completing the square to solve a quadratic equation.  The process 
is best seen as we work an example so let’s do that. 
 
Example 2  Use completing the square to solve each of the following quadratic equations. 

(a) 2 6 1 0x x− + =    [Solution] 
(b) 22 6 7 0x x+ + =    [Solution] 
(c) 23 2 1 0x x− − =    [Solution] 

Solution 
We will do the first problem in detail explicitly giving each step.  In the remaining problems we 
will just do the work without as much explanation. 
 
(a) 2 6 1 0x x− + =  
So, let’s get started. 
 
Step 1 : Divide the equation by the coefficient of the x2 term.  Recall that completing the square 
required a coefficient of one on this term and this will guarantee that we will get that.  We don’t 
need to do that for this equation however. 
 
Step 2 : Set the equation up so that the x’s are on the left side and the constant is on the right side. 
 
 2 6 1x x− = −  
 
Step 3 : Complete the square on the left side.  However, this time we will need to add the number 
to both sides of the equal sign instead of just the left side.  This is because we have to remember 
the rule that what we do to one side of an equation we need to do to the other side of the equation. 
 
First, here is the number we add to both sides. 
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 ( )
2

26 3 9
2
−⎛ ⎞ = − =⎜ ⎟

⎝ ⎠
 

Now, complete the square. 

 
( )

2

2

6 19 9

3 8

x x

x

+ +− = −

− =
 

 
Step 4 : Now, at this point notice that we can use the square root property on this equation.  That 
was the purpose of the first three steps.  Doing this will give us the solution to the equation. 
 3 8 3 8x x− = ± ⇒ = ±  
 
And that is the process.  Let’s do the remaining parts now. 

[Return to Problems] 
 
(b) 22 6 7 0x x+ + =  
We will not explicitly put in the steps this time nor will we put in a lot of explanation for this 
equation.  This that being said, notice that we will have to do the first step this time.  We don’t 
have a coefficient of one on the x2 term and so we will need to divide the equation by that first. 
 
Here is the work for this equation. 
 

 

2

2
2

2

2

73 0
2

7 3 93
2 2 4

9 7 93
4 2 4

3 5
2 4

3 5 3 5
2 4 2 2

x x

x x

x x

x

x x i

+ + =

⎛ ⎞+ = − =⎜ ⎟
⎝ ⎠

+ + = − +

⎛ ⎞+ = −⎜ ⎟
⎝ ⎠

+ = ± − ⇒ = − ±

 

Don’t forget to convert square roots of negative numbers to complex numbers! 
[Return to Problems] 

(c) 23 2 1 0x x− − =  
Again, we won’t put a lot of explanation for this problem. 

 

2

2

2 1 0
3 3

2 1
3 3

x x

x x

− − =

− =
 

At this point we should be careful about computing the number for completing the square since b 
is now a fraction for the first time. 
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2

2 2
2

2 1 1 13
2 3 2 3 9

⎛ ⎞
⎜ ⎟ ⎛ ⎞ ⎛ ⎞= ⋅ = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎜ ⎟
⎝ ⎠

 

Now finish the problem. 

 

2

2

2 1 1 1
3 9 3 9

1 4
3 9

1 4 1 2
3 9 3 3

x x

x

x x

− + = +

⎛ ⎞− =⎜ ⎟
⎝ ⎠

− = ± ⇒ = ±

 

In this case notice that we can actually do the arithmetic here to get two integer and/or fractional 
solutions.  We should always do this when there are only integers and/or fractions in our solution.  
Here are the two solutions. 

 1 2 3 1 2 11 and
3 3 3 3 3 3

x x= + = = = − = −  

[Return to Problems]
 
A quick comment about the last equation that we solved in the previous example is in order.  
Since we received integer and factions as solutions, we could have just factored this equation 
from the start rather than used completing the square.  In cases like this we could use either 
method and we will get the same result. 
 
Now, the reality is that completing the square is a fairly long process and it’s easy to make 
mistakes.  So, we rarely actually use it to solve equations.  That doesn’t mean that it isn’t 
important to know the process however.  We will be using it in several sections in later chapters 
and is often used in other classes. 
 
Quadratic Formula 
This is the final method for solving quadratic equations and will always work.  Not only that, but 
if you can remember the formula it’s a fairly simple process as well. 
 
We can derive the quadratic formula be completing the square on the general quadratic formula in 
standard form.  Let’s do that and we’ll take it kind of slow to make sure all the steps are clear.   
 
First, we MUST have the quadratic equation in standard form as already noted.  Next, we need to 
divide both sides by a to get a coefficient of one on the x2 term. 
 

 

2

2

0

0

ax bx c
b cx x
a a

+ + =

+ + =
 

 
Next, move the constant to the right side of the equation. 

 2 b cx x
a a

+ = −  
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Now, we need to compute the number we’ll need to complete the square.  Again, this is one-half 
the coefficient of x, squared. 

 
2 2

22 4
b b
a a

⎛ ⎞ =⎜ ⎟
⎝ ⎠

 

 
Now, add this to both sides, complete the square and get common denominators on the right side 
to simplify things up a little. 

 

2 2
2

2 2

2 2

2

4 4
4

2 4

b b b cx x
a a a a

b b acx
a a

+ + = −

−⎛ ⎞+ =⎜ ⎟
⎝ ⎠

 

 
Now we can use the square root property on this. 

 
2

2

4
2 4
b b acx
a a

−
+ = ±  

 
Solve for x and we’ll also simplify the square root a little. 

 
2 4

2 2
b b acx
a a

−
= − ±  

 
As a last step we will notice that we’ve got common denominators on the two terms and so we’ll 
add them up.  Doing this gives, 

 
2 4

2
b b acx

a
− ± −

=  

 
So, summarizing up, provided that we start off in standard form, 
 2 0ax bx c+ + =  
and that’s very important, then the solution to any quadratic equation is, 

 
2 4

2
b b acx

a
− ± −

=  

 
Let’s work a couple of examples. 
 
Example 3  Use the quadratic formula to solve each of the following equations. 

(a) 2 2 7x x+ =    [Solution] 
(b) 23 11 5q q+ =    [Solution] 
(c) 27 6 19t t= −    [Solution] 

(d) 3 1 1
2y y
= +

−
   [Solution] 

(e) 216 0x x− =    [Solution] 
Solution 
The important part here is to make sure that before we start using the quadratic formula that we 
have the equation in standard form first. 
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(a) 2 2 7x x+ =  
So, the first thing that we need to do here is to put the equation in standard form. 
 2 2 7 0x x+ − =  
 
At this point we can identify the values for use in the quadratic formula.  For this equation we 
have. 
 1 2 7a b c= = = −  
 
Notice the “-” with c.  It is important to make sure that we carry any minus signs along with the 
constants. 
 
At this point there really isn’t anything more to do other than plug into the formula. 

 

( ) ( )( )
( )

22 2 4 1 7
2 1

2 32
2

x
− ± − −

=

− ±
=

 

 
There are the two solutions for this equation.  There is also some simplification that we can do.  
We need to be careful however.  One of the larger mistakes at this point is to “cancel” to 2’s in 
the numerator and denominator.  Remember that in order to cancel anything from the numerator 
or denominator then it must be multiplied by the whole numerator or denominator.  Since the 2 in 
the numerator isn’t multiplied by the whole denominator it can’t be canceled. 
 
In order to do any simplification here we will first need to reduce the square root.  At that point 
we can do some canceling. 

 
( ) ( )2 1 2 22 16 2 2 4 2 1 2 2

2 2 2
x

− ±− ± − ±
= = = = − ±  

 
That’s a much nicer answer to deal with and so we will almost always do this kind of 
simplification when it can be done. 

[Return to Problems] 
 
(b) 23 11 5q q+ =  
Now, in this case don’t get excited about the fact that the variable isn’t an x.  Everything works 
the same regardless of the letter used for the variable.  So, let’s first get the equation into standard 
form. 
 23 11 5 0q q+ − =  
 
Now, this isn’t quite in the typical standard form.  However, we need to make a point here so that 
we don’t make a very common mistake that many student make when first learning the quadratic 
formula.   
 
Many students will just get everything on one side as we’ve done here and then get the values of 
a, b, and c based upon position.  In other words, often students will just let a be the first number 
listed, b be the second number listed and then c be the final number listed.  This is not correct 
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however.  For the quadratic formula a is the coefficient of the squared term, b is the coefficient of 
the term with just the variable in it (not squared) and c is the constant term.  So, to avoid making 
this mistake we should always put the quadratic equation into the official standard form. 
 
 23 5 11 0q q− + =  
 
Now we can identify the value of a, b, and c. 
 3 5 11a b c= = − =  
Again, be careful with minus signs.  They need to get carried along with the values. 
 
Finally, plug into the quadratic formula to get the solution. 
 

 

( ) ( ) ( )( )
( )

25 5 4 3 11
2 3

5 25 132
6

5 107
6

5 107
6

q

i

− − ± − −
=

± −
=

± −
=

±
=

 

 
As with all the other methods we’ve looked at for solving quadratic equations, don’t forget to 
convert square roots of negative numbers into complex numbers.  Also, when b is negative be 
very careful with the substitution.  This is particularly true for the squared portion under the 
radical.  Remember that when you square a negative number it will become positive.  One of the 
more common mistakes here is to get in a hurry and forget to drop the minus sign after you 
square b, so be careful. 

[Return to Problems] 
 
(c) 27 6 19t t= −  
We won’t put in quite the detail with this one that we’ve done for the first two.  Here is the 
standard form of this equation. 
 27 19 6 0t t+ − =  
Here are the values for the quadratic formula as well as the quadratic formula itself. 
 7 19 6a b c= = = −  
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( ) ( )( )
( )

219 19 4 7 6
2 7

19 361 168
14

19 529
14

19 23
14

t
− ± − −

=

− ± +
=

− ±
=

− ±
=

 

 
Now, recall that when we get solutions like this we need to go the extra step and actually 
determine the integer and/or fractional solutions.  In this case they are, 
 

 19 23 2 19 23 3
14 7 14

t t− + − −
= = = = −  

 
Now, as with completing the square, the fact that we got integer and/or fractional solutions means 
that we could have factored this quadratic equation as well. 

[Return to Problems] 
 

(d) 
3 1 1

2y y
= +

−
 

So, an equation with fractions in it.  The first step then is to identify the LCD. 
 ( )LCD : 2y y −  
So, it looks like we’ll need to make sure that neither 0y =  or 2y =  is in our answers so that we 
don’t get division by zero. 
 
Multiply both sides by the LCD and then put the result in standard form. 

 

( )( ) ( )( )

( )
2

2

3 12 1 2
2
3 2 2

3 2 2
0 4 2

y y y y
y y

y y y y

y y y y
y y

⎛ ⎞ ⎛ ⎞
− = + −⎜ ⎟ ⎜ ⎟−⎝ ⎠ ⎝ ⎠

= − + −

= − + −

= − −

 

 
Okay, it looks like we’ve got the following values for the quadratic formula. 
 1 4 2a b c= = − = −  
 
Plugging into the quadratic formula gives, 
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( ) ( ) ( )( )
( )

24 4 4 1 2
2 1

4 24
2

4 2 6
2

2 6

y
− − ± − − −

=

±
=

±
=

= ±

 

Note that both of these are going to be solutions since neither of them are the values that we need 
to avoid. 

[Return to Problems] 
 
(e) 216 0x x− =  
We saw an equation similar to this in the previous section when we were looking at factoring 
equations and it would definitely be easier to solve this by factoring.  However, we are going to 
use the quadratic formula anyway to make a couple of points. 
 
First, let’s rearrange the order a little bit just to make it look more like the standard form. 
 2 16 0x x− + =  
 
Here are the constants for use in the quadratic formula. 
 1 16 0a b c= − = =  
 
There are two things to note about these values.  First, we’ve got a negative a for the first time.  
Not a big deal, but it is the first time we’ve seen one.  Secondly, and more importantly, one of the 
values is zero.  This is fine.  It will happen on occasion and in fact, having one of the values zero 
will make the work much simpler.   
 
Here is the quadratic formula for this equation. 

 

( ) ( )( )
( )

216 16 4 1 0
2 1

16 265
2

16 16
2

x
− ± − −

=
−

− ±
=

−
− ±

=
−

 

 
Reducing these to integers/fractions gives, 

 16 16 0 16 16 320 16
2 2 2 2

x x− + − − −
= = = = = =

− − −
 

 
So we get the two solutions, 0x =  and 16x = .  These are exactly the solutions we would have 
gotten by factoring the equation. 

[Return to Problems]
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To this point in both this section and the previous section we have only looked at equations with 
integer coefficients.  However, this doesn’t have to be the case.  We could have coefficient that 
are fractions or decimals.  So, let’s work a couple of examples so we can say that we’ve seen 
something like that as well. 
 
Example 4  Solve each of the following equations. 

(a) 21 1 0
2 10

x x+ − =    [Solution] 

(b) 20.04 0.23 0.09 0x x− + =    [Solution] 
Solution 
(a) There are two ways to work this one.  We can either leave the fractions in or multiply by the 
LCD (10 in this case) and solve that equation.  Either way will give the same answer.  We will 
only do the fractional case here since that is the point of this problem.  You should try the other 
way to verify that you get the same solution. 
 
In this case here are the values for the quadratic formula as well as the quadratic formula work for 
this equation. 

1 11
2 10

a b c= = = −  

 

 
( )2 1 1 11 1 4 1 12 10 65 1

1 1 52
2

x

⎛ ⎞⎛ ⎞− ± − − − ± +⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠= = = − ±

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

In these cases we usually go the extra step of eliminating the square root from the denominator so 
let’s also do that, 

 
( )( )6 56 5 301 1 1

5 55 5
x = − ± = − ± = − ±  

 
If you do clear the fractions out and run through the quadratic formula then you should get 
exactly the same result.  For the practice you really should try that. 

[Return to Problems] 
 
(b) In this case do not get excited about the decimals.  The quadratic formula works in exactly the 
same manner.  Here are the values and the quadratic formula work for this problem. 

 
0.04 0.23 0.09a b c= = − =  

 

 

( ) ( ) ( )( )
( )

20.23 0.23 4 0.04 0.09
2 0.04

0.23 0.529 0.144
0.08

0.23 0.0385
0.08

x
− − ± − −

=

± −
=

±
=
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Now, to this will be the one difference between these problems and those with integer or 
fractional coefficients.  When we have decimal coefficients we usually go ahead and figure the 
two individual numbers.  So, let’s do that, 
 

 0.23 0.0385 0.23 0.19621
0.08 0.08

x ± ±
= =  

 

 
0.23 0.19621 0.23 0.19621and

0.08 0.08
5.327625 and 0.422375

x x+ −
= =

= =
 

 
Notice that we did use some rounding on the square root. 

[Return to Problems]
 
Over the course of the last two sections we’ve done quite a bit of solving.  It is important that you 
understand most, if not all, of what we did in these sections as you will be asked to do this kind of 
work in some later sections.
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 Solving Quadratic Equations : A Summary 
Iin the previous two sections we’ve talked quite a bit about solving quadratic equations.  A 
logical question to ask at this point is which method should we use to solve a given quadratic 
equation?  Unfortunately, the answer is, it depends. 
 
If your instructor has specified the method to use then that, of course, is the method you should 
use.  However, if your instructor had NOT specified the method to use then we will have to make 
the decision ourselves.  Here is a general set of guidelines that may be helpful in determining 
which method to use. 
 

1. Is it clearly a square root property problem?  In other words, does the equation consist 
ONLY of something squared and a constant.  If this is true then the square root property 
is probably the easiest method for use. 

2. Does it factor?  If so, that is probably the way to go.  Note that you shouldn’t spend a lot 
of time trying to determine if the quadratic equation factors.  Look at the equation and if 
you can quickly determine that it factors then go with that.  If you can’t quickly 
determine that it factors then don’t worry about it. 

3. If you’ve reached this point then you’ve determined that the equation is not in the correct 
for the square root property and that it doesn’t factor (or that you can’t quickly see that it 
factors).  So, at this point you’re only real option is the quadratic formula. 

 
Once you’ve solve enough quadratic equations the above set of guidelines will become almost 
second nature to you and you will find yourself going through them almost without thinking. 
 
Notice as well that nowhere in the set of guidelines was completing the square mentioned.  The 
reason for this is simply that it’s a long method that is prone to mistakes when you get in a hurry.  
The quadratic formula will also always work and is much shorter of a method to use.  In general, 
you should only use completing the square if your instructor has required you to use it. 
 
As a solving technique completing the square should always be your last choice.  This doesn’t 
mean however that it isn’t an important method.  We will see the completing the square process 
arise in several sections in later chapters.  Interestingly enough when we do see this process in 
later sections we won’t be solving equations!  This process is very useful in many situations of 
which solving is only one. 
 
Before leaving this section we have one more topic to discuss.  In the previous couple of sections 
we saw that solving a quadratic equation in standard form, 
 
 2 0ax bx c+ + =  
 
we will get one of the following three possible solution sets. 
 

1. Two real distinct (i.e. not equal) solutions. 
2. A double root.  Recall this arises when we can factor the equation into a perfect square. 
3. Two complex solutions. 

 
These are the ONLY possibilities for solving quadratic equations in standard form.  Note 
however, that if we start with rational expression in the equation we may get different solution 
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sets because we may need avoid one of the possible solutions so we don’t get division by zero 
errors. 
 
Now, it turns out that all we need to do is look at the quadratic equation (in standard form of 
course) to determine which of the three cases that we’ll get.  To see how this works let’s start off 
by recalling the quadratic formula. 
 

 
2 4

2
b b acx

a
− ± −

=  

 
The quantity 2 4b ac−  in the quadratic formula is called the discriminate.   It is the value of the 
discriminate that will determine which solution set we will get.  Let’s go through the cases one at 
a time. 
 

1. Two real distinct solutions.  We will get this solution set if 2 4 0b ac− > .  In this case we 
will be taking the square root of a positive number and so the square root will be a real 
number.  Therefore the numerator in the quadratic formula will be   –b plus or minus a 
real number.  This means that the numerator will be two different real numbers.  Dividing 
either one by 2a won’t change the fact that they are real, nor will it change the fact that 
they are different. 
 

2. A double root.  We will get this solution set if 2 4 0b ac− = .  Here we will be taking the 
square root of zero, which is zero.  However, this means that the “plus or minus” part of 
the numerator will be zero and so the numerator in the quadratic formula will be –b.  In 
other words, we will get a single real number out of the quadratic formula, which is what 
we get when we get a double root. 
 

3. Two complex solutions.  We will get this solution set if 2 4 0b ac− < .  If the 
discriminate is negative we will be taking the square root of negative numbers in the 
quadratic formula which means that we will get complex solutions.  Also, we will get two 
since they have a “plus or minus” in front of the square root. 

 
 
So, let’s summarize up the results here. 
 

1. If 2 4 0b ac− >  then we will get two real solutions to the quadratic equation. 
2. If 2 4 0b ac− =  then we will get a double root to the quadratic equation. 
3. If 2 4 0b ac− <  then we will get two complex solutions to the quadratic equation. 

 
Example 1  Using the discriminate determine which solution set we get for each of the 
following quadratic equations. 

(a) 213 1 5x x+ =    [Solution] 
(b) 26 20 3q q+ =    [Solution] 
(c) 249 126 81 0t t+ + =    [Solution] 

Solution 
All we need to do here is make sure the equation is in standard form, determine the value of a, b, 
and c, then plug them into the discriminate. 
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(a) 213 1 5x x+ =  
First get the equation in standard form. 
 213 5 1 0x x− + =  
We then have, 
 13 5 1a b c= = − =  
Plugging into the discriminate gives, 
 ( ) ( )( )22 4 5 4 13 1 27b ac− = − − = −  
 
The discriminate is negative and so we will have two complex solutions.  For reference purposes 
the actual solutions are, 

 5 3 3
26

ix ±
=  

[Return to Problems] 
 
(b) 26 20 3q q+ =  
Again, we first need to get the equation in standard form. 
 26 20 3 0q q+ − =  
This gives, 
 6 20 3a b c= = = −  
The discriminate is then, 
 ( ) ( )( )22 4 6 4 20 3 276b ac− = − − =  
 
The discriminate is positive we will get two real distinct solutions.  Here they are, 

 20 472 10 118
12 6

x − ± − ±
= =  

[Return to Problems] 
 
(c) 249 126 81 0t t+ + =  
This equation is already in standard form so let’s jump straight in. 
 49 126 81a b c= = =  
The discriminate is then, 
 ( ) ( )( )22 4 126 4 49 81 0b ac− = − =  
In this case we’ll get a double root since the discriminate is zero.  Here it is, 

 9
7

x = −  

[Return to Problems]
 
For practice you should verify the solutions in each of these examples. 
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 Application of Quadratic Equations 
In this section we’re going to go back and revisit some of the applications that we saw in the 
Linear Applications section and see some examples that will require us to solve a quadratic 
equation to get the answer. 
 
Note that the solutions in these cases will almost always require the quadratic formula so expect 
to use it and don’t get excited about it.  Also, we are going to assume that you can do the 
quadratic formula work and so we won’t be showing that work.  We will give the results of the 
quadratic formula, we just won’t be showing the work. 
 
Also, as we will see, we will need to get decimal answer to these and so as a general rule here we 
will round all answers to 4 decimal places. 
 
Example 1  We are going to fence in a rectangular field and we know that for some reason we 
want to field to have and enclosed area of 75 ft2.  We also know that we want the width of the 
field to be 3 feet longer than the length of the field.  What are the dimensions of the field? 
 
Solution 
So, we’ll let x be the length of the field and so we know that 3x +  will be the width of the field.  
Now, we also know that area of a rectangle is length times width and so we know that, 
 ( )3 75x x + =  
 
Now, this is a quadratic equation so let’s first write it in standard form. 

 
2

2

3 75
3 75 0
x x

x x
+ =

+ − =
 

 
Using the quadratic formula gives, 

 3 309
2

x − ±
=  

 
Now, at this point, we’ve got to deal with the fact that there are two solutions here and we only 
want a single answer.  So, let’s convert to decimals and see what the solutions actually are. 

 3 309 3 3097.2892 and 10.2892
2 2

x x− + − −
= = = = −  

 
So, we have one positive and one negative.  From the stand point of needing the dimensions of a 
field the negative solution doesn’t make any sense so we will ignore it. 
 
Therefore, the length of the field is 7.2892 feet.  The width is 3 feet longer than this and so is 
10.2892 feet. 
 
Notice that the width is almost the second solution to the quadratic equation.  The only difference 
is the minus sign.  Do NOT expect this to always happen.  In this case this is more of a function 
of the problem.  For a more complicated set up this will NOT happen. 
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Now, from a physical standpoint we can see that we should expect to NOT get complex solutions 
to these problems.  Upon solving the quadratic equation we should get either two real distinct 
solutions or a double root.  Also, as the previous example has shown, when we get two real 
distinct solutions we will be able to eliminate one of them for physical reasons. 
 
Let’s work another example or two. 
 
Example 2  Two cars start out at the same point.  One car starts out driving north at 25 mph.  
Two hours later the second car starts driving east at 20 mph.  How long after the first car starts 
traveling does it take for the two cars to be 300 miles apart? 
 
Solution 
We’ll start off by letting t be the amount of time that the first car, let’s call it car A, travels.  Since 
the second car, let’s call that car B, starts out two hours later then we know that it will travel for 

2t −  hours. 
 
Now, we know that the distance traveled by an object (or car since that’s what we’re dealing with 
here) is its speed times time traveled.  So we have the following distances traveled for each car. 

 ( )
distance of car A : 25
distance of car B : 20 2

t
t −

 

 
At this point a quick sketch of the situation is probably in order so we can see just what is going 
on.  In the sketch we will assume that the two cars have traveled long enough so that they are 300 
miles apart. 

 
So, we have a right triangle here.  That means that we can use the Pythagorean Theorem to say, 

 ( ) ( )( ) ( )22 225 20 2 300t t+ − =  
 
This is a quadratic equation, but it is going to need some fairly heavy simplification before we 
can solve it so let’s do that. 

 

( )22

2 2

2

625 20 40 90000

625 400 1600 1600 90000
1025 1600 88400 0

t t

t t t
t t

+ − =

+ − + =

− − =
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Now, the coefficients here are quite large, but that is just something that will happen fairly often 
with these problems so don’t worry about that.  Using the quadratic formula (and simplifying that 
answer) gives, 

 1600 365000000 1600 1000 365 32 20 365
2050 2050 41

t ± ± ±
= = =  

 
Again, we have two solutions and we’re going to need to determine which one is the correct one, 
so let’s convert them to decimals. 

32 20 365 32 20 36510.09998 and 8.539011
41 41

t t+ −
= = = = −  

 
As with the previous example the negative answer just doesn’t make any sense.  So, it looks like 
the car A traveled for 10.09998 hours when they were finally 300 miles apart. 
 
Also, even though the problem didn’t ask for it, the second car will have traveled for 8.09998 
hours before they are 300 miles apart.  Notice as well that this is NOT the second solution 
without the negative this time, unlike the first example. 
 
Example 3  An office has two envelope stuffing machines.  Working together they can stuff a 
batch of envelopes in 2 hours.  Working separately it will take the second machine 1 hour longer 
than the first machine to stuff a batch of envelopes.  How long would it take each machine do 
stuff a batch of envelopes by themselves? 
 
Solution 
Let t be the amount of time it takes the first machine (Machine A) to stuff a batch of envelopes by 
itself.  That means that it will take the second machine (Machine B) 1t +  hours to stuff a batch of 
envelopes by itself. 
 
The word equation for this problem is then, 

Portion of job Portion of job 
1 Job

done by Machine A done by Machine B

Work Rate Time Spent Work Rate Time Spent
1

of Machine A Working of Machine B Working

⎛ ⎞ ⎛ ⎞
+ =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠

⎛ ⎞⎛ ⎞ ⎛ ⎞⎛ ⎞
+ =⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠⎝ ⎠

 

 
We know the time spent working together (2 hours) so we need to work rates of each machine.  
Here are those computations. 

 ( ) ( ) 11 Job Work Rate of Machine A Machine At
t

= × ⇒ =  

 ( ) ( ) 11 Job Work Rate of Machine B 1 Machine B
1

t
t

= × + ⇒ =
+

 

 
Note that it’s okay that the work rates contain t.  In fact they will need to so we can solve for it!  
Plugging into the word equation gives, 
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( ) ( )1 12 2 1

1
2 2 1

1

t t

t t

⎛ ⎞ ⎛ ⎞+ =⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠

+ =
+

 

 
So, to solve we’ll first need to clear denominators and get the equation in standard form. 

 

( )( ) ( )( )( )

( ) 2

2

2

2 2 1 1 1
1
2 1 2

4 2
0 3 2

t t t t
t t

t t t t

t t t
t t

⎛ ⎞+ + = +⎜ ⎟+⎝ ⎠
+ + = +

+ = +

= − −

 

 
Using the quadratic formula gives, 

 3 17
2

t ±
=  

Converting to decimals gives, 

 3 17 3 173.5616 and 0.5616
2 2

t t+ −
= = = = −  

 
Again, the negative doesn’t make any sense and so Machine A will work for 3.5616 hours to stuff 
a batch of envelopes by itself.  Machine B will need 4.5616 hours to stuff a batch of envelopes by 
itself.  Again, unlike the first example, note that the time for Machine B was NOT the second 
solution from the quadratic without the minus sign. 
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 Equations Reducible to Quadratic Form 
In this section we are going to look at equations that are called quadratic in form or reducible to 
quadratic in form.  What this means is that we will be looking at equations that if we look at 
them in the correct light we can make them look like quadratic equations.  At that point we can 
use the techniques we developed for quadratic equations to help us with the solution of the actual 
equation. 
 
It is usually best with these to show the process with an example so let’s do that. 
 
Example 1  Solve 4 27 12 0x x− + =  
 
Solution 
Now, let’ start off here by noticing that 

 ( )24 2x x=  
In other words, we can notice here that the variable portion of the first term (i.e. ignore the 
coefficient) is nothing more than the variable portion of the second term squared.  Note as well 
that all we really needed to notice here is that the exponent on the first term was twice the 
exponent on the first term. 
 
This, along with the fact that third term is a constant, means that this equation is reducible to 
quadratic in form.  We will solve this by first defining, 
 2u x=  
 
Now, this means that  

 ( )22 2 4u x x= =  
  
Therefore, we can write the equation in terms of u’s instead of x’s as follows, 
 
 4 2 27 12 0 7 12 0x x u u− + = ⇒ − + =  
 
The new equation (the one with the u’s) is a quadratic equation and we can solve that.  In fact this 
equation is factorable, so the solution is, 
 ( )( )2 7 12 4 3 0 3, 4u u u u u u− + = − − = ⇒ = =  
 
So, we get the two solutions shown above.  These aren’t the solutions that we’re looking for.  We 
want values of x, not values of u.  That isn’t really a problem once we recall that we’ve defined  
 2u x=  
 
To get values of x for the solution all we need to do is plug in u into this equation and solve that 
for x.   Let’s do that. 

 
2

2

3: 3 3

4: 4 4 2

u x x

u x x

= = ⇒ = ±

= = ⇒ = ± = ±
 

 
So, we have four solutions to the original equation, 2x = ±  and 3x = ± . 
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So, the basic process is to check that the equation is reducible to quadratic in form then make a 
quick substitution to turn it into a quadratic equation.  We solve the new equation for u, the 
variable from the substitution, and then use these solutions and the substitution definition to get 
the solutions to the equation that we really want. 
 
In most cases to make the check that it’s reducible to quadratic in form all that we really need to 
do is to check that one of the exponents is twice the other.  There is one exception to this that 
we’ll see here once we get into a set of examples. 
 
Also, once you get “good” at these you often don’t really need to do the substitution either.  We 
will do them to make sure that the work is clear.  However, these problems can be done without 
the substitution in many cases. 
 
Example 2  Solve each of the following equations. 

(a) 
2 1
3 32 15 0x x− − =    [Solution] 

(b) 6 39 8 0y y− −− + =    [Solution] 

(c) 9 14 0z z− + =    [Solution] 
(d) 4 4 0t − =    [Solution] 

Solution 

(a) 
2 1
3 32 15 0x x− − =  

Okay, in this case we can see that, 

 2 12
3 3

⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

and so one of the exponents is twice the other so it looks like we’ve got an equation that is 
reducible to quadratic in form.  The substitution will then be, 

 
21 1 2

23 3 3u x u x x
⎛ ⎞

= = =⎜ ⎟
⎝ ⎠

 

Substituting this into the equation gives, 

 
( )( )

2 2 15 0
5 3 0 3, 5

u u
u u u u

− − =

− + = ⇒ = − =
 

 
Now that we’ve gotten the solutions for u we can find values of x. 

 
( )

( )

1
33

1
33

3 : 3 3 27

5 : 5 5 125

u x x

u x x

= − = − ⇒ = − = −

= = ⇒ = =

 

 
So, we have two solutions here 27x = −  and 125x = . 

[Return to Problems] 
 
(b) 6 39 8 0y y− −− + =  
For this part notice that, 
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 ( )6 2 3− = −  
and so we do have an equation that is reducible to quadratic form.  The substitution is, 

 ( )23 2 3 6u y u y y− − −= = =  
The equation becomes, 

 
( )( )

2 9 8 0
8 1 0 1, 8

u u
u u u u

− + =

− − = = =
 

 
Now, going back to y’s is going to take a little more work here, but shouldn’t be too bad. 

 

( )
1

3 3 3
3

1
33 3

3

1 11: 1 1 1 1
1

1 1 1 18: 8
8 8 2

u y y y
y

u y y y
y

−

−

= ⇒ = = ⇒ = = ⇒ = =

⎛ ⎞= ⇒ = = ⇒ = ⇒ = =⎜ ⎟
⎝ ⎠

 

 
The two solutions to this equation are 1y =  and 2y = . 

[Return to Problems] 
 
(c) 9 14 0z z− + =  
This one is a little trickier to see that it’s quadratic in form, yet it is.  To see this recall that the 
exponent on the square root is one-half, then we can notice that the exponent on the first term is 
twice the exponent on the second term.  So, this equation is in fact reducible to quadratic in form. 
 
Here is the substitution. 

 ( )2
2u z u z z= = =  

 
The equation then becomes, 

 
( )( )

2 9 14 0
7 2 0 2, 7

u u
u u u u

− + =

− − = = =
 

 
Now go back to z’s. 

 
( )
( )

2

2

2 : 2 2 4

7 : 7 7 49

u z z

u z z

= ⇒ = ⇒ = =

= ⇒ = ⇒ = =
 

The two solutions for this equation are 4z =  and 49z =  
[Return to Problems] 

 
(d) 4 4 0t − =  
Now, this part is the exception to the rule that we’ve been using to identify equations that are 
reducible to quadratic in form.  There is only one term with a t in it.  However, notice that we can 
write the equation as, 

 ( )22 4 0t − =  
So, if we use the substitution, 
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 ( )22 2 2 4u t u t t= = =  
the equation becomes, 
 2 4 0u − =  
and so it is reducible to quadratic in form. 
 
Now, we can solve this using the square root property.  Doing that gives, 
 4 2u = ± = ±  
 
Now, going back to t’s gives us, 

 
2

2

2 2 2

2 2 2 2

u t t

u t t i

= ⇒ = ⇒ = ±

= − ⇒ = − ⇒ = ± − = ±
 

 
In this case we get four solutions and two of them are complex solutions.  Getting complex 
solutions out of these are actually more common that this set of examples might suggest.  The 
problem is that to get some of the complex solutions requires knowledge that we haven’t (and 
won’t) cover in this course.  So, they don’t show up all that often. 

[Return to Problems]
 
All of the examples to this point gave quadratic equations that were factorable or in the case of 
the last part of the previous example was an equation that we could use the square root property 
on.  That is need not always be the case however.  It is more than possible that we would need the 
quadratic formula to do some of these.  We should do an example of one of these just to make the 
point. 
 
Example 3  Solve 10 52 4 0x x− − = . 
 
Solution 
In this case we can reduce this to quadratic in form by using the substitution, 
 5 2 10u x u x= =  
 
Using this substitution the equation becomes, 
 22 4 0u u− − =  
 
This doesn’t factor and so we’ll need to use the quadratic formula on it.  From the quadratic 
formula the solutions are, 

 1 33
4

u ±
=  

 
Now, in order to get back to x’s we are going to need decimals values for these so, 

 1 33 1 331.68614 1.18614
4 4

u u+ −
= = = = −  

 
Now, using the substitution to get back to x’s gives the following, 
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( )

( )

1
5 5

1
5 5

1.68614 1.68614 1.68614 1.11014

1.18614 1.18614 1.18614 1.03473

u x x

u x x

= = = =

= − = − = − = −
 

 
Of course we had to use a calculator to get the final answer for these.  This is one of the reasons 
that you don’t tend to see too many of these done in an Algebra class.  The work and/or answers 
tend to be a little messy. 
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 Equations with Radicals 
The title of this section is maybe a little misleading.  The title seems to imply that we’re going to 
look at equations that involve any radicals.  However, we are going to restrict ourselves to 
equations involving square roots.  The techniques we are going to apply here can be used to solve 
equations with other radicals, however the work is usually significantly messier than when 
dealing with square roots.  Therefore, we will work only with square roots in this section. 
 
Before proceeding it should be mentioned as well that in some Algebra textbooks you will find 
this section in with the equations reducible to quadratic form material. The reason is that we will 
in fact end up solving a quadratic equation in most cases.  However, the approach is significantly 
different and so we’re going to separate the two topics into different section in this course. 
 
It is usually best to see how these work with an example. 
 
Example 1  Solve 6x x= + . 
 
Solution 
In this equation the basic problem is the square root.  If that weren’t there we could do the 
problem.  The whole process that we’re going to go through here is set up to eliminate the square 
root.  However, as we will see, the steps that we’re going to take can actually cause problems for 
us.  So, let’s see how this all works. 
 
Let’s notice that if we just square both sides we can make the square root go away.  Let’s do that 
and see what happens. 
 

 

( ) ( )

( )( )

22

2

2

6

6
6 0

3 2 0 3, 2

x x

x x
x x

x x x x

= +

= +

− − =

− + = ⇒ = = −

 

 
Upon squaring both sides we see that we get a factorable quadratic equation that gives us two 
solutions 3x =  and 2x = − .  
 
Now, for no apparent reason, let’s do something that we haven’t actually done since the section 
on solving linear equations.  Let’s check our answers.  Remember as well that we need to check 
the answers in the original equation!  That is very important. 
 
Let’s first check 3x =  

 
?3 3 6

3 9 OK

= +

=
 

 
So 3x =  is a solution.  Now let’s check 2x = − . 
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?2 2 6

2 4 2 NOT OK

− = − +

− ≠ =
 

 
We have a problem.  Recall that square roots are ALWAYS positive and so 2x = −  does not 
work in the original equation.  One possibility here is that we made a mistake somewhere.  We 
can go back and look however and we’ll quickly see that we haven’t made a mistake.   
 
So, what is the deal?  Remember that our first step in the solution process was to square both 
sides.  Notice that if we plug 2x = −  into the quadratic we solved it would in fact be a solution to 
that.  When we squared both sides of the equation we actually changed the equation and in the 
process introduced a solution that is not a solution to the original equation. 
 
With these problems it is vitally important that you check your solutions as this will often happen.  
When this does we only take the values that are actual solutions to the original equation. 
 
So, the original equation had a single solution 3x = . 
 
Now, as this example has shown us, we have to be very careful in solving these equations.  When 
we solve the quadratic we will get two solutions and it is possible both of these, one of these, or 
none of these values to be solutions to the original equation.  The only way to know is to check 
your solutions! 
 
Let’s work a couple more examples that are a little more difficult. 
 
Example 2  Solve each of the following equations. 

(a) 4 4y y+ − =    [Solution] 

(b) 1 2 3t t= + −    [Solution] 
(c) 5 6 2z z+ − =    [Solution] 

Solution 
(a) 4 4y y+ − =  
In this case let’s notice that if we just square both sides we’re going to have problems. 

 ( ) ( )
2 2

2

4 4

2 4 4 16

y y

y y y y

+ − =

+ − + − =
 

 
Before discussing the problem we’ve got here let’s make sure you can the squaring that we did 
above since it will show up on occasion.  All that we did here was use the formula 

( )2 2 22a b a ab b+ = + +  

with a y=  and 4b y= − .  You will need to be able to do these because while this may not 
have worked here we will need to this kind of work in the next set of problems. 
 
Now, just what is the problem with this?  Well recall that the point behind squaring both sides in 
the first problem was to eliminate the square root.  We haven’t done that.  There is still a square 
root in the problem and we’ve make the remainder of the problem messier as well. 
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So, what we’re going to need to do here is make sure that we’ve got a square root all by itself on 
one side of the equation before squaring.  Once that is done we can square both sides and the 
square root really will disappear. 
 
Here is the correct way to do this problem. 

 

( ) ( )

( )( )

2 2

2

2

4 4 now square both sides

4 4

4 16 8
0 9 20
0 5 4 4, 5

y y

y y

y y y
y y
y y y y

− = −

− = −

− = − +

= − +

= − − ⇒ = =

 

 
As with the first example we will need to make sure and check both of these solutions.  Again, 
make sure that you check in the original equation.  Once we’ve square both sides we’ve changed 
the problem and so checking there won’t do us any good.  In fact checking there could well lead 
us into trouble. 
 
First 4y = . 

 
?4 4 4 4

4 4 OK
+ − =

=
 

So, that is a solution.  Now 5y = . 

 

?

?

5 5 4 4

5 1 4
6 4 NOT OK

+ − =

+ =
≠

 

 
So, as with the first example we worked there is in fact a single solution to the original equation, 

4y = . 
[Return to Problems] 

 
(b) 1 2 3t t= + −  
Okay, so we will again need to get the square root on one side by itself before squaring both 
sides. 

 

( ) ( )

( )

22

2

2

2

1 2 3

1 2 3

1 2 2 3
4 4 0

2 0 2

t t

t t

t t t
t t

t t

− = −

− = −

− + = −

− + =

− = ⇒ =

 

 
So, we have a double root this time.  Let’s check it to see if it really is a solution to the original 
equation. 
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( )?

?

1 2 2 2 3

1 2 1
1 3

= + −

= +
≠

 

So, 2t =  isn’t a solution to the original equation.  Since this was the only possible solution, this 
means that there are no solutions to the original equation.  This doesn’t happen too often, but it 
does happen so don’t be surprised by it when it does. 

[Return to Problems] 
 
(c) 5 6 2z z+ − =  
This one will work the same as the previous two. 

 

( ) ( )

( )( )

2 2

2

2

5 6 2

5 6 2

5 6 4 4
0 2
0 2 1 1, 2

z z

z z

z z z
z z
z z z z

+ = +

+ = +

+ = + +

= − −

= − + ⇒ = − =

 

 
Let’s check these possible solutions start with 1z = − . 

 

( ) ?

?

5 1 6 2 1

1 2 1
1 1 OK

− + − =−

− = −
− = −

 

So, that’s was a solution.  Now let’s check 2z = . 

 

( ) ?

?

5 2 6 2 2

16 2 2
4 2 2 OK

+ − =

− =
− =

 

This was also a solution. 
 
So, in this case we’ve now seen an example where both possible solutions are in fact solutions to 
the original equation as well. 

[Return to Problems]
 
So, as we’ve seen in the previous set of examples once we get our list of possible solutions 
anywhere from none to all of them can be solutions to the original equation.  Always remember to 
check your answers! 
 
Okay, let’s work one more set of examples that have an added complexity to them.  To this point 
all the equations that we’ve looked at have had a single square root in them.  However, there can 
be more than one square root in these equations.  The next set of examples is designed to show us 
how to deal with these kinds of problems. 
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Example 3  Solve each of the following equations. 
(a) 2 1 4 2x x− − − =    [Solution] 
(b) 7 2 3t t+ + = −    [Solution] 

Solution 
In both of these there are two square roots in the problem.  We will work these in basically the 
same manner however.  The first step is to get one of the square roots by itself on one side of the 
equation then square both sides.  At this point the process is different so we’ll see how to proceed 
from this point once we reach it in the first example. 
 
(a) 2 1 4 2x x− − − =  
So, the first thing to do is get one of the square roots by itself.  It doesn’t matter which one we get 
by itself.  We’ll end up the same solution(s) in the end.   

 ( ) ( )2 2

2 1 2 4

2 1 2 4

2 1 4 4 4 4

2 1 4 4

x x

x x

x x x

x x x

− = + −

− = + −

− = + − + −

− = − +

 

 
Now, we still have a square root in the problem, but we have managed to eliminate one of them.  
Not only that, but what we’ve got left here is identical to the examples we worked in the first part 
of this section.  Therefore, we will continue now work this problem as we did in the previous sets 
of examples. 

 

( ) ( )
( )

( )( )

22

2

2

2

1 4 4

2 1 16 4

2 1 16 64
18 65 0

13 5 0 13, 5

x x

x x x

x x x
x x

x x x x

− = −

− + = −

− + = −

− + =

− − = ⇒ = =

 

 
Now, let’s check both possible solutions in the original equation.  We’ll start with 13x =  

 

( ) ?

?

2 13 1 13 4 2

25 9 2
5 3 2 OK

− − − =

− =
− =

 

So, the one is a solution.  Now let’s check 5x = . 

 

( ) ?

?

2 5 1 5 4 2

9 1 2
3 1 2 OK

− − − =

− =
− =

 

So, they are both solutions to the original equation. 
[Return to Problems] 
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(b) 7 2 3t t+ + = −  
In this case we’ve already got a square root on one side by itself so we can go straight to squaring 
both sides. 

 

( ) ( )2 2
7 2 3

7 4 7 4 3

11 4 7 3

t t

t t t

t t t

+ + = −

+ + + + = −

+ + + = −

 

 
Next, get the remaining square root back on one side by itself and square both sides again. 

 

( ) ( )
( )

( )
( )( )

2 2

2

2

2

2

4 7 8 2

4 7 8 2

16 7 64 32 4

16 112 64 32 4
0 4 16 48

0 4 4 12

0 4 6 2 6, 2

t t

t t

t t t

t t t
t t

t t

t t t t

+ = − −

+ = − −

+ = + +

+ = + +

= + −

= + −

= + − ⇒ = − =

 

 
Now check both possible solutions starting with 2t = . 

 

?

?

2 7 2 3 2

9 2 1
3 2 1 NOT OK

+ + = −

+ =
+ ≠

 

 
So, that wasn’t a solution.  Now let’s check 6t = − . 

 

( )?

?

6 7 2 3 6

1 2 9
1 2 3 OK

− + + = − −

+ =
+ =

 

 
It looks like in this case we’ve got a single solution, 6t = − . 

[Return to Problems]
 
So, when there is more than one square root in the problem we are again faced with the task of 
checking our possible solutions.  It is possible that anywhere form none to all of the possible 
solutions will in fact be solutions and the only way to know for sure is to check them in the 
original equation. 
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 Linear Inequalities 
To this point in this chapter we’ve concentrated on solving equations.  It is now time to switch 
gears a little and start thinking about solving inequalities.  Before we get into solving inequalities 
we should go over a couple of the basics first. 
 
At this stage of your mathematical career it is assumed that you know that  
 a b<  
means that a is some number that is strictly less that b.  It is also assumed that you know that  

a b≥  
means that a is some number that is either strictly bigger than b or is exactly equal to b.  Likewise 
it is assume that you know how to deal with the remaining two inequalities. > (greater than) and 
≤  (less than or equal to). 
 
What we want to discuss is some notational issues and some subtleties that sometimes get 
students when the really start working with inequalities.   
 
First, remember that when we say that a is less than b we mean that a is to the left of b on a 
number line.  So, 
 1000 0− <  
is a true inequality. 
 
Next, don’t forget how to correctly interpret ≤  and ≥ .  Both of the following are true 
inequalities. 

4 4 6 4≤ − ≤  
 
In the first case 4 is equal to 4 and so it is “less than or equal” to 4.  In the second case -6 is 
strictly less than 4 and so it is “less than or equal” to 4.  The most common mistake is to decide 
that the first inequality is not a true inequality.  Also be careful to not take this interpretation and 
translate it to < and/or >.  For instance, 

4 4<  
is not a true inequality since 4 is equal to 4 and not strictly less than 4. 
 
Finally, we will be seeing many double inequalities throughout this section and later sections so 
we can’t forget about those.  The following is a double inequality. 
 9 5 6− < ≤  
 
In a double inequality we are saying that both inequalities must be simultaneously true.  In this 
case 5 is definitely greater than -9 and at the same time is less than or equal to 6.  Therefore, this 
double inequality is a true inequality. 
 
On the other hand, 
 10 5 20≤ <  
is not a true inequality.  While it is true that 5 is less than 20 (so the second inequality is true) it is 
not true that 5 is greater than or equal to 10 (so the first inequality is not true).  If even one of the 
inequalities in a double inequality is not true then the whole inequality is not true.  This point is 
more important than you might realize at this point.  In a later section we will run across 
situations where many students try to combine two inequalities into a double inequality that 
simply can’t be combined, so be careful. 
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The next topic that we need to discuss is the idea of interval notation.  Interval notation is some 
very nice shorthand for inequalities and will be used extensively in the next few sections of this 
chapter. 
 
The best way to define interval notation is the following table.  There are three columns to the 
table.  Each row contains an inequality, a graph representing the inequality and finally the interval 
notation for the given inequality. 
 

Inequality Graph Interval Notation 

a x b≤ ≤  [ ],a b  

a x b< <  ( ),a b  

a x b≤ <  [ ),a b  

a x b< ≤  ( ],a b  

x a>  ( ),a ∞  

x a≥  [ ),a ∞  

x b<  ( ),b−∞  

x b≤  ( ],b−∞  

 
Remember that a bracket, “[” or “]”, means that we include the endpoint while a parenthesis, “(” 
or “)”, means we don’t include the endpoint. 
 
Now, with the first four inequalities in the table the interval notation is really nothing more than 
the graph without the number line on it.  With the final four inequalities the interval notation is 
almost the graph, except we need to add in an appropriate infinity to make sure we get the correct 
portion of the number line.  Also note that infinities NEVER get a bracket.  They only get a 
parenthesis. 
 
We need to give one final note on interval notation before moving on to solving inequalities.  
Always remember that when we are writing down an interval notation for an inequality that the 
number on the left must be the smaller of the two. 
 
It’s now time to start thinking about solving linear inequalities.  We will use the following set of 
facts in our solving of inequalities.  Note that the facts are given for <.  We can however, write 
down an equivalent set of facts for the remaining three inequalities. 
 

1. If a b<  then a c b c+ < +  and a c b c− < − for any number c.  In other words, we can 
add or subtract a number to both sides of the inequality and we don’t change the 
inequality itself. 
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2. If a b<  and 0c >  then ac bc<  and 
a b
c c
< .  So, provided c is a positive number we 

can multiply or divide both sides of an inequality by the number without changing the 
inequality. 
 

3. If a b<  and 0c <  then ac bc>  and 
a b
c c
> .  In this case, unlike the previous fact, if c 

is negative we need to flip the direction of the inequality when we multiply or divide both 
sides by the inequality by c.   

 
These are nearly the same facts that we used to solve linear equations.  The only real exception is 
the third fact.  This is the important fact as it is often the most misused and/or forgotten fact in 
solving inequalities. 
 
If you aren’t sure that you believe that the sign of c matters for the second and third fact consider 
the following number example. 
 3 5− <  
 
I hope that we would all agree that this is a true inequality.  Now multiply both sides by 2 and by 
-2. 

 ( ) ( ) ( ) ( )
3 5 3 5

3 2 5 2 3 2 5 2
6 10 6 10

− < − <

− < − − > −

− < > −

 

 
Sure enough, when multiplying by a positive number the direction of the inequality remains the 
same, however when multiplying by a negative number the direction of the inequality does 
change. 
 
Okay, let’s solve some inequalities.  We will start off with inequalities that only have a single 
inequality in them.  In other words, we’ll hold off on solving double inequalities for the next set 
of examples. 
 
The thing that we’ve got to remember here is that we’re asking to determine all the values of the 
variable that we can substitute into the inequality and get a true inequality.  This means that our 
solutions will, in most cases, be inequalities themselves. 
 
 
Example 1  Solving the following inequalities.  Give both inequality and interval notation forms 
of the solution. 

(a) ( ) ( )2 3 5 1 12m m− − < + −    [Solution] 

(b) ( ) ( )2 1 5 3 2 1x x− + ≤ −    [Solution] 
Solution 
Solving single linear inequalities follow pretty much the same process for solving linear 
equations.  We will simplify both sides, get all the terms with the variable on one side and the 
numbers on the other side, and then multiply/divide both sides by the coefficient of the variable to 
get the solution.  The one thing that you’ve got to remember is that if you multiply/divide by a 
negative number then switch the direction of the inequality. 
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(a) ( ) ( )2 3 5 1 12m m− − < + −  
There really isn’t much to do here other than follow the process outlined above. 

 

( ) ( )2 3 5 1 12
2 6 5 5 12

7 13
13
7

m m
m m

m

m

− − < + −

− + < + −
− < −

>

 

 
You did catch the fact that the direction of the inequality changed here didn’t you?  We divided 

by a “-7” and so we had to change the direction.  The inequality form of the solution is 
13
7

m > .  

The interval notation for this solution is, 
13 ,
7

⎛ ⎞∞⎜ ⎟
⎝ ⎠

. 

[Return to Problems] 
 
(b) ( ) ( )2 1 5 3 2 1x x− + ≤ −  
Again, not much to do here. 

 

( ) ( )2 1 5 3 2 1
2 2 5 6 3

10 8
10
8
5
4

x x
x x

x

x

x

− + ≤ −

− + ≤ −
≤

≤

≤

 

 
Now, with this inequality we ended up with the variable on the right side when it more 
traditionally on the left side.  So, let’s switch things around to get the variable onto the left side.  
Note however, that we’re going to need also switch the direction of the inequality to make sure 
that we don’t change the answer.  So, here is the inequality notation for the inequality. 

 5
4

x ≥  

 

The interval notation for the solution is 
5 ,
4
⎡ ⎞∞⎟⎢⎣ ⎠

. 

[Return to Problems]
 
Now, let’s solve some double inequalities.  The process here is similar in some ways to solving 
single inequalities and yet very different in other ways.  Since there are two inequalities there 
isn’t any way to get the variables on “one side” of the inequality and the numbers on the other.  It 
is easier to see how these work if we do an example or two so let’s do that. 
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Example 2  Solve each of the following inequalities.  Give both inequality and interval notation 
forms for the solution. 

(a) ( )6 2 5 7x− ≤ − <    [Solution] 

(b) ( )33 2 5
2

x− < − ≤    [Solution] 

(c) ( )14 7 3 2 1x− < − + <    [Solution] 
Solution 
(a) ( )6 2 5 7x− ≤ − <  
The process here is fairly similar to the process for single inequalities, but we will first need to be 
careful in a couple of places.  Our first step in this case will be to clear any parenthesis in the 
middle term. 
 6 2 10 7x− ≤ − <  
 
Now, we want the x all by itself in the middle term and only numbers in the two outer terms.  To 
do this we will add/subtract/multiply/divide as needed.  The only thing that we need to remember 
here is that if we do something to middle term we need to do the same thing to BOTH of the out 
terms.  One of the more common mistakes at this point is to add something, for example, to the 
middle and only add it to one of the two sides. 
 
Okay, we’ll add 10 to all three parts and then divide all three parts by two. 

 
4 2 17

172
2

x

x

≤ <

≤ <
 

 

That is the inequality form of the answer.  The interval notation form of the answer is 
172,
2

⎡ ⎞
⎟⎢⎣ ⎠

. 

[Return to Problems] 
 

(b) ( )33 2 5
2

x− < − ≤  

In this case the first thing that we need to do is clear fractions out by multiplying all three parts by 
2.  We will then proceed as we did in the first part. 

 
( )6 3 2 10

6 6 3 10
12 3 4

x
x
x

− < − ≤

− < − ≤
− < − ≤

 

 
Now, we’re not quite done here, but we need to be very careful with the next step.  In this step we 
need to divide all three parts by -3.  However, recall that whenever we divide both sides of an 
inequality by a negative number we need to switch the direction of the inequality.  For us, this 
means that both of the inequalities will need to switch direction here. 

 44
3

x> ≥ −  

 
So, there is the inequality form of the solution.  We will need to be careful with the interval 
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notation for the solution.  First, the interval notation is NOT 
44,
3

⎛ ⎤−⎜ ⎥⎝ ⎦
.  Remember that in 

interval notation the smaller number must always go on the left side!  Therefore, the correct 

interval notation for the solution is 
4 , 4
3

⎡ ⎞− ⎟⎢⎣ ⎠
. 

 
Note as well that this does match up with the inequality form of the solution as well.  The 

inequality is telling us that x is any number between 4 and 
4
3

−  or possibly 
4
3

−  itself and this is 

exactly what the interval notation is telling us.   
 
Also, the inequality could be flipped around to get the smaller number on the left if we’d like to.  
Here is that form, 

 4 4
3

x− ≤ <  

When doing this make sure to correctly deal with the inequalities as well. 
[Return to Problems] 

 
(c) ( )14 7 3 2 1x− < − + <  
Not much to this one.  We’ll proceed as we’ve done the previous two. 
 

 
14 21 14 1

0 21 15
x
x

− < − − <
< − <

 

 
Don’t get excited about the fact that one of the sides is now zero.  This isn’t a problem.  Again, as 
with the last part, we’ll be dividing by a negative number and so don’t forget to switch the 
direction of the inequalities. 
 

 

150
21
5 50 OR 0
7 7

x

x x

> > −

> > − − < <
 

 
Either of the inequalities in the second row will work for the solution.  The interval notation of 

the solution is 
5 ,0
7

⎛ ⎞−⎜ ⎟
⎝ ⎠

. 

[Return to Problems]
 
When solving double inequalities make sure to pay attention to the inequalities that are in the 
original problem.  One of the more common mistakes here is to start with a problem in which one 
of the inequalities is < or > and the other is ≤  or ≥ , as we had in the first two parts of the 
previous example, and then by the final answer they are both < or > or they are both ≤  or ≥ .  In 
other words, it is easy to all of a sudden make both of the inequalities the same.  Be careful with 
this. 
 
There is one final example that we want to work here. 
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Example 3  If 1 4x− < <  then determine a and b in 2 3a x b< + < . 
 
Solution 
This is easier than it may appear at first.  All we are really going to do is start with the given 
inequality and then manipulate the middle term to look like the second inequality.  Again, we’ll 
need to remember that whatever we do to the middle term we’ll also need to do to the two outer 
terms. 
 
So, first we’ll multiply everything by 2. 
 2 2 8x− < <  
Now add 3 to everything. 
 1 2 3 11x< + <  
 
We’ve now got the middle term identical to the second inequality in the problems statement and 
so all we need to do is pick off a and b.  From this inequality we can see that 1a =  and 11b = . 
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 Polynomial Inequalities 
It is now time to look at solving some more difficult inequalities.  In this section we will be 
solving (single) inequalities that involve polynomials of degree at least two.  Or, to put it in other 
words, the polynomials won’t be linear any more.  Just as we saw when solving equations the 
process that we have for solving linear inequalities just won’t work here. 
 
Since it’s easier to see the process as we work an example let’s do that.  As with the linear 
inequalities, we are looking for all the values of the variable that will make the inequality true.  
This means that our solution will almost certainly involve inequalities as well.  The process that 
we’re going to go through will give the answers in that form. 
 
Example 1  Solve 2 10 3x x− < . 
 
Solution 
There is a fairly simple process to solving these.  If you can remember it you’ll always be able to 
solve these kinds of inequalities. 
 
Step 1 : Get a zero on one side of the inequality.  It doesn’t matter which side has the zero, 
however, we’re going to be factoring in the next step so keep that in mind as you do this step.  
Make sure that you’ve got something that’s going to be easy to factor. 
 
 2 3 10 0x x− − <  
 
Step 2 : If possible, factor the polynomial.  Note that it won’t always be possible to factor this, 
but that won’t change things.  This step is really here to simplify the process more than anything.  
Almost all of the problems that we’re going to look at will be factorable. 
 
 ( )( )5 2 0x x− + <  
 
Step 3 : Determine where the polynomial is zero.  Notice that these points won’t make the 
inequality true (in this case) because 0 0<  is NOT a true inequality.  That isn’t a problem.  
These points are going to allow us to find the actual solution. 
 
In our case the polynomial will be zero at 2x = −  and 5x = . 
 
Now, before moving on to the next step let’s address why we want these points.   
 
We haven’t discussed graphing polynomials yet, however, the graphs of polynomials are nice 
smooth functions that have no breaks in them.  This means that as we are moving across the 
number line (in any direction) if the value of the polynomial changes sign (say from positive to 
negative) then it MUST go through zero!  
 
So, that means that these two numbers ( 5x =  and 2x = − ) are the ONLY places where the 
polynomial can change sign.  The number line is then divided into three regions.  In each region if 
the inequality is satisfied by one point from that region then it is satisfied for ALL points in that 
region.  If this wasn’t true (i.e it was positive at one point in region and negative at another) then 
it must also be zero somewhere in that region, but that can’t happen as we’ve already determined 
all the places where the polynomial can be zero!  Likewise, if the inequality isn’t satisfied for 
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some point in that region that it isn’t satisfied for ANY point in that region. 
 
This leads us into the next step. 
 
Step 4 : Graph the points where the polynomial is zero (i.e. the points from the previous step) on 
a number line and pick a test point from each of the regions.  Plug each of these test points into 
the polynomial and determine the sign of the polynomial at that point. 
 
This is the step in the process that has all the work, although it isn’t too bad.  Here is the number 
line for this problem. 
 

 
 
Now, let’s talk about this a little.  When we pick test points make sure that you pick easy numbers 
to work with.  So, don’t choose large numbers or fractions unless you are forced to by the 
problem.   
 
Also, note that we plugged the test points into the factored from of the polynomial and all we’re 
really after here is whether or not the polynomial is positive or negative.  Therefore, we didn’t 
actually bother with values of the polynomial just the sign and we can get that from the product 
shown.  The product of two negatives is a positive, etc. 
 
We are now ready for the final step in the process. 
 
Step 5 : Write down the answer.  Recall that we discussed earlier that if any point from a region 
satisfied the inequality then ALL points in that region satisfied the inequality and likewise if any 
point from a region did not satisfy the inequality then NONE of the points in that region would 
satisfy the inequality. 
 
This means that all we need to do is look up at the number line above.  If the test point from a 
region satisfies the inequality then that region is part of the solution.  If the test point doesn’t 
satisfy the inequality then that region isn’t part of the solution. 
 
Now, also notice that any value of x that will satisfy the original inequality will also satisfy the 
inequality from Step 2 and likewise, if an x satisfies the inequality from Step 2 then it will satisfy 
the original inequality. 
 
So, that means that all we need to do is determine the regions in which the polynomial from Step 
2 is negative.  For this problem that is only the middle region.  The inequality and interval 
notation for the solution to this inequality are, 
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 ( )2 5 2,5x− < < −  
 
Notice that we do need to exclude the endpoints since we have a strict inequality (< in this case) 
in the inequality. 
 
Okay, that seems like a long process, however, it really isn’t.  There was lots of explanation in the 
previous example.  The remaining examples won’t be as long because we won’t need quite as 
much explanation in them. 
 
Example 2  Solve 2 5 6x x− ≥ − . 
 
Solution 
Okay, this time we’ll just go through the process without all the explanations and steps.  The first 
thing to do is get a zero on one side and factor the polynomial if possible. 

 
( )( )

2 5 6 0
3 2 0

x x
x x

− + ≥

− − ≥
 

 
So, the polynomial will be zero at 2x =  and 3x = .  Notice as well that unlike the previous 
example, these will be solutions to the inequality since we’ve got a “greater than or equal to” in 
the inequality. 
 
Here is the number line for this example. 

 
Notice that in this case we were forced to choose a decimal for one of the test points. 
 
Now, we want regions were the polynomial will be positive.  So, the first and last regions will be 
part of the solution.  Also, in this case, we’ve got an “or equal to” in the inequality and so we’ll 
need to include the endpoints in our solution since at this points we get zero for the inequality and 
0 0≥  is a true inequality. 
 
Here is the solution in both inequality and interval notation form. 

 ( ] [ )
2 and 3

,2 and 3,
x x−∞ < ≤ ≤ < ∞

−∞ ∞
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Example 3  Solve 4 3 24 12 0x x x+ − ≤ . 
 
Solution 
Again, we’ll just jump right into the problem.  We’ve already got zero on one side so we can go 
straight to factoring. 

 ( )
( )( )

4 3 2

2 2

2

4 12 0

4 12 0

6 2 0

x x x

x x x

x x x

+ − ≤

+ − ≤

+ − ≤

 

 
So, this polynomial is zero at 6x = − , 0x =  and 2x = .  Here is the number line for this 
problem. 

 
First, notice that unlike the first two examples these regions do NOT alternate between positive 
and negative.  This is a common mistake that students make.  You really do need to plug in test 
points from each region.  Don’t ever just plug in for the first region and then assume that the other 
regions will alternate from that point. 
 
Now, for our solution we want regions where the polynomial will be negative (that’s the middle 
two here) or zero (that’s all three points that divide the regions).  So, we can combine up the 
middle two regions and the three points into a single inequality in this case.  The solution, in both 
inequality and interval notation form, is. 
 [ ]6 2 6,2x− ≤ ≤ −  
 
Example 4  Solve ( )( )21 3 0x x+ − > . 
 
Solution 
The first couple of steps have already been done for us here.  So, we can just straight into the 
work.  This polynomial will be zero at 1x = −  and 3x = .  Here is the number line for this 
problem. 
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Again, note that the regions don’t alternate in sign! 
 
For our solution to this inequality we are looking for regions where the polynomial is positive 
(that’s the last two in this case), however we don’t want values where the polynomial is zero this 
time since we’ve got a strict inequality (>) in this problem.  This means that we want the last two 
regions, but not 3x = . 
 
So, unlike the previous example we can’t just combine up the two regions into a single inequality 
since that would include a point that isn’t part of the solution.  Here is the solution for this 
problem. 

 ( ) ( )
1 3 and 3

1,3 and 3,
x x− < < < < ∞

− ∞
 

 
Now, all of the examples that we’ve worked to this point involved factorable polynomials.  
However, that doesn’t have to be the case.  We can work these inequalities even if the polynomial 
doesn’t factor.  We should work one of these just to show you how the work. 
 
Example 5  Solve 23 2 11 0x x− − > . 
 
Solution 
In this case the polynomial doesn’t factor so we can’t do that step.  However, we do still need to 
know where the polynomial is zero.  We will have to use the quadratic formula for that.  Here is 
what the quadratic formula gives us. 

 1 34
3

x ±
=  

In order to work the problem we’ll need to reduce this to decimals. 

 1 34 1 342.27698 1.61032
3 3

x x+ −
= = = = −  

 
From this point on the process is identical to the previous examples.  In the number line below the 
dashed lines are at the approximate values of the two decimals above and the inequalities show 
the value of the quadratic evaluated at the test points shown. 
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So, it looks like we need the two outer regions for the solution.  Here is the inequality and interval 
notation for the solution. 

 

1 34 1 34and
3 3

1 34 1 34, and ,
3 3

x x− +
−∞ < < < < ∞

⎛ ⎞ ⎛ ⎞− +
−∞ ∞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
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 Rational Inequalities 
In this section we will solve inequalities that involve rational expressions.  The process for 
solving rational inequalities is nearly identical to the process for solving polynomial inequalities 
with a few minor differences. 
 
Let’s just jump straight into some examples. 
 

Example 1  Solve 
1 0
5

x
x
+

≤
−

. 

 
Solution 
Before we get into solving these we need to point out that these DON’T solve in the same way 
that we’ve solve equations that contained rational expressions.  With equations the first thing that 
we always did was clear out the denominators by multiplying by the least common denominator.  
That won’t work with these however.   
 
Since we don’t know the value of x we can’t multiply both sides by anything that contains an x.  
Recall that if we multiply both sides of an inequality by a negative number we will need to switch 
the direction of the inequality.  However, since we don’t know the value of x we don’t know if 
the denominator is positive or negative and so we won’t know if we need to switch the direction 
of the inequality or not.  In fact, to make matters worse, the denominator will be both positive and 
negative for values of x in the solution and so that will create real problems. 
 
So, we need to leave the rational expression in the inequality. 
 
Now, the basic process here is the same as with polynomial inequalities.  The first step is to get a 
zero on one side and write the other side as a single rational inequality.  This has already been 
done for us here. 
 
The next step is to factor the numerator and denominator as much as possible.  Again, this has 
already been done for us in this case. 
 
The next step is to determine where both the numerator and the denominator are zero.  In this 
case these values are. 
 
 numerator : 1 denominator : 5x x= − =  
 
Now, we need these numbers for a couple of reasons.   First, just like with polynomial 
inequalities these are the only numbers where the rational expression may change sign.  So, we’ll 
build a number line using these points to define ranges out of which to pick test points just like 
we did with polynomial inequalities. 
 
There is another reason for needing the value of x that make the denominator zero however.  No 
matter what else is going on here we do have a rational expression and that means we need to 
avoid division by zero and so knowing where the denominator is zero will give us the values of x 
to avoid for this. 
 
Here is the number line for this inequality. 
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So, we need regions that make the rational expression negative.  That means the middle region.  
Also, since we’ve got an “or equal to” part in the inequality we also need to include where the 
inequality is zero, so this means we include 1x = − .  Notice that we will also need to avoid 

5x =  since that gives division by zero. 
 
The solution for this inequality is, 
 [ )1 5 1,5x− ≤ < −  
 

Example 2  Solve 
2 4 3 0

1
x x

x
+ +

>
−

. 

Solution 
We’ve got zero on one side so let’s first factor the numerator and determine where the numerator 
and denominator are both zero. 

 ( )( )1 3
0

1
x x

x
+ +

>
−

 

 numerator : 1, 3 denominator : 1x x x= − = − =  
 
Here is the number line for this one. 

 
 
In the problem we are after values of x that make the inequality strictly positive and so that looks 
like the second and fourth region and we won’t include any of the endpoint here.  The solution is 
then, 

 ( ) ( )
3 1 and 1

3, 1 and 1,
x x− < < − < < ∞

− − ∞
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Example 3  Solve 
( )

2

2
16 0
1

x
x
−

<
−

. 

Solution 
There really isn’t too much to this example.  We’ll first need to factor the numerator and then 
determine where the numerator and denominator are zero. 

 ( )( )
( )2

4 4
0

1
x x

x
− +

<
−

 

 numerator : 4, 4 denominator : 1x x x= − = =  
 
The number line for this problem is, 

 
So, as with the polynomial inequalities we can just assume that the regions will always alternate 
in sign.  Also, note that while the middle two regions do give negative values in the rational 
expression we need to avoid 1x =  to make sure we don’t get division by zero.  This means that 
we will have to write the answer as two inequalities and/or intervals. 

 ( ) ( )
4 1 and 1 4

4,1 and 1,4
x x− < < < <

−
 

 
Once again, it’s important to note that we really do need to test each region and not just assume 
that the regions will alternate in sign. 
 
Next we need to take a look at some examples that don’t already have a zero on one side of the 
inequality. 
 

Example 4  Solve 
3 1 1

4
x

x
+

≥
+

. 

Solution 
The first thing that we need to do here is subtract 1 from both sides and then get everything into a 
single rational expression. 
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( )

3 1 1 0
4

3 1 4 0
4 4

3 1 4
0

4
2 3 0

4

x
x

x x
x x

x x
x

x
x

+
− ≥

+
+ +

− ≥
+ +
+ − +

≥
+

−
≥

+

 

 
In this case there is no factoring to do so we can go straight to identifying where the numerator 
and denominator are zero. 
 

 3numerator : denominator : 4
2

x x= = −  

 
Here is the number line for this problem. 

 
Okay, we want value of x that give positive and/or zero in the rational expression.  This looks like 

the outer two regions as well as 
3
2

x = .  As with the first example we will need to avoid 4x = −  

since that will give a division by zero error. 
 
The solution for this problem is then, 

 
( )

34 and
2

3, 4 and ,
2

x x−∞ < < − ≤ < ∞

⎡ ⎞−∞ − ∞⎟⎢⎣ ⎠

 

 

Example 5  Solve 
8 3x x

x
−

≤ − . 

Solution 
So, again, the first thing to do is to get a zero on one side and then get everything into a single 
rational expression. 
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( )

( )( )

2

2

8 3 0

38 0

8 3 0

2 8 0

4 2
0

x x
x

x xx
x x
x x x

x
x x

x
x x

x

−
+ − ≤

−−
+ ≤

− + −
≤

− −
≤

− +
≤

 

 
We also factored the numerator above so we can now determine where the numerator and 
denominator are zero. 
 
 numerator : 2, 4 denominator : 0x x x= − = =  
 
Here is the number line for this problem. 

 
 
The solution for this inequality is then, 

 ( ] ( ]
2 and 0 4

, 2 and 0,4
x x−∞ < ≤ − < ≤

−∞ −
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 Absolute Value Equations 
In the final two sections of this chapter we want to discuss solving equations and inequalities that 
contain absolute values.  We will look at equations with absolute value in them in this section and 
we’ll look at inequalities in the next section. 
 
Before solving however we should first have a brief discussion of just what absolute value is.  
The notation for the absolute value of p is p .  Note as well that the absolute value bars are NOT 
parenthesis and in many cases don’t behave as parenthesis so be careful with them. 
 
There are two ways to define absolute value.  There is a geometric definition and a mathematical 
definition.  We will look at both. 
 
Geometric Definition 
In this definition we are going to think of p  as the distance of p from the origin on a number 
line. Also we will always use a positive value for distance.  Consider the following number line. 

 
 
From this we can get the following values of absolute value. 

 9 92 2 3 3
2 2

= − = =  

 
All that we need to do is identify the point on the number line and determine its distance from the 
origin.  Note as well that we also have 0 0= . 
 
Mathematical Definition 
We can also give a strict mathematical/formula definition for absolute value.  It is, 

 
if 0
if 0

p p
p

p p
≥⎧

= ⎨− <⎩
 

 
This tell us to look at the sign of p and if it’s positive we just drop the absolute value bar.  If p is 
negative we drop the absolute value bars and then put in a negative in front of it. 
 
So, let’s see a couple of quick examples. 
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 ( )
4 4 because 4 0

8 8 8 because 8 0

0 0 because 0 0

= ≥

− = − − = − <

= ≥

 

 
Note that these give exactly the same value as if we’d used the geometric interpretation. 
 
One way to think of absolute value is that it takes a number and makes it positive.  In fact we can 
guarantee that, 
 
 0p ≥  
 
regardless of the value of p. 
 
We do need to be careful however to not misuse either of these definitions.  For example we can’t 
use the definition on  
 x−  
because we don’t know the value of x. 
 
Also, don’t make the mistake of assuming that absolute value just makes all minus signs into plus 
signs.  In other words, don’t make the following mistake, 
 
 4 3 4 3x x− ≠ +  
 
This just isn’t true!  If you aren’t sure that you believe that plug in a number for x.  For example if 

1x = −  we would get, 
 
 ( ) ( )7 7 4 1 3 4 1 3 1= − = − − ≠ − + = −  
 
There are a couple of problems with this.  First, the numbers are clearly not the same and so that’s 
all we really need to prove that the two expressions aren’t the same.  There is also the fact 
however that the right number is negative and we will never get a negative value out of an 
absolute value!  That also will guarantee that these two expressions aren’t the same. 
 
The definitions above are easy to apply if all we’ve got are numbers inside the absolute value 
bars.  However, once we put variables inside them we’ve got to start being very careful. 
 
It’s now time to start thinking about how to solve equations that contain absolute values.  Let’s 
start off fairly simple and look at the following equation. 
 4p =  
 
Now, if we think of this from a geometric point of view this means that whatever p is it must have 
a distance of 4 from the origin.  Well there are only two numbers that have a distance of 4 from 
the origin, namely 4 and -4.  So, there are two solutions to this equation, 
 4 or 4p p= − =  
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Now, if you think about it we can do this for any positive number, not just 4.  So, this leads to the 
following general formula for equations involving absolute value. 
 
 If      , 0 then          or  p b b p b p b= > = − =  
 
Notice that this does require the b be a positive number.  We will deal with what happens if b is 
zero or negative in a bit. 
 
Let’s take a look at some examples. 
 
Example 1  Solve each of the following. 

(a) 2 5 9x − =    [Solution] 

(b) 1 3 20t− =    [Solution] 

(c) 5 8 1y − =    [Solution] 
Solution 
Now, remember that absolute value does not just make all minus signs into plus signs!  To solve 
these we’ve got to use the formula above since in all cases the number on the right side of the 
equal sign is positive. 
 
(a) 2 5 9x − =  
There really isn’t much to do here other than using the formula from above as noted above.  All 
we need to note is that in the formula above p represents whatever is on the inside of the absolute 
value bars and so in this case we have, 
 
 2 5 9 or 2 5 9x x− = − − =  
 
At this point we’ve got two linear equations that are easy to solve. 
 

 
2 4 or 2 14

2 or 7
x x
x x
= − =
= − =

 

 
So, we’ve got two solutions to the equation 2x = −  and 7x = . 

[Return to Problems] 
 
(b) 1 3 20t− =  
This one is pretty much the same as the previous part so we won’t put as much detail into this 
one. 

 
1 3 20 or 1 3 20

3 21 or 3 19
197 or
3

t t
t t

t t

− = − − =
− = − − =

= = −

 

The two solutions to this equation are 
19
3

t = −  and 7t = . 

[Return to Problems] 



College Algebra 

© 2007 Paul Dawkins 143 http://tutorial.math.lamar.edu/terms.aspx 
 

 
(c) 5 8 1y − =  
Again, not much more to this one. 

 
5 8 1 or 5 8 1

5 7 or 5 9
7 9or
5 5

y y
y y

y y

− = − − =
= =

= =

 

 

In this case the two solutions are 
7
5

y =  and 
9
5

y = . 

[Return to Problems]
 
Now, let’s take a look at how to deal with equations for which b is zero or negative.  We’ll do this 
with an example. 
 
Example 2  Solve each of the following. 

(a) 10 3 0x − =  

(b) 5 9 3x + = −  
Solution 
(a) Let’s approach this one from a geometric standpoint.  This is saying that the quantity in the 
absolute value bars has a distance of zero from the origin.  There is only one number that has the 
property and that is zero itself.  So, we must have, 

310 3 0
10

x x− = ⇒ =  

In this case we get a single solution. 
 
(b) Now, in this case let’s recall that we noted at the start of this section that 0p ≥ .  In other 
words, we can’t get a negative value out of the absolute value.  That is exactly what this equation 
is saying however.  Since this isn’t possible that means there is no solution to this equation. 
 
So, summarizing we can see that if b is zero then we can just drop the absolute value bars and 
solve the equation.  Likewise, if b is negative then there will be no solution to the equation. 
 
To this point we’ve only looked at equations that involve an absolute value being equal to a 
number, but there is no reason to think that there has to only be a number on the other side of the 
equal sign.  Likewise, there is no reason to think that we can only have one inequality in the 
problem.  So, we need to take a look at a couple of these kinds of equations. 
 
Example 3  Solve each of the following. 

(a) 2 3 1x x− = +    [Solution] 

(b) 4 3 3x x+ = −    [Solution] 

(c) 2 1 3x x− = +    [Solution] 
Solution 
At first glance the formula we used above will do us no good here.  It requires the right side of the 
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equation to be a positive number.  It turns out that we can still use it here, but we’re going to have 
to be careful with the answers as using this formula will, on occasion introduce an incorrect 
answer.  So, while we can use the formula we’ll need to make sure we check our solutions to see 
if they really work. 
 
(a) 2 3 1x x− = +  
So, we’ll start off using the formula above as we have in the previous problems and solving the 
two linear equations. 

( )2 3 1 3 1 or 2 3 1
4 1 or 2 3

1 3or
4 2

x x x x x
x x

x x

− = − + = − − − = +

= − =

= = −

 

 
Okay, we’ve got two potential answers here.  There is a problem with the second one however.  If 
we plug this one into the equation we get, 

 

?

?

3 32 3 1
2 2

7 7
2 2
7 7 NOT OK
2 2

⎛ ⎞− − = − +⎜ ⎟
⎝ ⎠

− =−

≠ −

 

We get the same number on each side but with opposite signs.  This will happen on occasion 
when we solve this kind of equation with absolute values.  Note that we really didn’t need to plug 
the solution into the whole equation here.  All we needed to do was check the portion without the 
absolute value and if it was negative then the potential solution will NOT in fact be a solution and 
if it’s positive or zero it will be solution. 
 
We’ll leave it to you to verify that the first potential solution does in fact work and so there is a 

single solution to this equation : 
1
4

x =  and notice that this is less than 2 (as our assumption 

required) and so is a solution to the equation with the absolute value in it. 
 

So, all together there is a single solution to this equation : 
1
4

x = . 

[Return to Problems] 
 
(b) 4 3 3x x+ = −  
This one will work in pretty much the same way so we won’t put in quite as much explanation. 

 

( )4 3 3 3 or 4 3 3
3 6 or 5 0

2 or 0

x x x x x
x x

x x

+ = − − = − + + = −

= − =
= − =

 

 
Now, before we check each of these we should give a quick warning.  Do not make the 
assumption that because the first potential solution is negative it won’t be a solution.  We only 
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exclude a potential solution if it makes the portion without absolute value bars negative.  In this 
case both potential solutions will make the portion without absolute value bars positive and so 
both are in fact solutions. 
 
So in this case, unlike the first example, we get two solutions : 2x = −  and 0x = . 

[Return to Problems] 
 
(c) 2 1 4 9x x− = +  
This  case looks very different from any of the previous problems we’ve worked to this point and 
in this case the formula we’ve been using doesn’t really work at all.  However, if we think about 
this a little we can see that we’ll still do something similar here to get a solution. 
 
Both sides of the equation have contain absolute values and so the only way the two sides are 
equal will be if the two quantities inside the absolute value bars are equal or equal but with 
opposite signs.  Or in other words, we must have, 

 

( )2 1 4 9 4 9 or 2 1 4 9
6 8 or 2 10

8 4 or 5
6 3

x x x x x
x x

x x

− = − + = − − − = +

= − − =

= − = − = −

 

 
Now, we won’t need to verify our solutions here as we did in the previous two parts of this 
problem.  Both with be solutions provided we solved the two equations correctly.  However, it 
will probably be a good idea to verify them anyway just to show that the solution technique we 
used here really did work properly. 
 

Let’s first check 
4
3

x = − . 

 

?

?

4 42 1 4 9
3 3

11 11
3 3
11 11 OK
3 3

⎛ ⎞ ⎛ ⎞− − = − +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

− =

=

 

 
In the case the quantities inside the absolute value were the same number but opposite signs.  

However, upon taking the absolute value we got the same number and so 
4
3

x = −  is a solution.  

Now, let’s check 5x = − . 

 

( ) ( )
?

?

2 5 1 4 5 9

11 11
11 11 OK

− − = − +

− = −

=

 

 
In the case we got the same value inside the absolute value bars.   
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So, as suggested above both answers did in fact work and both are solutions to the equation. 

[Return to Problems]
 
So, as we’ve seen in the previous set of examples we need to be a little careful if there are 
variables on both sides of the equal sign.  If one side does not contain an absolute value then we 
need to look at the two potential answers and make sure that each is in fact a solution. 
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 Absolute Value Inequalities 
In the previous section we solved equations that contained absolute values.  In this section we 
want to look at inequalities that contain absolute values.  We will need to examine two separate 
cases. 
 
Inequalities Involving < and ≤  
As we did with equations let’s start off by looking at a fairly simple case. 
 
 4p ≤  
 
This says that no matter what p is it must have a distance of no more than 4 from the origin.  This 
means that p must be somewhere in the range, 
 
 4 4p− ≤ ≤  
 
We could so a similar inequality with the < and get a similar result. 
 
In general we have the following formulas to use here, 
 

 
If      , 0 then          

If      , 0 then          

p b b b p b

p b b b p b

≤ > − ≤ ≤

< > − < <
 

 
Notice that this does require b to be positive just as we did with equations. 
 
Let’s take a look at a couple of examples. 
 
Example 1  Solve each of the following. 

(a) 2 4 10x − <    [Solution] 

(b) 9 2 1m + ≤    [Solution] 

(c) 3 2 5z− ≤    [Solution] 
Solution 
(a) 2 4 10x − <  
There really isn’t much to do other than plug into the formula.  As with equations p simply 
represents whatever is inside the absolute value bars.  So, with this first one we have, 
 10 2 4 10x− < − <  
Now, this is nothing more than a fairly simply double inequality to solve so let’s do that. 

 
6 2 14
3 7

x
x

− < <
− < <

 

The interval notation for this solution is ( )3,7− . 
[Return to Problems] 
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(b) 9 2 1m + ≤  
Not much to do here. 

 
1 9 2 1

3 9 1
1 1
3 9

m
m

m

− ≤ + ≤
− ≤ ≤ −

− ≤ ≤ −

 

The interval notation is 
1 1,
3 9

⎡ ⎤− −⎢ ⎥⎣ ⎦
. 

[Return to Problems] 
 
(c) 3 2 5z− ≤  
We’ll need to be a little careful with solving the double inequality with this one, but other than 
that it is pretty much identical to the previous two parts. 

 
5 3 2 5
8 2 2
4 1

z
z

z

− ≤ − ≤
− ≤ − ≤

≥ ≥ −
 

 
In the final step don’t forget to switch the direction of the inequalities since we divided 
everything by a negative number.  The interval notation for this solution is [ ]1, 4− . 

[Return to Problems]
 
Inequalities Involving > and ≥  
Once again let’s start off with a simple number example. 
 
 4p ≥  
 
This says that whatever p is it must be at least a distance of 4 from the origin and so p must be in 
one of the following two ranges, 
 
 4 or 4p p≤ − ≥  
 
Before giving the general solution we need to address a common mistake that students make with 
these types of problems.  Many students try to combine these into a single double inequality as 
follows, 
 4 4p− ≥ ≥  
While this may seem to make sense we can’t stress enough that THIS IS NOT CORRECT!!  
Recall what a double inequality says.  In a double inequality we require that both of the 
inequalities be satisfied simultaneously.  The double inequality above would then mean that p is a 
number that is simultaneously smaller than -4 and larger than 4.  This just doesn’t make sense.  
There is no number that satisfies this. 
 
These solutions must be written as two inequalities. 
 
Here is the general formula for these. 
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If      , 0 then             or   

If      , 0 then             or   

p b b p b p b

p b b p b p b

≥ > ≤ − ≥

> > < − >
 

 
Again, we will require that b be a positive number here.  Let’s work a couple of examples. 
 
Example 2  Solve each of the following. 

(a) 2 3 7x − >    [Solution] 

(b) 6 10 3t + ≥    [Solution] 

(c) 2 6 10y− >    [Solution] 
Solution 
(a) 2 3 7x − >  
Again, p represents the quantity inside the absolute value bars so all we need to do here is plug 
into the formula and then solve the two linear inequalities. 

 
2 3 7 or 2 3 7
2 4 or 2 10

2 or 5

x x
x x
x x

− < − − >
< − >
< − >

 

The interval notation for these are ( ), 2−∞ −  or ( )5,∞ . 
[Return to Problems] 

 
(b) 6 10 3t + ≥  
Let’s just plug into the formulas and go here, 

 
6 10 3 or 6 10 3

6 13 or 6 7
13 7or
6 6

t t
t t

t t

+ ≤ − + ≥
≤ − ≥ −

≤ − ≥ −

 

The interval notation for these are
13,
6

⎛ ⎤−∞ −⎜ ⎥⎝ ⎦
 or 

7 ,
6

⎡ ⎞− ∞⎟⎢⎣ ⎠
. 

[Return to Problems] 
 
(c) 2 6 10y− >  
Again, not much to do here. 

 
2 6 10 or 2 6 10

6 12 or 6 8
42 or
3

y y
y y

y y

− < − − >
− < − − >

> < −

 

 
Notice that we had to switch the direction of the inequalities when we divided by the negative 

number!  The interval notation for these solutions is ( )2,∞  or 
4,
3

⎛ ⎞−∞ −⎜ ⎟
⎝ ⎠

. 

[Return to Problems]
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Okay, we next need to take a quick look at what happens if b is zero or negative.  We’ll do these 
with a set of examples and let’s start with zero. 
 
Example 3  Solve each of the following. 

(a) 3 2 0x + <    [Solution] 

(b) 9 0x − ≤    [Solution] 

(c) 2 4 0x − ≥    [Solution] 

(d) 3 9 0x − >    [Solution] 
Solution 
These four examples seem to cover all our bases. 
 
(a) Now we know that 0p ≥  and so can’t ever be less than zero.  Therefore, in this case there is 
no solution since it is impossible for an absolute value to be strictly less than zero (i.e. negative). 
 
(b) This is almost the same as the previous part.  We still can’t have absolute value be less than 
zero, however it can be equal to zero.  So, this will have a solution only if  
 9 0x − =  
and we know how to solve this from the previous section. 
 9 0 9x x− = ⇒ =  
 
(c) In this case let’s again recall that no matter what p is we are guaranteed to have 0p ≥ .  This 

means that no matter what x is we can be assured that 2 4 0x − ≥  will be true since absolute 
values will always be positive or zero. 
 
The solution in this case is all real numbers, or all possible values of x.  In inequality notation this 
would be x−∞ < < ∞ . 
 
(d) This one is nearly identical to the previous part except this time note that we don’t want the 
absolute value to ever be zero.  So, we don’t care what value the absolute value takes as long as it 
isn’t zero.  This means that we just need to avoid value(s) of x for which we get, 
 3 9 0 3 9 0 3x x x− = ⇒ − = ⇒ =  
 
The solution in this case is all real numbers except 3x = . 
 
Now, let’s do a quick set of examples with negative numbers. 
 
Example 4  Solve each of the following. 

(a) 4 15 2x + < −  and 4 15 2x + ≤ −  

(b) 2 9 8x − ≥ −  and 2 9 8x − > −  
Solution 
Notice that we’re working these in pairs, because this time, unlike the previous set of examples 
the solutions will be the same for each. 
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Both (all four?) of these will make use of the fact that no matter what p is we are guaranteed to 
have 0p ≥ .  In other words, absolute values are always positive or zero. 
 
(a) Okay, if absolute values are always positive or zero there is no way they can be less than or 
equal to a negative number. 
 
Therefore, there is no solution for either of these. 
 
(b) In this case if the absolute value is positive or zero then it will always be greater than or equal 
to a negative number. 
 
The solution for each of these is then all real numbers. 
 



College Algebra 

© 2007 Paul Dawkins 152 http://tutorial.math.lamar.edu/terms.aspx 
 

 
 

Graphing and Functions 

 

 Introduction 
In this chapter we will be introducing two topics that are very important in an algebra class.  We 
will start off the chapter with a brief discussion of graphing.  This is not really the main topic of 
this chapter, but we need the basics down before moving into the second topic of this chapter.  
The next chapter will contain the remainder of the graphing discussion. 
 
The second topic that we’ll be looking at is that of functions.  This is probably one of the more 
important ideas that will come out of an Algebra class.  When first studying the concept of 
functions many students don’t really understand the importance or usefulness of functions and 
function notation.  The importance and/or usefulness of functions and function notation will only 
become apparent in later chapters and later classes.  In fact, there are some topics that can only be 
done easily with function and function notation. 
 
Here is a brief listing of the topics in this chapter. 
 
Graphing – In this section we will introduce the Cartesian coordinate system and most of the 
basics of graphing equations. 
Lines – Here we will review the main ideas from the study of lines including slope and the 
special forms of the equation of a line. 
Circles – We will look at the equation of a circle and graphing circles in this section. 
The Definition of a Function – We will discuss the definition of a function in this section.  We 
will also introduce the idea of function evaluation. 
Graphing Functions – In this section we will look at the basics of graphing functions.  We will 
also graph some piecewise functions in this section. 
Combining functions – Here we will look at basic arithmetic involving functions as well as 
function composition. 
Inverse Functions – We will define and find inverse functions in this section. 
. 
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 Graphing 
In this section we need to review some of the basic ideas in graphing.  It is assumed that you’ve 
seen some graphing to this point and so we aren’t going to go into great depth here.  We will only 
be reviewing some of the basic ideas. 
 
We will start off with the Rectangular or Cartesian coordinate system.  This is just the standard 
axis system that we use when sketching our graphs.  Here is the Cartesian coordinate system with 
a few points plotted. 
 

 
 
The horizontal and vertical axes, typically called the x-axis and the y-axis respectively, divide the 
coordinate system up into quadrants as shown above.  In each quadrant we have the following 
signs for x and y. 
 

Quadrant I 0x > , or x positive 0y > , or y positive 
Quadrant II 0x < , or x negative 0y > , or y positive 
Quadrant III 0x < , or x negative 0y < , or y negative 
Quadrant IV 0x > , or x positive 0y < , or y negative 

 
Each point in the coordinate system is defined by an ordered pair of the form ( ),x y .  The first 
number listed is the x-coordinate of the point and the second number listed is the y-coordinate 
of the point.  The ordered pair for any given point, ( ),x y , is called the coordinates for the point.   
 
The point where the two axes cross is called the origin and has the coordinates ( )0,0 .   
 
Note as well that the order of the coordinates is important.  For example, the point ( )2,1  is the 

point that is two units to the right of the origin and then 1 unit up, while the point ( )1, 2  is the 
point that is 1 unit to the right of the origin and then 2 units up. 
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We now need to discuss graphing an equation.  The first question that we should ask is what 
exactly is a graph of an equation?  A graph is the set of all the ordered pairs whose coordinates 
satisfy the equation. 
 
For instance, the point ( )2, 3−  is a point on the graph of ( )21 4y x= − −  while ( )1,5  isn’t on 
the graph.  How do we tell this?  All we need to take the coordinates of the point and plug them 
into the equation to see if they satisfy the equation.  Let’s do that for both to verify the claims 
made above. 
 
( )2, 3− : 

In this case we have 2x =  and 2y = −  so plugging in gives, 

 

( )

( )

2?

2?

3 2 1 4

3 1 4
3 3 OK

− = − −

− = −

− = −

 

 
So, the coordinates of this point satisfies the equation and so it is a point on the graph. 
 
( )1,5 : 

Here we have 1x =  and 5y = .  Plugging these in gives, 

 

( )

( )

2?

2?

5 1 1 4

5 0 4
5 4 NOT OK

= − −

= −

≠ −

 

 
The coordinates of this point do NOT satisfy the equation and so this point isn’t on the graph. 
 
Now, how do we sketch the graph of an equation?  Of course, the answer to this depends on just 
how much you know about the equation to start off with.  For instance, if you know that the 
equation is a line or a circle we’ve got simple ways to determine the graph in these cases.  There 
are also many other kinds of equations that we can usually get the graph from the equation 
without a lot of work.  We will see many of these in the next chapter. 
 
However, let’s suppose that we don’t know ahead of time just what the equation is or any of the 
ways to quickly sketch the graph.  In these cases we will need to recall that the graph is simply all 
the points that satisfy the equation.  So, all we can do is plot points.  We will pick values of x, 
compute y from the equation and then plot the ordered pair given by these two values.   
 
How, do we determine which values of x to choose?  Unfortunately, the answer there is we guess.  
We pick some values and see what we get for a graph.  If it looks like we’ve got a pretty good 
sketch we stop.  If not we pick some more.  Knowing the values of x to choose is really 
something that we can only get with experience and some knowledge of what the graph of the 
equation will probably look like.  Hopefully, by the end of this course you will have gained some 
of this knowledge. 
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Let’s take a quick look at a graph. 
 
Example 1  Sketch the graph of ( )21 4y x= − − . 
 
Solution 
Now, this is a parabola and after the next chapter you will be able to quickly graph this without 
much effort.  However, we haven’t gotten that far yet and so we will need to choose some values 
of x, plug them in and compute the y values. 
 
As mentioned earlier, it helps to have an idea of what this graph is liable to look like when 
picking values of x.  So, don’t worry at this point why we chose the values that we did.  After the 
next chapter you would also be able to choose these values of x. 
 
Here is a table of values for this equation. 
 

x y ( ),x y  

-2 5 ( )2,5−

-1 0 ( )1,0−

0 -3 ( )0, 3−

1 -4 ( )1, 4−  

2 -3 ( )2, 3−

3 0 ( )3,0  

4 5 ( )4,5  
 
Let’s verify the first one and we’ll leave the rest to you to verify.  For the first one we simply plug 

2x = −  into the equation and compute y. 
 

 

( )
( )

2

2

2 1 4

3 4
9 4
5

y = − − −

= − −

= −
=

 

 
Here is the graph of this equation. 
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Notice that when we set up the axis system in this example, we only set up as much as we needed.  
For example, since we didn’t go past -2 with our computations we didn’t go much past that with 
our axis system.   
 
Also, notice that we used a different scale on each of the axes.  With the horizontal axis we 
incremented by 1’s while on the vertical axis we incremented by 2.  This will often be done in 
order to make the sketching easier. 
 
The final topic that we want to discuss in this section is that of intercepts.  Notice that the graph 
in the above example crosses the x-axis in two places and the y-axis in one place.  All three of 
these points are called intercepts.  We can, and often will be, more specific however. 
 
We often will want to know of the intercept crosses the x or y-axis specifically.  So, if an intercept 
crosses the x-axis we will call it an x-intercept.  Likewise, if an intercept crosses the y-axis we 
will call it a y-intercept.   
 
Now, since the x-intercept crosses x-axis then the y coordinates of the x-intercept(s) will be zero.  
Also, the x coordinate of the y-intercept will be zero since these points cross the y-axis.  These 
facts give us a way to determine the intercepts for an equation.  To find the x-intercepts for an 
equation all that we need to do is set 0y =  and solve for x.  Likewise to find the y-intercepts for 
an equation we simply need to set 0x =  and solve for y. 
 
Let’s take a quick look at an example. 
 
Example 2  Determine the x-intercepts and y-intercepts for each of the following equations. 

(a) 2 6y x x= + −    [Solution] 
(b) 2 2y x= +    [Solution] 

(c) ( )21y x= +    [Solution] 
 
Solution 
As verification for each of these we will also sketch the graph of each function.  We will leave the 
details of the sketching to you to verify.  Also, these are all parabolas and as mentioned earlier we 
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will be looking at these in detail in the next chapter. 
 
(a) 2 6y x x= + −  
Let’s first find the y-intercept(s).  Again, we do this by setting 0x =  and solving for y.  This is 
usually the easier of the two.  So, let’s find the y-intercept(s). 
 ( )20 0 6 6y = + − = −  

So, there is a single y-intercept : ( )0, 6− . 
 
The work for the x-intercept(s) is almost identical except in this case we set 0y =  and solve for 
x.  Here is that work. 
 

 
( )( )

20 6
0 3 2 3, 2

x x
x x x x

= + −

= + − ⇒ = − =
 

 
For this equation there are two x-intercepts : ( )3,0−  and ( )2,0 .  Oh, and you do remember how 
to solve quadratic equations right? 
 
For verification purposes here is sketch of the graph for this equation. 

 
[Return to Problems] 

 
(b) 2 2y x= +  
First, the y-intercepts. 
 ( ) ( )20 2 2 0, 2y = + = ⇒  
So, we’ve got a single y-intercepts.  Now, the x-intercept(s). 

 
2

2

0 2

2 2

x

x x i

= +

− = ⇒ = ±
 

Okay, we got complex solutions from this equation.  What this means is that we will not have any 
x-intercepts.  Note that it is perfectly acceptable for this to happen so don’t worry about it when it 
does happen. 
 
Here is the graph for this equation. 
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Sure enough, it doesn’t cross the x-axis. 

[Return to Problems] 
 
(c) ( )21y x= +  
Here is the y-intercept work for this equation. 
 ( ) ( )20 1 1 0,1y = + = ⇒  
Now the x-intercept work. 
 ( ) ( )20 1 1 1,0x x= + ⇒ = − ⇒ −  
In this case we have a single x-intercept. 
 
Here is a sketch of the graph for this equation. 

 
 
Now, notice that in this case the graph doesn’t actually cross the x-axis at 1x = − .  This point is 
still called an x-intercept however. 

[Return to Problems]
 
We should make one final comment before leaving this section.  In the previous set of examples 
all the equations were quadratic equations.  This was done only because the exhibited the range of 
behaviors that we were looking for and we would be able to do the work as well.  You should not 
walk away from this discussion of intercepts with the idea that they will only occur for quadratic 
equations.  They can, and do, occur for many different equations. 
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 Lines 
Let’s start this section off with a quick mathematical definition of a line.  Any equation that can 
be written in the form, 

Ax By C+ =  
where we can’t have both A and B be zero simultaneously is a line.  It is okay if one of them is 
zero, we just can’t have both be zero.  Note that this is sometimes called the standard form of 
the line. 
 
Before we get too far into this section it would probably be helpful to recall that a line is defined 
by any two points that are one the line.  Given two points that are on the line we can graph the 
line and/or write down the equation of the line.  This fact will be used several times throughout 
this section. 
 
One of the more important ideas that we’ll be discussing in this section is that of slope.  The slope 
of a line is a measure of the steepness of a line and it can also be used to measure whether a line 
is increasing or decreasing as we move from left to right.  Here is the precise definition of the 
slope of a line. 
 
Given any two points on the line say, ( )1 1,x y  and ( )2 2,x y , the slope of the line is given by, 

 2 1

2 1

y ym
x x
−

=
−

 

 
In other words, the slope is the difference in the y values divided by the difference in the x values.  
Also, do not get worried about the subscripts on the variables.  These are used fairly regularly 
from this point on and are simply used to denote the fact that the variables are both x or y values 
but are, in all likelihood, different. 
 
When using this definition do not worry about which point should be the first point and which 
point should be the second point.  You can choose either to be the first and/or second and we’ll 
get exactly the same value for the slope. 
 
There is also a geometric “definition” of the slope of the line as well.  You will often hear the 
slope as being defined as follows, 

rise
run

m =  

 
The two definitions are identical as the following diagram illustrates.  The numerators and 
denominators of both definitions are the same. 
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Note as well that if we have the slope (written as a fraction) and a point on the line, say ( )1 1,x y , 
then we can easily find a second point that is also on the line.  Before seeing how this can be done 
let’s take the convention that if the slope is negative we will put the minus sign on the numerator 
of the slope.  In other words, we will assume that the rise is negative if the slope is negative.  
Note as well that a negative rise is really a fall. 
 
So, we have the slope, written as a fraction, and a point on the line, ( )1 1,x y .  To get the 

coordinates of the second point, ( )2 2,x y  all that we need to do is start at ( )1 1,x y  then move to 
the right by the run (or denominator of the slope) and then up/down by rise (or the numerator of 
the slope) depending on the sign of the rise.  We can also write down some equations for the 
coordinates of the second point as follows, 
 

 2 1

2 1

run
rise

x x
y y
= +
= +

 

 
Note that if the slope is negative then the rise will be a negative number. 
 
Let’s compute a couple of slopes. 
 
Example 1  Determine the slope of each of the following lines.  Sketch the graph of each line. 

(a) The line that contains the two points ( )2, 3− −  and ( )3,1 .   [Solution] 

(b) The line that contains the two points ( )1,5−  and ( )0, 2− .   [Solution] 

(c) The line that contains the two points ( )3, 2−  and ( )5, 2 .   [Solution] 

(d) The line that contains the two points ( )4,3  and ( )4, 2− .   [Solution] 
 
Solution 
Okay, for each of these all that we’ll need to do is use the slope formula to find the slope and then 
plot the two points and connect them with a line to get the graph. 
 
(a) The line that contains the two points ( )2, 3− −  and ( )3,1 . 
Do not worry which point gets the subscript of 1 and which gets the subscript of 2.  Either way 
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will get the same answer.  Typically, we’ll just take them in the order listed.  So, here is the slope 
for this part. 

 ( )
( )

1 3 1 3 4
3 2 3 2 5

m
− − +

= = =
− − +

 

Be careful with minus signs in these computations.  It is easy to lose track of them.  Also, when 
the slope is a fraction, as it is here, leave it as a fraction.  Do not convert to a decimal unless you 
absolutely have to. 
 
Here is a sketch of the line. 

 
Notice that this line increases as we move from left to right. 

[Return to Problems] 
(b) The line that contains the two points ( )1,5−  and ( )0, 2− . 
Here is the slope for this part. 

 
( )

2 5 7 7
0 1 1

m − − −
= = = −

− −
 

Again, watch out for minus signs.  Here is a sketch of the graph. 

 
This line decreases as we move from left to right. 

[Return to Problems] 
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(c) The line that contains the two points ( )3, 2−  and ( )5, 2 . 
Here is the slope for this line. 

 
( )

2 2 0 0
5 3 8

m −
= = =

− −
 

We got a slope of zero here.  That is okay, it will happen sometimes.  Here is the sketch of the 
line. 

 
In this case we’ve got a horizontal line. 

[Return to Problems] 
 
(d) The line that contains the two points ( )4,3  and ( )4, 2− . 
The final part.  Here is the slope computation. 

 2 3 5 undefined
4 4 0

m − − −
= = =

−
 

In this case we get division by zero which is undefined.  Again, don’t worry too much about this 
it will happen on occasion.  Here is a sketch of this line. 

 
This final line is a vertical line. 

[Return to Problems]
 
We can use this set of examples to see some general facts about lines. 
 
First, we can see from the first two parts that the larger the number (ignoring any minus signs) the 
steeper the line.  So, we can use the slope to tell us something about just how steep a line is. 
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Next, we can see that if the slope is a positive number then the line will be increasing as we move 
from left to right.  Likewise, if the slope is a negative number then the line will decrease as we 
move from left to right. 
 
We can use the final two parts to see what the slopes of horizontal and vertical lines will be.  A 
horizontal line will always have a slope of zero and a vertical line will always have an undefined 
slope. 
 
We now need to take a look at some special forms of the equation of the line. 
 
We will start off with horizontal and vertical lines.  A horizontal line with a y-intercept of b will 
have the equation, 
 y b=  
 
Likewise, a vertical line with an x-intercept of a will have the equation, 
 x a=  
 
So, if we go back and look that the last two parts of the previous example we can see that the 
equation of the line for the horizontal line in the third part is  
 2y =  
while the equation for the vertical line in the fourth part is 
 4x =  
 
The next special form of the line that we need to look at is the point-slope form of the line.  This 
form is very useful for writing down the equation of a line.  If we know that a line passes through 
the point ( )1 1,x y  and has a slope of m then the point-slope form of the equation of the line is, 

 ( )1 1y y m x x− = −  
 
Sometimes this is written as, 
 ( )1 1y y m x x= + −  
 
The form it’s written in usually depends on the instructor that is teaching the class. 
 
As stated earlier this form is particularly useful for writing down the equation of a line so let’s 
take a look at an example of this. 
 
Example 2  Write down the equation of the line that passes through the two points ( )2, 4−  and 

( )3, 5− . 
 
Solution 
At first glance it may not appear that we’ll be able to use the point-slope form of the line since 
this requires a single point (we’ve got two) and the slope (which we don’t have).  However, that 
fact that we’ve got two points isn’t really a problem; in fact, we can use these two points to 
determine the missing slope of the line since we do know that we can always find that from any 
two points on the line. 
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So, let’s start off my finding the slope of the line. 

 
( )

5 4 9
3 2 5

m − −
= = −

− −
 

 
Now, which point should we use to write down the equation of the line?  We can actually use 
either point.  To show this we will use both. 
 
First, we’ll use ( )2, 4− .  Now that we’ve gotten the point all that we need to do is plug into the 
formula.  We will use the second form. 

 ( )( ) ( )9 94 2 4 2
5 5

y x x= − − − = − +  

 
Now, let’s use ( )3, 5− . 

( )95 3
5

y x= − − −  

 
Okay, we claimed that it wouldn’t matter which point we used in the formula, but these sure look 
like different equations.  It turns out however, that these really are the same equation.  To see this 
all that we need to do is distribute the slope through the parenthesis and then simplify. 
 
Here is the first equation. 

 

( )94 2
5
9 184
5 5

9 2
5 5

y x

x

x

= − +

= − −

= − +

 

Here is the second equation. 

 

( )95 3
5
9 275
5 5

9 2
5 5

y x

x

x

= − − −

= − − +

= − +

 

So, sure enough they are the same equation. 
 
The final special form of the equation of the line is probably the one that most people are familiar 
with.  It is the slope-intercept form.  In this case if we know that a line has slope m and has a y-
intercept of ( )0,b  then the slope-intercept form of the equation of the line is, 

y mx b= +  
 
This form is particularly useful for graphing lines.  Let’s take a look at a couple of examples. 
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Example 3  Determine the slope of each of the following equations and sketch the graph of the 
line. 

(a) 2 6 2y x− = −    [Solution] 
(b) 3 4 6y x+ =    [Solution] 

 
Solution 
Okay, to get the slope we’ll first put each of these in slope-intercept form and then the slope will 
simply be the coefficient of the x (including sign).  To graph the line we know the y-intercept of 
the line, that’s the number without an x (including sign) and as discussed above we can use the 
slope to find a second point on the line.  At that point there isn’t anything to do other than sketch 
the line. 
 
(a) 2 6 2y x− = −  
First solve the equation for y.  Remember that we solved equations like this back in the previous 
chapter. 

 
2 6 2

3 1
y x
y x
= −
= −

 

 
So, the slope for this line is 3 and the y-intercept is the point ( )0, 1− .  Don’t forget to take the 
sign when determining the y-intercept.  Now, to find the second point we usually like the slope 
written as a fraction to make it clear what the rise and run are.  So, 

 3 rise3 rise 3, run 1
1 run

m = = = ⇒ = =  

 
The second point is then, 

( )2 20 1 1 1 3 2 1,2x y= + = = − + = ⇒  
 
Here is a sketch of the graph of the line. 

 
[Return to Problems] 
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(b) 3 4 6y x+ =  
Again, solve for y. 

 
3 4 6

4 2
3

y x

y x

= − +

= − +
 

In this case the slope is 
4
3

−  and the y-intercept is ( )0, 2 .  As with the previous part let’s first 

determine the rise and the run. 

 4 4 rise rise 4, run 3
3 3 run

m −
= − = = ⇒ = − =  

Again, remember that if the slope is negative make sure that the minus sign goes with the 
numerator.  The second point is then, 
 ( ) ( )2 20 3 3 2 4 2 3, 2x y= + = = + − = − ⇒ −  
 
Here is the sketch of the graph for this line. 

 
[Return to Problems]

 
The final topic that we need to discuss in this section is that of parallel and perpendicular lines.  
Here is a sketch of parallel and perpendicular lines. 
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Suppose that the slope of Line 1 is 1m  and the slope of Line 2 is 2m .  We can relate the slopes 
parallel lines and we can relate slopes of perpendicular lines as follows. 
 

 
1 2

1 2 2
1

parallel : 
1perpendicular : 1 or   

m m

m m m
m

=

= − = −
 

 
Note that there are two forms of the equation for perpendicular lines.  The second is the more 
common and in this case we usually say that 2m  is the negative reciprocal of 1m . 
 
Example 4  Determine if the line that passes through the points ( )2, 10− −  and ( )6, 1−  is 

parallel, perpendicular or neither to the line given by 7 9 15y x− = . 
 
Solution 
Okay, in order to do answer this we’ll need the slopes of the two lines.  Since we have two points 
for the first line we can use the formula for the slope, 

 ( )
( )1

1 10 9
6 2 8

m
− − −

= =
− −

 

We don’t actually need the equation of this line and so we won’t bother with it. 
 
Now, to get the slope of the second line all we need to do is put it into slope-intercept form. 

 
2

7 9 15
9 15 9
7 7 7

y x

y x m

= +

= + ⇒ =
 

 
Okay, since the two slopes aren’t the same (they’re close, but still not the same) the two lines are 
not parallel.  Also, 

 9 9 81 1
8 7 56

⎛ ⎞⎛ ⎞ = ≠ −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

 

so the two lines aren’t perpendicular either. 
 
Therefore, the two lines are neither parallel nor perpendicular. 
 
Example 5  Determine the equation of the line that passes through the point ( )8, 2  and is, 

(a) parallel to the line given by 10 3 2y x+ = −    [Solution] 
(b) perpendicular to the line given by 10 3 2y x+ = − .   [Solution] 

Solution 
In both parts we are going to need the slope of the line given by 10 3 2y x+ = −  so let’s actually 
find that before we get into the individual parts. 

 
1

10 3 2
3 1 3

10 5 10

y x

y x m

= − −

= − − ⇒ = −
 

Now, let’s work the example. 
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(a) parallel to the line given by 10 3 2y x+ = −  
In this case the new line is to be parallel to the line given by 10 3 2y x+ = −  and so it must have 
the same slope as this line.  Therefore we know that, 

 2
3

10
m = −  

 

Now, we’ve got a point on the new line, ( )8, 2 , and we know the slope of the new line, 
3

10
− , so 

we can use the point-slope form of the line to write down the equation of the new line.  Here is 
the equation, 

 

( )32 8
10
3 242

10 10
3 44

10 10
3 22

10 5

y x

x

x

y x

= − −

= − +

= − +

= − +

 

[Return to Problems] 
 
(b) perpendicular to the line given by 10 3 2y x+ = −  
For this part we want the line to be perpendicular to 10 3 2y x+ = −  and so we know we can find 
the new slope as follows, 

 2
1 10
3 3

10

m = − =
−

 

Then, just as we did in the previous part we can use the point-slope form of the line to get the 
equation of the new line.  Here it is, 

 

( )102 8
3

10 802
3 3

10 74
3 3

y x

x

y x

= + −

= + −

= −

 

[Return to Problems]
 
 



College Algebra 

© 2007 Paul Dawkins 169 http://tutorial.math.lamar.edu/terms.aspx 
 

 Circles 
In this section we are going to take a quick look at circles.  However, before we do that we need 
to give a quick formula that hopefully you’ll recall seeing at some point in the past. 
 
Given two points ( )1 1,x y  and ( )2 2,x y  the distance between them is given by, 

 ( ) ( )2 2
2 1 2 1d x x y y= − + −  

 
So, why did we remind you of this formula?  Well, let’s recall just what a circle is.  A circle is all 
the points that are the same distance, r – called the radius, from a point, ( ),h k  - called the center.  

In other words, if ( ),x y  is any point that is on the circle then it has a distance of r from the 

center, ( ),h k . 
 
If we use the distance formula on these two points we would get, 
 

 ( ) ( )2 2r x h y k= − + −  
 
Or, if we square both sides we get, 
 
 ( ) ( )2 2 2x h y k r− + − =  
 
This is the standard form of the equation of a circle with radius r and center ( ),h k . 
 
Example 1  Write down the equation of a circle with radius 8 and center ( )4,7− . 
 
Solution 
Okay, in this case we have 8r = , 4h = −  and 7k =  so all we need to do is plug them into the 
standard form of the equation of the circle. 
 

 
( )( ) ( )
( ) ( )

2 2 2

2 2

4 7 8

4 7 64

x y

x y

− − + − =

+ + − =
 

 
Do not square out the two terms on the left.  Leaving these terms as they are will allow us to 
quickly identify the equation as that of a circle and to quickly identify the radius and center of the 
circle. 
 
Graphing circles is a fairly simple process once we know the radius and center.  In order to graph 
a circle all we really need is the right most, left most, top most and bottom most points on the 
circle.  Once we know these it’s easy to sketch in the circle.  
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Nicely enough for us these points are easy to find.  Since these are points on the circle we know 
that they must be a distance of r from the center.  Therefore the points will have the following 
coordinates. 
 

 

( )
( )
( )

( )

right most point : ,

left most point : ,

top most point : ,

bottom most point : ,

h r k

h r k

h k r

h k r

+

−

+

−

 

 
In other words all we need to do is add r on to the x coordinate or y coordinate of the point to get 
the right most or top most point respectively and subtract r from the x coordinate or y coordinate 
to get the left most or bottom most points. 
 
Let’s graph some circles. 
 
Example 2  Determine the center and radius of each of the following circles and sketch the 
graph of the circle. 

(a) 2 2 1x y+ =    [Solution] 

(b) ( )22 3 4x y+ − =    [Solution] 

(c) ( ) ( )2 21 4 16x y− + + =    [Solution] 
Solution 
In all of these all that we really need to do is compare the equation to the standard form and 
identify the radius and center.  Once that is done find the four points talked about above and 
sketch in the circle. 
 
(a) 2 2 1x y+ =  
In this case it’s just x and y squared by themselves.  The only way that we could have this is to 
have both h and k be zero.  So, the center and radius is, 
 ( )center 0,0 radius 1 1= = =  
 
Don’t forget that the radius is the square root of the number on the other side of the equal sign.  
Here is a sketch of this circle. 
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A circle centered at the origin with radius 1 (i.e. this circle) is called the unit circle.  The unit 
circle is very useful in a Trigonometry class. 

[Return to Problems] 
 
(b) ( )22 3 4x y+ − =  
In this part, it looks like the x coordinate of the center is zero as with the previous part.  However, 
this time there is something more with the y term and so comparing this term to the standard form 
of the circle we can see that the y coordinate of the center must be 3.  The center and radius of 
this circle is then, 
 ( )center 0,3 radius 4 2= = =  
 
Here is a sketch of the circle.  The center is marked with a red cross in this graph. 

 
[Return to Problems] 

 
(c) ( ) ( )2 21 4 16x y− + + =  
For this part neither of the coordinates of the center are zero.  By comparing our equation with the 
standard form it’s fairly easy to see (hopefully…) that the x coordinate of the center is 1.  The y 
coordinate isn’t too bad either, but we do need to be a little careful.  In this case the term is 

( )24y +  and in the standard form the term is ( )2y k− .  Note that the signs are different.  The 
only way that this can happen is if k is negative.  So, the y coordinate of the center must be -4. 
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The center and radius for this circle are, 
 ( )center 1,4 radius 16 4= = =  
 
Here is a sketch of this circle with the center marked with a red cross. 

 
[Return to Problems]

 
So, we’ve seen how to deal with circles that are already in the standard form.  However, not all 
circles will start out in the standard form.  So, let’s take a look at how to put a circle in the 
standard form. 
 
Example 3  Determine the center and radius of each of the following. 

(a) 2 2 8 7 0x y x+ + + =    [Solution] 
(b) 2 2 3 10 1 0x y x y+ − + − =    [Solution] 

Solution 
Neither of these equations are in standard form and so to determine the center and radius we’ll 
need to put it into standard form.  We actually already know how to do this.  Back when we were 
solving quadratic equations we saw a way to turn a quadratic polynomial into a perfect square.  
The process was called completing the square. 
 
This is exactly what we want to do here, although in this case we aren’t solving anything and 
we’re going to have to deal with the fact that we’ve got both  x and y in the equation.  Let’s step 
through the process with the first part. 
 
(a) 2 2 8 7 0x y x+ + + =  
We’ll go through the process in a step by step fashion with this one. 
 
Step 1 : First get the constant on one side by itself and at the same time group the x terms 
together and the y terms together. 
 2 28 7x x y+ + = −  
 
In this case there was only one term with a y in it and two with x’s in them. 
 
Step 2 : For each variable with two terms complete the square on those terms. 
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So, in this case that means that we only need to complete the square on the x terms.  Recall how 
this is done.  We first take half the coefficient of the x and square it. 

 ( )
2

28 4 16
2

⎛ ⎞ = =⎜ ⎟
⎝ ⎠

 

We then add this to both sides of the equation. 
 2 28 16 7 16 9x x y+ + + = − + =  
 
Now, the first three terms will factor as a perfect square. 
 ( )2 24 9x y+ + =  
 
Step 3 :  This is now the standard form of the equation of a circle and so we can pick the center 
and radius right off this.  They are, 
 ( )center 4,0 radius 9 3= − = =  

[Return to Problems] 
 
(b) 2 2 3 10 1 0x y x y+ − + − =  
In this part we’ll go through the process a little quicker.  First get terms properly grouped and 
placed. 
 2 2

complete the square complete the square

3 10 1x x y y− + + =��	�
 ��	�
  

 
Now, as noted above we’ll need to complete the square twice here, once for the x terms and once 
for the y terms.  Let’s first get the numbers that we’ll need to add to both sides. 

 ( )
2 2

23 9 10 5 25
2 4 2

⎛ ⎞ ⎛ ⎞− = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

 
Now, add these to both sides of the equation.   

 2 2

factor this
factor this

9 9 1133 10 25 1 25
4 4 4

x x y y− + + + + = + + =���	��
��	�

 

 
When adding the numbers to both sides make sure and place them properly.  This means that we 
need to put the number from the coefficient of the x with the x terms and the number from the 
coefficient of the y with the y terms.  This placement is important since this will be the only way 
that the quadratics will factor as we need them to factor. 
 
Now, factor the quadratics as show above.  This will give the standard form of the equation of the 
circle. 

 ( )
2

23 1135
2 4

x y⎛ ⎞− + + =⎜ ⎟
⎝ ⎠

 

 
This looks a little messier than the equations that we’ve seen to this point.  However, this is 
something that will happen on occasion so don’t get excited about it.  Here is the center and 
radius for this circle. 
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 3 113 113center , 5 radius
2 4 2

⎛ ⎞= − = =⎜ ⎟
⎝ ⎠

 

 
Do not get excited about the messy radius or fractions in the center coordinates. 

[Return to Problems]
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 The Definition of a Function 
We now need to move into the second topic of this chapter.  The first thing that we need to do is 
define just what a function is.  There are lots and lots of definitions for a function out there and 
most of them involve the terms rule, relation, or correspondence.  While these are more 
technically accurate than the definition that we’re going to use in this section all the fancy words 
used in the other definitions tend to just confuse the issue and make it difficult to understand just 
what a function is. 
 
So, here is the definition of function that we’re going to use.  Again, I need to point out that this is 
NOT the most technically accurate definition of a function, but it is a good “working definition” 
of a function that helps us to understand just how a function works. 
 
“Working Definition” of Function 
A function is an equation (this is where most definitions use one of the words given above) if any 
x that can be plugged into the equation will yield exactly one y out of the equation. 
 
There it is.  That is the definition of functions that we’re going to use.  Before we examine this a 
little more note that we used the phrase “x that can be plugged into” in the definition.  This tends 
to imply that not all x’s can be plugged into and equation and this is in fact correct.  We will come 
back and discuss this in more detail towards the end of this section, however at this point just 
remember that we can’t divide by zero and if we want real numbers out of the equation we can’t 
take the square root of a negative number.  So, with these two examples it is clear that we will not 
always be able to plug in every x into any equation. 
 
When dealing with functions we are always going to assume that both x and y will be real 
numbers.  In other words, we are going to forget that we know anything about complex numbers 
for a little bit while we deal with this section. 
 
Okay, with that out of the way let’s get back to the definition of a function.  Now, we started off 
by saying that we weren’t going to make the definition confusing.  However, what we should 
have said was we’ll try not to make it too confusing, because no matter how we define it the 
definition is always going to be a little confusing at first. 
 
In order to clear up some of the confusion let’s look at some examples of equations that are 
functions and equations that aren’t functions. 
 
Example 1  Determine which of the following equations are functions and which are not 
functions. 

(a) 5 1y x= +    [Solution] 
(b) 2 1y x= +    [Solution] 
(c) 2 1y x= +    [Solution] 
(d) 2 2 4x y+ =    [Solution] 

Solution 
The definition of function is saying is that if we take all possible values of x and plug them into 
the equation and solve for y we will get exactly one value for each value of x.  At this stage of the 
game it can be pretty difficult to actually show that an equation is a function so we’ll mostly talk 
our way through it.  On the other hand it’s often quite easy to show that an equation isn’t a 
function. 
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 (a) 5 1y x= +  
So, we need to show that no matter what x we plug into the equation and solve for y we will only 
get a single value of y.  Note as well that the value of y will probably be different for each value 
of x, although it doesn’t have to be. 
 
Let’s start this off by plugging in some values of x and see what happens. 
 

 
( )
( )
( )

4 : 5 4 1 20 1 19

0 : 5 0 1 0 1 1

10 : 5 10 1 50 1 51

x y

x y

x y

= − = − + = − + = −

= = + = + =

= = + = + =

 

 
So, for each of these value of x we got a single value of y out of the equation.  Now, this isn’t 
sufficient to claim that this is a function.  In order to officially prove that this is a function we 
need to show that this will work no matter which value of x we plug into the equation. 
 
Of course we can’t plug all possible value of x into the equation.  That just isn’t physically 
possible.  However, let’s go back and look at the ones that we did plug in.  For each x, upon 
plugging in, we first multiplied the x by 5 and then added 1 onto it.  Now, if we multiply a 
number by 5 we will get a single value from the multiplication.  Likewise, we will only get a 
single value if we add 1 onto a number.  Therefore, it seems plausible that based on the operations 
involved with plugging x into the equation that we will only get a single value of y out of the 
equation. 
 
So, this equation is a function. 

[Return to Problems] 
 
(b) 2 1y x= +  
Again, let’s plug in a couple of values of x and solve for y to see what happens. 
 

 
( )
( )

2

2

1: 1 1 1 1 2

3: 3 1 9 1 10

x y

x y

= − = − + = + =

= = + = + =
 

 
Now, let’s think a little bit about what we were doing with the evaluations.  First we squared the 
value of x that we plugged in.  When we square a number there will only be one possible value.  
We then add 1 onto this, but again, this will yield a single value. 
 
So, it seems like this equation is also a function. 
 
Note that it is okay to get the same y value for different x’s.  For example, 
 ( )23 : 3 1 9 1 10x y= − = − + = + =  
We just can’t get more than one y out of the equation after we plug in the x. 

[Return to Problems] 
 
(c) 2 1y x= +  
As we’ve done with the previous two equations let’s plug in a couple of value of x, solve for y 
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and see what we get. 
 

 

2

2

2

3 : 3 1 4 2
1: 1 1 0 0

10 : 10 1 11 11

x y y
x y y

x y y

= = + = ⇒ = ±

= − = − + = ⇒ =

= = + = ⇒ = ±

 

 
Now, remember that we’re solving for y and so that means that in the first and last case above we 
will actually get two different y values out of the x and so this equation is NOT a function. 
 
Note that we can have values of x that will yield a single y as we’ve seen above, but that doesn’t 
matter.  If even one value of x yields more than one value of y upon solving the equation will not 
be a function. 
 
What this really means is that we didn’t need to go any farther than the first evaluation, since that 
gave multiple values of y. 

[Return to Problems] 
 
(d) 2 2 4x y+ =  
With this case we’ll use the lesson learned in the previous part and see if we can find a value of x 
that will give more than one value of y upon solving.  Because we’ve got a y2 in the problem this 
shouldn’t be too hard to do since solving will eventually mean using the square root property 
which will give more than one value of y. 
 
 2 2 20 : 0 4 4 2x y y y= + = ⇒ = ⇒ = ±  
 
So, this equation is not a function.  Recall, that from the previous section this is the equation of a 
circle.  Circles are never functions. 

[Return to Problems]
 
Hopefully these examples have given you a better feel for what a function actually is. 
 
We now need to move onto something called function notation.  Function notation will be used 
heavily throughout most of the remaining chapters in this course and so it is important to 
understand it. 
 
Let’s start off with the following quadratic equation. 
 2 5 3y x x= − +  
 
We can use a process similar to what we used in the previous set of examples to convince 
ourselves that this is a function.  Since this is a function we will denote it as follows, 
 
 ( ) 2 5 3f x x x= − +  
 
So, we replaced the y with the notation ( )f x .  This is read as “f of x”.  Note that there is nothing 
special about the f we used here.   We could just have easily used any of the following, 
 ( ) ( ) ( )2 2 25 3 5 3 5 3g x x x h x x x R x x x= − + = − + = − +  
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The letter we use does not matter.  What is important is the “ ( )x ” part.  The letter in the 
parenthesis must match the variable used on the right side of the equal sign. 
 
It is very important to note that ( )f x  is really nothing more than a really fancy way of writing y.  
If you keep that in mind you may find that dealing with function notation becomes a little easier.  
 
Also, this is NOT a multiplication of  f by x!  This is one of the more common mistakes people 
make when the first deal with functions.  This is just a notation used to denote functions. 
 
Next we need to talk about evaluating functions.  Evaluating function is really nothing more 
than asking what its value is for specific values of x.  Another way of looking at it is that we are 
asking what the y value for a given x is.   
 
Evaluation is really quite simple.  Let’s take the function we were looking at above 

( ) 2 5 3f x x x= − +  
and ask what its value is for 4x = .  In terms of function notation we will “ask” this using the 
notation ( )4f .  So, when there is something other than the variable inside the parenthesis we are 
really asking what the value of the function is for that particular quantity. 
 
Now, when we say the value of the function we are really asking what the value of the equation is 
for that particular value of x.  Here is ( )4f . 

 ( ) ( ) ( )24 4 5 4 3 16 20 3 1f = − + = − + = −  
 
Notice that evaluating a function is done in exactly the same way in which we evaluate equations.  
All we do is plug in for x whatever is on the inside of the parenthesis on the left.  Here’s another 
evaluation for this function. 
 ( ) ( ) ( )26 6 5 6 3 36 30 3 69f − = − − − + = + + =  
 
So, again, whatever is on the inside of the parenthesis on the left is plugged in for x in the 
equation on the right.  Let’s take a look at some more examples. 
 
Example 2  Given ( ) 2 2 8f x x x= − +  and ( ) 6g x x= +  evaluate each of the following. 

(a) ( )3f  and ( )3g    [Solution] 

(b) ( )10f −  and ( )10g −    [Solution] 

(c) ( )0f    [Solution] 

(d) ( )f t    [Solution] 

(e) ( )1f t +  and ( )1f x +    [Solution] 

(f) ( )3f x    [Solution] 

(g) ( )2 5g x −    [Solution] 
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Solution 
(a) ( )3f  and ( )3g  
Okay we’ve got two function evaluations to do here and we’ve also got two functions so we’re 
going to need to decide which function to use for the evaluations.  The key here is to notice the 
letter that is in front of the parenthesis.  For ( )3f  we will use the function ( )f x  and for ( )3g  

we will use ( )g x .  In other words, we just need to make sure that the variables match up. 
 
Here are the evaluations for this part. 

 
( ) ( ) ( )
( )

23 3 2 3 8 9 6 8 11

3 3 6 9 3

f

g

= − + = − + =

= + = =
 

[Return to Problems] 
 
(b) ( )10f −  and ( )10g −  
This one is pretty much the same as the previous part with one exception that we’ll touch on 
when we reach that point.  Here are the evaluations. 
 ( ) ( ) ( )210 10 2 10 8 100 20 8 128f − = − − − + = + + =  
Make sure that you deal with the negative signs properly here.  Now the second one. 
 ( )10 10 6 4g − = − + = −  
We’ve now reached the difference.  Recall that when we first started talking about the definition 
of functions we stated that we were only going to deal with real numbers.  In other words, we 
only plug in real numbers and we only want real numbers back out as answers.  So, since we 
would get a complex number out of this we can’t plug -10 into this function. 

[Return to Problems] 
 
(c) ( )0f  
Not much to this one. 
 ( ) ( ) ( )20 0 2 0 8 8f = − + =  
Again, don’t forget that this isn’t multiplication!  For some reason students like to think of this 
one as multiplication and get an answer of zero.  Be careful. 

[Return to Problems] 
 
(d) ( )f t  
The rest of these evaluations are now going to be a little different.  As this one shows we don’t 
need to just have numbers in the parenthesis.  However, evaluation works in exactly the same 
way.  We plug into the x’s on the right side of the equal sign whatever is in the parenthesis.  In 
this case that means that we plug in t for all the x’s. 
 
Here is this evaluation. 
 ( ) 2 2 8f t t t= − +  
 
Note that in this case this is pretty much the same thing as our original function, except this time 
we’re using t as a variable. 

[Return to Problems] 
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(e) ( )1f t +  and ( )1f x +  
 Now, let’s get a little more complicated, or at least they appear to be more complicated.  Things 
aren’t as bad as they may appear however.  We’ll evaluate ( )1f t +  first.  This one works exactly 
the same as the previous part did.  All the x’s on the left will get replaced with 1t + .  We will 
have some simplification to do as well after the substitution. 
 

 

( ) ( ) ( )2

2

2

1 1 2 1 8

2 1 2 2 8
7

f t t t

t t t
t

+ = + − + +

= + + − − +

= +

 

 
Be careful with parenthesis in these kinds of evaluations.  It is easy to mess up with them. 
 
Now, let’s take a look at ( )1f x + .  With the exception of the x this is identical to ( )1f t +  and 
so it works exactly the same way. 
 

 

( ) ( ) ( )2

2

2

1 1 2 1 8

2 1 2 2 8
7

f x x x

x x x
x

+ = + − + +

= + + − − +

= +

 

 
Do not get excited about the fact that we reused x’s in the evaluation here.  In many places where 
we will be doing this in later sections there will be x’s here and so you will need to get used to 
seeing that. 

[Return to Problems] 
 
(f) ( )3f x  

Again, don’t get excited about the x’s in the parenthesis here.  Just evaluate it as if it were a 
number. 
 

 ( ) ( ) ( )23 3 3

6 3

2 8

2 8

f x x x

x x

= − +

= − +
 

[Return to Problems] 
 
(g) ( )2 5g x −  

One more evaluation and this time we’ll use the other function. 
 

 ( )2 2

2

5 5 6

1

g x x

x

− = − +

= +
 

[Return to Problems]
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Function evaluation is something that we’ll be doing a lot of in later sections and chapters so 
make sure that you can do it.  You will find several later sections very difficult to understand 
and/or do the work in if you do not have a good grasp on how function evaluation works. 
 
While we are on the subject of function evaluation we should now talk about piecewise 
functions.  We’ve actually already seen an example of a piecewise function even if we didn’t call 
it a function (or a piecewise function) at the time.  Recall the mathematical definition of absolute 
value. 

 
if 0
if 0

x x
x

x x
≥⎧

= ⎨− <⎩
 

 
This is a function and if we use function notation we can write it as follows, 

 ( )
if 0
if 0

x x
f x

x x
≥⎧

= ⎨− <⎩
 

 
This is also an example of a piecewise function.  A piecewise function is nothing more than a 
function that is broken into pieces and which piece you use depends upon value of x.  So, in the 
absolute value example we will use the top piece if x is positive or zero and we will use the 
bottom piece if x is negative. 
 
Let’s take a look at evaluating a more complicated piecewise function. 
 
Example 3  Given,  

( )

23 4 if 4
10 if 4 15
1 6 if 15

t t
g t t

t t

⎧ + ≤ −
⎪= − < ≤⎨
⎪ − >⎩

 

evaluate each of the following. 
(a) ( )6g −    [Solution] 

(b) ( )4g −    [Solution] 

(c) ( )1g    [Solution] 

(d) ( )15g    [Solution] 

(e) ( )21g    [Solution] 
Solution 
Before starting the evaluations here let’s notice that we’re using different letters for the function 
and variable than the ones that we’ve used to this point.  That won’t change how the evaluation 
works.  Do not get so locked into seeing f for the function and x for the variable that you can’t do 
any problem that doesn’t have those letters. 
 
Now, to do each of these evaluations the first thing that we need to do is determine which 
inequality the number satisfies, and it will only satisfy a single inequality.  When we determine 
which inequality the number satisfies we use the equation associated with that inequality. 
 
So, let’s do some evaluations. 
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(a) ( )6g −  
In this case -6 satisfies the top inequality and so we’ll use the top equation for this evaluation. 
 ( ) ( )26 3 6 4 112g − = − + =  

[Return to Problems] 
 
(b) ( )4g −  
Now we’ll need to be a little careful with this one since -4 shows up in two of the inequalities.  
However, it only satisfies the top inequality and so we will once again use the top function for the 
evaluation. 
 ( ) ( )24 3 4 4 52g − = − + =  

[Return to Problems] 
 
(c) ( )1g  
In this case the number, 1, satisfies the middle inequality and so we’ll use the middle equation for 
the evaluation.  This evaluation often causes problems for students despite the fact that it’s 
actually one of the easiest evaluations we’ll ever do.  We know that we evaluate 
functions/equations by plugging in the number for the variable.  In this case there are no 
variables.  That isn’t a problem.  Since there aren’t any variables it just means that we don’t 
actually plug in anything and we get the following, 
 ( )1 10g =  

[Return to Problems] 
 
(d) ( )15g  
Again, like with the second part we need to be a little careful with this one.  In this case the 
number satisfies the middle inequality since that is the one with the equal sign in it.  Then like the 
previous part we just get, 
 ( )15 10g =  
 
Don’t get excited about the fact that the previous two evaluations were the same value.  This will 
happen on occasion. 

[Return to Problems] 
 
(e) ( )21g  
For the final evaluation in this example the number satisfies the bottom inequality and so we’ll 
use the bottom equation for the evaluation. 
 ( ) ( )21 1 6 21 125g = − = −  

[Return to Problems]
 
Piecewise functions do not arise all that often in an Algebra class however, the do arise in several 
places in later classes and so it is important for you to understand them if you are going to be 
moving on to more math classes. 
 
As a final topic we need to come back and touch on the fact that we can’t always plug every x 
into every function.  We talked briefly about this when we gave the definition of the function and 
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we saw an example of this when we were evaluating functions.  We now need to look at this in a 
little more detail. 
 
First we need to get a couple of definitions out of the way.   
 
Domain and Range 
The domain of an equation is the set of all x’s that we can plug into the equation and get back a 
real number for y.  The range of an equation is the set of all y’s that we can ever get out of the 
equation. 
 
 
Note that we did mean to use equation in the definitions above instead of functions.  These are 
really definitions for equations.  However, since functions are also equations we can use the 
definitions for functions as well. 
 
Determining the range of an equation/function is can be pretty difficult to do for many functions 
and so we aren’t going to really get into that.  We are much more interested here in determining 
the domains of functions.  From the definition the domain is the set of all x’s that we can plug 
into a function and get back a real number.  At this point, that means that we need to avoid 
division by zero and taking square roots of negative numbers. 
 
Let’s do a couple of quick examples of finding domains. 
 
Example 4  Determine the domain of each of the following functions. 

(a) ( ) 2

3
3 10

xg x
x x

+
=

+ −
   [Solution] 

(b) ( ) 5 3f x x= −    [Solution] 

(c) ( ) 2

7 8
4

xh x
x

+
=

+
   [Solution] 

(d) ( ) 2

10 5
16

xR x
x

−
=

−
   [Solution] 

Solution 
The domains for these functions are all the values of x for which we don’t have division by zero 
or the square root of a negative number.  If we remember these two ideas finding the domains 
will be pretty easy. 
 

(a) ( ) 2

3
3 10

xg x
x x

+
=

+ −
 

So, in this case there are no square roots so we don’t need to worry about the square root of a 
negative number.  There is however a possibility that we’ll have a division by zero error.  To 
determine if we will we’ll need to set the denominator equal to zero and solve. 
 ( )( )2 3 10 5 2 0 5, 2x x x x x x+ − = + − = = − =  
 
So, we will get division by zero if we plug in 5x = −  or 2x = .  That means that we’ll need to 
avoid those two numbers.  However, all the other values of x will work since they don’t give 
division by zero.  The domain is then, 
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 Domain : All real numbers except 5 and 2x x= − =  
[Return to Problems] 

 
(b) ( ) 5 3f x x= −  
In this case we won’t have division by zero problems since we don’t have any fractions.  We do 
have a square root in the problem and so we’ll need to worry about taking the square root of a 
negative numbers. 
 
This one is going to work a little differently from the previous part.  In that part we determined 
the value(s) of x to avoid.  In this case it will be just as easy to directly get the domain.  To avoid 
square roots of negative numbers all that we need to do is require that  
 5 3 0x− ≥  
 
This is a fairly simple linear inequality that we should be able to solve at this point. 

 55 3
3

x x≥ ⇒ ≤  

The domain of this function is then, 

 5Domain : 
3

x ≤  

[Return to Problems] 
 

(c) ( ) 2

7 8
4

xh x
x

+
=

+
 

In this case we’ve got a fraction, but notice that the denominator will never be zero for any real 
number since x2 is guaranteed to be positive or zero and adding 4 onto this will mean that the 
denominator is always at least 4.  In other words, the denominator won’t ever be zero.  So, all we 
need to do then is worry about the square root in the numerator. 
 
To do this we’ll require, 

 
7 8 0

7 8
8
7

x
x

x

+ ≥
≥ −

≥ −

 

 
Now, we can actually plug in any value of x into the denominator, however, since we’ve got the 
square root in the numerator we’ll have to make sure that all x’s satisfy the inequality above to 
avoid problems.  Therefore, the domain of this function is  

 8Domain :
7

x ≥ −  

[Return to Problems] 
 

(d) ( ) 2

10 5
16

xR x
x

−
=

−
 

In this final part we’ve got both a square root and division by zero to worry about.  Let’s take care 
of the square root first since this will probably put the largest restriction on the values of x.  So, to 
keep the square root happy (i.e. no square root of negative numbers) we’ll need to require that, 
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10 5 0

10 5
1
2

x
x

x

− ≥
≥

≥

 

 

So, at the least we’ll need to require that 
1
2

x ≥  in order to avoid problems with the square root.  

 
Now, let’s see if we have any division by zero problems.  Again, to do this simply set the 
denominator equal to zero and solve. 
 ( )( )2 16 4 4 0 4, 4x x x x x− = − + = ⇒ = − =  
 
Now, notice that 4x = −  doesn’t satisfy the inequality we need for the square root and so that 
value of x has already been excluded by the square root.  On the other hand 4x =  does satisfy 
the inequality.  This means that it is okay to plug 4x =  into the square root, however, since it 
would give division by zero we will need to avoid it. 
 
The domain for this function is then, 
 

 1Domain :   except  4
2

x x≥ =  

[Return to Problems]
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 Graphing Functions 
Now we need to discuss graphing functions.  If we recall from the previous section we said that 
( )f x  is nothing more than a fancy way of writing y.  This means that we already know how to 

graph functions.  We graph functions in exactly the same way that we graph equations.  If we 
know ahead of time what the function is a graph of we can use that information to help us with 
the graph and if we don’t know what the function is ahead of time then all we need to do is plug 
in some x’s compute the value of the function (which is really a y value) and then plot the points. 
 
Example 1  Sketch the graph of ( ) ( )31 1f x x= − + . 
 
Solution 
Now, as we talked about when we first looked at graphing earlier in this chapter we’ll need to 
pick values of x to plug in and knowing the values to pick really only comes with experience.  
Therefore, don’t worry so much about the values of x that we’re using here.  By the end of this 
chapter you’ll also be able to correctly pick these values. 
 
Here are the function evaluations. 

x f(x) ( ),x y  

-1 -7 ( )1, 7− −

0 0 ( )0,0  

1 1 ( )1,1  

2 2 ( )2,2  

3 9 ( )3,9  
 
Here is the sketch of the graph. 

 
So, graphing functions is pretty much the same as graphing equations.   
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There is one function that we’ve seen to this point that we didn’t really see anything like when we 
were graphing equations in the first part of this chapter.  That is piecewise functions.  So, we 
should graph a couple of these to make sure that we can graph them as well. 
 
Example 2  Sketch the graph of the following piecewise function. 

 ( )
2 4 if 1

2 1 if 1
x x

g x
x x

⎧− + <
= ⎨

− ≥⎩
 

Solution 
Okay, now when we are graphing piecewise functions we are really graphing several functions at 
once, except we are only going to graph them on very specific intervals.  In this case we will be 
graphing the following two functions, 
 

 
2 4 on 1

2 1 on 1
x x
x x

− + <
− ≥

 

 
We’ll need to be a little careful with what is going on right at 1x =  since technically that will 
only be valid for the bottom function.  However, we’ll deal with that at the very end when we 
actually do the graph.  For now, we will use 1x =  in both functions. 
 
The first thing to do here is to get a table of values for each function on the specified range and 
again we will use 1x =  in both even though technically it only should be used with the bottom 
function. 
 

x 2 4x− + ( ),x y  

-2 0 ( )2,0−

-1 3 ( )1,3−  

0 4 ( )0, 4  

1 3 ( )1,3  
   
x 2 1x −  ( ),x y  

1 1 ( )1,1  

2 3 ( )2,3  

3 5 ( )3,5  
 
Here is a sketch of the graph and notice how we denoted the points at 1x = .  For the top function 
we used an open dot for the point at 1x =  and for the bottom function we used a closed dot at 

1x = .  In this way we make it clear on the graph that only the bottom function really has a point 
at 1x = . 
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Notice that since the two graphs didn’t meet at 1x =  we left a blank space in the graph.  Do NOT 
connect these two points with a line.  There really does need to be a break there to signify that the 
two portions do not meet at 1x = . 
 
Sometimes the two portions will meet at these points and at other times they won’t.  We shouldn’t 
ever expect them to meet or not to meet until we’ve actually sketched the graph. 
 
 
Let’s take a look at another example of a piecewise function. 
 
Example 3  Sketch the graph of the following piecewise function. 

 ( ) 2

3 if 2
if 2 1

2 if 1

x x
h x x x

x x

+ < −⎧
⎪= − ≤ <⎨
⎪− + ≥⎩

 

Solution 
In this case we will be graphing three functions on the ranges given above.  So, as with the 
previous example we will get function values for each function in its specified range and we will 
include the endpoints of each range in each computation.  When we graph we will acknowledge 
which function the endpoint actually belongs with by using a closed dot as we did previously.  
Also, the top and bottom functions are lines and so we don’t really need more than two points for 
these two.  We’ll get a couple more points for the middle function. 
 

x 3x +  ( ),x y  

-3 0 ( )3,0−  

-2 1 ( )2,1−  
  

   

x 2x  ( ),x y  

-2 4 ( )2, 4−

-1 1 ( )1,1−  
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0 0 ( )0,0  

1 1 ( )1,1  
  

x 2x− + ( ),x y  

1 1 ( )1,1  

2 0 ( )2,0  
 
Here is the sketch of the graph. 

 
 
Note that in this case two of the portions met at the breaking point 1x =  and at the other breaking 
point, 2x = − , they didn’t meet up.  As noted in the previous example sometimes they meet up 
and sometimes they won’t. 
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 Combining Functions 
The topic with functions that we need to deal with is combining functions.  For the most part this 
means performing basic arithmetic (addition, subtraction, multiplication, and division) with 
functions.  There is one new way of combing functions that we’ll need to look at as well. 
 
Let’s start with basic arithmetic of functions.  Given two functions ( )f x  and ( )g x  we have the 
following notation and operations. 
 

 
( )( ) ( ) ( ) ( )( ) ( ) ( )

( )( ) ( ) ( ) ( ) ( )
( )

f g x f x g x f g x f x g x

f xffg x f x g x x
g g x

+ = + − = −

⎛ ⎞
= =⎜ ⎟

⎝ ⎠

 

Sometimes we will drop the ( )x  part and just write the following, 

 
( ) ( ) ( ) ( )

( ) ( ) ( )
( )

f g f x g x f g f x g x

f xffg f x g x
g g x

+ = + − = −

= =
 

 
Note as well that we put x’s in the parenthesis, but we will often put in numbers as well.  Let’s 
take a quick look at an example. 
 
Example 1  Given ( ) 22 3f x x x= + −  and ( ) 2 1g x x= −  evaluate each of the following. 

(a) ( )( )4f g+    [Solution] 

(b) g f−    [Solution] 
(c) ( )( )fg x    [Solution] 

(d) ( )0f
g

⎛ ⎞
⎜ ⎟
⎝ ⎠

   [Solution] 

Solution 
By evaluate we mean one of two things depending on what is in the parenthesis.  If there is a 
number in the parenthesis then we want a number.  If there is an x (or no parenthesis, since that 
implies and x) then we will perform the operation and simplify as much as possible. 
 
(a) ( )( )4f g+  
In this case we’ve got a number so we need to do some function evaluation. 

 

( )( ) ( ) ( )
( )( ) ( )( )2

4 4 4

2 3 4 4 2 4 1

2 7
5

f g f g+ = +

= + − + −

= − +
=

 

[Return to Problems] 
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(b) g f−  
Here we don’t have an x or a number so this implies the same thing as if there were an x in 
parenthesis.  Therefore, we’ll subtract the two functions and simplify.  Note as well that this is 
written in the opposite order from the definitions above, but it works the same way. 

 

( ) ( )
( )2

2

2

2 1 2 3

2 1 2 3
3

g f g x f x

x x x

x x x
x x

− = −

= − − + −

= − − − +

= − −

 

[Return to Problems] 
 
(c) ( )( )fg x  
As with the last part this has an x in the parenthesis so we’ll multiply and then simplify. 

 

( )( ) ( ) ( )
( )( )2

2 3 2

3 2

2 3 2 1

4 6 2 2 3
2 7 2

fg x f x g x

x x x

x x x x x
x x x

=

= + − −

= + − − − +

= − + + −

 

[Return to Problems] 
 

(d) ( )0f
g

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

In this final part we’ve got a number so we’ll once again be doing function evaluation. 

 

( ) ( )
( )

( ) ( )
( )

2

0
0

0

2 3 0 0
2 0 1

2
1
2

ff
g g

⎛ ⎞
=⎜ ⎟

⎝ ⎠

+ −
=

−

=
−

= −

 

[Return to Problems]
 
Now we need to discuss the new method of combining functions.  The new method of combining 
functions is called function composition.  Here is the definition. 
 
Given two functions  ( )f x  and ( )g x  we have the following two definitions. 

1. The composition of ( )f x  and ( )g x  (note the order here) is, 

 ( )( ) ( )f g x f g x= ⎡ ⎤⎣ ⎦D  

 
2. The composition of ( )g x  and ( )f x  (again, note the order) is, 

 ( )( ) ( )g f x g f x= ⎡ ⎤⎣ ⎦D  



College Algebra 

© 2007 Paul Dawkins 192 http://tutorial.math.lamar.edu/terms.aspx 
 

 
 
We need to note a couple of things here about function composition.  First this is NOT 
multiplication.  Regardless of what the notation may suggest to you this is simply not 
multiplication.   
 
Second, the order we’ve listed the two functions is very important since more often than not we 
will get different answers depending on the order we’ve listed them.   
 
Finally, function composition is really nothing more than function evaluation.  All we’re really 
doing is plugging the second function listed into the first function listed.  In the definitions we 
used [ ]  for the function evaluation instead of the standard ( )  to avoid confusion with too 
many sets of parenthesis, but the evaluation will work the same. 
 
Let’s take a look at a couple of examples. 
 
Example 2  Given ( ) 22 3f x x x= + −  and ( ) 2 1g x x= −  evaluate each of the following. 

(a) ( )( )fg x    [Solution] 

(b) ( )( )f g xD    [Solution] 

(c) ( )( )g f xD    [Solution] 
Solution 
(a) These are the same functions that we used in the first set of examples and we’ve already done 
this part there so we won’t redo all the work here.  It is here only here to prove the point that 
function composition is NOT function multiplication.   
 
Here is the multiplication of these two functions. 
 ( )( ) 3 22 7 2fg x x x x= − + + −  

[Return to Problems] 
 
(b) Now, for function composition all you need to remember is that we are going to plug the 
second function listed into the first function listed.  If you can remember that you should always 
be able to write down the basic formula for the composition. 
 
Here is this function composition. 

 
( )( ) ( )

[ ]2 1

f g x f g x

f x

= ⎡ ⎤⎣ ⎦
= −

D
 

 
Now, notice that since we’ve got a formula for ( )g x  we went ahead and plugged that in first.  
Also, we did this kind of function evaluation in the first section we looked at for functions.  At 
the time it probably didn’t seem all that useful to be looking at that kind of function evaluation, 
yet here it is. 
 
Let’s finish this problem out. 



College Algebra 

© 2007 Paul Dawkins 193 http://tutorial.math.lamar.edu/terms.aspx 
 

 

( )( ) ( )
[ ]

( ) ( )
( )

2

2

2

2

2 1

2 3 2 1 2 1

2 6 3 4 4 1

1 6 4 4 1
4 10 2

f g x f g x

f x

x x

x x x

x x x
x x

= ⎡ ⎤⎣ ⎦
= −

= + − − −

= + − − − +

= − + − + −

= − + −

D

 

 
Notice that this is very different from the multiplication!  Remember that function composition is 
NOT function multiplication. 

[Return to Problems] 
 
(c) We’ll not put in the detail in this part as it works essentially the same as the previous part. 

 

( )( ) ( )

( )

2

2

2

2

2 3

2 2 3 1

4 6 2 1
2 6 3

g f x g f x

g x x

x x

x x
x x

= ⎡ ⎤⎣ ⎦
⎡ ⎤= + −⎣ ⎦

= + − −

= + − −

= − + +

D

 

 
Notice that this is NOT the same answer as that from the second part.  In most cases the order in 
which we do the function composition will give different answers. 

[Return to Problems]
 
The ideas from the previous example are important enough to make again.  First, function 
composition is NOT function multiplication.  Second, the order in which we do function 
composition is important.  In most case we will get different answers with a different order.  Note 
however, that there are times when we will get the same answer regardless of the order. 
 
Let’s work a couple more examples. 
 
Example 3  Given ( ) 2 3f x x= −  and ( ) 1h x x= +  evaluate each of the following. 

(a) ( )( )f h xD    [Solution] 

(b) ( )( )h f xD    [Solution] 

(c) ( )( )f f xD    [Solution] 

(d) ( )( )8h hD    [Solution] 

(e) ( )( )4f hD    [Solution] 
 
Solution 
(a) ( )( )f h xD  
Not much to do here other than run through the formula. 
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( )( ) ( )

( )2

1

1 3

1 3
2

f h x f h x

f x

x

x
x

= ⎡ ⎤⎣ ⎦
⎡ ⎤= +⎣ ⎦

= + −

= + −
= −

D

 

[Return to Problems] 
 
(b) ( )( )h f xD  
Again, not much to do here. 

 

( )( ) ( )
2

2

2

3

3 1

2

h f x h f x

h x

x

x

= ⎡ ⎤⎣ ⎦
⎡ ⎤= −⎣ ⎦

= − +

= −

D

 

[Return to Problems] 
 
(c) ( )( )f f xD  
Now in this case do not get excited about the fact that the two functions here are the same.  
Composition works the same way. 

 

( )( ) ( )

( )

2

22

4 2

4 2

3

3 3

6 9 3
6 6

f f x f f x

f x

x

x x
x x

= ⎡ ⎤⎣ ⎦
⎡ ⎤= −⎣ ⎦

= − −

= − + −

= − +

D

 

[Return to Problems] 
 
(d) ( )( )8h hD  
In this case, unlike all the previous examples, we’ve got a number in the parenthesis instead of an 
x, but it works in exactly the same manner. 

 

( )( ) ( )

[ ]

8 8

8 1

9

3

3 1
2

h h h h

h

h

h

= ⎡ ⎤⎣ ⎦
⎡ ⎤= +⎣ ⎦
⎡ ⎤= ⎣ ⎦

=

= +
=

D

 

[Return to Problems] 
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(e) ( )( )4f hD  
Again, we’ve got a number here.  This time there are actually two ways to do this evaluation.  
The first is to simply use the results from the first part since that is a formula for the general 
function composition.  
 
If we do the problem that way we get, 
 ( )( )4 4 2 2f h = − =D  
 
We could also do the evaluation directly as we did in the previous part.  The answers should be 
the same regardless of how we get them.  So, to get another example down of this kind of 
evaluation let’s also do the evaluation directly. 

 

( )( ) ( )

( )2

4 4

4 1

5

5 3

5 3
2

f h f h

f

f

= ⎡ ⎤⎣ ⎦
⎡ ⎤= +⎣ ⎦
⎡ ⎤= ⎣ ⎦

= −

= −
=

D

 

 
So, sure enough we got the same answer, although it did take more work to get it. 

[Return to Problems]
 

Example 4  Given ( ) 3 2f x x= −  and ( ) 2
3 3
xg x = +  evaluate each of the following. 

(a) ( )( )f g xD    [Solution] 

(b) ( )( )g f xD    [Solution] 
 
Solution 
(a) Hopefully, by this point these aren’t too bad. 

 

( )( ) ( )
2

3 3
23 2

3 3
2 2

f g x f g x

xf

x

x
x

= ⎡ ⎤⎣ ⎦
⎡ ⎤= +⎢ ⎥⎣ ⎦
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

= + −
=

D

 

Looks like things simplified down considerable here. 
[Return to Problems] 
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(b) All we need to do here is use the formula so let’s do that. 

 

( )( ) ( )
[ ]

( )

3 2
1 23 2
3 3

2 2
3 3

g f x g f x

g x

x

x

x

= ⎡ ⎤⎣ ⎦
= −

= − +

= − +

=

D

 

 
So, in this case we get the same answer regardless of the order we did the composition in. 

[Return to Problems]
 
So, as we’ve seen from this last example it is possible to get the same answer from both 
compositions on occasion.  In fact when the answer from both composition is x, as it is in this 
case, we know that these two functions are very special functions.  In fact, they are so special that 
we’re going to devote the whole next section to these kinds of functions.  So, let’s move onto the 
next section. 
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 Inverse Functions 

In the last example from the previous section we looked at the two functions ( ) 3 2f x x= −  and 

( ) 2
3 3
xg x = +  and saw that  

 ( )( ) ( )( )f g x g f x x= =D D  
 and as noted in that section this means that these are very special functions.  Let’s see just what 
makes them so special.  Consider the following evaluations. 
 

 

( ) ( ) ( )

( )

5 2 33 1 2
3 3 3

2 2 43 2 4 2
3

5 5

4 4

1 1

2 2
3 33 3

f g

g f

− −
= − − = ⇒ = + = =

⎛ ⎞ ⎛ ⎞= + = ⇒ = − = − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝

− −−

⎠

−

 

 
In the first case we plugged 1x = −  into ( )f x  and got a value of -5.  We then turned around and 

plugged 5x = −  into ( )g x  and got a value of -1, the number that we started off with.   
 
In the second case we did something similar.  Here we plugged 2x =  into ( )g x  and got a value 

of
4
3

, we turned around and plugged this into ( )f x  and got a value of 2, which is again the 

number that we started with. 
 
Note that we really are doing some function composition here.  The first case is really, 

( )( ) ( ) [ ]1 1 5 1g f g f g− = − = − = −⎡ ⎤⎣ ⎦D  

and the second case is really, 

 ( )( ) ( ) 42 2 2
3

f g f g f ⎡ ⎤= = =⎡ ⎤⎣ ⎦ ⎢ ⎥⎣ ⎦
D  

 
Note as well that these both agree with the formula for the compositions that we found in the 
previous section.  We get back out of the function evaluation the number that we originally 
plugged into the composition. 
 
So, just what is going on here?  In some way we can think of these two functions as undoing what 
the other did to a number.  In the first case we plugged 1x = −  into ( )f x  and then plugged the 

result from this function evaluation back into ( )g x  and in some way ( )g x  undid what ( )f x  
had done to 1x = −  and gave us back the original x that we started with. 
 
Function pairs that exhibit this behavior are called inverse functions.  Before formally defining 
inverse functions and the notation that we’re going to use for them we need to get a definition out 
of the way.    
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A function is called one-to-one if no two values of x produce the same y.  This is a fairly simple 
definition of one-to-one but it takes an example of a function that isn’t one-to-one to show just 
what it means.  Before doing that however we should note that this definition of one-to-one is not 
really the mathematically correct definition of one-to-one.  It is identical to the mathematically 
correct definition it just doesn’t use all the notation from the formal definition. 
 
Now, let’s see an example of a function that isn’t one-to-one.  The function ( ) 2f x x=  is not 

one-to-one because both ( )2 4f − =  and ( )2 4f = .  In other words there are two different 

values of x that produce the same value of y.  Note that we can turn ( ) 2f x x=  into a one-to-one 
function if we restrict ourselves to 0 x≤ < ∞ .  This can sometimes be done with functions. 
 
Showing that a function is one-to-one is often a tedious and often difficult.  For the most part we 
are going to assume that the functions that we’re going to be dealing with in this section are one-
to-one.  We did need to talk about one-to-one functions however since only one-to-one functions 
can be inverse functions. 
 
Now, let’s formally define just what inverse functions are.   
 
Inverse Functions 
Given two one-to-one functions ( )f x  and ( )g x  if 

 ( )( ) ( )( )ANDf g x x g f x x= =D D  

then we say that ( )f x  and ( )g x  are inverses of each other.  More specifically we will say that 

( )g x  is the inverse of ( )f x  and denote it by 

 ( ) ( )1g x f x−=  

Likewise we could also say that ( )f x  is the inverse of ( )g x  and denote it by 

 ( ) ( )1f x g x−=  
 
The notation that we use really depends upon the problem.  In most cases either is acceptable. 
 
For the two functions that we started off this section with we could write either of the following 
two sets of notation. 
 

 

( ) ( )

( ) ( )

1

1

23 2
3 3

2 3 2
3 3

xf x x f x

xg x g x x

−

−

= − = +

= + = −

 

 
Now, be careful with the notation for inverses.  The “-1” is NOT an exponent despite the fact that 
is sure does look like one!  When dealing with inverse functions we’ve got to remember that  

 ( ) ( )
1 1f x

f x
− ≠  
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This is one of the more common mistakes that students make when first studying inverse 
functions. 
 
The process for finding the inverse of a function is a fairly simple one although there is a couple 
of steps that can on occasion be somewhat messy.  Here is the process 
 
Finding the Inverse of a Function 
Given the function ( )f x  we want to find the inverse function, ( )1f x− . 

1. First, replace ( )f x  with y.  This is done to make the rest of the process easier. 
2. Replace every x with a y and replace every y with an x. 
3. Solve the equation from Step 2 for y.  This is the step where mistakes are most often 

made so be careful with this step. 
4. Replace y with ( )1f x− .  In other words, we’ve managed to find the inverse at this point! 

5. Verify your work by checking that ( )( )1f f x x− =D  and ( )( )1f f x x− =D  are both 

true.  This work can sometimes be messy making it easy to make mistakes so again be 
careful. 

 
That’s the process.  Most of the steps are not all that bad but as mentioned in the process there are 
a couple of steps that we really need to be careful with. 
 
In verification step we technically really do need to check that both ( )( )1f f x x− =D  and 

( )( )1f f x x− =D  are true.  For all the functions that we are going to be looking at in this section 

if one is true then the other will also be true.  However, there are functions (they are far beyond 
the scope of this course however) for which it is possible for only of these to be true.  This is 
brought up because in all the problems here we will be just checking one of them.  We just need 
to always remember that technically we should check both. 
 
Let’s work some examples. 
 
Example 1  Given ( ) 3 2f x x= −  find ( )1f x− . 
 
Solution 
Now, we already know what the inverse to this function is as we’ve already done some work with 
it.  However, it would be nice to actually start with this since we know what we should get.  This 
will work as a nice verification of the process. 
 
So, let’s get started.  We’ll first replace ( )f x  with y. 

 3 2y x= −  
 
Next, replace all x’s with y and all y’s with x. 
 3 2x y= −  
 
Now, solve for y. 
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 ( )

2 3
1 2
3

2
3 3

x y

x y

x y

+ =

+ =

+ =

 

 
Finally replace y with ( )1f x− . 

 ( )1 2
3 3
xf x− = +  

 
Now, we need to verify the results.  We already took care of this in the previous section, however, 
we really should follow the process so we’ll do that here.  It doesn’t matter which of the two that 
we check we just need to check one of them.  This time we’ll check that ( )( )1f f x x− =D  is 

true. 

 

( )( ) ( )1 1

2
3 3

23 2
3 3
2 2

f f x f f x

xf

x

x
x

− −⎡ ⎤= ⎣ ⎦
⎡ ⎤= +⎢ ⎥⎣ ⎦
⎛ ⎞= + −⎜ ⎟
⎝ ⎠

= + −
=

D

 

 
Example 2  Given ( ) 3g x x= −  find ( )1g x− . 
 
Solution 
Now the fact that we’re now using ( )g x  instead of ( )f x  doesn’t change how the process 
works.  Here are the first few steps. 

 
3

3

y x

x y

= −

= −
 

 
Now, to solve for y we will need to first square both sides and then proceed as normal. 

 2

2

3

3
3

x y

x y
x y

= −

= −

+ =

 

 
This inverse is then, 

( )1 2 3g x x− = +  
 
Finally let’s verify and this time we’ll use the other one just so we can say that we’ve gotten both 
down somewhere in an example. 
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( )( ) ( )

( )
( )

1 1

1

2

3

3 3

3 3

g g x g g x

g x

x

x
x

− −

−

= ⎡ ⎤⎣ ⎦

= −

= − +

= − +
=

D

 

 
So, we did the work correctly and we do indeed have the inverse. 
 
The next example can be a little messy so be careful with the work here. 
 

Example 3  Given ( ) 4
2 5
xh x
x
+

=
−

 find ( )1h x− . 

Solution 
The first couple of steps are pretty much the same as the previous examples so here they are, 

 

4
2 5

4
2 5

xy
x

yx
y

+
=

−
+

=
−

 

 
Now, be careful with the solution step.  With this kind of problem it is very easy to make a 
mistake here. 

 

( )

( )

2 5 4
2 5 4
2 4 5

2 1 4 5
4 5
2 1

x y y
xy x y
xy y x

x y x
xy

x

− = +

− = +
− = +

− = +

+
=

−

 

 
So, if we’ve done all of our work correctly the inverse should be, 

 ( )1 4 5
2 1

xh x
x

− +
=

−
 

 
Finally we’ll need to do the verification.  This is also a fairly messy process and it doesn’t really 
matter which one we work with. 
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( )( ) ( )1 1

4 5
2 1

4 5 4
2 1
4 52 5
2 1

h h x h h x

xh
x

x
x

x
x

− −⎡ ⎤= ⎣ ⎦
+⎡ ⎤= ⎢ ⎥−⎣ ⎦
+

+
−=
+⎛ ⎞ −⎜ ⎟−⎝ ⎠

D

 

 
Okay, this is a mess.  Let’s simplify things up a little bit by multiplying the numerator and 
denominator by 2 1x − . 

 

( )( )

( )

( )

( )
( ) ( )

1

4 5 42 1 2 1
4 52 1 2 5
2 1
4 52 1 4
2 1
4 52 1 2 5
2 1

4 5 4 2 1
2 4 5 5 2 1
4 5 8 4

8 10 10 5
13
13

x
x xh h x

xx
x

xx
x

xx
x

x x
x x

x x
x x

x

x

−

+
+− −=

+− ⎛ ⎞ −⎜ ⎟−⎝ ⎠
+⎛ ⎞− +⎜ ⎟−⎝ ⎠=

⎛ + ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟−⎝ ⎠⎝ ⎠
+ + −

=
+ − −

+ + −
=

+ − +

=

=

D

 

 
Wow.  That was a lot of work, but it all worked out in the end.  We did all of our work correctly 
and we do in fact have the inverse. 
 
There is one final topic that we need to address quickly before we leave this section.  There is an 
interesting relationship between the graph of a function and its inverse. 
 
Here is the graph of the function and inverse from the first two examples.  We’ll not deal with the 
final example since that is a function that we haven’t really talked about graphing yet. 
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In both cases we can see that the graph of the inverse is a reflection of the actual function about 
the line y x= .  This will always be the case with the graphs of a function and its inverse. 
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Common Graphs 

 

 Introduction 
We started the process of graphing in the previous chapter.  However, since the main focus of that 
chapter was functions we didn’t graph all that many equations or functions.  In this chapter we 
will now look at graphing a wide variety of equations and functions. 
 
Here is a listing of the topics that we’ll be looking at in this chapter. 
 
Lines, Circles and Piecewise Functions – This section is here only to acknowledge that we’ve 
already talked about graphing these in a previous chapter. 
Parabolas – We’ll be graphing parabolas in this section. 
Ellipses – In this section we will graph ellipses. 
Hyperbolas – Here we will be graphing hyperbolas. 
Miscellaneous Functions – In this section we will graph a couple of common functions that 
don’t really take all that much work to so.  We’ll be looking at the constant function, square root, 
absolute value and a simple cubic function. 
Transformations – We will be looking at shifts and reflections of graphs in this section.  
Collectively these are often called transformations. 
Symmetry – We will briefly discuss the topic of symmetry in this section. 
Rational Functions – In this section we will graph some rational functions.  We will also be 
taking a look at vertical and horizontal asymptotes. 
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 Lines, Circles and Piecewise Functions 
We’re not really going to do any graphing in this section.  In fact, this section is here only to 
acknowledge that we’ve already looked at these equations and functions in the previous chapter. 
 
Here are the appropriate sections to see for these. 
 
Lines : Graphing and Functions – Lines  
 
Circles : Graphing and Functions – Circles 
 
Piecewise Functions : Graphing and Functions – Graphing Functions 
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 Parabolas 
In this section we want to look at the graph of a quadratic function.  The most general form of a 
quadratic function is, 
 ( ) 2f x ax bx c= + +  
 
The graphs of quadratic functions are called parabolas.  Here are some examples of parabolas. 

 
 
All parabolas are vaguely “U” shaped and the will have a highest or lowest point that is called the 
vertex.  Parabolas may open up or down and may or may not have x-intercepts and they will 
always have a single y-intercept.   
 
Note as well that a parabola that opens down will always open down and a parabola that opens up 
will always open up.  In other words a parabola will not all of a sudden turn around and start 
opening up if it has already started opening down.  Similarly, if it has already started opening up 
it will not turn around and start opening down all of a sudden.  
 
The dashed line with each of these parabolas is called the axis of symmetry.  Every parabola has 
an axis of symmetry and, as the graph shows, the graph to either side of the axis of symmetry is a 
mirror image of the other side.  This means that if we know a point on one side of the parabola we 
will also know a point on the other side based on the axis of symmetry.  We will see how to find 
this point once we get into some examples. 
 
We should probably do a quick review of intercepts before going much farther.  Intercepts are the 
points where the graph will cross the x or y-axis.  We also saw a graph in the section where we 
introduced intercepts where an intercept just touched the axis without actually crossing it. 
 
Finding intercepts is a fairly simple process.  To find the y-intercept of a function ( )y f x=  all 
we need to do is set 0x =  and evaluate to find the y coordinate.  In other words, the y-intercept is 
the point ( )( )0, 0f .  We find x-intercepts in pretty much the same way.  We set 0y =  and solve 
the resulting equation for the x coordinates.  So, we will need to solve the equation, 
 ( ) 0f x =  
 
Now, let’s get back to parabolas.  There is a basic process we can always use to get a pretty good 
sketch of a parabola.  Here it is. 
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Sketching Parabolas 
 

1. Find the vertex.  We’ll discuss how to find this shortly.  It’s fairly simple, but there are 
several methods for finding it and so will be discussed separately. 
 

2. Find the y-intercept, ( )( )0, 0f . 
 

3. Solve ( ) 0f x =  to find the x coordinates of the x-intercepts if they exist.  As we will see 
in our examples we can have 0, 1, or 2 x-intercepts. 
 

4. Make sure that you’ve got at least one point to either side of the vertex.  This is to make 
sure we get a somewhat accurate sketch.  If the parabola has two x-intercepts then we’ll 
already have these points.  If it has 0 or 1 x-intercept we can either just plug in another x 
value or use the y-intercept and the axis of symmetry to get the second point. 
 

5. Sketch the graph.  At this point we’ve gotten enough points to get a fairly decent idea of 
what the parabola will look like. 

 
 
Now, there are two forms of the parabola that we will be looking at.  This first form will make 
graphing parabolas very easy.  Unfortunately, most parabolas are not in this form.  The second 
form is the more common form and will require slightly (and only slightly) more work to sketch 
the graph of the parabola. 
 
Let’s take a look at the first form of the parabola. 
 
 ( ) ( )2f x a x h k= − +  
 
There are two pieces of information about the parabola that we can instantly get from this 
function.  First, if a is positive then the parabola will open up and if a is negative then the 
parabola will open down.  Secondly, the vertex of the parabola is the point ( ),h k .  Be very 
careful with signs when getting the vertex here. 
 
So, when we are lucky enough to have this form of the parabola we are given the vertex for free.  
 
Let’s see a couple of examples here. 
 
Example 1  Sketch the graph of each of the following parabolas. 

(a) ( ) ( )22 3 8f x x= + −    [Solution] 

(b) ( ) ( )22 1g x x= − − −    [Solution] 

(c) ( ) 2 4h x x= +    [Solution] 
Solution 
Okay, in all of these we will simply go through the process given above to find the needed points 
and the graph. 
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(a)  ( ) ( )22 3 8f x x= + −  
First we need to find the vertex.  We will need to be careful with the signs however.  Comparing 
our equation to the form above we see that we must have 3h = −  and 8k = −  since that is the 
only way to get the correct signs in our function.  Therefore, the vertex of this parabola is, 
 ( )3, 8− −  
 
Now let’s find the y-intercept.  This is nothing more than a quick function evaluation. 
 ( ) ( ) ( ) ( )20 2 0 3 8 2 9 8 10 intercept : 0,10f y= + − = − = −  
 
Next we need to find the x-intercepts.  This means we’ll need to solve an equation.  However, 
before we do that we can actually tell whether or not we’ll have any before we even start to solve 
the equation.   
 
In this case we have 2a =  which is positive and so we know that the parabola opens up.  Also 
the vertex is a point below the x-axis.  So, we know that the parabola will have at least a few 
points below the x-axis and it will open up.  Therefore, since once a parabola starts to open up it 
will continue to open up eventually we will have to cross the x-axis.  In other words, there are x-
intercepts for this parabola. 
 
To find them we need to solve the following equation. 
 ( )20 2 3 8x= + −  
We solve equations like this back when we were solving quadratic equations so hopefully you 
remember how to do them. 

 

( )
( )

2

2

2 3 8

3 4

3 4 2
3 2 1, 5

x

x

x
x x x

+ =

+ =

+ = ± = ±
= − ± ⇒ = − = −

 

 
The two x-intercepts are then, 
 ( ) ( )5,0 and 1,0− −  
 
Now, at this point we’ve got points on either side of the vertex so we are officially done with 
finding the points.  However, let’s talk a little bit about how to find a second point using the y-
intercept and the axis of symmetry since we will need to do that eventually. 
 
First, notice that the y-intercept has an x coordinate of 0 while the vertex has an x coordinate of -
3.  This means that the y-intercept is a distance of 3 to the right of the axis of symmetry since that 
will move straight up from the vertex.   
 
Now, the left part of the graph will be a mirror image of the right part of the graph.  So, since 
there is a point at 10y =  that is a distance of 3 to the right of the axis of symmetry there must 
also be a point at 10y =  that is a distance of 3 to the right of the axis of symmetry.   
 
So, since the x coordinate of the vertex is -3 and this new point is a distance of 3 to the left its x 
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coordinate must be -6.  The coordinates of this new point are then ( )6,10− .  We can verify this 
by evaluating the function at 6x = − .  If we are correct we should get a value of 10.  Let’s verify 
this. 
 ( ) ( ) ( ) ( )2 26 2 6 3 8 2 3 8 2 9 8 10f − = − + − = − − = − =  
 
So, we were correct.  Note that we usually don’t bother with the verification of this point. 
 
Okay, it’s time to sketch the graph of the parabola.  Here it is. 

 
 
Note that we included the axis of symmetry in this graph and typically we won’t.  It was just 
included here since we were discussing it earlier. 

[Return to Problems] 
 
(b) ( ) ( )22 1g x x= − − −  
Okay with this one we won’t put in quite a much detail.  First let’s notice that 1a = −  which is 
negative and so we know that this parabola will open downward. 
 
Next, by comparing our function to the general form we see that the vertex of this parabola is 
( )2, 1− .  Again, be careful to get the signs correct here! 
 
Now let’s get the y-intercept. 
 ( ) ( ) ( )2 20 0 2 1 2 1 4 1 5g = − − − = − − − = − − = −  

The y-intercept is then ( )0, 5− . 
 
Now, we know that the vertex starts out below the x-axis and the parabola opens down.  This 
means that there can’t possibly be x-intercepts since the x axis is above the vertex and the 
parabola will always open down.  This means that there is no reason, in general, to go through the 
solving process to find what won’t exist. 
 
However, let’s do it anyway.  This will show us what to look for if we don’t catch right away that 
they won’t exist from the vertex and direction the parabola opens.  We’ll need to solve, 
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( )
( )

2

2

0 2 1

2 1
2

2

x

x
x i

x i

= − − −

− = −

− = ±
= ±

 

So, we got complex solutions.  Complex solutions will always indicate no x-intercepts. 
 
Now, we do want points on either side of the vertex so we’ll use the y-intercept and the axis of 
symmetry to get a second point.  The y-intercept is a distance of two to the left of the axis of 
symmetry and is at 5y = −  and so there must be a second point at the same y value only a 
distance of 2 to the right of the axis of symmetry.  The coordinates of this point must then be 
( )4, 5− . 
 
Here is the sketch of this parabola. 

 
[Return to Problems] 

 
(c) ( ) 2 4h x x= +  
This one is actually a fairly simple one to graph.  We’ll first notice that it will open upwards. 
 
Now, the vertex is probably the point where most students run into trouble here.  Since we have 
x2 by itself this means that we must have 0h =  and so the vertex is ( )0, 4 . 
 
Note that this means there will not be any x-intercepts with this parabola since the vertex is above 
the x-axis and the parabola opens upwards. 
 
Next, the y-intercept is, 
 ( ) ( ) ( )20 0 4 4 intercept : 0, 4h y= + = −  
 
The y-intercept is exactly the same as the vertex.  This will happen on occasion so we shouldn’t 
get too worried about it when that happens.  Although this will mean that we aren’t going to be 
able to use the y-intercept to find a second point on the other side of the vertex this time.  In fact, 
we don’t even have a point yet that isn’t the vertex! 
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So, we’ll need to find a point on either side of the vertex.  In this case since the function isn’t too 
bad we’ll just plug in a couple of points. 

 
( ) ( ) ( )
( ) ( ) ( )

2

2

2 2 4 8 2,8

2 2 4 8 2,8

h

h

− = − + = ⇒ −

= + = ⇒
 

Note that we could have gotten the second point here using the axis of symmetry if we’d wanted 
to. 
 
Here is a sketch of the graph. 

 
[Return to Problems]

 
Okay, we’ve seen some examples now of this form of the parabola.  However, as noted earlier 
most parabolas are not given in that form.  So, we need to take a look at how to graph a parabola 
that is in the general form. 
 ( ) 2f x ax bx c= + +  
 
In this form the sign of a will determine whether or not the parabola will open upwards or 
downwards just as it did in the previous set of examples.  Unlike the previous form we will not 
get the vertex for free this time.  However, it is will easy to find.  Here is the vertex for a parabola 
in the general form. 

 ,
2 2
b bf
a a

⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
 

To get the vertex all we do is compute the x coordinate from a and b and then plug this into the 
function to get the y coordinate.  Not quite as simple as the previous form, but still not all that 
difficult. 
 
Note as well that we will get the y-intercept for free from this form.  The y-intercept is, 
 ( ) ( ) ( ) ( )20 0 0 0,f a b c c c= + + = ⇒  
so we won’t need to do any computations for this one. 
 
Let’s graph some parabolas. 
 
Example 2  Sketch the graph of each of the following parabolas. 
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(a) ( ) 23 6 5g x x x= − +    [Solution] 

(b) ( ) 2 8f x x x= − +    [Solution] 

(c) ( ) 2 4 4f x x x= + +    [Solution] 
Solution 
(a) For this parabola we’ve got 3a = , 6b = −  and 5c = .  Make sure that you’re careful with 
signs when identifying these values.  So we know that this parabola will open up since a is 
positive.   
 
Here are the evaluations for the vertex. 

 ( )
( ) ( ) ( )2

6 6 1
2 3 6

1 3 1 6 1 5 3 6 5 2

x

y g

− −
= − = − =

= = − + = − + =

 

The vertex is then ( )1, 2 .  Now at this point we also know that there won’t be any x-intercepts for 
this parabola since the vertex is above the x-axis and it opens upward. 
 
The y-intercept is ( )0,5  and using the axis of symmetry we know that ( )2,5  must also be on the 
parabola. 
 
Here is a sketch of the parabola. 

 
[Return to Problems] 

 
(b) In this case 1a = − , 8b =  and 0c = .  From these we see that the parabola will open 
downward since a is negative.  Here are the vertex evaluations. 

( )
( ) ( ) ( )2

8 8 4
2 1 2

4 4 8 4 16

x

y f

= − = − =
− −

= = − + =

 

So, the vertex is ( )4,16  and we also can see that this time there will be x-intercepts.  In fact, let’s 
go ahead and find them now. 
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( )

20 8
0 8 0, 8

x x
x x x x

= − +

= − + ⇒ = =
 

So, the x-intercepts are ( )0,0  and ( )8,0 .  Notice that ( )0,0  is also the y-intercept.  This will 
happen on occasion so don’t get excited about it when it does. 
 
At this point we’ve got all the information that we need in order to sketch the graph so here it is, 

 
[Return to Problems] 

 
(c)  In this final part we have 1a = , 4b =  and 4c = .  So, this parabola will open up. 
 
Here are the vertex evaluations. 

 ( )
( ) ( ) ( )2

4 4 2
2 1 2

2 2 4 2 4 0

x

y f

= − = − = −

= − = − + − + =

 

So, the vertex is ( )2,0− .  Note that since the y coordinate of this point is zero it is also an x-
intercept.  In fact it will be the only x-intercept for this graph.  This makes sense if we consider 
the fact that the vertex, in this case, is the lowest point on the graph and so the graph simply can’t 
touch the x-axis anywhere else. 
 
The fact that this parabola has only one x-intercept can be verified by solving as we’ve done in 
the other examples to this point. 

 
( )

2

2

0 4 4

0 2 2

x x

x x

= + +

= + ⇒ = −
 

 
Sure enough there is only one x-intercept.  Note that this will mean that we’re going to have to 
use the axis of symmetry to get a second point from the y-intercept in this case. 
 
Speaking of which, the y-intercept in this case is ( )0, 4 .  This means that the second point is 

( )4, 4− . 
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Here is a sketch of the graph. 

  
[Return to Problems]

 
 As a final topic in this section we need to briefly talk about how to take a parabola in the general 
form and convert it into the form 
 ( ) ( )2f x a x h k= − +  
 
This will use a modified completing the square process.  It’s probably best to do this with an 
example. 
 
Example 3  Convert each of the following into the form ( ) ( )2f x a x h k= − + . 

(a) ( ) 22 12 3f x x x= − +    [Solution] 

(b) ( ) 2 10 1f x x x= − + −    [Solution] 
Solution 
Okay, as we pointed out above we are going to complete the square here.  However, it is a 
slightly different process than the other times that we’ve seen it to this point. 
 
(a) The thing that we’ve got to remember here is that we must have a coefficient of 1 for the x2 
term in order to complete the square.  So, to get that we will first factor the coefficient of the x2 
term out off the whole right side as follows. 

 ( ) 2 32 6
2

f x x x⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

 
Note that this will often put fractions into the problem that is just something that we’ll need to be 
able to deal with.  Also note that if we’re lucky enough to have a coefficient of 1 on the x2 term 
we won’t have to do this step. 
 
Now, this is where the process really starts differing from what we’ve seen to this point.  We still 
take one-half the coefficient of x and square it.  However, instead of adding this to both sides we 
do the following with it. 
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 ( )
2

26 3 9
2

⎛ ⎞− = − =⎜ ⎟
⎝ ⎠

 

 ( ) 2 32 6
2

9 9f x x x + −⎛ ⎞= − +⎜ ⎟
⎝ ⎠

 

 
We add and subtract this quantity inside the parenthesis as show.  Note that all we are really 
doing here is adding in zero since 9-9=0!  The order listed here is important.  We MUST add first 
and then subtract. 
 
The next step is to factor the first three terms and combine the last two as follows. 

 ( ) ( )2 152 3
2

f x x⎛ ⎞= − −⎜ ⎟
⎝ ⎠

 

 
As a final step we multiply the 2 back through. 
 ( ) ( )22 3 15f x x= − −  
 
And there we go. 

[Return to Problems] 
 
(b) Be careful here.  We don’t have a coefficient of 1 on the x2 term, we’ve got a coefficient of -1.  
So, the process is identical outside of that so we won’t put in as much detail this time. 

 

( ) ( ) ( )

( )
( )( )
( )

2
22

2

2

2

1010 1 5 25
2

10 1

5 24

5

25 25

24

f x x x

x x

x

x

⎛ ⎞= − − + − = − =⎜ ⎟
⎝ ⎠

= − − +

= − − −

= − − +

+ −  

[Return to Problems]
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 Ellipses 
In a previous section we looked at graphing circles and since circles are really special cases of 
ellipses we’ve already got most of the tools under our belts to graph ellipses.  All that we really 
need here to get us started is then standard form of the ellipse and a little information on how to 
interpret it. 
 
Here is the standard form of an ellipse. 

( ) ( )2 2

2 2 1
x h y k

a b
− −

+ =  

Note that the right side MUST be a 1 in order to be in standard form.  The point ( ),h k  is called 
the center of the ellipse.   
 
To graph the ellipse all that we need are the right most, left most, top most and bottom most 
points.  Once we have those we can sketch in the ellipse.  Here are formulas for finding these 
points. 
 

 

( )
( )
( )

( )

right most point : ,

left most point : ,

top most point : ,

bottom most point : ,

h a k

h a k

h k b

h k b

+

−

+

−

 

 
Note that a is the square root of the number under the x term and is the amount that we move 
right and left from the center.  Also, b is the square root of the number under the y term and is the 
amount that we move up or down from the center. 
 
Let’s sketch some graphs. 
 
Example 1  Sketch the graph of each of the following ellipses. 

(a) 
( ) ( )2 22 4

1
9 25

x y+ −
+ =    [Solution] 

(b) 
( )22 3

1
49 4

yx −
+ =    [Solution] 

(c) ( ) ( )2 24 1 3 1x y+ + + =    [Solution] 
Solution 
(a) So, the center of this ellipse is ( )2, 4−  and as usual be careful with signs here!  Also, we have 

3a =  and 5b = .  So, the points are, 

 

( )
( )
( )

( )

right most point : 1, 4

left most point : 5, 4

top most point : 2,9

bottom most point : 2, 1

−

−

− −
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Here is a sketch of this ellipse. 

 
[Return to Problems] 

 
(b)  The center for this part is ( )0,3  and we have 7a =  and 2b = .  The points we need are, 

 

( )
( )
( )

( )

right most point : 7,3

left most point : 7,3

top most point : 0,5

bottom most point : 0,1

−
 

Here is the sketch of this ellipse. 

 
[Return to Problems] 

 
(c) Now with this ellipse we’re going to have to be a little careful as it isn’t quite in standard form 
yet.  Here is the standard form for this ellipse. 

 ( ) ( )
2

21
3 11

4

x
y

+
+ + =  
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Note that in order to get the coefficient of 4 in the numerator of the first term we will need to 

have a 
1
4

 in the denominator.  Also, note that we don’t even have a fraction for the y term.  This 

implies that there is in fact a 1 in the denominator.  We could put this in if it would be helpful to 
see what is going on here. 

 ( ) ( )2 21 3
11 1

4

x y+ +
+ =  

 

So, in this form we can see that the center is ( )1, 3− −  and that 
1
2

a =  and 1b = .  The points for 

this ellipse are, 

 

( )
( )

1right most point : , 3
2

3left most point : , 3
2

top most point : 1, 2

bottom most point : 1, 4

⎛ ⎞− −⎜ ⎟
⎝ ⎠

⎛ ⎞− −⎜ ⎟
⎝ ⎠
− −

− −

 

Here is this ellipse. 

 
[Return to Problems]

 
Finally, let’s address a comment made at the start of this section.  We said that circles are really 
nothing more than a special case of an ellipse.  To see this let’s assume that a b= .  In this case 
we have, 
 

 ( ) ( )2 2

2 2 1
x h y k

a a
− −

+ =  
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Note that we acknowledged that a b=  and used a in both cases.  Now if we clear denominators 
we get, 
 

( ) ( )2 2 2x h y k a− + − =  
 
This is the standard form of a circle with center ( ),h k  and radius a.  So, circles really are special 
cases of ellipses. 
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 Hyperbolas 
The next graph that we need to look at is the hyperbola.  There are two basic forms of a 
hyperbola.  Here are examples of each. 

 

 
 
Hyperbolas consist of two vaguely parabola shaped pieces that open either up and down or right 
and left.  Also, just like parabolas each of the pieces has a vertex.  Note that they aren’t really 
parabolas, they just resemble parabolas. 
 
There are also two lines on each graph.  These lines are called asymptotes and as the graphs show 
as we make x large (in both the positive and negative sense) the graph of the hyperbola gets closer 
and closer to the asymptotes.  The asymptotes are not officially part of the graph of the hyperbola.  
However, they are usually included so that we can make sure and get the sketch correct.  The 
point where the two asymptotes cross is called the center of the hyperbola. 
 
There are two standard forms of the hyperbola, one for each type shown above.  Here is a table 
giving each form as well as the information we can get from each one. 
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Form ( ) ( )2 2

2 2 1
x h y k

a b
− −

− =  
( ) ( )2 2

2 2 1
y k x h

b a
− −

− =  

   
Center ( ),h k  ( ),h k  
   
Opens Opens left and right Opens up and down 
   
Vertices ( ),h a k+  and ( ),h a k− ( ),h k b+  and ( ),h k b−  
   

Slope of Asymptotes 
b
a

±  
b
a

±  

   

Equations of Asymptotes ( )by k x h
a

= ± −  ( )by k x h
a

= ± −  

 
Note that the difference between the two forms is which term has the minus sign.  If the y term 
has the minus sign then the hyperbola will open left and right.  If the x term has the minus sign 
then the hyperbola will open up and down. 
 
We got the equations of the asymptotes by using the point-slope form of the line and the fact that 
we know that the asymptotes will go through the center of the hyperbola. 
 
Let’s take a look at a couple of these. 
 
Example 1  Sketch the graph of each of the following hyperbolas. 

(a) 
( ) ( )2 23 1

1
25 49

x y− +
− =    [Solution] 

(b) ( )
2

22 1
9
y x− + =    [Solution] 

Solution 
(a) Now, notice that the y term has the minus sign and so we know that we’re in the first column 
of the table above and that the hyperbola will be opening left and right. 
 
The first thing that we should get is the center since pretty much everything else is built around 
that.  The center in this case is ( )3, 1−  and as always watch the signs!  Once we have the center 

we can get the vertices.  These are ( )8, 1−  and ( )2, 1− − . 
 
Next we should get the slopes of the asymptotes.  These are always the square root of the number 
under the y term divided by the square root of the number under the x term and there will always 

be a positive and a negative slope.  The slopes are then 
7
5

± . 

 
Now that we’ve got the center and the slopes of the asymptotes we can get the equations for the 
asymptotes.  They are, 
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 ( ) ( )7 71 3 and 1 3
5 5

y x y x= − + − = − − −  

 
We can now start the sketching.  We start by sketching the asymptotes and the vertices.  Once 
these are done we know what the basic shape should look like so we sketch it in making sure that 
as x gets large we move in closer and closer to the asymptotes. 
 
Here is the sketch for this hyperbola. 

 
[Return to Problems] 

 
(b) In this case the hyperbola will open up and down since the x term has the minus sign.  Now, 
the center of this hyperbola is ( )2,0− .  Remember that since there is a y2 term by itself we had to 

have 0k = .  At this point we also know that the vertices are ( )2,3−  and ( )2, 3− − . 
 
In order to see the slopes of the asymptotes let’s rewrite the equation a little. 

 ( )22 2
1

9 1
xy +

− =  

 

So, the slopes of the asymptotes are 
3 3
1

± = ± .  The equations of the asymptotes are then, 

 ( ) ( )0 3 2 3 6 and 0 3 2 3 6y x x y x x= + + = + = − + = − −  
 
Here is the sketch of this hyperbola. 
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[Return to Problems]
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 Miscellaneous Functions 
The point of this section is to introduce you to some other functions that don’t really require the 
work to graph that the ones that we’ve looked at to this point in this chapter.    For most of these 
all that we’ll need to do is evaluate the function as some x’s and the plot the points. 
 
Constant Function 
This is probably the easiest function that we’ll ever graph and yet it is one of the functions that 
tend to cause problems for students. 
 
The most general form for the constant function is, 
 
 ( )f x c=  
 
where c is some number. 
 
Let’s take a look at ( ) 4f x =  so we can see what the graph of constant functions look like.  
Probably the biggest problem students have with these functions is that there are no x’s on the 
right side to plug into for evaluation.  However, all that means is that there is no substitution to 
do.  In other words, no matter what x we plug into the function we will always get a value of 4 (or 
c in the general case) out of the function. 
 
So, every point has a y coordinate of 4.  This is exactly what defines a horizontal line.  In fact, if 
we recall that ( )f x  is nothing more than a fancy way of writing y we can rewrite the function 
as, 
 4y =  
 And this is exactly the equation of a horizontal line. 
 
Here is the graph of this function. 

 
 
 

 
Square Root 
Next we want to take a look at ( )f x x= .  First, note that since we don’t want to get complex 
numbers out of a function evaluation we have to restrict the values of x that we can plug in.  We 
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can only plug in value of x in the range 0x ≥ .  This means that our graph will only exist in this 
range as well. 
 
To get the graph we’ll just plug in some values of x and then plot the points. 
 

x f(x)
0 0 
1 1 
4 2 
9 3 

 
The graph is then, 

 
 
Absolute Value 
We’ve dealt with this function several times already.  It’s now time to graph it.  First, let’s remind 
ourselves of the definition of the absolute value function. 

 ( )
if 0
if 0

x x
f x

x x
≥⎧

= ⎨− <⎩
 

This is a piecewise function and we’ve seen how to graph these already.  All that we need to do is 
get some points in both ranges and plot them. 
 
Here are some function evaluations. 

x f(x)
0 0 
1 1 

-1 1 
2 2 

-2 2 
 
Here is the graph of this function. 
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So, this is a “V” shaped graph. 
 
Cubic Function 
We’re not actually going to look at a general cubic polynomial here.  We’ll do some of those in 
the next chapter.  Here we are only going to look at ( ) 3f x x= .  There really isn’t much to do 
here other than just plugging in some points and plotting. 
 

x f(x)
0 0
1 1

-1 -1
2 8

-2 -8
 
Here is the graph of this function. 

 
 
We will need some of these in the next section so make sure that you can identify these when you 
see them and can sketch their graphs fairly quickly. 
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 Transformations 
In this section we are going to see how knowledge of some fairly simple graphs can help us graph 
some more complicated graphs.  Collectively the methods we’re going to be looking at in this 
section are called transformations. 
 
Vertical Shifts 
The first transformation we’ll look at is a vertical shift.   
 
Given the graph of ( )f x  the graph of ( ) ( )g x f x c= + will be the graph of ( )f x  shifted up 
by c units if c is positive and or down by c units if c is negative. 
 
So, if we can graph ( )f x  getting the graph of ( )g x  is fairly easy.  Let’s take a look at a couple 
of examples. 
 
Example 1  Using transformations sketch the graph of the following functions. 

(a) ( ) 2 3g x x= +     [Solution] 

(b) ( ) 5f x x= −     [Solution] 
Solution 
The first thing to do here is graph the function without the constant which by this point should be 
fairly simple for you.  Then shift accordingly. 
 
(a) ( ) 2 3g x x= +  

In this case we first need to graph 2x (the dotted line on the graph below) and then pick this up 
and shift it upwards by 3.  Coordinate wise this will mean adding 3 onto all the y coordinates of 
points on 2x .   
 
Here is the sketch for this one. 

 
[Return to Problems] 

(b) ( ) 5f x x= −  
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Okay, in this case we’re going to be shifting the graph of x  (the dotted line on the graph 
below) down by 5.  Again, from a coordinate standpoint this means that we subtract 5 from the y 
coordinates of points on x . 
 
Here is this graph. 

 
[Return to Problems]

 
So, vertical shifts aren’t all that bad if we can graph the “base” function first.  Note as well that if 
you’re not sure that you believe the graphs in the previous set of examples all you need to do is 
plug a couple values of x into the function and verify that they are in fact the correct graphs. 
 
Horizontal Shifts 
These are fairly simple as well although there is one bit where we need to be careful.   
 
Given the graph of ( )f x  the graph of ( ) ( )g x f x c= + will be the graph of ( )f x  shifted left 
by c units if c is positive and or right by c units if c is negative. 
 
Now, we need to be careful here a positive c shifts a graph in the negative direction and a 
negative c shifts a graph in the positive direction.  There are exactly opposite than vertical shifts 
and it’s easy to flip these around and shift incorrectly if we aren’t being careful. 
 
Example 2  Using transformations sketch the graph of the following functions. 

(a) ( ) ( )32h x x= +     [Solution] 

(b) ( ) 4g x x= −     [Solution] 
Solution 
(a) ( ) ( )32h x x= +  
Okay, with these we need to first identify the “base” function.  That is the function that’s being 
shifted.  In this case it looks like we are shifting ( ) 3f x x= .  We can then see that, 

 ( ) ( ) ( )32 2h x x f x= + = +  
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In this case 2c =  and so we’re going to shift the graph of ( ) 3f x x=  (the dotted line on the 
graph below) and move it 2 units to the left.  This will mean subtracting 2 from the x coordinates 
of all the points on ( ) 3f x x= . 
 
Here is the graph for this problem. 

 
[Return to Problems] 

 
(b) ( ) 4g x x= −  

In this case it looks like the base function is x  and it also looks like 4c = −  and so we will be 
shifting the graph of x  (the dotted line on the graph below) to the right by 4 units.  In terms of 
coordinates this will mean that we’re going to add 4 onto the x coordinate of all the points on 

x . 
 
Here is the sketch for this function. 

 
[Return to Problems]

 
Vertical and Horizontal Shifts 
Now we can also combine the two shifts we just got done looking at into a single problem.  If we 
know the graph of ( )f x  the graph of ( ) ( )g x f x c k= + + will be the graph of ( )f x  shifted 
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left or right by c units depending on the sign of c and up or down by k units depending on the sign 
of k. 
 
Let’s take a look at a couple of examples. 
 
Example 3  Use transformation to sketch the graph of each of the following. 

(a) ( ) ( )22 4f x x= − +     [Solution] 

(b) ( ) 3 5g x x= + −     [Solution] 
Solution 
(a) ( ) ( )22 4f x x= − +  

In this part it looks like the base function is 2x  and it looks like will be shift this to the right by 2 
(since 2c = − ) and up by 4 (since 4k = ).  Here is the sketch of this function. 

 
[Return to Problems] 

(b) ( ) 3 5g x x= + −  

For this part we will be shifting x  to the left by 3 (since 3c = ) and down 5 (since 5k = − ).  
Here is the sketch of this function. 

 
[Return to Problems]
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Reflections 
The final set of transformations that we’re going to be looking at in this section aren’t shifts, but 
instead they are called reflections and there are two of them. 
 
Reflection about the x-axis.   
Given the graph of ( )f x  then the graph of ( ) ( )g x f x= −  is the graph of ( )f x  reflected 
about the x-axis.  This means that the signs on the all the y coordinates are changed to the 
opposite sign. 
 
 Reflection about the y-axis.   
Given the graph of ( )f x  then the graph of ( ) ( )g x f x= −  is the graph of ( )f x  reflected 
about the y-axis.  This means that the signs on the all the x coordinates are changed to the 
opposite sign. 
 
Here is an example of each. 
 
Example 4  Using transformation sketch the graph of each of the following. 

(a) ( ) 2g x x= −     [Solution] 

(b) ( )h x x= −     [Solution] 
Solution 
(a)  Based on the placement of the minus sign (i.e. it’s outside the square and NOT inside the 
square, or ( )2x−  )  it looks like we will be reflecting 2x  about the x-axis.  So, again, the means 
that all we do is change the sign on all the y coordinates. 
 
Here is the sketch of this graph. 

 
[Return to Problems] 

 
(b) Now with this one let’s first address the minus sign under the square root in more general 
terms.  We know that we can’t take the square roots of negative numbers, however the presence 
of that minus sign doesn’t necessarily cause problems.  We won’t be able to plug positive values 
of x into the function since that would give square roots of negative numbers.  However, if x were 
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negative, then the negative of a negative number is positive and that is okay.  For instance, 
 ( ) ( )4 4 4 2h − = − − = =  
 
So, don’t get all worried about that minus sign. 
 
Now, let’s address the reflection here.  Since the minus sign is under the square root as opposed 
to in front of it we are doing a reflection about the y-axis.  This means that we’ll need to change 
all the signs of points on x . 
 
Note as well that this syncs up with our discussion on this minus sign at the start of this part. 
 
Here is the graph for this function. 

 
[Return to Problems]
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 Symmetry 
In this section we are going to take a look at something that we used back when we where 
graphing parabolas.  However, we’re going to take a more general view of it this section.  Many 
graphs have symmetry to them.   
 
Symmetry can be useful in graphing an equation since it says that if we know one portion of the 
graph then we will also know the remaining (and symmetric) portion of the graph as well.  We 
used this fact when we were graphing parabolas to get an extra point of some of the graphs. 
 
In this section we want to look at three types of symmetry. 
 

1. A graph is said to be symmetric about the x-axis if whenever ( ),a b  is on the graph 

then so is ( ),a b− .  Here is a sketch of a graph that is symmetric about the x-axis. 
 

 
 

2. A graph is said to be symmetric about the y-axis if whenever ( ),a b  is on the graph 

then so is ( ),a b− .  Here is a sketch of a graph that is symmetric about the y-axis. 

 
3. A graph is said to be symmetric about the origin if whenever ( ),a b  is on the graph 

then so is ( ),a b− − .  Here is a sketch of a graph that is symmetric about the origin. 
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Note that most graphs don’t have any kind of symmetry.  Also, it is possible for a graph to have 
more than one kind of symmetry.  For example the graph of a circle centered at the origin exhibits 
all three symmetries. 
 
Tests for Symmetry 
We’ve some fairly simply tests for each of the different types of symmetry. 
 

1. A graph will have symmetry about the x-axis if we get an equivalent equation when all 
the y’s are replaced with –y. 
 

2. A graph will have symmetry about the y-axis if we get an equivalent equation when all 
the x’s are replaced with –x. 
 

3. A graph will have symmetry about the origin if we get an equivalent equation when all 
the y’s are replaced with –y and all the x’s are replaced with –x. 

 
We will define just what we mean by an “equivalent equation” when we reach an example of that.  
For the majority of the examples that we’re liable to run across this will mean that it is exactly the 
same equation. 
 
Let’s test a few equations for symmetry.  Note that we aren’t going to graph these since most of 
them would actually be fairly difficult to graph.  The point of this example is only to use the tests 
to determine the symmetry of each equation. 
 
Example 1  Determine the symmetry of each of the following equations. 

(a) 2 46 2y x x= − +     [Solution] 
(b) 3 52y x x= −     [Solution] 
(c) 4 3 5 0y x x+ − =     [Solution] 
(d) 3 2 1y x x x= + + +     [Solution] 
(e) 2 2 1x y+ =     [Solution] 
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Solution 
(a) 2 46 2y x x= − +  
We’ll first check for symmetry about the x-axis.  This means that we need to replace all the y’s 
with –y.  That’s easy enough to do in this case since there is only one y. 
 2 46 2y x x− = − +  
 
Now, this is not an equivalent equation since the terms on the right are identical to the original 
equation and the term on the left is the opposite sign.  So, this equation doesn’t have symmetry 
about the x-axis. 
 
Next, let’s check symmetry about the y-axis.  Here we’ll replace all x’s with –x. 

 ( ) ( )2 4

2 4

6 2

6 2

y x x

y x x

= − − − +

= − +
 

 
After simplifying we got exactly the same equation back out which means that the two are 
equivalent.  Therefore, this equation does have symmetry about the y-axis.   
 
Finally, we need to check for symmetry about the origin.  Here we replace both variables. 

 ( ) ( )2 4

2 4

6 2

6 2

y x x

y x x

− = − − − +

− = − +
 

 
So, as with the first test, the left side is different from the original equation and the right side is 
identical to the original equation.  Therefore, this isn’t equivalent to the original equation and we 
don’t have symmetry about the origin. 

[Return to Problems] 
 
(b) 3 52y x x= −  
We’ll not put in quite as much detail here.  First, we’ll check for symmetry about the x-axis. 
 3 52y x x− = −  
 
We don’t have symmetry here since the one side is identical to the original equation and the other 
isn’t. So, we don’t have symmetry about the x-axis. 
 
Next, check for symmetry about the y-axis. 

 ( ) ( )3 5

3 5

2

2

y x x

y x x

= − − −

= − +
 

 
Remember that if we take a negative to an odd power the minus sign can come out in front.  So, 
upon simplifying we get the left side to be identical to the original equation, but the right side is 
now the opposite sign from the original equation and so this isn’t equivalent to the original 
equation and so we don’t have symmetry about the y-axis. 
 
Finally, let’s check symmetry about the origin. 
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 ( ) ( )3 5

3 5

2

2

y x x

y x x

− = − − −

− = − +
 

 
Now, this time notice that all the signs in this equation are exactly the opposite form the original 
equation.  This means that it IS equivalent to the original equation since all we would need to do 
is multiply the whole thing by “-1” to get back to the original equation.   
 
Therefore, in this case we have symmetry about the origin. 

[Return to Problems] 
 
(c) 4 3 5 0y x x+ − =  
First, check for symmetry about the x-axis. 

 ( )4 3

4 3

5 0

5 0

y x x

y x x

− + − =

+ − =
 

 
This is identical to the original equation and so we have symmetry about the x-axis. 
 
Now, check for symmetry about the y-axis. 

 ( ) ( )34

4 3

5 0

5 0

y x x

y x x

+ − − − =

− + =
 

So, some terms have the same sign as the original equation and other don’t so there isn’t 
symmetry about the y-axis. 
 
Finally, check for symmetry about the origin. 

 ( ) ( ) ( )4 3

4 3

5 0

5 0

y x x

y x x

− + − − − =

− + =
 

 
Again, this is not the same as the original equation and isn’t exactly the opposite sign from the 
original equation and so isn’t symmetric about the origin. 

[Return to Problems] 
 
 
 
(d) 3 2 1y x x x= + + +  
First, symmetry about the x-axis. 
 3 2 1y x x x− = + + +  
It looks like not symmetry about the x-axis 
 
Next, symmetry about the y-axis. 

 ( ) ( ) ( )3 2

3 2

1

1

y x x x

y x x x

= − + − + − +

= − + − +
 

So, no symmetry here either. 
 
Finally, symmetry about the origin. 



College Algebra 

© 2007 Paul Dawkins 237 http://tutorial.math.lamar.edu/terms.aspx 
 

 ( ) ( ) ( )3 2

3 2

1

1

y x x x

y x x x

− = − + − + − +

− = − + − +
 

And again, no symmetry here either. 
 
This function has no symmetry of any kind.  That’s not unusual as most functions don’t have any 
of these symmetries. 

[Return to Problems] 
 
(e) 2 2 1x y+ =  
Check x-axis symmetry first. 

 ( )22

2 2

1

1

x y

x y

+ − =

+ =
 

So, it’s got symmetry about the x-axis symmetry. 
 
Next, check for y-axis symmetry. 

 ( )2 2

2 2

1

1

x y

x y

− + =

+ =
 

Looks like it’s also got y-axis symmetry. 
 
Finally, symmetry about the origin. 

 ( ) ( )2 2

2 2

1

1

x y

x y

− + − =

+ =
 

 
So, it’s also got symmetry about the origin. 
 
Note that this is a circle centered at the origin and as noted when we first started talking about 
symmetry it does have all three symmetries. 

[Return to Problems]
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 Rational Functions 
In this final section we need to discuss graphing rational functions.  It’s is probably best to start 
off with a fairly simple one that we can do without all that much knowledge on how these work. 
 

Let’s sketch the graph of ( ) 1f x
x

= .  First, since this is a rational function we are going to have 

to be careful with division by zero issues.  So, we can see from this equation that we’ll have to 
avoid 0x =  since that will give division by zero. 
 
Now, let’s just plug in some values of x and see what we get. 
 

x f(x) 
-4 -0.25
-2 -0.5 
-1 -1 

-0.1 -10 
-0.01 -100 
0.01 100 
0.1 10 
1 1 
2 0.5 
4 0.25 

 
So, as x get large (positively and negatively) the function keeps the sign of x and gets smaller and 
smaller.  Likewise as we approach 0x =  the function again keeps the same sign as x but starts 
getting quite large.  Here is a sketch of this graph. 
 

 
 

First, notice that the graph is in two pieces.  Almost all rational functions will have graphs in 
multiple pieces like this.   
 
Next, notice that this graph does not have any intercepts of any kind.  That’s easy enough to 
check for ourselves.   
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Recall that a graph will have a y-intercept at the point ( )( )0, 0f .  However, in this case we have 
to avoid 0x =  and so this graph will never cross the y-axis.  It does get very close to the y-axis, 
but it will never cross or touch it and so no y-intercept. 
 
Next, recall that we can determine where a graph will have x-intercepts by solving ( ) 0f x = .  
For rational functions this may seem like a mess to deal with.  However, there is a nice fact about 
rational functions that we can use here.  A rational function will be zero at a particular value of x 
only if the numerator is zero at that x and the denominator isn’t zero at that x.  In other words, to 
determine if a rational function is every zero all that we need to do is set the numerator equal to 
zero and solve.  Once we have these solutions we just need to check that none of them make the 
denominator zero as well. 
 
In our case the numerator is one and will never be zero and so this function will have no x-
intercepts.  Again, the graph will get very close to the x-axis but it will never touch or cross it. 
 
Finally, we need to address the fact that graph gets very close to the x and y-axis but never 
crosses.  Since there isn’t anything special about the axis themselves we’ll use the fact that the x-
axis is really the line given by 0y =  and the y-axis is really the line given by 0x = . 
 
In our graph as the value of x approaches 0x =  the graph starts gets very large on both sides of 
the line given by 0x = .  This line is called a vertical asymptote. 
 
Also, as x get very large, both positive and negative, the graph approaches the line given by 

0y = .   This line is called a horizontal asymptote.   
 
Here are the general definitions of the two asymptotes. 
 

1. The line x a=  is a vertical asymptote if the graph increases or decreases without bound 
one or both sides of the line as x moves in closer and closer to x a= . 
 

2. The line y b=  is a horizontal asymptote if the graph approaches y b=  as x increases 
or decreases without bound.  Note that it doesn’t have to approach y b=  as BOTH 
increases and decreases.  It only needs to approach it on one side in order for it to be a 
horizontal asymptote.  

 
Determining asymptotes is actually a fairly simple process.  First, let’s start with the rational 
function, 

 ( )
n

m

axf x
bx

+
=

+
"
"

 

where n is the largest exponent in the numerator and m is the largest exponent in the denominator. 
 
We then have the following facts about asymptotes. 
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1. The graph will have a vertical asymptote at x a=  if the denominator is zero at x a=  
and the numerator isn’t zero at x a= . 
 

2. If n m<  then the x-axis is the horizontal asymptote. 

3. If n m=  then the line 
ay
b

=  is the horizontal asymptote. 

4. If n m>  there will be no horizontal asymptotes. 
 
The process for graphing a rational function is fairly simple.  Here it is. 
 
Process for Graphing a Rational Function 
 

1. Find the intercepts, if there are any.  Remember that the y-intercept is given by 
( )( )0, 0f  and we find the x-intercepts by setting the numerator equal to zero and 

solving. 
 

2. Find the vertical asymptotes by setting the denominator equal to zero and solving. 
 

3. Find the horizontal asymptote, if it exits, using the fact above. 
 

4. The vertical asymptotes will divide the number line into regions.  In each region graph at 
least one point in each region.  This point will tell us whether the graph will be above or 
below the horizontal asymptote and if we need to we should get several points to 
determine the general shape of the graph. 
 

5. Sketch the graph. 
 
 
Note that the sketch that we’ll get from the process is going to be a fairly rough sketch but that is 
okay.  That’s all that we’re really after is a basic idea of what the graph will look at. 
 
Let’s take a look at a couple of examples. 
 
Example 1  Sketch the graph of the following function. 

 ( ) 3 6
1

xf x
x
+

=
−

 

Solution 
So, we’ll start off with the intercepts.  The y-intercept is, 

 ( ) ( )60 6 0, 6
1

f = = − ⇒ −
−

 

The x-intercepts will be, 

 ( )
3 6 0

2 2,0
x

x
+ =

= − ⇒ −
 

 
Now, we need to determine the asymptotes.  Let’s first find the vertical asymptotes. 
 1 0 1x x− = ⇒ =  
So, we’ve got one vertical asymptote.  This means that there are now two regions of x’s.  They 
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are 1x <  and 1x > . 
 
Now, the largest exponent in the numerator and denominator is 1 and so by the fact there will be a 
horizontal asymptote at the line. 

3 3
1

y = =  

 
Now, we just need points each region of x’s.  Since the y-intercept and x-intercept are already in 
the left region we won’t need to get any points there.  That means that we’ll just need to get a 
point in the right region.  It doesn’t really matter what value of x we pick here we just need to 
keep it fairly small so it will fit onto our graph. 
 

 ( ) ( ) ( )3 2 6 122 12 2,12
2 1 1

f
+

= = = ⇒
−

 

 
Okay, putting all this together gives the following graph. 

 
Note that they asymptotes are shown as dotted lines. 
 
Example 2  Sketch the graph of the following function. 

 ( ) 2

9
9

f x
x

=
−

 

Solution 
Okay, we’ll start with the intercepts.  The y-intercept is, 

 ( ) ( )90 1 0, 1
9

f = = − ⇒ −
−

 

The numerator is a constant and so there won’t be any x-intercepts since the function can never be 
zero. 
 
Next, we’ll have vertical asymptotes at, 
 2 9 0 3x x− = ⇒ = ±  
So, in this case we’ll have three regions to our graph : 3x < − , 3 3x− < < , 3x > . 
 
Also, the largest exponent in the denominator is 2 and since there are no x’s in the numerator the 
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largest exponent is 0, so by the fact the x-axis will be the horizontal asymptote. 
 
Finally, we need some points.  We’ll use the following points here. 

 

( )

( )

( )

( )

9 94 4,
7 7

9 92 2,
5 5

9 92 2,
5 5

9 94 4,
7 7

f

f

f

f

⎛ ⎞− = −⎜ ⎟
⎝ ⎠
⎛ ⎞− = − − −⎜ ⎟
⎝ ⎠
⎛ ⎞= − −⎜ ⎟
⎝ ⎠
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

Notice that along with the y-intercept we actually have three points in the middle region.  This is 
because there are a couple of possible behaviors in this region and we’ll need to determine the 
actual behavior.  We’ll see the other main behaviors in the next examples and so this will make 
more sense at that point. 
 
Here is the sketch of the graph. 

 
Example 3  Sketch the graph of the following function. 

 ( )
2

2

4
4

xf x
x x

−
=

−
 

Solution 
This time notice that if we were to plug in 0x = into the denominator we would get division by 
zero.  This means there will not be a y-intercept for this graph.  We have however, managed to 
find a vertical asymptote already. 
 
Now, let’s see if we’ve got x-intercepts. 
 2 4 0 2x x− = ⇒ = ±  
So, we’ve got two of them. 
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We’ve got one vertical asymptote, but there may be more so let’s go through the process and see. 
 ( )2 4 4 0 0, 4x x x x x x− = − = ⇒ = =  
So, we’ve got two again and the three regions that we’ve got are 0x < , 0 4x< <  and 4x > . 
 
Next, the largest exponent in both the numerator and denominator is 2 so by the fact there will be 
a horizontal asymptote at the line, 

 1 1
1

y = =  

 
Now, one of the x-intercepts is in the far left region so we don’t need any points there.  The other 
x-intercept is in the middle region.  So, we’ll need a point in the far right region and as noted in 
the previous example we will want to get a couple more points in the middle region to completely 
determine its behavior. 

 

( ) ( )

( )

( )

1 1 1,1

5 53 3,
3 3

21 215 5,
5 5

f

f

f

=

⎛ ⎞= − −⎜ ⎟
⎝ ⎠
⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

 
Here is the sketch for this function. 

 
 
Notice that this time the middle region doesn’t have the same behavior at the asymptotes as we 
saw in the previous example.  This can and will happen fairly often.  Sometimes the behavior at 
the two asymptotes will be the same as in the previous example and sometimes it will have the 
opposite behavior at each asymptote as we see in this example.  Because of this we will always 
need to get a couple of points in these types of regions to determine just what the behavior will 
be. 
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Polynomial Functions 

 

 Introduction 
In this chapter we are going to take a more in depth look at polynomials.  We’ve already solved 
and graphed second degree polynomials (i.e. quadratic equations/functions) and we now want to 
extend things out to more general polynomials.  We will take a look at finding solutions to higher 
degree polynomials and how to get a rough sketch for a higher degree polynomial. 
 
We will also be looking at Partial Fractions in this chapter.  It doesn’t really have anything to do 
with graphing polynomials, but needed to be put somewhere and this chapter seemed like as good 
a place as any. 
 
Here is a brief listing of the material in this chapter. 
 
Dividing Polynomials – We’ll review some of the basics of dividing polynomials in this section.  
Zeroes/Roots of Polynomials – In this section we’ll define just what zeroes/roots of polynomials 
are and give some of the more important facts concerning them. 
Graphing Polynomials – Here we will give a process that will allow us to get a rough sketch of 
some polynomials. 
Finding Zeroes of Polynomials – We’ll look at a process that will allow us to find some of the 
zeroes of a polynomial and in special cases all of the zeroes. 
Partial Fractions – In this section we will take a look at the process of partial fractions and 
finding the partial fraction decomposition of a rational expression. 
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 Dividing Polynomials 
In this section we’re going to take a brief look at dividing polynomials.  This is something that 
we’ll be doing off and on throughout the rest of this chapter and so we’ll need to be able to do 
this.   
 
Let’s do a quick example to remind us how long division of polynomials works. 
 
Example 1  Divide 3 25 6x x− +  by 4x − . 
 
Solution 
Let’s first get the problem set up.  

 3 24 5 0 6x x x x− − + +  

Recall that we need to have the terms written down with the exponents in decreasing order and to 
make sure we don’t make any mistakes we add in any missing terms with a zero coefficient. 
 
Now we ask ourselves what we need to multiply 4x −  to get the first term in first polynomial.  In 
this case that is 25x .  So multiply 4x −  by 25x  and subtract the results from the first 
polynomial. 

 ( )

2

3 2

3 2

2

5
4 5 0 6

5 20

19 0 6

x
x x x x

x x

x x

− − + +

− −

+ +

 

 
The new polynomial is called the remainder.  We continue the process until the degree of the 
remainder is less than the degree of the divisor, which is 4x −  in this case.  So, we need to 
continue until the degree of the remainder is less than 1. 
 
Recall that the degree of a polynomial is the highest exponent in the polynomial.  Also, recall 
that a constant is thought of as a polynomial of degree zero.  Therefore, we’ll need to continue 
until we get a constant in this case. 
 
Here is the rest of the work for this example. 
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( )

( )

( )

2

3 2

3 2

2

2

5 19 76
4 5 0 6

5 20

19 0 6

19 76

76 6
76 304

310

x x
x x x x

x x

x x

x x

x
x

+ +
− − + +

− −

+ +

− −

+

− −

 

 
Okay, now that we’ve gotten this done, let’s remember how we write the actual answer down.  
The answer is, 

 
3 2

25 6 3105 19 76
4 4

x x x x
x x
− +

= + + +
− −

 

 
There is actually another way to write the answer from the previous example that we’re going to 
find much more useful, if for no other reason that it’s easier to write down.  If we multiply both 
sides of the answer by 4x −  we get, 
 
 ( )( )3 2 25 6 4 5 19 76 310x x x x x− + = − + + +  
 
In this example we divided the polynomial by a linear polynomial in the form of x r−  and we 
will be restricting ourselves to only these kinds of problems.  Long division works for much more 
general division, but these are the kinds of problems we are going to seeing the later sections. 
 
In fact we will be seeing these kinds of divisions so often that we’d like a quicker and more 
efficient way of doing them.  Luckily there is something out there called synthetic division that 
works wonderfully for these kinds of problems.  In order to use synthetic division we must be 
dividing a polynomial by a linear term in the form x r− .  If we aren’t then it won’t work. 
 
Let’s redo the previous problem with synthetic division to see how it works. 
 
Example 2  Use synthetic division to divide 3 25 6x x− +  by 4x − . 
 
Solution 
Okay with synthetic division we pretty much ignore all the x’s and just work with the numbers in 
the polynomials. 
 
First, let’s notice that in this case r=4. 
 
Now we need to set up the process.  There are many different notations for doing this.  We’ll be 
using the following notation. 
 
 4 5 1 0 6−  
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The numbers to the right of the vertical bar are the coefficients of the terms in the polynomial 
written in order of decreasing exponent.  Also notice that any missing terms are acknowledged 
with a coefficient of zero. 
 
Now, it will probably be easier to write down the process and then explain it so here it is. 
 

 
 
The first thing we do is drop the first number in the top line straight down as shown.  Then along 
each diagonal we multiply the starting number by r (which is 4 in this case) and put this number 
in the second row.  Finally, add the numbers in the first and second row putting the results in the 
third row.  We continue this until we get reach the final number in the first row. 
 
Now, notice that the numbers in the bottom row are the coefficients of the quadratic polynomial 
from our answer written order of decreasing exponent and the final number in the third row is the 
remainder. 
 
The answer is then the same as the first example. 
 
 ( )( )3 2 25 6 4 5 19 76 310x x x x x− + = − + + +  
 
We’ll do some more examples of synthetic division is a bit.  However, we really should 
generalize things out a little first with the following fact. 
 
Division Algorithm 
 
Given a polynomial P(x) with degree at least 1 and any number r there is another polynomial 
Q(x), called the quotient, with degree one less than the degree of P(x) and a number R, called the 
remainder, such that, 
 
 ( ) ( ) ( )P x x r Q x R= − +  
 
 
Note as well that Q(x) and R are unique, or in other words, there is only one Q(x) and R that will 
work for a given P(x) and r. 
 
So, with the one example we’ve done to this point we can see that, 
 
 ( ) 25 19 76 and 310Q x x x R= + + =  
 
Now, let’s work a couple more synthetic division problems. 
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Example 3  Use synthetic division to do each of the following divisions. 
(a) Divide 32 3 5x x− −  by 2x +     [Solution] 
(b) Divide 4 24 10 1x x− +  by  6x −     [Solution] 

Solution 
(a) Divide 32 3 5x x− −  by 2x +  
Okay in this case we need to be a little careful here.  We MUST divide by a term in the form 
x r−  in order for this to work and that minus sign is absolutely required.  So, we’re first going to 
need to write 2x +  as, 
 ( )2 2x x+ = − −  
and in doing so we can see that 2r = − . 
 
We can now do synthetic division and this time we’ll just put up the results and leave it to you to 
check all the actual numbers. 
 

 
2 2 0 3 5

4 8 10

2 4 5 15

− − −
− −

− −

 

 
So, in this case we have, 
 ( )( )3 22 3 5 2 2 4 5 15x x x x x− − = + − + −  

[Return to Problems] 
 
(b) Divide 4 24 10 1x x− +  by  6x −  
In this case we’ve got r=6.  Here is the work. 
 

 
6 4 0 10 0 1

0 24 144 804 4824

4 24 134 804 4825

−
 

 
In this case we then have. 
 ( )( )4 2 3 24 10 1 6 4 24 134 804 4825x x x x x x− + = − + + + +  

[Return to Problems]
 
So, just why are we doing this?  That’s a natural question at this point.  One answer is that, down 
the road in a later section, we are going to want to get our hands on the Q(x).  Just why we might 
want to do that will have to wait for an explanation until we get to that point. 
 
There is also another reason for this that we are going to make heavy usage of later on.  Let’s first 
start out with the division algorithm. 
 
 ( ) ( ) ( )P x x r Q x R= − +  
 
Now, let’s evaluate the polynomial P(x) at r.  If we had an actual polynomial here we could 
evaluate P(x) directly of course, but let’s use the division algorithm and see what we get, 
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( ) ( ) ( )

( ) ( )0

P r r r Q r R

Q r R
R

= − +

= +

=

 

 
Now, that’s convenient.  The remainder of the division algorithm is also the value of the 
polynomial evaluated at r.  So, from our previous examples we now know the following function 
evaluations. 
 

 

( ) ( )
( ) ( )
( ) ( )

3 2

3

4 2

If 5 6 then  4 310

If 2 3 5 then  2 15

If 4 10 1 then  6 4825

P x x x P

P x x x P

P x x x P

= − + =

= − − − = −

= − + =

 

 
This is a very quick method for evaluating polynomials.  For polynomials with only a few terms 
and/or polynomials with “small” degree this may not be much quicker that evaluating them 
directly.  However, if there are many terms in the polynomial and they have large degrees this can 
be much quicker and much less prone to mistakes than computing them directly. 
 
As noted, we will be using this fact in a later section to greatly reduce the amount of work we’ll 
need to do in those problems. 
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 Zeroes/Roots of Polynomials 
We’ll start off this section by defining just what a root or zero of a polynomial is.  We say that 
x r=  is a root or zero of a polynomial, ( )P x , if ( ) 0P r = .  In other words, x r=  is a root or 

zero of a polynomial if it is a solution to the equation ( ) 0P x = . 
 
In the next couple of sections we will need to find all the zeroes for a given polynomial.  So, 
before we get into that we need to get some ideas out of the way regarding zeroes of polynomials 
that will help us in that process. 
 
The process of finding the zeros of ( )P x  really amount to nothing more than solving the 

equation ( ) 0P x =  and we already know how to do that for second degree (quadratic) 
polynomials.  So, to help illustrate some of the ideas were going to be looking at let’s get the 
zeroes of a couple of second degree polynomials. 
 
Let’s first find the zeroes for ( ) 2 2 15P x x x= + − .  To do this we simply solve the following 
equation. 
 ( )( )2 2 15 5 3 0 5, 3x x x x x x+ − = + − = ⇒ = − =  
So, this second degree polynomial has two zeroes or roots. 
 
Now, let’s find the zeroes for ( ) 2 14 49P x x x= − + .  That will mean solving, 

 ( )22 14 49 7 0 7x x x x− + = − = ⇒ =  
So, this second degree polynomial has a single zero or root.  Also, recall that when we first 
looked at these we called a root like this a double root. 
 
We solved each of these by first factoring the polynomial and then using the zero factor property 
on the factored form.  When we first looked at the zero factor property we saw that it said that if 
the product of two terms was zero then one of the terms had to be zero to start off with. 
 
The zero factor property can be extended out to as many terms as we need.  In other words, if 
we’ve got a product of n terms that is equal to zero, then at least one of them had to be zero to 
start off with.  So, if we could factor higher degree polynomials we could then solve these as 
well. 
 
Let’s take a look at a couple of these. 
 
Example 1  Find the zeroes of each of the following polynomials. 

(a) ( ) ( ) ( )2 35 4 3 25 20 5 50 20 40 5 1 2P x x x x x x x x= − + + − − = + −  

(b) ( ) ( ) ( )38 7 6 5 4 44 18 108 135 3 5Q x x x x x x x x x= − − + − = − +  

(c) ( ) ( ) ( ) ( )( )3 27 6 5 3 210 27 57 30 29 20 1 1 5 4R x x x x x x x x x x x= + + − − + + = + − + −
Solution 
In each of these the factoring has been done for us.  Do not worry about factoring anything like 
this.  You won’t be asked to do any factoring of this kind anywhere in this material.  There are 
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only here to make the point that the zero factor property works here as well.  We will also use 
these in a later example. 
 
(a) ( ) ( ) ( )2 35 4 3 25 20 5 50 20 40 5 1 2P x x x x x x x x= − + + − − = + −  
Okay, in this case we do have a product of 3 terms however the first is a constant and will not 
make the polynomial zero.  So, from the final two terms it looks like the polynomial will be zero 
for 1x = −  and 2x = .  Therefore, the zeroes of this polynomial are, 
 
 1 and 2x x= − =  
 
(b) ( ) ( ) ( )38 7 6 5 4 44 18 108 135 3 5Q x x x x x x x x x= − − + − = − +  
We’ve also got a product of three terms in this polynomial.  However, since the first is now an x 
this will introduce a third zero.  The zeroes for this polynomial are, 
 
 5, 0, and 3x x x= − = =  
 
because each of these will make one of the terms, and hence the whole polynomial, zero. 
 
(c) ( ) ( ) ( ) ( )( )3 27 6 5 3 210 27 57 30 29 20 1 1 5 4R x x x x x x x x x x x= + + − − + + = + − + −  
With this polynomial we have four terms and the zeroes here are, 
 
 5, 1, 1, and 4x x x x= − = − = =  
 
Now, we’ve got some terminology to get out of the way.  If r is a zero of a polynomial and the 
exponent on the term that produced the root is k then we say that r has multiplicity k.  Zeroes 
with a multiplicity of 1 are often called simple zeroes. 
 
For example, the polynomial ( ) ( )22 10 25 5P x x x x= − + = −  will have one zero, 5x = , and its 
multiplicity is 2.  In some way we can think of this zero as occurring twice in the list of all zeroes 
since we could write the polynomial as, 
 ( ) ( )( )2 10 25 5 5P x x x x x= − + = − −  
Written this way the term 5x −  shows up twice and each term gives the same zero, 5x = .  
Saying that the multiplicity of a zero is k is just a shorthand to acknowledge that the zero will 
occur k times in the list of all zeroes. 
 
Example 2  List the multiplicities of the zeroes of each of the following polynomials. 

(a) ( ) 2 2 15P x x x= + −  

(b) ( ) 2 14 49P x x x= − +  

(c) ( ) ( ) ( )2 35 4 3 25 20 5 50 20 40 5 1 2P x x x x x x x x= − + + − − = + −  

(d) ( ) ( ) ( )38 7 6 5 4 44 18 108 135 3 5Q x x x x x x x x x= − − + − = − +  

(e) ( ) ( ) ( ) ( )( )3 27 6 5 3 210 27 57 30 29 20 1 1 5 4R x x x x x x x x x x x= + + − − + + = + − + −
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Solution 
We’ve already determined the zeroes of each of these in previous work or examples in this 
section so we won’t redo that work.  In each case we will simply write down the previously found 
zeroes and then go back to the factored form of the polynomial, look at the exponent on each term 
and give the multiplicity. 
 
(a) In this case we’ve got two simple zeroes : 5, 3x x= − = . 
 
(b) Here 7x =  is a zero of multiplicity 2. 
 
(c) There are two zeroes for this polynomial : 1x = −  with multiplicity 2 and 2x =  with 
multiplicity 3. 
 
(d) We have three zeroes in this case. : 5x = −  which is simple, 0x =  with multiplicity of 4 and 

3x =  with multiplicity 3. 
 
(e) In the final case we’ve got four zeroes. 5x = −  which is simple, 1x = −  with multiplicity of 
3, 1x =  with multiplicity 2 and 4x =  which is simple. 
 
This example leads us to several nice facts about polynomials.  Here is the first and probably the 
most important. 
 
Fundamental Theorem of Algebra 
If ( )P x  is a polynomial of degree n then ( )P x  will have exactly n zeroes, some of which may 
repeat. 
 
This fact says that if you list out all the zeroes and listing each one k times where k is its 
multiplicity you will have exactly n numbers in the list.  Another way to say this fact is that the 
multiplicity of all the zeroes must add to the degree of the polynomial. 
 
We can go back to the previous example and verify that this fact is true for the polynomials listed 
there. 
 
This will be a nice fact in a couple of sections when we go into detail about finding all the zeroes 
of a polynomial.  If we know an upper bound for the number of zeroes for a polynomial then we 
will know when we’ve found all of them and so we can stop looking. 
 
The next fact is also very useful at times.   
 
The Factor Theorem 
For the polynomial ( )P x , 

1. If r is a zero of ( )P x  then x r−  will be a factor of ( )P x . 

2. If x r−  is a factor of ( )P x  then r will be a zero of ( )P x . 
 
Again, if we go back to the previous example we can see that this is verified with the polynomials 
listed there. 
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The factor theorem leads to the following fact. 
 
Fact 1 
If ( )P x  is a polynomial of degree n and r is a zero of ( )P x  then ( )P x  can be written in the 
following form. 
 ( ) ( ) ( )P x x r Q x= −  

where ( )Q x  is a polynomial with degree 1n − .  ( )Q x  can be found by dividing ( )P x  by 
x r− .  
 
There is one more fact that we need to get out of the way. 
 
Fact 2 
If ( ) ( ) ( )P x x r Q x= −  and x t=  is a zero of ( )Q x  then x t=  will also be a zero of ( )P x . 
 
This fact is easy enough to verify directly.  First, if x t=  is a zero of ( )Q x  then we know that, 

 ( ) 0Q t =  

since that is what it means to be a zero.  So, if x t=  is to be a zero of ( )P x  then all we need to 

do is show that ( ) 0P t =  and that’s actually quite simple.  Here it is, 

 ( ) ( ) ( ) ( )( )0 0P t t r Q t t r= − = − =  

and so x t=  is a zero of ( )P x . 
 
Let’s work an example to see how these last few facts can be of use to us. 
 
Example 3  Given that 2x =  is a zero of ( ) 3 22 5 6P x x x x= + − −  find the other two zeroes. 
 
Solution 
First, notice that we really can say the other two since we know that this is a third degree 
polynomial and so by The Fundamental Theorem of Algebra we will have exactly 3 zeroes, with 
some repeats possible. 
 
So, since we know that 2x =  is a zero of ( ) 3 22 5 6P x x x x= + − −  the Fact 1 tells us that we 

can write ( )P x  as, 

 ( ) ( ) ( )2P x x Q x= −  

and ( )Q x  will be a quadratic polynomial.  Then we can find the zeroes of ( )Q x  by any of the 
methods that we’ve looked at to this point and by Fact 2 we know that the two zeroes we get from 
( )Q x  will also by zeroes of ( )P x .  At this point we’ll have 3 zeroes and so we will be done. 

 
So, let’s find ( )Q x .  To do this all we need to do is a quick synthetic division as follows. 
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2 1 2 5 6
2 8 6

1 4 3 0

− −
 

Before writing down ( )Q x  recall that the final number in the third row is the remainder and that 

we know that ( )2P  must be equal to this number.  So, in this case we have that ( )2 0P = .  If 
you think about it, we should already know this to be true.  We were given in the problem 
statement the fact that 2x =  is a zero of ( )P x  and that means that we must have ( )2 0P = . 
 
So, why go on about this?  This is a great check of our synthetic division.  Since we know that 

2x =  is a zero of ( )P x  and we get any other number than zero in that last entry we will know 
that we’ve done something wrong and we can go back and find the mistake. 
 
Now, let’s get back to the problem.  From the synthetic division we have, 
 ( ) ( )( )22 4 3P x x x x= − + +  
So, this means that, 
 ( ) 2 4 3Q x x x= + +  
and we can find the zeroes of this.  Here they are, 
 ( ) ( )( )2 4 3 3 1 3, 1Q x x x x x x x= + + = + + ⇒ = − = −  
 
So, the three zeroes of ( )P x  are 3x = − , 1x = −  and 2x = . 
 
As a aside to the previous example notice that we can also now completely factor the polynomial 
( ) 3 22 5 6P x x x x= + − − .  Substituting the factored form of ( )Q x  into ( )P x  we get, 

 ( ) ( )( )( )2 3 1P x x x x= − + +  
 
This is how the polynomials in the first set of examples were factored by the way.  Those require 
a little more work than this, but they can be done in the same manner. 
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 Graphing Polynomials 
In this section we are going to look at a method for getting a rough sketch of a general 
polynomial.  The only real information that we’re going to need is a complete list of all the zeroes 
(including multiplicity) for the polynomial.   
 
In this section we are going to either be given the list of zeroes or they will be easy to find.  In the 
next section we will go into a method for determining a large portion of the list for most 
polynomials.  We are graphing first since the method for finding all the zeroes of a polynomial 
can be a little long and we don’t want to obscure the details of this section in the mess of finding 
the zeroes of the polynomial. 
 
Let’s start off with the graph of couple of polynomials. 

 
Do not worry about the equations for these polynomials.  We are giving these only so we can use 
them to illustrate some ideas about polynomials. 
 
First, notice that the graphs are nice and smooth.  There are no holes or breaks in the graph and 
there are no sharp corners in the graph.  The graphs of polynomials will always be nice smooth 
curves. 
 
Secondly, the “humps” where the graph changes direction from increasing to decreasing or 
decreasing to increasing are often called turning points.  If we know that the polynomial has 
degree n then we will know that there will be at most 1n −  turning points in the graph.   
 
While this won’t help much with the actual graphing process it will be a nice check.  If we have a 
fourth degree polynomial with 5 turning point then we will know that we’ve done something 
wrong since a fourth degree polynomial will have no more than 3 turning points. 
 
Next, we need to explore the relationship between the x-intercepts of a graph of a polynomial and 
the zeroes of the polynomial.  Recall that to find the x-intercepts of a function we need to solve 
the equation  

( ) 0P x =  

Also, recall that x r=  is a zero of the polynomial, ( )P x , provided ( ) 0P r = .  But this means 

that x r=  is also a solution to ( ) 0P x = . 
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In other words, the zeroes of a polynomial are also the x-intercepts of the graph.  Also, recall that 
x-intercepts can either cross the x-axis or they can just touch the x-axis without actually crossing 
the axis. 
 
Notice as well from the graphs above that the x-intercepts can either flatten out as they cross the 
x-axis or they can go through the x-axis at an angle. 
 
The following fact will relate all of these ideas to the multiplicity of the zero. 
 
Fact 
If x r=  is a zero of the polynomial ( )P x  with multiplicity k then, 

1. If k is odd then the x-intercept corresponding to x r=  will cross the x-axis. 
2. If k is even then the x-intercept corresponding to x r=  will only touch the x-axis and not 

actually cross it. 
Furthermore, if 1k >  then the graph will flatten out at x r= . 
 
Finally, notice that as we let x get large in both the positive or negative sense (i.e. at either end of 
the graph) then the graph will either increase without bound or decrease without bound.  This will 
always happen with every polynomial and we can use the following test to determine just what 
will happen at the endpoints of the graph. 
 
Leading Coefficient Test 
Suppose that ( )P x  is a polynomial with degree n.  So we know that the polynomial must look 
like,  

( ) nP x ax= +"  
We don’t know if there are any other terms in the polynomial, but we do know that the first term 
will have to be the one listed since it has degree n.  We now have the following facts about the 
graph of ( )P x  at the ends of the graph. 
 

1. If 0a >  and n is even then the graph of ( )P x  will increase without bound positively at 
both endpoints.  A good example of this is the graph of x2. 

 
 

2. If 0a >  and n is odd then the graph of ( )P x  will increase without bound positively at 
the right end and decrease without bound at the left end.  A good example of this is the 
graph of x3. 
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3. If 0a <  and n is even then the graph of ( )P x  will decrease without bound positively at 
both endpoints.  A good example of this is the graph of -x2. 

 
 

4. If 0a <  and n is odd then the graph of ( )P x  will decrease without bound positively at 
the right end and increase without bound at the left end.  A good example of this is the 
graph of -x3. 

 
 
Okay, now that we’ve got all that out of the way we can finally give a process for getting a rough 
sketch of the graph of a polynomial. 
 
Process for Graphing a Polynomial 

1. Determine all the zeroes of the polynomial and their multiplicity.  Use the fact above to 
determine the x-intercept that corresponds to each zero will cross the x-axis or just touch 
it and if the x-intercept will flatten out or not. 
 

2. Determine the y-intercept, ( )( )0, 0P . 
 

3. Use the leading coefficient test to determine the behavior of the polynomial at the end of 
the graph. 
 

4. Plot a few more points.  This is left intentionally vague.  The more points that you plot 
the better the sketch.  At the least you should plot at least one at either end of the graph 
and at least one point between each pair of zeroes. 
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We should give a quick warning about this process before we actually try to use it.  This process 
assumes that all the zeroes are real numbers.  If there are any complex zeroes then this process 
may miss some pretty important features of the graph. 
 
Let’s sketch a couple of polynomials. 
 
Example 1  Sketch the graph of ( ) 5 4 3 25 20 5 50 20 40P x x x x x x= − + + − − . 
 
Solution 
We found the zeroes and multiplicities of this polynomial in the previous section so we’ll just 
write them back down here for reference purposes. 
 

 
( )
( )

1 multiplicity 2

2 multiplicity 3

x

x

= −

=
 

 
So, from the fact we know that 1x = −  will just touch the x-axis and not actually cross it and that 

2x =  will cross the x-axis and will be flat as it does this since the multiplicity is greater than 1. 
 
Next, the y-intercept is ( )0, 40− . 
 
The coefficient of the 5th degree term is positive and since the degree is odd we know that this 
polynomial will increase without bound at the right end and decrease without bound at the left 
end. 
 
Finally, we just need to evaluate the polynomial at a couple of points.  The points that we pick 
aren’t really all that important.  We just want to pick points according to the guidelines in the 
process outlined above and points that will be fairly easy to evaluate.  Here are some points.  We 
will leave it to you to verify the evaluations. 
 
 ( ) ( ) ( )2 320 1 20 3 80P P P− = − = − =  
 
Now, to actually sketch the graph we’ll start on the left end and work our way across to the right 
end.  First, we know that on the left end the graph decreases without bound as we make x more 
and more negative and this agrees with the point that we evaluated at 2x = − .   
 
So, as we move to the right the function will actually be increasing at 2x = −  and we will 
continue to increase until we hit the first x-intercept at 0x = .  At this point we know that the 
graph just touches the x-axis without actually crossing it.  This means that at 0x =  the graph 
must be a turning point. 
 
The graph is now decreasing as we move to the right.  Again, this agrees with the next point that 
we’ll run across, the y-intercept. 
 
Now, according to the next point that we’ve got, 1x = , the graph must have another turning point 
somewhere between 0x =  and 1x =  since the graph is higher at 1x =  than at 0x = .  Just 
where this turning point will occur is very difficult to determine at this level so we won’t worry 
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about trying to find it.  In fact, determining this point usually requires some Calculus.  
 
So, we are moving to the right and the function is increasing.  The next point that we hit is the x-
intercept at 2x =  and this one crosses the x-axis so we know that there won’t be a turning point 
here as there was at the first x-intercept.  Therefore, the graph will continue to increase through 
this point until we hit the final point that we evaluated the function at, 3x = . 
 
At this point we’ve hit all the x-intercepts and we know that the graph will increase without 
bound at the right end and so it looks like all we need to do is sketch in an increasing curve. 
 
Here is a sketch of the polynomial. 

 
 
Note that one of the reasons for plotting points at the ends is to see just how fast the graph is 
increasing or decreasing.  We can see from the evaluations that the graph is decreasing on the left 
end much faster than it’s increasing on the right end. 
 
 
 
Okay, let’s take a look at another polynomial.  This time we’ll go all the way through the process 
of finding the zeroes. 
 
Example 2  Sketch the graph of ( ) 4 3 26P x x x x= − − . 
 
Solution 
First, we’ll need to factor this polynomial as much as possible so we can identify the zeroes and 
get their multiplicities. 
 ( ) ( ) ( )( )4 3 2 2 2 26 6 3 2P x x x x x x x x x x= − − = − − = − +  
Here is a list of the zeroes and their multiplicities. 
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( )
( )
( )

2 multiplicity 1

0 multiplicity 2

3 multiplicity 1

x

x

x

= −

=

=

 

 
So, the zeroes at 2x = −  and 3x =  will correspond to x-intercepts that cross the x-axis since 
their multiplicity is odd and will do so at an angle since their multiplicity is NOT at least 2.  The 
zero at 0x =  will not cross the x-axis since its multiplicity is even. 
 
The y-intercept is ( )0,0  and notice that this is also an x-intercept. 
 
The coefficient of the 4th degree term is positive and so since the degree is even we know that the 
polynomial will increase without bound at both ends of the graph. 
 
Finally, here are some function evaluations. 
 
 ( ) ( ) ( ) ( )3 54 1 4 1 6 4 96P P P P− = − = − = − =  
 
Now, starting at the left end we know that as we make x more and more negative the function 
must increase without bound.  That means that as we move to the right the graph will actually be 
decreasing.   
 
At 3x = −  the graph will be decreasing and will continue to decrease when we hit the first x-
intercept at 2x = −  since we know that this x-intercept will cross the x-axis.   
 
Next, since the next x-intercept is at 0x =  we will have to have a turning point somewhere so 
that the graph can increase back up to this x-intercept.  Again, we won’t worry about where this 
turning point actually is. 
 
Once we hit the x-intercept at 0x =  we know that we’ve got to have a turning point since this x-
intercept doesn’t cross the x-axis.  Therefore to the right of 0x =  the graph will now be 
decreasing. 
 
It will continue to decrease until it hits another turning point (at some unknown point) so that the 
graph can get back up to the x-axis for the next x-intercept at 3x = .  This is the final x-intercept 
and since the graph is increasing at this point and must increase without bound at this end we are 
done. 
 
Here is a sketch of the graph. 
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Example 3  Sketch the graph of ( ) 5 34P x x x= − + . 
 
Solution 
As with the previous example we’ll first need to factor this as much as possible. 
 ( ) ( ) ( ) ( )( )5 3 5 3 3 2 34 4 4 2 2P x x x x x x x x x x= − + = − − = − − = − − +  
 
Notice that we first factored out a minus sign to make the rest of the factoring a little easier.  Here 
is a list of all the zeroes and their multiplicities. 
 

 
( )
( )
( )

2 multiplicity 1

0 multiplicity 3

2 multiplicity 1

x

x

x

= −

=

=

 

 
So, all three zeroes correspond to x-intercepts that actually cross the x-axis since all their 
multiplicities are odd, however, only the x-intercept at 0x =  will cross the x-axis flattened out. 
 
The y-intercept is ( )0,0  and as with the previous example this is also an x-intercept. 
 
In this case the coefficient of the 5th degree term is negative and so since the degree is odd the 
graph will increase without bound on the left side and decrease without bound on the right side. 
 
Here are some function evaluations. 
 
 ( ) ( ) ( ) ( )3 135 1 3 1 3 3 135P P P P− = − = − = = −  
 
Alright, this graph will start out much as the previous graph did.  At the left end the graph will be 
decreasing as we move to the right and will decrease through the first x-intercept at 2x = −  since 
know that this x-intercept crosses the x-axis. 
 
Now at some point we’ll get a turning point so the graph can get back up to the next x-intercept at 
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0x =  and the graph will continue to increase through this point since it also crosses the x-axis.  
Note as well that the graph should be flat at this point as well since the multiplicity is greater than 
one. 
 
Finally, the graph will reach another turning point and start decreasing so it can get back down to 
the final x-intercept at 2x = .  Since we know that the graph will decrease without bound at this 
end we are done. 
 
Here is the sketch of this polynomial. 

 
The process that we’ve used in these examples can be a difficult process to learn.  It takes time to 
learn how to correctly interpret the results. 
 
Also, as pointed out at various spots there are several situations that we won’t be able to deal with 
here.  To find the majority of the turning point we would need some Calculus, which we clearly 
don’t have.  Also, the process does require that we have all the zeroes and that they all be real 
numbers. 
 
Even with these draw backs however, the process can at least give us an idea of what the graph of 
a polynomial will look like. 
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 Finding Zeroes of Polynomials 
We’ve been talking about zeroes of polynomial and why we need them for a couple of sections 
now.  We haven’t, however, really talked about how to actually find them for polynomials of 
degree greater than two.  That is the topic of this section.  Well, that’s kind of the topic of this 
section.  In general, finding all the zeroes of any polynomial is a fairly difficult process.  In this 
section we will give a process that will find all rational (i.e. integer or fractional) zeroes of a 
polynomial.  We will be able to use the process for finding all the zeroes of a polynomial 
provided all but at most two of the zeroes are rational.  If more than two of the zeroes are not 
rational then this process will not find all of the zeroes. 
 
We will need the following theorem to get us started on this process. 
 
Rational Root Theorem 

If the rational number 
bx
c

=  is a zero of the nth degree polynomial, 

 ( ) nP x sx t= + +"  
where all the coefficients are integers then b will be a factor of t and c will be a factor of s. 
 
Note that in order for this theorem to work then the zero must be reduced to lowest terms.  In 

other words it will work for 
4
3

 but not necessarily for 
20
15

. 

 
Let’s verify the results of this theorem with an example. 
 
Example 1  Verify that the roots of the following polynomial satisfy the rational root theorem. 
 ( ) ( )( )( )3 212 41 38 40 4 3 2 4 5P x x x x x x x= − − + = − − +  
Solution 
From the factored form we can see that the zeroes are, 

 4 2 54
1 3 4

x x x= = = = −  

Notice that we wrote the integer as a fraction to fit it into the theorem.  Also, with the negative 
zero we can put the negative onto the numerator or denominator.  It won’t matter. 
 
So, according to the rational root theorem the numerators of these fractions (with or without the 
minus sign on the third zero) must all be factors of 40 and the denominators must all be factors of 
12. 
 
Here are several ways to factor 40 and 12. 

 
( )( ) ( )( ) ( )( ) ( )( )
( )( ) ( )( ) ( )( )

40 4 10 40 2 20 40 5 8 40 5 8

12 1 12 12 3 4 12 3 4

= = = = − −

= = = − −
 

 
From these we can see that in fact the numerators are all factors of 40 and the denominators are 
all factors of 12.  Also note that, as shown, we can put the minus sign on the third zero on either 
the numerator or the denominator and it will still be a factor of the appropriate number. 
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So, why is this theorem so useful?  Well, for starters it will allow us to write down a list of 
possible rational zeroes for a polynomial and more importantly, any rational zeroes of a 
polynomial WILL be in this list. 
 
In other words, we can quickly determine all the rational zeroes of a polynomial simply by 
checking all the numbers in our list. 
 
Before getting into the process of finding the zeroes of a polynomial let’s see how to come up 
with a list of possible rational zeroes for a polynomial. 
 
Example 2  Find a list of all possible rational zeroes for each of the following polynomials. 

(a) ( ) 4 3 27 17 17 6P x x x x x= − + − +     [Solution] 

(b) ( ) 4 3 22 3 3 9P x x x x x= + + + −     [Solution] 
Solution 
(a) ( ) 4 3 27 17 17 6P x x x x x= − + − +  

Now, just what does the rational root theorem say?  It says that if 
bx
c

=  is to be a zero of ( )P x  

then b must be a factor of 6 and c must be a factor of 1.  Also, as we saw in the previous example 
we can’t forget negative factors. 
 
So, the first thing to do is actually to list all possible factors of 1 and 6.  Here they are. 
 

 
6 : 1, 2, 3, 6
1: 1

± ± ± ±
±

 

 
Now, to get a list of possible rational zeroes of the polynomial all we need to do is write down all 
possible fractions that we can form from these numbers where the numerators must be factors of 
6 and the denominators must be factors of 1.  This is actually easier than it might at first appear to 
be. 
 
There is a very simple shorthanded way of doing this.  Let’s go through the first one in detail then 
we’ll do the rest quicker.  First, take the first factor from the numerator list, including the ± , and 
divide this by the first factor (okay, only factor in this case) from the denominator list, again 
including the ± .  Doing this gives, 
 

 1
1
±
±

 

 
This looks like a mess, but it isn’t too bad.  There are four fractions here. They are, 

 1 1 1 11 1 1 1
1 1 1 1
+ + − −

= = − = − =
+ − + −

 

Notice however, that the four fractions all reduce down to two possible numbers.  This will 
always happen with these kinds of fractions.  What we’ll do from now on is form the fraction, do 
any simplification of the numbers, ignoring the ± , and then drop one of the ± . 
 
So, the list possible rational zeroes for this polynomial is, 
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 1 2 3 61 2 3 6
1 1 1 1
± ± ± ±

= ± = ± = ± = ±
± ± ± ±

 

 
So, it looks there are only 8 possible rational zeroes and in this case they are all integers.  Note as 
well that any rational zeroes of this polynomial WILL be somewhere in this list, although we 
haven’t found them yet. 

[Return to Problems] 
 
(b) ( ) 4 3 22 3 3 9P x x x x x= + + + −  
We’ll not put quite as much detail into this one.  First get a list of all factors of -9 and 2.  Note 
that the minus sign on the 9 isn’t really all that important since we will still get a ±  on each of 
the factors. 

 
9 : 1, 3, 9
2 : 1, 2

− ± ± ±
± ±

 

 
Now, the factors of -9 are all the possible numerators and the factors of 2 are all the possible 
denominators. 
 
Here then is a list of all possible rational zeroes of this polynomial. 

 

1 3 91 3 9
1 1 1

1 1 3 3 9 9
2 2 2 2 2 2

± ± ±
= ± = ± = ±

± ± ±

± ± ±
= ± = ± = ±

± ± ±

 

 
So, we’ve got a total of 12 possible rational zeroes, half are integers and half are fractions. 

[Return to Problems]
 
The following fact will also be useful on occasion in finding the zeroes of a polynomial. 
 
Fact 
If ( )P x  is a polynomial and we know that ( ) 0P a >  and ( ) 0P b <  then somewhere between a 

and b is a zero of ( )P x . 
 
What this fact is telling us is that if we evaluate the polynomial at two points and one of the 
evaluations gives a positive value (i.e. the point is above the x-axis) and the other evaluation gives 
a negative value (i.e. the point is below the x-axis), then the only way to get from one point to the 
other is to go through the x-axis.  Or, in other words, the polynomial must have a zero, since we 
know that zeroes are where a graph touches or crosses the x-axis. 
 
Note that this fact doesn’t tell us what the zero is, it only tells us that one will exist.  Also, note 
that if both evaluations are positive or both evaluations are negative there may or may not be a 
zero between them. 
 
Here is the process for determining all the rational zeroes of a polynomial. 
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Process for Finding Rational Zeroes 
1. Use the rational root theorem to list all possible rational zeroes of the polynomial ( )P x . 

 
2. Evaluate the polynomial at the numbers from the first step until we find a zero.  Let’s 

suppose the zero is x r= , then we will know that it’s a zero because ( ) 0P r = .  Once 
this has been determined that it is in fact a zero write the original polynomial as 

 ( ) ( ) ( )P x x r Q x= −  
 

3. Repeat the process using ( )Q x  this time instead of ( )P x .  This repeating will continue 
until we reach a second degree polynomial.  At this point we can solve this directly for 
the remaining zeroes. 

 
To simplify the second step we will use synthetic division.  This will greatly simplify our life in 
several ways.  First, recall that the last number in the final row is the polynomial evaluated at r 
and if we do get a zero the remaining numbers in the final row are the coefficients for ( )Q x  and 
so we won’t have to go back and find that. 
 
Also, in the evaluation step it is usually easiest to evaluate at the possible integer zeroes first and 
then go back and deal with any fractions if we have to. 
 
Let’s see how this works. 
 
Example 3  Determine all the zeroes of ( ) 4 3 27 17 17 6P x x x x x= − + − + . 
 
Solution 
We found the list of all possible rational zeroes in the previous example.  Here they are. 
 
 1, 2, 3, 6± ± ± ±  
 
We now need to start evaluating the polynomial at these numbers.  We can start anywhere in the 
list and will continue until we find zero. 
 
To do the evaluations we will build a synthetic division table.  In a synthetic division table do 
the multiplications in our head and drop the middle row just writing down the third row and since 
we will be going through the process multiple time we put all the rows into a table. 
 
Here is the first synthetic division table for this problem. 
 

 ( )
( )

1 7 17 17 6
1 1 8 25 42 48 1 0

1 1 6 11 6 0 1 0 ! !
P
P

− −
− − − = − ≠

− − = =
 

 
So, we found a zero.  Before getting into that let’s recap the computations here to make sure you 
can do them.   
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The top row is the coefficients from the polynomial and the first column is the numbers that 
we’re evaluating the polynomial at.   
 
Each row (after the first) is the third row from the synthetic division process.  Let’s quickly look 
at the first couple of numbers in the second row.  The number in the second column is the first 
coefficient dropped down.  The number in the third column is then found by multiplying the -1 by 
1 and adding to the -7.  This gives the -8.  For the fourth number is then -1 times -8 added onto 
17.  This is 25, etc. 
 
You can do regular synthetic division if you need to, but it’s a good idea to be able to do these 
tables as it can help with the process. 
 
Okay, back to the problem.  We now know that 1x =  is a zero and so we can write the 
polynomial as, 
 ( ) ( )( )4 3 2 3 27 17 17 6 1 6 11 6P x x x x x x x x x= − + − + = − − + −  
 
Now we need to repeat this process with the polynomial ( ) 3 26 11 6Q x x x x= − + − .  So, the 
first thing to do is to write down all possible rational roots of this polynomial and in this case 
we’re lucky enough to have the first and last numbers in this polynomial be the same as the 
original polynomial, that usually won’t happen so don’t always expect it.  Here is the list of all 
possible rational zeroes of this polynomial. 
 
 1, 2, 3, 6± ± ± ±  
 
Now, before doing a new synthetic division table let’s recall that we are looking for zeroes to 
( )P x  and from our first division table we determined that 1x = −  is NOT a zero of ( )P x  and 

so there is no reason to bother with that number again.   
 
This is something that we should always do at this step.  Take a look at the list of new possible 
rational zeros and ask are there any that can’t be rational zeroes of the original polynomial.  If 
there are some, throw them out as we will already know that they won’t work.  So, a reduced list 
of numbers to try here is, 
 
 1, 2, 3, 6± ± ±  
 
Note that we do need to include 1x =  in the list since it is possible for a zero to occur more that 
once (i.e. multiplicity greater than one). 
 
Here is the synthetic division table for this polynomial. 
 

 ( )
1 6 11 6

1 1 5 6 0 1 0!!P
− −
− = =

 

 
So, 1x =  is also a zero of ( )Q x  and we can now write ( )Q x  as, 

 ( ) ( )( )3 2 26 11 6 1 5 6Q x x x x x x x= − + − = − − +  
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Now, technically we could continue the process with 2 5 6x x− + , but this is a quadratic equation 
and we know how to find zeroes of these without a complicated process like this so let’s just 
solve this like we normally would. 
 
 ( )( )2 5 6 2 3 0 2, 3x x x x x x− + = − − = ⇒ = =  
 
Note that these two numbers are in the list of possible rational zeroes. 
 
Finishing up this problem then gives the following list of zeroes for ( )P x . 

 
( )
( )
( )

1 multiplicity 2

2 multiplicity 1

3 multiplicity 1

x

x

x

=

=

=

 

 
Note that 1x =  has a multiplicity of 2 since it showed up twice in our work above. 
 
Before moving onto the next example let’s also note that we can now completely factor the 
polynomial ( ) 4 3 27 17 17 6P x x x x x= − + − + .  We know that each zero will give a factor in the 
factored form and that the exponent on the factor will be the multiplicity of that zero.  So, the 
factored form is, 
 ( ) ( ) ( )( )24 3 27 17 17 6 1 2 3P x x x x x x x x= − + − + = − − −  
 
Let’s take a look at another example. 
 
Example 4  Find all the zeroes of ( ) 4 3 22 3 3 9P x x x x x= + + + − . 
 
Solution 
From the second example we know that the list of all possible rational zeroes is, 
 

 

1 3 91 3 9
1 1 1

1 1 3 3 9 9
2 2 2 2 2 2

± ± ±
= ± = ± = ±

± ± ±

± ± ±
= ± = ± = ±

± ± ±

 

 
The next step is to build up the synthetic division table. When we’ve got fractions it’s usually best 
to start with the integers and do those first.  Also, this time we’ll start with doing all the negative 
integers first.  We are doing this to make a point on how we can use the fact given above to help 
us identify zeroes. 
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( )
( )
( )

2 1 3 3 9
9 09 2 17 156 1401 12600
3 03 2 5 18 51 144
1 01 2 1 4 1 8

P
P
P

−
= − ≠− − −
= − ≠− − −
= − ≠− − − −

 

 
Now, we haven’t found a zero yet, however let’s notice that ( )3 144 0P − = >  and 

( )1 8 0P − = − <  and so by the fact above we know that there must be a zero somewhere between 

3x = −  and 1x = − .  Now, we can also notice that 
3 1.5
2

x = − = −  is in this range and is the 

only number in our list that is in this range and so there is a chance that this is a zero.  Let’s run 
through synthetic division real quick to check and see if it’s a zero and to get the coefficients for 
( )Q x  if it is a zero. 

 

 
2 1 3 3 9

3 2 2 6 6 0
2

−

− − −
 

 
So, we got a zero in the final spot which tells us that this was a zero and ( )Q x  is, 

 ( ) 3 22 2 6 6Q x x x x= − + −  
 
We now need to repeat the whole process with this polynomial.  Also, unlike the previous 
example we can’t just reuse the original list since the last number is different this time.  So, here 
are the factors of -6 and 2. 
 

 
6 : 1, 2, 3, 6
2 : 1, 2

− ± ± ± ±
± ±

 

 
Here is a list of all possible rational zeroes for ( )Q x . 

 

1 2 3 61 2 3 6
1 1 1 1

1 1 2 3 3 61 3
2 2 2 2 2 2

± ± ± ±
= ± = ± = ± = ±

± ± ± ±

± ± ± ±
= ± = ± = ± = ±

± ± ± ±

 

 
Notice that some of the numbers appear in both rows and so we can shorten the list by only 
writing them down once.  Also, remember that we are looking for zeroes of ( )P x  and so we can 

exclude any number in this list that isn’t also in the original list we gave for ( )P x .  So, 

excluding previously checked numbers that were not zeros of ( )P x  as well as those that aren’t 
in the original list gives the following list of possible number that we’ll need to check. 
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 1 31, 3, ,
2 2

± ±  

 
Again, we’ve already checked 3x = −  and 1x = −  and know that they aren’t zeroes so there is 
no reason to recheck them.  Let’s again start with the integers and see what we get. 
 

 ( )
2 2 6 6

1 2 0 6 0 1 0 ! !P
− −

= =
 

 
So, 1x =  is a zero of ( )Q x  and we can now write ( )Q x  as, 

 ( ) ( )( )3 2 22 2 6 6 1 2 6Q x x x x x x= − + − = − +  
and as with the previous example we can solve the quadratic by other means. 

 

2

2

2 6 0
3

3

x
x

x i

+ =

= −

= ±

 

 
So, in this case we get a couple of complex zeroes.  That can happen. 
 
Here is a complete list of all the zeroes for ( )P x  and note that they all have multiplicity of one. 

3 , 1, 3 , 3
2

x x x i x i= − = = − =  

 
So, as you can see this is a fairly lengthy process and we only did the work for two 4th degree 
polynomials.  The larger the degree the longer and more complicated the process.  With that 
being said, however, it is sometimes a process that we’ve got to go through to get zeroes of a 
polynomial. 
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 Partial Fractions 
This section doesn’t really have a lot to do with the rest of this chapter, but since the subject 
needs to be covered and this was a fairly short chapter it seemed like as good a place as any to put 
it. 
 
So, let’s start with the following.  Let’s suppose that we want to add the following two rational 
expressions. 

 

( )
( )( )

( )
( )( )

( )
( )( )

( )( )

8 4 5 18 5
1 4 1 4 1 4

8 32 5 5
1 4

3 37
1 4

x x
x x x x x x

x x
x x

x
x x

− +
− = −

+ − + − + −

− − +
=

+ −

−
=

+ −

 

What we want to do in this section is to start with rational expressions and ask what simpler 
rational expressions did we add and/or subtract to get the original expression.  The process of 
doing this is called partial fractions and the result is often called the partial fraction 
decomposition. 
 
The process can be a little long and on occasion messy, but it is actually fairly simple. We will 
start by trying to determine the partial fraction decomposition of, 

 ( )
( )

P x
Q x

 

where both P(x) and Q(x) are polynomials and the degree of P(x) is smaller than the degree of 
Q(x).   Partial fractions can only be done if the degree of the numerator is strictly less than the 
degree of the denominator.  That is important to remember. 
 
So, once we’ve determined that partial fractions can be done we factor the denominator as 
completely as possible.  Then for each factor in the denominator we can use the following table to 
determine the term(s) we pick up in the partial fraction decomposition. 
 

Factor in 
denominator 

Term in partial 
fraction decomposition 

ax b+  
A

ax b+
 

( )kax b+  ( ) ( )
1 2

2
k

k

AA A
ax b ax b ax b

+ + +
+ + +

"  

2ax bx c+ +  2

Ax B
ax bx c

+
+ +

 

( )2 k
ax bx c+ +  ( ) ( )

1 1 2 2
22 2 2

k k
k

A x BA x B A x B
ax bx c ax bx c ax bx c

++ +
+ + +

+ + + + + +
"  
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Notice that the first and third cases are really special cases of the second and fourth cases 
respectively if we let 1k = .  Also, it will always be possible to factor any polynomial down into 
a product of linear factors ( ax b+ ) and quadratic factors ( 2ax bx c+ + ) some of which may be 
raised to a power. 
 
There are several methods for determining the coefficients for each term and we will go over each 
of those as we work the examples.  Speaking of which, let’s get started on some examples. 
 
Example 1  Determine the partial fraction decomposition of each of the following. 

(a) 2

8 42
3 18

x
x x

−
+ −

    [Solution] 

(b) 2

9 9
2 7 4

x
x x

−
+ −

    [Solution] 

(c) 
( )( )

2

2
4

1 2
x

x x− −
    [Solution] 

(d) 
( )2

9 25
3

x
x
+

+
    [Solution] 

Solution 
We’ll go through the first one in great detail to show the complete partial fraction process and 
then we’ll leave most of the explanation out of the remaining parts. 
 

(a) 2

8 42
3 18

x
x x

−
+ −

 

The first thing to do is factor the denominator as much as we can. 

 
( )( )2

8 42 8 42
3 18 6 3

x x
x x x x

− −
=

+ − + −
 

 
So, by comparing to the table above it looks like the partial fraction decomposition must look 
like, 

 2

8 42
3 18 6 3

x A B
x x x x

−
= +

+ − + −
 

Note that we’ve got different coefficients for each term since there is no reason to think that they 
will be the same.   
 
Now, we need to determine the values of A and B.  The first step is to actually add the two terms 
back up.  This is usually simpler than it might appear to be.  Recall that we first need the least 
common denominator, but we’ve already got that from the original rational expression.  In this 
case it is, 

( )( )6 3LCD x x= + −  
Now, just look at each term and compare the denominator to the LCD.  Multiply the numerator 
and denominator by whatever is missing then add.  In this case this gives, 

 ( )
( )( )

( )
( )( )

( ) ( )
( )( )2

3 6 3 68 42
3 18 6 3 6 3 6 3

A x B x A x B xx
x x x x x x x x

− + − + +−
= + =

+ − + − + − + −
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We need values of A and B so that the numerator of the expression on the left is the same as the 
numerator of the term on the right.  Or, 
 ( ) ( )8 42 3 6x A x B x− = − + +  
This needs to be true regardless of the x that we plug into this equation.  As noted above there are 
several ways to do this.  One way will always work, but can be messy and will often require 
knowledge that we don’t have yet.  The other way will not always work, but when it does it will 
greatly reduce the amount of work required. 
 
In this set of examples the second (and easier) method will always work so we’ll be using that 
here.  Here we are going to make use of the fact that this equation must be true regardless of the x 
that we plug in.   
 
So let’s pick an x, plug it in and see what happens.  For no apparent reason let’s try plugging in 

3x = .   Doing this gives, 
 

 
( ) ( ) ( )8 3 42 3 3 3 6

18 9
2

A B
B

B

− = − + +

− =
− =

 

 
Can you see why we choose this number?  By choosing 3x =  we got the term involving A to 
drop out and we were left with a simple equation that we can solve for B. 
 
Now, we could also choose 6x = −  for exactly the same reason.  Here is what happens if we use 
this value of x. 

 
( ) ( ) ( )8 6 42 6 3 6 6

90 9
10

A B
A

A

− − = − − + − +

− = −
=

 

 
So, by correctly picking x we were able to quickly and easily get the values of A and B.  So, all 
that we need to do at this point is plug them in to finish the problem.  Here is the partial fraction 
decomposition for this part. 

 2

8 42 10 2 10 2
3 18 6 3 6 3

x
x x x x x x

− −
= + = −

+ − + − + −
 

 
Notice that we moved the minus sign on the second term down to make the addition a subtraction.  
We will always do that. 

[Return to Problems] 
 
 

(b) 2

9 9
2 7 4

x
x x

−
+ −

 

Okay, in this case we won’t put quite as much detail into the problem.  We’ll first factor the 
denominator and then get the form of the partial fraction decomposition. 

 
( )( )2

9 9 9 9
2 7 4 2 1 4 2 1 4

x x A B
x x x x x x

− −
= = +

+ − − + − +
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In this case the LCD is ( )( )2 1 4x x− +  and so adding the two terms back up give, 

 ( ) ( )
( )( )2

4 2 19 9
2 7 4 2 1 4

A x B xx
x x x x

+ + −−
=

+ − − +
 

 
Next we need to set the two numerators equal. 
 ( ) ( )9 9 4 2 1x A x B x− = + + −  
 
Now all that we need to do is correctly pick values of x that will make one of the terms zero and 
solve for the constants.  Note that in this case we will need to make one of them a fraction.  This 
is fairly common so don’t get excited about it.  Here is this work. 
 

 
4 : 45 9 5
1 9 9: 1
2 2 2

x B B

x A A

= − = − ⇒ = −

⎛ ⎞= = ⇒ =⎜ ⎟
⎝ ⎠

 

 
The partial fraction decomposition for this expression is, 
 

 2

9 9 1 5
2 7 4 2 1 4

x
x x x x

−
= −

+ − − +
 

[Return to Problems] 
 

(c) 
( )( )

2

2
4

1 2
x

x x− −
 

In this case the denominator has already been factored for us.  Notice as well that we’ve now got 
a linear factor to a power.  So, recall from our table that this means we will get 2 terms in the 
partial fraction decomposition from this factor.  Here is the form of the partial fraction 
decomposition for this expression. 
 

 
( )( ) ( )

2

2 2
4

1 21 2 2
x A B C

x xx x x
= + +

− −− − −
 

 
Now, remember that the LCD is just the denominator of the original expression so in this case 
we’ve got ( )( )21 2x x− − .  Adding the three terms back up gives us, 

 
( )( )

( ) ( )( ) ( )
( )( )

22

2 2

2 1 2 14
1 2 1 2

A x B x x C xx
x x x x

− + − − + −
=

− − − −
 

Remember that we just need to add in the factors that are missing to each term. 
 
Now set the numerators equal. 
 ( ) ( )( ) ( )224 2 1 2 1x A x B x x C x= − + − − + −  
 
In this case we’ve got a slightly different situation from the previous two parts.  Let’s start by 
picking a couple of values of x and seeing what we get since there are two that should jump right 
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out at us as being particularly useful. 
 

 
( )
( )

21: 4 1 4

2 : 16 1 16

x A A

x C C

= = − ⇒ =

= = ⇒ =
 

 
So, we can get A and C in the same manner that we’ve been using to this point.  However, there is 
no value of x that will allow us to eliminate the first and third term leaving only the middle term 
that we can use to solve for B.  While this may appear to be a problem it actually isn’t.  At this 
point we know two of the three constants.  So all we need to do is chose any other value of x that 
would be easy to work with ( 0x =  seems particularly useful here), plug that in along with the 
values of A and C and we’ll get a simple equation that we can solve for B. 
 
Here is that work. 

 

( ) ( )( ) ( )( ) ( )2 24 0 4 2 1 2 16 1
0 16 2 16
0 2
0

B
B

B
B

= − + − − + −

= + −
=
=

 

 
In this case we got 0B =  this will happen on occasion, but do not expect it to happen in all 
cases.  Here is the partial fraction decomposition for this part. 
 

 
( )( ) ( )

2

2 2
4 4 16

11 2 2
x

xx x x
= +

−− − −
 

[Return to Problems] 
 

(d) 
( )2

9 25
3

x
x
+

+
 

Again, the denominator has already been factored for us.  In this case the form of the partial 
fraction decomposition is, 

 
( ) ( )2 2
9 25

33 3
x A B

xx x
+

= +
++ +

 

Adding the two terms together gives, 

 
( )

( )
( )2 2

39 25
3 3

A x Bx
x x

+ ++
=

+ +
 

Notice that in this case the second term already had the LCD under it and so we didn’t need to 
add anything in that time. 
 
Setting the numerators equal gives, 
 ( )9 25 3x A x B+ = + +  
 
Now, again, we can get B for free by picking 3x = − . 
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 ( ) ( )9 3 25 3 3
2

A B
B

− + = − + +

− =
 

 
To find A we will do the same thing that we did in the previous part.  We’ll use 0x =  and the 
fact that we know what B is. 

 
( )25 3 2

27 3
9

A
A

A

= −

=
=

 

 
In this case, notice that the constant in the numerator of the first isn’t zero as it was in the 
previous part.   Here is the partial fraction decomposition for this part. 
 

 
( ) ( )2 2
9 25 9 2

33 3
x

xx x
+

= −
++ +

 

[Return to Problems]
 
Now, we need to do a set of examples with quadratic factors.  Note however, that this is where 
the work often gets fairly messy and in fact we haven’t covered the material yet that will allow us 
to work many of these problems.  We can work some simple examples however, so let’s do that. 
 
Example 2  Determine the partial fraction decomposition of each of the following. 

(a) 
( )

2

2

8 12
2 6

x
x x x

−
+ −

    [Solution] 

(b) 
( )

3

22

3 7 4

2

x x

x

+ −

+
    [Solution] 

 
 
 
Solution 

(a) 
( )

2

2

8 12
2 6

x
x x x

−
+ −

 

In this case the x that sits in the front is a linear term since we can write it as, 
0x x= +  

and so the form of the partial fraction decomposition is, 

 
( )

2

22

8 12
2 62 6

x A Bx C
x x xx x x

− +
= +

+ −+ −
 

 
Now we’ll use the fact that the LCD is ( )2 2 6x x x+ −  and add the two terms together, 

 
( )

( ) ( )
( )

22

2 2

2 68 12
2 6 2 6

A x x x Bx Cx
x x x x x x

+ − + +−
=

+ − + −
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Next, set the numerators equal. 
 ( ) ( )2 28 12 2 6x A x x x Bx C− = + − + +  
 
This is where the process changes from the previous set of examples.  We could choose 0x =  to 
get the value of A, but that’s the only constant that we could get using this method and so it just 
won’t work all that well here. 
 
What we need to do here is multiply the right side out and then collect all the like terms as 
follows, 

 
( ) ( )

2 2 2

2 2

8 12 2 6
8 12 2 6

x Ax Ax A Bx Cx
x A B x A C x A
− = + − + +

− = + + + −
 

 
Now, we need to choose A, B, and C so that these two are equal.  That means that the coefficient 
of the x2 term on the right side will have to be 8 since that is the coefficient of the x2 term on the 
right side.  Likewise, the coefficient of the x term on the right side must be zero since there isn’t 
an x term on the left side.  Finally the constant term on the right side must be -12 since that is the 
constant on the left side. 
 
We generally call this setting coefficients equal and we’ll write down the following equations. 
 

 
8

2 0
6 12

A B
A C

A

+ =
+ =
− = −

 

 
Now, we haven’t talked about how to solve systems of equations yet, but this is one that we can 
do without that knowledge.  We can solve the third equation directly for A to get that 2A = .  We 
can then plug this into the first two equations to get, 

 ( )
2 8 6

2 2 0 4
B B
C C

+ = ⇒ =

+ = ⇒ = −
 

 
So, the partial fraction decomposition for this expression is, 

 
( )

2

22

8 12 2 6 4
2 62 6

x x
x x xx x x

− −
= +

+ −+ −
 

[Return to Problems] 

(b) 
( )

3

22

3 7 4

2

x x

x

+ −

+
 

Here is the form of the partial fraction decomposition for this part. 

 
( ) ( )

3

2 222 2

3 7 4
22 2

x x Ax B Cx D
xx x

+ − + +
= +

++ +
 

 
Adding the two terms up gives, 
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( )

( )( )
( )

23

2 22 2

23 7 4

2 2

Ax B x Cx Dx x

x x

+ + + ++ −
=

+ +
 

 
Now, set the numerators equal and we might as well go ahead and multiply the right side out and 
collect up like terms while we’re at it. 

 

( )( )

( )

3 2

3 3 2

3 3 2

3 7 4 2

3 7 4 2 2
3 7 4 2 2

x x Ax B x Cx D

x x Ax Ax Bx B Cx D
x x Ax Bx A C x B D

+ − = + + + +

+ − = + + + + +

+ − = + + + + +

 

 
Setting coefficients equal gives, 

 

3
0

2 7
2 4

A
B

A C
B D

=
=

+ =
+ = −

 

 
In this case we got A and B for free and don’t get excited about the fact that 0B = .  This is not a 
problem and in fact when this happens the remaining work is often a little easier.  So, plugging 
the known values of A and B into the remaining two equations gives, 

 
( )
( )

2 3 7 1

2 0 4 4

C C

D D

+ = ⇒ =

+ = − ⇒ = −
 

The partial fraction decomposition is then, 

 
( ) ( )

3

2 222 2

3 7 4 3 4
22 2

x x x x
xx x

+ − −
= +

++ +
 

[Return to Problems]
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Exponential and Logarithm Functions 

 

 Introduction 
In this chapter we are going to look at exponential and logarithm functions.  Both of these 
functions are very important and need to be understood by anyone who is going on to later math 
courses.  These functions also have applications in science, engineering, and business to name a 
few areas.  In fact, these functions can show up in just about any field that uses even a small 
degree of mathematics. 
 
Many students find these to be difficult functions to deal with, especially logarithms.  This is 
probably because they are so different from any of the other functions that they’ve looked at to 
this point and logarithms use a notation that will be new to almost everyone in an algebra class.  
However, you will find that once you get past the notation and start to understand some of their 
properties they really aren’t too bad. 
 
Here is a listing of the topics covered in this chapter. 
 
Exponential Functions – In this section we will introduce exponential functions.  We will be 
taking a look at some of the properties of exponential functions. 
Logarithm Functions – Here we will introduce logarithm functions.  We be looking at how to 
evaluate logarithms as well as the properties of logarithms. 
Solving Exponential Equations – We will be solving equations that contain exponentials in this 
section. 
Solving Logarithm Equations – Here we will solve equations that contain logarithms. 
Applications – In this section we will look at a couple of applications of exponential functions 
and an application of logarithms. 
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 Exponential Functions 
Let’s start off this section with the definition of an exponential function. 
 
If b is any number such that 0b >  and 1b ≠  then an exponential function is a function in the 
form, 
 ( ) xf x b=  
where b is called the base and x can be any real number. 
 
Notice that the x is now in the exponent and the base is a fixed number.  This is exactly the 
opposite from what we’ve seen to this point.  To this point the base has been the variable, x in 
most cases, and the exponent was a fixed number.  However, despite these differences these 
functions evaluate in exactly the same way as those that we are used to.  We will see some 
examples of exponential functions shortly. 
 
Before we get too far into this section we should address the restrictions on b.  We avoid one and 
zero because in this case the function would be, 
 ( ) ( )0 0 and 1 1x xf x f x= = = =  
and these are constant functions and won’t have many of the same properties that general 
exponential functions have. 
 
Next, we avoid negative numbers so that we don’t get any complex values out of the function 
evaluation.  For instance if we allowed 4b = −  the function would be, 

 ( ) ( ) ( )
1
2

14 4 4
2

xf x f ⎛ ⎞= − ⇒ = − = −⎜ ⎟
⎝ ⎠

 

and as you can see there are some function evaluations that will give complex numbers.  We only 
want real numbers to arise from function evaluation and so to make sure of this we require that b 
not be a negative number. 
 
Now, let’s take a look at a couple of graphs.  We will be able to get most of the properties of 
exponential functions from these graphs. 
 

Example 1  Sketch the graph of ( ) 2xf x =  and ( ) 1
2

x

g x ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 on the same axis system. 

 
Solution 
Okay, since we don’t have any knowledge on what these graphs look like we’re going to have to 
pick some values of x and do some function evaluations.  Function evaluation with exponential 
functions works in exactly the same manner that all function evaluation has worked to this point.  
Whatever is in the parenthesis on the left we substitute into all the x’s on the right side. 
 
Here are some evaluations for these two functions, 
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x ( ) 2xf x =  ( ) 1
2

x

g x ⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

-2 ( ) 2
2

1 12 2
2 4

f −− = = = ( )
2 21 22 4

2 1
g

−
⎛ ⎞ ⎛ ⎞− = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

-1 ( ) 1
1

1 11 2
2 2

f −− = = =  ( )
1 11 21 2

2 1
g

−
⎛ ⎞ ⎛ ⎞− = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

0 ( ) 00 2 1f = =  ( )
010 1

2
g ⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

1 ( ) 11 2 2f = =  ( )
11 11

2 2
g ⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

2 ( ) 22 2 4f = =  ( )
21 11

2 4
g ⎛ ⎞= =⎜ ⎟

⎝ ⎠
 

 
Here is the sketch of the two graphs. 

 
 
 
Note as well that we could have written ( )g x  in the following way, 

( ) 1 1 2
2 2

x
x

xg x −⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

Sometimes we’ll see this kind of exponential function and so it’s important to be able to go 
between these two forms. 
 
Now, let’s talk about some of the properties of exponential functions. 
 
 
 
 
Properties of ( ) xf x b=  
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1. The graph of ( )f x  will always contain the point ( )0,1 .  Or put another way, ( )0 1f =  
regardless of the value of b. 
 

2. For every possible b 0xb > .  Note that this implies that 0xb ≠ . 
 

3. If 0 1b< <  then the graph of xb  will decrease as we move from left to right.  Check out 

the graph of 
1
2

x
⎛ ⎞
⎜ ⎟
⎝ ⎠

 above for verification of this property. 

 
4. If 1b >  then the graph of xb  will increase as we move from left to right.  Check out the 

graph of 2x  above for verification of this property. 
 

5. If x yb b=  then x y=  
 
All of these properties except the final one can be verified easily from the graphs in the first 
example.  We will hold off discussing the final property for a couple of sections where we will 
actually be using it. 
 
As a final topic in this section we need to discuss a special exponential function.  In fact this is so 
special that for many people this is THE exponential function.  Here it is, 
 
 ( ) xf x = e  

where 2.718281828=e … .  Note the difference between ( ) xf x b=  and ( ) xf x = e .  In the 
first case b is any number that is meets the restrictions given above while e is a very specific 
number.  Also note that e is not a terminating decimal. 
 
This special exponential function is very important and arises naturally in many areas.  As noted 
above, this function arises so often that many people will think of this function if you talk about 
exponential functions.  We will see some of the applications of this function in the final section of 
this chapter. 
 
Let’s get a quick graph of this function. 
 
Example 2  Sketch the graph of ( ) xf x = e . 
 
Solution 
Let’s first build up a table of values for this function. 

x -2 -1 0 1 2 
f(x) 0.1353… 0.3679… 1 2.718… 7.389…

 
To get these evaluation (with the exception of 0x = ) you will need to use a calculator.  In fact, 
that is part of the point of this example.  Make sure that you can run your calculator and verify 
these numbers. 
 
Here is a sketch of this graph. 



College Algebra 

© 2007 Paul Dawkins 283 http://tutorial.math.lamar.edu/terms.aspx 
 

 
 
Notice that this is an increasing graph as we should expect since 2.718281827 1= >e … . 
 
There is one final example that we need to work before moving onto the next section.  This 
example is more about the evaluation process for exponential functions than the graphing process.  
We need to be very careful with the evaluation of exponential functions. 
 
Example 3  Sketch the graph of ( ) 15 4xg x −= −e . 
 
Solution 
Here is a quick table of values for this function. 

x -1 0 1 2 3 
g(x) 32.945… 9.591… 1 -2.161… -3.323…

 
Now, as we stated above this example was more about the evaluation process than the graph so 
let’s go through the first one to make sure that you can do these. 
 

 

( ) ( )

( )

1 1

2

1 5 4

5 4
5 7.389 4

g − −− = −

= −

= −

e

e  

 
Notice that when evaluating exponential functions we first need to actually do the exponentiation 
before we multiply by any coefficients (5 in this case).  Also, we used only 3 decimal places here 
since we are only graphing.  In many applications we will want to use far more decimal places in 
these computations. 
 
Here is a sketch of the graph. 



College Algebra 

© 2007 Paul Dawkins 284 http://tutorial.math.lamar.edu/terms.aspx 
 

 
Notice that this graph violates all the properties we listed above.  That is okay.  Those properties 
are only valid for functions in the form ( ) xf x b=  or ( ) xf x = e .  We’ve got a lot more going 
on in this function and so the properties, as written above, won’t hold for this function.  
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 Logarithm Functions 
In this section we now need to move into logarithm functions.  This can be a tricky function to 
graph right away.  There is going to be some different notation that you aren’t used to and some 
of the properties may not be all that intuitive.  Do not get discouraged however.  Once you figure 
these out you will find that they really aren’t that bad and it usually just takes a little working 
with them to get them figured out. 
 
Here is the definition of the logarithm function. 
If b is any number such that 0b >  and 1b ≠  and 0x >  then, 
 log is equivalent to y

by x b x= =  
We usually read this as “log base b of x”. 
 
In this definition logby x=  is called the logarithm form and yb x=  is called the exponential 
form.   
 
Note that the requirement that 0x >  is really a result of the fact that we are also requiring 0b > .  
If you think about it, it will make sense.  We are raising a positive number to an exponent and so 
there is no way that the result can possible be anything other than another positive number.  It is 
very important to remember that we can’t take the logarithm of zero or a negative number. 
 
Now, let’s address the notation used here as that is usually the biggest hurdle that students need to 
overcome before starting to understand logarithms.  First, the “log” part of the function is simply 
three letters that are used to denote the fact that we are dealing with a logarithm.  They are not 
variables and they aren’t signifying multiplication.  They are just there to tell us we are dealing 
with a logarithm. 
 
Next, the b that is subscripted on the “log” part is there to tell us what the base is as this is an 
important piece of information.  Also, despite what it might look like there is no exponentiation in 
the logarithm form above.  It might look like we’ve got xb  in that form, but it isn’t.  It just looks 
like that might be what’s happening. 
 
It is important to keep the notation with logarithms straight, if you don’t you will find it very 
difficult to understand them and to work with them. 
 
Now, let’s take a quick look at how we evaluate logarithms. 
 
Example 1  Evaluate each of the following logarithms. 

(a) 4log 16     [Solution] 
(b) 2log 16     [Solution] 
(c) 6log 216     [Solution] 

(d) 5
1log

125
    [Solution] 

(e) 1
3

log 81    [Solution] 
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(f) 3
2

27log
8

    [Solution] 

Solution 
Now, the reality is that evaluating logarithms directly can be a very difficult process, even for 
those who really understand them.  It is usually much easier to first convert the logarithm form 
into exponential form.  In that form we can usually get the answer pretty quickly. 
 
(a) 4log 16  
Okay what we are really asking here is the following. 
 4log 16 ?=  
As suggested above, let’s convert this to exponential form. 
 ?

4log 16 ?  4 16= ⇒ =  
 
Most people cannot evaluate the logarithm 4log 16  right off the top of their head.  However, 
most people can determine the exponent that we need on 4 to get 16 once we do the 
exponentiation.  So, since, 

24 16=  
we must have the following value of the logarithm. 
 4log 16 2=  

[Return to Problems] 
 
(b) 2log 16  
This one is similar to the previous part.  Let’s first convert to exponential form. 
 ?

2log 16 ?  2 16= ⇒ =  
 
If you don’t know this answer right off the top of your head, start trying numbers.  In other words, 
compute 22 , 32 , 42 , etc until you get 16.  In this case we need an exponent of 4.  Therefore, the 
value of this logarithm is, 
 2log 16 4=  
 
Before moving on to the next part notice that the base on these is a very important piece of 
notation.  Changing the base will change the answer and so we always need to keep track of the 
base. 

[Return to Problems] 
 
(c) 6log 216  
We’ll do this one without any real explanation to see how well you’ve got the evaluation of 
logarithms down. 
 3

6log 216 3 because 6 216= =  
[Return to Problems] 

(d) 5
1log

125
 

Now, this one looks different from the previous parts, but it really isn’t any different.  As always 
let’s first convert to exponential form. 
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 ?
5

1 1log ?  5
125 125

= ⇒ =  

 
First, notice that the only way that we can raise an integer to an integer power and get a fraction 
as an answer is for the exponent to be negative.  So, we know that the exponent has to be 
negative. 
 
Now, let’s ignore the fraction for a second and ask ?5 125= .  In this case if we cube 5 we will 
get 125.   
 
So, it looks like we have the following, 

 3
5 3

1 1 1log 3 because 5
125 5 125

−= − = =  

[Return to Problems] 
 
(e) 1

3

log 81 

Converting this logarithm to exponential form gives, 

 
?

1
3

1log 81 ?  81
3

⎛ ⎞= ⇒ =⎜ ⎟
⎝ ⎠

 

Now, just like the previous part, the only way that this is going to work out is if the exponent is 
negative.  Then all we need to do is recognize that 43 81=  and we can see that, 

 
4 4

4
1
3

1 3log 81 4 because 3 81
3 1

−
⎛ ⎞ ⎛ ⎞= − = = =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

[Return to Problems] 
 

(f) 3
2

27log
8

 

Here is the answer to this one. 

 
3 3

3 3
2

27 3 3 27log 3 because
8 2 2 8

⎛ ⎞= = =⎜ ⎟
⎝ ⎠

 

[Return to Problems]
 
Hopefully, you now have an idea on how to evaluate logarithms and are starting to get a grasp on 
the notation.  There are a few more evaluations that we want to do however, we need to introduce 
some special logarithms that occur on a very regular basis.  They are the common logarithm and 
the natural logarithm.  Here are the definitions and notations that we will be using for these two 
logarithms. 
 

 10common logarithm : log log
natural logarithm : ln log

x x
x x

=
= e

 

 
So, the common logarithm is simply the log base 10, except we drop the “base 10” part of the 
notation.  Similarly, the natural logarithm is simply the log base e with a different notation and 
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where e is the same number that we saw in the previous section and is defined to be 
2.718281827=e … . 

 
Let’s take a look at a couple more evaluations. 
 
Example 2  Evaluate each of the following logarithms. 

(a) log1000  

(b) 
1log

100
 

(c) 1ln
e

 

(d) ln e  
(e) 34log 34  
(f) 8log 1 

Solution 
To do the first four evaluations we just need to remember what the notation for these are and what 
base is implied by the notation.  The final two evaluations are to illustrate some of the properties 
of all logarithms that we’ll be looking at eventually. 
 
(a) log1000 3=  because 310 1000= . 
 

(b) 
1log 2

100
= −  because 2

2

1 110
10 100

− = = . 

 

(c) 
1ln 1= −
e

 because 1 1− =e
e

. 

 

(d) 
1ln
2

=e  because 
1
2 =e e .  Notice that with this one we are really just acknowledging a 

change of notation from fractional exponent into radical form. 
 
(e) 34log 34 1=  because 134 34= .  Notice that this one will work regardless of the base that 
we’re using. 
 
(f) 8log 1 0=  because 08 1= .  Again, note that the base that we’re using here won’t change the 
answer. 
 
So, when evaluating logarithms all that we’re really asking is what exponent did we put onto the 
base to get the number in the logarithm. 
 
Now, before we get into some of the properties of logarithms let’s first do a couple of quick 
graphs. 
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Example 3  Sketch the graph of the common logarithm and the natural logarithm on the same 
axis system. 
 
Solution 
This example has two points.  First, it will familiarize us with the graphs of the two logarithms 
that we are most likely to see in other classes.  Also, it will give us some practice using our 
calculator to evaluate these logarithms because the reality is that is how we will need to do most 
of these evaluations. 
 
Here is a table of values for the two logarithms. 
 

x log x  ln x  

1
2

-0.3010 -0.6931

1 0 0 
2 0.3010 0.6931 
3 0.4771 1.0986 
4 0.6021 1.3863 

 
Here is a sketch of the graphs of these two functions. 

 
 
 
Now let’s start looking at some properties of logarithms.  We’ll start off with some basic 
evaluation properties. 
 
 
Properties of Logarithms 

1. log 1 0b = .  This follows from the fact that 0 1b = . 

2. log 1b b = .  This follows from the fact that 1b b= . 

3. log x
b b x= .  This can be generalize out to ( ) ( )log f x

b b f x= . 

4. logb xb x= .  This can be generalize out to ( ) ( )logb f xb f x= . 
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Properties 3 and 4 leads to a nice relationship between the logarithm and exponential function.  
Let’s first compute the following function compositions for ( ) xf x b=  and ( ) logbg x x= . 

 
( )( ) ( ) ( )
( )( ) ( )

loglog

log

b x
b

x x
b

f g x f g x f x b x

g f x g f x g b b x

= = = =⎡ ⎤⎣ ⎦
⎡ ⎤= = = =⎡ ⎤⎣ ⎦ ⎣ ⎦

D

D
 

 
 Recall from the section on inverse functions that this means that the exponential and logarithm 
functions are inverses of each other.  This is a nice fact to remember on occasion. 
 
We should also give the generalized version of  Properties 3 and 4 in terms of both the natural 
and common logarithm as we’ll be seeing those in the next couple of sections on occasion. 

 
( ) ( ) ( ) ( )

( ) ( ) ( ) ( )ln log

ln log10

10

f x f x

f x f x

f x f x

f x f x

= =

= =

e

e
 

 
Now, let’s take a look at some manipulation properties of the logarithm. 
 
More Properties of Logarithms 
For these properties we will assume that 0x >  and 0y > . 

5. ( )log log logb b bxy x y= +  
 

6. log log logb b b
x x y
y

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
 

 
7. ( )log logr

b bx r x=  

 
8. If log logb x y=  then x y= . 

 
We won’t be doing anything with the final property in this section; it is here only for the sake of 
completeness.  We will be looking at this property in detail in a couple of sections. 
 
The first two properties listed here can be a little confusing at first since on one side we’ve got a 
product or a quotient inside the logarithm and on the other side we’ve got a sum or difference of 
two logarithms.  We will just need to be careful with these properties and make sure to use them 
correctly. 
 
Also, note that there are no rules on how to break up the logarithm of the sum or difference of 
two terms.  To be clear about this let’s note the following, 
 

 
( )
( )

log log log

log log log
b b b

b b b

x y x y

x y x y

+ ≠ +

− ≠ −
 

 
Be careful with these and do not try to use these as they simply aren’t true. 
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Note that all of the properties given to this point are valid for both the common and natural 
logarithms.  We just didn’t write them out explicitly using the notation for these two logarithms, 
the properties do hold for them nonetheless  
 
Now, let’s see some examples of how to use these properties. 
 
Example 4  Simplify each of the following logarithms. 

(a) ( )3 5
4log x y     [Solution] 

(b) 
9 5

3log x y
z

⎛ ⎞
⎜ ⎟
⎝ ⎠

    [Solution] 

(c) ln xy     [Solution] 

(d) 
( )2

3 2 2log
x y
x y

⎛ ⎞+
⎜ ⎟
⎜ ⎟+⎝ ⎠

    [Solution] 

Solution 
The instructions here may be a little misleading.  When we say simplify we really mean to say 
that we want to use as many of the logarithm properties as we can. 
 
(a) ( )3 5

4log x y  

Note that we can’t use Property 7 to bring the 3 and the 5 down into the front of the logarithm at 
this point.  In order to use Property 7 the whole term in the logarithm needs to be raised to the 
power.  In this case the two exponents are only on individual terms in the logarithm and so 
Property 7 can’t be used here. 
 
We do, however, have a product inside the logarithm so we can use Property 5 on this logarithm. 
 ( ) ( ) ( )3 5 3 5

4 4 4log log logx y x y= +  
 
Now that we’ve done this we can use Property 7 on each of these individual logarithms to get the 
final simplified answer. 
 ( )3 5

4 4 4log 3log 5logx y x y= +  
[Return to Problems] 

 

(b) 
9 5

3log x y
z

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

In this case we’ve got a product and a quotient in the logarithm.  In these cases it is almost always 
best to deal with the quotient before dealing with the product.  Here is the first step in this part. 

 ( )
9 5

9 5 3
3log log logx y x y z

z
⎛ ⎞

= −⎜ ⎟
⎝ ⎠

 

 
Now, we’ll break up the product in the first term and once we’ve done that we’ll take care of the 
exponents on the terms. 
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( )
9 5

9 5 3
3

9 5 3

log log log

log log log
9log 5log 3log

x y x y z
z

x y z
x y z

⎛ ⎞
= −⎜ ⎟

⎝ ⎠
= + −
= + −

 

[Return to Problems] 
 
(c) ln xy  
For this part let’s first rewrite the logarithm a little so that we can see the first step. 

 ( )
1
2ln lnxy xy=  

Written in this form we can see that there is a single exponent on the whole term and so we’ll take 
care of that first. 

 ( )1ln ln
2

xy xy=  

Now, we will take care of the product. 

 ( )1ln ln ln
2

xy x y= +  

Notice the parenthesis in this the answer.  The 
1
2

 multiplies the original logarithm and so it will 

also need to multiply the whole “simplified” logarithm.  Therefore, we need to have a set of 
parenthesis there to make sure that this is taken care of correctly. 

[Return to Problems] 
 
 
 
 

(d) 
( )2

3 2 2log
x y
x y

⎛ ⎞+
⎜ ⎟
⎜ ⎟+⎝ ⎠

 

We’ll first take care of the quotient in this logarithm. 

 ( ) ( ) ( )
2

2 2 2
3 3 32 2log log log

x y
x y x y

x y

⎛ ⎞+
= + − +⎜ ⎟

⎜ ⎟+⎝ ⎠
 

We now reach the real point to this problem.  The second logarithm is as simplified as we can 
make it.  Remember that we can’t break up a log of a sum or difference and so this can’t be 
broken up any farther.  Also, we can only deal with exponents if the term as a whole is raised to 
the exponent.  The fact that both pieces of this term are squared doesn’t matter.  It needs to be the 
whole term squared, as in the first logarithm. 
 
So, we can further simplify the first logarithm, but the second logarithm can’t be simplified any 
more.  Here is the final answer for this problem. 

 ( ) ( ) ( )
2

2 2
3 3 32 2log 2log log

x y
x y x y

x y

⎛ ⎞+
= + − +⎜ ⎟

⎜ ⎟+⎝ ⎠
 

[Return to Problems]
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Now, we need to work some examples that go the other way.  This next set of examples is 
probably more important than the previous set.  We will be doing this kind of logarithm work in a 
couple of sections. 
 
Example 5  Write each of the following as a single logarithm with a coefficient of 1. 

(a) 12 127 log 2logx y+     [Solution] 
(b) 3log 6logx y−     [Solution] 
(c) ( )5ln 2ln 8lnx y y x+ − −     [Solution] 

Solution 
The instruction requiring a coefficient of 1 means that the when we get down to a final logarithm 
there shouldn’t be any number in front of the logarithm. 
 
Note as well that these examples are going to be using Properties 5 – 7 only we’ll be using them 
in reverse.  We will have expressions that look like the right side of the property and use the 
property to write it so it looks like the left side of the property. 
 
(a) The first step here is to get rid of the coefficients on the logarithms.  This will use Property 7 
in reverse.  In this direction, Property 7 says that we can move the coefficient of a logarithm up to 
become a power on the term inside the logarithm. 
 
Here is that step for this part. 
 7 2

12 12 12 127 log 2log log logx y x y+ = +  
 
We’ve now got a sum of two logarithms both with coefficients of 1 and both with the same base.  
This means that we can use Property 5 in reverse.  Here is the answer for this part. 

( )7 2
12 12 127 log 2log logx y x y+ =  

[Return to Problems] 
 
(b) Again, we will first take care of the coefficients on the logarithms. 
 3 63log 6log log logx y x y− = −  
 
We now have a difference of two logarithms and so we can use Property 6 in reverse.  When 
using Property 6 in reverse remember that the term from the logarithm that is subtracted off goes 
in the denominator of the quotient.  Here is the answer to this part. 

 
3

63log 6log log xx y
y

⎛ ⎞
− = ⎜ ⎟

⎝ ⎠
 

[Return to Problems] 
 
(c) In this case we’ve got three terms to deal with and none of the properties have three terms in 
them.  That isn’t a problem.  Let’s first take care of the coefficients and at the same time we’ll 
factor a minus sign out of the last two terms.  The reason for this will be apparent in the next step. 
 ( ) ( ) ( )5 2 85ln 2 ln 8ln ln ln lnx y y x x y y x+ − − = + − +  
 
Now, notice that the quantity in the parenthesis is a sum of two logarithms and so can be 
combined into a single logarithm with a product as follows, 
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 ( ) ( ) ( )5 2 85ln 2 ln 8ln ln lnx y y x x y y x+ − − = + −  
 
Now we are down to two logarithms and they are a difference of logarithms and so we can write 
it as a single logarithm with a quotient. 

 ( ) ( )5

2 85ln 2ln 8ln ln
x y

x y y x
y x

⎛ ⎞+
+ − − = ⎜ ⎟

⎜ ⎟
⎝ ⎠

 

[Return to Problems]
 
The final topic that we need to discuss in this section is the change of base formula. 
 
Most calculators these days are capable of evaluating common logarithms and natural logarithms.  
However, that is about it, so what do we do if we need to evaluate another logarithm that can’t be 
done easily as we did in the first set of examples that we looked at? 
 
To do this we have the change of base formula.  Here is the change of base formula. 

 loglog
log

b
a

b

xx
a

=  

where we can choose b to be anything we want it to be.  In order to use this to help us evaluate 
logarithms this is usually the common or natural logarithm.  Here is the change of base formula 
using both the common logarithm and the natural logarithm. 

 log lnlog log
log lna a

x xx x
a a

= =  

Let’s see how this works with an example. 
 
Example 6  Evaluate 5log 7 . 
Solution 
First, notice that we can’t use the same method to do this evaluation that we did in the first set of 
examples.  This would require us to look at the following exponential form, 
 ?5 7=  
and that’s just not something that anyone can answer off the top of their head.  If the 7 had been a 
5, or a 25, or a 125, etc. we could do this, but it’s not.  Therefore, we have to use the change of 
base formula. 
 
Now, we can use either one and we’ll get the same answer.  So, let’s use both and verify that.  
We’ll start with the common logarithm form of the change of base. 

 5
log 7 0.845098040014log 7 1.20906195512
log5 0.698970004336

= = =  

 
Now, let’s try the natural logarithm form of the change of base formula. 

 5
ln 7 1.94591014906log 7 1.20906195512
ln 5 1.60943791243

= = =  

 
So, we got the same answer despite the fact that the fractions involved different answers. 
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 Solving Exponential Equations 
Now that we’ve seen the definitions of exponential and logarithm functions we need to start 
thinking about how to solve equations involving them.  In this section we will look at solving 
exponential equations and we will look at solving logarithm equations in the next section. 
 
There are two methods for solving exponential equations.  On method is fairly simple, but 
requires a very special form of the exponential equation.  The other will work on more 
complicated exponential equations, but can be a little messy at times.   
 
Let’s start off by looking at the simpler method.  This method will use the following fact about 
exponential functions. 
 
 If then   x yb b x y= =  
 
Note that this fact does require that the base in both exponentials to be the same.  If it isn’t then 
this fact will do us no good.   
 
Let’s take a look at a couple of examples. 
 
Example 1  Solve each of the following. 

(a) 3 7 25 5x x−=     [Solution] 

(b) 62
4 4 tt −=     [Solution] 

(c) 53 9z z+=     [Solution] 

(d) 5 9
2

14
8

x
x

−
−=     [Solution] 

Solution 
(a) 3 7 25 5x x−=  
In this first part we have the same base on both exponentials so there really isn’t much to do other 
than to set the two exponents equal to each other and solve for x. 

 
3 7 2
2 4
1
2

x x
x

x

= −
=

=

 

So, if we were to plug 
1
2

x =  into the equation then we would get the same number on both sides 

of the equal sign. 
[Return to Problems] 

 

(b) 62
4 4 tt −=  

Again, there really isn’t much to do here other than set the exponents equal since the base is the 
same in both exponentials. 
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( )( )

2

2

6
6 0

3 2 0 3, 2

t t
t t

t t t t

= −

+ − =

+ − = ⇒ = − =

 

 
In this case we get two solutions to the equation.  That is perfectly acceptable so don’t worry 
about it when it happens. 

[Return to Problems] 
 
(c) 53 9z z+=  
Now, in this case we don’t have the same base so we can’t just set exponents equal.  However, 
with a little manipulation of the right side we can get the same base on both exponents.  To do 
this all we need to notice is that 29 3= .  Here’s what we get when we use this fact. 

 ( ) 523 3
zz +

=  
Now, we still can’t just set exponents equal since the right side now has two exponents. If we 
recall our exponent properties we can fix this however. 
 ( )2 53 3 zz +=  
 
We now have the same base and a single exponent on each base so we can use the property and 
set the exponents equal.  Doing this gives, 

 
( )2 5

2 10
10

z z
z z

z

= +

= +
− =

 

 
So, after all that work we get a solution of 10z = − . 

[Return to Problems] 
 

(d) 5 9
2

14
8

x
x

−
−=  

In this part we’ve got some issues with both sides.  First the right side is a fraction and the left 
side isn’t.  That is not the problem that it might appear to be however, so for a second let’s ignore 
that.  The real issue here is that we can’t write 8 as a power of 4 and we can’t write 4 as a power 
of 8 as we did in the previous part. 
 
The first thing to do in this problem is to get the same base on both sides and to so that we’ll have 
to note that we can write both 4 and 8 as a power of 2.  So let’s do that. 

 
( )

( )
( )

( )

5 92
23

2 5 9
3 2

12
2

12
2

x

x

x
x

−

−

−
−

=

=

 

 
It’s now time to take care of the fraction on the right side.  To do this we simply need to 
remember the following exponent property. 

1 n
n a

a
−=  
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Using this gives, 
 ( ) ( )2 5 9 3 22 2x x− − −=  
 
So, we now have the same base and each base has a single exponent on it so we can set the 
exponents equal. 

 

( ) ( )2 5 9 3 2
10 18 3 6

4 15
4

15

x x
x x

x

x

− = − −

− = − +
=

=

 

And there is the answer to this part. 
[Return to Problems]

 
Now, the equations in the previous set of examples all relied upon the fact that we were able to 
get the same base on both exponentials, but that just isn’t always possible.  Consider the 
following equation. 
 7 9x =  
This is a fairly simple equation however the method we used in the previous examples just won’t 
work because we don’t know how to write 9 as a power of 7.  In fact, if you think about it that is 
exactly what this equation is asking us to find. 
 
So, the method we used in the first set of examples won’t work.  The problem here is that the x is 
in the exponent.  Because of that all our knowledge about solving equations won’t do us any 
good.  We need a way to get the x out of the exponent and luckily for us we have a way to do that.  
Recall the following logarithm property from the last section. 
 
 log logr

b ba r a=  
 
Note that to avoid confusion with x’s we replaced the x in this property with an a.  The important 
part of this property is that we can take an exponent and move it into the front of the term. 
 
So, if we had, 

log 7x
b  

we could use this property as follows. 
 log 7bx  
The x in now out of the exponent!  Of course we are now stuck with a logarithm in the problem 
and not only that but we haven’t specified the base of the logarithm. 
 
The reality is that we can use any logarithm to do this so we should pick one that we can deal 
with.  This usually means that we’ll work with the common logarithm or the natural logarithm. 
 
So, let’s work a set of examples to see how we actually use this idea to solve these equations. 
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Example 2  Solve each of the following equations. 
(a) 7 9x =     [Solution] 
(b) 4 12 3 0y y+ − =     [Solution] 
(c) 6 2t+ =e     [Solution] 
(d) 510 8x− =     [Solution] 
(e) 2 45 8 0z+ − =e     [Solution] 

Solution 
(a) 7 9x =  
Okay, so we say above that if we had a logarithm in front the left side we could get the x out of 
the exponent.  That’s easy enough to do.  We’ll just put a logarithm in front of the left side.  
However, if we put a logarithm there we also must put a logarithm in front of the right side.  This 
is commonly referred to as taking the logarithm of both sides. 
 
We can use any logarithm that we’d like to so let’s try the natural logarithm. 

 ln 7 ln 9
ln 7 ln 9

x

x
=
=

 

 
Now, we need to solve for x.  This is easier than it looks.  If we had 7 9x =  then we could all 
solve for x simply by dividing both sides by 7.  It works in exactly the same manner here.  Both 
ln7 and ln9 are just numbers.  Admittedly, it would take a calculator to determine just what those 
numbers are, but they are numbers and so we can do the same thing here. 
 

 

ln 7 ln 9
ln 7 ln 7

ln 9
ln 7

x

x

=

=
 

 
Now, that is technically the exact answer.  However, in this case it’s usually best to get a decimal 
answer so let’s go one step further. 

 ln 9 2.19722458 1.12915007
ln 7 1.94591015

x = = =  

 
Note that the answers to these are decimal answers more often than not. 
 
Also, be careful here to not make the following mistake. 

 ln 9 91.12915007 ln 0.2513144283
ln 7 7

⎛ ⎞= ≠ =⎜ ⎟
⎝ ⎠

 

 
The two are clearly different numbers. 
 
Finally, let’s also use the common logarithm to make sure that we get the same answer. 
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log 7 log 9
log 7 log 9

log 9 0.954242509 1.12915007
log 7 0.845098040

x

x

x

=
=

= = =

 

 
So, sure enough the same answer.  We can use either logarithm, although there are times when it 
is more convenient to use one over the other. 

[Return to Problems] 
 
(b) 4 12 3 0y y+ − =  
In this case we can’t just put a logarithm in front of both sides.  There are two reasons for this.  
First on the right side we’ve got a zero and we know from the previous section that we can’t take 
the logarithm of zero.  Next, in order to move the exponent down it has to be on the whole term 
inside the logarithm and that just won’t be the case with this equation in its present form. 
 
So, the first step is to move on of the terms to the other side of the equal sign, then we will take 
the logarithm of both sides using the natural logarithm. 
 

 

( )

4 1

4 1

2 3
ln 2 ln 3

4 1 ln 2 ln 3

y y

y y

y y

+

+

=

=

+ =

 

 
Okay, this looks messy, but again, it’s really not that bad.  Let’s look at the following equation 
first. 

( )2 4 1 3
8 2 3

5 2
2
5

y y
y y

y

y

+ =

+ =
= −

= −

 

We can all solve this equation and so that means that we can solve the one that we’ve got.  Again 
the ln2 and ln3 are just numbers and so the process is exactly the same.  The answer will be 
messier than this equation, but the process is identical.  Here is the work for this one. 

 

( )

( )

4 1 ln 2 ln 3
4 ln 2 ln 2 ln 3

4 ln 2 ln 3 ln 2
4ln 2 ln 3 ln 2

ln 2
4ln 2 ln 3

y y
y y

y y
y

y

+ =

+ =
− = −

− = −

= −
−

 

 
So, we get all the terms with y in them on one side and all the other terms on the other side.  Once 
this is done we then factor out a y and divide by the coefficient.  Again, we would prefer a 
decimal answer so let’s get that. 
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( )

ln 2 0.693147181 0.414072245
4ln 2 ln 3 4 0.693147181 1.098612289

y = − = − = −
− −

 

[Return to Problems] 
 
(c) 6 2t+ =e  
Now, this one is a little easier than the previous one.  Again, we’ll take the natural logarithm of 
both sides. 
 6ln ln 2t+ =e  
 
Notice that we didn’t take the exponent out of this one.  That is because we want to use the 
following property with this one. 
 ( ) ( )ln f x f x=e  
 
We saw this in the previous section (in more general form) and by using this here we will make 
our life significantly easier.  Using this property gives, 

 ( )
6 ln 2

ln 2 6 0.69314718 6 5.30685202
t

t
+ =

= − = − = −
 

 
Notice the parenthesis around the 2 in the logarithm this time.  They are there to make sure that 
we don’t make the following mistake. 
 
 ( ) ( ) ( )5.30685202 ln 2 6 ln 2 6 ln 4 can't be done− = − ≠ − = −  
 
Be very careful with this mistake.  It is easy to make when you aren’t paying attention to what 
you’re doing or are in a hurry. 

[Return to Problems] 
 
(d) 510 8x− =  
The equation in this part is similar to the previous part except this time we’ve got a base of 10 and 
so recalling the fact that, 
 ( ) ( )log10 f x f x=  
it makes more sense to use common logarithms this time around. 
 
Here is the work for this equation. 

 

5log10 log8
5 log8
5 log8 5 0.903089987 4.096910013

x

x
x x

− =
− =
− = ⇒ = − =

 

 
This could have been done with natural logarithms but the work would have been messier. 

[Return to Problems] 
 
(e) 2 45 8 0z+ − =e  
With this final equation we’ve got a couple of issues.  First we’ll need to move the number over 
to the other side.  In order to take the logarithm of both sides we need to have the exponential on 
one side by itself.  Doing this gives, 
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 2 45 8z+ =e  
 
Next, we’ve got to get a coefficient of 1 on the exponential.  We can only use the facts to simplify 
this if there isn’t a coefficient on the exponential.  So, divide both sides by 5 to get, 

 2 4 8
5

z+ =e  

 
At this point we will take the logarithm of both sides using the natural logarithm since there is an 
e in the equation. 

 

( )

2 4 8ln ln
5
82 4 ln
5
82 ln 4
5

1 8 1ln 4 0.470003629 4 1.76499819
2 5 2

z

z

z

z

+ ⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎛ ⎞+ = ⎜ ⎟
⎝ ⎠
⎛ ⎞= −⎜ ⎟
⎝ ⎠
⎛ ⎞⎛ ⎞= − = − = −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

e

 

[Return to Problems]
 
Note that we could have used this second method on the first set of examples as well if we’d 
wanted to although the work would have been more complicated and prone to mistakes if we’d 
done that. 
 
 



College Algebra 

© 2007 Paul Dawkins 302 http://tutorial.math.lamar.edu/terms.aspx 
 

 Solving Logarithm Equations 
In this section we will now take a look as solving logarithmic equations, or equations with 
logarithms in them.  We will be looking at two specific types of equations here.  In particular we 
will look at equations in which every term is a logarithm and we also look at equations in which 
all but one term in the equation is a logarithm and the term without the logarithm will be a 
constant.  Also, we will be assuming that the logarithms in each equation will have the same base.  
If there is more than one base in the logarithms in the equation the solution process becomes 
much more difficult. 
 
Before we get into the solution process we will need to remember that we can only plug positive 
numbers into a logarithm.  This will be important down the road and so we can’t forget that. 
 
Now, let’s start off by looking at equations in which each term is a logarithm and all the bases on 
the logarithms are the same.  In this case we will use the fact that, 
 
 If  log log   then  b bx y x y= =  
 
In other words, if we’ve got two logs in the problem, one on either side of an equal sign and both 
with a coefficient of one, then we can just drop the logarithms. 
 
Let’s take a look at a couple of examples. 
 
Example 1  Solve each of the following equations. 

(a) ( ) ( )9 92 log log 6 1 0x x− − =     [Solution] 

(b) ( ) ( )log log 1 log 3 12x x x+ − = +     [Solution] 

(c) ( )ln10 ln 7 lnx x− − =     [Solution] 
Solution 
(a) ( ) ( )9 92 log log 6 1 0x x− − =  

With this equation there are only two logarithms in the equation so it’s easy to get on one either 
side of the equal sign.  We will also need to deal with the coefficient in front of the first term. 

 ( ) ( )
( )

2

9 9

9 9

log log 6 1

log log 6 1

x x

x x

= −

= −
 

 
Now that we’ve got two logarithms with the same base and coefficients of 1 on either side of the 
equal sign we can drop the logs and solve. 

 
6 1

11 5
5

x x

x x

= −

= ⇒ =
 

 
Now, we do need to worry if this solution will produce any negative numbers or zeroes in the 
logarithms so the next step is to plug this into the original equation and see if it does. 
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 9 9 9 9
1 1 1 12log log 6 1 2log log 0
5 5 5 5

⎛ ⎞ ⎛ ⎞⎛ ⎞⎛ ⎞ ⎛ ⎞− − = − =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠ ⎝ ⎠
 

 
Note that we don’t need to go all the way out with the check here.  We just need to make sure that 
once we plug in the x we don’t have any negative numbers or zeroes in the logarithms.  Since we 

don’t in this case we have the solution, it is 
1
5

x = . 

[Return to Problems] 
 
(b) ( ) ( )log log 1 log 3 12x x x+ − = +  
Okay, in this equation we’ve got three logarithms and we can only have two.  So, we saw how to 
do this kind of work in a set of examples in the previous section so we just need to do the same 
thing here.  It doesn’t really matter how we do this, but since one side already has one logarithm 
on it we might as well combine the logs on the other side. 
 
 ( )( ) ( )log 1 log 3 12x x x− = +  
 
Now we’ve got one logarithm on either side of the equal sign, they are the same base and have 
coefficients of one so we can drop the logarithms and solve. 

 

( )

( )( )

2

2

1 3 12

3 12 0
4 12 0

6 2 0 2, 6

x x x

x x x
x x

x x x x

− = +

− − − =

− − =

− + = ⇒ = − =

 

 
Now, before we declare these to be solutions we MUST check them in the original equation. 
 

6:x =  

 
( ) ( )( )log 6 log 6 1 log 3 6 12

log 6 log 5 log 30

+ − = +

+ =
 

 
No logarithms of negative numbers and no logarithms of zero so this is a solution.  
 

2:x = −  
 ( ) ( ) ( )( )log 2 log 2 1 log 3 2 12− + − − = − +  
 
We don’t need to go any farther, there is a logarithm of a negative number in the first term (the 
others are also negative) and that’s all we need in order to exclude this as a solution. 
 
Be careful here.  We are not excluding 2x = −  because it is negative, that’s not the problem.  We 
are excluding it because once we plug it into the original equation we end up with logarithms of 
negative numbers.  It is possible to have negative values of x be solutions to these problems, so 
don’t mistake the reason for excluding this value.   
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Also, along those lines we didn’t take 6x =  as a solution because it was positive, but because it 
didn’t produce any negative numbers or zero in the logarithms upon substitution.  It is possible 
for negative numbers to not be solutions. 
 
So, with all that out of the way, we’ve got a single solution to this equation, 6x = . 

[Return to Problems] 
(c) ( )ln10 ln 7 lnx x− − =  
We will work this equation in the same manner that we worked the previous one.  We’ve got two 
logarithms on one side so we’ll combine those, drop the logarithms and then solve. 

 ( )

( )( )

2

2

10ln ln
7

10
7

10 7

10 7
7 10 0

5 2 0 2, 5

x
x

x
x

x x

x x
x x

x x x x

⎛ ⎞ =⎜ ⎟−⎝ ⎠

=
−

= −

= −

− + =

− − = ⇒ = =

 

 
We’ve got two possible solutions to check here. 
 

2 :x =  

 ( )ln10 ln 7 2 ln 2
ln10 ln 5 ln 2
− − =

− =
 

This one is okay. 
 

5 :x =  

 ( )ln10 ln 7 5 ln 5
ln10 ln 2 ln 5
− − =

− =
 

This one is also okay. 
 
In this case both possible solutions, 2x =  and 5x = , end up actually being solutions.  There is 
no reason to expect to always have to throw one of the two out as a solution. 

[Return to Problems]
 
Now we need to take a look at the second kind of logarithmic equation that we’ll be solving here.  
This equation will have all the terms but one be a logarithm and the one term that doesn’t have a 
logarithm will be a constant. 
 
In order to solve these kinds of equations we will need to remember the exponential form of the 
logarithm.  Here it is if you don’t remember. 
 
 log y

by x b x= ⇒ =  
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We will be using this conversion to exponential form in all of these equations so it’s important 
that you can do it.  Let’s work some examples so we can see how these kinds of equations can be 
solved. 
 
Example 2  Solve each of the following equations. 

(a) ( )5log 2 4 2x + =     [Solution] 

(b) ( )log 1 log 3x x= − −     [Solution] 

(c) ( ) ( )2
2 2log 6 3 log 1x x x− = + −     [Solution] 

Solution 
(a) ( )5log 2 4 2x + =  
To solve these we need to get the equation into exactly the form that this one is in.  We need a 
single log in the equation with a coefficient of one and a constant on the other side of the equal 
sign.  Once we have the equation in this form we simply convert to exponential form. 
 
So, let’s do that with this equation.  The exponential form of this equation is, 
 22 4 5 25x + = =  
 
Notice that this is an equation that we can easily solve. 

 212 21
2

x x= ⇒ =  

 
Now, just as with the first set of examples we need to plug this back into the original equation 
and see if it will produce negative numbers or zeroes in the logarithms.  If it does it can’t be a 
solution and if it doesn’t then it is a solution. 
 

 
( )

5

5

21log 2 4 2
2

log 25 2

⎛ ⎞⎛ ⎞ + =⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠
=

 

 

Only positive numbers in the logarithm and so 
21
2

x =  is in fact a solution. 

[Return to Problems] 
 
(b) ( )log 1 log 3x x= − −  
In this case we’ve got two logarithms in the problem so we are going to have to combine them 
into a single logarithm as we did in the first set of examples.  Doing this for this equation gives, 

 
( )
( )( )

log log 3 1

log 3 1

x x

x x

+ − =

− =
 

 
Now, that we’ve got the equation into the proper form we convert to exponential form.  Recall as 
well that we’re dealing with the common logarithm here and so the base is 10. 
 
Here is the exponential form of this equation. 
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( )

( )( )

1

2

3 10

3 10 0
5 2 0 2, 5

x x

x x
x x x x

− =

− − =

− + = ⇒ = − =

 

 
So, we’ve got two potential solutions.  Let’s check them both. 
 

2 :x = −  
 ( ) ( )log 2 1 log 2 3− = − − −  
We’ve got negative numbers in the logarithms and so this can’t be a solution. 
 

5 :x =  

 
( )log 5 1 log 5 3

log 5 1 log 2
= − −

= −
 

No negative numbers or zeroes in the logarithms and so this is a solution. 
 
Therefore, we have a single solution to this equation, 5x = . 
 
Again, remember that we don’t exclude a potential solution because it’s negative or include a 
potential solution because it’s positive.  We exclude a potential solution if it produces negative 
numbers or zeroes in the logarithms upon substituting it into the equation and we include a 
potential solution if it doesn’t. 

[Return to Problems] 
 
(c) ( ) ( )2

2 2log 6 3 log 1x x x− = + −  

Again, let’s get the logarithms onto one side and combined into a single logarithm. 

 
( ) ( )2

2 2

2

2

log 6 log 1 3

6log 3
1

x x x

x x
x

− − − =

⎛ ⎞−
=⎜ ⎟−⎝ ⎠

 

 
Now, convert it to exponential form. 

 
2

36 2 8
1

x x
x

−
= =

−
 

 
Now, let’s solve this equation. 

 

( )

( )( )

2

2

2

6 8 1

6 8 8
2 8 0

4 2 0 4, 2

x x x

x x x
x x

x x x x

− = −

− = −

+ − =

+ − = ⇒ = − =

 

 
Now, let’s check both of these solutions in the original equation. 
 

4 :x = −  
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( ) ( )( ) ( )( )

( ) ( )

2
2 2

2 2

log 4 6 4 3 log 1 4

log 16 24 3 log 5

− − − = + − −

+ = +
 

 
So, upon substituting this solution in we see that all the numbers in the logarithms are positive 
and so this IS a solution.  Note again that it doesn’t matter that the solution is negative, it just 
can’t produce negative numbers or zeroes in the logarithms. 
 

2 :x =  

 
( )( ) ( )

( ) ( )

2
2 2

2 2

log 2 6 2 3 log 1 2

log 4 12 3 log 1

− = + −

− = + −
 

 
In this case, despite the fact that the potential solution is positive we get negative numbers in the 
logarithms and so it can’t possibly be a solution. 
 
Therefore, we get a single solution for this equation, 4x = − . 

[Return to Problems]
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 Applications 
In this final section of this chapter we need to look at some applications of exponential and 
logarithm functions. 
 
Compound Interest 
This first application is compounding interest and there are actually two separate formulas that 
we’ll be looking at here.  Let’s first get those out of the way. 
 
If we were to put P dollars into an account that earns interest at a rate of r (written as a decimal) 
for t years (yes, it must be years) then, 

1. if interest is compounded m times per year we will have 

 1
t mrA P

m
⎛ ⎞= +⎜ ⎟
⎝ ⎠

 

 dollars after t years. 
 

2. if interest is compounded continuously then we will have 
 r tA P= e  
 dollars after t years. 
 
Let’s take a look at a couple of examples. 
 
Example 1  We are going to invest $100,000 in an account that earns interest at a rate of 7.5% 
for 54 months.  Determine how much money will be in the account if, 

(a) interest is compounded quarterly.   [Solution] 
(b) interest is compounded monthly.   [Solution] 
(c) interest is compounded continuously.   [Solution] 

 
Solution 
Before getting into each part let’s identify the quantities that we will need in all the parts and 
won’t change. 

 7.5 54100,000 0.075 4.5
100 12

P r t= = = = =  

Remember that interest rates must be decimals for these computations and t must be in years!  
Now, let’s work the problems. 
 
(a) Interest is compounded quarterly.    
In this part the interest is compounded quarterly and that means it is compounded 4 times a year.  
After 54 months we then have, 

 

( )( )

( )
( )

4 4.5

18

0.075100000 1
4

100000 1.01875

100000 1.39706686207
139706.686207 $139,706.69

A ⎛ ⎞= +⎜ ⎟
⎝ ⎠

=

=

= =

 

 
Notice the amount of decimal places used here.  We didn’t do any rounding until the very last 
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step.  It is important to not do too much rounding in intermediate steps with these problems. 
[Return to Problems] 

 
(b) Interest is compounded monthly. 
Here we are compounding monthly and so that means we are compounding 12 times a year.  Here 
is how much we’ll have after 54 months. 

 

( )( )

( )
( )

12 4.5

54

0.075100000 1
12

100000 1.00625

100000 1.39996843023
139996.843023 $139,996.84

A ⎛ ⎞= +⎜ ⎟
⎝ ⎠

=

=

= =

 

 
So, compounding more times per year will yield more money. 

[Return to Problems] 
 
(c) Interest is compounded continuously. 
Finally, if we compound continuously then after 54 months we will have, 

 

( )( )

( )

0.075 4.5100000
100000 1.40143960839
140143.960839 $140,143.96

A =

=

= =

e
 

[Return to Problems]
 
Now, as pointed out in the first part of this example it is important to not round too much before 
the final answer.  Let’s go back and work the first part again and this time let’s round to three 
decimal places at each step. 
 

 

( )( )

( )
( )

4 4.5

18

0.075100000 1
4

100000 1.019

100000 1.403
$140,300.00

A ⎛ ⎞= +⎜ ⎟
⎝ ⎠

=

=

=

 

 
This answer is off from the correct answer by $593.31 and that’s a fairly large difference.  So, 
how many decimal places should we keep in these?  Well, unfortunately the answer is that it 
depends.  The larger the initial amount the more decimal places we will need to keep around.  As 
a general rule of thumb, set your calculator to the maximum number of decimal places it can 
handle and take all of them until the final answer and then round at that point. 
 
Let’s now look at a different kind of example with compounding interest. 
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Example 2  We are going to put $2500 into an account that earns interest at a rate of 12%.  If we 
want to have $4000 in the account when we close it how long should we keep the money in the 
account if, 

(a) we compound interest continuously.   [Solution] 
(b) we compound interest 6 times a year.   [Solution] 

Solution 
Again, in let’s identify the quantities that won’t change with each part. 

 124000 2500 0.12
100

A P r= = = =  

 
Notice that this time we’ve been given A and are asking to find t.  This means that we are going to 
have to solve an exponential equation to get at the answer. 
 
(a) Compound interest continuously. 
Let’s first set up the equation that we’ll need to solve. 
 0.124000 2500 t= e  
 
Now, we saw how to solve these kinds of equations a couple of sections ago.  In that section we 
saw that we need to get the exponential on one side by itself with a coefficient of 1 and then take 
the natural logarithm of both sides.  Let’s do that. 

 

0.12

0.12

0.12

4000
2500

1.6
ln1.6 ln

ln1.6ln1.6 0.12 3.917
0.12

t

t

t

t t

=

=

=

= ⇒ = =

e

e
e

 

 
We need to keep the amount in the account for 3.917 years to get $4000. 

[Return to Problems] 
 
 
 
 
 
 
(b) Ccompound interest 6 times a year. 
Again, let’s first set up the equation that we need to solve. 

 

( )

6

6

0.124000 2500 1
6

4000 2500 1.02

t

t

⎛ ⎞= +⎜ ⎟
⎝ ⎠

=

 

 
We will solve this the same way that we solved the previous part.  The work will be a little 
messier, but for the most part it will be the same. 
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( )

( )
( )
( )

( ) ( )

6

6

6

4000 1.02
2500

1.6 1.02

ln1.6 ln 1.02

ln1.6 6 ln 1.02
ln1.6 0.470003629246 3.956

6ln 1.02 6 0.019802627296

t

t

t

t

t

=

=

=

=

= = =

 

 
In this case we need to keep the amount slightly longer to reach $4000. 

[Return to Problems]
 
Exponential Growth and Decay 
There are many quantities out there in the world that are governed (at least for a short time 
period) by the equation, 
 0

k tQ Q= e  
where 0Q  is positive and is the amount initially present at 0t =  and k is a non-zero constant.  If k 
is positive then the equation will grow without bound and is called the exponential growth 
equation.  Likewise, if k is negative the equation will die down to zero and is called the 
exponential decay equation. 
 
Short term population growth is often modeled by the exponential growth equation and the decay 
of a radioactive element is governed the exponential decay equation. 
 
Example 3  The growth of a colony of bacteria is given by the equation, 
 0.195

0
tQ Q= e  

If there are initially 500 bacteria present and t is given in hours determine each of the following. 
(a) How many bacteria are there after a half of a day?   [Solution] 
(b) How long will it take before there are 10000 bacteria in the colony?   [Solution] 

Solution 
Here is the equation for this starting amount of bacteria. 
 0.195500 tQ = e  
(a) How many bacteria are there after a half of a day? 
In this case if we want the number of bacteria after half of a day we will need to use 12t =  since 
t is in hours.  So, to get the answer to this part we just need to plug t into the equation. 
 ( ) ( )0.195 12500 500 10.3812365627 5190.618Q = = =e  
So, since a fractional population doesn’t make much sense we’ll say that after half of a day there 
are 5190 of the bacteria present. 

[Return to Problems] 
 
(b) How long will it take before there are 10000 bacteria in the colony? 
Do NOT make the mistake of assuming that it will be approximately 1 day for this answer based 
on the answer to the previous part.  With exponential growth things just don’t work that way as 
we’ll see.  In order to answer this part we will need to solve the following exponential equation. 
 0.19510000 500 t= e  
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Let’s do that. 

 

0.195

0.195

0.195

10000
500

20
ln 20 ln

ln 20ln 20 0.195 15.3627
0.195

t

t

t

t t

=

=

=

= ⇒ = =

e

e
e

 

 
So, it only takes approximately 15.4 hours to reach 10000 bacteria and NOT 24 hours if we just 
double the time from the first part.  In other words, be careful! 

[Return to Problems]
 
Example 4  Carbon 14 dating works by measuring the amount of Carbon 14 (a radioactive 
element) that is in a fossil.  All living things have a constant level of Carbon 14 in them and once 
they die it starts to decay according to the formula, 
 0.000124

0
tQ Q −= e  

where t is in years and 0Q  is the amount of Carbon 14 present at death and for this example let’s 
assume that there will be 100 milligrams present at death. 

(a) How much Carbon 14 will there be after 1000 years?   [Solution] 
(b) How long will it take for half of the Carbon 14 to decay?   [Solution] 

Solution 
(a) How much Carbon 14 will there be after 1000 years? 
In this case all we need to do is plug in  t=1000 into the equation. 
 ( ) ( )0.000124 1000100 100 0.883379840883 88.338 milligramsQ −= = =e  
 
So, it looks like we will have around 88.338 milligrams left after 1000 years. 

[Return to Problems] 
 
(b) How long will it take for half of the Carbon 14 to decay? 
So, we want to know how long it will take until there is 50 milligrams of the Carbon 14 left.  That 
means we will have to solve the following equation, 
 0.00012450 100 t−= e  
 
Here is that work. 
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0.000124

0.000124

0.000124

50
100

1
2
1ln ln
2
1ln 0.000124
2

1ln 0.693147180562 5589.89661742
0.000124 0.000124

t

t

t

t

t

−

−

−

=

=

=

= −

−
= = =
− −

e

e

e  

 
So, it looks like it will take about 5589.897 years for half of the Carbon 14 to decay.  This 
number is called the half-life of Carbon 14. 

[Return to Problems]
 
We’ve now looked at a couple of applications of exponential equations and we should now look 
at a quick application of a logarithm. 
 
Earthquake Intensity 
The Richter scale is commonly used to measure the intensity of an earthquake.  There are many 
different ways of computing this based on a variety of different quantities.  We are going to take a 
quick look at the formula that uses the energy released during an earthquake. 
 
If E is the energy released, measured in joules, during an earthquake then the magnitude of the 
earthquake is given by, 

 
0

2 log
3

EM
E

⎛ ⎞
= ⎜ ⎟

⎝ ⎠
 

where 4.4
0 10E =  joules. 

 
Example 5  If 148 10×  joules of energy is released during an earthquake what was the 
magnitude of the earthquake? 
 
Solution 
There really isn’t much to do here other than to plug into the formula. 

 ( ) ( )
14

9.6
4.4

2 8 10 2 2log log 8 10 10.50308999 7.002
3 10 3 3

M
⎛ ⎞×

= = × = =⎜ ⎟
⎝ ⎠

 

 
So, it looks like we’ll have a magnitude of about 7. 
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Example 6  How much energy will be released in an earthquake with a magnitude of 5.9? 
 
Solution 
In this case we will need to solve the following equation. 

 4.4

25.9 log
3 10

E⎛ ⎞= ⎜ ⎟
⎝ ⎠

 

We saw how solve these kinds of equations in the previous section.  First we need the logarithm 
on one side by itself with a coefficient of one.  Once we have it in that form we convert to 
exponential form and solve. 
 

 

( )

4.4

4.4

8.85
4.4

8.85 4.4 13.25

25.9 log
3 10

8.85 log
10

10
10

10 10 10

E

E

E

E

⎛ ⎞= ⎜ ⎟
⎝ ⎠
⎛ ⎞= ⎜ ⎟
⎝ ⎠

=

= =

 

 
So, it looks like there would be a release of 13.2510  joules of energy in an earthquake with a 
magnitude of 5.9. 
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Systems of Equations 

 

 Introduction 
This is a fairly short chapter devoted to solving systems of equations.  A system of equations is a 
set of equations each containing one or more variable. 
 
We will focus exclusively on systems of two equations with two unknowns and three equations 
with three unknowns although the methods looked at here can be easily extended to more 
equations.  Also, with the exception of the last section we will be dealing only with systems of 
linear equations.   
 
Here is a list of the topics in this section. 
 
Linear Systems with Two Variables – In this section we will use systems of two equations and 
two variables to introduce two of the main methods for solving systems of equations. 
Linear Systems with Three Variables – Here we will work a quick example to show how to use 
the methods to solve systems of three equations with three variables. 
Augmented Matrices – We will look at the third main method for solving systems in this 
section.  We will look at systems of two equations and systems of three equations. 
More on the Augmented Matrix – In this section we will take a look at some special cases to 
the solutions to systems and how to identify them using the augmented matrix method. 
Nonlinear Systems – We will take a quick look at solving nonlinear systems of equations in this 
section. 
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 Linear Systems with Two Variables 
A linear system of two equations with two variables is any system that can be written in the form. 

ax by p
cx dy q

+ =
+ =

 

where any of the constants can be zero with the exception that each equation must have at least 
one variable in it. 
 
Also, the system is called linear if the variables are only to the first power, are only in the 
numerator and there are no products of variables in any of the equations. 
 
Here is an example of a system with numbers. 

 
3 7

2 3 1
x y

x y
− =
+ =

 

 
Before we discuss how to solve systems we should first talk about just what a solution to a 
system of equations is.  A solution to a system of equations is a value of x and a value of y that, 
when substituted into the equations, satisfies both equations at the same time. 
 
For the example above 2x =  and 1y = −  is a solution to the system.  This is easy enough to 
check. 
 

 
( ) ( )

( ) ( )
3 2 1 7

2 2 3 1 1

− − =

+ − =
 

 
So, sure enough that pair of numbers is a solution to the system.  Do not worry about how we got 
these values.  This will be the very first system that we solve when we get into examples. 
 
Note that it is important that the pair of numbers satisfy both equations.  For instance 1x =  and 

4y = −  will satisfy the first equation, but not the second and so isn’t a solution to the system.  
Likewise, 1x = −  and 1y =  will satisfy the second equation but not the first and so can’t be a 
solution to the system. 
 
Now, just what does a solution to a system of two equations represent?  Well if you think about it 
both of the equations in the system are lines.  So, let’s graph them and see what we get. 
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As you can see the solution to the system is the coordinates of the point where the two lines 
intersect.  So, when solving linear systems with two variables we are really asking where the two 
lines will intersect. 
 
We will be looking at two methods for solving systems in this section. 
 
The first method is called the method of substitution.  In this method we will solve one of the 
equations for one of the variables and substitute this into the other equation.  This will yield one 
equation with one variable that we can solve.  Once this is solved we substitute this value back 
into one of the equations to find the value of the remaining variable. 
 
In words this method is not always very clear.  Let’s work a couple of examples to see how this 
method works. 
 
Example 1  Solve each of the following systems. 

(a) 
3 7

2 3 1
x y

x y
− =
+ =

   [Solution] 

 

(b) 
5 4 1
3 6 2

x y
x y
+ =
− =

   [Solution] 

Solution 

(a) 
3 7

2 3 1
x y

x y
− =
+ =

 

 
So, this was the first system that we looked at above.  We already know the solution, but this will 
give us a chance to verify the values that we wrote down for the solution. 
 
Now, the method says that we need to solve one of the equations for one of the variables.  Which 
equation we choose and which variable that we choose is up to you, but it’s usually best to pick 
an equation and variable that will be easy to deal with.  This means we should try to avoid 
fractions if at all possible. 
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In this case it looks like it will be really easy to solve the first equation for y so let’s do that. 
 3 7x y− =  
 
Now, substitute this into the second equation. 
 ( )2 3 3 7 1x x+ − =  
 
This is an equation in x that we can solve so let’s do that. 

 
2 9 21 1

11 22
2

x x
x
x

+ − =
=
=

 

 
So, there is the x portion of the solution. 
 
Finally, do NOT forget to go back and find the y portion of the solution.  This is one of the more 
common mistakes students make in solving systems.  To so this we can either plug the x value 
into one of the original equations and solve for y or we can just plug it into our substitution that 
we found in the first step.  That will be easier so let’s do that. 
 
 ( )3 7 3 2 7 1y x= − = − = −  
 
So, the solution is 2x =  and 1y = −  as we noted above. 

[Return to Problems] 
 

(b) 
5 4 1
3 6 2

x y
x y
+ =
− =

 

 
With this system we aren’t going to be able to completely avoid fractions.  However, it looks like 
if we solve the second equation for x we can minimize them.  Here is that work. 

 
3 6 2

22
3

x y

x y

= +

= +
 

 
Now, substitute this into the first equation and solve the resulting equation for y. 

 

25 2 4 1
3
1010 4 1
3

10 714 1
3 3
7 1
3 14

1
6

y y

y y

y

y

y

⎛ ⎞+ + =⎜ ⎟
⎝ ⎠

+ + =

= − = −

⎛ ⎞⎛ ⎞= −⎜ ⎟⎜ ⎟
⎝ ⎠⎝ ⎠

= −
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Finally, substitute this into the original substitution to find x. 

 1 2 1 2 12
6 3 3 3 3

x ⎛ ⎞= − + = − + =⎜ ⎟
⎝ ⎠

 

 

So, the solution to this system is 
1
3

x =  and 
1
6

y = − .   

[Return to Problems]
 
As with single equations we could always go back and check this solution by plugging it into 
both equations and making sure that it does satisfy both equations.  Note as well that we really 
would need to plug into both equations.  It is quite possible that a mistake could result in a pair of 
numbers that would satisfy one of the equations but not the other one. 
 
Let’s now move into the next method for solving systems of equations.  As we saw in the last part 
of the previous example the method of substitution will often force us to deal with fractions, 
which adds to the likelihood of mistakes.  This second method will not have this problem.  Well, 
that’s not completely true.  If fractions are going to show up they will only show up in the final 
step and they will only show up if the solution contains fractions. 
 
This second method is called the method of elimination.  In this method we multiply one or both 
of the equations by appropriate numbers (i.e. multiply every term in the equation by the number) 
so that one of the variables will have the same coefficient with opposite signs.  Then next step is 
to add the two equations together.  Because one of the variables had the same coefficient with 
opposite signs it will be eliminated when we add the two equations.  The result will be a single 
equation that we can solve for one of the variables.  Once this is done substitute this answer back 
into one of the original equations. 
 
As with the first method it’s much easier to see what’s going on here with a couple of examples. 
 
Example 2  Solve each of the following systems of equations. 

(a) 
5 4 1
3 6 2

x y
x y
+ =
− =

   [Solution] 

 

(b) 
2 4 10
6 3 6

x y
x y
+ = −
+ =

   [Solution] 

Solution 

(a) 
5 4 1
3 6 2

x y
x y
+ =
− =

 

 
This is the system in the previous set of examples that made us work with fractions.  Working it 
here will show the differences between the two methods and it will also show that either method 
can be used to get the solution to a system. 
 
So, we need to multiply one or both equations by constants so that one of the variables has the 
same coefficient with opposite signs.  So, since the y terms already have opposite signs let’s work 
with these terms.  It looks like if we multiply the first equation by 3 and the second equation by 2 
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the y terms will have coefficients of 12 and -12 which is what we need for this method. 
 
Here is the work for this step. 

 

5 4 1 3 15 12 3

3 6 2 2 6 12 4

21 7

x y x y

x y x y

x

+ = × + =

− = × − =

=

JJJG

JJJG  

 
So, as the description of the method promised we have an equation that can be solved for x.  

Doing this gives, 
1
3

x =  which is exactly what we found in the previous example.  Notice 

however, that the only fraction that we had to deal with to this point is the answer itself which is 
different from the method of substitution. 
 
Now, again don’t forget to find y.  In this case it will be a little more work that the method of 
substitution.  To find y we need to substitute the value of x into either of the original equations 
and solve for y.  Since x is a fraction let’s notice that, in this case, if we plug this value into the 
second equation we will lose the fractions at least temporarily.  Note that often this won’t happen 
and we’ll be forced to deal with fractions whether we want to or not. 
 

 

13 6 2
3

1 6 2
6 1

1
6

y

y
y

y

⎛ ⎞ − =⎜ ⎟
⎝ ⎠

− =
− =

= −

 

 
Again, this is the same value we found in previous example. 

[Return to Problems] 
 

(b) 
2 4 10
6 3 6

x y
x y
+ = −
+ =

 

 
In this part all the variables are positive so we’re going to have to force an opposite sign by 
multiplying by a negative number somewhere.  Let’s also notice that in this case if we just 
multiply the first equation by -3 then the coefficients of the x will be -6 and 6. 
 
Sometimes we only need to multiply one of the equations and can leave the other one alone.  
Here is this work for this part. 

 

2 4 10 3 6 12 30

6 3 6 same 6 3 6

9 36
4

x y x y

x y x y

y
y

+ = − × − − − =

+ = + =

− =
= −

JJJJJG
JJJJJG  

 
Finally, plug this into either of the equations and solve for x.  We will use the first equation this 
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time. 
 

 

( )2 4 4 10
2 16 10

2 6
3

x
x

x
x

+ − = −

− = −
=
=

 

 
So, the solution to this system is 3x =  and 4y = − . 

[Return to Problems]
 
There is a third method that we’ll be looking at to solve systems of two equations, but it’s a little 
more complicated and is probably more useful for systems with at least three equations so we’ll 
look at it in a later section. 
 
Before leaving this section we should address a couple of special case in solving systems. 
 
Example 3  Solve the following systems of equations. 

 
6

2 2 1
x y

x y
− =

− + =
 

Solution 
We can use either method here, but it looks like substitution would probably be slightly easier.  
We’ll solve the first equation for x and substitute that into the second equation. 

 ( )

6

2 6 2 1
12 2 2 1

12 1 ??

x y

y y
y y

= +

− + + =

− − + =
− =

 

 
So, this is clearly not true and there doesn’t appear to be a mistake anywhere in our work.  So, 
what’s the problem?  To see let’s graph these two lines and see what we get. 

 
 
It appears that these two lines are parallel (can you verify that with the slopes?) and we know that 
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two parallel lines with different y-intercepts (that’s important) will never cross. 
 
As we saw in the opening discussion of this section solutions represent the point where two lines 
intersect.  If two lines don’t intersect we can’t have a solution. 
 
So, when we get this kind of nonsensical answer from our work we have two parallel lines and 
there is no solution to this system of equations. 
 
The system in the previous example is called inconsistent.  Note as well that if we’d used 
elimination on this system we would have ended up with a similar nonsensical answer. 
 
Example 4  Solve the following system of equations. 

 
2 5 1

10 25 5
x y

x y
+ = −

− − =
 

Solution 
In this example it looks like elimination would be the easiest method. 

 

2 5 1 5 10 25 5

10 25 5 same 10 25 5

0 0

x y x y

x y x y

+ = − × + = −

− − = − − =

=

JJJG
JJJJJG  

On first glance this might appear to be the same problem as the previous example.  However, in 
that case we ended up with an equality that simply wasn’t true.  In this case we have 0=0 and that 
is a true equality and so in that sense there is nothing wrong with this. 
 
However, this is clearly not what we were expecting for an answer here and so we need to 
determine just what is going on.   
 
We’ll leave it to you to verify this, but if you find the slope and y-intercepts for these two lines 
you will find that both lines have exactly the same slope and both lines have exactly the same y-
intercept.   So, what does this mean for us?  Well if two lines have the same slope and the same y-
intercept then the graphs of the two lines are the same graph.  In other words, the graphs of these 
two lines are the same graph.  In these cases any set of points that satisfies one of the equations 
will also satisfy the other equation. 
 
Also, recall that the graph of an equation is nothing more than the set of all points that satisfies 
the equation.  In other words, there is an infinite set of points that will satisfy this set of equations. 
 
In these cases we do want to write down something for a solution.  So what we’ll do is solve one 
of the equations for one of the variables (it doesn’t matter which you choose).  We’ll solve the 
first for y. 
 

 
2 5 1

5 2 1
2 1
5 5

x y
y x

y x

+ = −
= − −

= − −

 

 
Then, given any x we can find a y and these two numbers will form a solution to the system of 
equations.  We usually denote this by writing the solution as follows, 
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 where  is any real number2 1
5 5

x t
t

y t

=

= − −
 

 
So show that these give solutions let’s work through a couple of values of t. 
 
t=0 

 10
5

x y= = −  

To show that this is a solution we need to plug it into both equations in the system. 

 
( ) ( )? ?1 12 0 5 1 10 0 25 5

5 5
1 1 5 5

⎛ ⎞ ⎛ ⎞+ − =− − − − =⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠
− = − =

 

So, 0x =  and 
1
5

y = −  is a solution to the system.  Let’s do another one real quick. 

t=-3 

 ( )2 1 6 13 3 1
5 5 5 5

x y= − = − − − = − =  

 
Again we need to plug it into both equations in the system to show that it’s a solution. 

 ( ) ( ) ( ) ( )? ?2 3 5 1 1 10 3 25 1 5
1 1 5 5

− + =− − − − =

− = − =
 

 
Sure enough 3x = −  and 1y =  is a solution. 
 
So, since there are an infinite number of possible t’s there must be an infinite number of 
solutions to this system and they are given by, 

where  is any real number2 1
5 5

x t
t

y t

=

= − −
 

 
Systems such as those in the previous examples are called dependent. 
 
We’ve now seen all three possibilities for the solution to a system of equations.  A system of 
equation will have either no solution, exactly one solution or infinitely many solutions. 
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 Linear Systems with Three Variables 
This is going to be a fairly short section in the sense that it’s really only going to consist of a 
single example to illustrate how to take the methods from the previous section and use them to 
solve a linear system with three equations and three variables.  As we will see these can be fairly 
involved problems and there is a third solution technique that is often easier to use on these types 
of systems.  We will be looking at that technique in the next section. 
 
Example 1  Solve the following system of equations. 

 
2 3 7

2 4
3 2 2 10

x y z
x y z

x y z

− + =
+ + =

− + − = −
 

Solution 
We are going to try and find values of x, y, and a z that will satisfy all three equations at the same 
time.  We are going to use elimination to eliminate one of the variables from one of the equations 
and two of the variable from another of the equations.  The reason for doing this will be apparent 
once we’ve actually done it. 
 
The elimination method in this case will work a little differently than with two equations.  As 
with two equations we will multiply as many equations as we need to so that if we start adding 
pairs of equations we can eliminate one of the variables. 
 
In this case it looks like if we multiply the second equation by 2 it will be fairly simple to 
eliminate the y term from the second and third equation by adding the first equation to both of 
them.  So, let’s first multiply the second equation by two. 
 

 
2 3 7 same 2 3 7

2 4 2 4 2 2 8

3 2 2 10 same 3 2 2 10

x y z x y z
x y z x y z

x y z x y z

− + = − + =
+ + = × + + =

− + − = − − + − = −

JJJJJG

JJJG
JJJJJG

 

 
Now, with this new system we will replace the second equation with the sum of the first and 
second equations and we will replace the third equation with the sum of the first and third 
equations. 
 
Here is the resulting system of equations. 
 

 
2 3 7

5 5 15
2 3

x y z
x z
x z

− + =
+ =

− + = −
 

 
So, we’ve eliminated one of the variables from two of the equations.  We now need to eliminate 
either x or z from either the second or third equations.  Again, we will use elimination to do this.  
In this case we will multiply the third equation by -5 since this will allow us to eliminate z from 
this equation by adding the second onto is. 
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2 3 7 same 2 3 7

5 5 15 same 5 5 15
2 3 5 10 5 15

x y z x y z
x z x z
x z x z

− + = − + =
+ = + =

− + = − × − − =

JJJJJG
JJJJJG

JJJJJG

 

 
Now, replace the third equation with the sum of the second and third equation. 
 

 
2 3 7

5 5 15
15 30

x y z
x z
x

− + =
+ =

=
 

 
Now, at this point notice that the third equation can be quickly solved to find that 2x = .  Once 
we know this we can plug this into the second equation and that will give us an equation that we 
can solve for z as follows. 
 

 

( )5 2 5 15
10 5 15

5 5
1

z
z
z
z

+ =

+ =
=
=

 

 
Finally, we can substitute both x and z into the first equation which we can use to solve for y.  
Here is that work. 

 

( )2 2 3 1 7
2 5 7

2 2
1

y
y

y
y

− + =

− + =
− =

= −

 

 
So, the solution to this system is 2x = , 1y = −  and 1z = . 
 
That was a fair amount of work and in this case there was even less work than normal since in 
each case we only had to multiply a single equation to allow us to eliminate variables.  On top of 
that none of the solutions were fractions.   
 
The third method for solving systems that we’ll be looking at in the next section is really just a 
shorthand for what we did here, but it will be easier to do once you get used to the notation. 
 
Interpretation of solutions in these cases is a little harder in some senses.  All three of these 
equations are the equations of planes in three dimensional space and solution to this system is the 
one point that all three of the planes have in common. 
 
Note as well that it is completely possible to have no solutions to these systems or infinitely many 
systems as we saw in the previous section with systems of two equations.  We will look at these 
cases once we have the next method out of the way. 
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 Augmented Matrices 
In this section we need to take a look at the third method for solving systems of equations.  For 
systems of two equations it is probably a little more complicated than the methods we looked at 
in the first section.  However, for systems with more equations it is probably easier than using the 
method we saw in the previous section.  
 
Before we get into the method we first need to get some definitions out of the way. 
 
An augmented matrix for a system of equations is a matrix of numbers in which each row 
represents the constants from one equation (both the coefficients and the constant on the other 
side of the equal sign) and each column represents all the coefficients for a single variable. 
 
Let’s take a look at an example.  Here is the system of equations that we looked at in the previous 
section. 

 
2 3 7

2 4
3 2 2 10

x y z
x y z

x y z

− + =
+ + =

− + − = −
 

 
Here is the augmented matrix for this system. 
 

 
1 2 3 7
2 1 1 4
3 2 2 10

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− − −⎣ ⎦

 

 
The first row consists of all the constants from the first equation with the coefficient of the x in 
the first column, the coefficient of the y in the second column, the coefficient of the z in the third 
column and the constant in the final column.  The second row is the constants from the second 
equation with the same placement and likewise for the third row.  The dashed line represents 
where the equal sign was in the original system of equations and is not always included.  This is 
mostly dependent on the instructor and/or textbook being used. 
 
Next we need to discuss elementary row operations.  There are three of them and we will give 
both the notation used for each one as well as an example using the augmented matrix given 
above. 
 

1. Interchange Two Rows. With this operation we will interchange all the entries in row i 
and row j.  The notation we’ll use here is i jR R↔ .   Here is an example. 

 1 3

1 2 3 7 3 2 2 10
2 1 1 4 2 1 1 4
3 2 2 10 1 2 3 7

R R
− − − −⎡ ⎤ ⎡ ⎤

↔⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥→
⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

 

So, we do exactly what the operation says.  Every entry in the third row moves up to the 
first row and every entry in the first row moves down to the third row.  Make sure that 
you move all the entries.  One of the more common mistakes is to forget to move one or 
more entries. 
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2. Multiply a Row by a Constant.  In this operation we will multiply row i by a constant c 
and the notation will use here is icR .  Note that we can also divide a row by a constant 

using the notation 
1

iR
c

.  Here is an example. 

 3

1 2 3 7 1 2 3 7
4

2 1 1 4 2 1 1 4
3 2 2 10 12 8 8 40

R
− −⎡ ⎤ ⎡ ⎤

−⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥→
⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

 

So, when we say we will multiply a row by a constant this really means that we will 
multiply every entry in that row by the constant.  Watch out for signs in this operation 
and make sure that you multiply every entry. 

 
3. Add a Multiple of a Row to Another Row.  In this operation we will replace row i with 

the sum of row i and a constant, c, times row j.  The notation we’ll use for this operation 
is i j iR cR R+ → .  To perform this operation we will take an entry from row i and add to 
it c times the corresponding entry from row j and put the result back into row i.  Here is 
an example of this operation. 

 3 1 3

1 2 3 7 1 2 3 7
4

2 1 1 4 2 1 1 4
3 2 2 10 7 10 14 38

R R R
− −⎡ ⎤ ⎡ ⎤

− →⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥→
⎢ ⎥ ⎢ ⎥− − − − − −⎣ ⎦ ⎣ ⎦

 

 Let’s go through the individual computation to make sure you followed this. 

 

( )
( )
( )
( )

3 4 1 7

2 4 2 10

2 4 3 14

10 4 7 38

− − = −

− − =

− − = −

− − = −

 

Be very careful with signs here.  We will be doing these computations in our head for the 
most part and it is very easy to get signs mixed up and add one in that doesn’t belong or 
lose one that should be there. 
 
It is very important that you can do this operation as this operation is the one that we will 
be using more than the other two combined. 

 
Okay, so how do we use augmented matrices and row operations to solve systems?  Let’s start 
with a system of two equations and two unknowns. 

 
ax by p
cx dy q

+ =
+ =

 

 
We first write down the augmented matrix for this system, 

 
a b p
c d q
⎡ ⎤
⎢ ⎥
⎣ ⎦

 

and use elementary row operations to convert it into the following augmented matrix. 

 
1 0
0 1

h
k

⎡ ⎤
⎢ ⎥
⎣ ⎦
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Once we have the augmented matrix in this form we are done.  The solution to the system will be 
x h=  and y k= . 
 
This method is called Gauss-Jordan Elimination. 
 
Example 1  Solve each of the following systems of equations. 

(a) 
3 2 14

3 1
x y
x y
− =
+ =

   [Solution] 

 

(b) 
2 3

4 2
x y

x y
− + = −

− = −
   [Solution] 

 

(c) 
3 6 9
2 2 12

x y
x y
− = −

− − =
   [Solution] 

Solution 

(a) 
3 2 14

3 1
x y
x y
− =
+ =

 

The first step here is to write down the augmented matrix for this system. 

 
2 14

1 3 1
3 −⎡ ⎤
⎢ ⎥
⎣ ⎦

 

To convert it into the final form we will start in the upper left corner and the work in a counter-
clockwise direction until the first two columns appear as they should be.   
 
So, the first step is to make the red three in the augmented matrix above into a 1.  We can use any 
of the row operations that we’d like to.  We should always try to minimize the work as much as 
possible however. 
 
So, since there is a one in the first column already it just isn’t in the correct row let’s use the first 
row operation and interchange the two rows. 

 1 23 2 14 1 3 1
1 3 1 2 143

R R− ↔⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥→ −⎣ ⎦ ⎣ ⎦

 

 
The next step is to get a zero below the 1 that we just got in the upper left hand corner.  This 
means that we need to change the red three into a zero.  This will almost always require us to use 
third row operation.  If we add -3 times row 1 onto row 2 we can convert that 3 into a 0.  Here is 
that operation. 

 2 1 21 3 1 3 1 3 1
13 2 14 0 11 1

R R R− →⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− →⎣ ⎣ −⎦ ⎦

 

 
Next we need to get a 1 into the lower right corner of the first two columns.  This means changing 
the red -11 into a 1.  This is usually accomplished with the second row operation.  If we divide 
the second row by -11 we will get the 1 in that spot that we need. 
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 2
11 3 1 1 1

11
0 11 11

3
0 1 1

R−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− −⎣ ⎦ ⎣ ⎦→

 

 
Okay, we’re almost done.  The final step is to turn the red three into a zero.  Again, this almost 
always requires the third row operation.  Here is the operation for this final step. 

 1 2 11 3 1 3 1 0 4
0 1 1 0 1 1

R R R− →⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− → −⎣ ⎦ ⎣ ⎦

 

 
We have the augmented matrix in the required form and so we’re done.  The solution to this 
system is 4x =  and 1y = − . 

[Return to Problems] 
 

(b) 
2 3

4 2
x y

x y
− + = −

− = −
 

In this part we won’t put in as much explanation for each step.  We will mark the next number 
that we need to change in red as we did in the previous part. 
 
We’ll first write down the augmented matrix and then get started with the row operations. 

 1 2 2 1 21 3 1 4 2 2 1 4 22
2 71 4 2 1 3 0 7

R R R R R− ↔ − − + → − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢
−

− −⎥ ⎢ ⎥ ⎢ ⎥− − → − → −⎣ ⎦ ⎣ ⎦ ⎣ ⎦
 

 
Before proceeding with the next step let’s notice that in the second matrix we had one’s in both 
spots that we needed them.  However, the only way to change the -2 into a zero that we had to 
have as well was to also change the 1 in the lower right corner as well.   This is okay.  Sometimes 
it will happen and trying to keep both ones will only cause problems. 
 
Let’s finish the problem. 

 1 2 12
11 4 2 1 2 4 1 0 2
7

0 7 0 1 1
4

0 1 17
R R RR− − − + →−⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− →⎣ ⎦ ⎣ ⎦ ⎣ ⎦→

−
−

 

 
The solution to this system is then 2x =  and 1y = . 

[Return to Problems] 
 

(c) 
3 6 9
2 2 12

x y
x y
− = −

− − =
 

Let’s first write down the augmented matrix for this system. 

 
6 9

2 2 12
3 − −⎡ ⎤

⎢ ⎥− −⎣ ⎦
 

Now, in this case there isn’t a 1 in the first column and so we can’t just interchange two rows as 
the first step.  However, notice that since all the entries in the first row have 3 as a factor we can 
divide the first row by 3 which will get a 1 in that spot and we won’t put any fractions into the 
problem. 
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Here is the work for this system. 

 2 1 21
16 9 1 2 3 2 1 2 3
3

2 2 12 2 122 660
3 R R RR− − − − + → − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − →⎣ −⎦ ⎣ ⎦ ⎣ ⎦→ −
 

 ( ) 1 2 12
11 2 3 1 2 3 2 1 0

6
5

6
0 6 0 1 1 0 1 1

R R RR− − − + → −−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥− → −⎣ ⎦− ⎣→

−

⎣ ⎦ ⎦
 

 
The solution to this system is 5x = −  and 1x = − . 

[Return to Problems]
 
It is important to note that the path we took to get the augmented matrices in this example into the 
final form is not the only path that we could have used.   There are many different paths that we 
could have gone down.  All the paths would have arrived at the same final augmented matrix 
however so we should always choose the path that we feel is the easiest path.  Note as well that 
different people may well feel that different paths are easier and so may well solve the systems 
differently.  They will get the same solution however. 
 
For two equations and two unknowns this process is probably a little more complicated than just 
the straight forward solution process we used in the first section of this chapter.  This process 
does start becoming useful when we start looking at larger systems.  So, let’s take a look at a 
couple of systems with three equations in them. 
 
In this case the process is basically identical except that there’s going to be more to do.  As with 
two equations we will first set up the augmented matrix and then use row operations to put it into 
the form, 
 

 
1 0 0
0 1 0
0 0 1

p
q
r

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 

 
Once the augmented matrix is in this form the solution is x p= , y q=  and z r= .  As with the 
two equations case there really isn’t any set path to take in getting the augmented matrix into this 
form.  The usual path is to get the 1’s in the correct places and 0’s below them.  Once this is done 
we then try to get zeroes above the 1’s. 
 
Let’s work a couple of examples to see how this works. 
 
 
 
 
 
 
 
 
 



College Algebra 

© 2007 Paul Dawkins 331 http://tutorial.math.lamar.edu/terms.aspx 
 

Example 2  Solve each of the following systems of equations. 

(a) 
3 2 2

2 3
2 3 3

x y z
x y z
x y z

+ − =
− + =
− − =

   [Solution] 

 

(b) 
3 2 7
2 2 9

3 6

x y z
x y z
x y z

+ − = −
+ + =

− − + =
   [Solution] 

Solution 

(a) 

3 2 2
2 3

2 3 3

x y z
x y z
x y z

+ − =
− + =
− − =

 

Let’s first write down the augmented matrix for this system. 

 
1 2 2

1 2 1 3
2

3

1 3 3

−⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

As with the previous examples we will mark the number(s) that we want to change in a given step 
in red.  The first step here is to get a 1 in the upper left hand corner and again, we have many 
ways to do this.  In this case we’ll notice that if we interchange the first and second row we can 
get a 1 in that spot with relatively little work. 

 1 2

3
3
2

1 2 2 1 2 1 3
1 2 1 3 1 2 2
2 1 3 3 1 3 3

R R
− −⎡ ⎤ ⎡ ⎤

↔⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥→
⎢ ⎥ ⎢ ⎥− − − −⎣ ⎦ ⎣ ⎦

 

 
The next step is to get the two numbers below this 1 to be 0’s.  Note as well that this will almost 
always require the third row operation to do.  Also, we can do both of these in one step as 
follows. 

 
2 1 2

3 1 3

1 2 1 3 3 1 2 1 3
1 2 2 23 7

2
0 5 7

1 3 3 0 3 5 3

R R R
R R R

− − → −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − → − −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥− − → − −⎣ ⎦ ⎣ ⎦

 

 
Next we want to turn the 7 into a 1.  We can do this by dividing the second row by 7. 

 2

1 2 1 31 2 1 3 1
50 5 7 0 1 17
7

0 3 5 3 0 3

7

3 5

R
−⎡ ⎤−⎡ ⎤ ⎢ ⎥

⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥→⎢ ⎥− −⎣ ⎦ ⎢ ⎥− −⎣ ⎦

 

 
So, we got a fraction showing up here.  That will happen on occasion so don’t get all that excited 
about it.  The next step is to change the 3 below this new 1 into a 0.  Note that we aren’t going to 
bother with the -2 above it quite yet.  Sometimes it is just as easy to turn this into a 0 in the same 
step.  In this case however, it’s probably just as easy to do it later as we’ll see. 
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So, using the third row operation we get, 

 3 2 3

1 2 1 3 1 2 1 3
35 50 1 1 0 1 1

7 7
0 5 33 0 020 0

7

R R R

⎡ ⎤
⎢ ⎥− −⎡ ⎤
⎢ ⎥⎢ ⎥ − → ⎢ ⎥⎢ ⎥− − − −
⎢ ⎥→⎢ ⎥
⎢ ⎥⎢ ⎥− ⎢
⎣ ⎦

−
−⎣ ⎦ ⎥

 

 
Next, we need to get the number in the bottom right corner into a 1.  We can do that with the 
second row operation. 

 3

1
5
7

20

1 2 1 3 1 2 3
7

50 1 1 0 1 120
7

0 0 10
7

00 0

R

⎡ ⎤
⎢ ⎥− −⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥− − −
⎢ ⎥ ⎢ ⎥→⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥
⎣

−
⎦

−  

 
Now, we need zeroes above this new 1.  So, using the third row operation twice as follows will do 
what we need done. 

 

2 3 2

1 3 1

51 2 3 1 0 37
0 1 1 0 1 0 1

0 0 1 00 0

1
5
7
1 0

2R R R

R R R

− + →⎡ ⎤
⎡ ⎤⎢ ⎥
⎢ ⎥⎢ ⎥− − → −⎢ ⎥⎢ ⎥
⎢ ⎥→ ⎣⎥

⎦

−

⎦

−

⎢
⎣

 

 
Notice that in this case the final column didn’t change in this step.  That was only because the 
final entry in that column was zero.  In general, this won’t happen. 
 
The final step is then to make the -2 above the 1 in the second column into a zero.  This can easily 
be done with the third row operation. 

 1 2 1

1 0 3 1 0 0 1
2

0 1 0 1 0 1 0 1
0 0 1 0 0 0 1 0

2
R R R

⎡ ⎤ ⎡ ⎤
+ →⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥→

⎢ ⎥ ⎢ ⎥⎣ ⎣ ⎦

−

⎦

 

 
So, we have the augmented matrix in the final form and the solution will be, 
 
 1, 1, 0x y z= = − =  
 
This can be verified by plugging these into all three equations and making sure that they are all 
satisfied. 

[Return to Problems] 
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(b) 

3 2 7
2 2 9

3 6

x y z
x y z
x y z

+ − = −
+ + =

− − + =
 

Again, the first step is to write down the augmented matrix. 

 
1 2 7

2 2 1 9
1 1 3

3

6

− −⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥− −⎣ ⎦

 

 
We can’t get a 1 in the upper left corner simply by interchanging rows this time.  We could 
interchange the first and last row, but that would also require another operation to turn the -1 into 
a 1.  While this isn’t difficult it’s two operations.  Note that we could use the third row operation 
to get a 1 in that spot as follows. 

 1 2 1

3
2
1

1 2 7 1 1 3 16
2 2 1 9 2 1 9
1 1 3 6 1 3 6

R R R
− − − − −⎡ ⎤ ⎡ ⎤

− →⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥→
⎢ ⎥ ⎢ ⎥− − −⎣ ⎣ ⎦−⎦

 

 
Now, we can use the third row operation to turn the two red numbers into zeroes. 

 
2 1 2

3 1 3

1 1 3 16 2 1 1 3 16
2 1 9 0 7 41
1 3 6 0 2 0 1

2 4
1 0

R R R
R R R

− − − − → − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥+ →⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−− → − −⎣ ⎦ ⎣ ⎦

 

 
The next step is to get a 1 in the spot occupied by the red 4.  We could do that by dividing the 
whole row by 4, but that would put in a couple of somewhat unpleasant fractions.  So, instead of 
doing that we are going to interchange the second and third row.  The reason for this will be 
apparent soon enough. 

 2 3

1 1 3 16 1 1 3 16
0 7 41 0 0 10
0 2 0

4 2
10 0 4 7 41

R R
− − − − − −⎡ ⎤ ⎡ ⎤

↔⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥→
⎢ ⎥ ⎢ ⎥− −

−

⎣ ⎦ ⎣ ⎦

 

 
Now, if we divide the second row by -2 we get the 1 in that spot that we want. 

 2

1 1 3 16 1 1 3 161
0 0 10 0 1 0 52
0 4 7 41 0 7 41

2
4

R
− − − − − −⎡ ⎤ ⎡ ⎤

−⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥
→⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

−  

 
Before moving onto the next step let’s think notice a couple of things here.  First, we managed to 
avoid fractions, which is always a good thing, and second this row is now done.  We would have 
eventually needed a zero in that third spot and we’ve got it there for free.  Not only that, but it 
won’t change in any of the later operations.  This doesn’t always happen, but if it does that will 
make our life easier. 
 
Now, let’s use the third row operation to change the red 4 into a zero. 
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 3 2 3

1 1 3 16 1 1 3 16
4

0 1 0 5 0 1 0 5
0 7 41 0 0 214 7

R R R
− − − − − −⎡ ⎤ ⎡ ⎤

− →⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥→
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

 

 
We now can divide the third row by 7 to get that the number in the lower right corner into a one. 

 3

1 1 3 16 1 1 161
0 1 0 5 0 1 0 57
0 0 2 0

3

17 0 1 3

R
− − − − −⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

→⎢ ⎥ ⎢⎣

−

⎥⎣ ⎦ ⎦

 

 
Next, we can use the third row operation to get the -3 changed into a zero. 

 1 3

1 1 16 1 0 7
3

0 1 0 5 0 1 0 5
0 0 1 3 0 0 1 3

3 1
R R R

− − −⎡ ⎤ ⎡ ⎤
+ →⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥→
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎦

− −

⎣

 

 
The final step is to then make the -1 into a 0 using the third row operation again. 

 1 2

1 0 7 1 0 0 2
0 1 0 5 0 1 0 5
0 0 1 3 0 0 1 3

1
R R R

− −⎡ ⎤ ⎡ ⎤
+ →⎢ ⎥ ⎢ ⎥

⎢ ⎥ ⎢ ⎥→
⎢ ⎥ ⎢ ⎥⎣ ⎣ ⎦

−

⎦

 

 
The solution to this system is then, 
 
 2, 5, 3x y z= − = =  

[Return to Problems]
 
Using Gauss-Jordan elimination to solve a system of three equations can be a lot of work, but it is 
often no more work than solving directly and is many cases less work.  If we were to do a system 
of four equations (which we aren’t going to do) at that point Gauss-Jordan elimination would be 
less work in all likelihood that if we solved directly. 
 
Also, as we saw in the final example worked in this section.  There really is no one set path to 
take through these problems.  Each system is different and may require a different path and set of 
operations to make.  Also, the path that one person finds to be the easiest may not by the path that 
another person finds to be the easiest.  Regardless of the path however, the final answer will be 
the same. 
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 More on the Augmented Matrix 
In the first section in this chapter we saw that there were some special cases in the solution to 
systems of two equations.  We saw that there didn’t have to be a solution at all and that we could 
in fact have infinitely many solutions.  In this section we are going to generalize this out to 
general systems of equations and we’re going to look at how to deal with these cases when using 
augmented matrices to solve a system. 
 
Let’s first give the following fact. 
 
Fact 
Given any system of equations there are exactly three possibilities for the solution. 

1. There will not be a solution. 
2. There will be exactly one solution. 
3. There will be infinitely many solutions. 

 
This is exactly what we found the possibilities to be when we where looking at two equations.  It 
just turns out that it doesn’t matter how many equations we’ve got.  There are still only these 
three possibilities. 
 
Now, let’s see how we can identify the first and last possibility when we are using the augmented 
matrix method for solving.  In the previous section we stated that we wanted to use the row 
operations to convert the augmented matrix into the following form, 

 
1 0 0

1 0
or 0 1 0

0 1
0 0 1

p
h

q
k

r

⎡ ⎤
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

 

depending upon the number of equations present in the system.  It turns out that we should have 
added the qualifier, “if possible” to this instruction, because it isn’t always possible to do this.  In 
fact, if it isn’t possible to put it into one of these forms then we will know that we are in either the 
first or last possibility for the solution to the system. 
 
Before getting into some examples let’s first address how we knew what the solution was based 
on these forms of the augmented matrix.  Let’s work with the two equation case. 
 
Since, 

 
1 0
0 1

h
k

⎡ ⎤
⎢ ⎥
⎣ ⎦

 

is an augmented matrix we can always convert back to equations.  Each row represents and 
equation and the first column is the coefficient of x in the equation while the second column is the 
coefficient of the y in the equation.  The final column is the constant that will be on the right side 
of the equation. 
 
So, if we do that for this case we get, 

 
( ) ( )
( ) ( )
1 0

0 1

x y h x h

x y k x k

+ = ⇒ =

+ = ⇒ =
 

and this is exactly what we said the solution was in the previous section. 
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This idea of turning an augmented matrix back into equations will be important in the following 
examples. 
 
Speaking of which, let’s go ahead and work a couple of examples.  We will start out with the two 
systems of equations that we looked at in the first section that gave the special cases of the 
solutions. 
 
Example 1  Use augmented matrices to solve each of the following systems. 

(a) 
6

2 2 1
x y

x y
− =

− + =
   [Solution] 

 

(b) 
2 5 1

10 25 5
x y

x y
+ = −

− − =
   [Solution] 

Solution 

(a) 
6

2 2 1
x y

x y
− =

− + =
 

Now, we’ve already worked this one out so we know that there is no solution to this system.  
Knowing that let’s see what the augmented matrix method gives us when we try to use it. 
 
We’ll start with the augmented matrix. 

 
1 1 6

2 12
−⎡ ⎤

⎢ ⎥
⎣ ⎦−

 

Notice that we’ve already got a 1 in the upper left corner so we don’t need to do anything with 
that.  So, we next need to make the -2 into a 0. 

 2 1 21 1 6 2 1 1 6
2 1 0 132 0

R R R− + → −⎡
−

⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥→⎣ ⎦ ⎣ ⎦

 

 
Now, the next step should be to get a 1 in the lower right corner, but there is no way to do that 
without changing the zero in the lower left corner.  That’s a problem, because we must have a 
zero in that spot as well as a one in the lower right corner.  What this tells us is that it isn’t 
possible to put this augmented matrix form. 
 
Now, go back to equations and see what we’ve got in this case. 

 
6

0 13 ???
x y− =

=
 

The first row just converts back into the first equation.  The second row however converts back to 
nonsense.  We know this isn’t true so that means that there is no solution.  Remember, if we reach 
a point where we have an equation that just doesn’t make sense we have no solution. 
 
Note that if we’d gotten  

 
1 1 6
0 1 0

−⎡ ⎤
⎢ ⎥
⎣ ⎦

 

we would have been okay since the last row would return the equation 0y =  so don’t get 
confused between this case and what we actually got for this system. 

[Return to Problems] 
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(b) 
2 5 1

10 25 5
x y

x y
+ = −

− − =
 

In this case we know from the first section that there are infinitely many solutions to this system.  
Let’s see what we get when we use the augmented matrix method for the solution. 
 
Here is the augmented matrix for this system. 

 
5 1

10 25
2

5
−⎡ ⎤

⎢ ⎥− −⎣ ⎦
 

In this case we’ll need to first get a 1 in the upper left corner and there isn’t going to be any easy 
way to do this that will avoid fractions so we’ll just divide the first row by 2. 

 1
1 5 15 1 1
2 2 2

10 25 5
2

10 25 5

R ⎡ ⎤− −⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥− −⎣ ⎦ → −⎣ ⎦−
 

 
Now, we can get a zero in the lower left corner. 

 2 1 2
5 1 5 1101 1
2 2 2 2

1 25 5 0 00 0

R R R⎡ ⎤ ⎡ ⎤+ →− −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥→−⎣ ⎦ ⎣ ⎦−

 

 
Now, as with the first part we are never going to be able to get a 1 in place of the red zero without 
changing the first zero in that row.  However, this isn’t the nonsense that the first part got.  Let’s 
convert back to equations. 

 
5 1
2 2

0 0

x y+ = −

=
 

 
That last equation is a true equation and so there isn’t anything wrong with this.  In this case we 
have infinitely many solutions.   
 
Recall that we still need to do a little work to get the solution.  We solve one of the equations for 
one of the variables.  Note however, that if we use the equation from the augmented matrix this is 
very easy to do. 
 

 5 1
2 2

x y= − −  

We then write the solution as, 

 
5 1

where  is any real number2 2
x t

t
y t

= − −

=
 

 
We get solutions by picking t and plugging this into the equation for x.  Note that this is NOT the 
same set of equations we got in the first section.  That is okay.  When there are infinitely many 
solutions there are more than one way to write the equations that will describe all the solutions. 

[Return to Problems]
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Let’s summarize what we learned in the previous set of examples.  First, if we have a row in 
which all the entries except for the very last one are zeroes and the last entry is NOT zero then we 
can stop and the system will have no solution. 
 
Next, if we get a row of all zeroes then we will have infinitely many solutions.  We will then need 
to do a little more work to get the solution and the number of equations will determine how much 
work we need to do. 
 
Now, let’s see how some systems with three equations work.  The no solution case will be 
identical, but the infinite solution case will have a little work to do. 
 
Example 2  Solve the following system of equations using augmented matrices. 

 
3 3 6 3
2 2 4 10

2 3 7

x y z
x y z

x y z

− − = −
− − =

− + + =
 

Solution 
Here’s the augmented matrix for this system. 

 
3 6 3

2 2 4 10
2 3 1 7

3 − − −⎡ ⎤
⎢ ⎥− −⎢ ⎥
⎢ ⎥−⎣ ⎦

 

We can get a 1 in the upper left corner by dividing by the first row by a 3. 

 1

3 6 3 1 1 2 11
2 2 4 10 2 4 1
3

2
2

03
2 3 1 7 3 1 7

R
− − − − − −⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥− − − −⎢ ⎥ ⎢ ⎥
→⎢ ⎥ ⎢ ⎥− ⎣ ⎦−⎣ ⎦

 

 
Next we’ll get the two numbers under this one to be zeroes. 

 
2 1 2

3 1 3

1 1 2 1 2 1 1 2 1
2 4 10 2 0 0 0 12
3 1 7 0 3 52 1

2
R R R
R R R

− − − − → − − −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥− − + →⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥→ −⎣ ⎣ ⎦− ⎦

 

 
And we can stop.  The middle row is all zeroes except for the final entry which isn’t zero.  Note 
that it doesn’t matter what the number is as long as it isn’t zero. 
 
Once we reach this type of row we know that the system won’t have any solutions and so there 
isn’t any reason to go any farther. 
 
Okay, let’s see how we solve a system of three equations with an infinity number of solutions 
with the augmented matrix method.  This example will also illustrate an interesting idea about 
systems. 
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Example 3  Solve the following system of equations using augmented matrices. 
3 3 6 3
2 2 4 2

2 3 7

x y z
x y z

x y z

− − = −
− − = −

− + + =
 

Solution 
Notice that this system is almost identical to the system in the previous example.  The only 
difference is the number to the right of the equal sign in the second equation.  In this system it is -
2 and in the previous example it was 10.  Changing that one number completely changes the type 
of solution that we’re going to get.  Often this kind of simple change won’t affect the type of 
solution that we get, but in some rare cases it can. 
 
Since the first two steps of the process are identical to the previous part we won’t discuss them.  
Here they are. 

 
2 1 2

1
3 1 3

3 6 3 1 1 2 1 2 1 1 2 11
2 2 4 2 2 4 2 2 0 0 0 03
2 3 1 7 3 1 7

2
2 5

3

0 1 3

R R R
R

R R R
− − − − − − − → − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

⎢ ⎥ ⎢ ⎥ ⎢ ⎥− − − − − − + →⎢ ⎥ ⎢ ⎥ ⎢ ⎥
→⎢ ⎥ ⎢ ⎥ ⎢ ⎥− → −⎣ ⎦ ⎣ ⎦ ⎣ ⎦−

 

 
We’ve got a row of all zeroes so we instantly know that we’ve got infinitely many solutions.  
Unlike the two equation case we aren’t going to stop however.  It looks like with a couple of row 
operations we can make the second column look like it is supposed to in the final form so let’s do 
that. 

 2 3 1 2 1

1 1 2 1 1 2 1 1 0 5 4
0 0 0 0 1 3 5 0 1 3 5
0 1 3 5 0 0

1
0

0 0 0 0 0 0

R R R R R
− − − − − −⎡ ⎤ ⎡ ⎤ ⎡ ⎤

→ + →⎢ ⎥ ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎢ ⎥ ⎢ ⎥→ →
⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎣ ⎦

−

⎦

 

 
In this case we were able to make the second column look like it’s supposed to and the third 
column will never look correct.  However, it is possible that the situation could be reversed and it 
would be the third column that we can make look correct and the second wouldn’t look correct.  
Every system is different. 
 
Once we reach this point we go back to equations. 
 

 
5 4
3 5

x z
y z
− =
− =

 

 
Now, both of these equations contain a z and so we’ll move that to the other side in each 
equation. 

 
5 4
3 5

x z
y z
= +
= +

 

 
This means that we get to pick the value of z for free and we’ll write the solution as, 
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5 4
3 5 where  is any real number

x t
y t t
z t

= +
= +
=

 

 
Since there are an infinite number of ways to choose t there are an infinite number of solutions to 
this system. 
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 Non­Linear Systems 
In this section we are going to be looking at non-linear systems of equations.  A non-linear 
system of equations is a system in which at least one of the variables has an exponent other than 1 
and/or there is a product of variables in one of the equations. 
 
To solve these systems we will use either the substitution method or elimination method that we 
first looked at when we solved systems of linear equations.  The main difference is that we may 
end up getting complex solutions in addition to real solutions.  Just as we saw in solving systems 
of two equations the real solutions will represent the coordinates of the points where the graphs of 
the two functions intersect. 
 
Let’s work some examples. 
 
Example 1  Solve the following system of equations. 

 
2 2 10
2 1

x y
x y
+ =
+ =

 

Solution 
In linear systems we had the choice of using either method on any given system.  With non-linear 
systems that will not always be the case.  In the first equation both of the variables are squared 
and in the second equation both of the variables are to the first power.  In other words, there is no 
way that we can use elimination here and so we are must use substitution.  Luckily that isn’t too 
bad to do for this system since we can easily solve the second equation for y and substitute this 
into the first equation. 
 1 2y x= −  
 
 ( )22 1 2 10x x+ − =  
 
This is a quadratic equation that we can solve. 

 

( )( )

2 2

2

1 4 4 10
5 4 9 0

91 5 9 0 1,
5

x x x
x x

x x x x

+ − + =

− − =

+ − = ⇒ = − =

 

 
So, we have two values of x.  Now, we need to determine the values of y and we are going to 
have to be careful to not make a common mistake here.  We determine the values of y by 
plugging x into our substitution. 
 

( )1 1 2 1 3x y= − ⇒ = − − =  

 9 9 131 2
5 5 5

x y ⎛ ⎞= ⇒ = − = −⎜ ⎟
⎝ ⎠

 

 
Now, we only have two solutions here.  Do not just start mixing and matching all possible values 
of x and y into solutions.  We get 3y =  as a solution ONLY if 1x = −  and so the first solution is, 

1, 3x y= − =  
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Likewise, we only get 
13
5

y = −  ONLY if 
9
5

x =  and so the second solution is, 

 9 13,
5 5

x y= = −  

 
So, we have two solutions.  Now, as noted at the start of this section these two solutions will 
represent the points of intersection of these two curves.  Since the first equation is a circle and the 
second equation is a line have two intersection points is definitely possible.  Here is a sketch of 
the two equations as a verification of this. 

 
Note that when the two equations are a line and a circle as in the previous example we know that 
we will have at most two real solutions since it is only possible for a line to intersect a circle zero, 
one, or two times. 
 
Example 2  Solve the following system of equations. 

 
2 22 2

2
x y

xy
− =

=
 

Solution 
Okay, in this case we have a hyperbola (the first equation, although it isn’t in standard form) and 
a rational function (the second equation if we solved for y).  As with the first example we can’t 
use elimination on this system so we will have to use substitution. 
 
The best way is to solve the second equation for either x or y.  Either on will give us pretty much 
the same work so we’ll solve for y since that is probably the will make the equation look more 
like those that we’ve looked at in the past.  In other words, the new equation will be in terms of x 
and that is the variable that we are used to seeing in equations. 
 

 2y
x

=  
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2
2

2
2

2
2

22 2

42 2

8 2

x
x

x
x

x
x

⎛ ⎞− =⎜ ⎟
⎝ ⎠

− =

− =

 

 
The first step towards solving this equation will be to multiply the whole thing by x2 to clear out 
the denominators. 

4 2

4 2

8 2
2 8 0

x x
x x

− =

− − =
 

 
Now, this is quadratic in form and we know how to solve those kinds of equations.  If we define, 

( )22 2 2 4u x u x x= ⇒ = =  

and the equation can be written as, 

 
( )( )

2 2 8 0
4 2 0 2, 4

u u
u u u u

− − =

− + = ⇒ = − =
 

 
In terms of x this means that we have the following, 

 
2

2

4 2

2 2

x x

x x i

= ⇒ = ±

= − ⇒ = ±
 

 
So, we have four possible values of x and two of them are complex.  To determine the values of y 
we can plug these into our substitution. 
 

 

22 1
2
22 1
2

x y

x y

= ⇒ = =

= − ⇒ = = −
−

 

 
2

2

2 2 2 22
2 2 2 2

2 2 2 22
2 2 2 2

i i ix i y
ii i i

i i ix i y
ii i i

= ⇒ = = = = −

= − ⇒ = − = − = − =
 

 
For the complex solutions, notice that we made sure the i was in the numerator.  The for solutions 
are then, 
 

2, 1 and 2, 1 and
2 22 , and 2 ,
2 2

x y x y
i ix i y x i y

= = = − −

= = − = − =
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Two of the solutions are real and so represent intersection points of the graphs of these two 
equations.  The other two are complex solutions and while solutions will not represent 
intersection points of the curves. 
 
For reference purposes, here is a sketch of the two curves. 

 
 
Note that there are only two intersection points of these two graphs as suggested by the two real 
solutions.  Complex solutions never represent intersections of two curves. 
 
Example 3  Solve the following system of equations. 

 
2 2

2 2

2 24
12

x y
x y
+ =

− = −
 

Solution 
This time we have an ellipse and a hyperbola.  Neither one are in standard form however. 
 
In the first two examples we’ve used the substitution method to solve the system and we can use 
that here as well.  Let’s notice however, that if we just add the two equations we will eliminate 
the y’s from the system so we’ll do it that way. 
 

 

2 2

2 2

2

2 24
12

3 12

x y
x y

x

+ =

− = −

=

 

 
This is easy enough to solve for x. 

 
2

2

3 12
4 2

x
x x

=

= ⇒ = ±
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To determine the value(s) of the y’s we can substitute these into either of the equations.  We will 
use the first since there won’t be any minus signs to worry about. 
 

2 :x =  

 

( )2 2

2

2

2 2 24

8 24
16 4

y

y
y y

+ =

+ =

= ⇒ = ±

 

 
2 :x = −  

 

( )2 2

2

2

2 2 24

8 24
16 4

y

y
y y

− + =

+ =

= ⇒ = ±

 

 
Note that for this system, unlike the previous examples, each value of x actually gave two 
possible values of y.  That means that there are in fact four solutions.  They are, 
 
 ( ) ( ) ( ) ( )2, 4 2, 4 2, 4 2, 4− − − −  
 
This also means that there should be four intersection points to the two curves.  Here is a sketch 
for verification. 
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